xref: /linux/mm/slub.c (revision 66cd8e9cb81015a2ec7f9dfb83db7d7915587eef)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * SLUB: A slab allocator that limits cache line use instead of queuing
4  * objects in per cpu and per node lists.
5  *
6  * The allocator synchronizes using per slab locks or atomic operations
7  * and only uses a centralized lock to manage a pool of partial slabs.
8  *
9  * (C) 2007 SGI, Christoph Lameter
10  * (C) 2011 Linux Foundation, Christoph Lameter
11  */
12 
13 #include <linux/mm.h>
14 #include <linux/swap.h> /* mm_account_reclaimed_pages() */
15 #include <linux/module.h>
16 #include <linux/bit_spinlock.h>
17 #include <linux/interrupt.h>
18 #include <linux/swab.h>
19 #include <linux/bitops.h>
20 #include <linux/slab.h>
21 #include "slab.h"
22 #include <linux/vmalloc.h>
23 #include <linux/proc_fs.h>
24 #include <linux/seq_file.h>
25 #include <linux/kasan.h>
26 #include <linux/node.h>
27 #include <linux/kmsan.h>
28 #include <linux/cpu.h>
29 #include <linux/cpuset.h>
30 #include <linux/mempolicy.h>
31 #include <linux/ctype.h>
32 #include <linux/stackdepot.h>
33 #include <linux/debugobjects.h>
34 #include <linux/kallsyms.h>
35 #include <linux/kfence.h>
36 #include <linux/memory.h>
37 #include <linux/math64.h>
38 #include <linux/fault-inject.h>
39 #include <linux/kmemleak.h>
40 #include <linux/stacktrace.h>
41 #include <linux/prefetch.h>
42 #include <linux/memcontrol.h>
43 #include <linux/random.h>
44 #include <kunit/test.h>
45 #include <kunit/test-bug.h>
46 #include <linux/sort.h>
47 #include <linux/irq_work.h>
48 #include <linux/kprobes.h>
49 #include <linux/debugfs.h>
50 #include <trace/events/kmem.h>
51 
52 #include "internal.h"
53 
54 /*
55  * Lock order:
56  *   1. slab_mutex (Global Mutex)
57  *   2. node->list_lock (Spinlock)
58  *   3. kmem_cache->cpu_slab->lock (Local lock)
59  *   4. slab_lock(slab) (Only on some arches)
60  *   5. object_map_lock (Only for debugging)
61  *
62  *   slab_mutex
63  *
64  *   The role of the slab_mutex is to protect the list of all the slabs
65  *   and to synchronize major metadata changes to slab cache structures.
66  *   Also synchronizes memory hotplug callbacks.
67  *
68  *   slab_lock
69  *
70  *   The slab_lock is a wrapper around the page lock, thus it is a bit
71  *   spinlock.
72  *
73  *   The slab_lock is only used on arches that do not have the ability
74  *   to do a cmpxchg_double. It only protects:
75  *
76  *	A. slab->freelist	-> List of free objects in a slab
77  *	B. slab->inuse		-> Number of objects in use
78  *	C. slab->objects	-> Number of objects in slab
79  *	D. slab->frozen		-> frozen state
80  *
81  *   Frozen slabs
82  *
83  *   If a slab is frozen then it is exempt from list management. It is
84  *   the cpu slab which is actively allocated from by the processor that
85  *   froze it and it is not on any list. The processor that froze the
86  *   slab is the one who can perform list operations on the slab. Other
87  *   processors may put objects onto the freelist but the processor that
88  *   froze the slab is the only one that can retrieve the objects from the
89  *   slab's freelist.
90  *
91  *   CPU partial slabs
92  *
93  *   The partially empty slabs cached on the CPU partial list are used
94  *   for performance reasons, which speeds up the allocation process.
95  *   These slabs are not frozen, but are also exempt from list management,
96  *   by clearing the SL_partial flag when moving out of the node
97  *   partial list. Please see __slab_free() for more details.
98  *
99  *   To sum up, the current scheme is:
100  *   - node partial slab: SL_partial && !frozen
101  *   - cpu partial slab: !SL_partial && !frozen
102  *   - cpu slab: !SL_partial && frozen
103  *   - full slab: !SL_partial && !frozen
104  *
105  *   list_lock
106  *
107  *   The list_lock protects the partial and full list on each node and
108  *   the partial slab counter. If taken then no new slabs may be added or
109  *   removed from the lists nor make the number of partial slabs be modified.
110  *   (Note that the total number of slabs is an atomic value that may be
111  *   modified without taking the list lock).
112  *
113  *   The list_lock is a centralized lock and thus we avoid taking it as
114  *   much as possible. As long as SLUB does not have to handle partial
115  *   slabs, operations can continue without any centralized lock. F.e.
116  *   allocating a long series of objects that fill up slabs does not require
117  *   the list lock.
118  *
119  *   For debug caches, all allocations are forced to go through a list_lock
120  *   protected region to serialize against concurrent validation.
121  *
122  *   cpu_slab->lock local lock
123  *
124  *   This locks protect slowpath manipulation of all kmem_cache_cpu fields
125  *   except the stat counters. This is a percpu structure manipulated only by
126  *   the local cpu, so the lock protects against being preempted or interrupted
127  *   by an irq. Fast path operations rely on lockless operations instead.
128  *
129  *   On PREEMPT_RT, the local lock neither disables interrupts nor preemption
130  *   which means the lockless fastpath cannot be used as it might interfere with
131  *   an in-progress slow path operations. In this case the local lock is always
132  *   taken but it still utilizes the freelist for the common operations.
133  *
134  *   lockless fastpaths
135  *
136  *   The fast path allocation (slab_alloc_node()) and freeing (do_slab_free())
137  *   are fully lockless when satisfied from the percpu slab (and when
138  *   cmpxchg_double is possible to use, otherwise slab_lock is taken).
139  *   They also don't disable preemption or migration or irqs. They rely on
140  *   the transaction id (tid) field to detect being preempted or moved to
141  *   another cpu.
142  *
143  *   irq, preemption, migration considerations
144  *
145  *   Interrupts are disabled as part of list_lock or local_lock operations, or
146  *   around the slab_lock operation, in order to make the slab allocator safe
147  *   to use in the context of an irq.
148  *
149  *   In addition, preemption (or migration on PREEMPT_RT) is disabled in the
150  *   allocation slowpath, bulk allocation, and put_cpu_partial(), so that the
151  *   local cpu doesn't change in the process and e.g. the kmem_cache_cpu pointer
152  *   doesn't have to be revalidated in each section protected by the local lock.
153  *
154  * SLUB assigns one slab for allocation to each processor.
155  * Allocations only occur from these slabs called cpu slabs.
156  *
157  * Slabs with free elements are kept on a partial list and during regular
158  * operations no list for full slabs is used. If an object in a full slab is
159  * freed then the slab will show up again on the partial lists.
160  * We track full slabs for debugging purposes though because otherwise we
161  * cannot scan all objects.
162  *
163  * Slabs are freed when they become empty. Teardown and setup is
164  * minimal so we rely on the page allocators per cpu caches for
165  * fast frees and allocs.
166  *
167  * slab->frozen		The slab is frozen and exempt from list processing.
168  * 			This means that the slab is dedicated to a purpose
169  * 			such as satisfying allocations for a specific
170  * 			processor. Objects may be freed in the slab while
171  * 			it is frozen but slab_free will then skip the usual
172  * 			list operations. It is up to the processor holding
173  * 			the slab to integrate the slab into the slab lists
174  * 			when the slab is no longer needed.
175  *
176  * 			One use of this flag is to mark slabs that are
177  * 			used for allocations. Then such a slab becomes a cpu
178  * 			slab. The cpu slab may be equipped with an additional
179  * 			freelist that allows lockless access to
180  * 			free objects in addition to the regular freelist
181  * 			that requires the slab lock.
182  *
183  * SLAB_DEBUG_FLAGS	Slab requires special handling due to debug
184  * 			options set. This moves	slab handling out of
185  * 			the fast path and disables lockless freelists.
186  */
187 
188 /**
189  * enum slab_flags - How the slab flags bits are used.
190  * @SL_locked: Is locked with slab_lock()
191  * @SL_partial: On the per-node partial list
192  * @SL_pfmemalloc: Was allocated from PF_MEMALLOC reserves
193  *
194  * The slab flags share space with the page flags but some bits have
195  * different interpretations.  The high bits are used for information
196  * like zone/node/section.
197  */
198 enum slab_flags {
199 	SL_locked = PG_locked,
200 	SL_partial = PG_workingset,	/* Historical reasons for this bit */
201 	SL_pfmemalloc = PG_active,	/* Historical reasons for this bit */
202 };
203 
204 /*
205  * We could simply use migrate_disable()/enable() but as long as it's a
206  * function call even on !PREEMPT_RT, use inline preempt_disable() there.
207  */
208 #ifndef CONFIG_PREEMPT_RT
209 #define slub_get_cpu_ptr(var)		get_cpu_ptr(var)
210 #define slub_put_cpu_ptr(var)		put_cpu_ptr(var)
211 #define USE_LOCKLESS_FAST_PATH()	(true)
212 #else
213 #define slub_get_cpu_ptr(var)		\
214 ({					\
215 	migrate_disable();		\
216 	this_cpu_ptr(var);		\
217 })
218 #define slub_put_cpu_ptr(var)		\
219 do {					\
220 	(void)(var);			\
221 	migrate_enable();		\
222 } while (0)
223 #define USE_LOCKLESS_FAST_PATH()	(false)
224 #endif
225 
226 #ifndef CONFIG_SLUB_TINY
227 #define __fastpath_inline __always_inline
228 #else
229 #define __fastpath_inline
230 #endif
231 
232 #ifdef CONFIG_SLUB_DEBUG
233 #ifdef CONFIG_SLUB_DEBUG_ON
234 DEFINE_STATIC_KEY_TRUE(slub_debug_enabled);
235 #else
236 DEFINE_STATIC_KEY_FALSE(slub_debug_enabled);
237 #endif
238 #endif		/* CONFIG_SLUB_DEBUG */
239 
240 #ifdef CONFIG_NUMA
241 static DEFINE_STATIC_KEY_FALSE(strict_numa);
242 #endif
243 
244 /* Structure holding parameters for get_partial() call chain */
245 struct partial_context {
246 	gfp_t flags;
247 	unsigned int orig_size;
248 	void *object;
249 };
250 
251 static inline bool kmem_cache_debug(struct kmem_cache *s)
252 {
253 	return kmem_cache_debug_flags(s, SLAB_DEBUG_FLAGS);
254 }
255 
256 void *fixup_red_left(struct kmem_cache *s, void *p)
257 {
258 	if (kmem_cache_debug_flags(s, SLAB_RED_ZONE))
259 		p += s->red_left_pad;
260 
261 	return p;
262 }
263 
264 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
265 {
266 #ifdef CONFIG_SLUB_CPU_PARTIAL
267 	return !kmem_cache_debug(s);
268 #else
269 	return false;
270 #endif
271 }
272 
273 /*
274  * Issues still to be resolved:
275  *
276  * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
277  *
278  * - Variable sizing of the per node arrays
279  */
280 
281 /* Enable to log cmpxchg failures */
282 #undef SLUB_DEBUG_CMPXCHG
283 
284 #ifndef CONFIG_SLUB_TINY
285 /*
286  * Minimum number of partial slabs. These will be left on the partial
287  * lists even if they are empty. kmem_cache_shrink may reclaim them.
288  */
289 #define MIN_PARTIAL 5
290 
291 /*
292  * Maximum number of desirable partial slabs.
293  * The existence of more partial slabs makes kmem_cache_shrink
294  * sort the partial list by the number of objects in use.
295  */
296 #define MAX_PARTIAL 10
297 #else
298 #define MIN_PARTIAL 0
299 #define MAX_PARTIAL 0
300 #endif
301 
302 #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
303 				SLAB_POISON | SLAB_STORE_USER)
304 
305 /*
306  * These debug flags cannot use CMPXCHG because there might be consistency
307  * issues when checking or reading debug information
308  */
309 #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
310 				SLAB_TRACE)
311 
312 
313 /*
314  * Debugging flags that require metadata to be stored in the slab.  These get
315  * disabled when slab_debug=O is used and a cache's min order increases with
316  * metadata.
317  */
318 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
319 
320 #define OO_SHIFT	16
321 #define OO_MASK		((1 << OO_SHIFT) - 1)
322 #define MAX_OBJS_PER_PAGE	32767 /* since slab.objects is u15 */
323 
324 /* Internal SLUB flags */
325 /* Poison object */
326 #define __OBJECT_POISON		__SLAB_FLAG_BIT(_SLAB_OBJECT_POISON)
327 /* Use cmpxchg_double */
328 
329 #ifdef system_has_freelist_aba
330 #define __CMPXCHG_DOUBLE	__SLAB_FLAG_BIT(_SLAB_CMPXCHG_DOUBLE)
331 #else
332 #define __CMPXCHG_DOUBLE	__SLAB_FLAG_UNUSED
333 #endif
334 
335 /*
336  * Tracking user of a slab.
337  */
338 #define TRACK_ADDRS_COUNT 16
339 struct track {
340 	unsigned long addr;	/* Called from address */
341 #ifdef CONFIG_STACKDEPOT
342 	depot_stack_handle_t handle;
343 #endif
344 	int cpu;		/* Was running on cpu */
345 	int pid;		/* Pid context */
346 	unsigned long when;	/* When did the operation occur */
347 };
348 
349 enum track_item { TRACK_ALLOC, TRACK_FREE };
350 
351 #ifdef SLAB_SUPPORTS_SYSFS
352 static int sysfs_slab_add(struct kmem_cache *);
353 static int sysfs_slab_alias(struct kmem_cache *, const char *);
354 #else
355 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
356 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
357 							{ return 0; }
358 #endif
359 
360 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_SLUB_DEBUG)
361 static void debugfs_slab_add(struct kmem_cache *);
362 #else
363 static inline void debugfs_slab_add(struct kmem_cache *s) { }
364 #endif
365 
366 enum stat_item {
367 	ALLOC_PCS,		/* Allocation from percpu sheaf */
368 	ALLOC_FASTPATH,		/* Allocation from cpu slab */
369 	ALLOC_SLOWPATH,		/* Allocation by getting a new cpu slab */
370 	FREE_PCS,		/* Free to percpu sheaf */
371 	FREE_RCU_SHEAF,		/* Free to rcu_free sheaf */
372 	FREE_RCU_SHEAF_FAIL,	/* Failed to free to a rcu_free sheaf */
373 	FREE_FASTPATH,		/* Free to cpu slab */
374 	FREE_SLOWPATH,		/* Freeing not to cpu slab */
375 	FREE_FROZEN,		/* Freeing to frozen slab */
376 	FREE_ADD_PARTIAL,	/* Freeing moves slab to partial list */
377 	FREE_REMOVE_PARTIAL,	/* Freeing removes last object */
378 	ALLOC_FROM_PARTIAL,	/* Cpu slab acquired from node partial list */
379 	ALLOC_SLAB,		/* Cpu slab acquired from page allocator */
380 	ALLOC_REFILL,		/* Refill cpu slab from slab freelist */
381 	ALLOC_NODE_MISMATCH,	/* Switching cpu slab */
382 	FREE_SLAB,		/* Slab freed to the page allocator */
383 	CPUSLAB_FLUSH,		/* Abandoning of the cpu slab */
384 	DEACTIVATE_FULL,	/* Cpu slab was full when deactivated */
385 	DEACTIVATE_EMPTY,	/* Cpu slab was empty when deactivated */
386 	DEACTIVATE_TO_HEAD,	/* Cpu slab was moved to the head of partials */
387 	DEACTIVATE_TO_TAIL,	/* Cpu slab was moved to the tail of partials */
388 	DEACTIVATE_REMOTE_FREES,/* Slab contained remotely freed objects */
389 	DEACTIVATE_BYPASS,	/* Implicit deactivation */
390 	ORDER_FALLBACK,		/* Number of times fallback was necessary */
391 	CMPXCHG_DOUBLE_CPU_FAIL,/* Failures of this_cpu_cmpxchg_double */
392 	CMPXCHG_DOUBLE_FAIL,	/* Failures of slab freelist update */
393 	CPU_PARTIAL_ALLOC,	/* Used cpu partial on alloc */
394 	CPU_PARTIAL_FREE,	/* Refill cpu partial on free */
395 	CPU_PARTIAL_NODE,	/* Refill cpu partial from node partial */
396 	CPU_PARTIAL_DRAIN,	/* Drain cpu partial to node partial */
397 	SHEAF_FLUSH,		/* Objects flushed from a sheaf */
398 	SHEAF_REFILL,		/* Objects refilled to a sheaf */
399 	SHEAF_ALLOC,		/* Allocation of an empty sheaf */
400 	SHEAF_FREE,		/* Freeing of an empty sheaf */
401 	BARN_GET,		/* Got full sheaf from barn */
402 	BARN_GET_FAIL,		/* Failed to get full sheaf from barn */
403 	BARN_PUT,		/* Put full sheaf to barn */
404 	BARN_PUT_FAIL,		/* Failed to put full sheaf to barn */
405 	SHEAF_PREFILL_FAST,	/* Sheaf prefill grabbed the spare sheaf */
406 	SHEAF_PREFILL_SLOW,	/* Sheaf prefill found no spare sheaf */
407 	SHEAF_PREFILL_OVERSIZE,	/* Allocation of oversize sheaf for prefill */
408 	SHEAF_RETURN_FAST,	/* Sheaf return reattached spare sheaf */
409 	SHEAF_RETURN_SLOW,	/* Sheaf return could not reattach spare */
410 	NR_SLUB_STAT_ITEMS
411 };
412 
413 #ifndef CONFIG_SLUB_TINY
414 /*
415  * When changing the layout, make sure freelist and tid are still compatible
416  * with this_cpu_cmpxchg_double() alignment requirements.
417  */
418 struct kmem_cache_cpu {
419 	union {
420 		struct {
421 			void **freelist;	/* Pointer to next available object */
422 			unsigned long tid;	/* Globally unique transaction id */
423 		};
424 		freelist_aba_t freelist_tid;
425 	};
426 	struct slab *slab;	/* The slab from which we are allocating */
427 #ifdef CONFIG_SLUB_CPU_PARTIAL
428 	struct slab *partial;	/* Partially allocated slabs */
429 #endif
430 	local_trylock_t lock;	/* Protects the fields above */
431 #ifdef CONFIG_SLUB_STATS
432 	unsigned int stat[NR_SLUB_STAT_ITEMS];
433 #endif
434 };
435 #endif /* CONFIG_SLUB_TINY */
436 
437 static inline void stat(const struct kmem_cache *s, enum stat_item si)
438 {
439 #ifdef CONFIG_SLUB_STATS
440 	/*
441 	 * The rmw is racy on a preemptible kernel but this is acceptable, so
442 	 * avoid this_cpu_add()'s irq-disable overhead.
443 	 */
444 	raw_cpu_inc(s->cpu_slab->stat[si]);
445 #endif
446 }
447 
448 static inline
449 void stat_add(const struct kmem_cache *s, enum stat_item si, int v)
450 {
451 #ifdef CONFIG_SLUB_STATS
452 	raw_cpu_add(s->cpu_slab->stat[si], v);
453 #endif
454 }
455 
456 #define MAX_FULL_SHEAVES	10
457 #define MAX_EMPTY_SHEAVES	10
458 
459 struct node_barn {
460 	spinlock_t lock;
461 	struct list_head sheaves_full;
462 	struct list_head sheaves_empty;
463 	unsigned int nr_full;
464 	unsigned int nr_empty;
465 };
466 
467 struct slab_sheaf {
468 	union {
469 		struct rcu_head rcu_head;
470 		struct list_head barn_list;
471 		/* only used for prefilled sheafs */
472 		unsigned int capacity;
473 	};
474 	struct kmem_cache *cache;
475 	unsigned int size;
476 	int node; /* only used for rcu_sheaf */
477 	void *objects[];
478 };
479 
480 struct slub_percpu_sheaves {
481 	local_trylock_t lock;
482 	struct slab_sheaf *main; /* never NULL when unlocked */
483 	struct slab_sheaf *spare; /* empty or full, may be NULL */
484 	struct slab_sheaf *rcu_free; /* for batching kfree_rcu() */
485 };
486 
487 /*
488  * The slab lists for all objects.
489  */
490 struct kmem_cache_node {
491 	spinlock_t list_lock;
492 	unsigned long nr_partial;
493 	struct list_head partial;
494 #ifdef CONFIG_SLUB_DEBUG
495 	atomic_long_t nr_slabs;
496 	atomic_long_t total_objects;
497 	struct list_head full;
498 #endif
499 	struct node_barn *barn;
500 };
501 
502 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
503 {
504 	return s->node[node];
505 }
506 
507 /*
508  * Get the barn of the current cpu's closest memory node. It may not exist on
509  * systems with memoryless nodes but without CONFIG_HAVE_MEMORYLESS_NODES
510  */
511 static inline struct node_barn *get_barn(struct kmem_cache *s)
512 {
513 	struct kmem_cache_node *n = get_node(s, numa_mem_id());
514 
515 	if (!n)
516 		return NULL;
517 
518 	return n->barn;
519 }
520 
521 /*
522  * Iterator over all nodes. The body will be executed for each node that has
523  * a kmem_cache_node structure allocated (which is true for all online nodes)
524  */
525 #define for_each_kmem_cache_node(__s, __node, __n) \
526 	for (__node = 0; __node < nr_node_ids; __node++) \
527 		 if ((__n = get_node(__s, __node)))
528 
529 /*
530  * Tracks for which NUMA nodes we have kmem_cache_nodes allocated.
531  * Corresponds to node_state[N_MEMORY], but can temporarily
532  * differ during memory hotplug/hotremove operations.
533  * Protected by slab_mutex.
534  */
535 static nodemask_t slab_nodes;
536 
537 /*
538  * Workqueue used for flush_cpu_slab().
539  */
540 static struct workqueue_struct *flushwq;
541 
542 struct slub_flush_work {
543 	struct work_struct work;
544 	struct kmem_cache *s;
545 	bool skip;
546 };
547 
548 static DEFINE_MUTEX(flush_lock);
549 static DEFINE_PER_CPU(struct slub_flush_work, slub_flush);
550 
551 /********************************************************************
552  * 			Core slab cache functions
553  *******************************************************************/
554 
555 /*
556  * Returns freelist pointer (ptr). With hardening, this is obfuscated
557  * with an XOR of the address where the pointer is held and a per-cache
558  * random number.
559  */
560 static inline freeptr_t freelist_ptr_encode(const struct kmem_cache *s,
561 					    void *ptr, unsigned long ptr_addr)
562 {
563 	unsigned long encoded;
564 
565 #ifdef CONFIG_SLAB_FREELIST_HARDENED
566 	encoded = (unsigned long)ptr ^ s->random ^ swab(ptr_addr);
567 #else
568 	encoded = (unsigned long)ptr;
569 #endif
570 	return (freeptr_t){.v = encoded};
571 }
572 
573 static inline void *freelist_ptr_decode(const struct kmem_cache *s,
574 					freeptr_t ptr, unsigned long ptr_addr)
575 {
576 	void *decoded;
577 
578 #ifdef CONFIG_SLAB_FREELIST_HARDENED
579 	decoded = (void *)(ptr.v ^ s->random ^ swab(ptr_addr));
580 #else
581 	decoded = (void *)ptr.v;
582 #endif
583 	return decoded;
584 }
585 
586 static inline void *get_freepointer(struct kmem_cache *s, void *object)
587 {
588 	unsigned long ptr_addr;
589 	freeptr_t p;
590 
591 	object = kasan_reset_tag(object);
592 	ptr_addr = (unsigned long)object + s->offset;
593 	p = *(freeptr_t *)(ptr_addr);
594 	return freelist_ptr_decode(s, p, ptr_addr);
595 }
596 
597 #ifndef CONFIG_SLUB_TINY
598 static void prefetch_freepointer(const struct kmem_cache *s, void *object)
599 {
600 	prefetchw(object + s->offset);
601 }
602 #endif
603 
604 /*
605  * When running under KMSAN, get_freepointer_safe() may return an uninitialized
606  * pointer value in the case the current thread loses the race for the next
607  * memory chunk in the freelist. In that case this_cpu_cmpxchg_double() in
608  * slab_alloc_node() will fail, so the uninitialized value won't be used, but
609  * KMSAN will still check all arguments of cmpxchg because of imperfect
610  * handling of inline assembly.
611  * To work around this problem, we apply __no_kmsan_checks to ensure that
612  * get_freepointer_safe() returns initialized memory.
613  */
614 __no_kmsan_checks
615 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
616 {
617 	unsigned long freepointer_addr;
618 	freeptr_t p;
619 
620 	if (!debug_pagealloc_enabled_static())
621 		return get_freepointer(s, object);
622 
623 	object = kasan_reset_tag(object);
624 	freepointer_addr = (unsigned long)object + s->offset;
625 	copy_from_kernel_nofault(&p, (freeptr_t *)freepointer_addr, sizeof(p));
626 	return freelist_ptr_decode(s, p, freepointer_addr);
627 }
628 
629 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
630 {
631 	unsigned long freeptr_addr = (unsigned long)object + s->offset;
632 
633 #ifdef CONFIG_SLAB_FREELIST_HARDENED
634 	BUG_ON(object == fp); /* naive detection of double free or corruption */
635 #endif
636 
637 	freeptr_addr = (unsigned long)kasan_reset_tag((void *)freeptr_addr);
638 	*(freeptr_t *)freeptr_addr = freelist_ptr_encode(s, fp, freeptr_addr);
639 }
640 
641 /*
642  * See comment in calculate_sizes().
643  */
644 static inline bool freeptr_outside_object(struct kmem_cache *s)
645 {
646 	return s->offset >= s->inuse;
647 }
648 
649 /*
650  * Return offset of the end of info block which is inuse + free pointer if
651  * not overlapping with object.
652  */
653 static inline unsigned int get_info_end(struct kmem_cache *s)
654 {
655 	if (freeptr_outside_object(s))
656 		return s->inuse + sizeof(void *);
657 	else
658 		return s->inuse;
659 }
660 
661 /* Loop over all objects in a slab */
662 #define for_each_object(__p, __s, __addr, __objects) \
663 	for (__p = fixup_red_left(__s, __addr); \
664 		__p < (__addr) + (__objects) * (__s)->size; \
665 		__p += (__s)->size)
666 
667 static inline unsigned int order_objects(unsigned int order, unsigned int size)
668 {
669 	return ((unsigned int)PAGE_SIZE << order) / size;
670 }
671 
672 static inline struct kmem_cache_order_objects oo_make(unsigned int order,
673 		unsigned int size)
674 {
675 	struct kmem_cache_order_objects x = {
676 		(order << OO_SHIFT) + order_objects(order, size)
677 	};
678 
679 	return x;
680 }
681 
682 static inline unsigned int oo_order(struct kmem_cache_order_objects x)
683 {
684 	return x.x >> OO_SHIFT;
685 }
686 
687 static inline unsigned int oo_objects(struct kmem_cache_order_objects x)
688 {
689 	return x.x & OO_MASK;
690 }
691 
692 #ifdef CONFIG_SLUB_CPU_PARTIAL
693 static void slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects)
694 {
695 	unsigned int nr_slabs;
696 
697 	s->cpu_partial = nr_objects;
698 
699 	/*
700 	 * We take the number of objects but actually limit the number of
701 	 * slabs on the per cpu partial list, in order to limit excessive
702 	 * growth of the list. For simplicity we assume that the slabs will
703 	 * be half-full.
704 	 */
705 	nr_slabs = DIV_ROUND_UP(nr_objects * 2, oo_objects(s->oo));
706 	s->cpu_partial_slabs = nr_slabs;
707 }
708 
709 static inline unsigned int slub_get_cpu_partial(struct kmem_cache *s)
710 {
711 	return s->cpu_partial_slabs;
712 }
713 #else
714 static inline void
715 slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects)
716 {
717 }
718 
719 static inline unsigned int slub_get_cpu_partial(struct kmem_cache *s)
720 {
721 	return 0;
722 }
723 #endif /* CONFIG_SLUB_CPU_PARTIAL */
724 
725 /*
726  * If network-based swap is enabled, slub must keep track of whether memory
727  * were allocated from pfmemalloc reserves.
728  */
729 static inline bool slab_test_pfmemalloc(const struct slab *slab)
730 {
731 	return test_bit(SL_pfmemalloc, &slab->flags.f);
732 }
733 
734 static inline void slab_set_pfmemalloc(struct slab *slab)
735 {
736 	set_bit(SL_pfmemalloc, &slab->flags.f);
737 }
738 
739 static inline void __slab_clear_pfmemalloc(struct slab *slab)
740 {
741 	__clear_bit(SL_pfmemalloc, &slab->flags.f);
742 }
743 
744 /*
745  * Per slab locking using the pagelock
746  */
747 static __always_inline void slab_lock(struct slab *slab)
748 {
749 	bit_spin_lock(SL_locked, &slab->flags.f);
750 }
751 
752 static __always_inline void slab_unlock(struct slab *slab)
753 {
754 	bit_spin_unlock(SL_locked, &slab->flags.f);
755 }
756 
757 static inline bool
758 __update_freelist_fast(struct slab *slab,
759 		      void *freelist_old, unsigned long counters_old,
760 		      void *freelist_new, unsigned long counters_new)
761 {
762 #ifdef system_has_freelist_aba
763 	freelist_aba_t old = { .freelist = freelist_old, .counter = counters_old };
764 	freelist_aba_t new = { .freelist = freelist_new, .counter = counters_new };
765 
766 	return try_cmpxchg_freelist(&slab->freelist_counter.full, &old.full, new.full);
767 #else
768 	return false;
769 #endif
770 }
771 
772 static inline bool
773 __update_freelist_slow(struct slab *slab,
774 		      void *freelist_old, unsigned long counters_old,
775 		      void *freelist_new, unsigned long counters_new)
776 {
777 	bool ret = false;
778 
779 	slab_lock(slab);
780 	if (slab->freelist == freelist_old &&
781 	    slab->counters == counters_old) {
782 		slab->freelist = freelist_new;
783 		slab->counters = counters_new;
784 		ret = true;
785 	}
786 	slab_unlock(slab);
787 
788 	return ret;
789 }
790 
791 /*
792  * Interrupts must be disabled (for the fallback code to work right), typically
793  * by an _irqsave() lock variant. On PREEMPT_RT the preempt_disable(), which is
794  * part of bit_spin_lock(), is sufficient because the policy is not to allow any
795  * allocation/ free operation in hardirq context. Therefore nothing can
796  * interrupt the operation.
797  */
798 static inline bool __slab_update_freelist(struct kmem_cache *s, struct slab *slab,
799 		void *freelist_old, unsigned long counters_old,
800 		void *freelist_new, unsigned long counters_new,
801 		const char *n)
802 {
803 	bool ret;
804 
805 	if (USE_LOCKLESS_FAST_PATH())
806 		lockdep_assert_irqs_disabled();
807 
808 	if (s->flags & __CMPXCHG_DOUBLE) {
809 		ret = __update_freelist_fast(slab, freelist_old, counters_old,
810 				            freelist_new, counters_new);
811 	} else {
812 		ret = __update_freelist_slow(slab, freelist_old, counters_old,
813 				            freelist_new, counters_new);
814 	}
815 	if (likely(ret))
816 		return true;
817 
818 	cpu_relax();
819 	stat(s, CMPXCHG_DOUBLE_FAIL);
820 
821 #ifdef SLUB_DEBUG_CMPXCHG
822 	pr_info("%s %s: cmpxchg double redo ", n, s->name);
823 #endif
824 
825 	return false;
826 }
827 
828 static inline bool slab_update_freelist(struct kmem_cache *s, struct slab *slab,
829 		void *freelist_old, unsigned long counters_old,
830 		void *freelist_new, unsigned long counters_new,
831 		const char *n)
832 {
833 	bool ret;
834 
835 	if (s->flags & __CMPXCHG_DOUBLE) {
836 		ret = __update_freelist_fast(slab, freelist_old, counters_old,
837 				            freelist_new, counters_new);
838 	} else {
839 		unsigned long flags;
840 
841 		local_irq_save(flags);
842 		ret = __update_freelist_slow(slab, freelist_old, counters_old,
843 				            freelist_new, counters_new);
844 		local_irq_restore(flags);
845 	}
846 	if (likely(ret))
847 		return true;
848 
849 	cpu_relax();
850 	stat(s, CMPXCHG_DOUBLE_FAIL);
851 
852 #ifdef SLUB_DEBUG_CMPXCHG
853 	pr_info("%s %s: cmpxchg double redo ", n, s->name);
854 #endif
855 
856 	return false;
857 }
858 
859 /*
860  * kmalloc caches has fixed sizes (mostly power of 2), and kmalloc() API
861  * family will round up the real request size to these fixed ones, so
862  * there could be an extra area than what is requested. Save the original
863  * request size in the meta data area, for better debug and sanity check.
864  */
865 static inline void set_orig_size(struct kmem_cache *s,
866 				void *object, unsigned int orig_size)
867 {
868 	void *p = kasan_reset_tag(object);
869 
870 	if (!slub_debug_orig_size(s))
871 		return;
872 
873 	p += get_info_end(s);
874 	p += sizeof(struct track) * 2;
875 
876 	*(unsigned int *)p = orig_size;
877 }
878 
879 static inline unsigned int get_orig_size(struct kmem_cache *s, void *object)
880 {
881 	void *p = kasan_reset_tag(object);
882 
883 	if (is_kfence_address(object))
884 		return kfence_ksize(object);
885 
886 	if (!slub_debug_orig_size(s))
887 		return s->object_size;
888 
889 	p += get_info_end(s);
890 	p += sizeof(struct track) * 2;
891 
892 	return *(unsigned int *)p;
893 }
894 
895 #ifdef CONFIG_SLUB_DEBUG
896 
897 /*
898  * For debugging context when we want to check if the struct slab pointer
899  * appears to be valid.
900  */
901 static inline bool validate_slab_ptr(struct slab *slab)
902 {
903 	return PageSlab(slab_page(slab));
904 }
905 
906 static unsigned long object_map[BITS_TO_LONGS(MAX_OBJS_PER_PAGE)];
907 static DEFINE_SPINLOCK(object_map_lock);
908 
909 static void __fill_map(unsigned long *obj_map, struct kmem_cache *s,
910 		       struct slab *slab)
911 {
912 	void *addr = slab_address(slab);
913 	void *p;
914 
915 	bitmap_zero(obj_map, slab->objects);
916 
917 	for (p = slab->freelist; p; p = get_freepointer(s, p))
918 		set_bit(__obj_to_index(s, addr, p), obj_map);
919 }
920 
921 #if IS_ENABLED(CONFIG_KUNIT)
922 static bool slab_add_kunit_errors(void)
923 {
924 	struct kunit_resource *resource;
925 
926 	if (!kunit_get_current_test())
927 		return false;
928 
929 	resource = kunit_find_named_resource(current->kunit_test, "slab_errors");
930 	if (!resource)
931 		return false;
932 
933 	(*(int *)resource->data)++;
934 	kunit_put_resource(resource);
935 	return true;
936 }
937 
938 bool slab_in_kunit_test(void)
939 {
940 	struct kunit_resource *resource;
941 
942 	if (!kunit_get_current_test())
943 		return false;
944 
945 	resource = kunit_find_named_resource(current->kunit_test, "slab_errors");
946 	if (!resource)
947 		return false;
948 
949 	kunit_put_resource(resource);
950 	return true;
951 }
952 #else
953 static inline bool slab_add_kunit_errors(void) { return false; }
954 #endif
955 
956 static inline unsigned int size_from_object(struct kmem_cache *s)
957 {
958 	if (s->flags & SLAB_RED_ZONE)
959 		return s->size - s->red_left_pad;
960 
961 	return s->size;
962 }
963 
964 static inline void *restore_red_left(struct kmem_cache *s, void *p)
965 {
966 	if (s->flags & SLAB_RED_ZONE)
967 		p -= s->red_left_pad;
968 
969 	return p;
970 }
971 
972 /*
973  * Debug settings:
974  */
975 #if defined(CONFIG_SLUB_DEBUG_ON)
976 static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS;
977 #else
978 static slab_flags_t slub_debug;
979 #endif
980 
981 static char *slub_debug_string;
982 static int disable_higher_order_debug;
983 
984 /*
985  * slub is about to manipulate internal object metadata.  This memory lies
986  * outside the range of the allocated object, so accessing it would normally
987  * be reported by kasan as a bounds error.  metadata_access_enable() is used
988  * to tell kasan that these accesses are OK.
989  */
990 static inline void metadata_access_enable(void)
991 {
992 	kasan_disable_current();
993 	kmsan_disable_current();
994 }
995 
996 static inline void metadata_access_disable(void)
997 {
998 	kmsan_enable_current();
999 	kasan_enable_current();
1000 }
1001 
1002 /*
1003  * Object debugging
1004  */
1005 
1006 /* Verify that a pointer has an address that is valid within a slab page */
1007 static inline int check_valid_pointer(struct kmem_cache *s,
1008 				struct slab *slab, void *object)
1009 {
1010 	void *base;
1011 
1012 	if (!object)
1013 		return 1;
1014 
1015 	base = slab_address(slab);
1016 	object = kasan_reset_tag(object);
1017 	object = restore_red_left(s, object);
1018 	if (object < base || object >= base + slab->objects * s->size ||
1019 		(object - base) % s->size) {
1020 		return 0;
1021 	}
1022 
1023 	return 1;
1024 }
1025 
1026 static void print_section(char *level, char *text, u8 *addr,
1027 			  unsigned int length)
1028 {
1029 	metadata_access_enable();
1030 	print_hex_dump(level, text, DUMP_PREFIX_ADDRESS,
1031 			16, 1, kasan_reset_tag((void *)addr), length, 1);
1032 	metadata_access_disable();
1033 }
1034 
1035 static struct track *get_track(struct kmem_cache *s, void *object,
1036 	enum track_item alloc)
1037 {
1038 	struct track *p;
1039 
1040 	p = object + get_info_end(s);
1041 
1042 	return kasan_reset_tag(p + alloc);
1043 }
1044 
1045 #ifdef CONFIG_STACKDEPOT
1046 static noinline depot_stack_handle_t set_track_prepare(gfp_t gfp_flags)
1047 {
1048 	depot_stack_handle_t handle;
1049 	unsigned long entries[TRACK_ADDRS_COUNT];
1050 	unsigned int nr_entries;
1051 
1052 	nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 3);
1053 	handle = stack_depot_save(entries, nr_entries, gfp_flags);
1054 
1055 	return handle;
1056 }
1057 #else
1058 static inline depot_stack_handle_t set_track_prepare(gfp_t gfp_flags)
1059 {
1060 	return 0;
1061 }
1062 #endif
1063 
1064 static void set_track_update(struct kmem_cache *s, void *object,
1065 			     enum track_item alloc, unsigned long addr,
1066 			     depot_stack_handle_t handle)
1067 {
1068 	struct track *p = get_track(s, object, alloc);
1069 
1070 #ifdef CONFIG_STACKDEPOT
1071 	p->handle = handle;
1072 #endif
1073 	p->addr = addr;
1074 	p->cpu = smp_processor_id();
1075 	p->pid = current->pid;
1076 	p->when = jiffies;
1077 }
1078 
1079 static __always_inline void set_track(struct kmem_cache *s, void *object,
1080 				      enum track_item alloc, unsigned long addr, gfp_t gfp_flags)
1081 {
1082 	depot_stack_handle_t handle = set_track_prepare(gfp_flags);
1083 
1084 	set_track_update(s, object, alloc, addr, handle);
1085 }
1086 
1087 static void init_tracking(struct kmem_cache *s, void *object)
1088 {
1089 	struct track *p;
1090 
1091 	if (!(s->flags & SLAB_STORE_USER))
1092 		return;
1093 
1094 	p = get_track(s, object, TRACK_ALLOC);
1095 	memset(p, 0, 2*sizeof(struct track));
1096 }
1097 
1098 static void print_track(const char *s, struct track *t, unsigned long pr_time)
1099 {
1100 	depot_stack_handle_t handle __maybe_unused;
1101 
1102 	if (!t->addr)
1103 		return;
1104 
1105 	pr_err("%s in %pS age=%lu cpu=%u pid=%d\n",
1106 	       s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid);
1107 #ifdef CONFIG_STACKDEPOT
1108 	handle = READ_ONCE(t->handle);
1109 	if (handle)
1110 		stack_depot_print(handle);
1111 	else
1112 		pr_err("object allocation/free stack trace missing\n");
1113 #endif
1114 }
1115 
1116 void print_tracking(struct kmem_cache *s, void *object)
1117 {
1118 	unsigned long pr_time = jiffies;
1119 	if (!(s->flags & SLAB_STORE_USER))
1120 		return;
1121 
1122 	print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time);
1123 	print_track("Freed", get_track(s, object, TRACK_FREE), pr_time);
1124 }
1125 
1126 static void print_slab_info(const struct slab *slab)
1127 {
1128 	pr_err("Slab 0x%p objects=%u used=%u fp=0x%p flags=%pGp\n",
1129 	       slab, slab->objects, slab->inuse, slab->freelist,
1130 	       &slab->flags.f);
1131 }
1132 
1133 void skip_orig_size_check(struct kmem_cache *s, const void *object)
1134 {
1135 	set_orig_size(s, (void *)object, s->object_size);
1136 }
1137 
1138 static void __slab_bug(struct kmem_cache *s, const char *fmt, va_list argsp)
1139 {
1140 	struct va_format vaf;
1141 	va_list args;
1142 
1143 	va_copy(args, argsp);
1144 	vaf.fmt = fmt;
1145 	vaf.va = &args;
1146 	pr_err("=============================================================================\n");
1147 	pr_err("BUG %s (%s): %pV\n", s ? s->name : "<unknown>", print_tainted(), &vaf);
1148 	pr_err("-----------------------------------------------------------------------------\n\n");
1149 	va_end(args);
1150 }
1151 
1152 static void slab_bug(struct kmem_cache *s, const char *fmt, ...)
1153 {
1154 	va_list args;
1155 
1156 	va_start(args, fmt);
1157 	__slab_bug(s, fmt, args);
1158 	va_end(args);
1159 }
1160 
1161 __printf(2, 3)
1162 static void slab_fix(struct kmem_cache *s, const char *fmt, ...)
1163 {
1164 	struct va_format vaf;
1165 	va_list args;
1166 
1167 	if (slab_add_kunit_errors())
1168 		return;
1169 
1170 	va_start(args, fmt);
1171 	vaf.fmt = fmt;
1172 	vaf.va = &args;
1173 	pr_err("FIX %s: %pV\n", s->name, &vaf);
1174 	va_end(args);
1175 }
1176 
1177 static void print_trailer(struct kmem_cache *s, struct slab *slab, u8 *p)
1178 {
1179 	unsigned int off;	/* Offset of last byte */
1180 	u8 *addr = slab_address(slab);
1181 
1182 	print_tracking(s, p);
1183 
1184 	print_slab_info(slab);
1185 
1186 	pr_err("Object 0x%p @offset=%tu fp=0x%p\n\n",
1187 	       p, p - addr, get_freepointer(s, p));
1188 
1189 	if (s->flags & SLAB_RED_ZONE)
1190 		print_section(KERN_ERR, "Redzone  ", p - s->red_left_pad,
1191 			      s->red_left_pad);
1192 	else if (p > addr + 16)
1193 		print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
1194 
1195 	print_section(KERN_ERR,         "Object   ", p,
1196 		      min_t(unsigned int, s->object_size, PAGE_SIZE));
1197 	if (s->flags & SLAB_RED_ZONE)
1198 		print_section(KERN_ERR, "Redzone  ", p + s->object_size,
1199 			s->inuse - s->object_size);
1200 
1201 	off = get_info_end(s);
1202 
1203 	if (s->flags & SLAB_STORE_USER)
1204 		off += 2 * sizeof(struct track);
1205 
1206 	if (slub_debug_orig_size(s))
1207 		off += sizeof(unsigned int);
1208 
1209 	off += kasan_metadata_size(s, false);
1210 
1211 	if (off != size_from_object(s))
1212 		/* Beginning of the filler is the free pointer */
1213 		print_section(KERN_ERR, "Padding  ", p + off,
1214 			      size_from_object(s) - off);
1215 }
1216 
1217 static void object_err(struct kmem_cache *s, struct slab *slab,
1218 			u8 *object, const char *reason)
1219 {
1220 	if (slab_add_kunit_errors())
1221 		return;
1222 
1223 	slab_bug(s, reason);
1224 	if (!object || !check_valid_pointer(s, slab, object)) {
1225 		print_slab_info(slab);
1226 		pr_err("Invalid pointer 0x%p\n", object);
1227 	} else {
1228 		print_trailer(s, slab, object);
1229 	}
1230 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1231 
1232 	WARN_ON(1);
1233 }
1234 
1235 static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab,
1236 			       void **freelist, void *nextfree)
1237 {
1238 	if ((s->flags & SLAB_CONSISTENCY_CHECKS) &&
1239 	    !check_valid_pointer(s, slab, nextfree) && freelist) {
1240 		object_err(s, slab, *freelist, "Freechain corrupt");
1241 		*freelist = NULL;
1242 		slab_fix(s, "Isolate corrupted freechain");
1243 		return true;
1244 	}
1245 
1246 	return false;
1247 }
1248 
1249 static void __slab_err(struct slab *slab)
1250 {
1251 	if (slab_in_kunit_test())
1252 		return;
1253 
1254 	print_slab_info(slab);
1255 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1256 
1257 	WARN_ON(1);
1258 }
1259 
1260 static __printf(3, 4) void slab_err(struct kmem_cache *s, struct slab *slab,
1261 			const char *fmt, ...)
1262 {
1263 	va_list args;
1264 
1265 	if (slab_add_kunit_errors())
1266 		return;
1267 
1268 	va_start(args, fmt);
1269 	__slab_bug(s, fmt, args);
1270 	va_end(args);
1271 
1272 	__slab_err(slab);
1273 }
1274 
1275 static void init_object(struct kmem_cache *s, void *object, u8 val)
1276 {
1277 	u8 *p = kasan_reset_tag(object);
1278 	unsigned int poison_size = s->object_size;
1279 
1280 	if (s->flags & SLAB_RED_ZONE) {
1281 		/*
1282 		 * Here and below, avoid overwriting the KMSAN shadow. Keeping
1283 		 * the shadow makes it possible to distinguish uninit-value
1284 		 * from use-after-free.
1285 		 */
1286 		memset_no_sanitize_memory(p - s->red_left_pad, val,
1287 					  s->red_left_pad);
1288 
1289 		if (slub_debug_orig_size(s) && val == SLUB_RED_ACTIVE) {
1290 			/*
1291 			 * Redzone the extra allocated space by kmalloc than
1292 			 * requested, and the poison size will be limited to
1293 			 * the original request size accordingly.
1294 			 */
1295 			poison_size = get_orig_size(s, object);
1296 		}
1297 	}
1298 
1299 	if (s->flags & __OBJECT_POISON) {
1300 		memset_no_sanitize_memory(p, POISON_FREE, poison_size - 1);
1301 		memset_no_sanitize_memory(p + poison_size - 1, POISON_END, 1);
1302 	}
1303 
1304 	if (s->flags & SLAB_RED_ZONE)
1305 		memset_no_sanitize_memory(p + poison_size, val,
1306 					  s->inuse - poison_size);
1307 }
1308 
1309 static void restore_bytes(struct kmem_cache *s, const char *message, u8 data,
1310 						void *from, void *to)
1311 {
1312 	slab_fix(s, "Restoring %s 0x%p-0x%p=0x%x", message, from, to - 1, data);
1313 	memset(from, data, to - from);
1314 }
1315 
1316 #ifdef CONFIG_KMSAN
1317 #define pad_check_attributes noinline __no_kmsan_checks
1318 #else
1319 #define pad_check_attributes
1320 #endif
1321 
1322 static pad_check_attributes int
1323 check_bytes_and_report(struct kmem_cache *s, struct slab *slab,
1324 		       u8 *object, const char *what, u8 *start, unsigned int value,
1325 		       unsigned int bytes, bool slab_obj_print)
1326 {
1327 	u8 *fault;
1328 	u8 *end;
1329 	u8 *addr = slab_address(slab);
1330 
1331 	metadata_access_enable();
1332 	fault = memchr_inv(kasan_reset_tag(start), value, bytes);
1333 	metadata_access_disable();
1334 	if (!fault)
1335 		return 1;
1336 
1337 	end = start + bytes;
1338 	while (end > fault && end[-1] == value)
1339 		end--;
1340 
1341 	if (slab_add_kunit_errors())
1342 		goto skip_bug_print;
1343 
1344 	pr_err("[%s overwritten] 0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n",
1345 	       what, fault, end - 1, fault - addr, fault[0], value);
1346 
1347 	if (slab_obj_print)
1348 		object_err(s, slab, object, "Object corrupt");
1349 
1350 skip_bug_print:
1351 	restore_bytes(s, what, value, fault, end);
1352 	return 0;
1353 }
1354 
1355 /*
1356  * Object layout:
1357  *
1358  * object address
1359  * 	Bytes of the object to be managed.
1360  * 	If the freepointer may overlay the object then the free
1361  *	pointer is at the middle of the object.
1362  *
1363  * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
1364  * 	0xa5 (POISON_END)
1365  *
1366  * object + s->object_size
1367  * 	Padding to reach word boundary. This is also used for Redzoning.
1368  * 	Padding is extended by another word if Redzoning is enabled and
1369  * 	object_size == inuse.
1370  *
1371  * 	We fill with 0xbb (SLUB_RED_INACTIVE) for inactive objects and with
1372  * 	0xcc (SLUB_RED_ACTIVE) for objects in use.
1373  *
1374  * object + s->inuse
1375  * 	Meta data starts here.
1376  *
1377  * 	A. Free pointer (if we cannot overwrite object on free)
1378  * 	B. Tracking data for SLAB_STORE_USER
1379  *	C. Original request size for kmalloc object (SLAB_STORE_USER enabled)
1380  *	D. Padding to reach required alignment boundary or at minimum
1381  * 		one word if debugging is on to be able to detect writes
1382  * 		before the word boundary.
1383  *
1384  *	Padding is done using 0x5a (POISON_INUSE)
1385  *
1386  * object + s->size
1387  * 	Nothing is used beyond s->size.
1388  *
1389  * If slabcaches are merged then the object_size and inuse boundaries are mostly
1390  * ignored. And therefore no slab options that rely on these boundaries
1391  * may be used with merged slabcaches.
1392  */
1393 
1394 static int check_pad_bytes(struct kmem_cache *s, struct slab *slab, u8 *p)
1395 {
1396 	unsigned long off = get_info_end(s);	/* The end of info */
1397 
1398 	if (s->flags & SLAB_STORE_USER) {
1399 		/* We also have user information there */
1400 		off += 2 * sizeof(struct track);
1401 
1402 		if (s->flags & SLAB_KMALLOC)
1403 			off += sizeof(unsigned int);
1404 	}
1405 
1406 	off += kasan_metadata_size(s, false);
1407 
1408 	if (size_from_object(s) == off)
1409 		return 1;
1410 
1411 	return check_bytes_and_report(s, slab, p, "Object padding",
1412 			p + off, POISON_INUSE, size_from_object(s) - off, true);
1413 }
1414 
1415 /* Check the pad bytes at the end of a slab page */
1416 static pad_check_attributes void
1417 slab_pad_check(struct kmem_cache *s, struct slab *slab)
1418 {
1419 	u8 *start;
1420 	u8 *fault;
1421 	u8 *end;
1422 	u8 *pad;
1423 	int length;
1424 	int remainder;
1425 
1426 	if (!(s->flags & SLAB_POISON))
1427 		return;
1428 
1429 	start = slab_address(slab);
1430 	length = slab_size(slab);
1431 	end = start + length;
1432 	remainder = length % s->size;
1433 	if (!remainder)
1434 		return;
1435 
1436 	pad = end - remainder;
1437 	metadata_access_enable();
1438 	fault = memchr_inv(kasan_reset_tag(pad), POISON_INUSE, remainder);
1439 	metadata_access_disable();
1440 	if (!fault)
1441 		return;
1442 	while (end > fault && end[-1] == POISON_INUSE)
1443 		end--;
1444 
1445 	slab_bug(s, "Padding overwritten. 0x%p-0x%p @offset=%tu",
1446 		 fault, end - 1, fault - start);
1447 	print_section(KERN_ERR, "Padding ", pad, remainder);
1448 	__slab_err(slab);
1449 
1450 	restore_bytes(s, "slab padding", POISON_INUSE, fault, end);
1451 }
1452 
1453 static int check_object(struct kmem_cache *s, struct slab *slab,
1454 					void *object, u8 val)
1455 {
1456 	u8 *p = object;
1457 	u8 *endobject = object + s->object_size;
1458 	unsigned int orig_size, kasan_meta_size;
1459 	int ret = 1;
1460 
1461 	if (s->flags & SLAB_RED_ZONE) {
1462 		if (!check_bytes_and_report(s, slab, object, "Left Redzone",
1463 			object - s->red_left_pad, val, s->red_left_pad, ret))
1464 			ret = 0;
1465 
1466 		if (!check_bytes_and_report(s, slab, object, "Right Redzone",
1467 			endobject, val, s->inuse - s->object_size, ret))
1468 			ret = 0;
1469 
1470 		if (slub_debug_orig_size(s) && val == SLUB_RED_ACTIVE) {
1471 			orig_size = get_orig_size(s, object);
1472 
1473 			if (s->object_size > orig_size  &&
1474 				!check_bytes_and_report(s, slab, object,
1475 					"kmalloc Redzone", p + orig_size,
1476 					val, s->object_size - orig_size, ret)) {
1477 				ret = 0;
1478 			}
1479 		}
1480 	} else {
1481 		if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
1482 			if (!check_bytes_and_report(s, slab, p, "Alignment padding",
1483 				endobject, POISON_INUSE,
1484 				s->inuse - s->object_size, ret))
1485 				ret = 0;
1486 		}
1487 	}
1488 
1489 	if (s->flags & SLAB_POISON) {
1490 		if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON)) {
1491 			/*
1492 			 * KASAN can save its free meta data inside of the
1493 			 * object at offset 0. Thus, skip checking the part of
1494 			 * the redzone that overlaps with the meta data.
1495 			 */
1496 			kasan_meta_size = kasan_metadata_size(s, true);
1497 			if (kasan_meta_size < s->object_size - 1 &&
1498 			    !check_bytes_and_report(s, slab, p, "Poison",
1499 					p + kasan_meta_size, POISON_FREE,
1500 					s->object_size - kasan_meta_size - 1, ret))
1501 				ret = 0;
1502 			if (kasan_meta_size < s->object_size &&
1503 			    !check_bytes_and_report(s, slab, p, "End Poison",
1504 					p + s->object_size - 1, POISON_END, 1, ret))
1505 				ret = 0;
1506 		}
1507 		/*
1508 		 * check_pad_bytes cleans up on its own.
1509 		 */
1510 		if (!check_pad_bytes(s, slab, p))
1511 			ret = 0;
1512 	}
1513 
1514 	/*
1515 	 * Cannot check freepointer while object is allocated if
1516 	 * object and freepointer overlap.
1517 	 */
1518 	if ((freeptr_outside_object(s) || val != SLUB_RED_ACTIVE) &&
1519 	    !check_valid_pointer(s, slab, get_freepointer(s, p))) {
1520 		object_err(s, slab, p, "Freepointer corrupt");
1521 		/*
1522 		 * No choice but to zap it and thus lose the remainder
1523 		 * of the free objects in this slab. May cause
1524 		 * another error because the object count is now wrong.
1525 		 */
1526 		set_freepointer(s, p, NULL);
1527 		ret = 0;
1528 	}
1529 
1530 	return ret;
1531 }
1532 
1533 /*
1534  * Checks if the slab state looks sane. Assumes the struct slab pointer
1535  * was either obtained in a way that ensures it's valid, or validated
1536  * by validate_slab_ptr()
1537  */
1538 static int check_slab(struct kmem_cache *s, struct slab *slab)
1539 {
1540 	int maxobj;
1541 
1542 	maxobj = order_objects(slab_order(slab), s->size);
1543 	if (slab->objects > maxobj) {
1544 		slab_err(s, slab, "objects %u > max %u",
1545 			slab->objects, maxobj);
1546 		return 0;
1547 	}
1548 	if (slab->inuse > slab->objects) {
1549 		slab_err(s, slab, "inuse %u > max %u",
1550 			slab->inuse, slab->objects);
1551 		return 0;
1552 	}
1553 	if (slab->frozen) {
1554 		slab_err(s, slab, "Slab disabled since SLUB metadata consistency check failed");
1555 		return 0;
1556 	}
1557 
1558 	/* Slab_pad_check fixes things up after itself */
1559 	slab_pad_check(s, slab);
1560 	return 1;
1561 }
1562 
1563 /*
1564  * Determine if a certain object in a slab is on the freelist. Must hold the
1565  * slab lock to guarantee that the chains are in a consistent state.
1566  */
1567 static bool on_freelist(struct kmem_cache *s, struct slab *slab, void *search)
1568 {
1569 	int nr = 0;
1570 	void *fp;
1571 	void *object = NULL;
1572 	int max_objects;
1573 
1574 	fp = slab->freelist;
1575 	while (fp && nr <= slab->objects) {
1576 		if (fp == search)
1577 			return true;
1578 		if (!check_valid_pointer(s, slab, fp)) {
1579 			if (object) {
1580 				object_err(s, slab, object,
1581 					"Freechain corrupt");
1582 				set_freepointer(s, object, NULL);
1583 				break;
1584 			} else {
1585 				slab_err(s, slab, "Freepointer corrupt");
1586 				slab->freelist = NULL;
1587 				slab->inuse = slab->objects;
1588 				slab_fix(s, "Freelist cleared");
1589 				return false;
1590 			}
1591 		}
1592 		object = fp;
1593 		fp = get_freepointer(s, object);
1594 		nr++;
1595 	}
1596 
1597 	if (nr > slab->objects) {
1598 		slab_err(s, slab, "Freelist cycle detected");
1599 		slab->freelist = NULL;
1600 		slab->inuse = slab->objects;
1601 		slab_fix(s, "Freelist cleared");
1602 		return false;
1603 	}
1604 
1605 	max_objects = order_objects(slab_order(slab), s->size);
1606 	if (max_objects > MAX_OBJS_PER_PAGE)
1607 		max_objects = MAX_OBJS_PER_PAGE;
1608 
1609 	if (slab->objects != max_objects) {
1610 		slab_err(s, slab, "Wrong number of objects. Found %d but should be %d",
1611 			 slab->objects, max_objects);
1612 		slab->objects = max_objects;
1613 		slab_fix(s, "Number of objects adjusted");
1614 	}
1615 	if (slab->inuse != slab->objects - nr) {
1616 		slab_err(s, slab, "Wrong object count. Counter is %d but counted were %d",
1617 			 slab->inuse, slab->objects - nr);
1618 		slab->inuse = slab->objects - nr;
1619 		slab_fix(s, "Object count adjusted");
1620 	}
1621 	return search == NULL;
1622 }
1623 
1624 static void trace(struct kmem_cache *s, struct slab *slab, void *object,
1625 								int alloc)
1626 {
1627 	if (s->flags & SLAB_TRACE) {
1628 		pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
1629 			s->name,
1630 			alloc ? "alloc" : "free",
1631 			object, slab->inuse,
1632 			slab->freelist);
1633 
1634 		if (!alloc)
1635 			print_section(KERN_INFO, "Object ", (void *)object,
1636 					s->object_size);
1637 
1638 		dump_stack();
1639 	}
1640 }
1641 
1642 /*
1643  * Tracking of fully allocated slabs for debugging purposes.
1644  */
1645 static void add_full(struct kmem_cache *s,
1646 	struct kmem_cache_node *n, struct slab *slab)
1647 {
1648 	if (!(s->flags & SLAB_STORE_USER))
1649 		return;
1650 
1651 	lockdep_assert_held(&n->list_lock);
1652 	list_add(&slab->slab_list, &n->full);
1653 }
1654 
1655 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct slab *slab)
1656 {
1657 	if (!(s->flags & SLAB_STORE_USER))
1658 		return;
1659 
1660 	lockdep_assert_held(&n->list_lock);
1661 	list_del(&slab->slab_list);
1662 }
1663 
1664 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1665 {
1666 	return atomic_long_read(&n->nr_slabs);
1667 }
1668 
1669 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1670 {
1671 	struct kmem_cache_node *n = get_node(s, node);
1672 
1673 	atomic_long_inc(&n->nr_slabs);
1674 	atomic_long_add(objects, &n->total_objects);
1675 }
1676 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1677 {
1678 	struct kmem_cache_node *n = get_node(s, node);
1679 
1680 	atomic_long_dec(&n->nr_slabs);
1681 	atomic_long_sub(objects, &n->total_objects);
1682 }
1683 
1684 /* Object debug checks for alloc/free paths */
1685 static void setup_object_debug(struct kmem_cache *s, void *object)
1686 {
1687 	if (!kmem_cache_debug_flags(s, SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))
1688 		return;
1689 
1690 	init_object(s, object, SLUB_RED_INACTIVE);
1691 	init_tracking(s, object);
1692 }
1693 
1694 static
1695 void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr)
1696 {
1697 	if (!kmem_cache_debug_flags(s, SLAB_POISON))
1698 		return;
1699 
1700 	metadata_access_enable();
1701 	memset(kasan_reset_tag(addr), POISON_INUSE, slab_size(slab));
1702 	metadata_access_disable();
1703 }
1704 
1705 static inline int alloc_consistency_checks(struct kmem_cache *s,
1706 					struct slab *slab, void *object)
1707 {
1708 	if (!check_slab(s, slab))
1709 		return 0;
1710 
1711 	if (!check_valid_pointer(s, slab, object)) {
1712 		object_err(s, slab, object, "Freelist Pointer check fails");
1713 		return 0;
1714 	}
1715 
1716 	if (!check_object(s, slab, object, SLUB_RED_INACTIVE))
1717 		return 0;
1718 
1719 	return 1;
1720 }
1721 
1722 static noinline bool alloc_debug_processing(struct kmem_cache *s,
1723 			struct slab *slab, void *object, int orig_size)
1724 {
1725 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1726 		if (!alloc_consistency_checks(s, slab, object))
1727 			goto bad;
1728 	}
1729 
1730 	/* Success. Perform special debug activities for allocs */
1731 	trace(s, slab, object, 1);
1732 	set_orig_size(s, object, orig_size);
1733 	init_object(s, object, SLUB_RED_ACTIVE);
1734 	return true;
1735 
1736 bad:
1737 	/*
1738 	 * Let's do the best we can to avoid issues in the future. Marking all
1739 	 * objects as used avoids touching the remaining objects.
1740 	 */
1741 	slab_fix(s, "Marking all objects used");
1742 	slab->inuse = slab->objects;
1743 	slab->freelist = NULL;
1744 	slab->frozen = 1; /* mark consistency-failed slab as frozen */
1745 
1746 	return false;
1747 }
1748 
1749 static inline int free_consistency_checks(struct kmem_cache *s,
1750 		struct slab *slab, void *object, unsigned long addr)
1751 {
1752 	if (!check_valid_pointer(s, slab, object)) {
1753 		slab_err(s, slab, "Invalid object pointer 0x%p", object);
1754 		return 0;
1755 	}
1756 
1757 	if (on_freelist(s, slab, object)) {
1758 		object_err(s, slab, object, "Object already free");
1759 		return 0;
1760 	}
1761 
1762 	if (!check_object(s, slab, object, SLUB_RED_ACTIVE))
1763 		return 0;
1764 
1765 	if (unlikely(s != slab->slab_cache)) {
1766 		if (!slab->slab_cache) {
1767 			slab_err(NULL, slab, "No slab cache for object 0x%p",
1768 				 object);
1769 		} else {
1770 			object_err(s, slab, object,
1771 				   "page slab pointer corrupt.");
1772 		}
1773 		return 0;
1774 	}
1775 	return 1;
1776 }
1777 
1778 /*
1779  * Parse a block of slab_debug options. Blocks are delimited by ';'
1780  *
1781  * @str:    start of block
1782  * @flags:  returns parsed flags, or DEBUG_DEFAULT_FLAGS if none specified
1783  * @slabs:  return start of list of slabs, or NULL when there's no list
1784  * @init:   assume this is initial parsing and not per-kmem-create parsing
1785  *
1786  * returns the start of next block if there's any, or NULL
1787  */
1788 static char *
1789 parse_slub_debug_flags(char *str, slab_flags_t *flags, char **slabs, bool init)
1790 {
1791 	bool higher_order_disable = false;
1792 
1793 	/* Skip any completely empty blocks */
1794 	while (*str && *str == ';')
1795 		str++;
1796 
1797 	if (*str == ',') {
1798 		/*
1799 		 * No options but restriction on slabs. This means full
1800 		 * debugging for slabs matching a pattern.
1801 		 */
1802 		*flags = DEBUG_DEFAULT_FLAGS;
1803 		goto check_slabs;
1804 	}
1805 	*flags = 0;
1806 
1807 	/* Determine which debug features should be switched on */
1808 	for (; *str && *str != ',' && *str != ';'; str++) {
1809 		switch (tolower(*str)) {
1810 		case '-':
1811 			*flags = 0;
1812 			break;
1813 		case 'f':
1814 			*flags |= SLAB_CONSISTENCY_CHECKS;
1815 			break;
1816 		case 'z':
1817 			*flags |= SLAB_RED_ZONE;
1818 			break;
1819 		case 'p':
1820 			*flags |= SLAB_POISON;
1821 			break;
1822 		case 'u':
1823 			*flags |= SLAB_STORE_USER;
1824 			break;
1825 		case 't':
1826 			*flags |= SLAB_TRACE;
1827 			break;
1828 		case 'a':
1829 			*flags |= SLAB_FAILSLAB;
1830 			break;
1831 		case 'o':
1832 			/*
1833 			 * Avoid enabling debugging on caches if its minimum
1834 			 * order would increase as a result.
1835 			 */
1836 			higher_order_disable = true;
1837 			break;
1838 		default:
1839 			if (init)
1840 				pr_err("slab_debug option '%c' unknown. skipped\n", *str);
1841 		}
1842 	}
1843 check_slabs:
1844 	if (*str == ',')
1845 		*slabs = ++str;
1846 	else
1847 		*slabs = NULL;
1848 
1849 	/* Skip over the slab list */
1850 	while (*str && *str != ';')
1851 		str++;
1852 
1853 	/* Skip any completely empty blocks */
1854 	while (*str && *str == ';')
1855 		str++;
1856 
1857 	if (init && higher_order_disable)
1858 		disable_higher_order_debug = 1;
1859 
1860 	if (*str)
1861 		return str;
1862 	else
1863 		return NULL;
1864 }
1865 
1866 static int __init setup_slub_debug(char *str)
1867 {
1868 	slab_flags_t flags;
1869 	slab_flags_t global_flags;
1870 	char *saved_str;
1871 	char *slab_list;
1872 	bool global_slub_debug_changed = false;
1873 	bool slab_list_specified = false;
1874 
1875 	global_flags = DEBUG_DEFAULT_FLAGS;
1876 	if (*str++ != '=' || !*str)
1877 		/*
1878 		 * No options specified. Switch on full debugging.
1879 		 */
1880 		goto out;
1881 
1882 	saved_str = str;
1883 	while (str) {
1884 		str = parse_slub_debug_flags(str, &flags, &slab_list, true);
1885 
1886 		if (!slab_list) {
1887 			global_flags = flags;
1888 			global_slub_debug_changed = true;
1889 		} else {
1890 			slab_list_specified = true;
1891 			if (flags & SLAB_STORE_USER)
1892 				stack_depot_request_early_init();
1893 		}
1894 	}
1895 
1896 	/*
1897 	 * For backwards compatibility, a single list of flags with list of
1898 	 * slabs means debugging is only changed for those slabs, so the global
1899 	 * slab_debug should be unchanged (0 or DEBUG_DEFAULT_FLAGS, depending
1900 	 * on CONFIG_SLUB_DEBUG_ON). We can extended that to multiple lists as
1901 	 * long as there is no option specifying flags without a slab list.
1902 	 */
1903 	if (slab_list_specified) {
1904 		if (!global_slub_debug_changed)
1905 			global_flags = slub_debug;
1906 		slub_debug_string = saved_str;
1907 	}
1908 out:
1909 	slub_debug = global_flags;
1910 	if (slub_debug & SLAB_STORE_USER)
1911 		stack_depot_request_early_init();
1912 	if (slub_debug != 0 || slub_debug_string)
1913 		static_branch_enable(&slub_debug_enabled);
1914 	else
1915 		static_branch_disable(&slub_debug_enabled);
1916 	if ((static_branch_unlikely(&init_on_alloc) ||
1917 	     static_branch_unlikely(&init_on_free)) &&
1918 	    (slub_debug & SLAB_POISON))
1919 		pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n");
1920 	return 1;
1921 }
1922 
1923 __setup("slab_debug", setup_slub_debug);
1924 __setup_param("slub_debug", slub_debug, setup_slub_debug, 0);
1925 
1926 /*
1927  * kmem_cache_flags - apply debugging options to the cache
1928  * @flags:		flags to set
1929  * @name:		name of the cache
1930  *
1931  * Debug option(s) are applied to @flags. In addition to the debug
1932  * option(s), if a slab name (or multiple) is specified i.e.
1933  * slab_debug=<Debug-Options>,<slab name1>,<slab name2> ...
1934  * then only the select slabs will receive the debug option(s).
1935  */
1936 slab_flags_t kmem_cache_flags(slab_flags_t flags, const char *name)
1937 {
1938 	char *iter;
1939 	size_t len;
1940 	char *next_block;
1941 	slab_flags_t block_flags;
1942 	slab_flags_t slub_debug_local = slub_debug;
1943 
1944 	if (flags & SLAB_NO_USER_FLAGS)
1945 		return flags;
1946 
1947 	/*
1948 	 * If the slab cache is for debugging (e.g. kmemleak) then
1949 	 * don't store user (stack trace) information by default,
1950 	 * but let the user enable it via the command line below.
1951 	 */
1952 	if (flags & SLAB_NOLEAKTRACE)
1953 		slub_debug_local &= ~SLAB_STORE_USER;
1954 
1955 	len = strlen(name);
1956 	next_block = slub_debug_string;
1957 	/* Go through all blocks of debug options, see if any matches our slab's name */
1958 	while (next_block) {
1959 		next_block = parse_slub_debug_flags(next_block, &block_flags, &iter, false);
1960 		if (!iter)
1961 			continue;
1962 		/* Found a block that has a slab list, search it */
1963 		while (*iter) {
1964 			char *end, *glob;
1965 			size_t cmplen;
1966 
1967 			end = strchrnul(iter, ',');
1968 			if (next_block && next_block < end)
1969 				end = next_block - 1;
1970 
1971 			glob = strnchr(iter, end - iter, '*');
1972 			if (glob)
1973 				cmplen = glob - iter;
1974 			else
1975 				cmplen = max_t(size_t, len, (end - iter));
1976 
1977 			if (!strncmp(name, iter, cmplen)) {
1978 				flags |= block_flags;
1979 				return flags;
1980 			}
1981 
1982 			if (!*end || *end == ';')
1983 				break;
1984 			iter = end + 1;
1985 		}
1986 	}
1987 
1988 	return flags | slub_debug_local;
1989 }
1990 #else /* !CONFIG_SLUB_DEBUG */
1991 static inline void setup_object_debug(struct kmem_cache *s, void *object) {}
1992 static inline
1993 void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr) {}
1994 
1995 static inline bool alloc_debug_processing(struct kmem_cache *s,
1996 	struct slab *slab, void *object, int orig_size) { return true; }
1997 
1998 static inline bool free_debug_processing(struct kmem_cache *s,
1999 	struct slab *slab, void *head, void *tail, int *bulk_cnt,
2000 	unsigned long addr, depot_stack_handle_t handle) { return true; }
2001 
2002 static inline void slab_pad_check(struct kmem_cache *s, struct slab *slab) {}
2003 static inline int check_object(struct kmem_cache *s, struct slab *slab,
2004 			void *object, u8 val) { return 1; }
2005 static inline depot_stack_handle_t set_track_prepare(gfp_t gfp_flags) { return 0; }
2006 static inline void set_track(struct kmem_cache *s, void *object,
2007 			     enum track_item alloc, unsigned long addr, gfp_t gfp_flags) {}
2008 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
2009 					struct slab *slab) {}
2010 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
2011 					struct slab *slab) {}
2012 slab_flags_t kmem_cache_flags(slab_flags_t flags, const char *name)
2013 {
2014 	return flags;
2015 }
2016 #define slub_debug 0
2017 
2018 #define disable_higher_order_debug 0
2019 
2020 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
2021 							{ return 0; }
2022 static inline void inc_slabs_node(struct kmem_cache *s, int node,
2023 							int objects) {}
2024 static inline void dec_slabs_node(struct kmem_cache *s, int node,
2025 							int objects) {}
2026 #ifndef CONFIG_SLUB_TINY
2027 static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab,
2028 			       void **freelist, void *nextfree)
2029 {
2030 	return false;
2031 }
2032 #endif
2033 #endif /* CONFIG_SLUB_DEBUG */
2034 
2035 #ifdef CONFIG_SLAB_OBJ_EXT
2036 
2037 #ifdef CONFIG_MEM_ALLOC_PROFILING_DEBUG
2038 
2039 static inline void mark_objexts_empty(struct slabobj_ext *obj_exts)
2040 {
2041 	struct slabobj_ext *slab_exts;
2042 	struct slab *obj_exts_slab;
2043 
2044 	obj_exts_slab = virt_to_slab(obj_exts);
2045 	slab_exts = slab_obj_exts(obj_exts_slab);
2046 	if (slab_exts) {
2047 		unsigned int offs = obj_to_index(obj_exts_slab->slab_cache,
2048 						 obj_exts_slab, obj_exts);
2049 		/* codetag should be NULL */
2050 		WARN_ON(slab_exts[offs].ref.ct);
2051 		set_codetag_empty(&slab_exts[offs].ref);
2052 	}
2053 }
2054 
2055 static inline bool mark_failed_objexts_alloc(struct slab *slab)
2056 {
2057 	return cmpxchg(&slab->obj_exts, 0, OBJEXTS_ALLOC_FAIL) == 0;
2058 }
2059 
2060 static inline void handle_failed_objexts_alloc(unsigned long obj_exts,
2061 			struct slabobj_ext *vec, unsigned int objects)
2062 {
2063 	/*
2064 	 * If vector previously failed to allocate then we have live
2065 	 * objects with no tag reference. Mark all references in this
2066 	 * vector as empty to avoid warnings later on.
2067 	 */
2068 	if (obj_exts == OBJEXTS_ALLOC_FAIL) {
2069 		unsigned int i;
2070 
2071 		for (i = 0; i < objects; i++)
2072 			set_codetag_empty(&vec[i].ref);
2073 	}
2074 }
2075 
2076 #else /* CONFIG_MEM_ALLOC_PROFILING_DEBUG */
2077 
2078 static inline void mark_objexts_empty(struct slabobj_ext *obj_exts) {}
2079 static inline bool mark_failed_objexts_alloc(struct slab *slab) { return false; }
2080 static inline void handle_failed_objexts_alloc(unsigned long obj_exts,
2081 			struct slabobj_ext *vec, unsigned int objects) {}
2082 
2083 #endif /* CONFIG_MEM_ALLOC_PROFILING_DEBUG */
2084 
2085 /*
2086  * The allocated objcg pointers array is not accounted directly.
2087  * Moreover, it should not come from DMA buffer and is not readily
2088  * reclaimable. So those GFP bits should be masked off.
2089  */
2090 #define OBJCGS_CLEAR_MASK	(__GFP_DMA | __GFP_RECLAIMABLE | \
2091 				__GFP_ACCOUNT | __GFP_NOFAIL)
2092 
2093 static inline void init_slab_obj_exts(struct slab *slab)
2094 {
2095 	slab->obj_exts = 0;
2096 }
2097 
2098 int alloc_slab_obj_exts(struct slab *slab, struct kmem_cache *s,
2099 		        gfp_t gfp, bool new_slab)
2100 {
2101 	bool allow_spin = gfpflags_allow_spinning(gfp);
2102 	unsigned int objects = objs_per_slab(s, slab);
2103 	unsigned long new_exts;
2104 	unsigned long old_exts;
2105 	struct slabobj_ext *vec;
2106 
2107 	gfp &= ~OBJCGS_CLEAR_MASK;
2108 	/* Prevent recursive extension vector allocation */
2109 	gfp |= __GFP_NO_OBJ_EXT;
2110 
2111 	/*
2112 	 * Note that allow_spin may be false during early boot and its
2113 	 * restricted GFP_BOOT_MASK. Due to kmalloc_nolock() only supporting
2114 	 * architectures with cmpxchg16b, early obj_exts will be missing for
2115 	 * very early allocations on those.
2116 	 */
2117 	if (unlikely(!allow_spin)) {
2118 		size_t sz = objects * sizeof(struct slabobj_ext);
2119 
2120 		vec = kmalloc_nolock(sz, __GFP_ZERO | __GFP_NO_OBJ_EXT,
2121 				     slab_nid(slab));
2122 	} else {
2123 		vec = kcalloc_node(objects, sizeof(struct slabobj_ext), gfp,
2124 				   slab_nid(slab));
2125 	}
2126 	if (!vec) {
2127 		/*
2128 		 * Try to mark vectors which failed to allocate.
2129 		 * If this operation fails, there may be a racing process
2130 		 * that has already completed the allocation.
2131 		 */
2132 		if (!mark_failed_objexts_alloc(slab) &&
2133 		    slab_obj_exts(slab))
2134 			return 0;
2135 
2136 		return -ENOMEM;
2137 	}
2138 
2139 	new_exts = (unsigned long)vec;
2140 	if (unlikely(!allow_spin))
2141 		new_exts |= OBJEXTS_NOSPIN_ALLOC;
2142 #ifdef CONFIG_MEMCG
2143 	new_exts |= MEMCG_DATA_OBJEXTS;
2144 #endif
2145 retry:
2146 	old_exts = READ_ONCE(slab->obj_exts);
2147 	handle_failed_objexts_alloc(old_exts, vec, objects);
2148 	if (new_slab) {
2149 		/*
2150 		 * If the slab is brand new and nobody can yet access its
2151 		 * obj_exts, no synchronization is required and obj_exts can
2152 		 * be simply assigned.
2153 		 */
2154 		slab->obj_exts = new_exts;
2155 	} else if (old_exts & ~OBJEXTS_FLAGS_MASK) {
2156 		/*
2157 		 * If the slab is already in use, somebody can allocate and
2158 		 * assign slabobj_exts in parallel. In this case the existing
2159 		 * objcg vector should be reused.
2160 		 */
2161 		mark_objexts_empty(vec);
2162 		if (unlikely(!allow_spin))
2163 			kfree_nolock(vec);
2164 		else
2165 			kfree(vec);
2166 		return 0;
2167 	} else if (cmpxchg(&slab->obj_exts, old_exts, new_exts) != old_exts) {
2168 		/* Retry if a racing thread changed slab->obj_exts from under us. */
2169 		goto retry;
2170 	}
2171 
2172 	if (allow_spin)
2173 		kmemleak_not_leak(vec);
2174 	return 0;
2175 }
2176 
2177 static inline void free_slab_obj_exts(struct slab *slab)
2178 {
2179 	struct slabobj_ext *obj_exts;
2180 
2181 	obj_exts = slab_obj_exts(slab);
2182 	if (!obj_exts) {
2183 		/*
2184 		 * If obj_exts allocation failed, slab->obj_exts is set to
2185 		 * OBJEXTS_ALLOC_FAIL. In this case, we end up here and should
2186 		 * clear the flag.
2187 		 */
2188 		slab->obj_exts = 0;
2189 		return;
2190 	}
2191 
2192 	/*
2193 	 * obj_exts was created with __GFP_NO_OBJ_EXT flag, therefore its
2194 	 * corresponding extension will be NULL. alloc_tag_sub() will throw a
2195 	 * warning if slab has extensions but the extension of an object is
2196 	 * NULL, therefore replace NULL with CODETAG_EMPTY to indicate that
2197 	 * the extension for obj_exts is expected to be NULL.
2198 	 */
2199 	mark_objexts_empty(obj_exts);
2200 	if (unlikely(READ_ONCE(slab->obj_exts) & OBJEXTS_NOSPIN_ALLOC))
2201 		kfree_nolock(obj_exts);
2202 	else
2203 		kfree(obj_exts);
2204 	slab->obj_exts = 0;
2205 }
2206 
2207 #else /* CONFIG_SLAB_OBJ_EXT */
2208 
2209 static inline void init_slab_obj_exts(struct slab *slab)
2210 {
2211 }
2212 
2213 static int alloc_slab_obj_exts(struct slab *slab, struct kmem_cache *s,
2214 			       gfp_t gfp, bool new_slab)
2215 {
2216 	return 0;
2217 }
2218 
2219 static inline void free_slab_obj_exts(struct slab *slab)
2220 {
2221 }
2222 
2223 #endif /* CONFIG_SLAB_OBJ_EXT */
2224 
2225 #ifdef CONFIG_MEM_ALLOC_PROFILING
2226 
2227 static inline struct slabobj_ext *
2228 prepare_slab_obj_exts_hook(struct kmem_cache *s, gfp_t flags, void *p)
2229 {
2230 	struct slab *slab;
2231 
2232 	slab = virt_to_slab(p);
2233 	if (!slab_obj_exts(slab) &&
2234 	    alloc_slab_obj_exts(slab, s, flags, false)) {
2235 		pr_warn_once("%s, %s: Failed to create slab extension vector!\n",
2236 			     __func__, s->name);
2237 		return NULL;
2238 	}
2239 
2240 	return slab_obj_exts(slab) + obj_to_index(s, slab, p);
2241 }
2242 
2243 /* Should be called only if mem_alloc_profiling_enabled() */
2244 static noinline void
2245 __alloc_tagging_slab_alloc_hook(struct kmem_cache *s, void *object, gfp_t flags)
2246 {
2247 	struct slabobj_ext *obj_exts;
2248 
2249 	if (!object)
2250 		return;
2251 
2252 	if (s->flags & (SLAB_NO_OBJ_EXT | SLAB_NOLEAKTRACE))
2253 		return;
2254 
2255 	if (flags & __GFP_NO_OBJ_EXT)
2256 		return;
2257 
2258 	obj_exts = prepare_slab_obj_exts_hook(s, flags, object);
2259 	/*
2260 	 * Currently obj_exts is used only for allocation profiling.
2261 	 * If other users appear then mem_alloc_profiling_enabled()
2262 	 * check should be added before alloc_tag_add().
2263 	 */
2264 	if (likely(obj_exts))
2265 		alloc_tag_add(&obj_exts->ref, current->alloc_tag, s->size);
2266 	else
2267 		alloc_tag_set_inaccurate(current->alloc_tag);
2268 }
2269 
2270 static inline void
2271 alloc_tagging_slab_alloc_hook(struct kmem_cache *s, void *object, gfp_t flags)
2272 {
2273 	if (mem_alloc_profiling_enabled())
2274 		__alloc_tagging_slab_alloc_hook(s, object, flags);
2275 }
2276 
2277 /* Should be called only if mem_alloc_profiling_enabled() */
2278 static noinline void
2279 __alloc_tagging_slab_free_hook(struct kmem_cache *s, struct slab *slab, void **p,
2280 			       int objects)
2281 {
2282 	struct slabobj_ext *obj_exts;
2283 	int i;
2284 
2285 	/* slab->obj_exts might not be NULL if it was created for MEMCG accounting. */
2286 	if (s->flags & (SLAB_NO_OBJ_EXT | SLAB_NOLEAKTRACE))
2287 		return;
2288 
2289 	obj_exts = slab_obj_exts(slab);
2290 	if (!obj_exts)
2291 		return;
2292 
2293 	for (i = 0; i < objects; i++) {
2294 		unsigned int off = obj_to_index(s, slab, p[i]);
2295 
2296 		alloc_tag_sub(&obj_exts[off].ref, s->size);
2297 	}
2298 }
2299 
2300 static inline void
2301 alloc_tagging_slab_free_hook(struct kmem_cache *s, struct slab *slab, void **p,
2302 			     int objects)
2303 {
2304 	if (mem_alloc_profiling_enabled())
2305 		__alloc_tagging_slab_free_hook(s, slab, p, objects);
2306 }
2307 
2308 #else /* CONFIG_MEM_ALLOC_PROFILING */
2309 
2310 static inline void
2311 alloc_tagging_slab_alloc_hook(struct kmem_cache *s, void *object, gfp_t flags)
2312 {
2313 }
2314 
2315 static inline void
2316 alloc_tagging_slab_free_hook(struct kmem_cache *s, struct slab *slab, void **p,
2317 			     int objects)
2318 {
2319 }
2320 
2321 #endif /* CONFIG_MEM_ALLOC_PROFILING */
2322 
2323 
2324 #ifdef CONFIG_MEMCG
2325 
2326 static void memcg_alloc_abort_single(struct kmem_cache *s, void *object);
2327 
2328 static __fastpath_inline
2329 bool memcg_slab_post_alloc_hook(struct kmem_cache *s, struct list_lru *lru,
2330 				gfp_t flags, size_t size, void **p)
2331 {
2332 	if (likely(!memcg_kmem_online()))
2333 		return true;
2334 
2335 	if (likely(!(flags & __GFP_ACCOUNT) && !(s->flags & SLAB_ACCOUNT)))
2336 		return true;
2337 
2338 	if (likely(__memcg_slab_post_alloc_hook(s, lru, flags, size, p)))
2339 		return true;
2340 
2341 	if (likely(size == 1)) {
2342 		memcg_alloc_abort_single(s, *p);
2343 		*p = NULL;
2344 	} else {
2345 		kmem_cache_free_bulk(s, size, p);
2346 	}
2347 
2348 	return false;
2349 }
2350 
2351 static __fastpath_inline
2352 void memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab, void **p,
2353 			  int objects)
2354 {
2355 	struct slabobj_ext *obj_exts;
2356 
2357 	if (!memcg_kmem_online())
2358 		return;
2359 
2360 	obj_exts = slab_obj_exts(slab);
2361 	if (likely(!obj_exts))
2362 		return;
2363 
2364 	__memcg_slab_free_hook(s, slab, p, objects, obj_exts);
2365 }
2366 
2367 static __fastpath_inline
2368 bool memcg_slab_post_charge(void *p, gfp_t flags)
2369 {
2370 	struct slabobj_ext *slab_exts;
2371 	struct kmem_cache *s;
2372 	struct folio *folio;
2373 	struct slab *slab;
2374 	unsigned long off;
2375 
2376 	folio = virt_to_folio(p);
2377 	if (!folio_test_slab(folio)) {
2378 		int size;
2379 
2380 		if (folio_memcg_kmem(folio))
2381 			return true;
2382 
2383 		if (__memcg_kmem_charge_page(folio_page(folio, 0), flags,
2384 					     folio_order(folio)))
2385 			return false;
2386 
2387 		/*
2388 		 * This folio has already been accounted in the global stats but
2389 		 * not in the memcg stats. So, subtract from the global and use
2390 		 * the interface which adds to both global and memcg stats.
2391 		 */
2392 		size = folio_size(folio);
2393 		node_stat_mod_folio(folio, NR_SLAB_UNRECLAIMABLE_B, -size);
2394 		lruvec_stat_mod_folio(folio, NR_SLAB_UNRECLAIMABLE_B, size);
2395 		return true;
2396 	}
2397 
2398 	slab = folio_slab(folio);
2399 	s = slab->slab_cache;
2400 
2401 	/*
2402 	 * Ignore KMALLOC_NORMAL cache to avoid possible circular dependency
2403 	 * of slab_obj_exts being allocated from the same slab and thus the slab
2404 	 * becoming effectively unfreeable.
2405 	 */
2406 	if (is_kmalloc_normal(s))
2407 		return true;
2408 
2409 	/* Ignore already charged objects. */
2410 	slab_exts = slab_obj_exts(slab);
2411 	if (slab_exts) {
2412 		off = obj_to_index(s, slab, p);
2413 		if (unlikely(slab_exts[off].objcg))
2414 			return true;
2415 	}
2416 
2417 	return __memcg_slab_post_alloc_hook(s, NULL, flags, 1, &p);
2418 }
2419 
2420 #else /* CONFIG_MEMCG */
2421 static inline bool memcg_slab_post_alloc_hook(struct kmem_cache *s,
2422 					      struct list_lru *lru,
2423 					      gfp_t flags, size_t size,
2424 					      void **p)
2425 {
2426 	return true;
2427 }
2428 
2429 static inline void memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab,
2430 					void **p, int objects)
2431 {
2432 }
2433 
2434 static inline bool memcg_slab_post_charge(void *p, gfp_t flags)
2435 {
2436 	return true;
2437 }
2438 #endif /* CONFIG_MEMCG */
2439 
2440 #ifdef CONFIG_SLUB_RCU_DEBUG
2441 static void slab_free_after_rcu_debug(struct rcu_head *rcu_head);
2442 
2443 struct rcu_delayed_free {
2444 	struct rcu_head head;
2445 	void *object;
2446 };
2447 #endif
2448 
2449 /*
2450  * Hooks for other subsystems that check memory allocations. In a typical
2451  * production configuration these hooks all should produce no code at all.
2452  *
2453  * Returns true if freeing of the object can proceed, false if its reuse
2454  * was delayed by CONFIG_SLUB_RCU_DEBUG or KASAN quarantine, or it was returned
2455  * to KFENCE.
2456  */
2457 static __always_inline
2458 bool slab_free_hook(struct kmem_cache *s, void *x, bool init,
2459 		    bool after_rcu_delay)
2460 {
2461 	/* Are the object contents still accessible? */
2462 	bool still_accessible = (s->flags & SLAB_TYPESAFE_BY_RCU) && !after_rcu_delay;
2463 
2464 	kmemleak_free_recursive(x, s->flags);
2465 	kmsan_slab_free(s, x);
2466 
2467 	debug_check_no_locks_freed(x, s->object_size);
2468 
2469 	if (!(s->flags & SLAB_DEBUG_OBJECTS))
2470 		debug_check_no_obj_freed(x, s->object_size);
2471 
2472 	/* Use KCSAN to help debug racy use-after-free. */
2473 	if (!still_accessible)
2474 		__kcsan_check_access(x, s->object_size,
2475 				     KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT);
2476 
2477 	if (kfence_free(x))
2478 		return false;
2479 
2480 	/*
2481 	 * Give KASAN a chance to notice an invalid free operation before we
2482 	 * modify the object.
2483 	 */
2484 	if (kasan_slab_pre_free(s, x))
2485 		return false;
2486 
2487 #ifdef CONFIG_SLUB_RCU_DEBUG
2488 	if (still_accessible) {
2489 		struct rcu_delayed_free *delayed_free;
2490 
2491 		delayed_free = kmalloc(sizeof(*delayed_free), GFP_NOWAIT);
2492 		if (delayed_free) {
2493 			/*
2494 			 * Let KASAN track our call stack as a "related work
2495 			 * creation", just like if the object had been freed
2496 			 * normally via kfree_rcu().
2497 			 * We have to do this manually because the rcu_head is
2498 			 * not located inside the object.
2499 			 */
2500 			kasan_record_aux_stack(x);
2501 
2502 			delayed_free->object = x;
2503 			call_rcu(&delayed_free->head, slab_free_after_rcu_debug);
2504 			return false;
2505 		}
2506 	}
2507 #endif /* CONFIG_SLUB_RCU_DEBUG */
2508 
2509 	/*
2510 	 * As memory initialization might be integrated into KASAN,
2511 	 * kasan_slab_free and initialization memset's must be
2512 	 * kept together to avoid discrepancies in behavior.
2513 	 *
2514 	 * The initialization memset's clear the object and the metadata,
2515 	 * but don't touch the SLAB redzone.
2516 	 *
2517 	 * The object's freepointer is also avoided if stored outside the
2518 	 * object.
2519 	 */
2520 	if (unlikely(init)) {
2521 		int rsize;
2522 		unsigned int inuse, orig_size;
2523 
2524 		inuse = get_info_end(s);
2525 		orig_size = get_orig_size(s, x);
2526 		if (!kasan_has_integrated_init())
2527 			memset(kasan_reset_tag(x), 0, orig_size);
2528 		rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad : 0;
2529 		memset((char *)kasan_reset_tag(x) + inuse, 0,
2530 		       s->size - inuse - rsize);
2531 		/*
2532 		 * Restore orig_size, otherwize kmalloc redzone overwritten
2533 		 * would be reported
2534 		 */
2535 		set_orig_size(s, x, orig_size);
2536 
2537 	}
2538 	/* KASAN might put x into memory quarantine, delaying its reuse. */
2539 	return !kasan_slab_free(s, x, init, still_accessible, false);
2540 }
2541 
2542 static __fastpath_inline
2543 bool slab_free_freelist_hook(struct kmem_cache *s, void **head, void **tail,
2544 			     int *cnt)
2545 {
2546 
2547 	void *object;
2548 	void *next = *head;
2549 	void *old_tail = *tail;
2550 	bool init;
2551 
2552 	if (is_kfence_address(next)) {
2553 		slab_free_hook(s, next, false, false);
2554 		return false;
2555 	}
2556 
2557 	/* Head and tail of the reconstructed freelist */
2558 	*head = NULL;
2559 	*tail = NULL;
2560 
2561 	init = slab_want_init_on_free(s);
2562 
2563 	do {
2564 		object = next;
2565 		next = get_freepointer(s, object);
2566 
2567 		/* If object's reuse doesn't have to be delayed */
2568 		if (likely(slab_free_hook(s, object, init, false))) {
2569 			/* Move object to the new freelist */
2570 			set_freepointer(s, object, *head);
2571 			*head = object;
2572 			if (!*tail)
2573 				*tail = object;
2574 		} else {
2575 			/*
2576 			 * Adjust the reconstructed freelist depth
2577 			 * accordingly if object's reuse is delayed.
2578 			 */
2579 			--(*cnt);
2580 		}
2581 	} while (object != old_tail);
2582 
2583 	return *head != NULL;
2584 }
2585 
2586 static void *setup_object(struct kmem_cache *s, void *object)
2587 {
2588 	setup_object_debug(s, object);
2589 	object = kasan_init_slab_obj(s, object);
2590 	if (unlikely(s->ctor)) {
2591 		kasan_unpoison_new_object(s, object);
2592 		s->ctor(object);
2593 		kasan_poison_new_object(s, object);
2594 	}
2595 	return object;
2596 }
2597 
2598 static struct slab_sheaf *alloc_empty_sheaf(struct kmem_cache *s, gfp_t gfp)
2599 {
2600 	struct slab_sheaf *sheaf = kzalloc(struct_size(sheaf, objects,
2601 					s->sheaf_capacity), gfp);
2602 
2603 	if (unlikely(!sheaf))
2604 		return NULL;
2605 
2606 	sheaf->cache = s;
2607 
2608 	stat(s, SHEAF_ALLOC);
2609 
2610 	return sheaf;
2611 }
2612 
2613 static void free_empty_sheaf(struct kmem_cache *s, struct slab_sheaf *sheaf)
2614 {
2615 	kfree(sheaf);
2616 
2617 	stat(s, SHEAF_FREE);
2618 }
2619 
2620 static int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags,
2621 				   size_t size, void **p);
2622 
2623 
2624 static int refill_sheaf(struct kmem_cache *s, struct slab_sheaf *sheaf,
2625 			 gfp_t gfp)
2626 {
2627 	int to_fill = s->sheaf_capacity - sheaf->size;
2628 	int filled;
2629 
2630 	if (!to_fill)
2631 		return 0;
2632 
2633 	filled = __kmem_cache_alloc_bulk(s, gfp, to_fill,
2634 					 &sheaf->objects[sheaf->size]);
2635 
2636 	sheaf->size += filled;
2637 
2638 	stat_add(s, SHEAF_REFILL, filled);
2639 
2640 	if (filled < to_fill)
2641 		return -ENOMEM;
2642 
2643 	return 0;
2644 }
2645 
2646 
2647 static struct slab_sheaf *alloc_full_sheaf(struct kmem_cache *s, gfp_t gfp)
2648 {
2649 	struct slab_sheaf *sheaf = alloc_empty_sheaf(s, gfp);
2650 
2651 	if (!sheaf)
2652 		return NULL;
2653 
2654 	if (refill_sheaf(s, sheaf, gfp)) {
2655 		free_empty_sheaf(s, sheaf);
2656 		return NULL;
2657 	}
2658 
2659 	return sheaf;
2660 }
2661 
2662 /*
2663  * Maximum number of objects freed during a single flush of main pcs sheaf.
2664  * Translates directly to an on-stack array size.
2665  */
2666 #define PCS_BATCH_MAX	32U
2667 
2668 static void __kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p);
2669 
2670 /*
2671  * Free all objects from the main sheaf. In order to perform
2672  * __kmem_cache_free_bulk() outside of cpu_sheaves->lock, work in batches where
2673  * object pointers are moved to a on-stack array under the lock. To bound the
2674  * stack usage, limit each batch to PCS_BATCH_MAX.
2675  *
2676  * returns true if at least partially flushed
2677  */
2678 static bool sheaf_flush_main(struct kmem_cache *s)
2679 {
2680 	struct slub_percpu_sheaves *pcs;
2681 	unsigned int batch, remaining;
2682 	void *objects[PCS_BATCH_MAX];
2683 	struct slab_sheaf *sheaf;
2684 	bool ret = false;
2685 
2686 next_batch:
2687 	if (!local_trylock(&s->cpu_sheaves->lock))
2688 		return ret;
2689 
2690 	pcs = this_cpu_ptr(s->cpu_sheaves);
2691 	sheaf = pcs->main;
2692 
2693 	batch = min(PCS_BATCH_MAX, sheaf->size);
2694 
2695 	sheaf->size -= batch;
2696 	memcpy(objects, sheaf->objects + sheaf->size, batch * sizeof(void *));
2697 
2698 	remaining = sheaf->size;
2699 
2700 	local_unlock(&s->cpu_sheaves->lock);
2701 
2702 	__kmem_cache_free_bulk(s, batch, &objects[0]);
2703 
2704 	stat_add(s, SHEAF_FLUSH, batch);
2705 
2706 	ret = true;
2707 
2708 	if (remaining)
2709 		goto next_batch;
2710 
2711 	return ret;
2712 }
2713 
2714 /*
2715  * Free all objects from a sheaf that's unused, i.e. not linked to any
2716  * cpu_sheaves, so we need no locking and batching. The locking is also not
2717  * necessary when flushing cpu's sheaves (both spare and main) during cpu
2718  * hotremove as the cpu is not executing anymore.
2719  */
2720 static void sheaf_flush_unused(struct kmem_cache *s, struct slab_sheaf *sheaf)
2721 {
2722 	if (!sheaf->size)
2723 		return;
2724 
2725 	stat_add(s, SHEAF_FLUSH, sheaf->size);
2726 
2727 	__kmem_cache_free_bulk(s, sheaf->size, &sheaf->objects[0]);
2728 
2729 	sheaf->size = 0;
2730 }
2731 
2732 static void __rcu_free_sheaf_prepare(struct kmem_cache *s,
2733 				     struct slab_sheaf *sheaf)
2734 {
2735 	bool init = slab_want_init_on_free(s);
2736 	void **p = &sheaf->objects[0];
2737 	unsigned int i = 0;
2738 
2739 	while (i < sheaf->size) {
2740 		struct slab *slab = virt_to_slab(p[i]);
2741 
2742 		memcg_slab_free_hook(s, slab, p + i, 1);
2743 		alloc_tagging_slab_free_hook(s, slab, p + i, 1);
2744 
2745 		if (unlikely(!slab_free_hook(s, p[i], init, true))) {
2746 			p[i] = p[--sheaf->size];
2747 			continue;
2748 		}
2749 
2750 		i++;
2751 	}
2752 }
2753 
2754 static void rcu_free_sheaf_nobarn(struct rcu_head *head)
2755 {
2756 	struct slab_sheaf *sheaf;
2757 	struct kmem_cache *s;
2758 
2759 	sheaf = container_of(head, struct slab_sheaf, rcu_head);
2760 	s = sheaf->cache;
2761 
2762 	__rcu_free_sheaf_prepare(s, sheaf);
2763 
2764 	sheaf_flush_unused(s, sheaf);
2765 
2766 	free_empty_sheaf(s, sheaf);
2767 }
2768 
2769 /*
2770  * Caller needs to make sure migration is disabled in order to fully flush
2771  * single cpu's sheaves
2772  *
2773  * must not be called from an irq
2774  *
2775  * flushing operations are rare so let's keep it simple and flush to slabs
2776  * directly, skipping the barn
2777  */
2778 static void pcs_flush_all(struct kmem_cache *s)
2779 {
2780 	struct slub_percpu_sheaves *pcs;
2781 	struct slab_sheaf *spare, *rcu_free;
2782 
2783 	local_lock(&s->cpu_sheaves->lock);
2784 	pcs = this_cpu_ptr(s->cpu_sheaves);
2785 
2786 	spare = pcs->spare;
2787 	pcs->spare = NULL;
2788 
2789 	rcu_free = pcs->rcu_free;
2790 	pcs->rcu_free = NULL;
2791 
2792 	local_unlock(&s->cpu_sheaves->lock);
2793 
2794 	if (spare) {
2795 		sheaf_flush_unused(s, spare);
2796 		free_empty_sheaf(s, spare);
2797 	}
2798 
2799 	if (rcu_free)
2800 		call_rcu(&rcu_free->rcu_head, rcu_free_sheaf_nobarn);
2801 
2802 	sheaf_flush_main(s);
2803 }
2804 
2805 static void __pcs_flush_all_cpu(struct kmem_cache *s, unsigned int cpu)
2806 {
2807 	struct slub_percpu_sheaves *pcs;
2808 
2809 	pcs = per_cpu_ptr(s->cpu_sheaves, cpu);
2810 
2811 	/* The cpu is not executing anymore so we don't need pcs->lock */
2812 	sheaf_flush_unused(s, pcs->main);
2813 	if (pcs->spare) {
2814 		sheaf_flush_unused(s, pcs->spare);
2815 		free_empty_sheaf(s, pcs->spare);
2816 		pcs->spare = NULL;
2817 	}
2818 
2819 	if (pcs->rcu_free) {
2820 		call_rcu(&pcs->rcu_free->rcu_head, rcu_free_sheaf_nobarn);
2821 		pcs->rcu_free = NULL;
2822 	}
2823 }
2824 
2825 static void pcs_destroy(struct kmem_cache *s)
2826 {
2827 	int cpu;
2828 
2829 	for_each_possible_cpu(cpu) {
2830 		struct slub_percpu_sheaves *pcs;
2831 
2832 		pcs = per_cpu_ptr(s->cpu_sheaves, cpu);
2833 
2834 		/* can happen when unwinding failed create */
2835 		if (!pcs->main)
2836 			continue;
2837 
2838 		/*
2839 		 * We have already passed __kmem_cache_shutdown() so everything
2840 		 * was flushed and there should be no objects allocated from
2841 		 * slabs, otherwise kmem_cache_destroy() would have aborted.
2842 		 * Therefore something would have to be really wrong if the
2843 		 * warnings here trigger, and we should rather leave objects and
2844 		 * sheaves to leak in that case.
2845 		 */
2846 
2847 		WARN_ON(pcs->spare);
2848 		WARN_ON(pcs->rcu_free);
2849 
2850 		if (!WARN_ON(pcs->main->size)) {
2851 			free_empty_sheaf(s, pcs->main);
2852 			pcs->main = NULL;
2853 		}
2854 	}
2855 
2856 	free_percpu(s->cpu_sheaves);
2857 	s->cpu_sheaves = NULL;
2858 }
2859 
2860 static struct slab_sheaf *barn_get_empty_sheaf(struct node_barn *barn)
2861 {
2862 	struct slab_sheaf *empty = NULL;
2863 	unsigned long flags;
2864 
2865 	if (!data_race(barn->nr_empty))
2866 		return NULL;
2867 
2868 	spin_lock_irqsave(&barn->lock, flags);
2869 
2870 	if (likely(barn->nr_empty)) {
2871 		empty = list_first_entry(&barn->sheaves_empty,
2872 					 struct slab_sheaf, barn_list);
2873 		list_del(&empty->barn_list);
2874 		barn->nr_empty--;
2875 	}
2876 
2877 	spin_unlock_irqrestore(&barn->lock, flags);
2878 
2879 	return empty;
2880 }
2881 
2882 /*
2883  * The following two functions are used mainly in cases where we have to undo an
2884  * intended action due to a race or cpu migration. Thus they do not check the
2885  * empty or full sheaf limits for simplicity.
2886  */
2887 
2888 static void barn_put_empty_sheaf(struct node_barn *barn, struct slab_sheaf *sheaf)
2889 {
2890 	unsigned long flags;
2891 
2892 	spin_lock_irqsave(&barn->lock, flags);
2893 
2894 	list_add(&sheaf->barn_list, &barn->sheaves_empty);
2895 	barn->nr_empty++;
2896 
2897 	spin_unlock_irqrestore(&barn->lock, flags);
2898 }
2899 
2900 static void barn_put_full_sheaf(struct node_barn *barn, struct slab_sheaf *sheaf)
2901 {
2902 	unsigned long flags;
2903 
2904 	spin_lock_irqsave(&barn->lock, flags);
2905 
2906 	list_add(&sheaf->barn_list, &barn->sheaves_full);
2907 	barn->nr_full++;
2908 
2909 	spin_unlock_irqrestore(&barn->lock, flags);
2910 }
2911 
2912 static struct slab_sheaf *barn_get_full_or_empty_sheaf(struct node_barn *barn)
2913 {
2914 	struct slab_sheaf *sheaf = NULL;
2915 	unsigned long flags;
2916 
2917 	if (!data_race(barn->nr_full) && !data_race(barn->nr_empty))
2918 		return NULL;
2919 
2920 	spin_lock_irqsave(&barn->lock, flags);
2921 
2922 	if (barn->nr_full) {
2923 		sheaf = list_first_entry(&barn->sheaves_full, struct slab_sheaf,
2924 					barn_list);
2925 		list_del(&sheaf->barn_list);
2926 		barn->nr_full--;
2927 	} else if (barn->nr_empty) {
2928 		sheaf = list_first_entry(&barn->sheaves_empty,
2929 					 struct slab_sheaf, barn_list);
2930 		list_del(&sheaf->barn_list);
2931 		barn->nr_empty--;
2932 	}
2933 
2934 	spin_unlock_irqrestore(&barn->lock, flags);
2935 
2936 	return sheaf;
2937 }
2938 
2939 /*
2940  * If a full sheaf is available, return it and put the supplied empty one to
2941  * barn. We ignore the limit on empty sheaves as the number of sheaves doesn't
2942  * change.
2943  */
2944 static struct slab_sheaf *
2945 barn_replace_empty_sheaf(struct node_barn *barn, struct slab_sheaf *empty)
2946 {
2947 	struct slab_sheaf *full = NULL;
2948 	unsigned long flags;
2949 
2950 	if (!data_race(barn->nr_full))
2951 		return NULL;
2952 
2953 	spin_lock_irqsave(&barn->lock, flags);
2954 
2955 	if (likely(barn->nr_full)) {
2956 		full = list_first_entry(&barn->sheaves_full, struct slab_sheaf,
2957 					barn_list);
2958 		list_del(&full->barn_list);
2959 		list_add(&empty->barn_list, &barn->sheaves_empty);
2960 		barn->nr_full--;
2961 		barn->nr_empty++;
2962 	}
2963 
2964 	spin_unlock_irqrestore(&barn->lock, flags);
2965 
2966 	return full;
2967 }
2968 
2969 /*
2970  * If an empty sheaf is available, return it and put the supplied full one to
2971  * barn. But if there are too many full sheaves, reject this with -E2BIG.
2972  */
2973 static struct slab_sheaf *
2974 barn_replace_full_sheaf(struct node_barn *barn, struct slab_sheaf *full)
2975 {
2976 	struct slab_sheaf *empty;
2977 	unsigned long flags;
2978 
2979 	/* we don't repeat this check under barn->lock as it's not critical */
2980 	if (data_race(barn->nr_full) >= MAX_FULL_SHEAVES)
2981 		return ERR_PTR(-E2BIG);
2982 	if (!data_race(barn->nr_empty))
2983 		return ERR_PTR(-ENOMEM);
2984 
2985 	spin_lock_irqsave(&barn->lock, flags);
2986 
2987 	if (likely(barn->nr_empty)) {
2988 		empty = list_first_entry(&barn->sheaves_empty, struct slab_sheaf,
2989 					 barn_list);
2990 		list_del(&empty->barn_list);
2991 		list_add(&full->barn_list, &barn->sheaves_full);
2992 		barn->nr_empty--;
2993 		barn->nr_full++;
2994 	} else {
2995 		empty = ERR_PTR(-ENOMEM);
2996 	}
2997 
2998 	spin_unlock_irqrestore(&barn->lock, flags);
2999 
3000 	return empty;
3001 }
3002 
3003 static void barn_init(struct node_barn *barn)
3004 {
3005 	spin_lock_init(&barn->lock);
3006 	INIT_LIST_HEAD(&barn->sheaves_full);
3007 	INIT_LIST_HEAD(&barn->sheaves_empty);
3008 	barn->nr_full = 0;
3009 	barn->nr_empty = 0;
3010 }
3011 
3012 static void barn_shrink(struct kmem_cache *s, struct node_barn *barn)
3013 {
3014 	struct list_head empty_list;
3015 	struct list_head full_list;
3016 	struct slab_sheaf *sheaf, *sheaf2;
3017 	unsigned long flags;
3018 
3019 	INIT_LIST_HEAD(&empty_list);
3020 	INIT_LIST_HEAD(&full_list);
3021 
3022 	spin_lock_irqsave(&barn->lock, flags);
3023 
3024 	list_splice_init(&barn->sheaves_full, &full_list);
3025 	barn->nr_full = 0;
3026 	list_splice_init(&barn->sheaves_empty, &empty_list);
3027 	barn->nr_empty = 0;
3028 
3029 	spin_unlock_irqrestore(&barn->lock, flags);
3030 
3031 	list_for_each_entry_safe(sheaf, sheaf2, &full_list, barn_list) {
3032 		sheaf_flush_unused(s, sheaf);
3033 		free_empty_sheaf(s, sheaf);
3034 	}
3035 
3036 	list_for_each_entry_safe(sheaf, sheaf2, &empty_list, barn_list)
3037 		free_empty_sheaf(s, sheaf);
3038 }
3039 
3040 /*
3041  * Slab allocation and freeing
3042  */
3043 static inline struct slab *alloc_slab_page(gfp_t flags, int node,
3044 					   struct kmem_cache_order_objects oo,
3045 					   bool allow_spin)
3046 {
3047 	struct folio *folio;
3048 	struct slab *slab;
3049 	unsigned int order = oo_order(oo);
3050 
3051 	if (unlikely(!allow_spin))
3052 		folio = (struct folio *)alloc_frozen_pages_nolock(0/* __GFP_COMP is implied */,
3053 								  node, order);
3054 	else if (node == NUMA_NO_NODE)
3055 		folio = (struct folio *)alloc_frozen_pages(flags, order);
3056 	else
3057 		folio = (struct folio *)__alloc_frozen_pages(flags, order, node, NULL);
3058 
3059 	if (!folio)
3060 		return NULL;
3061 
3062 	slab = folio_slab(folio);
3063 	__folio_set_slab(folio);
3064 	if (folio_is_pfmemalloc(folio))
3065 		slab_set_pfmemalloc(slab);
3066 
3067 	return slab;
3068 }
3069 
3070 #ifdef CONFIG_SLAB_FREELIST_RANDOM
3071 /* Pre-initialize the random sequence cache */
3072 static int init_cache_random_seq(struct kmem_cache *s)
3073 {
3074 	unsigned int count = oo_objects(s->oo);
3075 	int err;
3076 
3077 	/* Bailout if already initialised */
3078 	if (s->random_seq)
3079 		return 0;
3080 
3081 	err = cache_random_seq_create(s, count, GFP_KERNEL);
3082 	if (err) {
3083 		pr_err("SLUB: Unable to initialize free list for %s\n",
3084 			s->name);
3085 		return err;
3086 	}
3087 
3088 	/* Transform to an offset on the set of pages */
3089 	if (s->random_seq) {
3090 		unsigned int i;
3091 
3092 		for (i = 0; i < count; i++)
3093 			s->random_seq[i] *= s->size;
3094 	}
3095 	return 0;
3096 }
3097 
3098 /* Initialize each random sequence freelist per cache */
3099 static void __init init_freelist_randomization(void)
3100 {
3101 	struct kmem_cache *s;
3102 
3103 	mutex_lock(&slab_mutex);
3104 
3105 	list_for_each_entry(s, &slab_caches, list)
3106 		init_cache_random_seq(s);
3107 
3108 	mutex_unlock(&slab_mutex);
3109 }
3110 
3111 /* Get the next entry on the pre-computed freelist randomized */
3112 static void *next_freelist_entry(struct kmem_cache *s,
3113 				unsigned long *pos, void *start,
3114 				unsigned long page_limit,
3115 				unsigned long freelist_count)
3116 {
3117 	unsigned int idx;
3118 
3119 	/*
3120 	 * If the target page allocation failed, the number of objects on the
3121 	 * page might be smaller than the usual size defined by the cache.
3122 	 */
3123 	do {
3124 		idx = s->random_seq[*pos];
3125 		*pos += 1;
3126 		if (*pos >= freelist_count)
3127 			*pos = 0;
3128 	} while (unlikely(idx >= page_limit));
3129 
3130 	return (char *)start + idx;
3131 }
3132 
3133 /* Shuffle the single linked freelist based on a random pre-computed sequence */
3134 static bool shuffle_freelist(struct kmem_cache *s, struct slab *slab)
3135 {
3136 	void *start;
3137 	void *cur;
3138 	void *next;
3139 	unsigned long idx, pos, page_limit, freelist_count;
3140 
3141 	if (slab->objects < 2 || !s->random_seq)
3142 		return false;
3143 
3144 	freelist_count = oo_objects(s->oo);
3145 	pos = get_random_u32_below(freelist_count);
3146 
3147 	page_limit = slab->objects * s->size;
3148 	start = fixup_red_left(s, slab_address(slab));
3149 
3150 	/* First entry is used as the base of the freelist */
3151 	cur = next_freelist_entry(s, &pos, start, page_limit, freelist_count);
3152 	cur = setup_object(s, cur);
3153 	slab->freelist = cur;
3154 
3155 	for (idx = 1; idx < slab->objects; idx++) {
3156 		next = next_freelist_entry(s, &pos, start, page_limit,
3157 			freelist_count);
3158 		next = setup_object(s, next);
3159 		set_freepointer(s, cur, next);
3160 		cur = next;
3161 	}
3162 	set_freepointer(s, cur, NULL);
3163 
3164 	return true;
3165 }
3166 #else
3167 static inline int init_cache_random_seq(struct kmem_cache *s)
3168 {
3169 	return 0;
3170 }
3171 static inline void init_freelist_randomization(void) { }
3172 static inline bool shuffle_freelist(struct kmem_cache *s, struct slab *slab)
3173 {
3174 	return false;
3175 }
3176 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
3177 
3178 static __always_inline void account_slab(struct slab *slab, int order,
3179 					 struct kmem_cache *s, gfp_t gfp)
3180 {
3181 	if (memcg_kmem_online() && (s->flags & SLAB_ACCOUNT))
3182 		alloc_slab_obj_exts(slab, s, gfp, true);
3183 
3184 	mod_node_page_state(slab_pgdat(slab), cache_vmstat_idx(s),
3185 			    PAGE_SIZE << order);
3186 }
3187 
3188 static __always_inline void unaccount_slab(struct slab *slab, int order,
3189 					   struct kmem_cache *s)
3190 {
3191 	/*
3192 	 * The slab object extensions should now be freed regardless of
3193 	 * whether mem_alloc_profiling_enabled() or not because profiling
3194 	 * might have been disabled after slab->obj_exts got allocated.
3195 	 */
3196 	free_slab_obj_exts(slab);
3197 
3198 	mod_node_page_state(slab_pgdat(slab), cache_vmstat_idx(s),
3199 			    -(PAGE_SIZE << order));
3200 }
3201 
3202 static struct slab *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
3203 {
3204 	bool allow_spin = gfpflags_allow_spinning(flags);
3205 	struct slab *slab;
3206 	struct kmem_cache_order_objects oo = s->oo;
3207 	gfp_t alloc_gfp;
3208 	void *start, *p, *next;
3209 	int idx;
3210 	bool shuffle;
3211 
3212 	flags &= gfp_allowed_mask;
3213 
3214 	flags |= s->allocflags;
3215 
3216 	/*
3217 	 * Let the initial higher-order allocation fail under memory pressure
3218 	 * so we fall-back to the minimum order allocation.
3219 	 */
3220 	alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
3221 	if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
3222 		alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~__GFP_RECLAIM;
3223 
3224 	/*
3225 	 * __GFP_RECLAIM could be cleared on the first allocation attempt,
3226 	 * so pass allow_spin flag directly.
3227 	 */
3228 	slab = alloc_slab_page(alloc_gfp, node, oo, allow_spin);
3229 	if (unlikely(!slab)) {
3230 		oo = s->min;
3231 		alloc_gfp = flags;
3232 		/*
3233 		 * Allocation may have failed due to fragmentation.
3234 		 * Try a lower order alloc if possible
3235 		 */
3236 		slab = alloc_slab_page(alloc_gfp, node, oo, allow_spin);
3237 		if (unlikely(!slab))
3238 			return NULL;
3239 		stat(s, ORDER_FALLBACK);
3240 	}
3241 
3242 	slab->objects = oo_objects(oo);
3243 	slab->inuse = 0;
3244 	slab->frozen = 0;
3245 	init_slab_obj_exts(slab);
3246 
3247 	account_slab(slab, oo_order(oo), s, flags);
3248 
3249 	slab->slab_cache = s;
3250 
3251 	kasan_poison_slab(slab);
3252 
3253 	start = slab_address(slab);
3254 
3255 	setup_slab_debug(s, slab, start);
3256 
3257 	shuffle = shuffle_freelist(s, slab);
3258 
3259 	if (!shuffle) {
3260 		start = fixup_red_left(s, start);
3261 		start = setup_object(s, start);
3262 		slab->freelist = start;
3263 		for (idx = 0, p = start; idx < slab->objects - 1; idx++) {
3264 			next = p + s->size;
3265 			next = setup_object(s, next);
3266 			set_freepointer(s, p, next);
3267 			p = next;
3268 		}
3269 		set_freepointer(s, p, NULL);
3270 	}
3271 
3272 	return slab;
3273 }
3274 
3275 static struct slab *new_slab(struct kmem_cache *s, gfp_t flags, int node)
3276 {
3277 	if (unlikely(flags & GFP_SLAB_BUG_MASK))
3278 		flags = kmalloc_fix_flags(flags);
3279 
3280 	WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO));
3281 
3282 	return allocate_slab(s,
3283 		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
3284 }
3285 
3286 static void __free_slab(struct kmem_cache *s, struct slab *slab)
3287 {
3288 	struct folio *folio = slab_folio(slab);
3289 	int order = folio_order(folio);
3290 	int pages = 1 << order;
3291 
3292 	__slab_clear_pfmemalloc(slab);
3293 	folio->mapping = NULL;
3294 	__folio_clear_slab(folio);
3295 	mm_account_reclaimed_pages(pages);
3296 	unaccount_slab(slab, order, s);
3297 	free_frozen_pages(&folio->page, order);
3298 }
3299 
3300 static void rcu_free_slab(struct rcu_head *h)
3301 {
3302 	struct slab *slab = container_of(h, struct slab, rcu_head);
3303 
3304 	__free_slab(slab->slab_cache, slab);
3305 }
3306 
3307 static void free_slab(struct kmem_cache *s, struct slab *slab)
3308 {
3309 	if (kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS)) {
3310 		void *p;
3311 
3312 		slab_pad_check(s, slab);
3313 		for_each_object(p, s, slab_address(slab), slab->objects)
3314 			check_object(s, slab, p, SLUB_RED_INACTIVE);
3315 	}
3316 
3317 	if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU))
3318 		call_rcu(&slab->rcu_head, rcu_free_slab);
3319 	else
3320 		__free_slab(s, slab);
3321 }
3322 
3323 static void discard_slab(struct kmem_cache *s, struct slab *slab)
3324 {
3325 	dec_slabs_node(s, slab_nid(slab), slab->objects);
3326 	free_slab(s, slab);
3327 }
3328 
3329 static inline bool slab_test_node_partial(const struct slab *slab)
3330 {
3331 	return test_bit(SL_partial, &slab->flags.f);
3332 }
3333 
3334 static inline void slab_set_node_partial(struct slab *slab)
3335 {
3336 	set_bit(SL_partial, &slab->flags.f);
3337 }
3338 
3339 static inline void slab_clear_node_partial(struct slab *slab)
3340 {
3341 	clear_bit(SL_partial, &slab->flags.f);
3342 }
3343 
3344 /*
3345  * Management of partially allocated slabs.
3346  */
3347 static inline void
3348 __add_partial(struct kmem_cache_node *n, struct slab *slab, int tail)
3349 {
3350 	n->nr_partial++;
3351 	if (tail == DEACTIVATE_TO_TAIL)
3352 		list_add_tail(&slab->slab_list, &n->partial);
3353 	else
3354 		list_add(&slab->slab_list, &n->partial);
3355 	slab_set_node_partial(slab);
3356 }
3357 
3358 static inline void add_partial(struct kmem_cache_node *n,
3359 				struct slab *slab, int tail)
3360 {
3361 	lockdep_assert_held(&n->list_lock);
3362 	__add_partial(n, slab, tail);
3363 }
3364 
3365 static inline void remove_partial(struct kmem_cache_node *n,
3366 					struct slab *slab)
3367 {
3368 	lockdep_assert_held(&n->list_lock);
3369 	list_del(&slab->slab_list);
3370 	slab_clear_node_partial(slab);
3371 	n->nr_partial--;
3372 }
3373 
3374 /*
3375  * Called only for kmem_cache_debug() caches instead of remove_partial(), with a
3376  * slab from the n->partial list. Remove only a single object from the slab, do
3377  * the alloc_debug_processing() checks and leave the slab on the list, or move
3378  * it to full list if it was the last free object.
3379  */
3380 static void *alloc_single_from_partial(struct kmem_cache *s,
3381 		struct kmem_cache_node *n, struct slab *slab, int orig_size)
3382 {
3383 	void *object;
3384 
3385 	lockdep_assert_held(&n->list_lock);
3386 
3387 #ifdef CONFIG_SLUB_DEBUG
3388 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
3389 		if (!validate_slab_ptr(slab)) {
3390 			slab_err(s, slab, "Not a valid slab page");
3391 			return NULL;
3392 		}
3393 	}
3394 #endif
3395 
3396 	object = slab->freelist;
3397 	slab->freelist = get_freepointer(s, object);
3398 	slab->inuse++;
3399 
3400 	if (!alloc_debug_processing(s, slab, object, orig_size)) {
3401 		remove_partial(n, slab);
3402 		return NULL;
3403 	}
3404 
3405 	if (slab->inuse == slab->objects) {
3406 		remove_partial(n, slab);
3407 		add_full(s, n, slab);
3408 	}
3409 
3410 	return object;
3411 }
3412 
3413 static void defer_deactivate_slab(struct slab *slab, void *flush_freelist);
3414 
3415 /*
3416  * Called only for kmem_cache_debug() caches to allocate from a freshly
3417  * allocated slab. Allocate a single object instead of whole freelist
3418  * and put the slab to the partial (or full) list.
3419  */
3420 static void *alloc_single_from_new_slab(struct kmem_cache *s, struct slab *slab,
3421 					int orig_size, gfp_t gfpflags)
3422 {
3423 	bool allow_spin = gfpflags_allow_spinning(gfpflags);
3424 	int nid = slab_nid(slab);
3425 	struct kmem_cache_node *n = get_node(s, nid);
3426 	unsigned long flags;
3427 	void *object;
3428 
3429 	if (!allow_spin && !spin_trylock_irqsave(&n->list_lock, flags)) {
3430 		/* Unlucky, discard newly allocated slab */
3431 		defer_deactivate_slab(slab, NULL);
3432 		return NULL;
3433 	}
3434 
3435 	object = slab->freelist;
3436 	slab->freelist = get_freepointer(s, object);
3437 	slab->inuse = 1;
3438 
3439 	if (!alloc_debug_processing(s, slab, object, orig_size)) {
3440 		/*
3441 		 * It's not really expected that this would fail on a
3442 		 * freshly allocated slab, but a concurrent memory
3443 		 * corruption in theory could cause that.
3444 		 * Leak memory of allocated slab.
3445 		 */
3446 		if (!allow_spin)
3447 			spin_unlock_irqrestore(&n->list_lock, flags);
3448 		return NULL;
3449 	}
3450 
3451 	if (allow_spin)
3452 		spin_lock_irqsave(&n->list_lock, flags);
3453 
3454 	if (slab->inuse == slab->objects)
3455 		add_full(s, n, slab);
3456 	else
3457 		add_partial(n, slab, DEACTIVATE_TO_HEAD);
3458 
3459 	inc_slabs_node(s, nid, slab->objects);
3460 	spin_unlock_irqrestore(&n->list_lock, flags);
3461 
3462 	return object;
3463 }
3464 
3465 #ifdef CONFIG_SLUB_CPU_PARTIAL
3466 static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain);
3467 #else
3468 static inline void put_cpu_partial(struct kmem_cache *s, struct slab *slab,
3469 				   int drain) { }
3470 #endif
3471 static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags);
3472 
3473 /*
3474  * Try to allocate a partial slab from a specific node.
3475  */
3476 static struct slab *get_partial_node(struct kmem_cache *s,
3477 				     struct kmem_cache_node *n,
3478 				     struct partial_context *pc)
3479 {
3480 	struct slab *slab, *slab2, *partial = NULL;
3481 	unsigned long flags;
3482 	unsigned int partial_slabs = 0;
3483 
3484 	/*
3485 	 * Racy check. If we mistakenly see no partial slabs then we
3486 	 * just allocate an empty slab. If we mistakenly try to get a
3487 	 * partial slab and there is none available then get_partial()
3488 	 * will return NULL.
3489 	 */
3490 	if (!n || !n->nr_partial)
3491 		return NULL;
3492 
3493 	if (gfpflags_allow_spinning(pc->flags))
3494 		spin_lock_irqsave(&n->list_lock, flags);
3495 	else if (!spin_trylock_irqsave(&n->list_lock, flags))
3496 		return NULL;
3497 	list_for_each_entry_safe(slab, slab2, &n->partial, slab_list) {
3498 		if (!pfmemalloc_match(slab, pc->flags))
3499 			continue;
3500 
3501 		if (IS_ENABLED(CONFIG_SLUB_TINY) || kmem_cache_debug(s)) {
3502 			void *object = alloc_single_from_partial(s, n, slab,
3503 							pc->orig_size);
3504 			if (object) {
3505 				partial = slab;
3506 				pc->object = object;
3507 				break;
3508 			}
3509 			continue;
3510 		}
3511 
3512 		remove_partial(n, slab);
3513 
3514 		if (!partial) {
3515 			partial = slab;
3516 			stat(s, ALLOC_FROM_PARTIAL);
3517 
3518 			if ((slub_get_cpu_partial(s) == 0)) {
3519 				break;
3520 			}
3521 		} else {
3522 			put_cpu_partial(s, slab, 0);
3523 			stat(s, CPU_PARTIAL_NODE);
3524 
3525 			if (++partial_slabs > slub_get_cpu_partial(s) / 2) {
3526 				break;
3527 			}
3528 		}
3529 	}
3530 	spin_unlock_irqrestore(&n->list_lock, flags);
3531 	return partial;
3532 }
3533 
3534 /*
3535  * Get a slab from somewhere. Search in increasing NUMA distances.
3536  */
3537 static struct slab *get_any_partial(struct kmem_cache *s,
3538 				    struct partial_context *pc)
3539 {
3540 #ifdef CONFIG_NUMA
3541 	struct zonelist *zonelist;
3542 	struct zoneref *z;
3543 	struct zone *zone;
3544 	enum zone_type highest_zoneidx = gfp_zone(pc->flags);
3545 	struct slab *slab;
3546 	unsigned int cpuset_mems_cookie;
3547 
3548 	/*
3549 	 * The defrag ratio allows a configuration of the tradeoffs between
3550 	 * inter node defragmentation and node local allocations. A lower
3551 	 * defrag_ratio increases the tendency to do local allocations
3552 	 * instead of attempting to obtain partial slabs from other nodes.
3553 	 *
3554 	 * If the defrag_ratio is set to 0 then kmalloc() always
3555 	 * returns node local objects. If the ratio is higher then kmalloc()
3556 	 * may return off node objects because partial slabs are obtained
3557 	 * from other nodes and filled up.
3558 	 *
3559 	 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
3560 	 * (which makes defrag_ratio = 1000) then every (well almost)
3561 	 * allocation will first attempt to defrag slab caches on other nodes.
3562 	 * This means scanning over all nodes to look for partial slabs which
3563 	 * may be expensive if we do it every time we are trying to find a slab
3564 	 * with available objects.
3565 	 */
3566 	if (!s->remote_node_defrag_ratio ||
3567 			get_cycles() % 1024 > s->remote_node_defrag_ratio)
3568 		return NULL;
3569 
3570 	do {
3571 		cpuset_mems_cookie = read_mems_allowed_begin();
3572 		zonelist = node_zonelist(mempolicy_slab_node(), pc->flags);
3573 		for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) {
3574 			struct kmem_cache_node *n;
3575 
3576 			n = get_node(s, zone_to_nid(zone));
3577 
3578 			if (n && cpuset_zone_allowed(zone, pc->flags) &&
3579 					n->nr_partial > s->min_partial) {
3580 				slab = get_partial_node(s, n, pc);
3581 				if (slab) {
3582 					/*
3583 					 * Don't check read_mems_allowed_retry()
3584 					 * here - if mems_allowed was updated in
3585 					 * parallel, that was a harmless race
3586 					 * between allocation and the cpuset
3587 					 * update
3588 					 */
3589 					return slab;
3590 				}
3591 			}
3592 		}
3593 	} while (read_mems_allowed_retry(cpuset_mems_cookie));
3594 #endif	/* CONFIG_NUMA */
3595 	return NULL;
3596 }
3597 
3598 /*
3599  * Get a partial slab, lock it and return it.
3600  */
3601 static struct slab *get_partial(struct kmem_cache *s, int node,
3602 				struct partial_context *pc)
3603 {
3604 	struct slab *slab;
3605 	int searchnode = node;
3606 
3607 	if (node == NUMA_NO_NODE)
3608 		searchnode = numa_mem_id();
3609 
3610 	slab = get_partial_node(s, get_node(s, searchnode), pc);
3611 	if (slab || (node != NUMA_NO_NODE && (pc->flags & __GFP_THISNODE)))
3612 		return slab;
3613 
3614 	return get_any_partial(s, pc);
3615 }
3616 
3617 #ifndef CONFIG_SLUB_TINY
3618 
3619 #ifdef CONFIG_PREEMPTION
3620 /*
3621  * Calculate the next globally unique transaction for disambiguation
3622  * during cmpxchg. The transactions start with the cpu number and are then
3623  * incremented by CONFIG_NR_CPUS.
3624  */
3625 #define TID_STEP  roundup_pow_of_two(CONFIG_NR_CPUS)
3626 #else
3627 /*
3628  * No preemption supported therefore also no need to check for
3629  * different cpus.
3630  */
3631 #define TID_STEP 1
3632 #endif /* CONFIG_PREEMPTION */
3633 
3634 static inline unsigned long next_tid(unsigned long tid)
3635 {
3636 	return tid + TID_STEP;
3637 }
3638 
3639 #ifdef SLUB_DEBUG_CMPXCHG
3640 static inline unsigned int tid_to_cpu(unsigned long tid)
3641 {
3642 	return tid % TID_STEP;
3643 }
3644 
3645 static inline unsigned long tid_to_event(unsigned long tid)
3646 {
3647 	return tid / TID_STEP;
3648 }
3649 #endif
3650 
3651 static inline unsigned int init_tid(int cpu)
3652 {
3653 	return cpu;
3654 }
3655 
3656 static inline void note_cmpxchg_failure(const char *n,
3657 		const struct kmem_cache *s, unsigned long tid)
3658 {
3659 #ifdef SLUB_DEBUG_CMPXCHG
3660 	unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
3661 
3662 	pr_info("%s %s: cmpxchg redo ", n, s->name);
3663 
3664 	if (IS_ENABLED(CONFIG_PREEMPTION) &&
3665 	    tid_to_cpu(tid) != tid_to_cpu(actual_tid)) {
3666 		pr_warn("due to cpu change %d -> %d\n",
3667 			tid_to_cpu(tid), tid_to_cpu(actual_tid));
3668 	} else if (tid_to_event(tid) != tid_to_event(actual_tid)) {
3669 		pr_warn("due to cpu running other code. Event %ld->%ld\n",
3670 			tid_to_event(tid), tid_to_event(actual_tid));
3671 	} else {
3672 		pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
3673 			actual_tid, tid, next_tid(tid));
3674 	}
3675 #endif
3676 	stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
3677 }
3678 
3679 static void init_kmem_cache_cpus(struct kmem_cache *s)
3680 {
3681 #ifdef CONFIG_PREEMPT_RT
3682 	/*
3683 	 * Register lockdep key for non-boot kmem caches to avoid
3684 	 * WARN_ON_ONCE(static_obj(key))) in lockdep_register_key()
3685 	 */
3686 	bool finegrain_lockdep = !init_section_contains(s, 1);
3687 #else
3688 	/*
3689 	 * Don't bother with different lockdep classes for each
3690 	 * kmem_cache, since we only use local_trylock_irqsave().
3691 	 */
3692 	bool finegrain_lockdep = false;
3693 #endif
3694 	int cpu;
3695 	struct kmem_cache_cpu *c;
3696 
3697 	if (finegrain_lockdep)
3698 		lockdep_register_key(&s->lock_key);
3699 	for_each_possible_cpu(cpu) {
3700 		c = per_cpu_ptr(s->cpu_slab, cpu);
3701 		local_trylock_init(&c->lock);
3702 		if (finegrain_lockdep)
3703 			lockdep_set_class(&c->lock, &s->lock_key);
3704 		c->tid = init_tid(cpu);
3705 	}
3706 }
3707 
3708 /*
3709  * Finishes removing the cpu slab. Merges cpu's freelist with slab's freelist,
3710  * unfreezes the slabs and puts it on the proper list.
3711  * Assumes the slab has been already safely taken away from kmem_cache_cpu
3712  * by the caller.
3713  */
3714 static void deactivate_slab(struct kmem_cache *s, struct slab *slab,
3715 			    void *freelist)
3716 {
3717 	struct kmem_cache_node *n = get_node(s, slab_nid(slab));
3718 	int free_delta = 0;
3719 	void *nextfree, *freelist_iter, *freelist_tail;
3720 	int tail = DEACTIVATE_TO_HEAD;
3721 	unsigned long flags = 0;
3722 	struct slab new;
3723 	struct slab old;
3724 
3725 	if (READ_ONCE(slab->freelist)) {
3726 		stat(s, DEACTIVATE_REMOTE_FREES);
3727 		tail = DEACTIVATE_TO_TAIL;
3728 	}
3729 
3730 	/*
3731 	 * Stage one: Count the objects on cpu's freelist as free_delta and
3732 	 * remember the last object in freelist_tail for later splicing.
3733 	 */
3734 	freelist_tail = NULL;
3735 	freelist_iter = freelist;
3736 	while (freelist_iter) {
3737 		nextfree = get_freepointer(s, freelist_iter);
3738 
3739 		/*
3740 		 * If 'nextfree' is invalid, it is possible that the object at
3741 		 * 'freelist_iter' is already corrupted.  So isolate all objects
3742 		 * starting at 'freelist_iter' by skipping them.
3743 		 */
3744 		if (freelist_corrupted(s, slab, &freelist_iter, nextfree))
3745 			break;
3746 
3747 		freelist_tail = freelist_iter;
3748 		free_delta++;
3749 
3750 		freelist_iter = nextfree;
3751 	}
3752 
3753 	/*
3754 	 * Stage two: Unfreeze the slab while splicing the per-cpu
3755 	 * freelist to the head of slab's freelist.
3756 	 */
3757 	do {
3758 		old.freelist = READ_ONCE(slab->freelist);
3759 		old.counters = READ_ONCE(slab->counters);
3760 		VM_BUG_ON(!old.frozen);
3761 
3762 		/* Determine target state of the slab */
3763 		new.counters = old.counters;
3764 		new.frozen = 0;
3765 		if (freelist_tail) {
3766 			new.inuse -= free_delta;
3767 			set_freepointer(s, freelist_tail, old.freelist);
3768 			new.freelist = freelist;
3769 		} else {
3770 			new.freelist = old.freelist;
3771 		}
3772 	} while (!slab_update_freelist(s, slab,
3773 		old.freelist, old.counters,
3774 		new.freelist, new.counters,
3775 		"unfreezing slab"));
3776 
3777 	/*
3778 	 * Stage three: Manipulate the slab list based on the updated state.
3779 	 */
3780 	if (!new.inuse && n->nr_partial >= s->min_partial) {
3781 		stat(s, DEACTIVATE_EMPTY);
3782 		discard_slab(s, slab);
3783 		stat(s, FREE_SLAB);
3784 	} else if (new.freelist) {
3785 		spin_lock_irqsave(&n->list_lock, flags);
3786 		add_partial(n, slab, tail);
3787 		spin_unlock_irqrestore(&n->list_lock, flags);
3788 		stat(s, tail);
3789 	} else {
3790 		stat(s, DEACTIVATE_FULL);
3791 	}
3792 }
3793 
3794 /*
3795  * ___slab_alloc()'s caller is supposed to check if kmem_cache::kmem_cache_cpu::lock
3796  * can be acquired without a deadlock before invoking the function.
3797  *
3798  * Without LOCKDEP we trust the code to be correct. kmalloc_nolock() is
3799  * using local_lock_is_locked() properly before calling local_lock_cpu_slab(),
3800  * and kmalloc() is not used in an unsupported context.
3801  *
3802  * With LOCKDEP, on PREEMPT_RT lockdep does its checking in local_lock_irqsave().
3803  * On !PREEMPT_RT we use trylock to avoid false positives in NMI, but
3804  * lockdep_assert() will catch a bug in case:
3805  * #1
3806  * kmalloc() -> ___slab_alloc() -> irqsave -> NMI -> bpf -> kmalloc_nolock()
3807  * or
3808  * #2
3809  * kmalloc() -> ___slab_alloc() -> irqsave -> tracepoint/kprobe -> bpf -> kmalloc_nolock()
3810  *
3811  * On PREEMPT_RT an invocation is not possible from IRQ-off or preempt
3812  * disabled context. The lock will always be acquired and if needed it
3813  * block and sleep until the lock is available.
3814  * #1 is possible in !PREEMPT_RT only.
3815  * #2 is possible in both with a twist that irqsave is replaced with rt_spinlock:
3816  * kmalloc() -> ___slab_alloc() -> rt_spin_lock(kmem_cache_A) ->
3817  *    tracepoint/kprobe -> bpf -> kmalloc_nolock() -> rt_spin_lock(kmem_cache_B)
3818  *
3819  * local_lock_is_locked() prevents the case kmem_cache_A == kmem_cache_B
3820  */
3821 #if defined(CONFIG_PREEMPT_RT) || !defined(CONFIG_LOCKDEP)
3822 #define local_lock_cpu_slab(s, flags)	\
3823 	local_lock_irqsave(&(s)->cpu_slab->lock, flags)
3824 #else
3825 #define local_lock_cpu_slab(s, flags)					       \
3826 	do {								       \
3827 		bool __l = local_trylock_irqsave(&(s)->cpu_slab->lock, flags); \
3828 		lockdep_assert(__l);					       \
3829 	} while (0)
3830 #endif
3831 
3832 #define local_unlock_cpu_slab(s, flags)	\
3833 	local_unlock_irqrestore(&(s)->cpu_slab->lock, flags)
3834 
3835 #ifdef CONFIG_SLUB_CPU_PARTIAL
3836 static void __put_partials(struct kmem_cache *s, struct slab *partial_slab)
3837 {
3838 	struct kmem_cache_node *n = NULL, *n2 = NULL;
3839 	struct slab *slab, *slab_to_discard = NULL;
3840 	unsigned long flags = 0;
3841 
3842 	while (partial_slab) {
3843 		slab = partial_slab;
3844 		partial_slab = slab->next;
3845 
3846 		n2 = get_node(s, slab_nid(slab));
3847 		if (n != n2) {
3848 			if (n)
3849 				spin_unlock_irqrestore(&n->list_lock, flags);
3850 
3851 			n = n2;
3852 			spin_lock_irqsave(&n->list_lock, flags);
3853 		}
3854 
3855 		if (unlikely(!slab->inuse && n->nr_partial >= s->min_partial)) {
3856 			slab->next = slab_to_discard;
3857 			slab_to_discard = slab;
3858 		} else {
3859 			add_partial(n, slab, DEACTIVATE_TO_TAIL);
3860 			stat(s, FREE_ADD_PARTIAL);
3861 		}
3862 	}
3863 
3864 	if (n)
3865 		spin_unlock_irqrestore(&n->list_lock, flags);
3866 
3867 	while (slab_to_discard) {
3868 		slab = slab_to_discard;
3869 		slab_to_discard = slab_to_discard->next;
3870 
3871 		stat(s, DEACTIVATE_EMPTY);
3872 		discard_slab(s, slab);
3873 		stat(s, FREE_SLAB);
3874 	}
3875 }
3876 
3877 /*
3878  * Put all the cpu partial slabs to the node partial list.
3879  */
3880 static void put_partials(struct kmem_cache *s)
3881 {
3882 	struct slab *partial_slab;
3883 	unsigned long flags;
3884 
3885 	local_lock_irqsave(&s->cpu_slab->lock, flags);
3886 	partial_slab = this_cpu_read(s->cpu_slab->partial);
3887 	this_cpu_write(s->cpu_slab->partial, NULL);
3888 	local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3889 
3890 	if (partial_slab)
3891 		__put_partials(s, partial_slab);
3892 }
3893 
3894 static void put_partials_cpu(struct kmem_cache *s,
3895 			     struct kmem_cache_cpu *c)
3896 {
3897 	struct slab *partial_slab;
3898 
3899 	partial_slab = slub_percpu_partial(c);
3900 	c->partial = NULL;
3901 
3902 	if (partial_slab)
3903 		__put_partials(s, partial_slab);
3904 }
3905 
3906 /*
3907  * Put a slab into a partial slab slot if available.
3908  *
3909  * If we did not find a slot then simply move all the partials to the
3910  * per node partial list.
3911  */
3912 static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain)
3913 {
3914 	struct slab *oldslab;
3915 	struct slab *slab_to_put = NULL;
3916 	unsigned long flags;
3917 	int slabs = 0;
3918 
3919 	local_lock_cpu_slab(s, flags);
3920 
3921 	oldslab = this_cpu_read(s->cpu_slab->partial);
3922 
3923 	if (oldslab) {
3924 		if (drain && oldslab->slabs >= s->cpu_partial_slabs) {
3925 			/*
3926 			 * Partial array is full. Move the existing set to the
3927 			 * per node partial list. Postpone the actual unfreezing
3928 			 * outside of the critical section.
3929 			 */
3930 			slab_to_put = oldslab;
3931 			oldslab = NULL;
3932 		} else {
3933 			slabs = oldslab->slabs;
3934 		}
3935 	}
3936 
3937 	slabs++;
3938 
3939 	slab->slabs = slabs;
3940 	slab->next = oldslab;
3941 
3942 	this_cpu_write(s->cpu_slab->partial, slab);
3943 
3944 	local_unlock_cpu_slab(s, flags);
3945 
3946 	if (slab_to_put) {
3947 		__put_partials(s, slab_to_put);
3948 		stat(s, CPU_PARTIAL_DRAIN);
3949 	}
3950 }
3951 
3952 #else	/* CONFIG_SLUB_CPU_PARTIAL */
3953 
3954 static inline void put_partials(struct kmem_cache *s) { }
3955 static inline void put_partials_cpu(struct kmem_cache *s,
3956 				    struct kmem_cache_cpu *c) { }
3957 
3958 #endif	/* CONFIG_SLUB_CPU_PARTIAL */
3959 
3960 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
3961 {
3962 	unsigned long flags;
3963 	struct slab *slab;
3964 	void *freelist;
3965 
3966 	local_lock_irqsave(&s->cpu_slab->lock, flags);
3967 
3968 	slab = c->slab;
3969 	freelist = c->freelist;
3970 
3971 	c->slab = NULL;
3972 	c->freelist = NULL;
3973 	c->tid = next_tid(c->tid);
3974 
3975 	local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3976 
3977 	if (slab) {
3978 		deactivate_slab(s, slab, freelist);
3979 		stat(s, CPUSLAB_FLUSH);
3980 	}
3981 }
3982 
3983 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
3984 {
3985 	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
3986 	void *freelist = c->freelist;
3987 	struct slab *slab = c->slab;
3988 
3989 	c->slab = NULL;
3990 	c->freelist = NULL;
3991 	c->tid = next_tid(c->tid);
3992 
3993 	if (slab) {
3994 		deactivate_slab(s, slab, freelist);
3995 		stat(s, CPUSLAB_FLUSH);
3996 	}
3997 
3998 	put_partials_cpu(s, c);
3999 }
4000 
4001 static inline void flush_this_cpu_slab(struct kmem_cache *s)
4002 {
4003 	struct kmem_cache_cpu *c = this_cpu_ptr(s->cpu_slab);
4004 
4005 	if (c->slab)
4006 		flush_slab(s, c);
4007 
4008 	put_partials(s);
4009 }
4010 
4011 static bool has_cpu_slab(int cpu, struct kmem_cache *s)
4012 {
4013 	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
4014 
4015 	return c->slab || slub_percpu_partial(c);
4016 }
4017 
4018 #else /* CONFIG_SLUB_TINY */
4019 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) { }
4020 static inline bool has_cpu_slab(int cpu, struct kmem_cache *s) { return false; }
4021 static inline void flush_this_cpu_slab(struct kmem_cache *s) { }
4022 #endif /* CONFIG_SLUB_TINY */
4023 
4024 static bool has_pcs_used(int cpu, struct kmem_cache *s)
4025 {
4026 	struct slub_percpu_sheaves *pcs;
4027 
4028 	if (!s->cpu_sheaves)
4029 		return false;
4030 
4031 	pcs = per_cpu_ptr(s->cpu_sheaves, cpu);
4032 
4033 	return (pcs->spare || pcs->rcu_free || pcs->main->size);
4034 }
4035 
4036 /*
4037  * Flush cpu slab.
4038  *
4039  * Called from CPU work handler with migration disabled.
4040  */
4041 static void flush_cpu_slab(struct work_struct *w)
4042 {
4043 	struct kmem_cache *s;
4044 	struct slub_flush_work *sfw;
4045 
4046 	sfw = container_of(w, struct slub_flush_work, work);
4047 
4048 	s = sfw->s;
4049 
4050 	if (s->cpu_sheaves)
4051 		pcs_flush_all(s);
4052 
4053 	flush_this_cpu_slab(s);
4054 }
4055 
4056 static void flush_all_cpus_locked(struct kmem_cache *s)
4057 {
4058 	struct slub_flush_work *sfw;
4059 	unsigned int cpu;
4060 
4061 	lockdep_assert_cpus_held();
4062 	mutex_lock(&flush_lock);
4063 
4064 	for_each_online_cpu(cpu) {
4065 		sfw = &per_cpu(slub_flush, cpu);
4066 		if (!has_cpu_slab(cpu, s) && !has_pcs_used(cpu, s)) {
4067 			sfw->skip = true;
4068 			continue;
4069 		}
4070 		INIT_WORK(&sfw->work, flush_cpu_slab);
4071 		sfw->skip = false;
4072 		sfw->s = s;
4073 		queue_work_on(cpu, flushwq, &sfw->work);
4074 	}
4075 
4076 	for_each_online_cpu(cpu) {
4077 		sfw = &per_cpu(slub_flush, cpu);
4078 		if (sfw->skip)
4079 			continue;
4080 		flush_work(&sfw->work);
4081 	}
4082 
4083 	mutex_unlock(&flush_lock);
4084 }
4085 
4086 static void flush_all(struct kmem_cache *s)
4087 {
4088 	cpus_read_lock();
4089 	flush_all_cpus_locked(s);
4090 	cpus_read_unlock();
4091 }
4092 
4093 static void flush_rcu_sheaf(struct work_struct *w)
4094 {
4095 	struct slub_percpu_sheaves *pcs;
4096 	struct slab_sheaf *rcu_free;
4097 	struct slub_flush_work *sfw;
4098 	struct kmem_cache *s;
4099 
4100 	sfw = container_of(w, struct slub_flush_work, work);
4101 	s = sfw->s;
4102 
4103 	local_lock(&s->cpu_sheaves->lock);
4104 	pcs = this_cpu_ptr(s->cpu_sheaves);
4105 
4106 	rcu_free = pcs->rcu_free;
4107 	pcs->rcu_free = NULL;
4108 
4109 	local_unlock(&s->cpu_sheaves->lock);
4110 
4111 	if (rcu_free)
4112 		call_rcu(&rcu_free->rcu_head, rcu_free_sheaf_nobarn);
4113 }
4114 
4115 
4116 /* needed for kvfree_rcu_barrier() */
4117 void flush_all_rcu_sheaves(void)
4118 {
4119 	struct slub_flush_work *sfw;
4120 	struct kmem_cache *s;
4121 	unsigned int cpu;
4122 
4123 	cpus_read_lock();
4124 	mutex_lock(&slab_mutex);
4125 
4126 	list_for_each_entry(s, &slab_caches, list) {
4127 		if (!s->cpu_sheaves)
4128 			continue;
4129 
4130 		mutex_lock(&flush_lock);
4131 
4132 		for_each_online_cpu(cpu) {
4133 			sfw = &per_cpu(slub_flush, cpu);
4134 
4135 			/*
4136 			 * we don't check if rcu_free sheaf exists - racing
4137 			 * __kfree_rcu_sheaf() might have just removed it.
4138 			 * by executing flush_rcu_sheaf() on the cpu we make
4139 			 * sure the __kfree_rcu_sheaf() finished its call_rcu()
4140 			 */
4141 
4142 			INIT_WORK(&sfw->work, flush_rcu_sheaf);
4143 			sfw->s = s;
4144 			queue_work_on(cpu, flushwq, &sfw->work);
4145 		}
4146 
4147 		for_each_online_cpu(cpu) {
4148 			sfw = &per_cpu(slub_flush, cpu);
4149 			flush_work(&sfw->work);
4150 		}
4151 
4152 		mutex_unlock(&flush_lock);
4153 	}
4154 
4155 	mutex_unlock(&slab_mutex);
4156 	cpus_read_unlock();
4157 
4158 	rcu_barrier();
4159 }
4160 
4161 /*
4162  * Use the cpu notifier to insure that the cpu slabs are flushed when
4163  * necessary.
4164  */
4165 static int slub_cpu_dead(unsigned int cpu)
4166 {
4167 	struct kmem_cache *s;
4168 
4169 	mutex_lock(&slab_mutex);
4170 	list_for_each_entry(s, &slab_caches, list) {
4171 		__flush_cpu_slab(s, cpu);
4172 		if (s->cpu_sheaves)
4173 			__pcs_flush_all_cpu(s, cpu);
4174 	}
4175 	mutex_unlock(&slab_mutex);
4176 	return 0;
4177 }
4178 
4179 /*
4180  * Check if the objects in a per cpu structure fit numa
4181  * locality expectations.
4182  */
4183 static inline int node_match(struct slab *slab, int node)
4184 {
4185 #ifdef CONFIG_NUMA
4186 	if (node != NUMA_NO_NODE && slab_nid(slab) != node)
4187 		return 0;
4188 #endif
4189 	return 1;
4190 }
4191 
4192 #ifdef CONFIG_SLUB_DEBUG
4193 static int count_free(struct slab *slab)
4194 {
4195 	return slab->objects - slab->inuse;
4196 }
4197 
4198 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
4199 {
4200 	return atomic_long_read(&n->total_objects);
4201 }
4202 
4203 /* Supports checking bulk free of a constructed freelist */
4204 static inline bool free_debug_processing(struct kmem_cache *s,
4205 	struct slab *slab, void *head, void *tail, int *bulk_cnt,
4206 	unsigned long addr, depot_stack_handle_t handle)
4207 {
4208 	bool checks_ok = false;
4209 	void *object = head;
4210 	int cnt = 0;
4211 
4212 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
4213 		if (!check_slab(s, slab))
4214 			goto out;
4215 	}
4216 
4217 	if (slab->inuse < *bulk_cnt) {
4218 		slab_err(s, slab, "Slab has %d allocated objects but %d are to be freed\n",
4219 			 slab->inuse, *bulk_cnt);
4220 		goto out;
4221 	}
4222 
4223 next_object:
4224 
4225 	if (++cnt > *bulk_cnt)
4226 		goto out_cnt;
4227 
4228 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
4229 		if (!free_consistency_checks(s, slab, object, addr))
4230 			goto out;
4231 	}
4232 
4233 	if (s->flags & SLAB_STORE_USER)
4234 		set_track_update(s, object, TRACK_FREE, addr, handle);
4235 	trace(s, slab, object, 0);
4236 	/* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
4237 	init_object(s, object, SLUB_RED_INACTIVE);
4238 
4239 	/* Reached end of constructed freelist yet? */
4240 	if (object != tail) {
4241 		object = get_freepointer(s, object);
4242 		goto next_object;
4243 	}
4244 	checks_ok = true;
4245 
4246 out_cnt:
4247 	if (cnt != *bulk_cnt) {
4248 		slab_err(s, slab, "Bulk free expected %d objects but found %d\n",
4249 			 *bulk_cnt, cnt);
4250 		*bulk_cnt = cnt;
4251 	}
4252 
4253 out:
4254 
4255 	if (!checks_ok)
4256 		slab_fix(s, "Object at 0x%p not freed", object);
4257 
4258 	return checks_ok;
4259 }
4260 #endif /* CONFIG_SLUB_DEBUG */
4261 
4262 #if defined(CONFIG_SLUB_DEBUG) || defined(SLAB_SUPPORTS_SYSFS)
4263 static unsigned long count_partial(struct kmem_cache_node *n,
4264 					int (*get_count)(struct slab *))
4265 {
4266 	unsigned long flags;
4267 	unsigned long x = 0;
4268 	struct slab *slab;
4269 
4270 	spin_lock_irqsave(&n->list_lock, flags);
4271 	list_for_each_entry(slab, &n->partial, slab_list)
4272 		x += get_count(slab);
4273 	spin_unlock_irqrestore(&n->list_lock, flags);
4274 	return x;
4275 }
4276 #endif /* CONFIG_SLUB_DEBUG || SLAB_SUPPORTS_SYSFS */
4277 
4278 #ifdef CONFIG_SLUB_DEBUG
4279 #define MAX_PARTIAL_TO_SCAN 10000
4280 
4281 static unsigned long count_partial_free_approx(struct kmem_cache_node *n)
4282 {
4283 	unsigned long flags;
4284 	unsigned long x = 0;
4285 	struct slab *slab;
4286 
4287 	spin_lock_irqsave(&n->list_lock, flags);
4288 	if (n->nr_partial <= MAX_PARTIAL_TO_SCAN) {
4289 		list_for_each_entry(slab, &n->partial, slab_list)
4290 			x += slab->objects - slab->inuse;
4291 	} else {
4292 		/*
4293 		 * For a long list, approximate the total count of objects in
4294 		 * it to meet the limit on the number of slabs to scan.
4295 		 * Scan from both the list's head and tail for better accuracy.
4296 		 */
4297 		unsigned long scanned = 0;
4298 
4299 		list_for_each_entry(slab, &n->partial, slab_list) {
4300 			x += slab->objects - slab->inuse;
4301 			if (++scanned == MAX_PARTIAL_TO_SCAN / 2)
4302 				break;
4303 		}
4304 		list_for_each_entry_reverse(slab, &n->partial, slab_list) {
4305 			x += slab->objects - slab->inuse;
4306 			if (++scanned == MAX_PARTIAL_TO_SCAN)
4307 				break;
4308 		}
4309 		x = mult_frac(x, n->nr_partial, scanned);
4310 		x = min(x, node_nr_objs(n));
4311 	}
4312 	spin_unlock_irqrestore(&n->list_lock, flags);
4313 	return x;
4314 }
4315 
4316 static noinline void
4317 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
4318 {
4319 	static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
4320 				      DEFAULT_RATELIMIT_BURST);
4321 	int cpu = raw_smp_processor_id();
4322 	int node;
4323 	struct kmem_cache_node *n;
4324 
4325 	if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
4326 		return;
4327 
4328 	pr_warn("SLUB: Unable to allocate memory on CPU %u (of node %d) on node %d, gfp=%#x(%pGg)\n",
4329 		cpu, cpu_to_node(cpu), nid, gfpflags, &gfpflags);
4330 	pr_warn("  cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n",
4331 		s->name, s->object_size, s->size, oo_order(s->oo),
4332 		oo_order(s->min));
4333 
4334 	if (oo_order(s->min) > get_order(s->object_size))
4335 		pr_warn("  %s debugging increased min order, use slab_debug=O to disable.\n",
4336 			s->name);
4337 
4338 	for_each_kmem_cache_node(s, node, n) {
4339 		unsigned long nr_slabs;
4340 		unsigned long nr_objs;
4341 		unsigned long nr_free;
4342 
4343 		nr_free  = count_partial_free_approx(n);
4344 		nr_slabs = node_nr_slabs(n);
4345 		nr_objs  = node_nr_objs(n);
4346 
4347 		pr_warn("  node %d: slabs: %ld, objs: %ld, free: %ld\n",
4348 			node, nr_slabs, nr_objs, nr_free);
4349 	}
4350 }
4351 #else /* CONFIG_SLUB_DEBUG */
4352 static inline void
4353 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid) { }
4354 #endif
4355 
4356 static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags)
4357 {
4358 	if (unlikely(slab_test_pfmemalloc(slab)))
4359 		return gfp_pfmemalloc_allowed(gfpflags);
4360 
4361 	return true;
4362 }
4363 
4364 #ifndef CONFIG_SLUB_TINY
4365 static inline bool
4366 __update_cpu_freelist_fast(struct kmem_cache *s,
4367 			   void *freelist_old, void *freelist_new,
4368 			   unsigned long tid)
4369 {
4370 	freelist_aba_t old = { .freelist = freelist_old, .counter = tid };
4371 	freelist_aba_t new = { .freelist = freelist_new, .counter = next_tid(tid) };
4372 
4373 	return this_cpu_try_cmpxchg_freelist(s->cpu_slab->freelist_tid.full,
4374 					     &old.full, new.full);
4375 }
4376 
4377 /*
4378  * Check the slab->freelist and either transfer the freelist to the
4379  * per cpu freelist or deactivate the slab.
4380  *
4381  * The slab is still frozen if the return value is not NULL.
4382  *
4383  * If this function returns NULL then the slab has been unfrozen.
4384  */
4385 static inline void *get_freelist(struct kmem_cache *s, struct slab *slab)
4386 {
4387 	struct slab new;
4388 	unsigned long counters;
4389 	void *freelist;
4390 
4391 	lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock));
4392 
4393 	do {
4394 		freelist = slab->freelist;
4395 		counters = slab->counters;
4396 
4397 		new.counters = counters;
4398 
4399 		new.inuse = slab->objects;
4400 		new.frozen = freelist != NULL;
4401 
4402 	} while (!__slab_update_freelist(s, slab,
4403 		freelist, counters,
4404 		NULL, new.counters,
4405 		"get_freelist"));
4406 
4407 	return freelist;
4408 }
4409 
4410 /*
4411  * Freeze the partial slab and return the pointer to the freelist.
4412  */
4413 static inline void *freeze_slab(struct kmem_cache *s, struct slab *slab)
4414 {
4415 	struct slab new;
4416 	unsigned long counters;
4417 	void *freelist;
4418 
4419 	do {
4420 		freelist = slab->freelist;
4421 		counters = slab->counters;
4422 
4423 		new.counters = counters;
4424 		VM_BUG_ON(new.frozen);
4425 
4426 		new.inuse = slab->objects;
4427 		new.frozen = 1;
4428 
4429 	} while (!slab_update_freelist(s, slab,
4430 		freelist, counters,
4431 		NULL, new.counters,
4432 		"freeze_slab"));
4433 
4434 	return freelist;
4435 }
4436 
4437 /*
4438  * Slow path. The lockless freelist is empty or we need to perform
4439  * debugging duties.
4440  *
4441  * Processing is still very fast if new objects have been freed to the
4442  * regular freelist. In that case we simply take over the regular freelist
4443  * as the lockless freelist and zap the regular freelist.
4444  *
4445  * If that is not working then we fall back to the partial lists. We take the
4446  * first element of the freelist as the object to allocate now and move the
4447  * rest of the freelist to the lockless freelist.
4448  *
4449  * And if we were unable to get a new slab from the partial slab lists then
4450  * we need to allocate a new slab. This is the slowest path since it involves
4451  * a call to the page allocator and the setup of a new slab.
4452  *
4453  * Version of __slab_alloc to use when we know that preemption is
4454  * already disabled (which is the case for bulk allocation).
4455  */
4456 static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
4457 			  unsigned long addr, struct kmem_cache_cpu *c, unsigned int orig_size)
4458 {
4459 	bool allow_spin = gfpflags_allow_spinning(gfpflags);
4460 	void *freelist;
4461 	struct slab *slab;
4462 	unsigned long flags;
4463 	struct partial_context pc;
4464 	bool try_thisnode = true;
4465 
4466 	stat(s, ALLOC_SLOWPATH);
4467 
4468 reread_slab:
4469 
4470 	slab = READ_ONCE(c->slab);
4471 	if (!slab) {
4472 		/*
4473 		 * if the node is not online or has no normal memory, just
4474 		 * ignore the node constraint
4475 		 */
4476 		if (unlikely(node != NUMA_NO_NODE &&
4477 			     !node_isset(node, slab_nodes)))
4478 			node = NUMA_NO_NODE;
4479 		goto new_slab;
4480 	}
4481 
4482 	if (unlikely(!node_match(slab, node))) {
4483 		/*
4484 		 * same as above but node_match() being false already
4485 		 * implies node != NUMA_NO_NODE.
4486 		 *
4487 		 * We don't strictly honor pfmemalloc and NUMA preferences
4488 		 * when !allow_spin because:
4489 		 *
4490 		 * 1. Most kmalloc() users allocate objects on the local node,
4491 		 *    so kmalloc_nolock() tries not to interfere with them by
4492 		 *    deactivating the cpu slab.
4493 		 *
4494 		 * 2. Deactivating due to NUMA or pfmemalloc mismatch may cause
4495 		 *    unnecessary slab allocations even when n->partial list
4496 		 *    is not empty.
4497 		 */
4498 		if (!node_isset(node, slab_nodes) ||
4499 		    !allow_spin) {
4500 			node = NUMA_NO_NODE;
4501 		} else {
4502 			stat(s, ALLOC_NODE_MISMATCH);
4503 			goto deactivate_slab;
4504 		}
4505 	}
4506 
4507 	/*
4508 	 * By rights, we should be searching for a slab page that was
4509 	 * PFMEMALLOC but right now, we are losing the pfmemalloc
4510 	 * information when the page leaves the per-cpu allocator
4511 	 */
4512 	if (unlikely(!pfmemalloc_match(slab, gfpflags) && allow_spin))
4513 		goto deactivate_slab;
4514 
4515 	/* must check again c->slab in case we got preempted and it changed */
4516 	local_lock_cpu_slab(s, flags);
4517 
4518 	if (unlikely(slab != c->slab)) {
4519 		local_unlock_cpu_slab(s, flags);
4520 		goto reread_slab;
4521 	}
4522 	freelist = c->freelist;
4523 	if (freelist)
4524 		goto load_freelist;
4525 
4526 	freelist = get_freelist(s, slab);
4527 
4528 	if (!freelist) {
4529 		c->slab = NULL;
4530 		c->tid = next_tid(c->tid);
4531 		local_unlock_cpu_slab(s, flags);
4532 		stat(s, DEACTIVATE_BYPASS);
4533 		goto new_slab;
4534 	}
4535 
4536 	stat(s, ALLOC_REFILL);
4537 
4538 load_freelist:
4539 
4540 	lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock));
4541 
4542 	/*
4543 	 * freelist is pointing to the list of objects to be used.
4544 	 * slab is pointing to the slab from which the objects are obtained.
4545 	 * That slab must be frozen for per cpu allocations to work.
4546 	 */
4547 	VM_BUG_ON(!c->slab->frozen);
4548 	c->freelist = get_freepointer(s, freelist);
4549 	c->tid = next_tid(c->tid);
4550 	local_unlock_cpu_slab(s, flags);
4551 	return freelist;
4552 
4553 deactivate_slab:
4554 
4555 	local_lock_cpu_slab(s, flags);
4556 	if (slab != c->slab) {
4557 		local_unlock_cpu_slab(s, flags);
4558 		goto reread_slab;
4559 	}
4560 	freelist = c->freelist;
4561 	c->slab = NULL;
4562 	c->freelist = NULL;
4563 	c->tid = next_tid(c->tid);
4564 	local_unlock_cpu_slab(s, flags);
4565 	deactivate_slab(s, slab, freelist);
4566 
4567 new_slab:
4568 
4569 #ifdef CONFIG_SLUB_CPU_PARTIAL
4570 	while (slub_percpu_partial(c)) {
4571 		local_lock_cpu_slab(s, flags);
4572 		if (unlikely(c->slab)) {
4573 			local_unlock_cpu_slab(s, flags);
4574 			goto reread_slab;
4575 		}
4576 		if (unlikely(!slub_percpu_partial(c))) {
4577 			local_unlock_cpu_slab(s, flags);
4578 			/* we were preempted and partial list got empty */
4579 			goto new_objects;
4580 		}
4581 
4582 		slab = slub_percpu_partial(c);
4583 		slub_set_percpu_partial(c, slab);
4584 
4585 		if (likely(node_match(slab, node) &&
4586 			   pfmemalloc_match(slab, gfpflags)) ||
4587 		    !allow_spin) {
4588 			c->slab = slab;
4589 			freelist = get_freelist(s, slab);
4590 			VM_BUG_ON(!freelist);
4591 			stat(s, CPU_PARTIAL_ALLOC);
4592 			goto load_freelist;
4593 		}
4594 
4595 		local_unlock_cpu_slab(s, flags);
4596 
4597 		slab->next = NULL;
4598 		__put_partials(s, slab);
4599 	}
4600 #endif
4601 
4602 new_objects:
4603 
4604 	pc.flags = gfpflags;
4605 	/*
4606 	 * When a preferred node is indicated but no __GFP_THISNODE
4607 	 *
4608 	 * 1) try to get a partial slab from target node only by having
4609 	 *    __GFP_THISNODE in pc.flags for get_partial()
4610 	 * 2) if 1) failed, try to allocate a new slab from target node with
4611 	 *    GPF_NOWAIT | __GFP_THISNODE opportunistically
4612 	 * 3) if 2) failed, retry with original gfpflags which will allow
4613 	 *    get_partial() try partial lists of other nodes before potentially
4614 	 *    allocating new page from other nodes
4615 	 */
4616 	if (unlikely(node != NUMA_NO_NODE && !(gfpflags & __GFP_THISNODE)
4617 		     && try_thisnode)) {
4618 		if (unlikely(!allow_spin))
4619 			/* Do not upgrade gfp to NOWAIT from more restrictive mode */
4620 			pc.flags = gfpflags | __GFP_THISNODE;
4621 		else
4622 			pc.flags = GFP_NOWAIT | __GFP_THISNODE;
4623 	}
4624 
4625 	pc.orig_size = orig_size;
4626 	slab = get_partial(s, node, &pc);
4627 	if (slab) {
4628 		if (kmem_cache_debug(s)) {
4629 			freelist = pc.object;
4630 			/*
4631 			 * For debug caches here we had to go through
4632 			 * alloc_single_from_partial() so just store the
4633 			 * tracking info and return the object.
4634 			 *
4635 			 * Due to disabled preemption we need to disallow
4636 			 * blocking. The flags are further adjusted by
4637 			 * gfp_nested_mask() in stack_depot itself.
4638 			 */
4639 			if (s->flags & SLAB_STORE_USER)
4640 				set_track(s, freelist, TRACK_ALLOC, addr,
4641 					  gfpflags & ~(__GFP_DIRECT_RECLAIM));
4642 
4643 			return freelist;
4644 		}
4645 
4646 		freelist = freeze_slab(s, slab);
4647 		goto retry_load_slab;
4648 	}
4649 
4650 	slub_put_cpu_ptr(s->cpu_slab);
4651 	slab = new_slab(s, pc.flags, node);
4652 	c = slub_get_cpu_ptr(s->cpu_slab);
4653 
4654 	if (unlikely(!slab)) {
4655 		if (node != NUMA_NO_NODE && !(gfpflags & __GFP_THISNODE)
4656 		    && try_thisnode) {
4657 			try_thisnode = false;
4658 			goto new_objects;
4659 		}
4660 		slab_out_of_memory(s, gfpflags, node);
4661 		return NULL;
4662 	}
4663 
4664 	stat(s, ALLOC_SLAB);
4665 
4666 	if (kmem_cache_debug(s)) {
4667 		freelist = alloc_single_from_new_slab(s, slab, orig_size, gfpflags);
4668 
4669 		if (unlikely(!freelist))
4670 			goto new_objects;
4671 
4672 		if (s->flags & SLAB_STORE_USER)
4673 			set_track(s, freelist, TRACK_ALLOC, addr,
4674 				  gfpflags & ~(__GFP_DIRECT_RECLAIM));
4675 
4676 		return freelist;
4677 	}
4678 
4679 	/*
4680 	 * No other reference to the slab yet so we can
4681 	 * muck around with it freely without cmpxchg
4682 	 */
4683 	freelist = slab->freelist;
4684 	slab->freelist = NULL;
4685 	slab->inuse = slab->objects;
4686 	slab->frozen = 1;
4687 
4688 	inc_slabs_node(s, slab_nid(slab), slab->objects);
4689 
4690 	if (unlikely(!pfmemalloc_match(slab, gfpflags) && allow_spin)) {
4691 		/*
4692 		 * For !pfmemalloc_match() case we don't load freelist so that
4693 		 * we don't make further mismatched allocations easier.
4694 		 */
4695 		deactivate_slab(s, slab, get_freepointer(s, freelist));
4696 		return freelist;
4697 	}
4698 
4699 retry_load_slab:
4700 
4701 	local_lock_cpu_slab(s, flags);
4702 	if (unlikely(c->slab)) {
4703 		void *flush_freelist = c->freelist;
4704 		struct slab *flush_slab = c->slab;
4705 
4706 		c->slab = NULL;
4707 		c->freelist = NULL;
4708 		c->tid = next_tid(c->tid);
4709 
4710 		local_unlock_cpu_slab(s, flags);
4711 
4712 		if (unlikely(!allow_spin)) {
4713 			/* Reentrant slub cannot take locks, defer */
4714 			defer_deactivate_slab(flush_slab, flush_freelist);
4715 		} else {
4716 			deactivate_slab(s, flush_slab, flush_freelist);
4717 		}
4718 
4719 		stat(s, CPUSLAB_FLUSH);
4720 
4721 		goto retry_load_slab;
4722 	}
4723 	c->slab = slab;
4724 
4725 	goto load_freelist;
4726 }
4727 /*
4728  * We disallow kprobes in ___slab_alloc() to prevent reentrance
4729  *
4730  * kmalloc() -> ___slab_alloc() -> local_lock_cpu_slab() protected part of
4731  * ___slab_alloc() manipulating c->freelist -> kprobe -> bpf ->
4732  * kmalloc_nolock() or kfree_nolock() -> __update_cpu_freelist_fast()
4733  * manipulating c->freelist without lock.
4734  *
4735  * This does not prevent kprobe in functions called from ___slab_alloc() such as
4736  * local_lock_irqsave() itself, and that is fine, we only need to protect the
4737  * c->freelist manipulation in ___slab_alloc() itself.
4738  */
4739 NOKPROBE_SYMBOL(___slab_alloc);
4740 
4741 /*
4742  * A wrapper for ___slab_alloc() for contexts where preemption is not yet
4743  * disabled. Compensates for possible cpu changes by refetching the per cpu area
4744  * pointer.
4745  */
4746 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
4747 			  unsigned long addr, struct kmem_cache_cpu *c, unsigned int orig_size)
4748 {
4749 	void *p;
4750 
4751 #ifdef CONFIG_PREEMPT_COUNT
4752 	/*
4753 	 * We may have been preempted and rescheduled on a different
4754 	 * cpu before disabling preemption. Need to reload cpu area
4755 	 * pointer.
4756 	 */
4757 	c = slub_get_cpu_ptr(s->cpu_slab);
4758 #endif
4759 	if (unlikely(!gfpflags_allow_spinning(gfpflags))) {
4760 		if (local_lock_is_locked(&s->cpu_slab->lock)) {
4761 			/*
4762 			 * EBUSY is an internal signal to kmalloc_nolock() to
4763 			 * retry a different bucket. It's not propagated
4764 			 * to the caller.
4765 			 */
4766 			p = ERR_PTR(-EBUSY);
4767 			goto out;
4768 		}
4769 	}
4770 	p = ___slab_alloc(s, gfpflags, node, addr, c, orig_size);
4771 out:
4772 #ifdef CONFIG_PREEMPT_COUNT
4773 	slub_put_cpu_ptr(s->cpu_slab);
4774 #endif
4775 	return p;
4776 }
4777 
4778 static __always_inline void *__slab_alloc_node(struct kmem_cache *s,
4779 		gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
4780 {
4781 	struct kmem_cache_cpu *c;
4782 	struct slab *slab;
4783 	unsigned long tid;
4784 	void *object;
4785 
4786 redo:
4787 	/*
4788 	 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
4789 	 * enabled. We may switch back and forth between cpus while
4790 	 * reading from one cpu area. That does not matter as long
4791 	 * as we end up on the original cpu again when doing the cmpxchg.
4792 	 *
4793 	 * We must guarantee that tid and kmem_cache_cpu are retrieved on the
4794 	 * same cpu. We read first the kmem_cache_cpu pointer and use it to read
4795 	 * the tid. If we are preempted and switched to another cpu between the
4796 	 * two reads, it's OK as the two are still associated with the same cpu
4797 	 * and cmpxchg later will validate the cpu.
4798 	 */
4799 	c = raw_cpu_ptr(s->cpu_slab);
4800 	tid = READ_ONCE(c->tid);
4801 
4802 	/*
4803 	 * Irqless object alloc/free algorithm used here depends on sequence
4804 	 * of fetching cpu_slab's data. tid should be fetched before anything
4805 	 * on c to guarantee that object and slab associated with previous tid
4806 	 * won't be used with current tid. If we fetch tid first, object and
4807 	 * slab could be one associated with next tid and our alloc/free
4808 	 * request will be failed. In this case, we will retry. So, no problem.
4809 	 */
4810 	barrier();
4811 
4812 	/*
4813 	 * The transaction ids are globally unique per cpu and per operation on
4814 	 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
4815 	 * occurs on the right processor and that there was no operation on the
4816 	 * linked list in between.
4817 	 */
4818 
4819 	object = c->freelist;
4820 	slab = c->slab;
4821 
4822 #ifdef CONFIG_NUMA
4823 	if (static_branch_unlikely(&strict_numa) &&
4824 			node == NUMA_NO_NODE) {
4825 
4826 		struct mempolicy *mpol = current->mempolicy;
4827 
4828 		if (mpol) {
4829 			/*
4830 			 * Special BIND rule support. If existing slab
4831 			 * is in permitted set then do not redirect
4832 			 * to a particular node.
4833 			 * Otherwise we apply the memory policy to get
4834 			 * the node we need to allocate on.
4835 			 */
4836 			if (mpol->mode != MPOL_BIND || !slab ||
4837 					!node_isset(slab_nid(slab), mpol->nodes))
4838 
4839 				node = mempolicy_slab_node();
4840 		}
4841 	}
4842 #endif
4843 
4844 	if (!USE_LOCKLESS_FAST_PATH() ||
4845 	    unlikely(!object || !slab || !node_match(slab, node))) {
4846 		object = __slab_alloc(s, gfpflags, node, addr, c, orig_size);
4847 	} else {
4848 		void *next_object = get_freepointer_safe(s, object);
4849 
4850 		/*
4851 		 * The cmpxchg will only match if there was no additional
4852 		 * operation and if we are on the right processor.
4853 		 *
4854 		 * The cmpxchg does the following atomically (without lock
4855 		 * semantics!)
4856 		 * 1. Relocate first pointer to the current per cpu area.
4857 		 * 2. Verify that tid and freelist have not been changed
4858 		 * 3. If they were not changed replace tid and freelist
4859 		 *
4860 		 * Since this is without lock semantics the protection is only
4861 		 * against code executing on this cpu *not* from access by
4862 		 * other cpus.
4863 		 */
4864 		if (unlikely(!__update_cpu_freelist_fast(s, object, next_object, tid))) {
4865 			note_cmpxchg_failure("slab_alloc", s, tid);
4866 			goto redo;
4867 		}
4868 		prefetch_freepointer(s, next_object);
4869 		stat(s, ALLOC_FASTPATH);
4870 	}
4871 
4872 	return object;
4873 }
4874 #else /* CONFIG_SLUB_TINY */
4875 static void *__slab_alloc_node(struct kmem_cache *s,
4876 		gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
4877 {
4878 	struct partial_context pc;
4879 	struct slab *slab;
4880 	void *object;
4881 
4882 	pc.flags = gfpflags;
4883 	pc.orig_size = orig_size;
4884 	slab = get_partial(s, node, &pc);
4885 
4886 	if (slab)
4887 		return pc.object;
4888 
4889 	slab = new_slab(s, gfpflags, node);
4890 	if (unlikely(!slab)) {
4891 		slab_out_of_memory(s, gfpflags, node);
4892 		return NULL;
4893 	}
4894 
4895 	object = alloc_single_from_new_slab(s, slab, orig_size, gfpflags);
4896 
4897 	return object;
4898 }
4899 #endif /* CONFIG_SLUB_TINY */
4900 
4901 /*
4902  * If the object has been wiped upon free, make sure it's fully initialized by
4903  * zeroing out freelist pointer.
4904  *
4905  * Note that we also wipe custom freelist pointers.
4906  */
4907 static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s,
4908 						   void *obj)
4909 {
4910 	if (unlikely(slab_want_init_on_free(s)) && obj &&
4911 	    !freeptr_outside_object(s))
4912 		memset((void *)((char *)kasan_reset_tag(obj) + s->offset),
4913 			0, sizeof(void *));
4914 }
4915 
4916 static __fastpath_inline
4917 struct kmem_cache *slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
4918 {
4919 	flags &= gfp_allowed_mask;
4920 
4921 	might_alloc(flags);
4922 
4923 	if (unlikely(should_failslab(s, flags)))
4924 		return NULL;
4925 
4926 	return s;
4927 }
4928 
4929 static __fastpath_inline
4930 bool slab_post_alloc_hook(struct kmem_cache *s, struct list_lru *lru,
4931 			  gfp_t flags, size_t size, void **p, bool init,
4932 			  unsigned int orig_size)
4933 {
4934 	unsigned int zero_size = s->object_size;
4935 	bool kasan_init = init;
4936 	size_t i;
4937 	gfp_t init_flags = flags & gfp_allowed_mask;
4938 
4939 	/*
4940 	 * For kmalloc object, the allocated memory size(object_size) is likely
4941 	 * larger than the requested size(orig_size). If redzone check is
4942 	 * enabled for the extra space, don't zero it, as it will be redzoned
4943 	 * soon. The redzone operation for this extra space could be seen as a
4944 	 * replacement of current poisoning under certain debug option, and
4945 	 * won't break other sanity checks.
4946 	 */
4947 	if (kmem_cache_debug_flags(s, SLAB_STORE_USER | SLAB_RED_ZONE) &&
4948 	    (s->flags & SLAB_KMALLOC))
4949 		zero_size = orig_size;
4950 
4951 	/*
4952 	 * When slab_debug is enabled, avoid memory initialization integrated
4953 	 * into KASAN and instead zero out the memory via the memset below with
4954 	 * the proper size. Otherwise, KASAN might overwrite SLUB redzones and
4955 	 * cause false-positive reports. This does not lead to a performance
4956 	 * penalty on production builds, as slab_debug is not intended to be
4957 	 * enabled there.
4958 	 */
4959 	if (__slub_debug_enabled())
4960 		kasan_init = false;
4961 
4962 	/*
4963 	 * As memory initialization might be integrated into KASAN,
4964 	 * kasan_slab_alloc and initialization memset must be
4965 	 * kept together to avoid discrepancies in behavior.
4966 	 *
4967 	 * As p[i] might get tagged, memset and kmemleak hook come after KASAN.
4968 	 */
4969 	for (i = 0; i < size; i++) {
4970 		p[i] = kasan_slab_alloc(s, p[i], init_flags, kasan_init);
4971 		if (p[i] && init && (!kasan_init ||
4972 				     !kasan_has_integrated_init()))
4973 			memset(p[i], 0, zero_size);
4974 		if (gfpflags_allow_spinning(flags))
4975 			kmemleak_alloc_recursive(p[i], s->object_size, 1,
4976 						 s->flags, init_flags);
4977 		kmsan_slab_alloc(s, p[i], init_flags);
4978 		alloc_tagging_slab_alloc_hook(s, p[i], flags);
4979 	}
4980 
4981 	return memcg_slab_post_alloc_hook(s, lru, flags, size, p);
4982 }
4983 
4984 /*
4985  * Replace the empty main sheaf with a (at least partially) full sheaf.
4986  *
4987  * Must be called with the cpu_sheaves local lock locked. If successful, returns
4988  * the pcs pointer and the local lock locked (possibly on a different cpu than
4989  * initially called). If not successful, returns NULL and the local lock
4990  * unlocked.
4991  */
4992 static struct slub_percpu_sheaves *
4993 __pcs_replace_empty_main(struct kmem_cache *s, struct slub_percpu_sheaves *pcs, gfp_t gfp)
4994 {
4995 	struct slab_sheaf *empty = NULL;
4996 	struct slab_sheaf *full;
4997 	struct node_barn *barn;
4998 	bool can_alloc;
4999 
5000 	lockdep_assert_held(this_cpu_ptr(&s->cpu_sheaves->lock));
5001 
5002 	if (pcs->spare && pcs->spare->size > 0) {
5003 		swap(pcs->main, pcs->spare);
5004 		return pcs;
5005 	}
5006 
5007 	barn = get_barn(s);
5008 	if (!barn) {
5009 		local_unlock(&s->cpu_sheaves->lock);
5010 		return NULL;
5011 	}
5012 
5013 	full = barn_replace_empty_sheaf(barn, pcs->main);
5014 
5015 	if (full) {
5016 		stat(s, BARN_GET);
5017 		pcs->main = full;
5018 		return pcs;
5019 	}
5020 
5021 	stat(s, BARN_GET_FAIL);
5022 
5023 	can_alloc = gfpflags_allow_blocking(gfp);
5024 
5025 	if (can_alloc) {
5026 		if (pcs->spare) {
5027 			empty = pcs->spare;
5028 			pcs->spare = NULL;
5029 		} else {
5030 			empty = barn_get_empty_sheaf(barn);
5031 		}
5032 	}
5033 
5034 	local_unlock(&s->cpu_sheaves->lock);
5035 
5036 	if (!can_alloc)
5037 		return NULL;
5038 
5039 	if (empty) {
5040 		if (!refill_sheaf(s, empty, gfp)) {
5041 			full = empty;
5042 		} else {
5043 			/*
5044 			 * we must be very low on memory so don't bother
5045 			 * with the barn
5046 			 */
5047 			free_empty_sheaf(s, empty);
5048 		}
5049 	} else {
5050 		full = alloc_full_sheaf(s, gfp);
5051 	}
5052 
5053 	if (!full)
5054 		return NULL;
5055 
5056 	/*
5057 	 * we can reach here only when gfpflags_allow_blocking
5058 	 * so this must not be an irq
5059 	 */
5060 	local_lock(&s->cpu_sheaves->lock);
5061 	pcs = this_cpu_ptr(s->cpu_sheaves);
5062 
5063 	/*
5064 	 * If we are returning empty sheaf, we either got it from the
5065 	 * barn or had to allocate one. If we are returning a full
5066 	 * sheaf, it's due to racing or being migrated to a different
5067 	 * cpu. Breaching the barn's sheaf limits should be thus rare
5068 	 * enough so just ignore them to simplify the recovery.
5069 	 */
5070 
5071 	if (pcs->main->size == 0) {
5072 		barn_put_empty_sheaf(barn, pcs->main);
5073 		pcs->main = full;
5074 		return pcs;
5075 	}
5076 
5077 	if (!pcs->spare) {
5078 		pcs->spare = full;
5079 		return pcs;
5080 	}
5081 
5082 	if (pcs->spare->size == 0) {
5083 		barn_put_empty_sheaf(barn, pcs->spare);
5084 		pcs->spare = full;
5085 		return pcs;
5086 	}
5087 
5088 	barn_put_full_sheaf(barn, full);
5089 	stat(s, BARN_PUT);
5090 
5091 	return pcs;
5092 }
5093 
5094 static __fastpath_inline
5095 void *alloc_from_pcs(struct kmem_cache *s, gfp_t gfp, int node)
5096 {
5097 	struct slub_percpu_sheaves *pcs;
5098 	bool node_requested;
5099 	void *object;
5100 
5101 #ifdef CONFIG_NUMA
5102 	if (static_branch_unlikely(&strict_numa) &&
5103 			 node == NUMA_NO_NODE) {
5104 
5105 		struct mempolicy *mpol = current->mempolicy;
5106 
5107 		if (mpol) {
5108 			/*
5109 			 * Special BIND rule support. If the local node
5110 			 * is in permitted set then do not redirect
5111 			 * to a particular node.
5112 			 * Otherwise we apply the memory policy to get
5113 			 * the node we need to allocate on.
5114 			 */
5115 			if (mpol->mode != MPOL_BIND ||
5116 					!node_isset(numa_mem_id(), mpol->nodes))
5117 
5118 				node = mempolicy_slab_node();
5119 		}
5120 	}
5121 #endif
5122 
5123 	node_requested = IS_ENABLED(CONFIG_NUMA) && node != NUMA_NO_NODE;
5124 
5125 	/*
5126 	 * We assume the percpu sheaves contain only local objects although it's
5127 	 * not completely guaranteed, so we verify later.
5128 	 */
5129 	if (unlikely(node_requested && node != numa_mem_id()))
5130 		return NULL;
5131 
5132 	if (!local_trylock(&s->cpu_sheaves->lock))
5133 		return NULL;
5134 
5135 	pcs = this_cpu_ptr(s->cpu_sheaves);
5136 
5137 	if (unlikely(pcs->main->size == 0)) {
5138 		pcs = __pcs_replace_empty_main(s, pcs, gfp);
5139 		if (unlikely(!pcs))
5140 			return NULL;
5141 	}
5142 
5143 	object = pcs->main->objects[pcs->main->size - 1];
5144 
5145 	if (unlikely(node_requested)) {
5146 		/*
5147 		 * Verify that the object was from the node we want. This could
5148 		 * be false because of cpu migration during an unlocked part of
5149 		 * the current allocation or previous freeing process.
5150 		 */
5151 		if (folio_nid(virt_to_folio(object)) != node) {
5152 			local_unlock(&s->cpu_sheaves->lock);
5153 			return NULL;
5154 		}
5155 	}
5156 
5157 	pcs->main->size--;
5158 
5159 	local_unlock(&s->cpu_sheaves->lock);
5160 
5161 	stat(s, ALLOC_PCS);
5162 
5163 	return object;
5164 }
5165 
5166 static __fastpath_inline
5167 unsigned int alloc_from_pcs_bulk(struct kmem_cache *s, size_t size, void **p)
5168 {
5169 	struct slub_percpu_sheaves *pcs;
5170 	struct slab_sheaf *main;
5171 	unsigned int allocated = 0;
5172 	unsigned int batch;
5173 
5174 next_batch:
5175 	if (!local_trylock(&s->cpu_sheaves->lock))
5176 		return allocated;
5177 
5178 	pcs = this_cpu_ptr(s->cpu_sheaves);
5179 
5180 	if (unlikely(pcs->main->size == 0)) {
5181 
5182 		struct slab_sheaf *full;
5183 		struct node_barn *barn;
5184 
5185 		if (pcs->spare && pcs->spare->size > 0) {
5186 			swap(pcs->main, pcs->spare);
5187 			goto do_alloc;
5188 		}
5189 
5190 		barn = get_barn(s);
5191 		if (!barn) {
5192 			local_unlock(&s->cpu_sheaves->lock);
5193 			return allocated;
5194 		}
5195 
5196 		full = barn_replace_empty_sheaf(barn, pcs->main);
5197 
5198 		if (full) {
5199 			stat(s, BARN_GET);
5200 			pcs->main = full;
5201 			goto do_alloc;
5202 		}
5203 
5204 		stat(s, BARN_GET_FAIL);
5205 
5206 		local_unlock(&s->cpu_sheaves->lock);
5207 
5208 		/*
5209 		 * Once full sheaves in barn are depleted, let the bulk
5210 		 * allocation continue from slab pages, otherwise we would just
5211 		 * be copying arrays of pointers twice.
5212 		 */
5213 		return allocated;
5214 	}
5215 
5216 do_alloc:
5217 
5218 	main = pcs->main;
5219 	batch = min(size, main->size);
5220 
5221 	main->size -= batch;
5222 	memcpy(p, main->objects + main->size, batch * sizeof(void *));
5223 
5224 	local_unlock(&s->cpu_sheaves->lock);
5225 
5226 	stat_add(s, ALLOC_PCS, batch);
5227 
5228 	allocated += batch;
5229 
5230 	if (batch < size) {
5231 		p += batch;
5232 		size -= batch;
5233 		goto next_batch;
5234 	}
5235 
5236 	return allocated;
5237 }
5238 
5239 
5240 /*
5241  * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
5242  * have the fastpath folded into their functions. So no function call
5243  * overhead for requests that can be satisfied on the fastpath.
5244  *
5245  * The fastpath works by first checking if the lockless freelist can be used.
5246  * If not then __slab_alloc is called for slow processing.
5247  *
5248  * Otherwise we can simply pick the next object from the lockless free list.
5249  */
5250 static __fastpath_inline void *slab_alloc_node(struct kmem_cache *s, struct list_lru *lru,
5251 		gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
5252 {
5253 	void *object;
5254 	bool init = false;
5255 
5256 	s = slab_pre_alloc_hook(s, gfpflags);
5257 	if (unlikely(!s))
5258 		return NULL;
5259 
5260 	object = kfence_alloc(s, orig_size, gfpflags);
5261 	if (unlikely(object))
5262 		goto out;
5263 
5264 	if (s->cpu_sheaves)
5265 		object = alloc_from_pcs(s, gfpflags, node);
5266 
5267 	if (!object)
5268 		object = __slab_alloc_node(s, gfpflags, node, addr, orig_size);
5269 
5270 	maybe_wipe_obj_freeptr(s, object);
5271 	init = slab_want_init_on_alloc(gfpflags, s);
5272 
5273 out:
5274 	/*
5275 	 * When init equals 'true', like for kzalloc() family, only
5276 	 * @orig_size bytes might be zeroed instead of s->object_size
5277 	 * In case this fails due to memcg_slab_post_alloc_hook(),
5278 	 * object is set to NULL
5279 	 */
5280 	slab_post_alloc_hook(s, lru, gfpflags, 1, &object, init, orig_size);
5281 
5282 	return object;
5283 }
5284 
5285 void *kmem_cache_alloc_noprof(struct kmem_cache *s, gfp_t gfpflags)
5286 {
5287 	void *ret = slab_alloc_node(s, NULL, gfpflags, NUMA_NO_NODE, _RET_IP_,
5288 				    s->object_size);
5289 
5290 	trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, NUMA_NO_NODE);
5291 
5292 	return ret;
5293 }
5294 EXPORT_SYMBOL(kmem_cache_alloc_noprof);
5295 
5296 void *kmem_cache_alloc_lru_noprof(struct kmem_cache *s, struct list_lru *lru,
5297 			   gfp_t gfpflags)
5298 {
5299 	void *ret = slab_alloc_node(s, lru, gfpflags, NUMA_NO_NODE, _RET_IP_,
5300 				    s->object_size);
5301 
5302 	trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, NUMA_NO_NODE);
5303 
5304 	return ret;
5305 }
5306 EXPORT_SYMBOL(kmem_cache_alloc_lru_noprof);
5307 
5308 bool kmem_cache_charge(void *objp, gfp_t gfpflags)
5309 {
5310 	if (!memcg_kmem_online())
5311 		return true;
5312 
5313 	return memcg_slab_post_charge(objp, gfpflags);
5314 }
5315 EXPORT_SYMBOL(kmem_cache_charge);
5316 
5317 /**
5318  * kmem_cache_alloc_node - Allocate an object on the specified node
5319  * @s: The cache to allocate from.
5320  * @gfpflags: See kmalloc().
5321  * @node: node number of the target node.
5322  *
5323  * Identical to kmem_cache_alloc but it will allocate memory on the given
5324  * node, which can improve the performance for cpu bound structures.
5325  *
5326  * Fallback to other node is possible if __GFP_THISNODE is not set.
5327  *
5328  * Return: pointer to the new object or %NULL in case of error
5329  */
5330 void *kmem_cache_alloc_node_noprof(struct kmem_cache *s, gfp_t gfpflags, int node)
5331 {
5332 	void *ret = slab_alloc_node(s, NULL, gfpflags, node, _RET_IP_, s->object_size);
5333 
5334 	trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, node);
5335 
5336 	return ret;
5337 }
5338 EXPORT_SYMBOL(kmem_cache_alloc_node_noprof);
5339 
5340 /*
5341  * returns a sheaf that has at least the requested size
5342  * when prefilling is needed, do so with given gfp flags
5343  *
5344  * return NULL if sheaf allocation or prefilling failed
5345  */
5346 struct slab_sheaf *
5347 kmem_cache_prefill_sheaf(struct kmem_cache *s, gfp_t gfp, unsigned int size)
5348 {
5349 	struct slub_percpu_sheaves *pcs;
5350 	struct slab_sheaf *sheaf = NULL;
5351 	struct node_barn *barn;
5352 
5353 	if (unlikely(size > s->sheaf_capacity)) {
5354 
5355 		/*
5356 		 * slab_debug disables cpu sheaves intentionally so all
5357 		 * prefilled sheaves become "oversize" and we give up on
5358 		 * performance for the debugging. Same with SLUB_TINY.
5359 		 * Creating a cache without sheaves and then requesting a
5360 		 * prefilled sheaf is however not expected, so warn.
5361 		 */
5362 		WARN_ON_ONCE(s->sheaf_capacity == 0 &&
5363 			     !IS_ENABLED(CONFIG_SLUB_TINY) &&
5364 			     !(s->flags & SLAB_DEBUG_FLAGS));
5365 
5366 		sheaf = kzalloc(struct_size(sheaf, objects, size), gfp);
5367 		if (!sheaf)
5368 			return NULL;
5369 
5370 		stat(s, SHEAF_PREFILL_OVERSIZE);
5371 		sheaf->cache = s;
5372 		sheaf->capacity = size;
5373 
5374 		if (!__kmem_cache_alloc_bulk(s, gfp, size,
5375 					     &sheaf->objects[0])) {
5376 			kfree(sheaf);
5377 			return NULL;
5378 		}
5379 
5380 		sheaf->size = size;
5381 
5382 		return sheaf;
5383 	}
5384 
5385 	local_lock(&s->cpu_sheaves->lock);
5386 	pcs = this_cpu_ptr(s->cpu_sheaves);
5387 
5388 	if (pcs->spare) {
5389 		sheaf = pcs->spare;
5390 		pcs->spare = NULL;
5391 		stat(s, SHEAF_PREFILL_FAST);
5392 	} else {
5393 		barn = get_barn(s);
5394 
5395 		stat(s, SHEAF_PREFILL_SLOW);
5396 		if (barn)
5397 			sheaf = barn_get_full_or_empty_sheaf(barn);
5398 		if (sheaf && sheaf->size)
5399 			stat(s, BARN_GET);
5400 		else
5401 			stat(s, BARN_GET_FAIL);
5402 	}
5403 
5404 	local_unlock(&s->cpu_sheaves->lock);
5405 
5406 
5407 	if (!sheaf)
5408 		sheaf = alloc_empty_sheaf(s, gfp);
5409 
5410 	if (sheaf && sheaf->size < size) {
5411 		if (refill_sheaf(s, sheaf, gfp)) {
5412 			sheaf_flush_unused(s, sheaf);
5413 			free_empty_sheaf(s, sheaf);
5414 			sheaf = NULL;
5415 		}
5416 	}
5417 
5418 	if (sheaf)
5419 		sheaf->capacity = s->sheaf_capacity;
5420 
5421 	return sheaf;
5422 }
5423 
5424 /*
5425  * Use this to return a sheaf obtained by kmem_cache_prefill_sheaf()
5426  *
5427  * If the sheaf cannot simply become the percpu spare sheaf, but there's space
5428  * for a full sheaf in the barn, we try to refill the sheaf back to the cache's
5429  * sheaf_capacity to avoid handling partially full sheaves.
5430  *
5431  * If the refill fails because gfp is e.g. GFP_NOWAIT, or the barn is full, the
5432  * sheaf is instead flushed and freed.
5433  */
5434 void kmem_cache_return_sheaf(struct kmem_cache *s, gfp_t gfp,
5435 			     struct slab_sheaf *sheaf)
5436 {
5437 	struct slub_percpu_sheaves *pcs;
5438 	struct node_barn *barn;
5439 
5440 	if (unlikely(sheaf->capacity != s->sheaf_capacity)) {
5441 		sheaf_flush_unused(s, sheaf);
5442 		kfree(sheaf);
5443 		return;
5444 	}
5445 
5446 	local_lock(&s->cpu_sheaves->lock);
5447 	pcs = this_cpu_ptr(s->cpu_sheaves);
5448 	barn = get_barn(s);
5449 
5450 	if (!pcs->spare) {
5451 		pcs->spare = sheaf;
5452 		sheaf = NULL;
5453 		stat(s, SHEAF_RETURN_FAST);
5454 	}
5455 
5456 	local_unlock(&s->cpu_sheaves->lock);
5457 
5458 	if (!sheaf)
5459 		return;
5460 
5461 	stat(s, SHEAF_RETURN_SLOW);
5462 
5463 	/*
5464 	 * If the barn has too many full sheaves or we fail to refill the sheaf,
5465 	 * simply flush and free it.
5466 	 */
5467 	if (!barn || data_race(barn->nr_full) >= MAX_FULL_SHEAVES ||
5468 	    refill_sheaf(s, sheaf, gfp)) {
5469 		sheaf_flush_unused(s, sheaf);
5470 		free_empty_sheaf(s, sheaf);
5471 		return;
5472 	}
5473 
5474 	barn_put_full_sheaf(barn, sheaf);
5475 	stat(s, BARN_PUT);
5476 }
5477 
5478 /*
5479  * refill a sheaf previously returned by kmem_cache_prefill_sheaf to at least
5480  * the given size
5481  *
5482  * the sheaf might be replaced by a new one when requesting more than
5483  * s->sheaf_capacity objects if such replacement is necessary, but the refill
5484  * fails (returning -ENOMEM), the existing sheaf is left intact
5485  *
5486  * In practice we always refill to full sheaf's capacity.
5487  */
5488 int kmem_cache_refill_sheaf(struct kmem_cache *s, gfp_t gfp,
5489 			    struct slab_sheaf **sheafp, unsigned int size)
5490 {
5491 	struct slab_sheaf *sheaf;
5492 
5493 	/*
5494 	 * TODO: do we want to support *sheaf == NULL to be equivalent of
5495 	 * kmem_cache_prefill_sheaf() ?
5496 	 */
5497 	if (!sheafp || !(*sheafp))
5498 		return -EINVAL;
5499 
5500 	sheaf = *sheafp;
5501 	if (sheaf->size >= size)
5502 		return 0;
5503 
5504 	if (likely(sheaf->capacity >= size)) {
5505 		if (likely(sheaf->capacity == s->sheaf_capacity))
5506 			return refill_sheaf(s, sheaf, gfp);
5507 
5508 		if (!__kmem_cache_alloc_bulk(s, gfp, sheaf->capacity - sheaf->size,
5509 					     &sheaf->objects[sheaf->size])) {
5510 			return -ENOMEM;
5511 		}
5512 		sheaf->size = sheaf->capacity;
5513 
5514 		return 0;
5515 	}
5516 
5517 	/*
5518 	 * We had a regular sized sheaf and need an oversize one, or we had an
5519 	 * oversize one already but need a larger one now.
5520 	 * This should be a very rare path so let's not complicate it.
5521 	 */
5522 	sheaf = kmem_cache_prefill_sheaf(s, gfp, size);
5523 	if (!sheaf)
5524 		return -ENOMEM;
5525 
5526 	kmem_cache_return_sheaf(s, gfp, *sheafp);
5527 	*sheafp = sheaf;
5528 	return 0;
5529 }
5530 
5531 /*
5532  * Allocate from a sheaf obtained by kmem_cache_prefill_sheaf()
5533  *
5534  * Guaranteed not to fail as many allocations as was the requested size.
5535  * After the sheaf is emptied, it fails - no fallback to the slab cache itself.
5536  *
5537  * The gfp parameter is meant only to specify __GFP_ZERO or __GFP_ACCOUNT
5538  * memcg charging is forced over limit if necessary, to avoid failure.
5539  */
5540 void *
5541 kmem_cache_alloc_from_sheaf_noprof(struct kmem_cache *s, gfp_t gfp,
5542 				   struct slab_sheaf *sheaf)
5543 {
5544 	void *ret = NULL;
5545 	bool init;
5546 
5547 	if (sheaf->size == 0)
5548 		goto out;
5549 
5550 	ret = sheaf->objects[--sheaf->size];
5551 
5552 	init = slab_want_init_on_alloc(gfp, s);
5553 
5554 	/* add __GFP_NOFAIL to force successful memcg charging */
5555 	slab_post_alloc_hook(s, NULL, gfp | __GFP_NOFAIL, 1, &ret, init, s->object_size);
5556 out:
5557 	trace_kmem_cache_alloc(_RET_IP_, ret, s, gfp, NUMA_NO_NODE);
5558 
5559 	return ret;
5560 }
5561 
5562 unsigned int kmem_cache_sheaf_size(struct slab_sheaf *sheaf)
5563 {
5564 	return sheaf->size;
5565 }
5566 /*
5567  * To avoid unnecessary overhead, we pass through large allocation requests
5568  * directly to the page allocator. We use __GFP_COMP, because we will need to
5569  * know the allocation order to free the pages properly in kfree.
5570  */
5571 static void *___kmalloc_large_node(size_t size, gfp_t flags, int node)
5572 {
5573 	struct folio *folio;
5574 	void *ptr = NULL;
5575 	unsigned int order = get_order(size);
5576 
5577 	if (unlikely(flags & GFP_SLAB_BUG_MASK))
5578 		flags = kmalloc_fix_flags(flags);
5579 
5580 	flags |= __GFP_COMP;
5581 
5582 	if (node == NUMA_NO_NODE)
5583 		folio = (struct folio *)alloc_frozen_pages_noprof(flags, order);
5584 	else
5585 		folio = (struct folio *)__alloc_frozen_pages_noprof(flags, order, node, NULL);
5586 
5587 	if (folio) {
5588 		ptr = folio_address(folio);
5589 		lruvec_stat_mod_folio(folio, NR_SLAB_UNRECLAIMABLE_B,
5590 				      PAGE_SIZE << order);
5591 		__folio_set_large_kmalloc(folio);
5592 	}
5593 
5594 	ptr = kasan_kmalloc_large(ptr, size, flags);
5595 	/* As ptr might get tagged, call kmemleak hook after KASAN. */
5596 	kmemleak_alloc(ptr, size, 1, flags);
5597 	kmsan_kmalloc_large(ptr, size, flags);
5598 
5599 	return ptr;
5600 }
5601 
5602 void *__kmalloc_large_noprof(size_t size, gfp_t flags)
5603 {
5604 	void *ret = ___kmalloc_large_node(size, flags, NUMA_NO_NODE);
5605 
5606 	trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << get_order(size),
5607 		      flags, NUMA_NO_NODE);
5608 	return ret;
5609 }
5610 EXPORT_SYMBOL(__kmalloc_large_noprof);
5611 
5612 void *__kmalloc_large_node_noprof(size_t size, gfp_t flags, int node)
5613 {
5614 	void *ret = ___kmalloc_large_node(size, flags, node);
5615 
5616 	trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << get_order(size),
5617 		      flags, node);
5618 	return ret;
5619 }
5620 EXPORT_SYMBOL(__kmalloc_large_node_noprof);
5621 
5622 static __always_inline
5623 void *__do_kmalloc_node(size_t size, kmem_buckets *b, gfp_t flags, int node,
5624 			unsigned long caller)
5625 {
5626 	struct kmem_cache *s;
5627 	void *ret;
5628 
5629 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
5630 		ret = __kmalloc_large_node_noprof(size, flags, node);
5631 		trace_kmalloc(caller, ret, size,
5632 			      PAGE_SIZE << get_order(size), flags, node);
5633 		return ret;
5634 	}
5635 
5636 	if (unlikely(!size))
5637 		return ZERO_SIZE_PTR;
5638 
5639 	s = kmalloc_slab(size, b, flags, caller);
5640 
5641 	ret = slab_alloc_node(s, NULL, flags, node, caller, size);
5642 	ret = kasan_kmalloc(s, ret, size, flags);
5643 	trace_kmalloc(caller, ret, size, s->size, flags, node);
5644 	return ret;
5645 }
5646 void *__kmalloc_node_noprof(DECL_BUCKET_PARAMS(size, b), gfp_t flags, int node)
5647 {
5648 	return __do_kmalloc_node(size, PASS_BUCKET_PARAM(b), flags, node, _RET_IP_);
5649 }
5650 EXPORT_SYMBOL(__kmalloc_node_noprof);
5651 
5652 void *__kmalloc_noprof(size_t size, gfp_t flags)
5653 {
5654 	return __do_kmalloc_node(size, NULL, flags, NUMA_NO_NODE, _RET_IP_);
5655 }
5656 EXPORT_SYMBOL(__kmalloc_noprof);
5657 
5658 /**
5659  * kmalloc_nolock - Allocate an object of given size from any context.
5660  * @size: size to allocate
5661  * @gfp_flags: GFP flags. Only __GFP_ACCOUNT, __GFP_ZERO, __GFP_NO_OBJ_EXT
5662  * allowed.
5663  * @node: node number of the target node.
5664  *
5665  * Return: pointer to the new object or NULL in case of error.
5666  * NULL does not mean EBUSY or EAGAIN. It means ENOMEM.
5667  * There is no reason to call it again and expect !NULL.
5668  */
5669 void *kmalloc_nolock_noprof(size_t size, gfp_t gfp_flags, int node)
5670 {
5671 	gfp_t alloc_gfp = __GFP_NOWARN | __GFP_NOMEMALLOC | gfp_flags;
5672 	struct kmem_cache *s;
5673 	bool can_retry = true;
5674 	void *ret = ERR_PTR(-EBUSY);
5675 
5676 	VM_WARN_ON_ONCE(gfp_flags & ~(__GFP_ACCOUNT | __GFP_ZERO |
5677 				      __GFP_NO_OBJ_EXT));
5678 
5679 	if (unlikely(!size))
5680 		return ZERO_SIZE_PTR;
5681 
5682 	if (IS_ENABLED(CONFIG_PREEMPT_RT) && (in_nmi() || in_hardirq()))
5683 		/* kmalloc_nolock() in PREEMPT_RT is not supported from irq */
5684 		return NULL;
5685 retry:
5686 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
5687 		return NULL;
5688 	s = kmalloc_slab(size, NULL, alloc_gfp, _RET_IP_);
5689 
5690 	if (!(s->flags & __CMPXCHG_DOUBLE) && !kmem_cache_debug(s))
5691 		/*
5692 		 * kmalloc_nolock() is not supported on architectures that
5693 		 * don't implement cmpxchg16b, but debug caches don't use
5694 		 * per-cpu slab and per-cpu partial slabs. They rely on
5695 		 * kmem_cache_node->list_lock, so kmalloc_nolock() can
5696 		 * attempt to allocate from debug caches by
5697 		 * spin_trylock_irqsave(&n->list_lock, ...)
5698 		 */
5699 		return NULL;
5700 
5701 	/*
5702 	 * Do not call slab_alloc_node(), since trylock mode isn't
5703 	 * compatible with slab_pre_alloc_hook/should_failslab and
5704 	 * kfence_alloc. Hence call __slab_alloc_node() (at most twice)
5705 	 * and slab_post_alloc_hook() directly.
5706 	 *
5707 	 * In !PREEMPT_RT ___slab_alloc() manipulates (freelist,tid) pair
5708 	 * in irq saved region. It assumes that the same cpu will not
5709 	 * __update_cpu_freelist_fast() into the same (freelist,tid) pair.
5710 	 * Therefore use in_nmi() to check whether particular bucket is in
5711 	 * irq protected section.
5712 	 *
5713 	 * If in_nmi() && local_lock_is_locked(s->cpu_slab) then it means that
5714 	 * this cpu was interrupted somewhere inside ___slab_alloc() after
5715 	 * it did local_lock_irqsave(&s->cpu_slab->lock, flags).
5716 	 * In this case fast path with __update_cpu_freelist_fast() is not safe.
5717 	 */
5718 #ifndef CONFIG_SLUB_TINY
5719 	if (!in_nmi() || !local_lock_is_locked(&s->cpu_slab->lock))
5720 #endif
5721 		ret = __slab_alloc_node(s, alloc_gfp, node, _RET_IP_, size);
5722 
5723 	if (PTR_ERR(ret) == -EBUSY) {
5724 		if (can_retry) {
5725 			/* pick the next kmalloc bucket */
5726 			size = s->object_size + 1;
5727 			/*
5728 			 * Another alternative is to
5729 			 * if (memcg) alloc_gfp &= ~__GFP_ACCOUNT;
5730 			 * else if (!memcg) alloc_gfp |= __GFP_ACCOUNT;
5731 			 * to retry from bucket of the same size.
5732 			 */
5733 			can_retry = false;
5734 			goto retry;
5735 		}
5736 		ret = NULL;
5737 	}
5738 
5739 	maybe_wipe_obj_freeptr(s, ret);
5740 	slab_post_alloc_hook(s, NULL, alloc_gfp, 1, &ret,
5741 			     slab_want_init_on_alloc(alloc_gfp, s), size);
5742 
5743 	ret = kasan_kmalloc(s, ret, size, alloc_gfp);
5744 	return ret;
5745 }
5746 EXPORT_SYMBOL_GPL(kmalloc_nolock_noprof);
5747 
5748 void *__kmalloc_node_track_caller_noprof(DECL_BUCKET_PARAMS(size, b), gfp_t flags,
5749 					 int node, unsigned long caller)
5750 {
5751 	return __do_kmalloc_node(size, PASS_BUCKET_PARAM(b), flags, node, caller);
5752 
5753 }
5754 EXPORT_SYMBOL(__kmalloc_node_track_caller_noprof);
5755 
5756 void *__kmalloc_cache_noprof(struct kmem_cache *s, gfp_t gfpflags, size_t size)
5757 {
5758 	void *ret = slab_alloc_node(s, NULL, gfpflags, NUMA_NO_NODE,
5759 					    _RET_IP_, size);
5760 
5761 	trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags, NUMA_NO_NODE);
5762 
5763 	ret = kasan_kmalloc(s, ret, size, gfpflags);
5764 	return ret;
5765 }
5766 EXPORT_SYMBOL(__kmalloc_cache_noprof);
5767 
5768 void *__kmalloc_cache_node_noprof(struct kmem_cache *s, gfp_t gfpflags,
5769 				  int node, size_t size)
5770 {
5771 	void *ret = slab_alloc_node(s, NULL, gfpflags, node, _RET_IP_, size);
5772 
5773 	trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags, node);
5774 
5775 	ret = kasan_kmalloc(s, ret, size, gfpflags);
5776 	return ret;
5777 }
5778 EXPORT_SYMBOL(__kmalloc_cache_node_noprof);
5779 
5780 static noinline void free_to_partial_list(
5781 	struct kmem_cache *s, struct slab *slab,
5782 	void *head, void *tail, int bulk_cnt,
5783 	unsigned long addr)
5784 {
5785 	struct kmem_cache_node *n = get_node(s, slab_nid(slab));
5786 	struct slab *slab_free = NULL;
5787 	int cnt = bulk_cnt;
5788 	unsigned long flags;
5789 	depot_stack_handle_t handle = 0;
5790 
5791 	/*
5792 	 * We cannot use GFP_NOWAIT as there are callsites where waking up
5793 	 * kswapd could deadlock
5794 	 */
5795 	if (s->flags & SLAB_STORE_USER)
5796 		handle = set_track_prepare(__GFP_NOWARN);
5797 
5798 	spin_lock_irqsave(&n->list_lock, flags);
5799 
5800 	if (free_debug_processing(s, slab, head, tail, &cnt, addr, handle)) {
5801 		void *prior = slab->freelist;
5802 
5803 		/* Perform the actual freeing while we still hold the locks */
5804 		slab->inuse -= cnt;
5805 		set_freepointer(s, tail, prior);
5806 		slab->freelist = head;
5807 
5808 		/*
5809 		 * If the slab is empty, and node's partial list is full,
5810 		 * it should be discarded anyway no matter it's on full or
5811 		 * partial list.
5812 		 */
5813 		if (slab->inuse == 0 && n->nr_partial >= s->min_partial)
5814 			slab_free = slab;
5815 
5816 		if (!prior) {
5817 			/* was on full list */
5818 			remove_full(s, n, slab);
5819 			if (!slab_free) {
5820 				add_partial(n, slab, DEACTIVATE_TO_TAIL);
5821 				stat(s, FREE_ADD_PARTIAL);
5822 			}
5823 		} else if (slab_free) {
5824 			remove_partial(n, slab);
5825 			stat(s, FREE_REMOVE_PARTIAL);
5826 		}
5827 	}
5828 
5829 	if (slab_free) {
5830 		/*
5831 		 * Update the counters while still holding n->list_lock to
5832 		 * prevent spurious validation warnings
5833 		 */
5834 		dec_slabs_node(s, slab_nid(slab_free), slab_free->objects);
5835 	}
5836 
5837 	spin_unlock_irqrestore(&n->list_lock, flags);
5838 
5839 	if (slab_free) {
5840 		stat(s, FREE_SLAB);
5841 		free_slab(s, slab_free);
5842 	}
5843 }
5844 
5845 /*
5846  * Slow path handling. This may still be called frequently since objects
5847  * have a longer lifetime than the cpu slabs in most processing loads.
5848  *
5849  * So we still attempt to reduce cache line usage. Just take the slab
5850  * lock and free the item. If there is no additional partial slab
5851  * handling required then we can return immediately.
5852  */
5853 static void __slab_free(struct kmem_cache *s, struct slab *slab,
5854 			void *head, void *tail, int cnt,
5855 			unsigned long addr)
5856 
5857 {
5858 	void *prior;
5859 	int was_frozen;
5860 	struct slab new;
5861 	unsigned long counters;
5862 	struct kmem_cache_node *n = NULL;
5863 	unsigned long flags;
5864 	bool on_node_partial;
5865 
5866 	stat(s, FREE_SLOWPATH);
5867 
5868 	if (IS_ENABLED(CONFIG_SLUB_TINY) || kmem_cache_debug(s)) {
5869 		free_to_partial_list(s, slab, head, tail, cnt, addr);
5870 		return;
5871 	}
5872 
5873 	do {
5874 		if (unlikely(n)) {
5875 			spin_unlock_irqrestore(&n->list_lock, flags);
5876 			n = NULL;
5877 		}
5878 		prior = slab->freelist;
5879 		counters = slab->counters;
5880 		set_freepointer(s, tail, prior);
5881 		new.counters = counters;
5882 		was_frozen = new.frozen;
5883 		new.inuse -= cnt;
5884 		if ((!new.inuse || !prior) && !was_frozen) {
5885 			/* Needs to be taken off a list */
5886 			if (!kmem_cache_has_cpu_partial(s) || prior) {
5887 
5888 				n = get_node(s, slab_nid(slab));
5889 				/*
5890 				 * Speculatively acquire the list_lock.
5891 				 * If the cmpxchg does not succeed then we may
5892 				 * drop the list_lock without any processing.
5893 				 *
5894 				 * Otherwise the list_lock will synchronize with
5895 				 * other processors updating the list of slabs.
5896 				 */
5897 				spin_lock_irqsave(&n->list_lock, flags);
5898 
5899 				on_node_partial = slab_test_node_partial(slab);
5900 			}
5901 		}
5902 
5903 	} while (!slab_update_freelist(s, slab,
5904 		prior, counters,
5905 		head, new.counters,
5906 		"__slab_free"));
5907 
5908 	if (likely(!n)) {
5909 
5910 		if (likely(was_frozen)) {
5911 			/*
5912 			 * The list lock was not taken therefore no list
5913 			 * activity can be necessary.
5914 			 */
5915 			stat(s, FREE_FROZEN);
5916 		} else if (kmem_cache_has_cpu_partial(s) && !prior) {
5917 			/*
5918 			 * If we started with a full slab then put it onto the
5919 			 * per cpu partial list.
5920 			 */
5921 			put_cpu_partial(s, slab, 1);
5922 			stat(s, CPU_PARTIAL_FREE);
5923 		}
5924 
5925 		return;
5926 	}
5927 
5928 	/*
5929 	 * This slab was partially empty but not on the per-node partial list,
5930 	 * in which case we shouldn't manipulate its list, just return.
5931 	 */
5932 	if (prior && !on_node_partial) {
5933 		spin_unlock_irqrestore(&n->list_lock, flags);
5934 		return;
5935 	}
5936 
5937 	if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
5938 		goto slab_empty;
5939 
5940 	/*
5941 	 * Objects left in the slab. If it was not on the partial list before
5942 	 * then add it.
5943 	 */
5944 	if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
5945 		add_partial(n, slab, DEACTIVATE_TO_TAIL);
5946 		stat(s, FREE_ADD_PARTIAL);
5947 	}
5948 	spin_unlock_irqrestore(&n->list_lock, flags);
5949 	return;
5950 
5951 slab_empty:
5952 	if (prior) {
5953 		/*
5954 		 * Slab on the partial list.
5955 		 */
5956 		remove_partial(n, slab);
5957 		stat(s, FREE_REMOVE_PARTIAL);
5958 	}
5959 
5960 	spin_unlock_irqrestore(&n->list_lock, flags);
5961 	stat(s, FREE_SLAB);
5962 	discard_slab(s, slab);
5963 }
5964 
5965 /*
5966  * pcs is locked. We should have get rid of the spare sheaf and obtained an
5967  * empty sheaf, while the main sheaf is full. We want to install the empty sheaf
5968  * as a main sheaf, and make the current main sheaf a spare sheaf.
5969  *
5970  * However due to having relinquished the cpu_sheaves lock when obtaining
5971  * the empty sheaf, we need to handle some unlikely but possible cases.
5972  *
5973  * If we put any sheaf to barn here, it's because we were interrupted or have
5974  * been migrated to a different cpu, which should be rare enough so just ignore
5975  * the barn's limits to simplify the handling.
5976  *
5977  * An alternative scenario that gets us here is when we fail
5978  * barn_replace_full_sheaf(), because there's no empty sheaf available in the
5979  * barn, so we had to allocate it by alloc_empty_sheaf(). But because we saw the
5980  * limit on full sheaves was not exceeded, we assume it didn't change and just
5981  * put the full sheaf there.
5982  */
5983 static void __pcs_install_empty_sheaf(struct kmem_cache *s,
5984 		struct slub_percpu_sheaves *pcs, struct slab_sheaf *empty,
5985 		struct node_barn *barn)
5986 {
5987 	lockdep_assert_held(this_cpu_ptr(&s->cpu_sheaves->lock));
5988 
5989 	/* This is what we expect to find if nobody interrupted us. */
5990 	if (likely(!pcs->spare)) {
5991 		pcs->spare = pcs->main;
5992 		pcs->main = empty;
5993 		return;
5994 	}
5995 
5996 	/*
5997 	 * Unlikely because if the main sheaf had space, we would have just
5998 	 * freed to it. Get rid of our empty sheaf.
5999 	 */
6000 	if (pcs->main->size < s->sheaf_capacity) {
6001 		barn_put_empty_sheaf(barn, empty);
6002 		return;
6003 	}
6004 
6005 	/* Also unlikely for the same reason */
6006 	if (pcs->spare->size < s->sheaf_capacity) {
6007 		swap(pcs->main, pcs->spare);
6008 		barn_put_empty_sheaf(barn, empty);
6009 		return;
6010 	}
6011 
6012 	/*
6013 	 * We probably failed barn_replace_full_sheaf() due to no empty sheaf
6014 	 * available there, but we allocated one, so finish the job.
6015 	 */
6016 	barn_put_full_sheaf(barn, pcs->main);
6017 	stat(s, BARN_PUT);
6018 	pcs->main = empty;
6019 }
6020 
6021 /*
6022  * Replace the full main sheaf with a (at least partially) empty sheaf.
6023  *
6024  * Must be called with the cpu_sheaves local lock locked. If successful, returns
6025  * the pcs pointer and the local lock locked (possibly on a different cpu than
6026  * initially called). If not successful, returns NULL and the local lock
6027  * unlocked.
6028  */
6029 static struct slub_percpu_sheaves *
6030 __pcs_replace_full_main(struct kmem_cache *s, struct slub_percpu_sheaves *pcs)
6031 {
6032 	struct slab_sheaf *empty;
6033 	struct node_barn *barn;
6034 	bool put_fail;
6035 
6036 restart:
6037 	lockdep_assert_held(this_cpu_ptr(&s->cpu_sheaves->lock));
6038 
6039 	barn = get_barn(s);
6040 	if (!barn) {
6041 		local_unlock(&s->cpu_sheaves->lock);
6042 		return NULL;
6043 	}
6044 
6045 	put_fail = false;
6046 
6047 	if (!pcs->spare) {
6048 		empty = barn_get_empty_sheaf(barn);
6049 		if (empty) {
6050 			pcs->spare = pcs->main;
6051 			pcs->main = empty;
6052 			return pcs;
6053 		}
6054 		goto alloc_empty;
6055 	}
6056 
6057 	if (pcs->spare->size < s->sheaf_capacity) {
6058 		swap(pcs->main, pcs->spare);
6059 		return pcs;
6060 	}
6061 
6062 	empty = barn_replace_full_sheaf(barn, pcs->main);
6063 
6064 	if (!IS_ERR(empty)) {
6065 		stat(s, BARN_PUT);
6066 		pcs->main = empty;
6067 		return pcs;
6068 	}
6069 
6070 	if (PTR_ERR(empty) == -E2BIG) {
6071 		/* Since we got here, spare exists and is full */
6072 		struct slab_sheaf *to_flush = pcs->spare;
6073 
6074 		stat(s, BARN_PUT_FAIL);
6075 
6076 		pcs->spare = NULL;
6077 		local_unlock(&s->cpu_sheaves->lock);
6078 
6079 		sheaf_flush_unused(s, to_flush);
6080 		empty = to_flush;
6081 		goto got_empty;
6082 	}
6083 
6084 	/*
6085 	 * We could not replace full sheaf because barn had no empty
6086 	 * sheaves. We can still allocate it and put the full sheaf in
6087 	 * __pcs_install_empty_sheaf(), but if we fail to allocate it,
6088 	 * make sure to count the fail.
6089 	 */
6090 	put_fail = true;
6091 
6092 alloc_empty:
6093 	local_unlock(&s->cpu_sheaves->lock);
6094 
6095 	empty = alloc_empty_sheaf(s, GFP_NOWAIT);
6096 	if (empty)
6097 		goto got_empty;
6098 
6099 	if (put_fail)
6100 		 stat(s, BARN_PUT_FAIL);
6101 
6102 	if (!sheaf_flush_main(s))
6103 		return NULL;
6104 
6105 	if (!local_trylock(&s->cpu_sheaves->lock))
6106 		return NULL;
6107 
6108 	pcs = this_cpu_ptr(s->cpu_sheaves);
6109 
6110 	/*
6111 	 * we flushed the main sheaf so it should be empty now,
6112 	 * but in case we got preempted or migrated, we need to
6113 	 * check again
6114 	 */
6115 	if (pcs->main->size == s->sheaf_capacity)
6116 		goto restart;
6117 
6118 	return pcs;
6119 
6120 got_empty:
6121 	if (!local_trylock(&s->cpu_sheaves->lock)) {
6122 		barn_put_empty_sheaf(barn, empty);
6123 		return NULL;
6124 	}
6125 
6126 	pcs = this_cpu_ptr(s->cpu_sheaves);
6127 	__pcs_install_empty_sheaf(s, pcs, empty, barn);
6128 
6129 	return pcs;
6130 }
6131 
6132 /*
6133  * Free an object to the percpu sheaves.
6134  * The object is expected to have passed slab_free_hook() already.
6135  */
6136 static __fastpath_inline
6137 bool free_to_pcs(struct kmem_cache *s, void *object)
6138 {
6139 	struct slub_percpu_sheaves *pcs;
6140 
6141 	if (!local_trylock(&s->cpu_sheaves->lock))
6142 		return false;
6143 
6144 	pcs = this_cpu_ptr(s->cpu_sheaves);
6145 
6146 	if (unlikely(pcs->main->size == s->sheaf_capacity)) {
6147 
6148 		pcs = __pcs_replace_full_main(s, pcs);
6149 		if (unlikely(!pcs))
6150 			return false;
6151 	}
6152 
6153 	pcs->main->objects[pcs->main->size++] = object;
6154 
6155 	local_unlock(&s->cpu_sheaves->lock);
6156 
6157 	stat(s, FREE_PCS);
6158 
6159 	return true;
6160 }
6161 
6162 static void rcu_free_sheaf(struct rcu_head *head)
6163 {
6164 	struct kmem_cache_node *n;
6165 	struct slab_sheaf *sheaf;
6166 	struct node_barn *barn = NULL;
6167 	struct kmem_cache *s;
6168 
6169 	sheaf = container_of(head, struct slab_sheaf, rcu_head);
6170 
6171 	s = sheaf->cache;
6172 
6173 	/*
6174 	 * This may remove some objects due to slab_free_hook() returning false,
6175 	 * so that the sheaf might no longer be completely full. But it's easier
6176 	 * to handle it as full (unless it became completely empty), as the code
6177 	 * handles it fine. The only downside is that sheaf will serve fewer
6178 	 * allocations when reused. It only happens due to debugging, which is a
6179 	 * performance hit anyway.
6180 	 */
6181 	__rcu_free_sheaf_prepare(s, sheaf);
6182 
6183 	n = get_node(s, sheaf->node);
6184 	if (!n)
6185 		goto flush;
6186 
6187 	barn = n->barn;
6188 
6189 	/* due to slab_free_hook() */
6190 	if (unlikely(sheaf->size == 0))
6191 		goto empty;
6192 
6193 	/*
6194 	 * Checking nr_full/nr_empty outside lock avoids contention in case the
6195 	 * barn is at the respective limit. Due to the race we might go over the
6196 	 * limit but that should be rare and harmless.
6197 	 */
6198 
6199 	if (data_race(barn->nr_full) < MAX_FULL_SHEAVES) {
6200 		stat(s, BARN_PUT);
6201 		barn_put_full_sheaf(barn, sheaf);
6202 		return;
6203 	}
6204 
6205 flush:
6206 	stat(s, BARN_PUT_FAIL);
6207 	sheaf_flush_unused(s, sheaf);
6208 
6209 empty:
6210 	if (barn && data_race(barn->nr_empty) < MAX_EMPTY_SHEAVES) {
6211 		barn_put_empty_sheaf(barn, sheaf);
6212 		return;
6213 	}
6214 
6215 	free_empty_sheaf(s, sheaf);
6216 }
6217 
6218 bool __kfree_rcu_sheaf(struct kmem_cache *s, void *obj)
6219 {
6220 	struct slub_percpu_sheaves *pcs;
6221 	struct slab_sheaf *rcu_sheaf;
6222 
6223 	if (!local_trylock(&s->cpu_sheaves->lock))
6224 		goto fail;
6225 
6226 	pcs = this_cpu_ptr(s->cpu_sheaves);
6227 
6228 	if (unlikely(!pcs->rcu_free)) {
6229 
6230 		struct slab_sheaf *empty;
6231 		struct node_barn *barn;
6232 
6233 		if (pcs->spare && pcs->spare->size == 0) {
6234 			pcs->rcu_free = pcs->spare;
6235 			pcs->spare = NULL;
6236 			goto do_free;
6237 		}
6238 
6239 		barn = get_barn(s);
6240 		if (!barn) {
6241 			local_unlock(&s->cpu_sheaves->lock);
6242 			goto fail;
6243 		}
6244 
6245 		empty = barn_get_empty_sheaf(barn);
6246 
6247 		if (empty) {
6248 			pcs->rcu_free = empty;
6249 			goto do_free;
6250 		}
6251 
6252 		local_unlock(&s->cpu_sheaves->lock);
6253 
6254 		empty = alloc_empty_sheaf(s, GFP_NOWAIT);
6255 
6256 		if (!empty)
6257 			goto fail;
6258 
6259 		if (!local_trylock(&s->cpu_sheaves->lock)) {
6260 			barn_put_empty_sheaf(barn, empty);
6261 			goto fail;
6262 		}
6263 
6264 		pcs = this_cpu_ptr(s->cpu_sheaves);
6265 
6266 		if (unlikely(pcs->rcu_free))
6267 			barn_put_empty_sheaf(barn, empty);
6268 		else
6269 			pcs->rcu_free = empty;
6270 	}
6271 
6272 do_free:
6273 
6274 	rcu_sheaf = pcs->rcu_free;
6275 
6276 	/*
6277 	 * Since we flush immediately when size reaches capacity, we never reach
6278 	 * this with size already at capacity, so no OOB write is possible.
6279 	 */
6280 	rcu_sheaf->objects[rcu_sheaf->size++] = obj;
6281 
6282 	if (likely(rcu_sheaf->size < s->sheaf_capacity)) {
6283 		rcu_sheaf = NULL;
6284 	} else {
6285 		pcs->rcu_free = NULL;
6286 		rcu_sheaf->node = numa_mem_id();
6287 	}
6288 
6289 	/*
6290 	 * we flush before local_unlock to make sure a racing
6291 	 * flush_all_rcu_sheaves() doesn't miss this sheaf
6292 	 */
6293 	if (rcu_sheaf)
6294 		call_rcu(&rcu_sheaf->rcu_head, rcu_free_sheaf);
6295 
6296 	local_unlock(&s->cpu_sheaves->lock);
6297 
6298 	stat(s, FREE_RCU_SHEAF);
6299 	return true;
6300 
6301 fail:
6302 	stat(s, FREE_RCU_SHEAF_FAIL);
6303 	return false;
6304 }
6305 
6306 /*
6307  * Bulk free objects to the percpu sheaves.
6308  * Unlike free_to_pcs() this includes the calls to all necessary hooks
6309  * and the fallback to freeing to slab pages.
6310  */
6311 static void free_to_pcs_bulk(struct kmem_cache *s, size_t size, void **p)
6312 {
6313 	struct slub_percpu_sheaves *pcs;
6314 	struct slab_sheaf *main, *empty;
6315 	bool init = slab_want_init_on_free(s);
6316 	unsigned int batch, i = 0;
6317 	struct node_barn *barn;
6318 	void *remote_objects[PCS_BATCH_MAX];
6319 	unsigned int remote_nr = 0;
6320 	int node = numa_mem_id();
6321 
6322 next_remote_batch:
6323 	while (i < size) {
6324 		struct slab *slab = virt_to_slab(p[i]);
6325 
6326 		memcg_slab_free_hook(s, slab, p + i, 1);
6327 		alloc_tagging_slab_free_hook(s, slab, p + i, 1);
6328 
6329 		if (unlikely(!slab_free_hook(s, p[i], init, false))) {
6330 			p[i] = p[--size];
6331 			if (!size)
6332 				goto flush_remote;
6333 			continue;
6334 		}
6335 
6336 		if (unlikely(IS_ENABLED(CONFIG_NUMA) && slab_nid(slab) != node)) {
6337 			remote_objects[remote_nr] = p[i];
6338 			p[i] = p[--size];
6339 			if (++remote_nr >= PCS_BATCH_MAX)
6340 				goto flush_remote;
6341 			continue;
6342 		}
6343 
6344 		i++;
6345 	}
6346 
6347 next_batch:
6348 	if (!local_trylock(&s->cpu_sheaves->lock))
6349 		goto fallback;
6350 
6351 	pcs = this_cpu_ptr(s->cpu_sheaves);
6352 
6353 	if (likely(pcs->main->size < s->sheaf_capacity))
6354 		goto do_free;
6355 
6356 	barn = get_barn(s);
6357 	if (!barn)
6358 		goto no_empty;
6359 
6360 	if (!pcs->spare) {
6361 		empty = barn_get_empty_sheaf(barn);
6362 		if (!empty)
6363 			goto no_empty;
6364 
6365 		pcs->spare = pcs->main;
6366 		pcs->main = empty;
6367 		goto do_free;
6368 	}
6369 
6370 	if (pcs->spare->size < s->sheaf_capacity) {
6371 		swap(pcs->main, pcs->spare);
6372 		goto do_free;
6373 	}
6374 
6375 	empty = barn_replace_full_sheaf(barn, pcs->main);
6376 	if (IS_ERR(empty)) {
6377 		stat(s, BARN_PUT_FAIL);
6378 		goto no_empty;
6379 	}
6380 
6381 	stat(s, BARN_PUT);
6382 	pcs->main = empty;
6383 
6384 do_free:
6385 	main = pcs->main;
6386 	batch = min(size, s->sheaf_capacity - main->size);
6387 
6388 	memcpy(main->objects + main->size, p, batch * sizeof(void *));
6389 	main->size += batch;
6390 
6391 	local_unlock(&s->cpu_sheaves->lock);
6392 
6393 	stat_add(s, FREE_PCS, batch);
6394 
6395 	if (batch < size) {
6396 		p += batch;
6397 		size -= batch;
6398 		goto next_batch;
6399 	}
6400 
6401 	return;
6402 
6403 no_empty:
6404 	local_unlock(&s->cpu_sheaves->lock);
6405 
6406 	/*
6407 	 * if we depleted all empty sheaves in the barn or there are too
6408 	 * many full sheaves, free the rest to slab pages
6409 	 */
6410 fallback:
6411 	__kmem_cache_free_bulk(s, size, p);
6412 
6413 flush_remote:
6414 	if (remote_nr) {
6415 		__kmem_cache_free_bulk(s, remote_nr, &remote_objects[0]);
6416 		if (i < size) {
6417 			remote_nr = 0;
6418 			goto next_remote_batch;
6419 		}
6420 	}
6421 }
6422 
6423 struct defer_free {
6424 	struct llist_head objects;
6425 	struct llist_head slabs;
6426 	struct irq_work work;
6427 };
6428 
6429 static void free_deferred_objects(struct irq_work *work);
6430 
6431 static DEFINE_PER_CPU(struct defer_free, defer_free_objects) = {
6432 	.objects = LLIST_HEAD_INIT(objects),
6433 	.slabs = LLIST_HEAD_INIT(slabs),
6434 	.work = IRQ_WORK_INIT(free_deferred_objects),
6435 };
6436 
6437 /*
6438  * In PREEMPT_RT irq_work runs in per-cpu kthread, so it's safe
6439  * to take sleeping spin_locks from __slab_free() and deactivate_slab().
6440  * In !PREEMPT_RT irq_work will run after local_unlock_irqrestore().
6441  */
6442 static void free_deferred_objects(struct irq_work *work)
6443 {
6444 	struct defer_free *df = container_of(work, struct defer_free, work);
6445 	struct llist_head *objs = &df->objects;
6446 	struct llist_head *slabs = &df->slabs;
6447 	struct llist_node *llnode, *pos, *t;
6448 
6449 	if (llist_empty(objs) && llist_empty(slabs))
6450 		return;
6451 
6452 	llnode = llist_del_all(objs);
6453 	llist_for_each_safe(pos, t, llnode) {
6454 		struct kmem_cache *s;
6455 		struct slab *slab;
6456 		void *x = pos;
6457 
6458 		slab = virt_to_slab(x);
6459 		s = slab->slab_cache;
6460 
6461 		/* Point 'x' back to the beginning of allocated object */
6462 		x -= s->offset;
6463 
6464 		/*
6465 		 * We used freepointer in 'x' to link 'x' into df->objects.
6466 		 * Clear it to NULL to avoid false positive detection
6467 		 * of "Freepointer corruption".
6468 		 */
6469 		set_freepointer(s, x, NULL);
6470 
6471 		__slab_free(s, slab, x, x, 1, _THIS_IP_);
6472 	}
6473 
6474 	llnode = llist_del_all(slabs);
6475 	llist_for_each_safe(pos, t, llnode) {
6476 		struct slab *slab = container_of(pos, struct slab, llnode);
6477 
6478 #ifdef CONFIG_SLUB_TINY
6479 		free_slab(slab->slab_cache, slab);
6480 #else
6481 		if (slab->frozen)
6482 			deactivate_slab(slab->slab_cache, slab, slab->flush_freelist);
6483 		else
6484 			free_slab(slab->slab_cache, slab);
6485 #endif
6486 	}
6487 }
6488 
6489 static void defer_free(struct kmem_cache *s, void *head)
6490 {
6491 	struct defer_free *df;
6492 
6493 	guard(preempt)();
6494 
6495 	df = this_cpu_ptr(&defer_free_objects);
6496 	if (llist_add(head + s->offset, &df->objects))
6497 		irq_work_queue(&df->work);
6498 }
6499 
6500 static void defer_deactivate_slab(struct slab *slab, void *flush_freelist)
6501 {
6502 	struct defer_free *df;
6503 
6504 	slab->flush_freelist = flush_freelist;
6505 
6506 	guard(preempt)();
6507 
6508 	df = this_cpu_ptr(&defer_free_objects);
6509 	if (llist_add(&slab->llnode, &df->slabs))
6510 		irq_work_queue(&df->work);
6511 }
6512 
6513 void defer_free_barrier(void)
6514 {
6515 	int cpu;
6516 
6517 	for_each_possible_cpu(cpu)
6518 		irq_work_sync(&per_cpu_ptr(&defer_free_objects, cpu)->work);
6519 }
6520 
6521 #ifndef CONFIG_SLUB_TINY
6522 /*
6523  * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
6524  * can perform fastpath freeing without additional function calls.
6525  *
6526  * The fastpath is only possible if we are freeing to the current cpu slab
6527  * of this processor. This typically the case if we have just allocated
6528  * the item before.
6529  *
6530  * If fastpath is not possible then fall back to __slab_free where we deal
6531  * with all sorts of special processing.
6532  *
6533  * Bulk free of a freelist with several objects (all pointing to the
6534  * same slab) possible by specifying head and tail ptr, plus objects
6535  * count (cnt). Bulk free indicated by tail pointer being set.
6536  */
6537 static __always_inline void do_slab_free(struct kmem_cache *s,
6538 				struct slab *slab, void *head, void *tail,
6539 				int cnt, unsigned long addr)
6540 {
6541 	/* cnt == 0 signals that it's called from kfree_nolock() */
6542 	bool allow_spin = cnt;
6543 	struct kmem_cache_cpu *c;
6544 	unsigned long tid;
6545 	void **freelist;
6546 
6547 redo:
6548 	/*
6549 	 * Determine the currently cpus per cpu slab.
6550 	 * The cpu may change afterward. However that does not matter since
6551 	 * data is retrieved via this pointer. If we are on the same cpu
6552 	 * during the cmpxchg then the free will succeed.
6553 	 */
6554 	c = raw_cpu_ptr(s->cpu_slab);
6555 	tid = READ_ONCE(c->tid);
6556 
6557 	/* Same with comment on barrier() in __slab_alloc_node() */
6558 	barrier();
6559 
6560 	if (unlikely(slab != c->slab)) {
6561 		if (unlikely(!allow_spin)) {
6562 			/*
6563 			 * __slab_free() can locklessly cmpxchg16 into a slab,
6564 			 * but then it might need to take spin_lock or local_lock
6565 			 * in put_cpu_partial() for further processing.
6566 			 * Avoid the complexity and simply add to a deferred list.
6567 			 */
6568 			defer_free(s, head);
6569 		} else {
6570 			__slab_free(s, slab, head, tail, cnt, addr);
6571 		}
6572 		return;
6573 	}
6574 
6575 	if (unlikely(!allow_spin)) {
6576 		if ((in_nmi() || !USE_LOCKLESS_FAST_PATH()) &&
6577 		    local_lock_is_locked(&s->cpu_slab->lock)) {
6578 			defer_free(s, head);
6579 			return;
6580 		}
6581 		cnt = 1; /* restore cnt. kfree_nolock() frees one object at a time */
6582 	}
6583 
6584 	if (USE_LOCKLESS_FAST_PATH()) {
6585 		freelist = READ_ONCE(c->freelist);
6586 
6587 		set_freepointer(s, tail, freelist);
6588 
6589 		if (unlikely(!__update_cpu_freelist_fast(s, freelist, head, tid))) {
6590 			note_cmpxchg_failure("slab_free", s, tid);
6591 			goto redo;
6592 		}
6593 	} else {
6594 		__maybe_unused unsigned long flags = 0;
6595 
6596 		/* Update the free list under the local lock */
6597 		local_lock_cpu_slab(s, flags);
6598 		c = this_cpu_ptr(s->cpu_slab);
6599 		if (unlikely(slab != c->slab)) {
6600 			local_unlock_cpu_slab(s, flags);
6601 			goto redo;
6602 		}
6603 		tid = c->tid;
6604 		freelist = c->freelist;
6605 
6606 		set_freepointer(s, tail, freelist);
6607 		c->freelist = head;
6608 		c->tid = next_tid(tid);
6609 
6610 		local_unlock_cpu_slab(s, flags);
6611 	}
6612 	stat_add(s, FREE_FASTPATH, cnt);
6613 }
6614 #else /* CONFIG_SLUB_TINY */
6615 static void do_slab_free(struct kmem_cache *s,
6616 				struct slab *slab, void *head, void *tail,
6617 				int cnt, unsigned long addr)
6618 {
6619 	__slab_free(s, slab, head, tail, cnt, addr);
6620 }
6621 #endif /* CONFIG_SLUB_TINY */
6622 
6623 static __fastpath_inline
6624 void slab_free(struct kmem_cache *s, struct slab *slab, void *object,
6625 	       unsigned long addr)
6626 {
6627 	memcg_slab_free_hook(s, slab, &object, 1);
6628 	alloc_tagging_slab_free_hook(s, slab, &object, 1);
6629 
6630 	if (unlikely(!slab_free_hook(s, object, slab_want_init_on_free(s), false)))
6631 		return;
6632 
6633 	if (s->cpu_sheaves && likely(!IS_ENABLED(CONFIG_NUMA) ||
6634 				     slab_nid(slab) == numa_mem_id())) {
6635 		if (likely(free_to_pcs(s, object)))
6636 			return;
6637 	}
6638 
6639 	do_slab_free(s, slab, object, object, 1, addr);
6640 }
6641 
6642 #ifdef CONFIG_MEMCG
6643 /* Do not inline the rare memcg charging failed path into the allocation path */
6644 static noinline
6645 void memcg_alloc_abort_single(struct kmem_cache *s, void *object)
6646 {
6647 	if (likely(slab_free_hook(s, object, slab_want_init_on_free(s), false)))
6648 		do_slab_free(s, virt_to_slab(object), object, object, 1, _RET_IP_);
6649 }
6650 #endif
6651 
6652 static __fastpath_inline
6653 void slab_free_bulk(struct kmem_cache *s, struct slab *slab, void *head,
6654 		    void *tail, void **p, int cnt, unsigned long addr)
6655 {
6656 	memcg_slab_free_hook(s, slab, p, cnt);
6657 	alloc_tagging_slab_free_hook(s, slab, p, cnt);
6658 	/*
6659 	 * With KASAN enabled slab_free_freelist_hook modifies the freelist
6660 	 * to remove objects, whose reuse must be delayed.
6661 	 */
6662 	if (likely(slab_free_freelist_hook(s, &head, &tail, &cnt)))
6663 		do_slab_free(s, slab, head, tail, cnt, addr);
6664 }
6665 
6666 #ifdef CONFIG_SLUB_RCU_DEBUG
6667 static void slab_free_after_rcu_debug(struct rcu_head *rcu_head)
6668 {
6669 	struct rcu_delayed_free *delayed_free =
6670 			container_of(rcu_head, struct rcu_delayed_free, head);
6671 	void *object = delayed_free->object;
6672 	struct slab *slab = virt_to_slab(object);
6673 	struct kmem_cache *s;
6674 
6675 	kfree(delayed_free);
6676 
6677 	if (WARN_ON(is_kfence_address(object)))
6678 		return;
6679 
6680 	/* find the object and the cache again */
6681 	if (WARN_ON(!slab))
6682 		return;
6683 	s = slab->slab_cache;
6684 	if (WARN_ON(!(s->flags & SLAB_TYPESAFE_BY_RCU)))
6685 		return;
6686 
6687 	/* resume freeing */
6688 	if (slab_free_hook(s, object, slab_want_init_on_free(s), true))
6689 		do_slab_free(s, slab, object, object, 1, _THIS_IP_);
6690 }
6691 #endif /* CONFIG_SLUB_RCU_DEBUG */
6692 
6693 #ifdef CONFIG_KASAN_GENERIC
6694 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
6695 {
6696 	do_slab_free(cache, virt_to_slab(x), x, x, 1, addr);
6697 }
6698 #endif
6699 
6700 static inline struct kmem_cache *virt_to_cache(const void *obj)
6701 {
6702 	struct slab *slab;
6703 
6704 	slab = virt_to_slab(obj);
6705 	if (WARN_ONCE(!slab, "%s: Object is not a Slab page!\n", __func__))
6706 		return NULL;
6707 	return slab->slab_cache;
6708 }
6709 
6710 static inline struct kmem_cache *cache_from_obj(struct kmem_cache *s, void *x)
6711 {
6712 	struct kmem_cache *cachep;
6713 
6714 	if (!IS_ENABLED(CONFIG_SLAB_FREELIST_HARDENED) &&
6715 	    !kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS))
6716 		return s;
6717 
6718 	cachep = virt_to_cache(x);
6719 	if (WARN(cachep && cachep != s,
6720 		 "%s: Wrong slab cache. %s but object is from %s\n",
6721 		 __func__, s->name, cachep->name))
6722 		print_tracking(cachep, x);
6723 	return cachep;
6724 }
6725 
6726 /**
6727  * kmem_cache_free - Deallocate an object
6728  * @s: The cache the allocation was from.
6729  * @x: The previously allocated object.
6730  *
6731  * Free an object which was previously allocated from this
6732  * cache.
6733  */
6734 void kmem_cache_free(struct kmem_cache *s, void *x)
6735 {
6736 	s = cache_from_obj(s, x);
6737 	if (!s)
6738 		return;
6739 	trace_kmem_cache_free(_RET_IP_, x, s);
6740 	slab_free(s, virt_to_slab(x), x, _RET_IP_);
6741 }
6742 EXPORT_SYMBOL(kmem_cache_free);
6743 
6744 static void free_large_kmalloc(struct folio *folio, void *object)
6745 {
6746 	unsigned int order = folio_order(folio);
6747 
6748 	if (WARN_ON_ONCE(!folio_test_large_kmalloc(folio))) {
6749 		dump_page(&folio->page, "Not a kmalloc allocation");
6750 		return;
6751 	}
6752 
6753 	if (WARN_ON_ONCE(order == 0))
6754 		pr_warn_once("object pointer: 0x%p\n", object);
6755 
6756 	kmemleak_free(object);
6757 	kasan_kfree_large(object);
6758 	kmsan_kfree_large(object);
6759 
6760 	lruvec_stat_mod_folio(folio, NR_SLAB_UNRECLAIMABLE_B,
6761 			      -(PAGE_SIZE << order));
6762 	__folio_clear_large_kmalloc(folio);
6763 	free_frozen_pages(&folio->page, order);
6764 }
6765 
6766 /*
6767  * Given an rcu_head embedded within an object obtained from kvmalloc at an
6768  * offset < 4k, free the object in question.
6769  */
6770 void kvfree_rcu_cb(struct rcu_head *head)
6771 {
6772 	void *obj = head;
6773 	struct folio *folio;
6774 	struct slab *slab;
6775 	struct kmem_cache *s;
6776 	void *slab_addr;
6777 
6778 	if (is_vmalloc_addr(obj)) {
6779 		obj = (void *) PAGE_ALIGN_DOWN((unsigned long)obj);
6780 		vfree(obj);
6781 		return;
6782 	}
6783 
6784 	folio = virt_to_folio(obj);
6785 	if (!folio_test_slab(folio)) {
6786 		/*
6787 		 * rcu_head offset can be only less than page size so no need to
6788 		 * consider folio order
6789 		 */
6790 		obj = (void *) PAGE_ALIGN_DOWN((unsigned long)obj);
6791 		free_large_kmalloc(folio, obj);
6792 		return;
6793 	}
6794 
6795 	slab = folio_slab(folio);
6796 	s = slab->slab_cache;
6797 	slab_addr = folio_address(folio);
6798 
6799 	if (is_kfence_address(obj)) {
6800 		obj = kfence_object_start(obj);
6801 	} else {
6802 		unsigned int idx = __obj_to_index(s, slab_addr, obj);
6803 
6804 		obj = slab_addr + s->size * idx;
6805 		obj = fixup_red_left(s, obj);
6806 	}
6807 
6808 	slab_free(s, slab, obj, _RET_IP_);
6809 }
6810 
6811 /**
6812  * kfree - free previously allocated memory
6813  * @object: pointer returned by kmalloc() or kmem_cache_alloc()
6814  *
6815  * If @object is NULL, no operation is performed.
6816  */
6817 void kfree(const void *object)
6818 {
6819 	struct folio *folio;
6820 	struct slab *slab;
6821 	struct kmem_cache *s;
6822 	void *x = (void *)object;
6823 
6824 	trace_kfree(_RET_IP_, object);
6825 
6826 	if (unlikely(ZERO_OR_NULL_PTR(object)))
6827 		return;
6828 
6829 	folio = virt_to_folio(object);
6830 	if (unlikely(!folio_test_slab(folio))) {
6831 		free_large_kmalloc(folio, (void *)object);
6832 		return;
6833 	}
6834 
6835 	slab = folio_slab(folio);
6836 	s = slab->slab_cache;
6837 	slab_free(s, slab, x, _RET_IP_);
6838 }
6839 EXPORT_SYMBOL(kfree);
6840 
6841 /*
6842  * Can be called while holding raw_spinlock_t or from IRQ and NMI,
6843  * but ONLY for objects allocated by kmalloc_nolock().
6844  * Debug checks (like kmemleak and kfence) were skipped on allocation,
6845  * hence
6846  * obj = kmalloc(); kfree_nolock(obj);
6847  * will miss kmemleak/kfence book keeping and will cause false positives.
6848  * large_kmalloc is not supported either.
6849  */
6850 void kfree_nolock(const void *object)
6851 {
6852 	struct folio *folio;
6853 	struct slab *slab;
6854 	struct kmem_cache *s;
6855 	void *x = (void *)object;
6856 
6857 	if (unlikely(ZERO_OR_NULL_PTR(object)))
6858 		return;
6859 
6860 	folio = virt_to_folio(object);
6861 	if (unlikely(!folio_test_slab(folio))) {
6862 		WARN_ONCE(1, "large_kmalloc is not supported by kfree_nolock()");
6863 		return;
6864 	}
6865 
6866 	slab = folio_slab(folio);
6867 	s = slab->slab_cache;
6868 
6869 	memcg_slab_free_hook(s, slab, &x, 1);
6870 	alloc_tagging_slab_free_hook(s, slab, &x, 1);
6871 	/*
6872 	 * Unlike slab_free() do NOT call the following:
6873 	 * kmemleak_free_recursive(x, s->flags);
6874 	 * debug_check_no_locks_freed(x, s->object_size);
6875 	 * debug_check_no_obj_freed(x, s->object_size);
6876 	 * __kcsan_check_access(x, s->object_size, ..);
6877 	 * kfence_free(x);
6878 	 * since they take spinlocks or not safe from any context.
6879 	 */
6880 	kmsan_slab_free(s, x);
6881 	/*
6882 	 * If KASAN finds a kernel bug it will do kasan_report_invalid_free()
6883 	 * which will call raw_spin_lock_irqsave() which is technically
6884 	 * unsafe from NMI, but take chance and report kernel bug.
6885 	 * The sequence of
6886 	 * kasan_report_invalid_free() -> raw_spin_lock_irqsave() -> NMI
6887 	 *  -> kfree_nolock() -> kasan_report_invalid_free() on the same CPU
6888 	 * is double buggy and deserves to deadlock.
6889 	 */
6890 	if (kasan_slab_pre_free(s, x))
6891 		return;
6892 	/*
6893 	 * memcg, kasan_slab_pre_free are done for 'x'.
6894 	 * The only thing left is kasan_poison without quarantine,
6895 	 * since kasan quarantine takes locks and not supported from NMI.
6896 	 */
6897 	kasan_slab_free(s, x, false, false, /* skip quarantine */true);
6898 #ifndef CONFIG_SLUB_TINY
6899 	do_slab_free(s, slab, x, x, 0, _RET_IP_);
6900 #else
6901 	defer_free(s, x);
6902 #endif
6903 }
6904 EXPORT_SYMBOL_GPL(kfree_nolock);
6905 
6906 static __always_inline __realloc_size(2) void *
6907 __do_krealloc(const void *p, size_t new_size, unsigned long align, gfp_t flags, int nid)
6908 {
6909 	void *ret;
6910 	size_t ks = 0;
6911 	int orig_size = 0;
6912 	struct kmem_cache *s = NULL;
6913 
6914 	if (unlikely(ZERO_OR_NULL_PTR(p)))
6915 		goto alloc_new;
6916 
6917 	/* Check for double-free. */
6918 	if (!kasan_check_byte(p))
6919 		return NULL;
6920 
6921 	/*
6922 	 * If reallocation is not necessary (e. g. the new size is less
6923 	 * than the current allocated size), the current allocation will be
6924 	 * preserved unless __GFP_THISNODE is set. In the latter case a new
6925 	 * allocation on the requested node will be attempted.
6926 	 */
6927 	if (unlikely(flags & __GFP_THISNODE) && nid != NUMA_NO_NODE &&
6928 		     nid != page_to_nid(virt_to_page(p)))
6929 		goto alloc_new;
6930 
6931 	if (is_kfence_address(p)) {
6932 		ks = orig_size = kfence_ksize(p);
6933 	} else {
6934 		struct folio *folio;
6935 
6936 		folio = virt_to_folio(p);
6937 		if (unlikely(!folio_test_slab(folio))) {
6938 			/* Big kmalloc object */
6939 			WARN_ON(folio_size(folio) <= KMALLOC_MAX_CACHE_SIZE);
6940 			WARN_ON(p != folio_address(folio));
6941 			ks = folio_size(folio);
6942 		} else {
6943 			s = folio_slab(folio)->slab_cache;
6944 			orig_size = get_orig_size(s, (void *)p);
6945 			ks = s->object_size;
6946 		}
6947 	}
6948 
6949 	/* If the old object doesn't fit, allocate a bigger one */
6950 	if (new_size > ks)
6951 		goto alloc_new;
6952 
6953 	/* If the old object doesn't satisfy the new alignment, allocate a new one */
6954 	if (!IS_ALIGNED((unsigned long)p, align))
6955 		goto alloc_new;
6956 
6957 	/* Zero out spare memory. */
6958 	if (want_init_on_alloc(flags)) {
6959 		kasan_disable_current();
6960 		if (orig_size && orig_size < new_size)
6961 			memset(kasan_reset_tag(p) + orig_size, 0, new_size - orig_size);
6962 		else
6963 			memset(kasan_reset_tag(p) + new_size, 0, ks - new_size);
6964 		kasan_enable_current();
6965 	}
6966 
6967 	/* Setup kmalloc redzone when needed */
6968 	if (s && slub_debug_orig_size(s)) {
6969 		set_orig_size(s, (void *)p, new_size);
6970 		if (s->flags & SLAB_RED_ZONE && new_size < ks)
6971 			memset_no_sanitize_memory(kasan_reset_tag(p) + new_size,
6972 						SLUB_RED_ACTIVE, ks - new_size);
6973 	}
6974 
6975 	p = kasan_krealloc(p, new_size, flags);
6976 	return (void *)p;
6977 
6978 alloc_new:
6979 	ret = kmalloc_node_track_caller_noprof(new_size, flags, nid, _RET_IP_);
6980 	if (ret && p) {
6981 		/* Disable KASAN checks as the object's redzone is accessed. */
6982 		kasan_disable_current();
6983 		memcpy(ret, kasan_reset_tag(p), orig_size ?: ks);
6984 		kasan_enable_current();
6985 	}
6986 
6987 	return ret;
6988 }
6989 
6990 /**
6991  * krealloc_node_align - reallocate memory. The contents will remain unchanged.
6992  * @p: object to reallocate memory for.
6993  * @new_size: how many bytes of memory are required.
6994  * @align: desired alignment.
6995  * @flags: the type of memory to allocate.
6996  * @nid: NUMA node or NUMA_NO_NODE
6997  *
6998  * If @p is %NULL, krealloc() behaves exactly like kmalloc().  If @new_size
6999  * is 0 and @p is not a %NULL pointer, the object pointed to is freed.
7000  *
7001  * Only alignments up to those guaranteed by kmalloc() will be honored. Please see
7002  * Documentation/core-api/memory-allocation.rst for more details.
7003  *
7004  * If __GFP_ZERO logic is requested, callers must ensure that, starting with the
7005  * initial memory allocation, every subsequent call to this API for the same
7006  * memory allocation is flagged with __GFP_ZERO. Otherwise, it is possible that
7007  * __GFP_ZERO is not fully honored by this API.
7008  *
7009  * When slub_debug_orig_size() is off, krealloc() only knows about the bucket
7010  * size of an allocation (but not the exact size it was allocated with) and
7011  * hence implements the following semantics for shrinking and growing buffers
7012  * with __GFP_ZERO::
7013  *
7014  *           new             bucket
7015  *   0       size             size
7016  *   |--------|----------------|
7017  *   |  keep  |      zero      |
7018  *
7019  * Otherwise, the original allocation size 'orig_size' could be used to
7020  * precisely clear the requested size, and the new size will also be stored
7021  * as the new 'orig_size'.
7022  *
7023  * In any case, the contents of the object pointed to are preserved up to the
7024  * lesser of the new and old sizes.
7025  *
7026  * Return: pointer to the allocated memory or %NULL in case of error
7027  */
7028 void *krealloc_node_align_noprof(const void *p, size_t new_size, unsigned long align,
7029 				 gfp_t flags, int nid)
7030 {
7031 	void *ret;
7032 
7033 	if (unlikely(!new_size)) {
7034 		kfree(p);
7035 		return ZERO_SIZE_PTR;
7036 	}
7037 
7038 	ret = __do_krealloc(p, new_size, align, flags, nid);
7039 	if (ret && kasan_reset_tag(p) != kasan_reset_tag(ret))
7040 		kfree(p);
7041 
7042 	return ret;
7043 }
7044 EXPORT_SYMBOL(krealloc_node_align_noprof);
7045 
7046 static gfp_t kmalloc_gfp_adjust(gfp_t flags, size_t size)
7047 {
7048 	/*
7049 	 * We want to attempt a large physically contiguous block first because
7050 	 * it is less likely to fragment multiple larger blocks and therefore
7051 	 * contribute to a long term fragmentation less than vmalloc fallback.
7052 	 * However make sure that larger requests are not too disruptive - i.e.
7053 	 * do not direct reclaim unless physically continuous memory is preferred
7054 	 * (__GFP_RETRY_MAYFAIL mode). We still kick in kswapd/kcompactd to
7055 	 * start working in the background
7056 	 */
7057 	if (size > PAGE_SIZE) {
7058 		flags |= __GFP_NOWARN;
7059 
7060 		if (!(flags & __GFP_RETRY_MAYFAIL))
7061 			flags &= ~__GFP_DIRECT_RECLAIM;
7062 
7063 		/* nofail semantic is implemented by the vmalloc fallback */
7064 		flags &= ~__GFP_NOFAIL;
7065 	}
7066 
7067 	return flags;
7068 }
7069 
7070 /**
7071  * __kvmalloc_node - attempt to allocate physically contiguous memory, but upon
7072  * failure, fall back to non-contiguous (vmalloc) allocation.
7073  * @size: size of the request.
7074  * @b: which set of kmalloc buckets to allocate from.
7075  * @align: desired alignment.
7076  * @flags: gfp mask for the allocation - must be compatible (superset) with GFP_KERNEL.
7077  * @node: numa node to allocate from
7078  *
7079  * Only alignments up to those guaranteed by kmalloc() will be honored. Please see
7080  * Documentation/core-api/memory-allocation.rst for more details.
7081  *
7082  * Uses kmalloc to get the memory but if the allocation fails then falls back
7083  * to the vmalloc allocator. Use kvfree for freeing the memory.
7084  *
7085  * GFP_NOWAIT and GFP_ATOMIC are not supported, neither is the __GFP_NORETRY modifier.
7086  * __GFP_RETRY_MAYFAIL is supported, and it should be used only if kmalloc is
7087  * preferable to the vmalloc fallback, due to visible performance drawbacks.
7088  *
7089  * Return: pointer to the allocated memory of %NULL in case of failure
7090  */
7091 void *__kvmalloc_node_noprof(DECL_BUCKET_PARAMS(size, b), unsigned long align,
7092 			     gfp_t flags, int node)
7093 {
7094 	void *ret;
7095 
7096 	/*
7097 	 * It doesn't really make sense to fallback to vmalloc for sub page
7098 	 * requests
7099 	 */
7100 	ret = __do_kmalloc_node(size, PASS_BUCKET_PARAM(b),
7101 				kmalloc_gfp_adjust(flags, size),
7102 				node, _RET_IP_);
7103 	if (ret || size <= PAGE_SIZE)
7104 		return ret;
7105 
7106 	/* non-sleeping allocations are not supported by vmalloc */
7107 	if (!gfpflags_allow_blocking(flags))
7108 		return NULL;
7109 
7110 	/* Don't even allow crazy sizes */
7111 	if (unlikely(size > INT_MAX)) {
7112 		WARN_ON_ONCE(!(flags & __GFP_NOWARN));
7113 		return NULL;
7114 	}
7115 
7116 	/*
7117 	 * kvmalloc() can always use VM_ALLOW_HUGE_VMAP,
7118 	 * since the callers already cannot assume anything
7119 	 * about the resulting pointer, and cannot play
7120 	 * protection games.
7121 	 */
7122 	return __vmalloc_node_range_noprof(size, align, VMALLOC_START, VMALLOC_END,
7123 			flags, PAGE_KERNEL, VM_ALLOW_HUGE_VMAP,
7124 			node, __builtin_return_address(0));
7125 }
7126 EXPORT_SYMBOL(__kvmalloc_node_noprof);
7127 
7128 /**
7129  * kvfree() - Free memory.
7130  * @addr: Pointer to allocated memory.
7131  *
7132  * kvfree frees memory allocated by any of vmalloc(), kmalloc() or kvmalloc().
7133  * It is slightly more efficient to use kfree() or vfree() if you are certain
7134  * that you know which one to use.
7135  *
7136  * Context: Either preemptible task context or not-NMI interrupt.
7137  */
7138 void kvfree(const void *addr)
7139 {
7140 	if (is_vmalloc_addr(addr))
7141 		vfree(addr);
7142 	else
7143 		kfree(addr);
7144 }
7145 EXPORT_SYMBOL(kvfree);
7146 
7147 /**
7148  * kvfree_sensitive - Free a data object containing sensitive information.
7149  * @addr: address of the data object to be freed.
7150  * @len: length of the data object.
7151  *
7152  * Use the special memzero_explicit() function to clear the content of a
7153  * kvmalloc'ed object containing sensitive data to make sure that the
7154  * compiler won't optimize out the data clearing.
7155  */
7156 void kvfree_sensitive(const void *addr, size_t len)
7157 {
7158 	if (likely(!ZERO_OR_NULL_PTR(addr))) {
7159 		memzero_explicit((void *)addr, len);
7160 		kvfree(addr);
7161 	}
7162 }
7163 EXPORT_SYMBOL(kvfree_sensitive);
7164 
7165 /**
7166  * kvrealloc_node_align - reallocate memory; contents remain unchanged
7167  * @p: object to reallocate memory for
7168  * @size: the size to reallocate
7169  * @align: desired alignment
7170  * @flags: the flags for the page level allocator
7171  * @nid: NUMA node id
7172  *
7173  * If @p is %NULL, kvrealloc() behaves exactly like kvmalloc(). If @size is 0
7174  * and @p is not a %NULL pointer, the object pointed to is freed.
7175  *
7176  * Only alignments up to those guaranteed by kmalloc() will be honored. Please see
7177  * Documentation/core-api/memory-allocation.rst for more details.
7178  *
7179  * If __GFP_ZERO logic is requested, callers must ensure that, starting with the
7180  * initial memory allocation, every subsequent call to this API for the same
7181  * memory allocation is flagged with __GFP_ZERO. Otherwise, it is possible that
7182  * __GFP_ZERO is not fully honored by this API.
7183  *
7184  * In any case, the contents of the object pointed to are preserved up to the
7185  * lesser of the new and old sizes.
7186  *
7187  * This function must not be called concurrently with itself or kvfree() for the
7188  * same memory allocation.
7189  *
7190  * Return: pointer to the allocated memory or %NULL in case of error
7191  */
7192 void *kvrealloc_node_align_noprof(const void *p, size_t size, unsigned long align,
7193 				  gfp_t flags, int nid)
7194 {
7195 	void *n;
7196 
7197 	if (is_vmalloc_addr(p))
7198 		return vrealloc_node_align_noprof(p, size, align, flags, nid);
7199 
7200 	n = krealloc_node_align_noprof(p, size, align, kmalloc_gfp_adjust(flags, size), nid);
7201 	if (!n) {
7202 		/* We failed to krealloc(), fall back to kvmalloc(). */
7203 		n = kvmalloc_node_align_noprof(size, align, flags, nid);
7204 		if (!n)
7205 			return NULL;
7206 
7207 		if (p) {
7208 			/* We already know that `p` is not a vmalloc address. */
7209 			kasan_disable_current();
7210 			memcpy(n, kasan_reset_tag(p), ksize(p));
7211 			kasan_enable_current();
7212 
7213 			kfree(p);
7214 		}
7215 	}
7216 
7217 	return n;
7218 }
7219 EXPORT_SYMBOL(kvrealloc_node_align_noprof);
7220 
7221 struct detached_freelist {
7222 	struct slab *slab;
7223 	void *tail;
7224 	void *freelist;
7225 	int cnt;
7226 	struct kmem_cache *s;
7227 };
7228 
7229 /*
7230  * This function progressively scans the array with free objects (with
7231  * a limited look ahead) and extract objects belonging to the same
7232  * slab.  It builds a detached freelist directly within the given
7233  * slab/objects.  This can happen without any need for
7234  * synchronization, because the objects are owned by running process.
7235  * The freelist is build up as a single linked list in the objects.
7236  * The idea is, that this detached freelist can then be bulk
7237  * transferred to the real freelist(s), but only requiring a single
7238  * synchronization primitive.  Look ahead in the array is limited due
7239  * to performance reasons.
7240  */
7241 static inline
7242 int build_detached_freelist(struct kmem_cache *s, size_t size,
7243 			    void **p, struct detached_freelist *df)
7244 {
7245 	int lookahead = 3;
7246 	void *object;
7247 	struct folio *folio;
7248 	size_t same;
7249 
7250 	object = p[--size];
7251 	folio = virt_to_folio(object);
7252 	if (!s) {
7253 		/* Handle kalloc'ed objects */
7254 		if (unlikely(!folio_test_slab(folio))) {
7255 			free_large_kmalloc(folio, object);
7256 			df->slab = NULL;
7257 			return size;
7258 		}
7259 		/* Derive kmem_cache from object */
7260 		df->slab = folio_slab(folio);
7261 		df->s = df->slab->slab_cache;
7262 	} else {
7263 		df->slab = folio_slab(folio);
7264 		df->s = cache_from_obj(s, object); /* Support for memcg */
7265 	}
7266 
7267 	/* Start new detached freelist */
7268 	df->tail = object;
7269 	df->freelist = object;
7270 	df->cnt = 1;
7271 
7272 	if (is_kfence_address(object))
7273 		return size;
7274 
7275 	set_freepointer(df->s, object, NULL);
7276 
7277 	same = size;
7278 	while (size) {
7279 		object = p[--size];
7280 		/* df->slab is always set at this point */
7281 		if (df->slab == virt_to_slab(object)) {
7282 			/* Opportunity build freelist */
7283 			set_freepointer(df->s, object, df->freelist);
7284 			df->freelist = object;
7285 			df->cnt++;
7286 			same--;
7287 			if (size != same)
7288 				swap(p[size], p[same]);
7289 			continue;
7290 		}
7291 
7292 		/* Limit look ahead search */
7293 		if (!--lookahead)
7294 			break;
7295 	}
7296 
7297 	return same;
7298 }
7299 
7300 /*
7301  * Internal bulk free of objects that were not initialised by the post alloc
7302  * hooks and thus should not be processed by the free hooks
7303  */
7304 static void __kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
7305 {
7306 	if (!size)
7307 		return;
7308 
7309 	do {
7310 		struct detached_freelist df;
7311 
7312 		size = build_detached_freelist(s, size, p, &df);
7313 		if (!df.slab)
7314 			continue;
7315 
7316 		if (kfence_free(df.freelist))
7317 			continue;
7318 
7319 		do_slab_free(df.s, df.slab, df.freelist, df.tail, df.cnt,
7320 			     _RET_IP_);
7321 	} while (likely(size));
7322 }
7323 
7324 /* Note that interrupts must be enabled when calling this function. */
7325 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
7326 {
7327 	if (!size)
7328 		return;
7329 
7330 	/*
7331 	 * freeing to sheaves is so incompatible with the detached freelist so
7332 	 * once we go that way, we have to do everything differently
7333 	 */
7334 	if (s && s->cpu_sheaves) {
7335 		free_to_pcs_bulk(s, size, p);
7336 		return;
7337 	}
7338 
7339 	do {
7340 		struct detached_freelist df;
7341 
7342 		size = build_detached_freelist(s, size, p, &df);
7343 		if (!df.slab)
7344 			continue;
7345 
7346 		slab_free_bulk(df.s, df.slab, df.freelist, df.tail, &p[size],
7347 			       df.cnt, _RET_IP_);
7348 	} while (likely(size));
7349 }
7350 EXPORT_SYMBOL(kmem_cache_free_bulk);
7351 
7352 #ifndef CONFIG_SLUB_TINY
7353 static inline
7354 int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
7355 			    void **p)
7356 {
7357 	struct kmem_cache_cpu *c;
7358 	unsigned long irqflags;
7359 	int i;
7360 
7361 	/*
7362 	 * Drain objects in the per cpu slab, while disabling local
7363 	 * IRQs, which protects against PREEMPT and interrupts
7364 	 * handlers invoking normal fastpath.
7365 	 */
7366 	c = slub_get_cpu_ptr(s->cpu_slab);
7367 	local_lock_irqsave(&s->cpu_slab->lock, irqflags);
7368 
7369 	for (i = 0; i < size; i++) {
7370 		void *object = kfence_alloc(s, s->object_size, flags);
7371 
7372 		if (unlikely(object)) {
7373 			p[i] = object;
7374 			continue;
7375 		}
7376 
7377 		object = c->freelist;
7378 		if (unlikely(!object)) {
7379 			/*
7380 			 * We may have removed an object from c->freelist using
7381 			 * the fastpath in the previous iteration; in that case,
7382 			 * c->tid has not been bumped yet.
7383 			 * Since ___slab_alloc() may reenable interrupts while
7384 			 * allocating memory, we should bump c->tid now.
7385 			 */
7386 			c->tid = next_tid(c->tid);
7387 
7388 			local_unlock_irqrestore(&s->cpu_slab->lock, irqflags);
7389 
7390 			/*
7391 			 * Invoking slow path likely have side-effect
7392 			 * of re-populating per CPU c->freelist
7393 			 */
7394 			p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
7395 					    _RET_IP_, c, s->object_size);
7396 			if (unlikely(!p[i]))
7397 				goto error;
7398 
7399 			c = this_cpu_ptr(s->cpu_slab);
7400 			maybe_wipe_obj_freeptr(s, p[i]);
7401 
7402 			local_lock_irqsave(&s->cpu_slab->lock, irqflags);
7403 
7404 			continue; /* goto for-loop */
7405 		}
7406 		c->freelist = get_freepointer(s, object);
7407 		p[i] = object;
7408 		maybe_wipe_obj_freeptr(s, p[i]);
7409 		stat(s, ALLOC_FASTPATH);
7410 	}
7411 	c->tid = next_tid(c->tid);
7412 	local_unlock_irqrestore(&s->cpu_slab->lock, irqflags);
7413 	slub_put_cpu_ptr(s->cpu_slab);
7414 
7415 	return i;
7416 
7417 error:
7418 	slub_put_cpu_ptr(s->cpu_slab);
7419 	__kmem_cache_free_bulk(s, i, p);
7420 	return 0;
7421 
7422 }
7423 #else /* CONFIG_SLUB_TINY */
7424 static int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags,
7425 				   size_t size, void **p)
7426 {
7427 	int i;
7428 
7429 	for (i = 0; i < size; i++) {
7430 		void *object = kfence_alloc(s, s->object_size, flags);
7431 
7432 		if (unlikely(object)) {
7433 			p[i] = object;
7434 			continue;
7435 		}
7436 
7437 		p[i] = __slab_alloc_node(s, flags, NUMA_NO_NODE,
7438 					 _RET_IP_, s->object_size);
7439 		if (unlikely(!p[i]))
7440 			goto error;
7441 
7442 		maybe_wipe_obj_freeptr(s, p[i]);
7443 	}
7444 
7445 	return i;
7446 
7447 error:
7448 	__kmem_cache_free_bulk(s, i, p);
7449 	return 0;
7450 }
7451 #endif /* CONFIG_SLUB_TINY */
7452 
7453 /* Note that interrupts must be enabled when calling this function. */
7454 int kmem_cache_alloc_bulk_noprof(struct kmem_cache *s, gfp_t flags, size_t size,
7455 				 void **p)
7456 {
7457 	unsigned int i = 0;
7458 
7459 	if (!size)
7460 		return 0;
7461 
7462 	s = slab_pre_alloc_hook(s, flags);
7463 	if (unlikely(!s))
7464 		return 0;
7465 
7466 	if (s->cpu_sheaves)
7467 		i = alloc_from_pcs_bulk(s, size, p);
7468 
7469 	if (i < size) {
7470 		/*
7471 		 * If we ran out of memory, don't bother with freeing back to
7472 		 * the percpu sheaves, we have bigger problems.
7473 		 */
7474 		if (unlikely(__kmem_cache_alloc_bulk(s, flags, size - i, p + i) == 0)) {
7475 			if (i > 0)
7476 				__kmem_cache_free_bulk(s, i, p);
7477 			return 0;
7478 		}
7479 	}
7480 
7481 	/*
7482 	 * memcg and kmem_cache debug support and memory initialization.
7483 	 * Done outside of the IRQ disabled fastpath loop.
7484 	 */
7485 	if (unlikely(!slab_post_alloc_hook(s, NULL, flags, size, p,
7486 		    slab_want_init_on_alloc(flags, s), s->object_size))) {
7487 		return 0;
7488 	}
7489 
7490 	return size;
7491 }
7492 EXPORT_SYMBOL(kmem_cache_alloc_bulk_noprof);
7493 
7494 /*
7495  * Object placement in a slab is made very easy because we always start at
7496  * offset 0. If we tune the size of the object to the alignment then we can
7497  * get the required alignment by putting one properly sized object after
7498  * another.
7499  *
7500  * Notice that the allocation order determines the sizes of the per cpu
7501  * caches. Each processor has always one slab available for allocations.
7502  * Increasing the allocation order reduces the number of times that slabs
7503  * must be moved on and off the partial lists and is therefore a factor in
7504  * locking overhead.
7505  */
7506 
7507 /*
7508  * Minimum / Maximum order of slab pages. This influences locking overhead
7509  * and slab fragmentation. A higher order reduces the number of partial slabs
7510  * and increases the number of allocations possible without having to
7511  * take the list_lock.
7512  */
7513 static unsigned int slub_min_order;
7514 static unsigned int slub_max_order =
7515 	IS_ENABLED(CONFIG_SLUB_TINY) ? 1 : PAGE_ALLOC_COSTLY_ORDER;
7516 static unsigned int slub_min_objects;
7517 
7518 /*
7519  * Calculate the order of allocation given an slab object size.
7520  *
7521  * The order of allocation has significant impact on performance and other
7522  * system components. Generally order 0 allocations should be preferred since
7523  * order 0 does not cause fragmentation in the page allocator. Larger objects
7524  * be problematic to put into order 0 slabs because there may be too much
7525  * unused space left. We go to a higher order if more than 1/16th of the slab
7526  * would be wasted.
7527  *
7528  * In order to reach satisfactory performance we must ensure that a minimum
7529  * number of objects is in one slab. Otherwise we may generate too much
7530  * activity on the partial lists which requires taking the list_lock. This is
7531  * less a concern for large slabs though which are rarely used.
7532  *
7533  * slab_max_order specifies the order where we begin to stop considering the
7534  * number of objects in a slab as critical. If we reach slab_max_order then
7535  * we try to keep the page order as low as possible. So we accept more waste
7536  * of space in favor of a small page order.
7537  *
7538  * Higher order allocations also allow the placement of more objects in a
7539  * slab and thereby reduce object handling overhead. If the user has
7540  * requested a higher minimum order then we start with that one instead of
7541  * the smallest order which will fit the object.
7542  */
7543 static inline unsigned int calc_slab_order(unsigned int size,
7544 		unsigned int min_order, unsigned int max_order,
7545 		unsigned int fract_leftover)
7546 {
7547 	unsigned int order;
7548 
7549 	for (order = min_order; order <= max_order; order++) {
7550 
7551 		unsigned int slab_size = (unsigned int)PAGE_SIZE << order;
7552 		unsigned int rem;
7553 
7554 		rem = slab_size % size;
7555 
7556 		if (rem <= slab_size / fract_leftover)
7557 			break;
7558 	}
7559 
7560 	return order;
7561 }
7562 
7563 static inline int calculate_order(unsigned int size)
7564 {
7565 	unsigned int order;
7566 	unsigned int min_objects;
7567 	unsigned int max_objects;
7568 	unsigned int min_order;
7569 
7570 	min_objects = slub_min_objects;
7571 	if (!min_objects) {
7572 		/*
7573 		 * Some architectures will only update present cpus when
7574 		 * onlining them, so don't trust the number if it's just 1. But
7575 		 * we also don't want to use nr_cpu_ids always, as on some other
7576 		 * architectures, there can be many possible cpus, but never
7577 		 * onlined. Here we compromise between trying to avoid too high
7578 		 * order on systems that appear larger than they are, and too
7579 		 * low order on systems that appear smaller than they are.
7580 		 */
7581 		unsigned int nr_cpus = num_present_cpus();
7582 		if (nr_cpus <= 1)
7583 			nr_cpus = nr_cpu_ids;
7584 		min_objects = 4 * (fls(nr_cpus) + 1);
7585 	}
7586 	/* min_objects can't be 0 because get_order(0) is undefined */
7587 	max_objects = max(order_objects(slub_max_order, size), 1U);
7588 	min_objects = min(min_objects, max_objects);
7589 
7590 	min_order = max_t(unsigned int, slub_min_order,
7591 			  get_order(min_objects * size));
7592 	if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE)
7593 		return get_order(size * MAX_OBJS_PER_PAGE) - 1;
7594 
7595 	/*
7596 	 * Attempt to find best configuration for a slab. This works by first
7597 	 * attempting to generate a layout with the best possible configuration
7598 	 * and backing off gradually.
7599 	 *
7600 	 * We start with accepting at most 1/16 waste and try to find the
7601 	 * smallest order from min_objects-derived/slab_min_order up to
7602 	 * slab_max_order that will satisfy the constraint. Note that increasing
7603 	 * the order can only result in same or less fractional waste, not more.
7604 	 *
7605 	 * If that fails, we increase the acceptable fraction of waste and try
7606 	 * again. The last iteration with fraction of 1/2 would effectively
7607 	 * accept any waste and give us the order determined by min_objects, as
7608 	 * long as at least single object fits within slab_max_order.
7609 	 */
7610 	for (unsigned int fraction = 16; fraction > 1; fraction /= 2) {
7611 		order = calc_slab_order(size, min_order, slub_max_order,
7612 					fraction);
7613 		if (order <= slub_max_order)
7614 			return order;
7615 	}
7616 
7617 	/*
7618 	 * Doh this slab cannot be placed using slab_max_order.
7619 	 */
7620 	order = get_order(size);
7621 	if (order <= MAX_PAGE_ORDER)
7622 		return order;
7623 	return -ENOSYS;
7624 }
7625 
7626 static void
7627 init_kmem_cache_node(struct kmem_cache_node *n, struct node_barn *barn)
7628 {
7629 	n->nr_partial = 0;
7630 	spin_lock_init(&n->list_lock);
7631 	INIT_LIST_HEAD(&n->partial);
7632 #ifdef CONFIG_SLUB_DEBUG
7633 	atomic_long_set(&n->nr_slabs, 0);
7634 	atomic_long_set(&n->total_objects, 0);
7635 	INIT_LIST_HEAD(&n->full);
7636 #endif
7637 	n->barn = barn;
7638 	if (barn)
7639 		barn_init(barn);
7640 }
7641 
7642 #ifndef CONFIG_SLUB_TINY
7643 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
7644 {
7645 	BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
7646 			NR_KMALLOC_TYPES * KMALLOC_SHIFT_HIGH *
7647 			sizeof(struct kmem_cache_cpu));
7648 
7649 	/*
7650 	 * Must align to double word boundary for the double cmpxchg
7651 	 * instructions to work; see __pcpu_double_call_return_bool().
7652 	 */
7653 	s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
7654 				     2 * sizeof(void *));
7655 
7656 	if (!s->cpu_slab)
7657 		return 0;
7658 
7659 	init_kmem_cache_cpus(s);
7660 
7661 	return 1;
7662 }
7663 #else
7664 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
7665 {
7666 	return 1;
7667 }
7668 #endif /* CONFIG_SLUB_TINY */
7669 
7670 static int init_percpu_sheaves(struct kmem_cache *s)
7671 {
7672 	int cpu;
7673 
7674 	for_each_possible_cpu(cpu) {
7675 		struct slub_percpu_sheaves *pcs;
7676 
7677 		pcs = per_cpu_ptr(s->cpu_sheaves, cpu);
7678 
7679 		local_trylock_init(&pcs->lock);
7680 
7681 		pcs->main = alloc_empty_sheaf(s, GFP_KERNEL);
7682 
7683 		if (!pcs->main)
7684 			return -ENOMEM;
7685 	}
7686 
7687 	return 0;
7688 }
7689 
7690 static struct kmem_cache *kmem_cache_node;
7691 
7692 /*
7693  * No kmalloc_node yet so do it by hand. We know that this is the first
7694  * slab on the node for this slabcache. There are no concurrent accesses
7695  * possible.
7696  *
7697  * Note that this function only works on the kmem_cache_node
7698  * when allocating for the kmem_cache_node. This is used for bootstrapping
7699  * memory on a fresh node that has no slab structures yet.
7700  */
7701 static void early_kmem_cache_node_alloc(int node)
7702 {
7703 	struct slab *slab;
7704 	struct kmem_cache_node *n;
7705 
7706 	BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
7707 
7708 	slab = new_slab(kmem_cache_node, GFP_NOWAIT, node);
7709 
7710 	BUG_ON(!slab);
7711 	if (slab_nid(slab) != node) {
7712 		pr_err("SLUB: Unable to allocate memory from node %d\n", node);
7713 		pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
7714 	}
7715 
7716 	n = slab->freelist;
7717 	BUG_ON(!n);
7718 #ifdef CONFIG_SLUB_DEBUG
7719 	init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
7720 #endif
7721 	n = kasan_slab_alloc(kmem_cache_node, n, GFP_KERNEL, false);
7722 	slab->freelist = get_freepointer(kmem_cache_node, n);
7723 	slab->inuse = 1;
7724 	kmem_cache_node->node[node] = n;
7725 	init_kmem_cache_node(n, NULL);
7726 	inc_slabs_node(kmem_cache_node, node, slab->objects);
7727 
7728 	/*
7729 	 * No locks need to be taken here as it has just been
7730 	 * initialized and there is no concurrent access.
7731 	 */
7732 	__add_partial(n, slab, DEACTIVATE_TO_HEAD);
7733 }
7734 
7735 static void free_kmem_cache_nodes(struct kmem_cache *s)
7736 {
7737 	int node;
7738 	struct kmem_cache_node *n;
7739 
7740 	for_each_kmem_cache_node(s, node, n) {
7741 		if (n->barn) {
7742 			WARN_ON(n->barn->nr_full);
7743 			WARN_ON(n->barn->nr_empty);
7744 			kfree(n->barn);
7745 			n->barn = NULL;
7746 		}
7747 
7748 		s->node[node] = NULL;
7749 		kmem_cache_free(kmem_cache_node, n);
7750 	}
7751 }
7752 
7753 void __kmem_cache_release(struct kmem_cache *s)
7754 {
7755 	cache_random_seq_destroy(s);
7756 	if (s->cpu_sheaves)
7757 		pcs_destroy(s);
7758 #ifndef CONFIG_SLUB_TINY
7759 #ifdef CONFIG_PREEMPT_RT
7760 	if (s->cpu_slab)
7761 		lockdep_unregister_key(&s->lock_key);
7762 #endif
7763 	free_percpu(s->cpu_slab);
7764 #endif
7765 	free_kmem_cache_nodes(s);
7766 }
7767 
7768 static int init_kmem_cache_nodes(struct kmem_cache *s)
7769 {
7770 	int node;
7771 
7772 	for_each_node_mask(node, slab_nodes) {
7773 		struct kmem_cache_node *n;
7774 		struct node_barn *barn = NULL;
7775 
7776 		if (slab_state == DOWN) {
7777 			early_kmem_cache_node_alloc(node);
7778 			continue;
7779 		}
7780 
7781 		if (s->cpu_sheaves) {
7782 			barn = kmalloc_node(sizeof(*barn), GFP_KERNEL, node);
7783 
7784 			if (!barn)
7785 				return 0;
7786 		}
7787 
7788 		n = kmem_cache_alloc_node(kmem_cache_node,
7789 						GFP_KERNEL, node);
7790 		if (!n) {
7791 			kfree(barn);
7792 			return 0;
7793 		}
7794 
7795 		init_kmem_cache_node(n, barn);
7796 
7797 		s->node[node] = n;
7798 	}
7799 	return 1;
7800 }
7801 
7802 static void set_cpu_partial(struct kmem_cache *s)
7803 {
7804 #ifdef CONFIG_SLUB_CPU_PARTIAL
7805 	unsigned int nr_objects;
7806 
7807 	/*
7808 	 * cpu_partial determined the maximum number of objects kept in the
7809 	 * per cpu partial lists of a processor.
7810 	 *
7811 	 * Per cpu partial lists mainly contain slabs that just have one
7812 	 * object freed. If they are used for allocation then they can be
7813 	 * filled up again with minimal effort. The slab will never hit the
7814 	 * per node partial lists and therefore no locking will be required.
7815 	 *
7816 	 * For backwards compatibility reasons, this is determined as number
7817 	 * of objects, even though we now limit maximum number of pages, see
7818 	 * slub_set_cpu_partial()
7819 	 */
7820 	if (!kmem_cache_has_cpu_partial(s))
7821 		nr_objects = 0;
7822 	else if (s->size >= PAGE_SIZE)
7823 		nr_objects = 6;
7824 	else if (s->size >= 1024)
7825 		nr_objects = 24;
7826 	else if (s->size >= 256)
7827 		nr_objects = 52;
7828 	else
7829 		nr_objects = 120;
7830 
7831 	slub_set_cpu_partial(s, nr_objects);
7832 #endif
7833 }
7834 
7835 /*
7836  * calculate_sizes() determines the order and the distribution of data within
7837  * a slab object.
7838  */
7839 static int calculate_sizes(struct kmem_cache_args *args, struct kmem_cache *s)
7840 {
7841 	slab_flags_t flags = s->flags;
7842 	unsigned int size = s->object_size;
7843 	unsigned int order;
7844 
7845 	/*
7846 	 * Round up object size to the next word boundary. We can only
7847 	 * place the free pointer at word boundaries and this determines
7848 	 * the possible location of the free pointer.
7849 	 */
7850 	size = ALIGN(size, sizeof(void *));
7851 
7852 #ifdef CONFIG_SLUB_DEBUG
7853 	/*
7854 	 * Determine if we can poison the object itself. If the user of
7855 	 * the slab may touch the object after free or before allocation
7856 	 * then we should never poison the object itself.
7857 	 */
7858 	if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
7859 			!s->ctor)
7860 		s->flags |= __OBJECT_POISON;
7861 	else
7862 		s->flags &= ~__OBJECT_POISON;
7863 
7864 
7865 	/*
7866 	 * If we are Redzoning then check if there is some space between the
7867 	 * end of the object and the free pointer. If not then add an
7868 	 * additional word to have some bytes to store Redzone information.
7869 	 */
7870 	if ((flags & SLAB_RED_ZONE) && size == s->object_size)
7871 		size += sizeof(void *);
7872 #endif
7873 
7874 	/*
7875 	 * With that we have determined the number of bytes in actual use
7876 	 * by the object and redzoning.
7877 	 */
7878 	s->inuse = size;
7879 
7880 	if (((flags & SLAB_TYPESAFE_BY_RCU) && !args->use_freeptr_offset) ||
7881 	    (flags & SLAB_POISON) || s->ctor ||
7882 	    ((flags & SLAB_RED_ZONE) &&
7883 	     (s->object_size < sizeof(void *) || slub_debug_orig_size(s)))) {
7884 		/*
7885 		 * Relocate free pointer after the object if it is not
7886 		 * permitted to overwrite the first word of the object on
7887 		 * kmem_cache_free.
7888 		 *
7889 		 * This is the case if we do RCU, have a constructor or
7890 		 * destructor, are poisoning the objects, or are
7891 		 * redzoning an object smaller than sizeof(void *) or are
7892 		 * redzoning an object with slub_debug_orig_size() enabled,
7893 		 * in which case the right redzone may be extended.
7894 		 *
7895 		 * The assumption that s->offset >= s->inuse means free
7896 		 * pointer is outside of the object is used in the
7897 		 * freeptr_outside_object() function. If that is no
7898 		 * longer true, the function needs to be modified.
7899 		 */
7900 		s->offset = size;
7901 		size += sizeof(void *);
7902 	} else if ((flags & SLAB_TYPESAFE_BY_RCU) && args->use_freeptr_offset) {
7903 		s->offset = args->freeptr_offset;
7904 	} else {
7905 		/*
7906 		 * Store freelist pointer near middle of object to keep
7907 		 * it away from the edges of the object to avoid small
7908 		 * sized over/underflows from neighboring allocations.
7909 		 */
7910 		s->offset = ALIGN_DOWN(s->object_size / 2, sizeof(void *));
7911 	}
7912 
7913 #ifdef CONFIG_SLUB_DEBUG
7914 	if (flags & SLAB_STORE_USER) {
7915 		/*
7916 		 * Need to store information about allocs and frees after
7917 		 * the object.
7918 		 */
7919 		size += 2 * sizeof(struct track);
7920 
7921 		/* Save the original kmalloc request size */
7922 		if (flags & SLAB_KMALLOC)
7923 			size += sizeof(unsigned int);
7924 	}
7925 #endif
7926 
7927 	kasan_cache_create(s, &size, &s->flags);
7928 #ifdef CONFIG_SLUB_DEBUG
7929 	if (flags & SLAB_RED_ZONE) {
7930 		/*
7931 		 * Add some empty padding so that we can catch
7932 		 * overwrites from earlier objects rather than let
7933 		 * tracking information or the free pointer be
7934 		 * corrupted if a user writes before the start
7935 		 * of the object.
7936 		 */
7937 		size += sizeof(void *);
7938 
7939 		s->red_left_pad = sizeof(void *);
7940 		s->red_left_pad = ALIGN(s->red_left_pad, s->align);
7941 		size += s->red_left_pad;
7942 	}
7943 #endif
7944 
7945 	/*
7946 	 * SLUB stores one object immediately after another beginning from
7947 	 * offset 0. In order to align the objects we have to simply size
7948 	 * each object to conform to the alignment.
7949 	 */
7950 	size = ALIGN(size, s->align);
7951 	s->size = size;
7952 	s->reciprocal_size = reciprocal_value(size);
7953 	order = calculate_order(size);
7954 
7955 	if ((int)order < 0)
7956 		return 0;
7957 
7958 	s->allocflags = __GFP_COMP;
7959 
7960 	if (s->flags & SLAB_CACHE_DMA)
7961 		s->allocflags |= GFP_DMA;
7962 
7963 	if (s->flags & SLAB_CACHE_DMA32)
7964 		s->allocflags |= GFP_DMA32;
7965 
7966 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
7967 		s->allocflags |= __GFP_RECLAIMABLE;
7968 
7969 	/*
7970 	 * Determine the number of objects per slab
7971 	 */
7972 	s->oo = oo_make(order, size);
7973 	s->min = oo_make(get_order(size), size);
7974 
7975 	return !!oo_objects(s->oo);
7976 }
7977 
7978 static void list_slab_objects(struct kmem_cache *s, struct slab *slab)
7979 {
7980 #ifdef CONFIG_SLUB_DEBUG
7981 	void *addr = slab_address(slab);
7982 	void *p;
7983 
7984 	if (!slab_add_kunit_errors())
7985 		slab_bug(s, "Objects remaining on __kmem_cache_shutdown()");
7986 
7987 	spin_lock(&object_map_lock);
7988 	__fill_map(object_map, s, slab);
7989 
7990 	for_each_object(p, s, addr, slab->objects) {
7991 
7992 		if (!test_bit(__obj_to_index(s, addr, p), object_map)) {
7993 			if (slab_add_kunit_errors())
7994 				continue;
7995 			pr_err("Object 0x%p @offset=%tu\n", p, p - addr);
7996 			print_tracking(s, p);
7997 		}
7998 	}
7999 	spin_unlock(&object_map_lock);
8000 
8001 	__slab_err(slab);
8002 #endif
8003 }
8004 
8005 /*
8006  * Attempt to free all partial slabs on a node.
8007  * This is called from __kmem_cache_shutdown(). We must take list_lock
8008  * because sysfs file might still access partial list after the shutdowning.
8009  */
8010 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
8011 {
8012 	LIST_HEAD(discard);
8013 	struct slab *slab, *h;
8014 
8015 	BUG_ON(irqs_disabled());
8016 	spin_lock_irq(&n->list_lock);
8017 	list_for_each_entry_safe(slab, h, &n->partial, slab_list) {
8018 		if (!slab->inuse) {
8019 			remove_partial(n, slab);
8020 			list_add(&slab->slab_list, &discard);
8021 		} else {
8022 			list_slab_objects(s, slab);
8023 		}
8024 	}
8025 	spin_unlock_irq(&n->list_lock);
8026 
8027 	list_for_each_entry_safe(slab, h, &discard, slab_list)
8028 		discard_slab(s, slab);
8029 }
8030 
8031 bool __kmem_cache_empty(struct kmem_cache *s)
8032 {
8033 	int node;
8034 	struct kmem_cache_node *n;
8035 
8036 	for_each_kmem_cache_node(s, node, n)
8037 		if (n->nr_partial || node_nr_slabs(n))
8038 			return false;
8039 	return true;
8040 }
8041 
8042 /*
8043  * Release all resources used by a slab cache.
8044  */
8045 int __kmem_cache_shutdown(struct kmem_cache *s)
8046 {
8047 	int node;
8048 	struct kmem_cache_node *n;
8049 
8050 	flush_all_cpus_locked(s);
8051 
8052 	/* we might have rcu sheaves in flight */
8053 	if (s->cpu_sheaves)
8054 		rcu_barrier();
8055 
8056 	/* Attempt to free all objects */
8057 	for_each_kmem_cache_node(s, node, n) {
8058 		if (n->barn)
8059 			barn_shrink(s, n->barn);
8060 		free_partial(s, n);
8061 		if (n->nr_partial || node_nr_slabs(n))
8062 			return 1;
8063 	}
8064 	return 0;
8065 }
8066 
8067 #ifdef CONFIG_PRINTK
8068 void __kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab)
8069 {
8070 	void *base;
8071 	int __maybe_unused i;
8072 	unsigned int objnr;
8073 	void *objp;
8074 	void *objp0;
8075 	struct kmem_cache *s = slab->slab_cache;
8076 	struct track __maybe_unused *trackp;
8077 
8078 	kpp->kp_ptr = object;
8079 	kpp->kp_slab = slab;
8080 	kpp->kp_slab_cache = s;
8081 	base = slab_address(slab);
8082 	objp0 = kasan_reset_tag(object);
8083 #ifdef CONFIG_SLUB_DEBUG
8084 	objp = restore_red_left(s, objp0);
8085 #else
8086 	objp = objp0;
8087 #endif
8088 	objnr = obj_to_index(s, slab, objp);
8089 	kpp->kp_data_offset = (unsigned long)((char *)objp0 - (char *)objp);
8090 	objp = base + s->size * objnr;
8091 	kpp->kp_objp = objp;
8092 	if (WARN_ON_ONCE(objp < base || objp >= base + slab->objects * s->size
8093 			 || (objp - base) % s->size) ||
8094 	    !(s->flags & SLAB_STORE_USER))
8095 		return;
8096 #ifdef CONFIG_SLUB_DEBUG
8097 	objp = fixup_red_left(s, objp);
8098 	trackp = get_track(s, objp, TRACK_ALLOC);
8099 	kpp->kp_ret = (void *)trackp->addr;
8100 #ifdef CONFIG_STACKDEPOT
8101 	{
8102 		depot_stack_handle_t handle;
8103 		unsigned long *entries;
8104 		unsigned int nr_entries;
8105 
8106 		handle = READ_ONCE(trackp->handle);
8107 		if (handle) {
8108 			nr_entries = stack_depot_fetch(handle, &entries);
8109 			for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++)
8110 				kpp->kp_stack[i] = (void *)entries[i];
8111 		}
8112 
8113 		trackp = get_track(s, objp, TRACK_FREE);
8114 		handle = READ_ONCE(trackp->handle);
8115 		if (handle) {
8116 			nr_entries = stack_depot_fetch(handle, &entries);
8117 			for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++)
8118 				kpp->kp_free_stack[i] = (void *)entries[i];
8119 		}
8120 	}
8121 #endif
8122 #endif
8123 }
8124 #endif
8125 
8126 /********************************************************************
8127  *		Kmalloc subsystem
8128  *******************************************************************/
8129 
8130 static int __init setup_slub_min_order(char *str)
8131 {
8132 	get_option(&str, (int *)&slub_min_order);
8133 
8134 	if (slub_min_order > slub_max_order)
8135 		slub_max_order = slub_min_order;
8136 
8137 	return 1;
8138 }
8139 
8140 __setup("slab_min_order=", setup_slub_min_order);
8141 __setup_param("slub_min_order=", slub_min_order, setup_slub_min_order, 0);
8142 
8143 
8144 static int __init setup_slub_max_order(char *str)
8145 {
8146 	get_option(&str, (int *)&slub_max_order);
8147 	slub_max_order = min_t(unsigned int, slub_max_order, MAX_PAGE_ORDER);
8148 
8149 	if (slub_min_order > slub_max_order)
8150 		slub_min_order = slub_max_order;
8151 
8152 	return 1;
8153 }
8154 
8155 __setup("slab_max_order=", setup_slub_max_order);
8156 __setup_param("slub_max_order=", slub_max_order, setup_slub_max_order, 0);
8157 
8158 static int __init setup_slub_min_objects(char *str)
8159 {
8160 	get_option(&str, (int *)&slub_min_objects);
8161 
8162 	return 1;
8163 }
8164 
8165 __setup("slab_min_objects=", setup_slub_min_objects);
8166 __setup_param("slub_min_objects=", slub_min_objects, setup_slub_min_objects, 0);
8167 
8168 #ifdef CONFIG_NUMA
8169 static int __init setup_slab_strict_numa(char *str)
8170 {
8171 	if (nr_node_ids > 1) {
8172 		static_branch_enable(&strict_numa);
8173 		pr_info("SLUB: Strict NUMA enabled.\n");
8174 	} else {
8175 		pr_warn("slab_strict_numa parameter set on non NUMA system.\n");
8176 	}
8177 
8178 	return 1;
8179 }
8180 
8181 __setup("slab_strict_numa", setup_slab_strict_numa);
8182 #endif
8183 
8184 
8185 #ifdef CONFIG_HARDENED_USERCOPY
8186 /*
8187  * Rejects incorrectly sized objects and objects that are to be copied
8188  * to/from userspace but do not fall entirely within the containing slab
8189  * cache's usercopy region.
8190  *
8191  * Returns NULL if check passes, otherwise const char * to name of cache
8192  * to indicate an error.
8193  */
8194 void __check_heap_object(const void *ptr, unsigned long n,
8195 			 const struct slab *slab, bool to_user)
8196 {
8197 	struct kmem_cache *s;
8198 	unsigned int offset;
8199 	bool is_kfence = is_kfence_address(ptr);
8200 
8201 	ptr = kasan_reset_tag(ptr);
8202 
8203 	/* Find object and usable object size. */
8204 	s = slab->slab_cache;
8205 
8206 	/* Reject impossible pointers. */
8207 	if (ptr < slab_address(slab))
8208 		usercopy_abort("SLUB object not in SLUB page?!", NULL,
8209 			       to_user, 0, n);
8210 
8211 	/* Find offset within object. */
8212 	if (is_kfence)
8213 		offset = ptr - kfence_object_start(ptr);
8214 	else
8215 		offset = (ptr - slab_address(slab)) % s->size;
8216 
8217 	/* Adjust for redzone and reject if within the redzone. */
8218 	if (!is_kfence && kmem_cache_debug_flags(s, SLAB_RED_ZONE)) {
8219 		if (offset < s->red_left_pad)
8220 			usercopy_abort("SLUB object in left red zone",
8221 				       s->name, to_user, offset, n);
8222 		offset -= s->red_left_pad;
8223 	}
8224 
8225 	/* Allow address range falling entirely within usercopy region. */
8226 	if (offset >= s->useroffset &&
8227 	    offset - s->useroffset <= s->usersize &&
8228 	    n <= s->useroffset - offset + s->usersize)
8229 		return;
8230 
8231 	usercopy_abort("SLUB object", s->name, to_user, offset, n);
8232 }
8233 #endif /* CONFIG_HARDENED_USERCOPY */
8234 
8235 #define SHRINK_PROMOTE_MAX 32
8236 
8237 /*
8238  * kmem_cache_shrink discards empty slabs and promotes the slabs filled
8239  * up most to the head of the partial lists. New allocations will then
8240  * fill those up and thus they can be removed from the partial lists.
8241  *
8242  * The slabs with the least items are placed last. This results in them
8243  * being allocated from last increasing the chance that the last objects
8244  * are freed in them.
8245  */
8246 static int __kmem_cache_do_shrink(struct kmem_cache *s)
8247 {
8248 	int node;
8249 	int i;
8250 	struct kmem_cache_node *n;
8251 	struct slab *slab;
8252 	struct slab *t;
8253 	struct list_head discard;
8254 	struct list_head promote[SHRINK_PROMOTE_MAX];
8255 	unsigned long flags;
8256 	int ret = 0;
8257 
8258 	for_each_kmem_cache_node(s, node, n) {
8259 		INIT_LIST_HEAD(&discard);
8260 		for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
8261 			INIT_LIST_HEAD(promote + i);
8262 
8263 		if (n->barn)
8264 			barn_shrink(s, n->barn);
8265 
8266 		spin_lock_irqsave(&n->list_lock, flags);
8267 
8268 		/*
8269 		 * Build lists of slabs to discard or promote.
8270 		 *
8271 		 * Note that concurrent frees may occur while we hold the
8272 		 * list_lock. slab->inuse here is the upper limit.
8273 		 */
8274 		list_for_each_entry_safe(slab, t, &n->partial, slab_list) {
8275 			int free = slab->objects - slab->inuse;
8276 
8277 			/* Do not reread slab->inuse */
8278 			barrier();
8279 
8280 			/* We do not keep full slabs on the list */
8281 			BUG_ON(free <= 0);
8282 
8283 			if (free == slab->objects) {
8284 				list_move(&slab->slab_list, &discard);
8285 				slab_clear_node_partial(slab);
8286 				n->nr_partial--;
8287 				dec_slabs_node(s, node, slab->objects);
8288 			} else if (free <= SHRINK_PROMOTE_MAX)
8289 				list_move(&slab->slab_list, promote + free - 1);
8290 		}
8291 
8292 		/*
8293 		 * Promote the slabs filled up most to the head of the
8294 		 * partial list.
8295 		 */
8296 		for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
8297 			list_splice(promote + i, &n->partial);
8298 
8299 		spin_unlock_irqrestore(&n->list_lock, flags);
8300 
8301 		/* Release empty slabs */
8302 		list_for_each_entry_safe(slab, t, &discard, slab_list)
8303 			free_slab(s, slab);
8304 
8305 		if (node_nr_slabs(n))
8306 			ret = 1;
8307 	}
8308 
8309 	return ret;
8310 }
8311 
8312 int __kmem_cache_shrink(struct kmem_cache *s)
8313 {
8314 	flush_all(s);
8315 	return __kmem_cache_do_shrink(s);
8316 }
8317 
8318 static int slab_mem_going_offline_callback(void)
8319 {
8320 	struct kmem_cache *s;
8321 
8322 	mutex_lock(&slab_mutex);
8323 	list_for_each_entry(s, &slab_caches, list) {
8324 		flush_all_cpus_locked(s);
8325 		__kmem_cache_do_shrink(s);
8326 	}
8327 	mutex_unlock(&slab_mutex);
8328 
8329 	return 0;
8330 }
8331 
8332 static int slab_mem_going_online_callback(int nid)
8333 {
8334 	struct kmem_cache_node *n;
8335 	struct kmem_cache *s;
8336 	int ret = 0;
8337 
8338 	/*
8339 	 * We are bringing a node online. No memory is available yet. We must
8340 	 * allocate a kmem_cache_node structure in order to bring the node
8341 	 * online.
8342 	 */
8343 	mutex_lock(&slab_mutex);
8344 	list_for_each_entry(s, &slab_caches, list) {
8345 		struct node_barn *barn = NULL;
8346 
8347 		/*
8348 		 * The structure may already exist if the node was previously
8349 		 * onlined and offlined.
8350 		 */
8351 		if (get_node(s, nid))
8352 			continue;
8353 
8354 		if (s->cpu_sheaves) {
8355 			barn = kmalloc_node(sizeof(*barn), GFP_KERNEL, nid);
8356 
8357 			if (!barn) {
8358 				ret = -ENOMEM;
8359 				goto out;
8360 			}
8361 		}
8362 
8363 		/*
8364 		 * XXX: kmem_cache_alloc_node will fallback to other nodes
8365 		 *      since memory is not yet available from the node that
8366 		 *      is brought up.
8367 		 */
8368 		n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
8369 		if (!n) {
8370 			kfree(barn);
8371 			ret = -ENOMEM;
8372 			goto out;
8373 		}
8374 
8375 		init_kmem_cache_node(n, barn);
8376 
8377 		s->node[nid] = n;
8378 	}
8379 	/*
8380 	 * Any cache created after this point will also have kmem_cache_node
8381 	 * initialized for the new node.
8382 	 */
8383 	node_set(nid, slab_nodes);
8384 out:
8385 	mutex_unlock(&slab_mutex);
8386 	return ret;
8387 }
8388 
8389 static int slab_memory_callback(struct notifier_block *self,
8390 				unsigned long action, void *arg)
8391 {
8392 	struct node_notify *nn = arg;
8393 	int nid = nn->nid;
8394 	int ret = 0;
8395 
8396 	switch (action) {
8397 	case NODE_ADDING_FIRST_MEMORY:
8398 		ret = slab_mem_going_online_callback(nid);
8399 		break;
8400 	case NODE_REMOVING_LAST_MEMORY:
8401 		ret = slab_mem_going_offline_callback();
8402 		break;
8403 	}
8404 	if (ret)
8405 		ret = notifier_from_errno(ret);
8406 	else
8407 		ret = NOTIFY_OK;
8408 	return ret;
8409 }
8410 
8411 /********************************************************************
8412  *			Basic setup of slabs
8413  *******************************************************************/
8414 
8415 /*
8416  * Used for early kmem_cache structures that were allocated using
8417  * the page allocator. Allocate them properly then fix up the pointers
8418  * that may be pointing to the wrong kmem_cache structure.
8419  */
8420 
8421 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
8422 {
8423 	int node;
8424 	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
8425 	struct kmem_cache_node *n;
8426 
8427 	memcpy(s, static_cache, kmem_cache->object_size);
8428 
8429 	/*
8430 	 * This runs very early, and only the boot processor is supposed to be
8431 	 * up.  Even if it weren't true, IRQs are not up so we couldn't fire
8432 	 * IPIs around.
8433 	 */
8434 	__flush_cpu_slab(s, smp_processor_id());
8435 	for_each_kmem_cache_node(s, node, n) {
8436 		struct slab *p;
8437 
8438 		list_for_each_entry(p, &n->partial, slab_list)
8439 			p->slab_cache = s;
8440 
8441 #ifdef CONFIG_SLUB_DEBUG
8442 		list_for_each_entry(p, &n->full, slab_list)
8443 			p->slab_cache = s;
8444 #endif
8445 	}
8446 	list_add(&s->list, &slab_caches);
8447 	return s;
8448 }
8449 
8450 void __init kmem_cache_init(void)
8451 {
8452 	static __initdata struct kmem_cache boot_kmem_cache,
8453 		boot_kmem_cache_node;
8454 	int node;
8455 
8456 	if (debug_guardpage_minorder())
8457 		slub_max_order = 0;
8458 
8459 	/* Inform pointer hashing choice about slub debugging state. */
8460 	hash_pointers_finalize(__slub_debug_enabled());
8461 
8462 	kmem_cache_node = &boot_kmem_cache_node;
8463 	kmem_cache = &boot_kmem_cache;
8464 
8465 	/*
8466 	 * Initialize the nodemask for which we will allocate per node
8467 	 * structures. Here we don't need taking slab_mutex yet.
8468 	 */
8469 	for_each_node_state(node, N_MEMORY)
8470 		node_set(node, slab_nodes);
8471 
8472 	create_boot_cache(kmem_cache_node, "kmem_cache_node",
8473 			sizeof(struct kmem_cache_node),
8474 			SLAB_HWCACHE_ALIGN | SLAB_NO_OBJ_EXT, 0, 0);
8475 
8476 	hotplug_node_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
8477 
8478 	/* Able to allocate the per node structures */
8479 	slab_state = PARTIAL;
8480 
8481 	create_boot_cache(kmem_cache, "kmem_cache",
8482 			offsetof(struct kmem_cache, node) +
8483 				nr_node_ids * sizeof(struct kmem_cache_node *),
8484 			SLAB_HWCACHE_ALIGN | SLAB_NO_OBJ_EXT, 0, 0);
8485 
8486 	kmem_cache = bootstrap(&boot_kmem_cache);
8487 	kmem_cache_node = bootstrap(&boot_kmem_cache_node);
8488 
8489 	/* Now we can use the kmem_cache to allocate kmalloc slabs */
8490 	setup_kmalloc_cache_index_table();
8491 	create_kmalloc_caches();
8492 
8493 	/* Setup random freelists for each cache */
8494 	init_freelist_randomization();
8495 
8496 	cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
8497 				  slub_cpu_dead);
8498 
8499 	pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n",
8500 		cache_line_size(),
8501 		slub_min_order, slub_max_order, slub_min_objects,
8502 		nr_cpu_ids, nr_node_ids);
8503 }
8504 
8505 void __init kmem_cache_init_late(void)
8506 {
8507 #ifndef CONFIG_SLUB_TINY
8508 	flushwq = alloc_workqueue("slub_flushwq", WQ_MEM_RECLAIM, 0);
8509 	WARN_ON(!flushwq);
8510 #endif
8511 }
8512 
8513 struct kmem_cache *
8514 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
8515 		   slab_flags_t flags, void (*ctor)(void *))
8516 {
8517 	struct kmem_cache *s;
8518 
8519 	s = find_mergeable(size, align, flags, name, ctor);
8520 	if (s) {
8521 		if (sysfs_slab_alias(s, name))
8522 			pr_err("SLUB: Unable to add cache alias %s to sysfs\n",
8523 			       name);
8524 
8525 		s->refcount++;
8526 
8527 		/*
8528 		 * Adjust the object sizes so that we clear
8529 		 * the complete object on kzalloc.
8530 		 */
8531 		s->object_size = max(s->object_size, size);
8532 		s->inuse = max(s->inuse, ALIGN(size, sizeof(void *)));
8533 	}
8534 
8535 	return s;
8536 }
8537 
8538 int do_kmem_cache_create(struct kmem_cache *s, const char *name,
8539 			 unsigned int size, struct kmem_cache_args *args,
8540 			 slab_flags_t flags)
8541 {
8542 	int err = -EINVAL;
8543 
8544 	s->name = name;
8545 	s->size = s->object_size = size;
8546 
8547 	s->flags = kmem_cache_flags(flags, s->name);
8548 #ifdef CONFIG_SLAB_FREELIST_HARDENED
8549 	s->random = get_random_long();
8550 #endif
8551 	s->align = args->align;
8552 	s->ctor = args->ctor;
8553 #ifdef CONFIG_HARDENED_USERCOPY
8554 	s->useroffset = args->useroffset;
8555 	s->usersize = args->usersize;
8556 #endif
8557 
8558 	if (!calculate_sizes(args, s))
8559 		goto out;
8560 	if (disable_higher_order_debug) {
8561 		/*
8562 		 * Disable debugging flags that store metadata if the min slab
8563 		 * order increased.
8564 		 */
8565 		if (get_order(s->size) > get_order(s->object_size)) {
8566 			s->flags &= ~DEBUG_METADATA_FLAGS;
8567 			s->offset = 0;
8568 			if (!calculate_sizes(args, s))
8569 				goto out;
8570 		}
8571 	}
8572 
8573 #ifdef system_has_freelist_aba
8574 	if (system_has_freelist_aba() && !(s->flags & SLAB_NO_CMPXCHG)) {
8575 		/* Enable fast mode */
8576 		s->flags |= __CMPXCHG_DOUBLE;
8577 	}
8578 #endif
8579 
8580 	/*
8581 	 * The larger the object size is, the more slabs we want on the partial
8582 	 * list to avoid pounding the page allocator excessively.
8583 	 */
8584 	s->min_partial = min_t(unsigned long, MAX_PARTIAL, ilog2(s->size) / 2);
8585 	s->min_partial = max_t(unsigned long, MIN_PARTIAL, s->min_partial);
8586 
8587 	set_cpu_partial(s);
8588 
8589 	if (args->sheaf_capacity && !IS_ENABLED(CONFIG_SLUB_TINY)
8590 					&& !(s->flags & SLAB_DEBUG_FLAGS)) {
8591 		s->cpu_sheaves = alloc_percpu(struct slub_percpu_sheaves);
8592 		if (!s->cpu_sheaves) {
8593 			err = -ENOMEM;
8594 			goto out;
8595 		}
8596 		// TODO: increase capacity to grow slab_sheaf up to next kmalloc size?
8597 		s->sheaf_capacity = args->sheaf_capacity;
8598 	}
8599 
8600 #ifdef CONFIG_NUMA
8601 	s->remote_node_defrag_ratio = 1000;
8602 #endif
8603 
8604 	/* Initialize the pre-computed randomized freelist if slab is up */
8605 	if (slab_state >= UP) {
8606 		if (init_cache_random_seq(s))
8607 			goto out;
8608 	}
8609 
8610 	if (!init_kmem_cache_nodes(s))
8611 		goto out;
8612 
8613 	if (!alloc_kmem_cache_cpus(s))
8614 		goto out;
8615 
8616 	if (s->cpu_sheaves) {
8617 		err = init_percpu_sheaves(s);
8618 		if (err)
8619 			goto out;
8620 	}
8621 
8622 	err = 0;
8623 
8624 	/* Mutex is not taken during early boot */
8625 	if (slab_state <= UP)
8626 		goto out;
8627 
8628 	/*
8629 	 * Failing to create sysfs files is not critical to SLUB functionality.
8630 	 * If it fails, proceed with cache creation without these files.
8631 	 */
8632 	if (sysfs_slab_add(s))
8633 		pr_err("SLUB: Unable to add cache %s to sysfs\n", s->name);
8634 
8635 	if (s->flags & SLAB_STORE_USER)
8636 		debugfs_slab_add(s);
8637 
8638 out:
8639 	if (err)
8640 		__kmem_cache_release(s);
8641 	return err;
8642 }
8643 
8644 #ifdef SLAB_SUPPORTS_SYSFS
8645 static int count_inuse(struct slab *slab)
8646 {
8647 	return slab->inuse;
8648 }
8649 
8650 static int count_total(struct slab *slab)
8651 {
8652 	return slab->objects;
8653 }
8654 #endif
8655 
8656 #ifdef CONFIG_SLUB_DEBUG
8657 static void validate_slab(struct kmem_cache *s, struct slab *slab,
8658 			  unsigned long *obj_map)
8659 {
8660 	void *p;
8661 	void *addr = slab_address(slab);
8662 
8663 	if (!validate_slab_ptr(slab)) {
8664 		slab_err(s, slab, "Not a valid slab page");
8665 		return;
8666 	}
8667 
8668 	if (!check_slab(s, slab) || !on_freelist(s, slab, NULL))
8669 		return;
8670 
8671 	/* Now we know that a valid freelist exists */
8672 	__fill_map(obj_map, s, slab);
8673 	for_each_object(p, s, addr, slab->objects) {
8674 		u8 val = test_bit(__obj_to_index(s, addr, p), obj_map) ?
8675 			 SLUB_RED_INACTIVE : SLUB_RED_ACTIVE;
8676 
8677 		if (!check_object(s, slab, p, val))
8678 			break;
8679 	}
8680 }
8681 
8682 static int validate_slab_node(struct kmem_cache *s,
8683 		struct kmem_cache_node *n, unsigned long *obj_map)
8684 {
8685 	unsigned long count = 0;
8686 	struct slab *slab;
8687 	unsigned long flags;
8688 
8689 	spin_lock_irqsave(&n->list_lock, flags);
8690 
8691 	list_for_each_entry(slab, &n->partial, slab_list) {
8692 		validate_slab(s, slab, obj_map);
8693 		count++;
8694 	}
8695 	if (count != n->nr_partial) {
8696 		pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
8697 		       s->name, count, n->nr_partial);
8698 		slab_add_kunit_errors();
8699 	}
8700 
8701 	if (!(s->flags & SLAB_STORE_USER))
8702 		goto out;
8703 
8704 	list_for_each_entry(slab, &n->full, slab_list) {
8705 		validate_slab(s, slab, obj_map);
8706 		count++;
8707 	}
8708 	if (count != node_nr_slabs(n)) {
8709 		pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
8710 		       s->name, count, node_nr_slabs(n));
8711 		slab_add_kunit_errors();
8712 	}
8713 
8714 out:
8715 	spin_unlock_irqrestore(&n->list_lock, flags);
8716 	return count;
8717 }
8718 
8719 long validate_slab_cache(struct kmem_cache *s)
8720 {
8721 	int node;
8722 	unsigned long count = 0;
8723 	struct kmem_cache_node *n;
8724 	unsigned long *obj_map;
8725 
8726 	obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL);
8727 	if (!obj_map)
8728 		return -ENOMEM;
8729 
8730 	flush_all(s);
8731 	for_each_kmem_cache_node(s, node, n)
8732 		count += validate_slab_node(s, n, obj_map);
8733 
8734 	bitmap_free(obj_map);
8735 
8736 	return count;
8737 }
8738 EXPORT_SYMBOL(validate_slab_cache);
8739 
8740 #ifdef CONFIG_DEBUG_FS
8741 /*
8742  * Generate lists of code addresses where slabcache objects are allocated
8743  * and freed.
8744  */
8745 
8746 struct location {
8747 	depot_stack_handle_t handle;
8748 	unsigned long count;
8749 	unsigned long addr;
8750 	unsigned long waste;
8751 	long long sum_time;
8752 	long min_time;
8753 	long max_time;
8754 	long min_pid;
8755 	long max_pid;
8756 	DECLARE_BITMAP(cpus, NR_CPUS);
8757 	nodemask_t nodes;
8758 };
8759 
8760 struct loc_track {
8761 	unsigned long max;
8762 	unsigned long count;
8763 	struct location *loc;
8764 	loff_t idx;
8765 };
8766 
8767 static struct dentry *slab_debugfs_root;
8768 
8769 static void free_loc_track(struct loc_track *t)
8770 {
8771 	if (t->max)
8772 		free_pages((unsigned long)t->loc,
8773 			get_order(sizeof(struct location) * t->max));
8774 }
8775 
8776 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
8777 {
8778 	struct location *l;
8779 	int order;
8780 
8781 	order = get_order(sizeof(struct location) * max);
8782 
8783 	l = (void *)__get_free_pages(flags, order);
8784 	if (!l)
8785 		return 0;
8786 
8787 	if (t->count) {
8788 		memcpy(l, t->loc, sizeof(struct location) * t->count);
8789 		free_loc_track(t);
8790 	}
8791 	t->max = max;
8792 	t->loc = l;
8793 	return 1;
8794 }
8795 
8796 static int add_location(struct loc_track *t, struct kmem_cache *s,
8797 				const struct track *track,
8798 				unsigned int orig_size)
8799 {
8800 	long start, end, pos;
8801 	struct location *l;
8802 	unsigned long caddr, chandle, cwaste;
8803 	unsigned long age = jiffies - track->when;
8804 	depot_stack_handle_t handle = 0;
8805 	unsigned int waste = s->object_size - orig_size;
8806 
8807 #ifdef CONFIG_STACKDEPOT
8808 	handle = READ_ONCE(track->handle);
8809 #endif
8810 	start = -1;
8811 	end = t->count;
8812 
8813 	for ( ; ; ) {
8814 		pos = start + (end - start + 1) / 2;
8815 
8816 		/*
8817 		 * There is nothing at "end". If we end up there
8818 		 * we need to add something to before end.
8819 		 */
8820 		if (pos == end)
8821 			break;
8822 
8823 		l = &t->loc[pos];
8824 		caddr = l->addr;
8825 		chandle = l->handle;
8826 		cwaste = l->waste;
8827 		if ((track->addr == caddr) && (handle == chandle) &&
8828 			(waste == cwaste)) {
8829 
8830 			l->count++;
8831 			if (track->when) {
8832 				l->sum_time += age;
8833 				if (age < l->min_time)
8834 					l->min_time = age;
8835 				if (age > l->max_time)
8836 					l->max_time = age;
8837 
8838 				if (track->pid < l->min_pid)
8839 					l->min_pid = track->pid;
8840 				if (track->pid > l->max_pid)
8841 					l->max_pid = track->pid;
8842 
8843 				cpumask_set_cpu(track->cpu,
8844 						to_cpumask(l->cpus));
8845 			}
8846 			node_set(page_to_nid(virt_to_page(track)), l->nodes);
8847 			return 1;
8848 		}
8849 
8850 		if (track->addr < caddr)
8851 			end = pos;
8852 		else if (track->addr == caddr && handle < chandle)
8853 			end = pos;
8854 		else if (track->addr == caddr && handle == chandle &&
8855 				waste < cwaste)
8856 			end = pos;
8857 		else
8858 			start = pos;
8859 	}
8860 
8861 	/*
8862 	 * Not found. Insert new tracking element.
8863 	 */
8864 	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
8865 		return 0;
8866 
8867 	l = t->loc + pos;
8868 	if (pos < t->count)
8869 		memmove(l + 1, l,
8870 			(t->count - pos) * sizeof(struct location));
8871 	t->count++;
8872 	l->count = 1;
8873 	l->addr = track->addr;
8874 	l->sum_time = age;
8875 	l->min_time = age;
8876 	l->max_time = age;
8877 	l->min_pid = track->pid;
8878 	l->max_pid = track->pid;
8879 	l->handle = handle;
8880 	l->waste = waste;
8881 	cpumask_clear(to_cpumask(l->cpus));
8882 	cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
8883 	nodes_clear(l->nodes);
8884 	node_set(page_to_nid(virt_to_page(track)), l->nodes);
8885 	return 1;
8886 }
8887 
8888 static void process_slab(struct loc_track *t, struct kmem_cache *s,
8889 		struct slab *slab, enum track_item alloc,
8890 		unsigned long *obj_map)
8891 {
8892 	void *addr = slab_address(slab);
8893 	bool is_alloc = (alloc == TRACK_ALLOC);
8894 	void *p;
8895 
8896 	__fill_map(obj_map, s, slab);
8897 
8898 	for_each_object(p, s, addr, slab->objects)
8899 		if (!test_bit(__obj_to_index(s, addr, p), obj_map))
8900 			add_location(t, s, get_track(s, p, alloc),
8901 				     is_alloc ? get_orig_size(s, p) :
8902 						s->object_size);
8903 }
8904 #endif  /* CONFIG_DEBUG_FS   */
8905 #endif	/* CONFIG_SLUB_DEBUG */
8906 
8907 #ifdef SLAB_SUPPORTS_SYSFS
8908 enum slab_stat_type {
8909 	SL_ALL,			/* All slabs */
8910 	SL_PARTIAL,		/* Only partially allocated slabs */
8911 	SL_CPU,			/* Only slabs used for cpu caches */
8912 	SL_OBJECTS,		/* Determine allocated objects not slabs */
8913 	SL_TOTAL		/* Determine object capacity not slabs */
8914 };
8915 
8916 #define SO_ALL		(1 << SL_ALL)
8917 #define SO_PARTIAL	(1 << SL_PARTIAL)
8918 #define SO_CPU		(1 << SL_CPU)
8919 #define SO_OBJECTS	(1 << SL_OBJECTS)
8920 #define SO_TOTAL	(1 << SL_TOTAL)
8921 
8922 static ssize_t show_slab_objects(struct kmem_cache *s,
8923 				 char *buf, unsigned long flags)
8924 {
8925 	unsigned long total = 0;
8926 	int node;
8927 	int x;
8928 	unsigned long *nodes;
8929 	int len = 0;
8930 
8931 	nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL);
8932 	if (!nodes)
8933 		return -ENOMEM;
8934 
8935 	if (flags & SO_CPU) {
8936 		int cpu;
8937 
8938 		for_each_possible_cpu(cpu) {
8939 			struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
8940 							       cpu);
8941 			int node;
8942 			struct slab *slab;
8943 
8944 			slab = READ_ONCE(c->slab);
8945 			if (!slab)
8946 				continue;
8947 
8948 			node = slab_nid(slab);
8949 			if (flags & SO_TOTAL)
8950 				x = slab->objects;
8951 			else if (flags & SO_OBJECTS)
8952 				x = slab->inuse;
8953 			else
8954 				x = 1;
8955 
8956 			total += x;
8957 			nodes[node] += x;
8958 
8959 #ifdef CONFIG_SLUB_CPU_PARTIAL
8960 			slab = slub_percpu_partial_read_once(c);
8961 			if (slab) {
8962 				node = slab_nid(slab);
8963 				if (flags & SO_TOTAL)
8964 					WARN_ON_ONCE(1);
8965 				else if (flags & SO_OBJECTS)
8966 					WARN_ON_ONCE(1);
8967 				else
8968 					x = data_race(slab->slabs);
8969 				total += x;
8970 				nodes[node] += x;
8971 			}
8972 #endif
8973 		}
8974 	}
8975 
8976 	/*
8977 	 * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex"
8978 	 * already held which will conflict with an existing lock order:
8979 	 *
8980 	 * mem_hotplug_lock->slab_mutex->kernfs_mutex
8981 	 *
8982 	 * We don't really need mem_hotplug_lock (to hold off
8983 	 * slab_mem_going_offline_callback) here because slab's memory hot
8984 	 * unplug code doesn't destroy the kmem_cache->node[] data.
8985 	 */
8986 
8987 #ifdef CONFIG_SLUB_DEBUG
8988 	if (flags & SO_ALL) {
8989 		struct kmem_cache_node *n;
8990 
8991 		for_each_kmem_cache_node(s, node, n) {
8992 
8993 			if (flags & SO_TOTAL)
8994 				x = node_nr_objs(n);
8995 			else if (flags & SO_OBJECTS)
8996 				x = node_nr_objs(n) - count_partial(n, count_free);
8997 			else
8998 				x = node_nr_slabs(n);
8999 			total += x;
9000 			nodes[node] += x;
9001 		}
9002 
9003 	} else
9004 #endif
9005 	if (flags & SO_PARTIAL) {
9006 		struct kmem_cache_node *n;
9007 
9008 		for_each_kmem_cache_node(s, node, n) {
9009 			if (flags & SO_TOTAL)
9010 				x = count_partial(n, count_total);
9011 			else if (flags & SO_OBJECTS)
9012 				x = count_partial(n, count_inuse);
9013 			else
9014 				x = n->nr_partial;
9015 			total += x;
9016 			nodes[node] += x;
9017 		}
9018 	}
9019 
9020 	len += sysfs_emit_at(buf, len, "%lu", total);
9021 #ifdef CONFIG_NUMA
9022 	for (node = 0; node < nr_node_ids; node++) {
9023 		if (nodes[node])
9024 			len += sysfs_emit_at(buf, len, " N%d=%lu",
9025 					     node, nodes[node]);
9026 	}
9027 #endif
9028 	len += sysfs_emit_at(buf, len, "\n");
9029 	kfree(nodes);
9030 
9031 	return len;
9032 }
9033 
9034 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
9035 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
9036 
9037 struct slab_attribute {
9038 	struct attribute attr;
9039 	ssize_t (*show)(struct kmem_cache *s, char *buf);
9040 	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
9041 };
9042 
9043 #define SLAB_ATTR_RO(_name) \
9044 	static struct slab_attribute _name##_attr = __ATTR_RO_MODE(_name, 0400)
9045 
9046 #define SLAB_ATTR(_name) \
9047 	static struct slab_attribute _name##_attr = __ATTR_RW_MODE(_name, 0600)
9048 
9049 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
9050 {
9051 	return sysfs_emit(buf, "%u\n", s->size);
9052 }
9053 SLAB_ATTR_RO(slab_size);
9054 
9055 static ssize_t align_show(struct kmem_cache *s, char *buf)
9056 {
9057 	return sysfs_emit(buf, "%u\n", s->align);
9058 }
9059 SLAB_ATTR_RO(align);
9060 
9061 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
9062 {
9063 	return sysfs_emit(buf, "%u\n", s->object_size);
9064 }
9065 SLAB_ATTR_RO(object_size);
9066 
9067 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
9068 {
9069 	return sysfs_emit(buf, "%u\n", oo_objects(s->oo));
9070 }
9071 SLAB_ATTR_RO(objs_per_slab);
9072 
9073 static ssize_t order_show(struct kmem_cache *s, char *buf)
9074 {
9075 	return sysfs_emit(buf, "%u\n", oo_order(s->oo));
9076 }
9077 SLAB_ATTR_RO(order);
9078 
9079 static ssize_t sheaf_capacity_show(struct kmem_cache *s, char *buf)
9080 {
9081 	return sysfs_emit(buf, "%u\n", s->sheaf_capacity);
9082 }
9083 SLAB_ATTR_RO(sheaf_capacity);
9084 
9085 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
9086 {
9087 	return sysfs_emit(buf, "%lu\n", s->min_partial);
9088 }
9089 
9090 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
9091 				 size_t length)
9092 {
9093 	unsigned long min;
9094 	int err;
9095 
9096 	err = kstrtoul(buf, 10, &min);
9097 	if (err)
9098 		return err;
9099 
9100 	s->min_partial = min;
9101 	return length;
9102 }
9103 SLAB_ATTR(min_partial);
9104 
9105 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
9106 {
9107 	unsigned int nr_partial = 0;
9108 #ifdef CONFIG_SLUB_CPU_PARTIAL
9109 	nr_partial = s->cpu_partial;
9110 #endif
9111 
9112 	return sysfs_emit(buf, "%u\n", nr_partial);
9113 }
9114 
9115 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
9116 				 size_t length)
9117 {
9118 	unsigned int objects;
9119 	int err;
9120 
9121 	err = kstrtouint(buf, 10, &objects);
9122 	if (err)
9123 		return err;
9124 	if (objects && !kmem_cache_has_cpu_partial(s))
9125 		return -EINVAL;
9126 
9127 	slub_set_cpu_partial(s, objects);
9128 	flush_all(s);
9129 	return length;
9130 }
9131 SLAB_ATTR(cpu_partial);
9132 
9133 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
9134 {
9135 	if (!s->ctor)
9136 		return 0;
9137 	return sysfs_emit(buf, "%pS\n", s->ctor);
9138 }
9139 SLAB_ATTR_RO(ctor);
9140 
9141 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
9142 {
9143 	return sysfs_emit(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
9144 }
9145 SLAB_ATTR_RO(aliases);
9146 
9147 static ssize_t partial_show(struct kmem_cache *s, char *buf)
9148 {
9149 	return show_slab_objects(s, buf, SO_PARTIAL);
9150 }
9151 SLAB_ATTR_RO(partial);
9152 
9153 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
9154 {
9155 	return show_slab_objects(s, buf, SO_CPU);
9156 }
9157 SLAB_ATTR_RO(cpu_slabs);
9158 
9159 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
9160 {
9161 	return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
9162 }
9163 SLAB_ATTR_RO(objects_partial);
9164 
9165 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
9166 {
9167 	int objects = 0;
9168 	int slabs = 0;
9169 	int cpu __maybe_unused;
9170 	int len = 0;
9171 
9172 #ifdef CONFIG_SLUB_CPU_PARTIAL
9173 	for_each_online_cpu(cpu) {
9174 		struct slab *slab;
9175 
9176 		slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
9177 
9178 		if (slab)
9179 			slabs += data_race(slab->slabs);
9180 	}
9181 #endif
9182 
9183 	/* Approximate half-full slabs, see slub_set_cpu_partial() */
9184 	objects = (slabs * oo_objects(s->oo)) / 2;
9185 	len += sysfs_emit_at(buf, len, "%d(%d)", objects, slabs);
9186 
9187 #ifdef CONFIG_SLUB_CPU_PARTIAL
9188 	for_each_online_cpu(cpu) {
9189 		struct slab *slab;
9190 
9191 		slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
9192 		if (slab) {
9193 			slabs = data_race(slab->slabs);
9194 			objects = (slabs * oo_objects(s->oo)) / 2;
9195 			len += sysfs_emit_at(buf, len, " C%d=%d(%d)",
9196 					     cpu, objects, slabs);
9197 		}
9198 	}
9199 #endif
9200 	len += sysfs_emit_at(buf, len, "\n");
9201 
9202 	return len;
9203 }
9204 SLAB_ATTR_RO(slabs_cpu_partial);
9205 
9206 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
9207 {
9208 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
9209 }
9210 SLAB_ATTR_RO(reclaim_account);
9211 
9212 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
9213 {
9214 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
9215 }
9216 SLAB_ATTR_RO(hwcache_align);
9217 
9218 #ifdef CONFIG_ZONE_DMA
9219 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
9220 {
9221 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
9222 }
9223 SLAB_ATTR_RO(cache_dma);
9224 #endif
9225 
9226 #ifdef CONFIG_HARDENED_USERCOPY
9227 static ssize_t usersize_show(struct kmem_cache *s, char *buf)
9228 {
9229 	return sysfs_emit(buf, "%u\n", s->usersize);
9230 }
9231 SLAB_ATTR_RO(usersize);
9232 #endif
9233 
9234 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
9235 {
9236 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
9237 }
9238 SLAB_ATTR_RO(destroy_by_rcu);
9239 
9240 #ifdef CONFIG_SLUB_DEBUG
9241 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
9242 {
9243 	return show_slab_objects(s, buf, SO_ALL);
9244 }
9245 SLAB_ATTR_RO(slabs);
9246 
9247 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
9248 {
9249 	return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
9250 }
9251 SLAB_ATTR_RO(total_objects);
9252 
9253 static ssize_t objects_show(struct kmem_cache *s, char *buf)
9254 {
9255 	return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
9256 }
9257 SLAB_ATTR_RO(objects);
9258 
9259 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
9260 {
9261 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
9262 }
9263 SLAB_ATTR_RO(sanity_checks);
9264 
9265 static ssize_t trace_show(struct kmem_cache *s, char *buf)
9266 {
9267 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TRACE));
9268 }
9269 SLAB_ATTR_RO(trace);
9270 
9271 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
9272 {
9273 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
9274 }
9275 
9276 SLAB_ATTR_RO(red_zone);
9277 
9278 static ssize_t poison_show(struct kmem_cache *s, char *buf)
9279 {
9280 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_POISON));
9281 }
9282 
9283 SLAB_ATTR_RO(poison);
9284 
9285 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
9286 {
9287 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
9288 }
9289 
9290 SLAB_ATTR_RO(store_user);
9291 
9292 static ssize_t validate_show(struct kmem_cache *s, char *buf)
9293 {
9294 	return 0;
9295 }
9296 
9297 static ssize_t validate_store(struct kmem_cache *s,
9298 			const char *buf, size_t length)
9299 {
9300 	int ret = -EINVAL;
9301 
9302 	if (buf[0] == '1' && kmem_cache_debug(s)) {
9303 		ret = validate_slab_cache(s);
9304 		if (ret >= 0)
9305 			ret = length;
9306 	}
9307 	return ret;
9308 }
9309 SLAB_ATTR(validate);
9310 
9311 #endif /* CONFIG_SLUB_DEBUG */
9312 
9313 #ifdef CONFIG_FAILSLAB
9314 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
9315 {
9316 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
9317 }
9318 
9319 static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
9320 				size_t length)
9321 {
9322 	if (s->refcount > 1)
9323 		return -EINVAL;
9324 
9325 	if (buf[0] == '1')
9326 		WRITE_ONCE(s->flags, s->flags | SLAB_FAILSLAB);
9327 	else
9328 		WRITE_ONCE(s->flags, s->flags & ~SLAB_FAILSLAB);
9329 
9330 	return length;
9331 }
9332 SLAB_ATTR(failslab);
9333 #endif
9334 
9335 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
9336 {
9337 	return 0;
9338 }
9339 
9340 static ssize_t shrink_store(struct kmem_cache *s,
9341 			const char *buf, size_t length)
9342 {
9343 	if (buf[0] == '1')
9344 		kmem_cache_shrink(s);
9345 	else
9346 		return -EINVAL;
9347 	return length;
9348 }
9349 SLAB_ATTR(shrink);
9350 
9351 #ifdef CONFIG_NUMA
9352 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
9353 {
9354 	return sysfs_emit(buf, "%u\n", s->remote_node_defrag_ratio / 10);
9355 }
9356 
9357 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
9358 				const char *buf, size_t length)
9359 {
9360 	unsigned int ratio;
9361 	int err;
9362 
9363 	err = kstrtouint(buf, 10, &ratio);
9364 	if (err)
9365 		return err;
9366 	if (ratio > 100)
9367 		return -ERANGE;
9368 
9369 	s->remote_node_defrag_ratio = ratio * 10;
9370 
9371 	return length;
9372 }
9373 SLAB_ATTR(remote_node_defrag_ratio);
9374 #endif
9375 
9376 #ifdef CONFIG_SLUB_STATS
9377 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
9378 {
9379 	unsigned long sum  = 0;
9380 	int cpu;
9381 	int len = 0;
9382 	int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL);
9383 
9384 	if (!data)
9385 		return -ENOMEM;
9386 
9387 	for_each_online_cpu(cpu) {
9388 		unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
9389 
9390 		data[cpu] = x;
9391 		sum += x;
9392 	}
9393 
9394 	len += sysfs_emit_at(buf, len, "%lu", sum);
9395 
9396 #ifdef CONFIG_SMP
9397 	for_each_online_cpu(cpu) {
9398 		if (data[cpu])
9399 			len += sysfs_emit_at(buf, len, " C%d=%u",
9400 					     cpu, data[cpu]);
9401 	}
9402 #endif
9403 	kfree(data);
9404 	len += sysfs_emit_at(buf, len, "\n");
9405 
9406 	return len;
9407 }
9408 
9409 static void clear_stat(struct kmem_cache *s, enum stat_item si)
9410 {
9411 	int cpu;
9412 
9413 	for_each_online_cpu(cpu)
9414 		per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
9415 }
9416 
9417 #define STAT_ATTR(si, text) 					\
9418 static ssize_t text##_show(struct kmem_cache *s, char *buf)	\
9419 {								\
9420 	return show_stat(s, buf, si);				\
9421 }								\
9422 static ssize_t text##_store(struct kmem_cache *s,		\
9423 				const char *buf, size_t length)	\
9424 {								\
9425 	if (buf[0] != '0')					\
9426 		return -EINVAL;					\
9427 	clear_stat(s, si);					\
9428 	return length;						\
9429 }								\
9430 SLAB_ATTR(text);						\
9431 
9432 STAT_ATTR(ALLOC_PCS, alloc_cpu_sheaf);
9433 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
9434 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
9435 STAT_ATTR(FREE_PCS, free_cpu_sheaf);
9436 STAT_ATTR(FREE_RCU_SHEAF, free_rcu_sheaf);
9437 STAT_ATTR(FREE_RCU_SHEAF_FAIL, free_rcu_sheaf_fail);
9438 STAT_ATTR(FREE_FASTPATH, free_fastpath);
9439 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
9440 STAT_ATTR(FREE_FROZEN, free_frozen);
9441 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
9442 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
9443 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
9444 STAT_ATTR(ALLOC_SLAB, alloc_slab);
9445 STAT_ATTR(ALLOC_REFILL, alloc_refill);
9446 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
9447 STAT_ATTR(FREE_SLAB, free_slab);
9448 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
9449 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
9450 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
9451 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
9452 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
9453 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
9454 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
9455 STAT_ATTR(ORDER_FALLBACK, order_fallback);
9456 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
9457 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
9458 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
9459 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
9460 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
9461 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
9462 STAT_ATTR(SHEAF_FLUSH, sheaf_flush);
9463 STAT_ATTR(SHEAF_REFILL, sheaf_refill);
9464 STAT_ATTR(SHEAF_ALLOC, sheaf_alloc);
9465 STAT_ATTR(SHEAF_FREE, sheaf_free);
9466 STAT_ATTR(BARN_GET, barn_get);
9467 STAT_ATTR(BARN_GET_FAIL, barn_get_fail);
9468 STAT_ATTR(BARN_PUT, barn_put);
9469 STAT_ATTR(BARN_PUT_FAIL, barn_put_fail);
9470 STAT_ATTR(SHEAF_PREFILL_FAST, sheaf_prefill_fast);
9471 STAT_ATTR(SHEAF_PREFILL_SLOW, sheaf_prefill_slow);
9472 STAT_ATTR(SHEAF_PREFILL_OVERSIZE, sheaf_prefill_oversize);
9473 STAT_ATTR(SHEAF_RETURN_FAST, sheaf_return_fast);
9474 STAT_ATTR(SHEAF_RETURN_SLOW, sheaf_return_slow);
9475 #endif	/* CONFIG_SLUB_STATS */
9476 
9477 #ifdef CONFIG_KFENCE
9478 static ssize_t skip_kfence_show(struct kmem_cache *s, char *buf)
9479 {
9480 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_SKIP_KFENCE));
9481 }
9482 
9483 static ssize_t skip_kfence_store(struct kmem_cache *s,
9484 			const char *buf, size_t length)
9485 {
9486 	int ret = length;
9487 
9488 	if (buf[0] == '0')
9489 		s->flags &= ~SLAB_SKIP_KFENCE;
9490 	else if (buf[0] == '1')
9491 		s->flags |= SLAB_SKIP_KFENCE;
9492 	else
9493 		ret = -EINVAL;
9494 
9495 	return ret;
9496 }
9497 SLAB_ATTR(skip_kfence);
9498 #endif
9499 
9500 static struct attribute *slab_attrs[] = {
9501 	&slab_size_attr.attr,
9502 	&object_size_attr.attr,
9503 	&objs_per_slab_attr.attr,
9504 	&order_attr.attr,
9505 	&sheaf_capacity_attr.attr,
9506 	&min_partial_attr.attr,
9507 	&cpu_partial_attr.attr,
9508 	&objects_partial_attr.attr,
9509 	&partial_attr.attr,
9510 	&cpu_slabs_attr.attr,
9511 	&ctor_attr.attr,
9512 	&aliases_attr.attr,
9513 	&align_attr.attr,
9514 	&hwcache_align_attr.attr,
9515 	&reclaim_account_attr.attr,
9516 	&destroy_by_rcu_attr.attr,
9517 	&shrink_attr.attr,
9518 	&slabs_cpu_partial_attr.attr,
9519 #ifdef CONFIG_SLUB_DEBUG
9520 	&total_objects_attr.attr,
9521 	&objects_attr.attr,
9522 	&slabs_attr.attr,
9523 	&sanity_checks_attr.attr,
9524 	&trace_attr.attr,
9525 	&red_zone_attr.attr,
9526 	&poison_attr.attr,
9527 	&store_user_attr.attr,
9528 	&validate_attr.attr,
9529 #endif
9530 #ifdef CONFIG_ZONE_DMA
9531 	&cache_dma_attr.attr,
9532 #endif
9533 #ifdef CONFIG_NUMA
9534 	&remote_node_defrag_ratio_attr.attr,
9535 #endif
9536 #ifdef CONFIG_SLUB_STATS
9537 	&alloc_cpu_sheaf_attr.attr,
9538 	&alloc_fastpath_attr.attr,
9539 	&alloc_slowpath_attr.attr,
9540 	&free_cpu_sheaf_attr.attr,
9541 	&free_rcu_sheaf_attr.attr,
9542 	&free_rcu_sheaf_fail_attr.attr,
9543 	&free_fastpath_attr.attr,
9544 	&free_slowpath_attr.attr,
9545 	&free_frozen_attr.attr,
9546 	&free_add_partial_attr.attr,
9547 	&free_remove_partial_attr.attr,
9548 	&alloc_from_partial_attr.attr,
9549 	&alloc_slab_attr.attr,
9550 	&alloc_refill_attr.attr,
9551 	&alloc_node_mismatch_attr.attr,
9552 	&free_slab_attr.attr,
9553 	&cpuslab_flush_attr.attr,
9554 	&deactivate_full_attr.attr,
9555 	&deactivate_empty_attr.attr,
9556 	&deactivate_to_head_attr.attr,
9557 	&deactivate_to_tail_attr.attr,
9558 	&deactivate_remote_frees_attr.attr,
9559 	&deactivate_bypass_attr.attr,
9560 	&order_fallback_attr.attr,
9561 	&cmpxchg_double_fail_attr.attr,
9562 	&cmpxchg_double_cpu_fail_attr.attr,
9563 	&cpu_partial_alloc_attr.attr,
9564 	&cpu_partial_free_attr.attr,
9565 	&cpu_partial_node_attr.attr,
9566 	&cpu_partial_drain_attr.attr,
9567 	&sheaf_flush_attr.attr,
9568 	&sheaf_refill_attr.attr,
9569 	&sheaf_alloc_attr.attr,
9570 	&sheaf_free_attr.attr,
9571 	&barn_get_attr.attr,
9572 	&barn_get_fail_attr.attr,
9573 	&barn_put_attr.attr,
9574 	&barn_put_fail_attr.attr,
9575 	&sheaf_prefill_fast_attr.attr,
9576 	&sheaf_prefill_slow_attr.attr,
9577 	&sheaf_prefill_oversize_attr.attr,
9578 	&sheaf_return_fast_attr.attr,
9579 	&sheaf_return_slow_attr.attr,
9580 #endif
9581 #ifdef CONFIG_FAILSLAB
9582 	&failslab_attr.attr,
9583 #endif
9584 #ifdef CONFIG_HARDENED_USERCOPY
9585 	&usersize_attr.attr,
9586 #endif
9587 #ifdef CONFIG_KFENCE
9588 	&skip_kfence_attr.attr,
9589 #endif
9590 
9591 	NULL
9592 };
9593 
9594 static const struct attribute_group slab_attr_group = {
9595 	.attrs = slab_attrs,
9596 };
9597 
9598 static ssize_t slab_attr_show(struct kobject *kobj,
9599 				struct attribute *attr,
9600 				char *buf)
9601 {
9602 	struct slab_attribute *attribute;
9603 	struct kmem_cache *s;
9604 
9605 	attribute = to_slab_attr(attr);
9606 	s = to_slab(kobj);
9607 
9608 	if (!attribute->show)
9609 		return -EIO;
9610 
9611 	return attribute->show(s, buf);
9612 }
9613 
9614 static ssize_t slab_attr_store(struct kobject *kobj,
9615 				struct attribute *attr,
9616 				const char *buf, size_t len)
9617 {
9618 	struct slab_attribute *attribute;
9619 	struct kmem_cache *s;
9620 
9621 	attribute = to_slab_attr(attr);
9622 	s = to_slab(kobj);
9623 
9624 	if (!attribute->store)
9625 		return -EIO;
9626 
9627 	return attribute->store(s, buf, len);
9628 }
9629 
9630 static void kmem_cache_release(struct kobject *k)
9631 {
9632 	slab_kmem_cache_release(to_slab(k));
9633 }
9634 
9635 static const struct sysfs_ops slab_sysfs_ops = {
9636 	.show = slab_attr_show,
9637 	.store = slab_attr_store,
9638 };
9639 
9640 static const struct kobj_type slab_ktype = {
9641 	.sysfs_ops = &slab_sysfs_ops,
9642 	.release = kmem_cache_release,
9643 };
9644 
9645 static struct kset *slab_kset;
9646 
9647 static inline struct kset *cache_kset(struct kmem_cache *s)
9648 {
9649 	return slab_kset;
9650 }
9651 
9652 #define ID_STR_LENGTH 32
9653 
9654 /* Create a unique string id for a slab cache:
9655  *
9656  * Format	:[flags-]size
9657  */
9658 static char *create_unique_id(struct kmem_cache *s)
9659 {
9660 	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
9661 	char *p = name;
9662 
9663 	if (!name)
9664 		return ERR_PTR(-ENOMEM);
9665 
9666 	*p++ = ':';
9667 	/*
9668 	 * First flags affecting slabcache operations. We will only
9669 	 * get here for aliasable slabs so we do not need to support
9670 	 * too many flags. The flags here must cover all flags that
9671 	 * are matched during merging to guarantee that the id is
9672 	 * unique.
9673 	 */
9674 	if (s->flags & SLAB_CACHE_DMA)
9675 		*p++ = 'd';
9676 	if (s->flags & SLAB_CACHE_DMA32)
9677 		*p++ = 'D';
9678 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
9679 		*p++ = 'a';
9680 	if (s->flags & SLAB_CONSISTENCY_CHECKS)
9681 		*p++ = 'F';
9682 	if (s->flags & SLAB_ACCOUNT)
9683 		*p++ = 'A';
9684 	if (p != name + 1)
9685 		*p++ = '-';
9686 	p += snprintf(p, ID_STR_LENGTH - (p - name), "%07u", s->size);
9687 
9688 	if (WARN_ON(p > name + ID_STR_LENGTH - 1)) {
9689 		kfree(name);
9690 		return ERR_PTR(-EINVAL);
9691 	}
9692 	kmsan_unpoison_memory(name, p - name);
9693 	return name;
9694 }
9695 
9696 static int sysfs_slab_add(struct kmem_cache *s)
9697 {
9698 	int err;
9699 	const char *name;
9700 	struct kset *kset = cache_kset(s);
9701 	int unmergeable = slab_unmergeable(s);
9702 
9703 	if (!unmergeable && disable_higher_order_debug &&
9704 			(slub_debug & DEBUG_METADATA_FLAGS))
9705 		unmergeable = 1;
9706 
9707 	if (unmergeable) {
9708 		/*
9709 		 * Slabcache can never be merged so we can use the name proper.
9710 		 * This is typically the case for debug situations. In that
9711 		 * case we can catch duplicate names easily.
9712 		 */
9713 		sysfs_remove_link(&slab_kset->kobj, s->name);
9714 		name = s->name;
9715 	} else {
9716 		/*
9717 		 * Create a unique name for the slab as a target
9718 		 * for the symlinks.
9719 		 */
9720 		name = create_unique_id(s);
9721 		if (IS_ERR(name))
9722 			return PTR_ERR(name);
9723 	}
9724 
9725 	s->kobj.kset = kset;
9726 	err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
9727 	if (err)
9728 		goto out;
9729 
9730 	err = sysfs_create_group(&s->kobj, &slab_attr_group);
9731 	if (err)
9732 		goto out_del_kobj;
9733 
9734 	if (!unmergeable) {
9735 		/* Setup first alias */
9736 		sysfs_slab_alias(s, s->name);
9737 	}
9738 out:
9739 	if (!unmergeable)
9740 		kfree(name);
9741 	return err;
9742 out_del_kobj:
9743 	kobject_del(&s->kobj);
9744 	goto out;
9745 }
9746 
9747 void sysfs_slab_unlink(struct kmem_cache *s)
9748 {
9749 	if (s->kobj.state_in_sysfs)
9750 		kobject_del(&s->kobj);
9751 }
9752 
9753 void sysfs_slab_release(struct kmem_cache *s)
9754 {
9755 	kobject_put(&s->kobj);
9756 }
9757 
9758 /*
9759  * Need to buffer aliases during bootup until sysfs becomes
9760  * available lest we lose that information.
9761  */
9762 struct saved_alias {
9763 	struct kmem_cache *s;
9764 	const char *name;
9765 	struct saved_alias *next;
9766 };
9767 
9768 static struct saved_alias *alias_list;
9769 
9770 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
9771 {
9772 	struct saved_alias *al;
9773 
9774 	if (slab_state == FULL) {
9775 		/*
9776 		 * If we have a leftover link then remove it.
9777 		 */
9778 		sysfs_remove_link(&slab_kset->kobj, name);
9779 		/*
9780 		 * The original cache may have failed to generate sysfs file.
9781 		 * In that case, sysfs_create_link() returns -ENOENT and
9782 		 * symbolic link creation is skipped.
9783 		 */
9784 		return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
9785 	}
9786 
9787 	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
9788 	if (!al)
9789 		return -ENOMEM;
9790 
9791 	al->s = s;
9792 	al->name = name;
9793 	al->next = alias_list;
9794 	alias_list = al;
9795 	kmsan_unpoison_memory(al, sizeof(*al));
9796 	return 0;
9797 }
9798 
9799 static int __init slab_sysfs_init(void)
9800 {
9801 	struct kmem_cache *s;
9802 	int err;
9803 
9804 	mutex_lock(&slab_mutex);
9805 
9806 	slab_kset = kset_create_and_add("slab", NULL, kernel_kobj);
9807 	if (!slab_kset) {
9808 		mutex_unlock(&slab_mutex);
9809 		pr_err("Cannot register slab subsystem.\n");
9810 		return -ENOMEM;
9811 	}
9812 
9813 	slab_state = FULL;
9814 
9815 	list_for_each_entry(s, &slab_caches, list) {
9816 		err = sysfs_slab_add(s);
9817 		if (err)
9818 			pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
9819 			       s->name);
9820 	}
9821 
9822 	while (alias_list) {
9823 		struct saved_alias *al = alias_list;
9824 
9825 		alias_list = alias_list->next;
9826 		err = sysfs_slab_alias(al->s, al->name);
9827 		if (err)
9828 			pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
9829 			       al->name);
9830 		kfree(al);
9831 	}
9832 
9833 	mutex_unlock(&slab_mutex);
9834 	return 0;
9835 }
9836 late_initcall(slab_sysfs_init);
9837 #endif /* SLAB_SUPPORTS_SYSFS */
9838 
9839 #if defined(CONFIG_SLUB_DEBUG) && defined(CONFIG_DEBUG_FS)
9840 static int slab_debugfs_show(struct seq_file *seq, void *v)
9841 {
9842 	struct loc_track *t = seq->private;
9843 	struct location *l;
9844 	unsigned long idx;
9845 
9846 	idx = (unsigned long) t->idx;
9847 	if (idx < t->count) {
9848 		l = &t->loc[idx];
9849 
9850 		seq_printf(seq, "%7ld ", l->count);
9851 
9852 		if (l->addr)
9853 			seq_printf(seq, "%pS", (void *)l->addr);
9854 		else
9855 			seq_puts(seq, "<not-available>");
9856 
9857 		if (l->waste)
9858 			seq_printf(seq, " waste=%lu/%lu",
9859 				l->count * l->waste, l->waste);
9860 
9861 		if (l->sum_time != l->min_time) {
9862 			seq_printf(seq, " age=%ld/%llu/%ld",
9863 				l->min_time, div_u64(l->sum_time, l->count),
9864 				l->max_time);
9865 		} else
9866 			seq_printf(seq, " age=%ld", l->min_time);
9867 
9868 		if (l->min_pid != l->max_pid)
9869 			seq_printf(seq, " pid=%ld-%ld", l->min_pid, l->max_pid);
9870 		else
9871 			seq_printf(seq, " pid=%ld",
9872 				l->min_pid);
9873 
9874 		if (num_online_cpus() > 1 && !cpumask_empty(to_cpumask(l->cpus)))
9875 			seq_printf(seq, " cpus=%*pbl",
9876 				 cpumask_pr_args(to_cpumask(l->cpus)));
9877 
9878 		if (nr_online_nodes > 1 && !nodes_empty(l->nodes))
9879 			seq_printf(seq, " nodes=%*pbl",
9880 				 nodemask_pr_args(&l->nodes));
9881 
9882 #ifdef CONFIG_STACKDEPOT
9883 		{
9884 			depot_stack_handle_t handle;
9885 			unsigned long *entries;
9886 			unsigned int nr_entries, j;
9887 
9888 			handle = READ_ONCE(l->handle);
9889 			if (handle) {
9890 				nr_entries = stack_depot_fetch(handle, &entries);
9891 				seq_puts(seq, "\n");
9892 				for (j = 0; j < nr_entries; j++)
9893 					seq_printf(seq, "        %pS\n", (void *)entries[j]);
9894 			}
9895 		}
9896 #endif
9897 		seq_puts(seq, "\n");
9898 	}
9899 
9900 	if (!idx && !t->count)
9901 		seq_puts(seq, "No data\n");
9902 
9903 	return 0;
9904 }
9905 
9906 static void slab_debugfs_stop(struct seq_file *seq, void *v)
9907 {
9908 }
9909 
9910 static void *slab_debugfs_next(struct seq_file *seq, void *v, loff_t *ppos)
9911 {
9912 	struct loc_track *t = seq->private;
9913 
9914 	t->idx = ++(*ppos);
9915 	if (*ppos <= t->count)
9916 		return ppos;
9917 
9918 	return NULL;
9919 }
9920 
9921 static int cmp_loc_by_count(const void *a, const void *b)
9922 {
9923 	struct location *loc1 = (struct location *)a;
9924 	struct location *loc2 = (struct location *)b;
9925 
9926 	return cmp_int(loc2->count, loc1->count);
9927 }
9928 
9929 static void *slab_debugfs_start(struct seq_file *seq, loff_t *ppos)
9930 {
9931 	struct loc_track *t = seq->private;
9932 
9933 	t->idx = *ppos;
9934 	return ppos;
9935 }
9936 
9937 static const struct seq_operations slab_debugfs_sops = {
9938 	.start  = slab_debugfs_start,
9939 	.next   = slab_debugfs_next,
9940 	.stop   = slab_debugfs_stop,
9941 	.show   = slab_debugfs_show,
9942 };
9943 
9944 static int slab_debug_trace_open(struct inode *inode, struct file *filep)
9945 {
9946 
9947 	struct kmem_cache_node *n;
9948 	enum track_item alloc;
9949 	int node;
9950 	struct loc_track *t = __seq_open_private(filep, &slab_debugfs_sops,
9951 						sizeof(struct loc_track));
9952 	struct kmem_cache *s = file_inode(filep)->i_private;
9953 	unsigned long *obj_map;
9954 
9955 	if (!t)
9956 		return -ENOMEM;
9957 
9958 	obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL);
9959 	if (!obj_map) {
9960 		seq_release_private(inode, filep);
9961 		return -ENOMEM;
9962 	}
9963 
9964 	alloc = debugfs_get_aux_num(filep);
9965 
9966 	if (!alloc_loc_track(t, PAGE_SIZE / sizeof(struct location), GFP_KERNEL)) {
9967 		bitmap_free(obj_map);
9968 		seq_release_private(inode, filep);
9969 		return -ENOMEM;
9970 	}
9971 
9972 	for_each_kmem_cache_node(s, node, n) {
9973 		unsigned long flags;
9974 		struct slab *slab;
9975 
9976 		if (!node_nr_slabs(n))
9977 			continue;
9978 
9979 		spin_lock_irqsave(&n->list_lock, flags);
9980 		list_for_each_entry(slab, &n->partial, slab_list)
9981 			process_slab(t, s, slab, alloc, obj_map);
9982 		list_for_each_entry(slab, &n->full, slab_list)
9983 			process_slab(t, s, slab, alloc, obj_map);
9984 		spin_unlock_irqrestore(&n->list_lock, flags);
9985 	}
9986 
9987 	/* Sort locations by count */
9988 	sort(t->loc, t->count, sizeof(struct location),
9989 	     cmp_loc_by_count, NULL);
9990 
9991 	bitmap_free(obj_map);
9992 	return 0;
9993 }
9994 
9995 static int slab_debug_trace_release(struct inode *inode, struct file *file)
9996 {
9997 	struct seq_file *seq = file->private_data;
9998 	struct loc_track *t = seq->private;
9999 
10000 	free_loc_track(t);
10001 	return seq_release_private(inode, file);
10002 }
10003 
10004 static const struct file_operations slab_debugfs_fops = {
10005 	.open    = slab_debug_trace_open,
10006 	.read    = seq_read,
10007 	.llseek  = seq_lseek,
10008 	.release = slab_debug_trace_release,
10009 };
10010 
10011 static void debugfs_slab_add(struct kmem_cache *s)
10012 {
10013 	struct dentry *slab_cache_dir;
10014 
10015 	if (unlikely(!slab_debugfs_root))
10016 		return;
10017 
10018 	slab_cache_dir = debugfs_create_dir(s->name, slab_debugfs_root);
10019 
10020 	debugfs_create_file_aux_num("alloc_traces", 0400, slab_cache_dir, s,
10021 					TRACK_ALLOC, &slab_debugfs_fops);
10022 
10023 	debugfs_create_file_aux_num("free_traces", 0400, slab_cache_dir, s,
10024 					TRACK_FREE, &slab_debugfs_fops);
10025 }
10026 
10027 void debugfs_slab_release(struct kmem_cache *s)
10028 {
10029 	debugfs_lookup_and_remove(s->name, slab_debugfs_root);
10030 }
10031 
10032 static int __init slab_debugfs_init(void)
10033 {
10034 	struct kmem_cache *s;
10035 
10036 	slab_debugfs_root = debugfs_create_dir("slab", NULL);
10037 
10038 	list_for_each_entry(s, &slab_caches, list)
10039 		if (s->flags & SLAB_STORE_USER)
10040 			debugfs_slab_add(s);
10041 
10042 	return 0;
10043 
10044 }
10045 __initcall(slab_debugfs_init);
10046 #endif
10047 /*
10048  * The /proc/slabinfo ABI
10049  */
10050 #ifdef CONFIG_SLUB_DEBUG
10051 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
10052 {
10053 	unsigned long nr_slabs = 0;
10054 	unsigned long nr_objs = 0;
10055 	unsigned long nr_free = 0;
10056 	int node;
10057 	struct kmem_cache_node *n;
10058 
10059 	for_each_kmem_cache_node(s, node, n) {
10060 		nr_slabs += node_nr_slabs(n);
10061 		nr_objs += node_nr_objs(n);
10062 		nr_free += count_partial_free_approx(n);
10063 	}
10064 
10065 	sinfo->active_objs = nr_objs - nr_free;
10066 	sinfo->num_objs = nr_objs;
10067 	sinfo->active_slabs = nr_slabs;
10068 	sinfo->num_slabs = nr_slabs;
10069 	sinfo->objects_per_slab = oo_objects(s->oo);
10070 	sinfo->cache_order = oo_order(s->oo);
10071 }
10072 #endif /* CONFIG_SLUB_DEBUG */
10073