1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * SLUB: A slab allocator with low overhead percpu array caches and mostly 4 * lockless freeing of objects to slabs in the slowpath. 5 * 6 * The allocator synchronizes using spin_trylock for percpu arrays in the 7 * fastpath, and cmpxchg_double (or bit spinlock) for slowpath freeing. 8 * Uses a centralized lock to manage a pool of partial slabs. 9 * 10 * (C) 2007 SGI, Christoph Lameter 11 * (C) 2011 Linux Foundation, Christoph Lameter 12 * (C) 2025 SUSE, Vlastimil Babka 13 */ 14 15 #include <linux/mm.h> 16 #include <linux/swap.h> /* mm_account_reclaimed_pages() */ 17 #include <linux/module.h> 18 #include <linux/bit_spinlock.h> 19 #include <linux/interrupt.h> 20 #include <linux/swab.h> 21 #include <linux/bitops.h> 22 #include <linux/slab.h> 23 #include "slab.h" 24 #include <linux/vmalloc.h> 25 #include <linux/proc_fs.h> 26 #include <linux/seq_file.h> 27 #include <linux/kasan.h> 28 #include <linux/node.h> 29 #include <linux/kmsan.h> 30 #include <linux/cpu.h> 31 #include <linux/cpuset.h> 32 #include <linux/mempolicy.h> 33 #include <linux/ctype.h> 34 #include <linux/stackdepot.h> 35 #include <linux/debugobjects.h> 36 #include <linux/kallsyms.h> 37 #include <linux/kfence.h> 38 #include <linux/memory.h> 39 #include <linux/math64.h> 40 #include <linux/fault-inject.h> 41 #include <linux/kmemleak.h> 42 #include <linux/stacktrace.h> 43 #include <linux/prefetch.h> 44 #include <linux/memcontrol.h> 45 #include <linux/random.h> 46 #include <kunit/test.h> 47 #include <kunit/test-bug.h> 48 #include <linux/sort.h> 49 #include <linux/irq_work.h> 50 #include <linux/kprobes.h> 51 #include <linux/debugfs.h> 52 #include <trace/events/kmem.h> 53 54 #include "internal.h" 55 56 /* 57 * Lock order: 58 * 0. cpu_hotplug_lock 59 * 1. slab_mutex (Global Mutex) 60 * 2a. kmem_cache->cpu_sheaves->lock (Local trylock) 61 * 2b. node->barn->lock (Spinlock) 62 * 2c. node->list_lock (Spinlock) 63 * 3. slab_lock(slab) (Only on some arches) 64 * 4. object_map_lock (Only for debugging) 65 * 66 * slab_mutex 67 * 68 * The role of the slab_mutex is to protect the list of all the slabs 69 * and to synchronize major metadata changes to slab cache structures. 70 * Also synchronizes memory hotplug callbacks. 71 * 72 * slab_lock 73 * 74 * The slab_lock is a wrapper around the page lock, thus it is a bit 75 * spinlock. 76 * 77 * The slab_lock is only used on arches that do not have the ability 78 * to do a cmpxchg_double. It only protects: 79 * 80 * A. slab->freelist -> List of free objects in a slab 81 * B. slab->inuse -> Number of objects in use 82 * C. slab->objects -> Number of objects in slab 83 * D. slab->frozen -> frozen state 84 * 85 * SL_partial slabs 86 * 87 * Slabs on node partial list have at least one free object. A limited number 88 * of slabs on the list can be fully free (slab->inuse == 0), until we start 89 * discarding them. These slabs are marked with SL_partial, and the flag is 90 * cleared while removing them, usually to grab their freelist afterwards. 91 * This clearing also exempts them from list management. Please see 92 * __slab_free() for more details. 93 * 94 * Full slabs 95 * 96 * For caches without debugging enabled, full slabs (slab->inuse == 97 * slab->objects and slab->freelist == NULL) are not placed on any list. 98 * The __slab_free() freeing the first object from such a slab will place 99 * it on the partial list. Caches with debugging enabled place such slab 100 * on the full list and use different allocation and freeing paths. 101 * 102 * Frozen slabs 103 * 104 * If a slab is frozen then it is exempt from list management. It is used to 105 * indicate a slab that has failed consistency checks and thus cannot be 106 * allocated from anymore - it is also marked as full. Any previously 107 * allocated objects will be simply leaked upon freeing instead of attempting 108 * to modify the potentially corrupted freelist and metadata. 109 * 110 * To sum up, the current scheme is: 111 * - node partial slab: SL_partial && !full && !frozen 112 * - taken off partial list: !SL_partial && !full && !frozen 113 * - full slab, not on any list: !SL_partial && full && !frozen 114 * - frozen due to inconsistency: !SL_partial && full && frozen 115 * 116 * node->list_lock (spinlock) 117 * 118 * The list_lock protects the partial and full list on each node and 119 * the partial slab counter. If taken then no new slabs may be added or 120 * removed from the lists nor make the number of partial slabs be modified. 121 * (Note that the total number of slabs is an atomic value that may be 122 * modified without taking the list lock). 123 * 124 * The list_lock is a centralized lock and thus we avoid taking it as 125 * much as possible. As long as SLUB does not have to handle partial 126 * slabs, operations can continue without any centralized lock. 127 * 128 * For debug caches, all allocations are forced to go through a list_lock 129 * protected region to serialize against concurrent validation. 130 * 131 * cpu_sheaves->lock (local_trylock) 132 * 133 * This lock protects fastpath operations on the percpu sheaves. On !RT it 134 * only disables preemption and does no atomic operations. As long as the main 135 * or spare sheaf can handle the allocation or free, there is no other 136 * overhead. 137 * 138 * node->barn->lock (spinlock) 139 * 140 * This lock protects the operations on per-NUMA-node barn. It can quickly 141 * serve an empty or full sheaf if available, and avoid more expensive refill 142 * or flush operation. 143 * 144 * Lockless freeing 145 * 146 * Objects may have to be freed to their slabs when they are from a remote 147 * node (where we want to avoid filling local sheaves with remote objects) 148 * or when there are too many full sheaves. On architectures supporting 149 * cmpxchg_double this is done by a lockless update of slab's freelist and 150 * counters, otherwise slab_lock is taken. This only needs to take the 151 * list_lock if it's a first free to a full slab, or when a slab becomes empty 152 * after the free. 153 * 154 * irq, preemption, migration considerations 155 * 156 * Interrupts are disabled as part of list_lock or barn lock operations, or 157 * around the slab_lock operation, in order to make the slab allocator safe 158 * to use in the context of an irq. 159 * Preemption is disabled as part of local_trylock operations. 160 * kmalloc_nolock() and kfree_nolock() are safe in NMI context but see 161 * their limitations. 162 * 163 * SLUB assigns two object arrays called sheaves for caching allocations and 164 * frees on each cpu, with a NUMA node shared barn for balancing between cpus. 165 * Allocations and frees are primarily served from these sheaves. 166 * 167 * Slabs with free elements are kept on a partial list and during regular 168 * operations no list for full slabs is used. If an object in a full slab is 169 * freed then the slab will show up again on the partial lists. 170 * We track full slabs for debugging purposes though because otherwise we 171 * cannot scan all objects. 172 * 173 * Slabs are freed when they become empty. Teardown and setup is minimal so we 174 * rely on the page allocators per cpu caches for fast frees and allocs. 175 * 176 * SLAB_DEBUG_FLAGS Slab requires special handling due to debug 177 * options set. This moves slab handling out of 178 * the fast path and disables lockless freelists. 179 */ 180 181 /** 182 * enum slab_flags - How the slab flags bits are used. 183 * @SL_locked: Is locked with slab_lock() 184 * @SL_partial: On the per-node partial list 185 * @SL_pfmemalloc: Was allocated from PF_MEMALLOC reserves 186 * 187 * The slab flags share space with the page flags but some bits have 188 * different interpretations. The high bits are used for information 189 * like zone/node/section. 190 */ 191 enum slab_flags { 192 SL_locked = PG_locked, 193 SL_partial = PG_workingset, /* Historical reasons for this bit */ 194 SL_pfmemalloc = PG_active, /* Historical reasons for this bit */ 195 }; 196 197 #ifndef CONFIG_SLUB_TINY 198 #define __fastpath_inline __always_inline 199 #else 200 #define __fastpath_inline 201 #endif 202 203 #ifdef CONFIG_SLUB_DEBUG 204 #ifdef CONFIG_SLUB_DEBUG_ON 205 DEFINE_STATIC_KEY_TRUE(slub_debug_enabled); 206 #else 207 DEFINE_STATIC_KEY_FALSE(slub_debug_enabled); 208 #endif 209 #endif /* CONFIG_SLUB_DEBUG */ 210 211 #ifdef CONFIG_NUMA 212 static DEFINE_STATIC_KEY_FALSE(strict_numa); 213 #endif 214 215 /* Structure holding parameters for get_from_partial() call chain */ 216 struct partial_context { 217 gfp_t flags; 218 unsigned int orig_size; 219 }; 220 221 /* Structure holding parameters for get_partial_node_bulk() */ 222 struct partial_bulk_context { 223 gfp_t flags; 224 unsigned int min_objects; 225 unsigned int max_objects; 226 struct list_head slabs; 227 }; 228 229 static inline bool kmem_cache_debug(struct kmem_cache *s) 230 { 231 return kmem_cache_debug_flags(s, SLAB_DEBUG_FLAGS); 232 } 233 234 void *fixup_red_left(struct kmem_cache *s, void *p) 235 { 236 if (kmem_cache_debug_flags(s, SLAB_RED_ZONE)) 237 p += s->red_left_pad; 238 239 return p; 240 } 241 242 /* 243 * Issues still to be resolved: 244 * 245 * - Support PAGE_ALLOC_DEBUG. Should be easy to do. 246 * 247 * - Variable sizing of the per node arrays 248 */ 249 250 /* Enable to log cmpxchg failures */ 251 #undef SLUB_DEBUG_CMPXCHG 252 253 #ifndef CONFIG_SLUB_TINY 254 /* 255 * Minimum number of partial slabs. These will be left on the partial 256 * lists even if they are empty. kmem_cache_shrink may reclaim them. 257 */ 258 #define MIN_PARTIAL 5 259 260 /* 261 * Maximum number of desirable partial slabs. 262 * The existence of more partial slabs makes kmem_cache_shrink 263 * sort the partial list by the number of objects in use. 264 */ 265 #define MAX_PARTIAL 10 266 #else 267 #define MIN_PARTIAL 0 268 #define MAX_PARTIAL 0 269 #endif 270 271 #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \ 272 SLAB_POISON | SLAB_STORE_USER) 273 274 /* 275 * These debug flags cannot use CMPXCHG because there might be consistency 276 * issues when checking or reading debug information 277 */ 278 #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \ 279 SLAB_TRACE) 280 281 282 /* 283 * Debugging flags that require metadata to be stored in the slab. These get 284 * disabled when slab_debug=O is used and a cache's min order increases with 285 * metadata. 286 */ 287 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER) 288 289 #define OO_SHIFT 16 290 #define OO_MASK ((1 << OO_SHIFT) - 1) 291 #define MAX_OBJS_PER_PAGE 32767 /* since slab.objects is u15 */ 292 293 /* Internal SLUB flags */ 294 /* Poison object */ 295 #define __OBJECT_POISON __SLAB_FLAG_BIT(_SLAB_OBJECT_POISON) 296 /* Use cmpxchg_double */ 297 298 #ifdef system_has_freelist_aba 299 #define __CMPXCHG_DOUBLE __SLAB_FLAG_BIT(_SLAB_CMPXCHG_DOUBLE) 300 #else 301 #define __CMPXCHG_DOUBLE __SLAB_FLAG_UNUSED 302 #endif 303 304 /* 305 * Tracking user of a slab. 306 */ 307 #define TRACK_ADDRS_COUNT 16 308 struct track { 309 unsigned long addr; /* Called from address */ 310 #ifdef CONFIG_STACKDEPOT 311 depot_stack_handle_t handle; 312 #endif 313 int cpu; /* Was running on cpu */ 314 int pid; /* Pid context */ 315 unsigned long when; /* When did the operation occur */ 316 }; 317 318 enum track_item { TRACK_ALLOC, TRACK_FREE }; 319 320 #ifdef SLAB_SUPPORTS_SYSFS 321 static int sysfs_slab_add(struct kmem_cache *); 322 #else 323 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; } 324 #endif 325 326 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_SLUB_DEBUG) 327 static void debugfs_slab_add(struct kmem_cache *); 328 #else 329 static inline void debugfs_slab_add(struct kmem_cache *s) { } 330 #endif 331 332 enum add_mode { 333 ADD_TO_HEAD, 334 ADD_TO_TAIL, 335 }; 336 337 enum stat_item { 338 ALLOC_FASTPATH, /* Allocation from percpu sheaves */ 339 ALLOC_SLOWPATH, /* Allocation from partial or new slab */ 340 FREE_RCU_SHEAF, /* Free to rcu_free sheaf */ 341 FREE_RCU_SHEAF_FAIL, /* Failed to free to a rcu_free sheaf */ 342 FREE_FASTPATH, /* Free to percpu sheaves */ 343 FREE_SLOWPATH, /* Free to a slab */ 344 FREE_ADD_PARTIAL, /* Freeing moves slab to partial list */ 345 FREE_REMOVE_PARTIAL, /* Freeing removes last object */ 346 ALLOC_SLAB, /* New slab acquired from page allocator */ 347 ALLOC_NODE_MISMATCH, /* Requested node different from cpu sheaf */ 348 FREE_SLAB, /* Slab freed to the page allocator */ 349 ORDER_FALLBACK, /* Number of times fallback was necessary */ 350 CMPXCHG_DOUBLE_FAIL, /* Failures of slab freelist update */ 351 SHEAF_FLUSH, /* Objects flushed from a sheaf */ 352 SHEAF_REFILL, /* Objects refilled to a sheaf */ 353 SHEAF_ALLOC, /* Allocation of an empty sheaf */ 354 SHEAF_FREE, /* Freeing of an empty sheaf */ 355 BARN_GET, /* Got full sheaf from barn */ 356 BARN_GET_FAIL, /* Failed to get full sheaf from barn */ 357 BARN_PUT, /* Put full sheaf to barn */ 358 BARN_PUT_FAIL, /* Failed to put full sheaf to barn */ 359 SHEAF_PREFILL_FAST, /* Sheaf prefill grabbed the spare sheaf */ 360 SHEAF_PREFILL_SLOW, /* Sheaf prefill found no spare sheaf */ 361 SHEAF_PREFILL_OVERSIZE, /* Allocation of oversize sheaf for prefill */ 362 SHEAF_RETURN_FAST, /* Sheaf return reattached spare sheaf */ 363 SHEAF_RETURN_SLOW, /* Sheaf return could not reattach spare */ 364 NR_SLUB_STAT_ITEMS 365 }; 366 367 #ifdef CONFIG_SLUB_STATS 368 struct kmem_cache_stats { 369 unsigned int stat[NR_SLUB_STAT_ITEMS]; 370 }; 371 #endif 372 373 static inline void stat(const struct kmem_cache *s, enum stat_item si) 374 { 375 #ifdef CONFIG_SLUB_STATS 376 /* 377 * The rmw is racy on a preemptible kernel but this is acceptable, so 378 * avoid this_cpu_add()'s irq-disable overhead. 379 */ 380 raw_cpu_inc(s->cpu_stats->stat[si]); 381 #endif 382 } 383 384 static inline 385 void stat_add(const struct kmem_cache *s, enum stat_item si, int v) 386 { 387 #ifdef CONFIG_SLUB_STATS 388 raw_cpu_add(s->cpu_stats->stat[si], v); 389 #endif 390 } 391 392 #define MAX_FULL_SHEAVES 10 393 #define MAX_EMPTY_SHEAVES 10 394 395 struct node_barn { 396 spinlock_t lock; 397 struct list_head sheaves_full; 398 struct list_head sheaves_empty; 399 unsigned int nr_full; 400 unsigned int nr_empty; 401 }; 402 403 struct slab_sheaf { 404 union { 405 struct rcu_head rcu_head; 406 struct list_head barn_list; 407 /* only used for prefilled sheafs */ 408 struct { 409 unsigned int capacity; 410 bool pfmemalloc; 411 }; 412 }; 413 struct kmem_cache *cache; 414 unsigned int size; 415 int node; /* only used for rcu_sheaf */ 416 void *objects[]; 417 }; 418 419 struct slub_percpu_sheaves { 420 local_trylock_t lock; 421 struct slab_sheaf *main; /* never NULL when unlocked */ 422 struct slab_sheaf *spare; /* empty or full, may be NULL */ 423 struct slab_sheaf *rcu_free; /* for batching kfree_rcu() */ 424 }; 425 426 /* 427 * The slab lists for all objects. 428 */ 429 struct kmem_cache_node { 430 spinlock_t list_lock; 431 unsigned long nr_partial; 432 struct list_head partial; 433 #ifdef CONFIG_SLUB_DEBUG 434 atomic_long_t nr_slabs; 435 atomic_long_t total_objects; 436 struct list_head full; 437 #endif 438 struct node_barn *barn; 439 }; 440 441 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node) 442 { 443 return s->node[node]; 444 } 445 446 /* 447 * Get the barn of the current cpu's closest memory node. It may not exist on 448 * systems with memoryless nodes but without CONFIG_HAVE_MEMORYLESS_NODES 449 */ 450 static inline struct node_barn *get_barn(struct kmem_cache *s) 451 { 452 struct kmem_cache_node *n = get_node(s, numa_mem_id()); 453 454 if (!n) 455 return NULL; 456 457 return n->barn; 458 } 459 460 /* 461 * Iterator over all nodes. The body will be executed for each node that has 462 * a kmem_cache_node structure allocated (which is true for all online nodes) 463 */ 464 #define for_each_kmem_cache_node(__s, __node, __n) \ 465 for (__node = 0; __node < nr_node_ids; __node++) \ 466 if ((__n = get_node(__s, __node))) 467 468 /* 469 * Tracks for which NUMA nodes we have kmem_cache_nodes allocated. 470 * Corresponds to node_state[N_MEMORY], but can temporarily 471 * differ during memory hotplug/hotremove operations. 472 * Protected by slab_mutex. 473 */ 474 static nodemask_t slab_nodes; 475 476 /* 477 * Workqueue used for flushing cpu and kfree_rcu sheaves. 478 */ 479 static struct workqueue_struct *flushwq; 480 481 struct slub_flush_work { 482 struct work_struct work; 483 struct kmem_cache *s; 484 bool skip; 485 }; 486 487 static DEFINE_MUTEX(flush_lock); 488 static DEFINE_PER_CPU(struct slub_flush_work, slub_flush); 489 490 /******************************************************************** 491 * Core slab cache functions 492 *******************************************************************/ 493 494 /* 495 * Returns freelist pointer (ptr). With hardening, this is obfuscated 496 * with an XOR of the address where the pointer is held and a per-cache 497 * random number. 498 */ 499 static inline freeptr_t freelist_ptr_encode(const struct kmem_cache *s, 500 void *ptr, unsigned long ptr_addr) 501 { 502 unsigned long encoded; 503 504 #ifdef CONFIG_SLAB_FREELIST_HARDENED 505 encoded = (unsigned long)ptr ^ s->random ^ swab(ptr_addr); 506 #else 507 encoded = (unsigned long)ptr; 508 #endif 509 return (freeptr_t){.v = encoded}; 510 } 511 512 static inline void *freelist_ptr_decode(const struct kmem_cache *s, 513 freeptr_t ptr, unsigned long ptr_addr) 514 { 515 void *decoded; 516 517 #ifdef CONFIG_SLAB_FREELIST_HARDENED 518 decoded = (void *)(ptr.v ^ s->random ^ swab(ptr_addr)); 519 #else 520 decoded = (void *)ptr.v; 521 #endif 522 return decoded; 523 } 524 525 static inline void *get_freepointer(struct kmem_cache *s, void *object) 526 { 527 unsigned long ptr_addr; 528 freeptr_t p; 529 530 object = kasan_reset_tag(object); 531 ptr_addr = (unsigned long)object + s->offset; 532 p = *(freeptr_t *)(ptr_addr); 533 return freelist_ptr_decode(s, p, ptr_addr); 534 } 535 536 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp) 537 { 538 unsigned long freeptr_addr = (unsigned long)object + s->offset; 539 540 #ifdef CONFIG_SLAB_FREELIST_HARDENED 541 BUG_ON(object == fp); /* naive detection of double free or corruption */ 542 #endif 543 544 freeptr_addr = (unsigned long)kasan_reset_tag((void *)freeptr_addr); 545 *(freeptr_t *)freeptr_addr = freelist_ptr_encode(s, fp, freeptr_addr); 546 } 547 548 /* 549 * See comment in calculate_sizes(). 550 */ 551 static inline bool freeptr_outside_object(struct kmem_cache *s) 552 { 553 return s->offset >= s->inuse; 554 } 555 556 /* 557 * Return offset of the end of info block which is inuse + free pointer if 558 * not overlapping with object. 559 */ 560 static inline unsigned int get_info_end(struct kmem_cache *s) 561 { 562 if (freeptr_outside_object(s)) 563 return s->inuse + sizeof(void *); 564 else 565 return s->inuse; 566 } 567 568 /* Loop over all objects in a slab */ 569 #define for_each_object(__p, __s, __addr, __objects) \ 570 for (__p = fixup_red_left(__s, __addr); \ 571 __p < (__addr) + (__objects) * (__s)->size; \ 572 __p += (__s)->size) 573 574 static inline unsigned int order_objects(unsigned int order, unsigned int size) 575 { 576 return ((unsigned int)PAGE_SIZE << order) / size; 577 } 578 579 static inline struct kmem_cache_order_objects oo_make(unsigned int order, 580 unsigned int size) 581 { 582 struct kmem_cache_order_objects x = { 583 (order << OO_SHIFT) + order_objects(order, size) 584 }; 585 586 return x; 587 } 588 589 static inline unsigned int oo_order(struct kmem_cache_order_objects x) 590 { 591 return x.x >> OO_SHIFT; 592 } 593 594 static inline unsigned int oo_objects(struct kmem_cache_order_objects x) 595 { 596 return x.x & OO_MASK; 597 } 598 599 /* 600 * If network-based swap is enabled, slub must keep track of whether memory 601 * were allocated from pfmemalloc reserves. 602 */ 603 static inline bool slab_test_pfmemalloc(const struct slab *slab) 604 { 605 return test_bit(SL_pfmemalloc, &slab->flags.f); 606 } 607 608 static inline void slab_set_pfmemalloc(struct slab *slab) 609 { 610 set_bit(SL_pfmemalloc, &slab->flags.f); 611 } 612 613 static inline void __slab_clear_pfmemalloc(struct slab *slab) 614 { 615 __clear_bit(SL_pfmemalloc, &slab->flags.f); 616 } 617 618 /* 619 * Per slab locking using the pagelock 620 */ 621 static __always_inline void slab_lock(struct slab *slab) 622 { 623 bit_spin_lock(SL_locked, &slab->flags.f); 624 } 625 626 static __always_inline void slab_unlock(struct slab *slab) 627 { 628 bit_spin_unlock(SL_locked, &slab->flags.f); 629 } 630 631 static inline bool 632 __update_freelist_fast(struct slab *slab, struct freelist_counters *old, 633 struct freelist_counters *new) 634 { 635 #ifdef system_has_freelist_aba 636 return try_cmpxchg_freelist(&slab->freelist_counters, 637 &old->freelist_counters, 638 new->freelist_counters); 639 #else 640 return false; 641 #endif 642 } 643 644 static inline bool 645 __update_freelist_slow(struct slab *slab, struct freelist_counters *old, 646 struct freelist_counters *new) 647 { 648 bool ret = false; 649 650 slab_lock(slab); 651 if (slab->freelist == old->freelist && 652 slab->counters == old->counters) { 653 slab->freelist = new->freelist; 654 /* prevent tearing for the read in get_partial_node_bulk() */ 655 WRITE_ONCE(slab->counters, new->counters); 656 ret = true; 657 } 658 slab_unlock(slab); 659 660 return ret; 661 } 662 663 /* 664 * Interrupts must be disabled (for the fallback code to work right), typically 665 * by an _irqsave() lock variant. On PREEMPT_RT the preempt_disable(), which is 666 * part of bit_spin_lock(), is sufficient because the policy is not to allow any 667 * allocation/ free operation in hardirq context. Therefore nothing can 668 * interrupt the operation. 669 */ 670 static inline bool __slab_update_freelist(struct kmem_cache *s, struct slab *slab, 671 struct freelist_counters *old, struct freelist_counters *new, const char *n) 672 { 673 bool ret; 674 675 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 676 lockdep_assert_irqs_disabled(); 677 678 if (s->flags & __CMPXCHG_DOUBLE) 679 ret = __update_freelist_fast(slab, old, new); 680 else 681 ret = __update_freelist_slow(slab, old, new); 682 683 if (likely(ret)) 684 return true; 685 686 cpu_relax(); 687 stat(s, CMPXCHG_DOUBLE_FAIL); 688 689 #ifdef SLUB_DEBUG_CMPXCHG 690 pr_info("%s %s: cmpxchg double redo ", n, s->name); 691 #endif 692 693 return false; 694 } 695 696 static inline bool slab_update_freelist(struct kmem_cache *s, struct slab *slab, 697 struct freelist_counters *old, struct freelist_counters *new, const char *n) 698 { 699 bool ret; 700 701 if (s->flags & __CMPXCHG_DOUBLE) { 702 ret = __update_freelist_fast(slab, old, new); 703 } else { 704 unsigned long flags; 705 706 local_irq_save(flags); 707 ret = __update_freelist_slow(slab, old, new); 708 local_irq_restore(flags); 709 } 710 if (likely(ret)) 711 return true; 712 713 cpu_relax(); 714 stat(s, CMPXCHG_DOUBLE_FAIL); 715 716 #ifdef SLUB_DEBUG_CMPXCHG 717 pr_info("%s %s: cmpxchg double redo ", n, s->name); 718 #endif 719 720 return false; 721 } 722 723 /* 724 * kmalloc caches has fixed sizes (mostly power of 2), and kmalloc() API 725 * family will round up the real request size to these fixed ones, so 726 * there could be an extra area than what is requested. Save the original 727 * request size in the meta data area, for better debug and sanity check. 728 */ 729 static inline void set_orig_size(struct kmem_cache *s, 730 void *object, unsigned long orig_size) 731 { 732 void *p = kasan_reset_tag(object); 733 734 if (!slub_debug_orig_size(s)) 735 return; 736 737 p += get_info_end(s); 738 p += sizeof(struct track) * 2; 739 740 *(unsigned long *)p = orig_size; 741 } 742 743 static inline unsigned long get_orig_size(struct kmem_cache *s, void *object) 744 { 745 void *p = kasan_reset_tag(object); 746 747 if (is_kfence_address(object)) 748 return kfence_ksize(object); 749 750 if (!slub_debug_orig_size(s)) 751 return s->object_size; 752 753 p += get_info_end(s); 754 p += sizeof(struct track) * 2; 755 756 return *(unsigned long *)p; 757 } 758 759 #ifdef CONFIG_SLAB_OBJ_EXT 760 761 /* 762 * Check if memory cgroup or memory allocation profiling is enabled. 763 * If enabled, SLUB tries to reduce memory overhead of accounting 764 * slab objects. If neither is enabled when this function is called, 765 * the optimization is simply skipped to avoid affecting caches that do not 766 * need slabobj_ext metadata. 767 * 768 * However, this may disable optimization when memory cgroup or memory 769 * allocation profiling is used, but slabs are created too early 770 * even before those subsystems are initialized. 771 */ 772 static inline bool need_slab_obj_exts(struct kmem_cache *s) 773 { 774 if (s->flags & SLAB_NO_OBJ_EXT) 775 return false; 776 777 if (memcg_kmem_online() && (s->flags & SLAB_ACCOUNT)) 778 return true; 779 780 if (mem_alloc_profiling_enabled()) 781 return true; 782 783 return false; 784 } 785 786 static inline unsigned int obj_exts_size_in_slab(struct slab *slab) 787 { 788 return sizeof(struct slabobj_ext) * slab->objects; 789 } 790 791 static inline unsigned long obj_exts_offset_in_slab(struct kmem_cache *s, 792 struct slab *slab) 793 { 794 unsigned long objext_offset; 795 796 objext_offset = s->size * slab->objects; 797 objext_offset = ALIGN(objext_offset, sizeof(struct slabobj_ext)); 798 return objext_offset; 799 } 800 801 static inline bool obj_exts_fit_within_slab_leftover(struct kmem_cache *s, 802 struct slab *slab) 803 { 804 unsigned long objext_offset = obj_exts_offset_in_slab(s, slab); 805 unsigned long objext_size = obj_exts_size_in_slab(slab); 806 807 return objext_offset + objext_size <= slab_size(slab); 808 } 809 810 static inline bool obj_exts_in_slab(struct kmem_cache *s, struct slab *slab) 811 { 812 unsigned long obj_exts; 813 unsigned long start; 814 unsigned long end; 815 816 obj_exts = slab_obj_exts(slab); 817 if (!obj_exts) 818 return false; 819 820 start = (unsigned long)slab_address(slab); 821 end = start + slab_size(slab); 822 return (obj_exts >= start) && (obj_exts < end); 823 } 824 #else 825 static inline bool need_slab_obj_exts(struct kmem_cache *s) 826 { 827 return false; 828 } 829 830 static inline unsigned int obj_exts_size_in_slab(struct slab *slab) 831 { 832 return 0; 833 } 834 835 static inline unsigned long obj_exts_offset_in_slab(struct kmem_cache *s, 836 struct slab *slab) 837 { 838 return 0; 839 } 840 841 static inline bool obj_exts_fit_within_slab_leftover(struct kmem_cache *s, 842 struct slab *slab) 843 { 844 return false; 845 } 846 847 static inline bool obj_exts_in_slab(struct kmem_cache *s, struct slab *slab) 848 { 849 return false; 850 } 851 852 #endif 853 854 #if defined(CONFIG_SLAB_OBJ_EXT) && defined(CONFIG_64BIT) 855 static bool obj_exts_in_object(struct kmem_cache *s, struct slab *slab) 856 { 857 /* 858 * Note we cannot rely on the SLAB_OBJ_EXT_IN_OBJ flag here and need to 859 * check the stride. A cache can have SLAB_OBJ_EXT_IN_OBJ set, but 860 * allocations within_slab_leftover are preferred. And those may be 861 * possible or not depending on the particular slab's size. 862 */ 863 return obj_exts_in_slab(s, slab) && 864 (slab_get_stride(slab) == s->size); 865 } 866 867 static unsigned int obj_exts_offset_in_object(struct kmem_cache *s) 868 { 869 unsigned int offset = get_info_end(s); 870 871 if (kmem_cache_debug_flags(s, SLAB_STORE_USER)) 872 offset += sizeof(struct track) * 2; 873 874 if (slub_debug_orig_size(s)) 875 offset += sizeof(unsigned long); 876 877 offset += kasan_metadata_size(s, false); 878 879 return offset; 880 } 881 #else 882 static inline bool obj_exts_in_object(struct kmem_cache *s, struct slab *slab) 883 { 884 return false; 885 } 886 887 static inline unsigned int obj_exts_offset_in_object(struct kmem_cache *s) 888 { 889 return 0; 890 } 891 #endif 892 893 #ifdef CONFIG_SLUB_DEBUG 894 895 /* 896 * For debugging context when we want to check if the struct slab pointer 897 * appears to be valid. 898 */ 899 static inline bool validate_slab_ptr(struct slab *slab) 900 { 901 return PageSlab(slab_page(slab)); 902 } 903 904 static unsigned long object_map[BITS_TO_LONGS(MAX_OBJS_PER_PAGE)]; 905 static DEFINE_SPINLOCK(object_map_lock); 906 907 static void __fill_map(unsigned long *obj_map, struct kmem_cache *s, 908 struct slab *slab) 909 { 910 void *addr = slab_address(slab); 911 void *p; 912 913 bitmap_zero(obj_map, slab->objects); 914 915 for (p = slab->freelist; p; p = get_freepointer(s, p)) 916 set_bit(__obj_to_index(s, addr, p), obj_map); 917 } 918 919 #if IS_ENABLED(CONFIG_KUNIT) 920 static bool slab_add_kunit_errors(void) 921 { 922 struct kunit_resource *resource; 923 924 if (!kunit_get_current_test()) 925 return false; 926 927 resource = kunit_find_named_resource(current->kunit_test, "slab_errors"); 928 if (!resource) 929 return false; 930 931 (*(int *)resource->data)++; 932 kunit_put_resource(resource); 933 return true; 934 } 935 936 bool slab_in_kunit_test(void) 937 { 938 struct kunit_resource *resource; 939 940 if (!kunit_get_current_test()) 941 return false; 942 943 resource = kunit_find_named_resource(current->kunit_test, "slab_errors"); 944 if (!resource) 945 return false; 946 947 kunit_put_resource(resource); 948 return true; 949 } 950 #else 951 static inline bool slab_add_kunit_errors(void) { return false; } 952 #endif 953 954 static inline unsigned int size_from_object(struct kmem_cache *s) 955 { 956 if (s->flags & SLAB_RED_ZONE) 957 return s->size - s->red_left_pad; 958 959 return s->size; 960 } 961 962 static inline void *restore_red_left(struct kmem_cache *s, void *p) 963 { 964 if (s->flags & SLAB_RED_ZONE) 965 p -= s->red_left_pad; 966 967 return p; 968 } 969 970 /* 971 * Debug settings: 972 */ 973 #if defined(CONFIG_SLUB_DEBUG_ON) 974 static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS; 975 #else 976 static slab_flags_t slub_debug; 977 #endif 978 979 static const char *slub_debug_string __ro_after_init; 980 static int disable_higher_order_debug; 981 982 /* 983 * Object debugging 984 */ 985 986 /* Verify that a pointer has an address that is valid within a slab page */ 987 static inline int check_valid_pointer(struct kmem_cache *s, 988 struct slab *slab, void *object) 989 { 990 void *base; 991 992 if (!object) 993 return 1; 994 995 base = slab_address(slab); 996 object = kasan_reset_tag(object); 997 object = restore_red_left(s, object); 998 if (object < base || object >= base + slab->objects * s->size || 999 (object - base) % s->size) { 1000 return 0; 1001 } 1002 1003 return 1; 1004 } 1005 1006 static void print_section(char *level, char *text, u8 *addr, 1007 unsigned int length) 1008 { 1009 metadata_access_enable(); 1010 print_hex_dump(level, text, DUMP_PREFIX_ADDRESS, 1011 16, 1, kasan_reset_tag((void *)addr), length, 1); 1012 metadata_access_disable(); 1013 } 1014 1015 static struct track *get_track(struct kmem_cache *s, void *object, 1016 enum track_item alloc) 1017 { 1018 struct track *p; 1019 1020 p = object + get_info_end(s); 1021 1022 return kasan_reset_tag(p + alloc); 1023 } 1024 1025 #ifdef CONFIG_STACKDEPOT 1026 static noinline depot_stack_handle_t set_track_prepare(gfp_t gfp_flags) 1027 { 1028 depot_stack_handle_t handle; 1029 unsigned long entries[TRACK_ADDRS_COUNT]; 1030 unsigned int nr_entries; 1031 1032 nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 3); 1033 handle = stack_depot_save(entries, nr_entries, gfp_flags); 1034 1035 return handle; 1036 } 1037 #else 1038 static inline depot_stack_handle_t set_track_prepare(gfp_t gfp_flags) 1039 { 1040 return 0; 1041 } 1042 #endif 1043 1044 static void set_track_update(struct kmem_cache *s, void *object, 1045 enum track_item alloc, unsigned long addr, 1046 depot_stack_handle_t handle) 1047 { 1048 struct track *p = get_track(s, object, alloc); 1049 1050 #ifdef CONFIG_STACKDEPOT 1051 p->handle = handle; 1052 #endif 1053 p->addr = addr; 1054 p->cpu = raw_smp_processor_id(); 1055 p->pid = current->pid; 1056 p->when = jiffies; 1057 } 1058 1059 static __always_inline void set_track(struct kmem_cache *s, void *object, 1060 enum track_item alloc, unsigned long addr, gfp_t gfp_flags) 1061 { 1062 depot_stack_handle_t handle = set_track_prepare(gfp_flags); 1063 1064 set_track_update(s, object, alloc, addr, handle); 1065 } 1066 1067 static void init_tracking(struct kmem_cache *s, void *object) 1068 { 1069 struct track *p; 1070 1071 if (!(s->flags & SLAB_STORE_USER)) 1072 return; 1073 1074 p = get_track(s, object, TRACK_ALLOC); 1075 memset(p, 0, 2*sizeof(struct track)); 1076 } 1077 1078 static void print_track(const char *s, struct track *t, unsigned long pr_time) 1079 { 1080 depot_stack_handle_t handle __maybe_unused; 1081 1082 if (!t->addr) 1083 return; 1084 1085 pr_err("%s in %pS age=%lu cpu=%u pid=%d\n", 1086 s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid); 1087 #ifdef CONFIG_STACKDEPOT 1088 handle = READ_ONCE(t->handle); 1089 if (handle) 1090 stack_depot_print(handle); 1091 else 1092 pr_err("object allocation/free stack trace missing\n"); 1093 #endif 1094 } 1095 1096 void print_tracking(struct kmem_cache *s, void *object) 1097 { 1098 unsigned long pr_time = jiffies; 1099 if (!(s->flags & SLAB_STORE_USER)) 1100 return; 1101 1102 print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time); 1103 print_track("Freed", get_track(s, object, TRACK_FREE), pr_time); 1104 } 1105 1106 static void print_slab_info(const struct slab *slab) 1107 { 1108 pr_err("Slab 0x%p objects=%u used=%u fp=0x%p flags=%pGp\n", 1109 slab, slab->objects, slab->inuse, slab->freelist, 1110 &slab->flags.f); 1111 } 1112 1113 void skip_orig_size_check(struct kmem_cache *s, const void *object) 1114 { 1115 set_orig_size(s, (void *)object, s->object_size); 1116 } 1117 1118 static void __slab_bug(struct kmem_cache *s, const char *fmt, va_list argsp) 1119 { 1120 struct va_format vaf; 1121 va_list args; 1122 1123 va_copy(args, argsp); 1124 vaf.fmt = fmt; 1125 vaf.va = &args; 1126 pr_err("=============================================================================\n"); 1127 pr_err("BUG %s (%s): %pV\n", s ? s->name : "<unknown>", print_tainted(), &vaf); 1128 pr_err("-----------------------------------------------------------------------------\n\n"); 1129 va_end(args); 1130 } 1131 1132 static void slab_bug(struct kmem_cache *s, const char *fmt, ...) 1133 { 1134 va_list args; 1135 1136 va_start(args, fmt); 1137 __slab_bug(s, fmt, args); 1138 va_end(args); 1139 } 1140 1141 __printf(2, 3) 1142 static void slab_fix(struct kmem_cache *s, const char *fmt, ...) 1143 { 1144 struct va_format vaf; 1145 va_list args; 1146 1147 if (slab_add_kunit_errors()) 1148 return; 1149 1150 va_start(args, fmt); 1151 vaf.fmt = fmt; 1152 vaf.va = &args; 1153 pr_err("FIX %s: %pV\n", s->name, &vaf); 1154 va_end(args); 1155 } 1156 1157 static void print_trailer(struct kmem_cache *s, struct slab *slab, u8 *p) 1158 { 1159 unsigned int off; /* Offset of last byte */ 1160 u8 *addr = slab_address(slab); 1161 1162 print_tracking(s, p); 1163 1164 print_slab_info(slab); 1165 1166 pr_err("Object 0x%p @offset=%tu fp=0x%p\n\n", 1167 p, p - addr, get_freepointer(s, p)); 1168 1169 if (s->flags & SLAB_RED_ZONE) 1170 print_section(KERN_ERR, "Redzone ", p - s->red_left_pad, 1171 s->red_left_pad); 1172 else if (p > addr + 16) 1173 print_section(KERN_ERR, "Bytes b4 ", p - 16, 16); 1174 1175 print_section(KERN_ERR, "Object ", p, 1176 min_t(unsigned int, s->object_size, PAGE_SIZE)); 1177 if (s->flags & SLAB_RED_ZONE) 1178 print_section(KERN_ERR, "Redzone ", p + s->object_size, 1179 s->inuse - s->object_size); 1180 1181 off = get_info_end(s); 1182 1183 if (s->flags & SLAB_STORE_USER) 1184 off += 2 * sizeof(struct track); 1185 1186 if (slub_debug_orig_size(s)) 1187 off += sizeof(unsigned long); 1188 1189 off += kasan_metadata_size(s, false); 1190 1191 if (obj_exts_in_object(s, slab)) 1192 off += sizeof(struct slabobj_ext); 1193 1194 if (off != size_from_object(s)) 1195 /* Beginning of the filler is the free pointer */ 1196 print_section(KERN_ERR, "Padding ", p + off, 1197 size_from_object(s) - off); 1198 } 1199 1200 static void object_err(struct kmem_cache *s, struct slab *slab, 1201 u8 *object, const char *reason) 1202 { 1203 if (slab_add_kunit_errors()) 1204 return; 1205 1206 slab_bug(s, reason); 1207 if (!object || !check_valid_pointer(s, slab, object)) { 1208 print_slab_info(slab); 1209 pr_err("Invalid pointer 0x%p\n", object); 1210 } else { 1211 print_trailer(s, slab, object); 1212 } 1213 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 1214 1215 WARN_ON(1); 1216 } 1217 1218 static void __slab_err(struct slab *slab) 1219 { 1220 if (slab_in_kunit_test()) 1221 return; 1222 1223 print_slab_info(slab); 1224 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 1225 1226 WARN_ON(1); 1227 } 1228 1229 static __printf(3, 4) void slab_err(struct kmem_cache *s, struct slab *slab, 1230 const char *fmt, ...) 1231 { 1232 va_list args; 1233 1234 if (slab_add_kunit_errors()) 1235 return; 1236 1237 va_start(args, fmt); 1238 __slab_bug(s, fmt, args); 1239 va_end(args); 1240 1241 __slab_err(slab); 1242 } 1243 1244 static void init_object(struct kmem_cache *s, void *object, u8 val) 1245 { 1246 u8 *p = kasan_reset_tag(object); 1247 unsigned int poison_size = s->object_size; 1248 1249 if (s->flags & SLAB_RED_ZONE) { 1250 /* 1251 * Here and below, avoid overwriting the KMSAN shadow. Keeping 1252 * the shadow makes it possible to distinguish uninit-value 1253 * from use-after-free. 1254 */ 1255 memset_no_sanitize_memory(p - s->red_left_pad, val, 1256 s->red_left_pad); 1257 1258 if (slub_debug_orig_size(s) && val == SLUB_RED_ACTIVE) { 1259 /* 1260 * Redzone the extra allocated space by kmalloc than 1261 * requested, and the poison size will be limited to 1262 * the original request size accordingly. 1263 */ 1264 poison_size = get_orig_size(s, object); 1265 } 1266 } 1267 1268 if (s->flags & __OBJECT_POISON) { 1269 memset_no_sanitize_memory(p, POISON_FREE, poison_size - 1); 1270 memset_no_sanitize_memory(p + poison_size - 1, POISON_END, 1); 1271 } 1272 1273 if (s->flags & SLAB_RED_ZONE) 1274 memset_no_sanitize_memory(p + poison_size, val, 1275 s->inuse - poison_size); 1276 } 1277 1278 static void restore_bytes(struct kmem_cache *s, const char *message, u8 data, 1279 void *from, void *to) 1280 { 1281 slab_fix(s, "Restoring %s 0x%p-0x%p=0x%x", message, from, to - 1, data); 1282 memset(from, data, to - from); 1283 } 1284 1285 #ifdef CONFIG_KMSAN 1286 #define pad_check_attributes noinline __no_kmsan_checks 1287 #else 1288 #define pad_check_attributes 1289 #endif 1290 1291 static pad_check_attributes int 1292 check_bytes_and_report(struct kmem_cache *s, struct slab *slab, 1293 u8 *object, const char *what, u8 *start, unsigned int value, 1294 unsigned int bytes, bool slab_obj_print) 1295 { 1296 u8 *fault; 1297 u8 *end; 1298 u8 *addr = slab_address(slab); 1299 1300 metadata_access_enable(); 1301 fault = memchr_inv(kasan_reset_tag(start), value, bytes); 1302 metadata_access_disable(); 1303 if (!fault) 1304 return 1; 1305 1306 end = start + bytes; 1307 while (end > fault && end[-1] == value) 1308 end--; 1309 1310 if (slab_add_kunit_errors()) 1311 goto skip_bug_print; 1312 1313 pr_err("[%s overwritten] 0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n", 1314 what, fault, end - 1, fault - addr, fault[0], value); 1315 1316 if (slab_obj_print) 1317 object_err(s, slab, object, "Object corrupt"); 1318 1319 skip_bug_print: 1320 restore_bytes(s, what, value, fault, end); 1321 return 0; 1322 } 1323 1324 /* 1325 * Object field layout: 1326 * 1327 * [Left redzone padding] (if SLAB_RED_ZONE) 1328 * - Field size: s->red_left_pad 1329 * - Immediately precedes each object when SLAB_RED_ZONE is set. 1330 * - Filled with 0xbb (SLUB_RED_INACTIVE) for inactive objects and 1331 * 0xcc (SLUB_RED_ACTIVE) for objects in use when SLAB_RED_ZONE. 1332 * 1333 * [Object bytes] (object address starts here) 1334 * - Field size: s->object_size 1335 * - Object payload bytes. 1336 * - If the freepointer may overlap the object, it is stored inside 1337 * the object (typically near the middle). 1338 * - Poisoning uses 0x6b (POISON_FREE) and the last byte is 1339 * 0xa5 (POISON_END) when __OBJECT_POISON is enabled. 1340 * 1341 * [Word-align padding] (right redzone when SLAB_RED_ZONE is set) 1342 * - Field size: s->inuse - s->object_size 1343 * - If redzoning is enabled and ALIGN(size, sizeof(void *)) adds no 1344 * padding, explicitly extend by one word so the right redzone is 1345 * non-empty. 1346 * - Filled with 0xbb (SLUB_RED_INACTIVE) for inactive objects and 1347 * 0xcc (SLUB_RED_ACTIVE) for objects in use when SLAB_RED_ZONE. 1348 * 1349 * [Metadata starts at object + s->inuse] 1350 * - A. freelist pointer (if freeptr_outside_object) 1351 * - B. alloc tracking (SLAB_STORE_USER) 1352 * - C. free tracking (SLAB_STORE_USER) 1353 * - D. original request size (SLAB_KMALLOC && SLAB_STORE_USER) 1354 * - E. KASAN metadata (if enabled) 1355 * 1356 * [Mandatory padding] (if CONFIG_SLUB_DEBUG && SLAB_RED_ZONE) 1357 * - One mandatory debug word to guarantee a minimum poisoned gap 1358 * between metadata and the next object, independent of alignment. 1359 * - Filled with 0x5a (POISON_INUSE) when SLAB_POISON is set. 1360 * [Final alignment padding] 1361 * - Bytes added by ALIGN(size, s->align) to reach s->size. 1362 * - When the padding is large enough, it can be used to store 1363 * struct slabobj_ext for accounting metadata (obj_exts_in_object()). 1364 * - The remaining bytes (if any) are filled with 0x5a (POISON_INUSE) 1365 * when SLAB_POISON is set. 1366 * 1367 * Notes: 1368 * - Redzones are filled by init_object() with SLUB_RED_ACTIVE/INACTIVE. 1369 * - Object contents are poisoned with POISON_FREE/END when __OBJECT_POISON. 1370 * - The trailing padding is pre-filled with POISON_INUSE by 1371 * setup_slab_debug() when SLAB_POISON is set, and is validated by 1372 * check_pad_bytes(). 1373 * - The first object pointer is slab_address(slab) + 1374 * (s->red_left_pad if redzoning); subsequent objects are reached by 1375 * adding s->size each time. 1376 * 1377 * If a slab cache flag relies on specific metadata to exist at a fixed 1378 * offset, the flag must be included in SLAB_NEVER_MERGE to prevent merging. 1379 * Otherwise, the cache would misbehave as s->object_size and s->inuse are 1380 * adjusted during cache merging (see __kmem_cache_alias()). 1381 */ 1382 static int check_pad_bytes(struct kmem_cache *s, struct slab *slab, u8 *p) 1383 { 1384 unsigned long off = get_info_end(s); /* The end of info */ 1385 1386 if (s->flags & SLAB_STORE_USER) { 1387 /* We also have user information there */ 1388 off += 2 * sizeof(struct track); 1389 1390 if (s->flags & SLAB_KMALLOC) 1391 off += sizeof(unsigned long); 1392 } 1393 1394 off += kasan_metadata_size(s, false); 1395 1396 if (obj_exts_in_object(s, slab)) 1397 off += sizeof(struct slabobj_ext); 1398 1399 if (size_from_object(s) == off) 1400 return 1; 1401 1402 return check_bytes_and_report(s, slab, p, "Object padding", 1403 p + off, POISON_INUSE, size_from_object(s) - off, true); 1404 } 1405 1406 /* Check the pad bytes at the end of a slab page */ 1407 static pad_check_attributes void 1408 slab_pad_check(struct kmem_cache *s, struct slab *slab) 1409 { 1410 u8 *start; 1411 u8 *fault; 1412 u8 *end; 1413 u8 *pad; 1414 int length; 1415 int remainder; 1416 1417 if (!(s->flags & SLAB_POISON)) 1418 return; 1419 1420 start = slab_address(slab); 1421 length = slab_size(slab); 1422 end = start + length; 1423 1424 if (obj_exts_in_slab(s, slab) && !obj_exts_in_object(s, slab)) { 1425 remainder = length; 1426 remainder -= obj_exts_offset_in_slab(s, slab); 1427 remainder -= obj_exts_size_in_slab(slab); 1428 } else { 1429 remainder = length % s->size; 1430 } 1431 1432 if (!remainder) 1433 return; 1434 1435 pad = end - remainder; 1436 metadata_access_enable(); 1437 fault = memchr_inv(kasan_reset_tag(pad), POISON_INUSE, remainder); 1438 metadata_access_disable(); 1439 if (!fault) 1440 return; 1441 while (end > fault && end[-1] == POISON_INUSE) 1442 end--; 1443 1444 slab_bug(s, "Padding overwritten. 0x%p-0x%p @offset=%tu", 1445 fault, end - 1, fault - start); 1446 print_section(KERN_ERR, "Padding ", pad, remainder); 1447 __slab_err(slab); 1448 1449 restore_bytes(s, "slab padding", POISON_INUSE, fault, end); 1450 } 1451 1452 static int check_object(struct kmem_cache *s, struct slab *slab, 1453 void *object, u8 val) 1454 { 1455 u8 *p = object; 1456 u8 *endobject = object + s->object_size; 1457 unsigned int orig_size, kasan_meta_size; 1458 int ret = 1; 1459 1460 if (s->flags & SLAB_RED_ZONE) { 1461 if (!check_bytes_and_report(s, slab, object, "Left Redzone", 1462 object - s->red_left_pad, val, s->red_left_pad, ret)) 1463 ret = 0; 1464 1465 if (!check_bytes_and_report(s, slab, object, "Right Redzone", 1466 endobject, val, s->inuse - s->object_size, ret)) 1467 ret = 0; 1468 1469 if (slub_debug_orig_size(s) && val == SLUB_RED_ACTIVE) { 1470 orig_size = get_orig_size(s, object); 1471 1472 if (s->object_size > orig_size && 1473 !check_bytes_and_report(s, slab, object, 1474 "kmalloc Redzone", p + orig_size, 1475 val, s->object_size - orig_size, ret)) { 1476 ret = 0; 1477 } 1478 } 1479 } else { 1480 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) { 1481 if (!check_bytes_and_report(s, slab, p, "Alignment padding", 1482 endobject, POISON_INUSE, 1483 s->inuse - s->object_size, ret)) 1484 ret = 0; 1485 } 1486 } 1487 1488 if (s->flags & SLAB_POISON) { 1489 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON)) { 1490 /* 1491 * KASAN can save its free meta data inside of the 1492 * object at offset 0. Thus, skip checking the part of 1493 * the redzone that overlaps with the meta data. 1494 */ 1495 kasan_meta_size = kasan_metadata_size(s, true); 1496 if (kasan_meta_size < s->object_size - 1 && 1497 !check_bytes_and_report(s, slab, p, "Poison", 1498 p + kasan_meta_size, POISON_FREE, 1499 s->object_size - kasan_meta_size - 1, ret)) 1500 ret = 0; 1501 if (kasan_meta_size < s->object_size && 1502 !check_bytes_and_report(s, slab, p, "End Poison", 1503 p + s->object_size - 1, POISON_END, 1, ret)) 1504 ret = 0; 1505 } 1506 /* 1507 * check_pad_bytes cleans up on its own. 1508 */ 1509 if (!check_pad_bytes(s, slab, p)) 1510 ret = 0; 1511 } 1512 1513 /* 1514 * Cannot check freepointer while object is allocated if 1515 * object and freepointer overlap. 1516 */ 1517 if ((freeptr_outside_object(s) || val != SLUB_RED_ACTIVE) && 1518 !check_valid_pointer(s, slab, get_freepointer(s, p))) { 1519 object_err(s, slab, p, "Freepointer corrupt"); 1520 /* 1521 * No choice but to zap it and thus lose the remainder 1522 * of the free objects in this slab. May cause 1523 * another error because the object count is now wrong. 1524 */ 1525 set_freepointer(s, p, NULL); 1526 ret = 0; 1527 } 1528 1529 return ret; 1530 } 1531 1532 /* 1533 * Checks if the slab state looks sane. Assumes the struct slab pointer 1534 * was either obtained in a way that ensures it's valid, or validated 1535 * by validate_slab_ptr() 1536 */ 1537 static int check_slab(struct kmem_cache *s, struct slab *slab) 1538 { 1539 int maxobj; 1540 1541 maxobj = order_objects(slab_order(slab), s->size); 1542 if (slab->objects > maxobj) { 1543 slab_err(s, slab, "objects %u > max %u", 1544 slab->objects, maxobj); 1545 return 0; 1546 } 1547 if (slab->inuse > slab->objects) { 1548 slab_err(s, slab, "inuse %u > max %u", 1549 slab->inuse, slab->objects); 1550 return 0; 1551 } 1552 if (slab->frozen) { 1553 slab_err(s, slab, "Slab disabled since SLUB metadata consistency check failed"); 1554 return 0; 1555 } 1556 1557 /* Slab_pad_check fixes things up after itself */ 1558 slab_pad_check(s, slab); 1559 return 1; 1560 } 1561 1562 /* 1563 * Determine if a certain object in a slab is on the freelist. Must hold the 1564 * slab lock to guarantee that the chains are in a consistent state. 1565 */ 1566 static bool on_freelist(struct kmem_cache *s, struct slab *slab, void *search) 1567 { 1568 int nr = 0; 1569 void *fp; 1570 void *object = NULL; 1571 int max_objects; 1572 1573 fp = slab->freelist; 1574 while (fp && nr <= slab->objects) { 1575 if (fp == search) 1576 return true; 1577 if (!check_valid_pointer(s, slab, fp)) { 1578 if (object) { 1579 object_err(s, slab, object, 1580 "Freechain corrupt"); 1581 set_freepointer(s, object, NULL); 1582 break; 1583 } else { 1584 slab_err(s, slab, "Freepointer corrupt"); 1585 slab->freelist = NULL; 1586 slab->inuse = slab->objects; 1587 slab_fix(s, "Freelist cleared"); 1588 return false; 1589 } 1590 } 1591 object = fp; 1592 fp = get_freepointer(s, object); 1593 nr++; 1594 } 1595 1596 if (nr > slab->objects) { 1597 slab_err(s, slab, "Freelist cycle detected"); 1598 slab->freelist = NULL; 1599 slab->inuse = slab->objects; 1600 slab_fix(s, "Freelist cleared"); 1601 return false; 1602 } 1603 1604 max_objects = order_objects(slab_order(slab), s->size); 1605 if (max_objects > MAX_OBJS_PER_PAGE) 1606 max_objects = MAX_OBJS_PER_PAGE; 1607 1608 if (slab->objects != max_objects) { 1609 slab_err(s, slab, "Wrong number of objects. Found %d but should be %d", 1610 slab->objects, max_objects); 1611 slab->objects = max_objects; 1612 slab_fix(s, "Number of objects adjusted"); 1613 } 1614 if (slab->inuse != slab->objects - nr) { 1615 slab_err(s, slab, "Wrong object count. Counter is %d but counted were %d", 1616 slab->inuse, slab->objects - nr); 1617 slab->inuse = slab->objects - nr; 1618 slab_fix(s, "Object count adjusted"); 1619 } 1620 return search == NULL; 1621 } 1622 1623 static void trace(struct kmem_cache *s, struct slab *slab, void *object, 1624 int alloc) 1625 { 1626 if (s->flags & SLAB_TRACE) { 1627 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n", 1628 s->name, 1629 alloc ? "alloc" : "free", 1630 object, slab->inuse, 1631 slab->freelist); 1632 1633 if (!alloc) 1634 print_section(KERN_INFO, "Object ", (void *)object, 1635 s->object_size); 1636 1637 dump_stack(); 1638 } 1639 } 1640 1641 /* 1642 * Tracking of fully allocated slabs for debugging purposes. 1643 */ 1644 static void add_full(struct kmem_cache *s, 1645 struct kmem_cache_node *n, struct slab *slab) 1646 { 1647 if (!(s->flags & SLAB_STORE_USER)) 1648 return; 1649 1650 lockdep_assert_held(&n->list_lock); 1651 list_add(&slab->slab_list, &n->full); 1652 } 1653 1654 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct slab *slab) 1655 { 1656 if (!(s->flags & SLAB_STORE_USER)) 1657 return; 1658 1659 lockdep_assert_held(&n->list_lock); 1660 list_del(&slab->slab_list); 1661 } 1662 1663 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) 1664 { 1665 return atomic_long_read(&n->nr_slabs); 1666 } 1667 1668 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects) 1669 { 1670 struct kmem_cache_node *n = get_node(s, node); 1671 1672 atomic_long_inc(&n->nr_slabs); 1673 atomic_long_add(objects, &n->total_objects); 1674 } 1675 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects) 1676 { 1677 struct kmem_cache_node *n = get_node(s, node); 1678 1679 atomic_long_dec(&n->nr_slabs); 1680 atomic_long_sub(objects, &n->total_objects); 1681 } 1682 1683 /* Object debug checks for alloc/free paths */ 1684 static void setup_object_debug(struct kmem_cache *s, void *object) 1685 { 1686 if (!kmem_cache_debug_flags(s, SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)) 1687 return; 1688 1689 init_object(s, object, SLUB_RED_INACTIVE); 1690 init_tracking(s, object); 1691 } 1692 1693 static 1694 void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr) 1695 { 1696 if (!kmem_cache_debug_flags(s, SLAB_POISON)) 1697 return; 1698 1699 metadata_access_enable(); 1700 memset(kasan_reset_tag(addr), POISON_INUSE, slab_size(slab)); 1701 metadata_access_disable(); 1702 } 1703 1704 static inline int alloc_consistency_checks(struct kmem_cache *s, 1705 struct slab *slab, void *object) 1706 { 1707 if (!check_slab(s, slab)) 1708 return 0; 1709 1710 if (!check_valid_pointer(s, slab, object)) { 1711 object_err(s, slab, object, "Freelist Pointer check fails"); 1712 return 0; 1713 } 1714 1715 if (!check_object(s, slab, object, SLUB_RED_INACTIVE)) 1716 return 0; 1717 1718 return 1; 1719 } 1720 1721 static noinline bool alloc_debug_processing(struct kmem_cache *s, 1722 struct slab *slab, void *object, int orig_size) 1723 { 1724 if (s->flags & SLAB_CONSISTENCY_CHECKS) { 1725 if (!alloc_consistency_checks(s, slab, object)) 1726 goto bad; 1727 } 1728 1729 /* Success. Perform special debug activities for allocs */ 1730 trace(s, slab, object, 1); 1731 set_orig_size(s, object, orig_size); 1732 init_object(s, object, SLUB_RED_ACTIVE); 1733 return true; 1734 1735 bad: 1736 /* 1737 * Let's do the best we can to avoid issues in the future. Marking all 1738 * objects as used avoids touching the remaining objects. 1739 */ 1740 slab_fix(s, "Marking all objects used"); 1741 slab->inuse = slab->objects; 1742 slab->freelist = NULL; 1743 slab->frozen = 1; /* mark consistency-failed slab as frozen */ 1744 1745 return false; 1746 } 1747 1748 static inline int free_consistency_checks(struct kmem_cache *s, 1749 struct slab *slab, void *object, unsigned long addr) 1750 { 1751 if (!check_valid_pointer(s, slab, object)) { 1752 slab_err(s, slab, "Invalid object pointer 0x%p", object); 1753 return 0; 1754 } 1755 1756 if (on_freelist(s, slab, object)) { 1757 object_err(s, slab, object, "Object already free"); 1758 return 0; 1759 } 1760 1761 if (!check_object(s, slab, object, SLUB_RED_ACTIVE)) 1762 return 0; 1763 1764 if (unlikely(s != slab->slab_cache)) { 1765 if (!slab->slab_cache) { 1766 slab_err(NULL, slab, "No slab cache for object 0x%p", 1767 object); 1768 } else { 1769 object_err(s, slab, object, 1770 "page slab pointer corrupt."); 1771 } 1772 return 0; 1773 } 1774 return 1; 1775 } 1776 1777 /* 1778 * Parse a block of slab_debug options. Blocks are delimited by ';' 1779 * 1780 * @str: start of block 1781 * @flags: returns parsed flags, or DEBUG_DEFAULT_FLAGS if none specified 1782 * @slabs: return start of list of slabs, or NULL when there's no list 1783 * @init: assume this is initial parsing and not per-kmem-create parsing 1784 * 1785 * returns the start of next block if there's any, or NULL 1786 */ 1787 static const char * 1788 parse_slub_debug_flags(const char *str, slab_flags_t *flags, const char **slabs, bool init) 1789 { 1790 bool higher_order_disable = false; 1791 1792 /* Skip any completely empty blocks */ 1793 while (*str && *str == ';') 1794 str++; 1795 1796 if (*str == ',') { 1797 /* 1798 * No options but restriction on slabs. This means full 1799 * debugging for slabs matching a pattern. 1800 */ 1801 *flags = DEBUG_DEFAULT_FLAGS; 1802 goto check_slabs; 1803 } 1804 *flags = 0; 1805 1806 /* Determine which debug features should be switched on */ 1807 for (; *str && *str != ',' && *str != ';'; str++) { 1808 switch (tolower(*str)) { 1809 case '-': 1810 *flags = 0; 1811 break; 1812 case 'f': 1813 *flags |= SLAB_CONSISTENCY_CHECKS; 1814 break; 1815 case 'z': 1816 *flags |= SLAB_RED_ZONE; 1817 break; 1818 case 'p': 1819 *flags |= SLAB_POISON; 1820 break; 1821 case 'u': 1822 *flags |= SLAB_STORE_USER; 1823 break; 1824 case 't': 1825 *flags |= SLAB_TRACE; 1826 break; 1827 case 'a': 1828 *flags |= SLAB_FAILSLAB; 1829 break; 1830 case 'o': 1831 /* 1832 * Avoid enabling debugging on caches if its minimum 1833 * order would increase as a result. 1834 */ 1835 higher_order_disable = true; 1836 break; 1837 default: 1838 if (init) 1839 pr_err("slab_debug option '%c' unknown. skipped\n", *str); 1840 } 1841 } 1842 check_slabs: 1843 if (*str == ',') 1844 *slabs = ++str; 1845 else 1846 *slabs = NULL; 1847 1848 /* Skip over the slab list */ 1849 while (*str && *str != ';') 1850 str++; 1851 1852 /* Skip any completely empty blocks */ 1853 while (*str && *str == ';') 1854 str++; 1855 1856 if (init && higher_order_disable) 1857 disable_higher_order_debug = 1; 1858 1859 if (*str) 1860 return str; 1861 else 1862 return NULL; 1863 } 1864 1865 static int __init setup_slub_debug(const char *str, const struct kernel_param *kp) 1866 { 1867 slab_flags_t flags; 1868 slab_flags_t global_flags; 1869 const char *saved_str; 1870 const char *slab_list; 1871 bool global_slub_debug_changed = false; 1872 bool slab_list_specified = false; 1873 1874 global_flags = DEBUG_DEFAULT_FLAGS; 1875 if (!str || !*str) 1876 /* 1877 * No options specified. Switch on full debugging. 1878 */ 1879 goto out; 1880 1881 saved_str = str; 1882 while (str) { 1883 str = parse_slub_debug_flags(str, &flags, &slab_list, true); 1884 1885 if (!slab_list) { 1886 global_flags = flags; 1887 global_slub_debug_changed = true; 1888 } else { 1889 slab_list_specified = true; 1890 if (flags & SLAB_STORE_USER) 1891 stack_depot_request_early_init(); 1892 } 1893 } 1894 1895 /* 1896 * For backwards compatibility, a single list of flags with list of 1897 * slabs means debugging is only changed for those slabs, so the global 1898 * slab_debug should be unchanged (0 or DEBUG_DEFAULT_FLAGS, depending 1899 * on CONFIG_SLUB_DEBUG_ON). We can extended that to multiple lists as 1900 * long as there is no option specifying flags without a slab list. 1901 */ 1902 if (slab_list_specified) { 1903 if (!global_slub_debug_changed) 1904 global_flags = slub_debug; 1905 slub_debug_string = saved_str; 1906 } 1907 out: 1908 slub_debug = global_flags; 1909 if (slub_debug & SLAB_STORE_USER) 1910 stack_depot_request_early_init(); 1911 if (slub_debug != 0 || slub_debug_string) 1912 static_branch_enable(&slub_debug_enabled); 1913 else 1914 static_branch_disable(&slub_debug_enabled); 1915 if ((static_branch_unlikely(&init_on_alloc) || 1916 static_branch_unlikely(&init_on_free)) && 1917 (slub_debug & SLAB_POISON)) 1918 pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n"); 1919 return 0; 1920 } 1921 1922 static const struct kernel_param_ops param_ops_slab_debug __initconst = { 1923 .flags = KERNEL_PARAM_OPS_FL_NOARG, 1924 .set = setup_slub_debug, 1925 }; 1926 __core_param_cb(slab_debug, ¶m_ops_slab_debug, NULL, 0); 1927 __core_param_cb(slub_debug, ¶m_ops_slab_debug, NULL, 0); 1928 1929 /* 1930 * kmem_cache_flags - apply debugging options to the cache 1931 * @flags: flags to set 1932 * @name: name of the cache 1933 * 1934 * Debug option(s) are applied to @flags. In addition to the debug 1935 * option(s), if a slab name (or multiple) is specified i.e. 1936 * slab_debug=<Debug-Options>,<slab name1>,<slab name2> ... 1937 * then only the select slabs will receive the debug option(s). 1938 */ 1939 slab_flags_t kmem_cache_flags(slab_flags_t flags, const char *name) 1940 { 1941 const char *iter; 1942 size_t len; 1943 const char *next_block; 1944 slab_flags_t block_flags; 1945 slab_flags_t slub_debug_local = slub_debug; 1946 1947 if (flags & SLAB_NO_USER_FLAGS) 1948 return flags; 1949 1950 /* 1951 * If the slab cache is for debugging (e.g. kmemleak) then 1952 * don't store user (stack trace) information by default, 1953 * but let the user enable it via the command line below. 1954 */ 1955 if (flags & SLAB_NOLEAKTRACE) 1956 slub_debug_local &= ~SLAB_STORE_USER; 1957 1958 len = strlen(name); 1959 next_block = slub_debug_string; 1960 /* Go through all blocks of debug options, see if any matches our slab's name */ 1961 while (next_block) { 1962 next_block = parse_slub_debug_flags(next_block, &block_flags, &iter, false); 1963 if (!iter) 1964 continue; 1965 /* Found a block that has a slab list, search it */ 1966 while (*iter) { 1967 const char *end, *glob; 1968 size_t cmplen; 1969 1970 end = strchrnul(iter, ','); 1971 if (next_block && next_block < end) 1972 end = next_block - 1; 1973 1974 glob = strnchr(iter, end - iter, '*'); 1975 if (glob) 1976 cmplen = glob - iter; 1977 else 1978 cmplen = max_t(size_t, len, (end - iter)); 1979 1980 if (!strncmp(name, iter, cmplen)) { 1981 flags |= block_flags; 1982 return flags; 1983 } 1984 1985 if (!*end || *end == ';') 1986 break; 1987 iter = end + 1; 1988 } 1989 } 1990 1991 return flags | slub_debug_local; 1992 } 1993 #else /* !CONFIG_SLUB_DEBUG */ 1994 static inline void setup_object_debug(struct kmem_cache *s, void *object) {} 1995 static inline 1996 void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr) {} 1997 1998 static inline bool alloc_debug_processing(struct kmem_cache *s, 1999 struct slab *slab, void *object, int orig_size) { return true; } 2000 2001 static inline bool free_debug_processing(struct kmem_cache *s, 2002 struct slab *slab, void *head, void *tail, int *bulk_cnt, 2003 unsigned long addr, depot_stack_handle_t handle) { return true; } 2004 2005 static inline void slab_pad_check(struct kmem_cache *s, struct slab *slab) {} 2006 static inline int check_object(struct kmem_cache *s, struct slab *slab, 2007 void *object, u8 val) { return 1; } 2008 static inline depot_stack_handle_t set_track_prepare(gfp_t gfp_flags) { return 0; } 2009 static inline void set_track(struct kmem_cache *s, void *object, 2010 enum track_item alloc, unsigned long addr, gfp_t gfp_flags) {} 2011 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n, 2012 struct slab *slab) {} 2013 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, 2014 struct slab *slab) {} 2015 slab_flags_t kmem_cache_flags(slab_flags_t flags, const char *name) 2016 { 2017 return flags; 2018 } 2019 #define slub_debug 0 2020 2021 #define disable_higher_order_debug 0 2022 2023 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) 2024 { return 0; } 2025 static inline void inc_slabs_node(struct kmem_cache *s, int node, 2026 int objects) {} 2027 static inline void dec_slabs_node(struct kmem_cache *s, int node, 2028 int objects) {} 2029 #endif /* CONFIG_SLUB_DEBUG */ 2030 2031 /* 2032 * The allocated objcg pointers array is not accounted directly. 2033 * Moreover, it should not come from DMA buffer and is not readily 2034 * reclaimable. So those GFP bits should be masked off. 2035 */ 2036 #define OBJCGS_CLEAR_MASK (__GFP_DMA | __GFP_RECLAIMABLE | \ 2037 __GFP_ACCOUNT | __GFP_NOFAIL) 2038 2039 #ifdef CONFIG_SLAB_OBJ_EXT 2040 2041 #ifdef CONFIG_MEM_ALLOC_PROFILING_DEBUG 2042 2043 static inline void mark_objexts_empty(struct slabobj_ext *obj_exts) 2044 { 2045 struct slab *obj_exts_slab; 2046 unsigned long slab_exts; 2047 2048 obj_exts_slab = virt_to_slab(obj_exts); 2049 slab_exts = slab_obj_exts(obj_exts_slab); 2050 if (slab_exts) { 2051 get_slab_obj_exts(slab_exts); 2052 unsigned int offs = obj_to_index(obj_exts_slab->slab_cache, 2053 obj_exts_slab, obj_exts); 2054 struct slabobj_ext *ext = slab_obj_ext(obj_exts_slab, 2055 slab_exts, offs); 2056 2057 if (unlikely(is_codetag_empty(&ext->ref))) { 2058 put_slab_obj_exts(slab_exts); 2059 return; 2060 } 2061 2062 /* codetag should be NULL here */ 2063 WARN_ON(ext->ref.ct); 2064 set_codetag_empty(&ext->ref); 2065 put_slab_obj_exts(slab_exts); 2066 } 2067 } 2068 2069 static inline bool mark_failed_objexts_alloc(struct slab *slab) 2070 { 2071 return cmpxchg(&slab->obj_exts, 0, OBJEXTS_ALLOC_FAIL) == 0; 2072 } 2073 2074 static inline void handle_failed_objexts_alloc(unsigned long obj_exts, 2075 struct slabobj_ext *vec, unsigned int objects) 2076 { 2077 /* 2078 * If vector previously failed to allocate then we have live 2079 * objects with no tag reference. Mark all references in this 2080 * vector as empty to avoid warnings later on. 2081 */ 2082 if (obj_exts == OBJEXTS_ALLOC_FAIL) { 2083 unsigned int i; 2084 2085 for (i = 0; i < objects; i++) 2086 set_codetag_empty(&vec[i].ref); 2087 } 2088 } 2089 2090 #else /* CONFIG_MEM_ALLOC_PROFILING_DEBUG */ 2091 2092 static inline void mark_objexts_empty(struct slabobj_ext *obj_exts) {} 2093 static inline bool mark_failed_objexts_alloc(struct slab *slab) { return false; } 2094 static inline void handle_failed_objexts_alloc(unsigned long obj_exts, 2095 struct slabobj_ext *vec, unsigned int objects) {} 2096 2097 #endif /* CONFIG_MEM_ALLOC_PROFILING_DEBUG */ 2098 2099 static inline void init_slab_obj_exts(struct slab *slab) 2100 { 2101 slab->obj_exts = 0; 2102 } 2103 2104 /* 2105 * Calculate the allocation size for slabobj_ext array. 2106 * 2107 * When memory allocation profiling is enabled, the obj_exts array 2108 * could be allocated from the same slab cache it's being allocated for. 2109 * This would prevent the slab from ever being freed because it would 2110 * always contain at least one allocated object (its own obj_exts array). 2111 * 2112 * To avoid this, increase the allocation size when we detect the array 2113 * may come from the same cache, forcing it to use a different cache. 2114 */ 2115 static inline size_t obj_exts_alloc_size(struct kmem_cache *s, 2116 struct slab *slab, gfp_t gfp) 2117 { 2118 size_t sz = sizeof(struct slabobj_ext) * slab->objects; 2119 struct kmem_cache *obj_exts_cache; 2120 2121 /* 2122 * slabobj_ext array for KMALLOC_CGROUP allocations 2123 * are served from KMALLOC_NORMAL caches. 2124 */ 2125 if (!mem_alloc_profiling_enabled()) 2126 return sz; 2127 2128 if (sz > KMALLOC_MAX_CACHE_SIZE) 2129 return sz; 2130 2131 if (!is_kmalloc_normal(s)) 2132 return sz; 2133 2134 obj_exts_cache = kmalloc_slab(sz, NULL, gfp, 0); 2135 /* 2136 * We can't simply compare s with obj_exts_cache, because random kmalloc 2137 * caches have multiple caches per size, selected by caller address. 2138 * Since caller address may differ between kmalloc_slab() and actual 2139 * allocation, bump size when sizes are equal. 2140 */ 2141 if (s->object_size == obj_exts_cache->object_size) 2142 return obj_exts_cache->object_size + 1; 2143 2144 return sz; 2145 } 2146 2147 int alloc_slab_obj_exts(struct slab *slab, struct kmem_cache *s, 2148 gfp_t gfp, bool new_slab) 2149 { 2150 bool allow_spin = gfpflags_allow_spinning(gfp); 2151 unsigned int objects = objs_per_slab(s, slab); 2152 unsigned long new_exts; 2153 unsigned long old_exts; 2154 struct slabobj_ext *vec; 2155 size_t sz; 2156 2157 gfp &= ~OBJCGS_CLEAR_MASK; 2158 /* Prevent recursive extension vector allocation */ 2159 gfp |= __GFP_NO_OBJ_EXT; 2160 2161 sz = obj_exts_alloc_size(s, slab, gfp); 2162 2163 /* 2164 * Note that allow_spin may be false during early boot and its 2165 * restricted GFP_BOOT_MASK. Due to kmalloc_nolock() only supporting 2166 * architectures with cmpxchg16b, early obj_exts will be missing for 2167 * very early allocations on those. 2168 */ 2169 if (unlikely(!allow_spin)) 2170 vec = kmalloc_nolock(sz, __GFP_ZERO | __GFP_NO_OBJ_EXT, 2171 slab_nid(slab)); 2172 else 2173 vec = kmalloc_node(sz, gfp | __GFP_ZERO, slab_nid(slab)); 2174 2175 if (!vec) { 2176 /* 2177 * Try to mark vectors which failed to allocate. 2178 * If this operation fails, there may be a racing process 2179 * that has already completed the allocation. 2180 */ 2181 if (!mark_failed_objexts_alloc(slab) && 2182 slab_obj_exts(slab)) 2183 return 0; 2184 2185 return -ENOMEM; 2186 } 2187 2188 VM_WARN_ON_ONCE(virt_to_slab(vec) != NULL && 2189 virt_to_slab(vec)->slab_cache == s); 2190 2191 new_exts = (unsigned long)vec; 2192 if (unlikely(!allow_spin)) 2193 new_exts |= OBJEXTS_NOSPIN_ALLOC; 2194 #ifdef CONFIG_MEMCG 2195 new_exts |= MEMCG_DATA_OBJEXTS; 2196 #endif 2197 retry: 2198 old_exts = READ_ONCE(slab->obj_exts); 2199 handle_failed_objexts_alloc(old_exts, vec, objects); 2200 slab_set_stride(slab, sizeof(struct slabobj_ext)); 2201 2202 if (new_slab) { 2203 /* 2204 * If the slab is brand new and nobody can yet access its 2205 * obj_exts, no synchronization is required and obj_exts can 2206 * be simply assigned. 2207 */ 2208 slab->obj_exts = new_exts; 2209 } else if (old_exts & ~OBJEXTS_FLAGS_MASK) { 2210 /* 2211 * If the slab is already in use, somebody can allocate and 2212 * assign slabobj_exts in parallel. In this case the existing 2213 * objcg vector should be reused. 2214 */ 2215 mark_objexts_empty(vec); 2216 if (unlikely(!allow_spin)) 2217 kfree_nolock(vec); 2218 else 2219 kfree(vec); 2220 return 0; 2221 } else if (cmpxchg(&slab->obj_exts, old_exts, new_exts) != old_exts) { 2222 /* Retry if a racing thread changed slab->obj_exts from under us. */ 2223 goto retry; 2224 } 2225 2226 if (allow_spin) 2227 kmemleak_not_leak(vec); 2228 return 0; 2229 } 2230 2231 static inline void free_slab_obj_exts(struct slab *slab) 2232 { 2233 struct slabobj_ext *obj_exts; 2234 2235 obj_exts = (struct slabobj_ext *)slab_obj_exts(slab); 2236 if (!obj_exts) { 2237 /* 2238 * If obj_exts allocation failed, slab->obj_exts is set to 2239 * OBJEXTS_ALLOC_FAIL. In this case, we end up here and should 2240 * clear the flag. 2241 */ 2242 slab->obj_exts = 0; 2243 return; 2244 } 2245 2246 if (obj_exts_in_slab(slab->slab_cache, slab)) { 2247 slab->obj_exts = 0; 2248 return; 2249 } 2250 2251 /* 2252 * obj_exts was created with __GFP_NO_OBJ_EXT flag, therefore its 2253 * corresponding extension will be NULL. alloc_tag_sub() will throw a 2254 * warning if slab has extensions but the extension of an object is 2255 * NULL, therefore replace NULL with CODETAG_EMPTY to indicate that 2256 * the extension for obj_exts is expected to be NULL. 2257 */ 2258 mark_objexts_empty(obj_exts); 2259 if (unlikely(READ_ONCE(slab->obj_exts) & OBJEXTS_NOSPIN_ALLOC)) 2260 kfree_nolock(obj_exts); 2261 else 2262 kfree(obj_exts); 2263 slab->obj_exts = 0; 2264 } 2265 2266 /* 2267 * Try to allocate slabobj_ext array from unused space. 2268 * This function must be called on a freshly allocated slab to prevent 2269 * concurrency problems. 2270 */ 2271 static void alloc_slab_obj_exts_early(struct kmem_cache *s, struct slab *slab) 2272 { 2273 void *addr; 2274 unsigned long obj_exts; 2275 2276 if (!need_slab_obj_exts(s)) 2277 return; 2278 2279 if (obj_exts_fit_within_slab_leftover(s, slab)) { 2280 addr = slab_address(slab) + obj_exts_offset_in_slab(s, slab); 2281 addr = kasan_reset_tag(addr); 2282 obj_exts = (unsigned long)addr; 2283 2284 get_slab_obj_exts(obj_exts); 2285 memset(addr, 0, obj_exts_size_in_slab(slab)); 2286 put_slab_obj_exts(obj_exts); 2287 2288 #ifdef CONFIG_MEMCG 2289 obj_exts |= MEMCG_DATA_OBJEXTS; 2290 #endif 2291 slab->obj_exts = obj_exts; 2292 slab_set_stride(slab, sizeof(struct slabobj_ext)); 2293 } else if (s->flags & SLAB_OBJ_EXT_IN_OBJ) { 2294 unsigned int offset = obj_exts_offset_in_object(s); 2295 2296 obj_exts = (unsigned long)slab_address(slab); 2297 obj_exts += s->red_left_pad; 2298 obj_exts += offset; 2299 2300 get_slab_obj_exts(obj_exts); 2301 for_each_object(addr, s, slab_address(slab), slab->objects) 2302 memset(kasan_reset_tag(addr) + offset, 0, 2303 sizeof(struct slabobj_ext)); 2304 put_slab_obj_exts(obj_exts); 2305 2306 #ifdef CONFIG_MEMCG 2307 obj_exts |= MEMCG_DATA_OBJEXTS; 2308 #endif 2309 slab->obj_exts = obj_exts; 2310 slab_set_stride(slab, s->size); 2311 } 2312 } 2313 2314 #else /* CONFIG_SLAB_OBJ_EXT */ 2315 2316 static inline void init_slab_obj_exts(struct slab *slab) 2317 { 2318 } 2319 2320 static int alloc_slab_obj_exts(struct slab *slab, struct kmem_cache *s, 2321 gfp_t gfp, bool new_slab) 2322 { 2323 return 0; 2324 } 2325 2326 static inline void free_slab_obj_exts(struct slab *slab) 2327 { 2328 } 2329 2330 static inline void alloc_slab_obj_exts_early(struct kmem_cache *s, 2331 struct slab *slab) 2332 { 2333 } 2334 2335 #endif /* CONFIG_SLAB_OBJ_EXT */ 2336 2337 #ifdef CONFIG_MEM_ALLOC_PROFILING 2338 2339 static inline unsigned long 2340 prepare_slab_obj_exts_hook(struct kmem_cache *s, struct slab *slab, 2341 gfp_t flags, void *p) 2342 { 2343 if (!slab_obj_exts(slab) && 2344 alloc_slab_obj_exts(slab, s, flags, false)) { 2345 pr_warn_once("%s, %s: Failed to create slab extension vector!\n", 2346 __func__, s->name); 2347 return 0; 2348 } 2349 2350 return slab_obj_exts(slab); 2351 } 2352 2353 2354 /* Should be called only if mem_alloc_profiling_enabled() */ 2355 static noinline void 2356 __alloc_tagging_slab_alloc_hook(struct kmem_cache *s, void *object, gfp_t flags) 2357 { 2358 unsigned long obj_exts; 2359 struct slabobj_ext *obj_ext; 2360 struct slab *slab; 2361 2362 if (!object) 2363 return; 2364 2365 if (s->flags & (SLAB_NO_OBJ_EXT | SLAB_NOLEAKTRACE)) 2366 return; 2367 2368 if (flags & __GFP_NO_OBJ_EXT) 2369 return; 2370 2371 slab = virt_to_slab(object); 2372 obj_exts = prepare_slab_obj_exts_hook(s, slab, flags, object); 2373 /* 2374 * Currently obj_exts is used only for allocation profiling. 2375 * If other users appear then mem_alloc_profiling_enabled() 2376 * check should be added before alloc_tag_add(). 2377 */ 2378 if (obj_exts) { 2379 unsigned int obj_idx = obj_to_index(s, slab, object); 2380 2381 get_slab_obj_exts(obj_exts); 2382 obj_ext = slab_obj_ext(slab, obj_exts, obj_idx); 2383 alloc_tag_add(&obj_ext->ref, current->alloc_tag, s->size); 2384 put_slab_obj_exts(obj_exts); 2385 } else { 2386 alloc_tag_set_inaccurate(current->alloc_tag); 2387 } 2388 } 2389 2390 static inline void 2391 alloc_tagging_slab_alloc_hook(struct kmem_cache *s, void *object, gfp_t flags) 2392 { 2393 if (mem_alloc_profiling_enabled()) 2394 __alloc_tagging_slab_alloc_hook(s, object, flags); 2395 } 2396 2397 /* Should be called only if mem_alloc_profiling_enabled() */ 2398 static noinline void 2399 __alloc_tagging_slab_free_hook(struct kmem_cache *s, struct slab *slab, void **p, 2400 int objects) 2401 { 2402 int i; 2403 unsigned long obj_exts; 2404 2405 /* slab->obj_exts might not be NULL if it was created for MEMCG accounting. */ 2406 if (s->flags & (SLAB_NO_OBJ_EXT | SLAB_NOLEAKTRACE)) 2407 return; 2408 2409 obj_exts = slab_obj_exts(slab); 2410 if (!obj_exts) 2411 return; 2412 2413 get_slab_obj_exts(obj_exts); 2414 for (i = 0; i < objects; i++) { 2415 unsigned int off = obj_to_index(s, slab, p[i]); 2416 2417 alloc_tag_sub(&slab_obj_ext(slab, obj_exts, off)->ref, s->size); 2418 } 2419 put_slab_obj_exts(obj_exts); 2420 } 2421 2422 static inline void 2423 alloc_tagging_slab_free_hook(struct kmem_cache *s, struct slab *slab, void **p, 2424 int objects) 2425 { 2426 if (mem_alloc_profiling_enabled()) 2427 __alloc_tagging_slab_free_hook(s, slab, p, objects); 2428 } 2429 2430 #else /* CONFIG_MEM_ALLOC_PROFILING */ 2431 2432 static inline void 2433 alloc_tagging_slab_alloc_hook(struct kmem_cache *s, void *object, gfp_t flags) 2434 { 2435 } 2436 2437 static inline void 2438 alloc_tagging_slab_free_hook(struct kmem_cache *s, struct slab *slab, void **p, 2439 int objects) 2440 { 2441 } 2442 2443 #endif /* CONFIG_MEM_ALLOC_PROFILING */ 2444 2445 2446 #ifdef CONFIG_MEMCG 2447 2448 static void memcg_alloc_abort_single(struct kmem_cache *s, void *object); 2449 2450 static __fastpath_inline 2451 bool memcg_slab_post_alloc_hook(struct kmem_cache *s, struct list_lru *lru, 2452 gfp_t flags, size_t size, void **p) 2453 { 2454 if (likely(!memcg_kmem_online())) 2455 return true; 2456 2457 if (likely(!(flags & __GFP_ACCOUNT) && !(s->flags & SLAB_ACCOUNT))) 2458 return true; 2459 2460 if (likely(__memcg_slab_post_alloc_hook(s, lru, flags, size, p))) 2461 return true; 2462 2463 if (likely(size == 1)) { 2464 memcg_alloc_abort_single(s, *p); 2465 *p = NULL; 2466 } else { 2467 kmem_cache_free_bulk(s, size, p); 2468 } 2469 2470 return false; 2471 } 2472 2473 static __fastpath_inline 2474 void memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab, void **p, 2475 int objects) 2476 { 2477 unsigned long obj_exts; 2478 2479 if (!memcg_kmem_online()) 2480 return; 2481 2482 obj_exts = slab_obj_exts(slab); 2483 if (likely(!obj_exts)) 2484 return; 2485 2486 get_slab_obj_exts(obj_exts); 2487 __memcg_slab_free_hook(s, slab, p, objects, obj_exts); 2488 put_slab_obj_exts(obj_exts); 2489 } 2490 2491 static __fastpath_inline 2492 bool memcg_slab_post_charge(void *p, gfp_t flags) 2493 { 2494 unsigned long obj_exts; 2495 struct slabobj_ext *obj_ext; 2496 struct kmem_cache *s; 2497 struct page *page; 2498 struct slab *slab; 2499 unsigned long off; 2500 2501 page = virt_to_page(p); 2502 if (PageLargeKmalloc(page)) { 2503 unsigned int order; 2504 int size; 2505 2506 if (PageMemcgKmem(page)) 2507 return true; 2508 2509 order = large_kmalloc_order(page); 2510 if (__memcg_kmem_charge_page(page, flags, order)) 2511 return false; 2512 2513 /* 2514 * This page has already been accounted in the global stats but 2515 * not in the memcg stats. So, subtract from the global and use 2516 * the interface which adds to both global and memcg stats. 2517 */ 2518 size = PAGE_SIZE << order; 2519 mod_node_page_state(page_pgdat(page), NR_SLAB_UNRECLAIMABLE_B, -size); 2520 mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE_B, size); 2521 return true; 2522 } 2523 2524 slab = page_slab(page); 2525 s = slab->slab_cache; 2526 2527 /* 2528 * Ignore KMALLOC_NORMAL cache to avoid possible circular dependency 2529 * of slab_obj_exts being allocated from the same slab and thus the slab 2530 * becoming effectively unfreeable. 2531 */ 2532 if (is_kmalloc_normal(s)) 2533 return true; 2534 2535 /* Ignore already charged objects. */ 2536 obj_exts = slab_obj_exts(slab); 2537 if (obj_exts) { 2538 get_slab_obj_exts(obj_exts); 2539 off = obj_to_index(s, slab, p); 2540 obj_ext = slab_obj_ext(slab, obj_exts, off); 2541 if (unlikely(obj_ext->objcg)) { 2542 put_slab_obj_exts(obj_exts); 2543 return true; 2544 } 2545 put_slab_obj_exts(obj_exts); 2546 } 2547 2548 return __memcg_slab_post_alloc_hook(s, NULL, flags, 1, &p); 2549 } 2550 2551 #else /* CONFIG_MEMCG */ 2552 static inline bool memcg_slab_post_alloc_hook(struct kmem_cache *s, 2553 struct list_lru *lru, 2554 gfp_t flags, size_t size, 2555 void **p) 2556 { 2557 return true; 2558 } 2559 2560 static inline void memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab, 2561 void **p, int objects) 2562 { 2563 } 2564 2565 static inline bool memcg_slab_post_charge(void *p, gfp_t flags) 2566 { 2567 return true; 2568 } 2569 #endif /* CONFIG_MEMCG */ 2570 2571 #ifdef CONFIG_SLUB_RCU_DEBUG 2572 static void slab_free_after_rcu_debug(struct rcu_head *rcu_head); 2573 2574 struct rcu_delayed_free { 2575 struct rcu_head head; 2576 void *object; 2577 }; 2578 #endif 2579 2580 /* 2581 * Hooks for other subsystems that check memory allocations. In a typical 2582 * production configuration these hooks all should produce no code at all. 2583 * 2584 * Returns true if freeing of the object can proceed, false if its reuse 2585 * was delayed by CONFIG_SLUB_RCU_DEBUG or KASAN quarantine, or it was returned 2586 * to KFENCE. 2587 */ 2588 static __always_inline 2589 bool slab_free_hook(struct kmem_cache *s, void *x, bool init, 2590 bool after_rcu_delay) 2591 { 2592 /* Are the object contents still accessible? */ 2593 bool still_accessible = (s->flags & SLAB_TYPESAFE_BY_RCU) && !after_rcu_delay; 2594 2595 kmemleak_free_recursive(x, s->flags); 2596 kmsan_slab_free(s, x); 2597 2598 debug_check_no_locks_freed(x, s->object_size); 2599 2600 if (!(s->flags & SLAB_DEBUG_OBJECTS)) 2601 debug_check_no_obj_freed(x, s->object_size); 2602 2603 /* Use KCSAN to help debug racy use-after-free. */ 2604 if (!still_accessible) 2605 __kcsan_check_access(x, s->object_size, 2606 KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT); 2607 2608 if (kfence_free(x)) 2609 return false; 2610 2611 /* 2612 * Give KASAN a chance to notice an invalid free operation before we 2613 * modify the object. 2614 */ 2615 if (kasan_slab_pre_free(s, x)) 2616 return false; 2617 2618 #ifdef CONFIG_SLUB_RCU_DEBUG 2619 if (still_accessible) { 2620 struct rcu_delayed_free *delayed_free; 2621 2622 delayed_free = kmalloc(sizeof(*delayed_free), GFP_NOWAIT); 2623 if (delayed_free) { 2624 /* 2625 * Let KASAN track our call stack as a "related work 2626 * creation", just like if the object had been freed 2627 * normally via kfree_rcu(). 2628 * We have to do this manually because the rcu_head is 2629 * not located inside the object. 2630 */ 2631 kasan_record_aux_stack(x); 2632 2633 delayed_free->object = x; 2634 call_rcu(&delayed_free->head, slab_free_after_rcu_debug); 2635 return false; 2636 } 2637 } 2638 #endif /* CONFIG_SLUB_RCU_DEBUG */ 2639 2640 /* 2641 * As memory initialization might be integrated into KASAN, 2642 * kasan_slab_free and initialization memset's must be 2643 * kept together to avoid discrepancies in behavior. 2644 * 2645 * The initialization memset's clear the object and the metadata, 2646 * but don't touch the SLAB redzone. 2647 * 2648 * The object's freepointer is also avoided if stored outside the 2649 * object. 2650 */ 2651 if (unlikely(init)) { 2652 int rsize; 2653 unsigned int inuse, orig_size; 2654 2655 inuse = get_info_end(s); 2656 orig_size = get_orig_size(s, x); 2657 if (!kasan_has_integrated_init()) 2658 memset(kasan_reset_tag(x), 0, orig_size); 2659 rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad : 0; 2660 memset((char *)kasan_reset_tag(x) + inuse, 0, 2661 s->size - inuse - rsize); 2662 /* 2663 * Restore orig_size, otherwise kmalloc redzone overwritten 2664 * would be reported 2665 */ 2666 set_orig_size(s, x, orig_size); 2667 2668 } 2669 /* KASAN might put x into memory quarantine, delaying its reuse. */ 2670 return !kasan_slab_free(s, x, init, still_accessible, false); 2671 } 2672 2673 static __fastpath_inline 2674 bool slab_free_freelist_hook(struct kmem_cache *s, void **head, void **tail, 2675 int *cnt) 2676 { 2677 2678 void *object; 2679 void *next = *head; 2680 void *old_tail = *tail; 2681 bool init; 2682 2683 if (is_kfence_address(next)) { 2684 slab_free_hook(s, next, false, false); 2685 return false; 2686 } 2687 2688 /* Head and tail of the reconstructed freelist */ 2689 *head = NULL; 2690 *tail = NULL; 2691 2692 init = slab_want_init_on_free(s); 2693 2694 do { 2695 object = next; 2696 next = get_freepointer(s, object); 2697 2698 /* If object's reuse doesn't have to be delayed */ 2699 if (likely(slab_free_hook(s, object, init, false))) { 2700 /* Move object to the new freelist */ 2701 set_freepointer(s, object, *head); 2702 *head = object; 2703 if (!*tail) 2704 *tail = object; 2705 } else { 2706 /* 2707 * Adjust the reconstructed freelist depth 2708 * accordingly if object's reuse is delayed. 2709 */ 2710 --(*cnt); 2711 } 2712 } while (object != old_tail); 2713 2714 return *head != NULL; 2715 } 2716 2717 static void *setup_object(struct kmem_cache *s, void *object) 2718 { 2719 setup_object_debug(s, object); 2720 object = kasan_init_slab_obj(s, object); 2721 if (unlikely(s->ctor)) { 2722 kasan_unpoison_new_object(s, object); 2723 s->ctor(object); 2724 kasan_poison_new_object(s, object); 2725 } 2726 return object; 2727 } 2728 2729 static struct slab_sheaf *__alloc_empty_sheaf(struct kmem_cache *s, gfp_t gfp, 2730 unsigned int capacity) 2731 { 2732 struct slab_sheaf *sheaf; 2733 size_t sheaf_size; 2734 2735 if (gfp & __GFP_NO_OBJ_EXT) 2736 return NULL; 2737 2738 gfp &= ~OBJCGS_CLEAR_MASK; 2739 2740 /* 2741 * Prevent recursion to the same cache, or a deep stack of kmallocs of 2742 * varying sizes (sheaf capacity might differ for each kmalloc size 2743 * bucket) 2744 */ 2745 if (s->flags & SLAB_KMALLOC) 2746 gfp |= __GFP_NO_OBJ_EXT; 2747 2748 sheaf_size = struct_size(sheaf, objects, capacity); 2749 sheaf = kzalloc(sheaf_size, gfp); 2750 2751 if (unlikely(!sheaf)) 2752 return NULL; 2753 2754 sheaf->cache = s; 2755 2756 stat(s, SHEAF_ALLOC); 2757 2758 return sheaf; 2759 } 2760 2761 static inline struct slab_sheaf *alloc_empty_sheaf(struct kmem_cache *s, 2762 gfp_t gfp) 2763 { 2764 return __alloc_empty_sheaf(s, gfp, s->sheaf_capacity); 2765 } 2766 2767 static void free_empty_sheaf(struct kmem_cache *s, struct slab_sheaf *sheaf) 2768 { 2769 kfree(sheaf); 2770 2771 stat(s, SHEAF_FREE); 2772 } 2773 2774 static unsigned int 2775 refill_objects(struct kmem_cache *s, void **p, gfp_t gfp, unsigned int min, 2776 unsigned int max); 2777 2778 static int refill_sheaf(struct kmem_cache *s, struct slab_sheaf *sheaf, 2779 gfp_t gfp) 2780 { 2781 int to_fill = s->sheaf_capacity - sheaf->size; 2782 int filled; 2783 2784 if (!to_fill) 2785 return 0; 2786 2787 filled = refill_objects(s, &sheaf->objects[sheaf->size], gfp, to_fill, 2788 to_fill); 2789 2790 sheaf->size += filled; 2791 2792 stat_add(s, SHEAF_REFILL, filled); 2793 2794 if (filled < to_fill) 2795 return -ENOMEM; 2796 2797 return 0; 2798 } 2799 2800 2801 static struct slab_sheaf *alloc_full_sheaf(struct kmem_cache *s, gfp_t gfp) 2802 { 2803 struct slab_sheaf *sheaf = alloc_empty_sheaf(s, gfp); 2804 2805 if (!sheaf) 2806 return NULL; 2807 2808 if (refill_sheaf(s, sheaf, gfp | __GFP_NOMEMALLOC)) { 2809 free_empty_sheaf(s, sheaf); 2810 return NULL; 2811 } 2812 2813 return sheaf; 2814 } 2815 2816 /* 2817 * Maximum number of objects freed during a single flush of main pcs sheaf. 2818 * Translates directly to an on-stack array size. 2819 */ 2820 #define PCS_BATCH_MAX 32U 2821 2822 static void __kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p); 2823 2824 /* 2825 * Free all objects from the main sheaf. In order to perform 2826 * __kmem_cache_free_bulk() outside of cpu_sheaves->lock, work in batches where 2827 * object pointers are moved to a on-stack array under the lock. To bound the 2828 * stack usage, limit each batch to PCS_BATCH_MAX. 2829 * 2830 * returns true if at least partially flushed 2831 */ 2832 static bool sheaf_flush_main(struct kmem_cache *s) 2833 { 2834 struct slub_percpu_sheaves *pcs; 2835 unsigned int batch, remaining; 2836 void *objects[PCS_BATCH_MAX]; 2837 struct slab_sheaf *sheaf; 2838 bool ret = false; 2839 2840 next_batch: 2841 if (!local_trylock(&s->cpu_sheaves->lock)) 2842 return ret; 2843 2844 pcs = this_cpu_ptr(s->cpu_sheaves); 2845 sheaf = pcs->main; 2846 2847 batch = min(PCS_BATCH_MAX, sheaf->size); 2848 2849 sheaf->size -= batch; 2850 memcpy(objects, sheaf->objects + sheaf->size, batch * sizeof(void *)); 2851 2852 remaining = sheaf->size; 2853 2854 local_unlock(&s->cpu_sheaves->lock); 2855 2856 __kmem_cache_free_bulk(s, batch, &objects[0]); 2857 2858 stat_add(s, SHEAF_FLUSH, batch); 2859 2860 ret = true; 2861 2862 if (remaining) 2863 goto next_batch; 2864 2865 return ret; 2866 } 2867 2868 /* 2869 * Free all objects from a sheaf that's unused, i.e. not linked to any 2870 * cpu_sheaves, so we need no locking and batching. The locking is also not 2871 * necessary when flushing cpu's sheaves (both spare and main) during cpu 2872 * hotremove as the cpu is not executing anymore. 2873 */ 2874 static void sheaf_flush_unused(struct kmem_cache *s, struct slab_sheaf *sheaf) 2875 { 2876 if (!sheaf->size) 2877 return; 2878 2879 stat_add(s, SHEAF_FLUSH, sheaf->size); 2880 2881 __kmem_cache_free_bulk(s, sheaf->size, &sheaf->objects[0]); 2882 2883 sheaf->size = 0; 2884 } 2885 2886 static bool __rcu_free_sheaf_prepare(struct kmem_cache *s, 2887 struct slab_sheaf *sheaf) 2888 { 2889 bool init = slab_want_init_on_free(s); 2890 void **p = &sheaf->objects[0]; 2891 unsigned int i = 0; 2892 bool pfmemalloc = false; 2893 2894 while (i < sheaf->size) { 2895 struct slab *slab = virt_to_slab(p[i]); 2896 2897 memcg_slab_free_hook(s, slab, p + i, 1); 2898 alloc_tagging_slab_free_hook(s, slab, p + i, 1); 2899 2900 if (unlikely(!slab_free_hook(s, p[i], init, true))) { 2901 p[i] = p[--sheaf->size]; 2902 continue; 2903 } 2904 2905 if (slab_test_pfmemalloc(slab)) 2906 pfmemalloc = true; 2907 2908 i++; 2909 } 2910 2911 return pfmemalloc; 2912 } 2913 2914 static void rcu_free_sheaf_nobarn(struct rcu_head *head) 2915 { 2916 struct slab_sheaf *sheaf; 2917 struct kmem_cache *s; 2918 2919 sheaf = container_of(head, struct slab_sheaf, rcu_head); 2920 s = sheaf->cache; 2921 2922 __rcu_free_sheaf_prepare(s, sheaf); 2923 2924 sheaf_flush_unused(s, sheaf); 2925 2926 free_empty_sheaf(s, sheaf); 2927 } 2928 2929 /* 2930 * Caller needs to make sure migration is disabled in order to fully flush 2931 * single cpu's sheaves 2932 * 2933 * must not be called from an irq 2934 * 2935 * flushing operations are rare so let's keep it simple and flush to slabs 2936 * directly, skipping the barn 2937 */ 2938 static void pcs_flush_all(struct kmem_cache *s) 2939 { 2940 struct slub_percpu_sheaves *pcs; 2941 struct slab_sheaf *spare, *rcu_free; 2942 2943 local_lock(&s->cpu_sheaves->lock); 2944 pcs = this_cpu_ptr(s->cpu_sheaves); 2945 2946 spare = pcs->spare; 2947 pcs->spare = NULL; 2948 2949 rcu_free = pcs->rcu_free; 2950 pcs->rcu_free = NULL; 2951 2952 local_unlock(&s->cpu_sheaves->lock); 2953 2954 if (spare) { 2955 sheaf_flush_unused(s, spare); 2956 free_empty_sheaf(s, spare); 2957 } 2958 2959 if (rcu_free) 2960 call_rcu(&rcu_free->rcu_head, rcu_free_sheaf_nobarn); 2961 2962 sheaf_flush_main(s); 2963 } 2964 2965 static void __pcs_flush_all_cpu(struct kmem_cache *s, unsigned int cpu) 2966 { 2967 struct slub_percpu_sheaves *pcs; 2968 2969 pcs = per_cpu_ptr(s->cpu_sheaves, cpu); 2970 2971 /* The cpu is not executing anymore so we don't need pcs->lock */ 2972 sheaf_flush_unused(s, pcs->main); 2973 if (pcs->spare) { 2974 sheaf_flush_unused(s, pcs->spare); 2975 free_empty_sheaf(s, pcs->spare); 2976 pcs->spare = NULL; 2977 } 2978 2979 if (pcs->rcu_free) { 2980 call_rcu(&pcs->rcu_free->rcu_head, rcu_free_sheaf_nobarn); 2981 pcs->rcu_free = NULL; 2982 } 2983 } 2984 2985 static void pcs_destroy(struct kmem_cache *s) 2986 { 2987 int cpu; 2988 2989 /* 2990 * We may be unwinding cache creation that failed before or during the 2991 * allocation of this. 2992 */ 2993 if (!s->cpu_sheaves) 2994 return; 2995 2996 /* pcs->main can only point to the bootstrap sheaf, nothing to free */ 2997 if (!cache_has_sheaves(s)) 2998 goto free_pcs; 2999 3000 for_each_possible_cpu(cpu) { 3001 struct slub_percpu_sheaves *pcs; 3002 3003 pcs = per_cpu_ptr(s->cpu_sheaves, cpu); 3004 3005 /* This can happen when unwinding failed cache creation. */ 3006 if (!pcs->main) 3007 continue; 3008 3009 /* 3010 * We have already passed __kmem_cache_shutdown() so everything 3011 * was flushed and there should be no objects allocated from 3012 * slabs, otherwise kmem_cache_destroy() would have aborted. 3013 * Therefore something would have to be really wrong if the 3014 * warnings here trigger, and we should rather leave objects and 3015 * sheaves to leak in that case. 3016 */ 3017 3018 WARN_ON(pcs->spare); 3019 WARN_ON(pcs->rcu_free); 3020 3021 if (!WARN_ON(pcs->main->size)) { 3022 free_empty_sheaf(s, pcs->main); 3023 pcs->main = NULL; 3024 } 3025 } 3026 3027 free_pcs: 3028 free_percpu(s->cpu_sheaves); 3029 s->cpu_sheaves = NULL; 3030 } 3031 3032 static struct slab_sheaf *barn_get_empty_sheaf(struct node_barn *barn, 3033 bool allow_spin) 3034 { 3035 struct slab_sheaf *empty = NULL; 3036 unsigned long flags; 3037 3038 if (!data_race(barn->nr_empty)) 3039 return NULL; 3040 3041 if (likely(allow_spin)) 3042 spin_lock_irqsave(&barn->lock, flags); 3043 else if (!spin_trylock_irqsave(&barn->lock, flags)) 3044 return NULL; 3045 3046 if (likely(barn->nr_empty)) { 3047 empty = list_first_entry(&barn->sheaves_empty, 3048 struct slab_sheaf, barn_list); 3049 list_del(&empty->barn_list); 3050 barn->nr_empty--; 3051 } 3052 3053 spin_unlock_irqrestore(&barn->lock, flags); 3054 3055 return empty; 3056 } 3057 3058 /* 3059 * The following two functions are used mainly in cases where we have to undo an 3060 * intended action due to a race or cpu migration. Thus they do not check the 3061 * empty or full sheaf limits for simplicity. 3062 */ 3063 3064 static void barn_put_empty_sheaf(struct node_barn *barn, struct slab_sheaf *sheaf) 3065 { 3066 unsigned long flags; 3067 3068 spin_lock_irqsave(&barn->lock, flags); 3069 3070 list_add(&sheaf->barn_list, &barn->sheaves_empty); 3071 barn->nr_empty++; 3072 3073 spin_unlock_irqrestore(&barn->lock, flags); 3074 } 3075 3076 static void barn_put_full_sheaf(struct node_barn *barn, struct slab_sheaf *sheaf) 3077 { 3078 unsigned long flags; 3079 3080 spin_lock_irqsave(&barn->lock, flags); 3081 3082 list_add(&sheaf->barn_list, &barn->sheaves_full); 3083 barn->nr_full++; 3084 3085 spin_unlock_irqrestore(&barn->lock, flags); 3086 } 3087 3088 static struct slab_sheaf *barn_get_full_or_empty_sheaf(struct node_barn *barn) 3089 { 3090 struct slab_sheaf *sheaf = NULL; 3091 unsigned long flags; 3092 3093 if (!data_race(barn->nr_full) && !data_race(barn->nr_empty)) 3094 return NULL; 3095 3096 spin_lock_irqsave(&barn->lock, flags); 3097 3098 if (barn->nr_full) { 3099 sheaf = list_first_entry(&barn->sheaves_full, struct slab_sheaf, 3100 barn_list); 3101 list_del(&sheaf->barn_list); 3102 barn->nr_full--; 3103 } else if (barn->nr_empty) { 3104 sheaf = list_first_entry(&barn->sheaves_empty, 3105 struct slab_sheaf, barn_list); 3106 list_del(&sheaf->barn_list); 3107 barn->nr_empty--; 3108 } 3109 3110 spin_unlock_irqrestore(&barn->lock, flags); 3111 3112 return sheaf; 3113 } 3114 3115 /* 3116 * If a full sheaf is available, return it and put the supplied empty one to 3117 * barn. We ignore the limit on empty sheaves as the number of sheaves doesn't 3118 * change. 3119 */ 3120 static struct slab_sheaf * 3121 barn_replace_empty_sheaf(struct node_barn *barn, struct slab_sheaf *empty, 3122 bool allow_spin) 3123 { 3124 struct slab_sheaf *full = NULL; 3125 unsigned long flags; 3126 3127 if (!data_race(barn->nr_full)) 3128 return NULL; 3129 3130 if (likely(allow_spin)) 3131 spin_lock_irqsave(&barn->lock, flags); 3132 else if (!spin_trylock_irqsave(&barn->lock, flags)) 3133 return NULL; 3134 3135 if (likely(barn->nr_full)) { 3136 full = list_first_entry(&barn->sheaves_full, struct slab_sheaf, 3137 barn_list); 3138 list_del(&full->barn_list); 3139 list_add(&empty->barn_list, &barn->sheaves_empty); 3140 barn->nr_full--; 3141 barn->nr_empty++; 3142 } 3143 3144 spin_unlock_irqrestore(&barn->lock, flags); 3145 3146 return full; 3147 } 3148 3149 /* 3150 * If an empty sheaf is available, return it and put the supplied full one to 3151 * barn. But if there are too many full sheaves, reject this with -E2BIG. 3152 */ 3153 static struct slab_sheaf * 3154 barn_replace_full_sheaf(struct node_barn *barn, struct slab_sheaf *full, 3155 bool allow_spin) 3156 { 3157 struct slab_sheaf *empty; 3158 unsigned long flags; 3159 3160 /* we don't repeat this check under barn->lock as it's not critical */ 3161 if (data_race(barn->nr_full) >= MAX_FULL_SHEAVES) 3162 return ERR_PTR(-E2BIG); 3163 if (!data_race(barn->nr_empty)) 3164 return ERR_PTR(-ENOMEM); 3165 3166 if (likely(allow_spin)) 3167 spin_lock_irqsave(&barn->lock, flags); 3168 else if (!spin_trylock_irqsave(&barn->lock, flags)) 3169 return ERR_PTR(-EBUSY); 3170 3171 if (likely(barn->nr_empty)) { 3172 empty = list_first_entry(&barn->sheaves_empty, struct slab_sheaf, 3173 barn_list); 3174 list_del(&empty->barn_list); 3175 list_add(&full->barn_list, &barn->sheaves_full); 3176 barn->nr_empty--; 3177 barn->nr_full++; 3178 } else { 3179 empty = ERR_PTR(-ENOMEM); 3180 } 3181 3182 spin_unlock_irqrestore(&barn->lock, flags); 3183 3184 return empty; 3185 } 3186 3187 static void barn_init(struct node_barn *barn) 3188 { 3189 spin_lock_init(&barn->lock); 3190 INIT_LIST_HEAD(&barn->sheaves_full); 3191 INIT_LIST_HEAD(&barn->sheaves_empty); 3192 barn->nr_full = 0; 3193 barn->nr_empty = 0; 3194 } 3195 3196 static void barn_shrink(struct kmem_cache *s, struct node_barn *barn) 3197 { 3198 LIST_HEAD(empty_list); 3199 LIST_HEAD(full_list); 3200 struct slab_sheaf *sheaf, *sheaf2; 3201 unsigned long flags; 3202 3203 spin_lock_irqsave(&barn->lock, flags); 3204 3205 list_splice_init(&barn->sheaves_full, &full_list); 3206 barn->nr_full = 0; 3207 list_splice_init(&barn->sheaves_empty, &empty_list); 3208 barn->nr_empty = 0; 3209 3210 spin_unlock_irqrestore(&barn->lock, flags); 3211 3212 list_for_each_entry_safe(sheaf, sheaf2, &full_list, barn_list) { 3213 sheaf_flush_unused(s, sheaf); 3214 free_empty_sheaf(s, sheaf); 3215 } 3216 3217 list_for_each_entry_safe(sheaf, sheaf2, &empty_list, barn_list) 3218 free_empty_sheaf(s, sheaf); 3219 } 3220 3221 /* 3222 * Slab allocation and freeing 3223 */ 3224 static inline struct slab *alloc_slab_page(gfp_t flags, int node, 3225 struct kmem_cache_order_objects oo, 3226 bool allow_spin) 3227 { 3228 struct page *page; 3229 struct slab *slab; 3230 unsigned int order = oo_order(oo); 3231 3232 if (unlikely(!allow_spin)) 3233 page = alloc_frozen_pages_nolock(0/* __GFP_COMP is implied */, 3234 node, order); 3235 else if (node == NUMA_NO_NODE) 3236 page = alloc_frozen_pages(flags, order); 3237 else 3238 page = __alloc_frozen_pages(flags, order, node, NULL); 3239 3240 if (!page) 3241 return NULL; 3242 3243 __SetPageSlab(page); 3244 slab = page_slab(page); 3245 if (page_is_pfmemalloc(page)) 3246 slab_set_pfmemalloc(slab); 3247 3248 return slab; 3249 } 3250 3251 #ifdef CONFIG_SLAB_FREELIST_RANDOM 3252 /* Pre-initialize the random sequence cache */ 3253 static int init_cache_random_seq(struct kmem_cache *s) 3254 { 3255 unsigned int count = oo_objects(s->oo); 3256 int err; 3257 3258 /* Bailout if already initialised */ 3259 if (s->random_seq) 3260 return 0; 3261 3262 err = cache_random_seq_create(s, count, GFP_KERNEL); 3263 if (err) { 3264 pr_err("SLUB: Unable to initialize free list for %s\n", 3265 s->name); 3266 return err; 3267 } 3268 3269 /* Transform to an offset on the set of pages */ 3270 if (s->random_seq) { 3271 unsigned int i; 3272 3273 for (i = 0; i < count; i++) 3274 s->random_seq[i] *= s->size; 3275 } 3276 return 0; 3277 } 3278 3279 /* Initialize each random sequence freelist per cache */ 3280 static void __init init_freelist_randomization(void) 3281 { 3282 struct kmem_cache *s; 3283 3284 mutex_lock(&slab_mutex); 3285 3286 list_for_each_entry(s, &slab_caches, list) 3287 init_cache_random_seq(s); 3288 3289 mutex_unlock(&slab_mutex); 3290 } 3291 3292 /* Get the next entry on the pre-computed freelist randomized */ 3293 static void *next_freelist_entry(struct kmem_cache *s, 3294 unsigned long *pos, void *start, 3295 unsigned long page_limit, 3296 unsigned long freelist_count) 3297 { 3298 unsigned int idx; 3299 3300 /* 3301 * If the target page allocation failed, the number of objects on the 3302 * page might be smaller than the usual size defined by the cache. 3303 */ 3304 do { 3305 idx = s->random_seq[*pos]; 3306 *pos += 1; 3307 if (*pos >= freelist_count) 3308 *pos = 0; 3309 } while (unlikely(idx >= page_limit)); 3310 3311 return (char *)start + idx; 3312 } 3313 3314 /* Shuffle the single linked freelist based on a random pre-computed sequence */ 3315 static bool shuffle_freelist(struct kmem_cache *s, struct slab *slab) 3316 { 3317 void *start; 3318 void *cur; 3319 void *next; 3320 unsigned long idx, pos, page_limit, freelist_count; 3321 3322 if (slab->objects < 2 || !s->random_seq) 3323 return false; 3324 3325 freelist_count = oo_objects(s->oo); 3326 pos = get_random_u32_below(freelist_count); 3327 3328 page_limit = slab->objects * s->size; 3329 start = fixup_red_left(s, slab_address(slab)); 3330 3331 /* First entry is used as the base of the freelist */ 3332 cur = next_freelist_entry(s, &pos, start, page_limit, freelist_count); 3333 cur = setup_object(s, cur); 3334 slab->freelist = cur; 3335 3336 for (idx = 1; idx < slab->objects; idx++) { 3337 next = next_freelist_entry(s, &pos, start, page_limit, 3338 freelist_count); 3339 next = setup_object(s, next); 3340 set_freepointer(s, cur, next); 3341 cur = next; 3342 } 3343 set_freepointer(s, cur, NULL); 3344 3345 return true; 3346 } 3347 #else 3348 static inline int init_cache_random_seq(struct kmem_cache *s) 3349 { 3350 return 0; 3351 } 3352 static inline void init_freelist_randomization(void) { } 3353 static inline bool shuffle_freelist(struct kmem_cache *s, struct slab *slab) 3354 { 3355 return false; 3356 } 3357 #endif /* CONFIG_SLAB_FREELIST_RANDOM */ 3358 3359 static __always_inline void account_slab(struct slab *slab, int order, 3360 struct kmem_cache *s, gfp_t gfp) 3361 { 3362 if (memcg_kmem_online() && 3363 (s->flags & SLAB_ACCOUNT) && 3364 !slab_obj_exts(slab)) 3365 alloc_slab_obj_exts(slab, s, gfp, true); 3366 3367 mod_node_page_state(slab_pgdat(slab), cache_vmstat_idx(s), 3368 PAGE_SIZE << order); 3369 } 3370 3371 static __always_inline void unaccount_slab(struct slab *slab, int order, 3372 struct kmem_cache *s) 3373 { 3374 /* 3375 * The slab object extensions should now be freed regardless of 3376 * whether mem_alloc_profiling_enabled() or not because profiling 3377 * might have been disabled after slab->obj_exts got allocated. 3378 */ 3379 free_slab_obj_exts(slab); 3380 3381 mod_node_page_state(slab_pgdat(slab), cache_vmstat_idx(s), 3382 -(PAGE_SIZE << order)); 3383 } 3384 3385 static struct slab *allocate_slab(struct kmem_cache *s, gfp_t flags, int node) 3386 { 3387 bool allow_spin = gfpflags_allow_spinning(flags); 3388 struct slab *slab; 3389 struct kmem_cache_order_objects oo = s->oo; 3390 gfp_t alloc_gfp; 3391 void *start, *p, *next; 3392 int idx; 3393 bool shuffle; 3394 3395 flags &= gfp_allowed_mask; 3396 3397 flags |= s->allocflags; 3398 3399 /* 3400 * Let the initial higher-order allocation fail under memory pressure 3401 * so we fall-back to the minimum order allocation. 3402 */ 3403 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL; 3404 if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min)) 3405 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~__GFP_RECLAIM; 3406 3407 /* 3408 * __GFP_RECLAIM could be cleared on the first allocation attempt, 3409 * so pass allow_spin flag directly. 3410 */ 3411 slab = alloc_slab_page(alloc_gfp, node, oo, allow_spin); 3412 if (unlikely(!slab)) { 3413 oo = s->min; 3414 alloc_gfp = flags; 3415 /* 3416 * Allocation may have failed due to fragmentation. 3417 * Try a lower order alloc if possible 3418 */ 3419 slab = alloc_slab_page(alloc_gfp, node, oo, allow_spin); 3420 if (unlikely(!slab)) 3421 return NULL; 3422 stat(s, ORDER_FALLBACK); 3423 } 3424 3425 slab->objects = oo_objects(oo); 3426 slab->inuse = 0; 3427 slab->frozen = 0; 3428 3429 slab->slab_cache = s; 3430 3431 kasan_poison_slab(slab); 3432 3433 start = slab_address(slab); 3434 3435 setup_slab_debug(s, slab, start); 3436 init_slab_obj_exts(slab); 3437 /* 3438 * Poison the slab before initializing the slabobj_ext array 3439 * to prevent the array from being overwritten. 3440 */ 3441 alloc_slab_obj_exts_early(s, slab); 3442 account_slab(slab, oo_order(oo), s, flags); 3443 3444 shuffle = shuffle_freelist(s, slab); 3445 3446 if (!shuffle) { 3447 start = fixup_red_left(s, start); 3448 start = setup_object(s, start); 3449 slab->freelist = start; 3450 for (idx = 0, p = start; idx < slab->objects - 1; idx++) { 3451 next = p + s->size; 3452 next = setup_object(s, next); 3453 set_freepointer(s, p, next); 3454 p = next; 3455 } 3456 set_freepointer(s, p, NULL); 3457 } 3458 3459 return slab; 3460 } 3461 3462 static struct slab *new_slab(struct kmem_cache *s, gfp_t flags, int node) 3463 { 3464 if (unlikely(flags & GFP_SLAB_BUG_MASK)) 3465 flags = kmalloc_fix_flags(flags); 3466 3467 WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO)); 3468 3469 return allocate_slab(s, 3470 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node); 3471 } 3472 3473 static void __free_slab(struct kmem_cache *s, struct slab *slab, bool allow_spin) 3474 { 3475 struct page *page = slab_page(slab); 3476 int order = compound_order(page); 3477 int pages = 1 << order; 3478 3479 __slab_clear_pfmemalloc(slab); 3480 page->mapping = NULL; 3481 __ClearPageSlab(page); 3482 mm_account_reclaimed_pages(pages); 3483 unaccount_slab(slab, order, s); 3484 if (allow_spin) 3485 free_frozen_pages(page, order); 3486 else 3487 free_frozen_pages_nolock(page, order); 3488 } 3489 3490 static void free_new_slab_nolock(struct kmem_cache *s, struct slab *slab) 3491 { 3492 /* 3493 * Since it was just allocated, we can skip the actions in 3494 * discard_slab() and free_slab(). 3495 */ 3496 __free_slab(s, slab, false); 3497 } 3498 3499 static void rcu_free_slab(struct rcu_head *h) 3500 { 3501 struct slab *slab = container_of(h, struct slab, rcu_head); 3502 3503 __free_slab(slab->slab_cache, slab, true); 3504 } 3505 3506 static void free_slab(struct kmem_cache *s, struct slab *slab) 3507 { 3508 if (kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS)) { 3509 void *p; 3510 3511 slab_pad_check(s, slab); 3512 for_each_object(p, s, slab_address(slab), slab->objects) 3513 check_object(s, slab, p, SLUB_RED_INACTIVE); 3514 } 3515 3516 if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) 3517 call_rcu(&slab->rcu_head, rcu_free_slab); 3518 else 3519 __free_slab(s, slab, true); 3520 } 3521 3522 static void discard_slab(struct kmem_cache *s, struct slab *slab) 3523 { 3524 dec_slabs_node(s, slab_nid(slab), slab->objects); 3525 free_slab(s, slab); 3526 } 3527 3528 static inline bool slab_test_node_partial(const struct slab *slab) 3529 { 3530 return test_bit(SL_partial, &slab->flags.f); 3531 } 3532 3533 static inline void slab_set_node_partial(struct slab *slab) 3534 { 3535 set_bit(SL_partial, &slab->flags.f); 3536 } 3537 3538 static inline void slab_clear_node_partial(struct slab *slab) 3539 { 3540 clear_bit(SL_partial, &slab->flags.f); 3541 } 3542 3543 /* 3544 * Management of partially allocated slabs. 3545 */ 3546 static inline void 3547 __add_partial(struct kmem_cache_node *n, struct slab *slab, enum add_mode mode) 3548 { 3549 n->nr_partial++; 3550 if (mode == ADD_TO_TAIL) 3551 list_add_tail(&slab->slab_list, &n->partial); 3552 else 3553 list_add(&slab->slab_list, &n->partial); 3554 slab_set_node_partial(slab); 3555 } 3556 3557 static inline void add_partial(struct kmem_cache_node *n, 3558 struct slab *slab, enum add_mode mode) 3559 { 3560 lockdep_assert_held(&n->list_lock); 3561 __add_partial(n, slab, mode); 3562 } 3563 3564 static inline void remove_partial(struct kmem_cache_node *n, 3565 struct slab *slab) 3566 { 3567 lockdep_assert_held(&n->list_lock); 3568 list_del(&slab->slab_list); 3569 slab_clear_node_partial(slab); 3570 n->nr_partial--; 3571 } 3572 3573 /* 3574 * Called only for kmem_cache_debug() caches instead of remove_partial(), with a 3575 * slab from the n->partial list. Remove only a single object from the slab, do 3576 * the alloc_debug_processing() checks and leave the slab on the list, or move 3577 * it to full list if it was the last free object. 3578 */ 3579 static void *alloc_single_from_partial(struct kmem_cache *s, 3580 struct kmem_cache_node *n, struct slab *slab, int orig_size) 3581 { 3582 void *object; 3583 3584 lockdep_assert_held(&n->list_lock); 3585 3586 #ifdef CONFIG_SLUB_DEBUG 3587 if (s->flags & SLAB_CONSISTENCY_CHECKS) { 3588 if (!validate_slab_ptr(slab)) { 3589 slab_err(s, slab, "Not a valid slab page"); 3590 return NULL; 3591 } 3592 } 3593 #endif 3594 3595 object = slab->freelist; 3596 slab->freelist = get_freepointer(s, object); 3597 slab->inuse++; 3598 3599 if (!alloc_debug_processing(s, slab, object, orig_size)) { 3600 remove_partial(n, slab); 3601 return NULL; 3602 } 3603 3604 if (slab->inuse == slab->objects) { 3605 remove_partial(n, slab); 3606 add_full(s, n, slab); 3607 } 3608 3609 return object; 3610 } 3611 3612 /* 3613 * Called only for kmem_cache_debug() caches to allocate from a freshly 3614 * allocated slab. Allocate a single object instead of whole freelist 3615 * and put the slab to the partial (or full) list. 3616 */ 3617 static void *alloc_single_from_new_slab(struct kmem_cache *s, struct slab *slab, 3618 int orig_size, gfp_t gfpflags) 3619 { 3620 bool allow_spin = gfpflags_allow_spinning(gfpflags); 3621 int nid = slab_nid(slab); 3622 struct kmem_cache_node *n = get_node(s, nid); 3623 unsigned long flags; 3624 void *object; 3625 3626 if (!allow_spin && !spin_trylock_irqsave(&n->list_lock, flags)) { 3627 /* Unlucky, discard newly allocated slab. */ 3628 free_new_slab_nolock(s, slab); 3629 return NULL; 3630 } 3631 3632 object = slab->freelist; 3633 slab->freelist = get_freepointer(s, object); 3634 slab->inuse = 1; 3635 3636 if (!alloc_debug_processing(s, slab, object, orig_size)) { 3637 /* 3638 * It's not really expected that this would fail on a 3639 * freshly allocated slab, but a concurrent memory 3640 * corruption in theory could cause that. 3641 * Leak memory of allocated slab. 3642 */ 3643 if (!allow_spin) 3644 spin_unlock_irqrestore(&n->list_lock, flags); 3645 return NULL; 3646 } 3647 3648 if (allow_spin) 3649 spin_lock_irqsave(&n->list_lock, flags); 3650 3651 if (slab->inuse == slab->objects) 3652 add_full(s, n, slab); 3653 else 3654 add_partial(n, slab, ADD_TO_HEAD); 3655 3656 inc_slabs_node(s, nid, slab->objects); 3657 spin_unlock_irqrestore(&n->list_lock, flags); 3658 3659 return object; 3660 } 3661 3662 static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags); 3663 3664 static bool get_partial_node_bulk(struct kmem_cache *s, 3665 struct kmem_cache_node *n, 3666 struct partial_bulk_context *pc, 3667 bool allow_spin) 3668 { 3669 struct slab *slab, *slab2; 3670 unsigned int total_free = 0; 3671 unsigned long flags; 3672 3673 /* Racy check to avoid taking the lock unnecessarily. */ 3674 if (!n || data_race(!n->nr_partial)) 3675 return false; 3676 3677 INIT_LIST_HEAD(&pc->slabs); 3678 3679 if (allow_spin) 3680 spin_lock_irqsave(&n->list_lock, flags); 3681 else if (!spin_trylock_irqsave(&n->list_lock, flags)) 3682 return false; 3683 3684 list_for_each_entry_safe(slab, slab2, &n->partial, slab_list) { 3685 struct freelist_counters flc; 3686 unsigned int slab_free; 3687 3688 if (!pfmemalloc_match(slab, pc->flags)) 3689 continue; 3690 3691 /* 3692 * determine the number of free objects in the slab racily 3693 * 3694 * slab_free is a lower bound due to possible subsequent 3695 * concurrent freeing, so the caller may get more objects than 3696 * requested and must handle that 3697 */ 3698 flc.counters = data_race(READ_ONCE(slab->counters)); 3699 slab_free = flc.objects - flc.inuse; 3700 3701 /* we have already min and this would get us over the max */ 3702 if (total_free >= pc->min_objects 3703 && total_free + slab_free > pc->max_objects) 3704 break; 3705 3706 remove_partial(n, slab); 3707 3708 list_add(&slab->slab_list, &pc->slabs); 3709 3710 total_free += slab_free; 3711 if (total_free >= pc->max_objects) 3712 break; 3713 } 3714 3715 spin_unlock_irqrestore(&n->list_lock, flags); 3716 return total_free > 0; 3717 } 3718 3719 /* 3720 * Try to allocate object from a partial slab on a specific node. 3721 */ 3722 static void *get_from_partial_node(struct kmem_cache *s, 3723 struct kmem_cache_node *n, 3724 struct partial_context *pc) 3725 { 3726 struct slab *slab, *slab2; 3727 unsigned long flags; 3728 void *object = NULL; 3729 3730 /* 3731 * Racy check. If we mistakenly see no partial slabs then we 3732 * just allocate an empty slab. If we mistakenly try to get a 3733 * partial slab and there is none available then get_from_partial() 3734 * will return NULL. 3735 */ 3736 if (!n || !n->nr_partial) 3737 return NULL; 3738 3739 if (gfpflags_allow_spinning(pc->flags)) 3740 spin_lock_irqsave(&n->list_lock, flags); 3741 else if (!spin_trylock_irqsave(&n->list_lock, flags)) 3742 return NULL; 3743 list_for_each_entry_safe(slab, slab2, &n->partial, slab_list) { 3744 3745 struct freelist_counters old, new; 3746 3747 if (!pfmemalloc_match(slab, pc->flags)) 3748 continue; 3749 3750 if (IS_ENABLED(CONFIG_SLUB_TINY) || kmem_cache_debug(s)) { 3751 object = alloc_single_from_partial(s, n, slab, 3752 pc->orig_size); 3753 if (object) 3754 break; 3755 continue; 3756 } 3757 3758 /* 3759 * get a single object from the slab. This might race against 3760 * __slab_free(), which however has to take the list_lock if 3761 * it's about to make the slab fully free. 3762 */ 3763 do { 3764 old.freelist = slab->freelist; 3765 old.counters = slab->counters; 3766 3767 new.freelist = get_freepointer(s, old.freelist); 3768 new.counters = old.counters; 3769 new.inuse++; 3770 3771 } while (!__slab_update_freelist(s, slab, &old, &new, "get_from_partial_node")); 3772 3773 object = old.freelist; 3774 if (!new.freelist) 3775 remove_partial(n, slab); 3776 3777 break; 3778 } 3779 spin_unlock_irqrestore(&n->list_lock, flags); 3780 return object; 3781 } 3782 3783 /* 3784 * Get an object from somewhere. Search in increasing NUMA distances. 3785 */ 3786 static void *get_from_any_partial(struct kmem_cache *s, struct partial_context *pc) 3787 { 3788 #ifdef CONFIG_NUMA 3789 struct zonelist *zonelist; 3790 struct zoneref *z; 3791 struct zone *zone; 3792 enum zone_type highest_zoneidx = gfp_zone(pc->flags); 3793 unsigned int cpuset_mems_cookie; 3794 3795 /* 3796 * The defrag ratio allows a configuration of the tradeoffs between 3797 * inter node defragmentation and node local allocations. A lower 3798 * defrag_ratio increases the tendency to do local allocations 3799 * instead of attempting to obtain partial slabs from other nodes. 3800 * 3801 * If the defrag_ratio is set to 0 then kmalloc() always 3802 * returns node local objects. If the ratio is higher then kmalloc() 3803 * may return off node objects because partial slabs are obtained 3804 * from other nodes and filled up. 3805 * 3806 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100 3807 * (which makes defrag_ratio = 1000) then every (well almost) 3808 * allocation will first attempt to defrag slab caches on other nodes. 3809 * This means scanning over all nodes to look for partial slabs which 3810 * may be expensive if we do it every time we are trying to find a slab 3811 * with available objects. 3812 */ 3813 if (!s->remote_node_defrag_ratio || 3814 get_cycles() % 1024 > s->remote_node_defrag_ratio) 3815 return NULL; 3816 3817 do { 3818 cpuset_mems_cookie = read_mems_allowed_begin(); 3819 zonelist = node_zonelist(mempolicy_slab_node(), pc->flags); 3820 for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) { 3821 struct kmem_cache_node *n; 3822 3823 n = get_node(s, zone_to_nid(zone)); 3824 3825 if (n && cpuset_zone_allowed(zone, pc->flags) && 3826 n->nr_partial > s->min_partial) { 3827 3828 void *object = get_from_partial_node(s, n, pc); 3829 3830 if (object) { 3831 /* 3832 * Don't check read_mems_allowed_retry() 3833 * here - if mems_allowed was updated in 3834 * parallel, that was a harmless race 3835 * between allocation and the cpuset 3836 * update 3837 */ 3838 return object; 3839 } 3840 } 3841 } 3842 } while (read_mems_allowed_retry(cpuset_mems_cookie)); 3843 #endif /* CONFIG_NUMA */ 3844 return NULL; 3845 } 3846 3847 /* 3848 * Get an object from a partial slab 3849 */ 3850 static void *get_from_partial(struct kmem_cache *s, int node, 3851 struct partial_context *pc) 3852 { 3853 int searchnode = node; 3854 void *object; 3855 3856 if (node == NUMA_NO_NODE) 3857 searchnode = numa_mem_id(); 3858 3859 object = get_from_partial_node(s, get_node(s, searchnode), pc); 3860 if (object || (node != NUMA_NO_NODE && (pc->flags & __GFP_THISNODE))) 3861 return object; 3862 3863 return get_from_any_partial(s, pc); 3864 } 3865 3866 static bool has_pcs_used(int cpu, struct kmem_cache *s) 3867 { 3868 struct slub_percpu_sheaves *pcs; 3869 3870 if (!cache_has_sheaves(s)) 3871 return false; 3872 3873 pcs = per_cpu_ptr(s->cpu_sheaves, cpu); 3874 3875 return (pcs->spare || pcs->rcu_free || pcs->main->size); 3876 } 3877 3878 /* 3879 * Flush percpu sheaves 3880 * 3881 * Called from CPU work handler with migration disabled. 3882 */ 3883 static void flush_cpu_sheaves(struct work_struct *w) 3884 { 3885 struct kmem_cache *s; 3886 struct slub_flush_work *sfw; 3887 3888 sfw = container_of(w, struct slub_flush_work, work); 3889 3890 s = sfw->s; 3891 3892 if (cache_has_sheaves(s)) 3893 pcs_flush_all(s); 3894 } 3895 3896 static void flush_all_cpus_locked(struct kmem_cache *s) 3897 { 3898 struct slub_flush_work *sfw; 3899 unsigned int cpu; 3900 3901 lockdep_assert_cpus_held(); 3902 mutex_lock(&flush_lock); 3903 3904 for_each_online_cpu(cpu) { 3905 sfw = &per_cpu(slub_flush, cpu); 3906 if (!has_pcs_used(cpu, s)) { 3907 sfw->skip = true; 3908 continue; 3909 } 3910 INIT_WORK(&sfw->work, flush_cpu_sheaves); 3911 sfw->skip = false; 3912 sfw->s = s; 3913 queue_work_on(cpu, flushwq, &sfw->work); 3914 } 3915 3916 for_each_online_cpu(cpu) { 3917 sfw = &per_cpu(slub_flush, cpu); 3918 if (sfw->skip) 3919 continue; 3920 flush_work(&sfw->work); 3921 } 3922 3923 mutex_unlock(&flush_lock); 3924 } 3925 3926 static void flush_all(struct kmem_cache *s) 3927 { 3928 cpus_read_lock(); 3929 flush_all_cpus_locked(s); 3930 cpus_read_unlock(); 3931 } 3932 3933 static void flush_rcu_sheaf(struct work_struct *w) 3934 { 3935 struct slub_percpu_sheaves *pcs; 3936 struct slab_sheaf *rcu_free; 3937 struct slub_flush_work *sfw; 3938 struct kmem_cache *s; 3939 3940 sfw = container_of(w, struct slub_flush_work, work); 3941 s = sfw->s; 3942 3943 local_lock(&s->cpu_sheaves->lock); 3944 pcs = this_cpu_ptr(s->cpu_sheaves); 3945 3946 rcu_free = pcs->rcu_free; 3947 pcs->rcu_free = NULL; 3948 3949 local_unlock(&s->cpu_sheaves->lock); 3950 3951 if (rcu_free) 3952 call_rcu(&rcu_free->rcu_head, rcu_free_sheaf_nobarn); 3953 } 3954 3955 3956 /* needed for kvfree_rcu_barrier() */ 3957 void flush_rcu_sheaves_on_cache(struct kmem_cache *s) 3958 { 3959 struct slub_flush_work *sfw; 3960 unsigned int cpu; 3961 3962 mutex_lock(&flush_lock); 3963 3964 for_each_online_cpu(cpu) { 3965 sfw = &per_cpu(slub_flush, cpu); 3966 3967 /* 3968 * we don't check if rcu_free sheaf exists - racing 3969 * __kfree_rcu_sheaf() might have just removed it. 3970 * by executing flush_rcu_sheaf() on the cpu we make 3971 * sure the __kfree_rcu_sheaf() finished its call_rcu() 3972 */ 3973 3974 INIT_WORK(&sfw->work, flush_rcu_sheaf); 3975 sfw->s = s; 3976 queue_work_on(cpu, flushwq, &sfw->work); 3977 } 3978 3979 for_each_online_cpu(cpu) { 3980 sfw = &per_cpu(slub_flush, cpu); 3981 flush_work(&sfw->work); 3982 } 3983 3984 mutex_unlock(&flush_lock); 3985 } 3986 3987 void flush_all_rcu_sheaves(void) 3988 { 3989 struct kmem_cache *s; 3990 3991 cpus_read_lock(); 3992 mutex_lock(&slab_mutex); 3993 3994 list_for_each_entry(s, &slab_caches, list) { 3995 if (!cache_has_sheaves(s)) 3996 continue; 3997 flush_rcu_sheaves_on_cache(s); 3998 } 3999 4000 mutex_unlock(&slab_mutex); 4001 cpus_read_unlock(); 4002 4003 rcu_barrier(); 4004 } 4005 4006 /* 4007 * Use the cpu notifier to insure that the cpu slabs are flushed when 4008 * necessary. 4009 */ 4010 static int slub_cpu_dead(unsigned int cpu) 4011 { 4012 struct kmem_cache *s; 4013 4014 mutex_lock(&slab_mutex); 4015 list_for_each_entry(s, &slab_caches, list) { 4016 if (cache_has_sheaves(s)) 4017 __pcs_flush_all_cpu(s, cpu); 4018 } 4019 mutex_unlock(&slab_mutex); 4020 return 0; 4021 } 4022 4023 #ifdef CONFIG_SLUB_DEBUG 4024 static int count_free(struct slab *slab) 4025 { 4026 return slab->objects - slab->inuse; 4027 } 4028 4029 static inline unsigned long node_nr_objs(struct kmem_cache_node *n) 4030 { 4031 return atomic_long_read(&n->total_objects); 4032 } 4033 4034 /* Supports checking bulk free of a constructed freelist */ 4035 static inline bool free_debug_processing(struct kmem_cache *s, 4036 struct slab *slab, void *head, void *tail, int *bulk_cnt, 4037 unsigned long addr, depot_stack_handle_t handle) 4038 { 4039 bool checks_ok = false; 4040 void *object = head; 4041 int cnt = 0; 4042 4043 if (s->flags & SLAB_CONSISTENCY_CHECKS) { 4044 if (!check_slab(s, slab)) 4045 goto out; 4046 } 4047 4048 if (slab->inuse < *bulk_cnt) { 4049 slab_err(s, slab, "Slab has %d allocated objects but %d are to be freed\n", 4050 slab->inuse, *bulk_cnt); 4051 goto out; 4052 } 4053 4054 next_object: 4055 4056 if (++cnt > *bulk_cnt) 4057 goto out_cnt; 4058 4059 if (s->flags & SLAB_CONSISTENCY_CHECKS) { 4060 if (!free_consistency_checks(s, slab, object, addr)) 4061 goto out; 4062 } 4063 4064 if (s->flags & SLAB_STORE_USER) 4065 set_track_update(s, object, TRACK_FREE, addr, handle); 4066 trace(s, slab, object, 0); 4067 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */ 4068 init_object(s, object, SLUB_RED_INACTIVE); 4069 4070 /* Reached end of constructed freelist yet? */ 4071 if (object != tail) { 4072 object = get_freepointer(s, object); 4073 goto next_object; 4074 } 4075 checks_ok = true; 4076 4077 out_cnt: 4078 if (cnt != *bulk_cnt) { 4079 slab_err(s, slab, "Bulk free expected %d objects but found %d\n", 4080 *bulk_cnt, cnt); 4081 *bulk_cnt = cnt; 4082 } 4083 4084 out: 4085 4086 if (!checks_ok) 4087 slab_fix(s, "Object at 0x%p not freed", object); 4088 4089 return checks_ok; 4090 } 4091 #endif /* CONFIG_SLUB_DEBUG */ 4092 4093 #if defined(CONFIG_SLUB_DEBUG) || defined(SLAB_SUPPORTS_SYSFS) 4094 static unsigned long count_partial(struct kmem_cache_node *n, 4095 int (*get_count)(struct slab *)) 4096 { 4097 unsigned long flags; 4098 unsigned long x = 0; 4099 struct slab *slab; 4100 4101 spin_lock_irqsave(&n->list_lock, flags); 4102 list_for_each_entry(slab, &n->partial, slab_list) 4103 x += get_count(slab); 4104 spin_unlock_irqrestore(&n->list_lock, flags); 4105 return x; 4106 } 4107 #endif /* CONFIG_SLUB_DEBUG || SLAB_SUPPORTS_SYSFS */ 4108 4109 #ifdef CONFIG_SLUB_DEBUG 4110 #define MAX_PARTIAL_TO_SCAN 10000 4111 4112 static unsigned long count_partial_free_approx(struct kmem_cache_node *n) 4113 { 4114 unsigned long flags; 4115 unsigned long x = 0; 4116 struct slab *slab; 4117 4118 spin_lock_irqsave(&n->list_lock, flags); 4119 if (n->nr_partial <= MAX_PARTIAL_TO_SCAN) { 4120 list_for_each_entry(slab, &n->partial, slab_list) 4121 x += slab->objects - slab->inuse; 4122 } else { 4123 /* 4124 * For a long list, approximate the total count of objects in 4125 * it to meet the limit on the number of slabs to scan. 4126 * Scan from both the list's head and tail for better accuracy. 4127 */ 4128 unsigned long scanned = 0; 4129 4130 list_for_each_entry(slab, &n->partial, slab_list) { 4131 x += slab->objects - slab->inuse; 4132 if (++scanned == MAX_PARTIAL_TO_SCAN / 2) 4133 break; 4134 } 4135 list_for_each_entry_reverse(slab, &n->partial, slab_list) { 4136 x += slab->objects - slab->inuse; 4137 if (++scanned == MAX_PARTIAL_TO_SCAN) 4138 break; 4139 } 4140 x = mult_frac(x, n->nr_partial, scanned); 4141 x = min(x, node_nr_objs(n)); 4142 } 4143 spin_unlock_irqrestore(&n->list_lock, flags); 4144 return x; 4145 } 4146 4147 static noinline void 4148 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid) 4149 { 4150 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL, 4151 DEFAULT_RATELIMIT_BURST); 4152 int cpu = raw_smp_processor_id(); 4153 int node; 4154 struct kmem_cache_node *n; 4155 4156 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs)) 4157 return; 4158 4159 pr_warn("SLUB: Unable to allocate memory on CPU %u (of node %d) on node %d, gfp=%#x(%pGg)\n", 4160 cpu, cpu_to_node(cpu), nid, gfpflags, &gfpflags); 4161 pr_warn(" cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n", 4162 s->name, s->object_size, s->size, oo_order(s->oo), 4163 oo_order(s->min)); 4164 4165 if (oo_order(s->min) > get_order(s->object_size)) 4166 pr_warn(" %s debugging increased min order, use slab_debug=O to disable.\n", 4167 s->name); 4168 4169 for_each_kmem_cache_node(s, node, n) { 4170 unsigned long nr_slabs; 4171 unsigned long nr_objs; 4172 unsigned long nr_free; 4173 4174 nr_free = count_partial_free_approx(n); 4175 nr_slabs = node_nr_slabs(n); 4176 nr_objs = node_nr_objs(n); 4177 4178 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n", 4179 node, nr_slabs, nr_objs, nr_free); 4180 } 4181 } 4182 #else /* CONFIG_SLUB_DEBUG */ 4183 static inline void 4184 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid) { } 4185 #endif 4186 4187 static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags) 4188 { 4189 if (unlikely(slab_test_pfmemalloc(slab))) 4190 return gfp_pfmemalloc_allowed(gfpflags); 4191 4192 return true; 4193 } 4194 4195 /* 4196 * Get the slab's freelist and do not freeze it. 4197 * 4198 * Assumes the slab is isolated from node partial list and not frozen. 4199 * 4200 * Assumes this is performed only for caches without debugging so we 4201 * don't need to worry about adding the slab to the full list. 4202 */ 4203 static inline void *get_freelist_nofreeze(struct kmem_cache *s, struct slab *slab) 4204 { 4205 struct freelist_counters old, new; 4206 4207 do { 4208 old.freelist = slab->freelist; 4209 old.counters = slab->counters; 4210 4211 new.freelist = NULL; 4212 new.counters = old.counters; 4213 VM_WARN_ON_ONCE(new.frozen); 4214 4215 new.inuse = old.objects; 4216 4217 } while (!slab_update_freelist(s, slab, &old, &new, "get_freelist_nofreeze")); 4218 4219 return old.freelist; 4220 } 4221 4222 /* 4223 * If the object has been wiped upon free, make sure it's fully initialized by 4224 * zeroing out freelist pointer. 4225 * 4226 * Note that we also wipe custom freelist pointers. 4227 */ 4228 static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s, 4229 void *obj) 4230 { 4231 if (unlikely(slab_want_init_on_free(s)) && obj && 4232 !freeptr_outside_object(s)) 4233 memset((void *)((char *)kasan_reset_tag(obj) + s->offset), 4234 0, sizeof(void *)); 4235 } 4236 4237 static unsigned int alloc_from_new_slab(struct kmem_cache *s, struct slab *slab, 4238 void **p, unsigned int count, bool allow_spin) 4239 { 4240 unsigned int allocated = 0; 4241 struct kmem_cache_node *n; 4242 bool needs_add_partial; 4243 unsigned long flags; 4244 void *object; 4245 4246 /* 4247 * Are we going to put the slab on the partial list? 4248 * Note slab->inuse is 0 on a new slab. 4249 */ 4250 needs_add_partial = (slab->objects > count); 4251 4252 if (!allow_spin && needs_add_partial) { 4253 4254 n = get_node(s, slab_nid(slab)); 4255 4256 if (!spin_trylock_irqsave(&n->list_lock, flags)) { 4257 /* Unlucky, discard newly allocated slab */ 4258 free_new_slab_nolock(s, slab); 4259 return 0; 4260 } 4261 } 4262 4263 object = slab->freelist; 4264 while (object && allocated < count) { 4265 p[allocated] = object; 4266 object = get_freepointer(s, object); 4267 maybe_wipe_obj_freeptr(s, p[allocated]); 4268 4269 slab->inuse++; 4270 allocated++; 4271 } 4272 slab->freelist = object; 4273 4274 if (needs_add_partial) { 4275 4276 if (allow_spin) { 4277 n = get_node(s, slab_nid(slab)); 4278 spin_lock_irqsave(&n->list_lock, flags); 4279 } 4280 add_partial(n, slab, ADD_TO_HEAD); 4281 spin_unlock_irqrestore(&n->list_lock, flags); 4282 } 4283 4284 inc_slabs_node(s, slab_nid(slab), slab->objects); 4285 return allocated; 4286 } 4287 4288 /* 4289 * Slow path. We failed to allocate via percpu sheaves or they are not available 4290 * due to bootstrap or debugging enabled or SLUB_TINY. 4291 * 4292 * We try to allocate from partial slab lists and fall back to allocating a new 4293 * slab. 4294 */ 4295 static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, 4296 unsigned long addr, unsigned int orig_size) 4297 { 4298 bool allow_spin = gfpflags_allow_spinning(gfpflags); 4299 void *object; 4300 struct slab *slab; 4301 struct partial_context pc; 4302 bool try_thisnode = true; 4303 4304 stat(s, ALLOC_SLOWPATH); 4305 4306 new_objects: 4307 4308 pc.flags = gfpflags; 4309 /* 4310 * When a preferred node is indicated but no __GFP_THISNODE 4311 * 4312 * 1) try to get a partial slab from target node only by having 4313 * __GFP_THISNODE in pc.flags for get_from_partial() 4314 * 2) if 1) failed, try to allocate a new slab from target node with 4315 * GPF_NOWAIT | __GFP_THISNODE opportunistically 4316 * 3) if 2) failed, retry with original gfpflags which will allow 4317 * get_from_partial() try partial lists of other nodes before 4318 * potentially allocating new page from other nodes 4319 */ 4320 if (unlikely(node != NUMA_NO_NODE && !(gfpflags & __GFP_THISNODE) 4321 && try_thisnode)) { 4322 if (unlikely(!allow_spin)) 4323 /* Do not upgrade gfp to NOWAIT from more restrictive mode */ 4324 pc.flags = gfpflags | __GFP_THISNODE; 4325 else 4326 pc.flags = GFP_NOWAIT | __GFP_THISNODE; 4327 } 4328 4329 pc.orig_size = orig_size; 4330 object = get_from_partial(s, node, &pc); 4331 if (object) 4332 goto success; 4333 4334 slab = new_slab(s, pc.flags, node); 4335 4336 if (unlikely(!slab)) { 4337 if (node != NUMA_NO_NODE && !(gfpflags & __GFP_THISNODE) 4338 && try_thisnode) { 4339 try_thisnode = false; 4340 goto new_objects; 4341 } 4342 slab_out_of_memory(s, gfpflags, node); 4343 return NULL; 4344 } 4345 4346 stat(s, ALLOC_SLAB); 4347 4348 if (IS_ENABLED(CONFIG_SLUB_TINY) || kmem_cache_debug(s)) { 4349 object = alloc_single_from_new_slab(s, slab, orig_size, gfpflags); 4350 4351 if (likely(object)) 4352 goto success; 4353 } else { 4354 alloc_from_new_slab(s, slab, &object, 1, allow_spin); 4355 4356 /* we don't need to check SLAB_STORE_USER here */ 4357 if (likely(object)) 4358 return object; 4359 } 4360 4361 if (allow_spin) 4362 goto new_objects; 4363 4364 /* This could cause an endless loop. Fail instead. */ 4365 return NULL; 4366 4367 success: 4368 if (kmem_cache_debug_flags(s, SLAB_STORE_USER)) 4369 set_track(s, object, TRACK_ALLOC, addr, gfpflags); 4370 4371 return object; 4372 } 4373 4374 static __always_inline void *__slab_alloc_node(struct kmem_cache *s, 4375 gfp_t gfpflags, int node, unsigned long addr, size_t orig_size) 4376 { 4377 void *object; 4378 4379 #ifdef CONFIG_NUMA 4380 if (static_branch_unlikely(&strict_numa) && 4381 node == NUMA_NO_NODE) { 4382 4383 struct mempolicy *mpol = current->mempolicy; 4384 4385 if (mpol) { 4386 /* 4387 * Special BIND rule support. If the local node 4388 * is in permitted set then do not redirect 4389 * to a particular node. 4390 * Otherwise we apply the memory policy to get 4391 * the node we need to allocate on. 4392 */ 4393 if (mpol->mode != MPOL_BIND || 4394 !node_isset(numa_mem_id(), mpol->nodes)) 4395 node = mempolicy_slab_node(); 4396 } 4397 } 4398 #endif 4399 4400 object = ___slab_alloc(s, gfpflags, node, addr, orig_size); 4401 4402 return object; 4403 } 4404 4405 static __fastpath_inline 4406 struct kmem_cache *slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags) 4407 { 4408 flags &= gfp_allowed_mask; 4409 4410 might_alloc(flags); 4411 4412 if (unlikely(should_failslab(s, flags))) 4413 return NULL; 4414 4415 return s; 4416 } 4417 4418 static __fastpath_inline 4419 bool slab_post_alloc_hook(struct kmem_cache *s, struct list_lru *lru, 4420 gfp_t flags, size_t size, void **p, bool init, 4421 unsigned int orig_size) 4422 { 4423 unsigned int zero_size = s->object_size; 4424 bool kasan_init = init; 4425 size_t i; 4426 gfp_t init_flags = flags & gfp_allowed_mask; 4427 4428 /* 4429 * For kmalloc object, the allocated memory size(object_size) is likely 4430 * larger than the requested size(orig_size). If redzone check is 4431 * enabled for the extra space, don't zero it, as it will be redzoned 4432 * soon. The redzone operation for this extra space could be seen as a 4433 * replacement of current poisoning under certain debug option, and 4434 * won't break other sanity checks. 4435 */ 4436 if (kmem_cache_debug_flags(s, SLAB_STORE_USER | SLAB_RED_ZONE) && 4437 (s->flags & SLAB_KMALLOC)) 4438 zero_size = orig_size; 4439 4440 /* 4441 * When slab_debug is enabled, avoid memory initialization integrated 4442 * into KASAN and instead zero out the memory via the memset below with 4443 * the proper size. Otherwise, KASAN might overwrite SLUB redzones and 4444 * cause false-positive reports. This does not lead to a performance 4445 * penalty on production builds, as slab_debug is not intended to be 4446 * enabled there. 4447 */ 4448 if (__slub_debug_enabled()) 4449 kasan_init = false; 4450 4451 /* 4452 * As memory initialization might be integrated into KASAN, 4453 * kasan_slab_alloc and initialization memset must be 4454 * kept together to avoid discrepancies in behavior. 4455 * 4456 * As p[i] might get tagged, memset and kmemleak hook come after KASAN. 4457 */ 4458 for (i = 0; i < size; i++) { 4459 p[i] = kasan_slab_alloc(s, p[i], init_flags, kasan_init); 4460 if (p[i] && init && (!kasan_init || 4461 !kasan_has_integrated_init())) 4462 memset(p[i], 0, zero_size); 4463 if (gfpflags_allow_spinning(flags)) 4464 kmemleak_alloc_recursive(p[i], s->object_size, 1, 4465 s->flags, init_flags); 4466 kmsan_slab_alloc(s, p[i], init_flags); 4467 alloc_tagging_slab_alloc_hook(s, p[i], flags); 4468 } 4469 4470 return memcg_slab_post_alloc_hook(s, lru, flags, size, p); 4471 } 4472 4473 /* 4474 * Replace the empty main sheaf with a (at least partially) full sheaf. 4475 * 4476 * Must be called with the cpu_sheaves local lock locked. If successful, returns 4477 * the pcs pointer and the local lock locked (possibly on a different cpu than 4478 * initially called). If not successful, returns NULL and the local lock 4479 * unlocked. 4480 */ 4481 static struct slub_percpu_sheaves * 4482 __pcs_replace_empty_main(struct kmem_cache *s, struct slub_percpu_sheaves *pcs, gfp_t gfp) 4483 { 4484 struct slab_sheaf *empty = NULL; 4485 struct slab_sheaf *full; 4486 struct node_barn *barn; 4487 bool can_alloc; 4488 4489 lockdep_assert_held(this_cpu_ptr(&s->cpu_sheaves->lock)); 4490 4491 /* Bootstrap or debug cache, back off */ 4492 if (unlikely(!cache_has_sheaves(s))) { 4493 local_unlock(&s->cpu_sheaves->lock); 4494 return NULL; 4495 } 4496 4497 if (pcs->spare && pcs->spare->size > 0) { 4498 swap(pcs->main, pcs->spare); 4499 return pcs; 4500 } 4501 4502 barn = get_barn(s); 4503 if (!barn) { 4504 local_unlock(&s->cpu_sheaves->lock); 4505 return NULL; 4506 } 4507 4508 full = barn_replace_empty_sheaf(barn, pcs->main, 4509 gfpflags_allow_spinning(gfp)); 4510 4511 if (full) { 4512 stat(s, BARN_GET); 4513 pcs->main = full; 4514 return pcs; 4515 } 4516 4517 stat(s, BARN_GET_FAIL); 4518 4519 can_alloc = gfpflags_allow_blocking(gfp); 4520 4521 if (can_alloc) { 4522 if (pcs->spare) { 4523 empty = pcs->spare; 4524 pcs->spare = NULL; 4525 } else { 4526 empty = barn_get_empty_sheaf(barn, true); 4527 } 4528 } 4529 4530 local_unlock(&s->cpu_sheaves->lock); 4531 4532 if (!can_alloc) 4533 return NULL; 4534 4535 if (empty) { 4536 if (!refill_sheaf(s, empty, gfp | __GFP_NOMEMALLOC)) { 4537 full = empty; 4538 } else { 4539 /* 4540 * we must be very low on memory so don't bother 4541 * with the barn 4542 */ 4543 free_empty_sheaf(s, empty); 4544 } 4545 } else { 4546 full = alloc_full_sheaf(s, gfp); 4547 } 4548 4549 if (!full) 4550 return NULL; 4551 4552 /* 4553 * we can reach here only when gfpflags_allow_blocking 4554 * so this must not be an irq 4555 */ 4556 local_lock(&s->cpu_sheaves->lock); 4557 pcs = this_cpu_ptr(s->cpu_sheaves); 4558 4559 /* 4560 * If we are returning empty sheaf, we either got it from the 4561 * barn or had to allocate one. If we are returning a full 4562 * sheaf, it's due to racing or being migrated to a different 4563 * cpu. Breaching the barn's sheaf limits should be thus rare 4564 * enough so just ignore them to simplify the recovery. 4565 */ 4566 4567 if (pcs->main->size == 0) { 4568 if (!pcs->spare) 4569 pcs->spare = pcs->main; 4570 else 4571 barn_put_empty_sheaf(barn, pcs->main); 4572 pcs->main = full; 4573 return pcs; 4574 } 4575 4576 if (!pcs->spare) { 4577 pcs->spare = full; 4578 return pcs; 4579 } 4580 4581 if (pcs->spare->size == 0) { 4582 barn_put_empty_sheaf(barn, pcs->spare); 4583 pcs->spare = full; 4584 return pcs; 4585 } 4586 4587 barn_put_full_sheaf(barn, full); 4588 stat(s, BARN_PUT); 4589 4590 return pcs; 4591 } 4592 4593 static __fastpath_inline 4594 void *alloc_from_pcs(struct kmem_cache *s, gfp_t gfp, int node) 4595 { 4596 struct slub_percpu_sheaves *pcs; 4597 bool node_requested; 4598 void *object; 4599 4600 #ifdef CONFIG_NUMA 4601 if (static_branch_unlikely(&strict_numa) && 4602 node == NUMA_NO_NODE) { 4603 4604 struct mempolicy *mpol = current->mempolicy; 4605 4606 if (mpol) { 4607 /* 4608 * Special BIND rule support. If the local node 4609 * is in permitted set then do not redirect 4610 * to a particular node. 4611 * Otherwise we apply the memory policy to get 4612 * the node we need to allocate on. 4613 */ 4614 if (mpol->mode != MPOL_BIND || 4615 !node_isset(numa_mem_id(), mpol->nodes)) 4616 4617 node = mempolicy_slab_node(); 4618 } 4619 } 4620 #endif 4621 4622 node_requested = IS_ENABLED(CONFIG_NUMA) && node != NUMA_NO_NODE; 4623 4624 /* 4625 * We assume the percpu sheaves contain only local objects although it's 4626 * not completely guaranteed, so we verify later. 4627 */ 4628 if (unlikely(node_requested && node != numa_mem_id())) { 4629 stat(s, ALLOC_NODE_MISMATCH); 4630 return NULL; 4631 } 4632 4633 if (!local_trylock(&s->cpu_sheaves->lock)) 4634 return NULL; 4635 4636 pcs = this_cpu_ptr(s->cpu_sheaves); 4637 4638 if (unlikely(pcs->main->size == 0)) { 4639 pcs = __pcs_replace_empty_main(s, pcs, gfp); 4640 if (unlikely(!pcs)) 4641 return NULL; 4642 } 4643 4644 object = pcs->main->objects[pcs->main->size - 1]; 4645 4646 if (unlikely(node_requested)) { 4647 /* 4648 * Verify that the object was from the node we want. This could 4649 * be false because of cpu migration during an unlocked part of 4650 * the current allocation or previous freeing process. 4651 */ 4652 if (page_to_nid(virt_to_page(object)) != node) { 4653 local_unlock(&s->cpu_sheaves->lock); 4654 stat(s, ALLOC_NODE_MISMATCH); 4655 return NULL; 4656 } 4657 } 4658 4659 pcs->main->size--; 4660 4661 local_unlock(&s->cpu_sheaves->lock); 4662 4663 stat(s, ALLOC_FASTPATH); 4664 4665 return object; 4666 } 4667 4668 static __fastpath_inline 4669 unsigned int alloc_from_pcs_bulk(struct kmem_cache *s, gfp_t gfp, size_t size, 4670 void **p) 4671 { 4672 struct slub_percpu_sheaves *pcs; 4673 struct slab_sheaf *main; 4674 unsigned int allocated = 0; 4675 unsigned int batch; 4676 4677 next_batch: 4678 if (!local_trylock(&s->cpu_sheaves->lock)) 4679 return allocated; 4680 4681 pcs = this_cpu_ptr(s->cpu_sheaves); 4682 4683 if (unlikely(pcs->main->size == 0)) { 4684 4685 struct slab_sheaf *full; 4686 struct node_barn *barn; 4687 4688 if (unlikely(!cache_has_sheaves(s))) { 4689 local_unlock(&s->cpu_sheaves->lock); 4690 return allocated; 4691 } 4692 4693 if (pcs->spare && pcs->spare->size > 0) { 4694 swap(pcs->main, pcs->spare); 4695 goto do_alloc; 4696 } 4697 4698 barn = get_barn(s); 4699 if (!barn) { 4700 local_unlock(&s->cpu_sheaves->lock); 4701 return allocated; 4702 } 4703 4704 full = barn_replace_empty_sheaf(barn, pcs->main, 4705 gfpflags_allow_spinning(gfp)); 4706 4707 if (full) { 4708 stat(s, BARN_GET); 4709 pcs->main = full; 4710 goto do_alloc; 4711 } 4712 4713 stat(s, BARN_GET_FAIL); 4714 4715 local_unlock(&s->cpu_sheaves->lock); 4716 4717 /* 4718 * Once full sheaves in barn are depleted, let the bulk 4719 * allocation continue from slab pages, otherwise we would just 4720 * be copying arrays of pointers twice. 4721 */ 4722 return allocated; 4723 } 4724 4725 do_alloc: 4726 4727 main = pcs->main; 4728 batch = min(size, main->size); 4729 4730 main->size -= batch; 4731 memcpy(p, main->objects + main->size, batch * sizeof(void *)); 4732 4733 local_unlock(&s->cpu_sheaves->lock); 4734 4735 stat_add(s, ALLOC_FASTPATH, batch); 4736 4737 allocated += batch; 4738 4739 if (batch < size) { 4740 p += batch; 4741 size -= batch; 4742 goto next_batch; 4743 } 4744 4745 return allocated; 4746 } 4747 4748 4749 /* 4750 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc) 4751 * have the fastpath folded into their functions. So no function call 4752 * overhead for requests that can be satisfied on the fastpath. 4753 * 4754 * The fastpath works by first checking if the lockless freelist can be used. 4755 * If not then __slab_alloc is called for slow processing. 4756 * 4757 * Otherwise we can simply pick the next object from the lockless free list. 4758 */ 4759 static __fastpath_inline void *slab_alloc_node(struct kmem_cache *s, struct list_lru *lru, 4760 gfp_t gfpflags, int node, unsigned long addr, size_t orig_size) 4761 { 4762 void *object; 4763 bool init = false; 4764 4765 s = slab_pre_alloc_hook(s, gfpflags); 4766 if (unlikely(!s)) 4767 return NULL; 4768 4769 object = kfence_alloc(s, orig_size, gfpflags); 4770 if (unlikely(object)) 4771 goto out; 4772 4773 object = alloc_from_pcs(s, gfpflags, node); 4774 4775 if (!object) 4776 object = __slab_alloc_node(s, gfpflags, node, addr, orig_size); 4777 4778 maybe_wipe_obj_freeptr(s, object); 4779 init = slab_want_init_on_alloc(gfpflags, s); 4780 4781 out: 4782 /* 4783 * When init equals 'true', like for kzalloc() family, only 4784 * @orig_size bytes might be zeroed instead of s->object_size 4785 * In case this fails due to memcg_slab_post_alloc_hook(), 4786 * object is set to NULL 4787 */ 4788 slab_post_alloc_hook(s, lru, gfpflags, 1, &object, init, orig_size); 4789 4790 return object; 4791 } 4792 4793 void *kmem_cache_alloc_noprof(struct kmem_cache *s, gfp_t gfpflags) 4794 { 4795 void *ret = slab_alloc_node(s, NULL, gfpflags, NUMA_NO_NODE, _RET_IP_, 4796 s->object_size); 4797 4798 trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, NUMA_NO_NODE); 4799 4800 return ret; 4801 } 4802 EXPORT_SYMBOL(kmem_cache_alloc_noprof); 4803 4804 void *kmem_cache_alloc_lru_noprof(struct kmem_cache *s, struct list_lru *lru, 4805 gfp_t gfpflags) 4806 { 4807 void *ret = slab_alloc_node(s, lru, gfpflags, NUMA_NO_NODE, _RET_IP_, 4808 s->object_size); 4809 4810 trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, NUMA_NO_NODE); 4811 4812 return ret; 4813 } 4814 EXPORT_SYMBOL(kmem_cache_alloc_lru_noprof); 4815 4816 bool kmem_cache_charge(void *objp, gfp_t gfpflags) 4817 { 4818 if (!memcg_kmem_online()) 4819 return true; 4820 4821 return memcg_slab_post_charge(objp, gfpflags); 4822 } 4823 EXPORT_SYMBOL(kmem_cache_charge); 4824 4825 /** 4826 * kmem_cache_alloc_node - Allocate an object on the specified node 4827 * @s: The cache to allocate from. 4828 * @gfpflags: See kmalloc(). 4829 * @node: node number of the target node. 4830 * 4831 * Identical to kmem_cache_alloc but it will allocate memory on the given 4832 * node, which can improve the performance for cpu bound structures. 4833 * 4834 * Fallback to other node is possible if __GFP_THISNODE is not set. 4835 * 4836 * Return: pointer to the new object or %NULL in case of error 4837 */ 4838 void *kmem_cache_alloc_node_noprof(struct kmem_cache *s, gfp_t gfpflags, int node) 4839 { 4840 void *ret = slab_alloc_node(s, NULL, gfpflags, node, _RET_IP_, s->object_size); 4841 4842 trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, node); 4843 4844 return ret; 4845 } 4846 EXPORT_SYMBOL(kmem_cache_alloc_node_noprof); 4847 4848 static int __prefill_sheaf_pfmemalloc(struct kmem_cache *s, 4849 struct slab_sheaf *sheaf, gfp_t gfp) 4850 { 4851 int ret = 0; 4852 4853 ret = refill_sheaf(s, sheaf, gfp | __GFP_NOMEMALLOC); 4854 4855 if (likely(!ret || !gfp_pfmemalloc_allowed(gfp))) 4856 return ret; 4857 4858 /* 4859 * if we are allowed to, refill sheaf with pfmemalloc but then remember 4860 * it for when it's returned 4861 */ 4862 ret = refill_sheaf(s, sheaf, gfp); 4863 sheaf->pfmemalloc = true; 4864 4865 return ret; 4866 } 4867 4868 static int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, 4869 size_t size, void **p); 4870 4871 /* 4872 * returns a sheaf that has at least the requested size 4873 * when prefilling is needed, do so with given gfp flags 4874 * 4875 * return NULL if sheaf allocation or prefilling failed 4876 */ 4877 struct slab_sheaf * 4878 kmem_cache_prefill_sheaf(struct kmem_cache *s, gfp_t gfp, unsigned int size) 4879 { 4880 struct slub_percpu_sheaves *pcs; 4881 struct slab_sheaf *sheaf = NULL; 4882 struct node_barn *barn; 4883 4884 if (unlikely(!size)) 4885 return NULL; 4886 4887 if (unlikely(size > s->sheaf_capacity)) { 4888 4889 sheaf = kzalloc(struct_size(sheaf, objects, size), gfp); 4890 if (!sheaf) 4891 return NULL; 4892 4893 stat(s, SHEAF_PREFILL_OVERSIZE); 4894 sheaf->cache = s; 4895 sheaf->capacity = size; 4896 4897 /* 4898 * we do not need to care about pfmemalloc here because oversize 4899 * sheaves area always flushed and freed when returned 4900 */ 4901 if (!__kmem_cache_alloc_bulk(s, gfp, size, 4902 &sheaf->objects[0])) { 4903 kfree(sheaf); 4904 return NULL; 4905 } 4906 4907 sheaf->size = size; 4908 4909 return sheaf; 4910 } 4911 4912 local_lock(&s->cpu_sheaves->lock); 4913 pcs = this_cpu_ptr(s->cpu_sheaves); 4914 4915 if (pcs->spare) { 4916 sheaf = pcs->spare; 4917 pcs->spare = NULL; 4918 stat(s, SHEAF_PREFILL_FAST); 4919 } else { 4920 barn = get_barn(s); 4921 4922 stat(s, SHEAF_PREFILL_SLOW); 4923 if (barn) 4924 sheaf = barn_get_full_or_empty_sheaf(barn); 4925 if (sheaf && sheaf->size) 4926 stat(s, BARN_GET); 4927 else 4928 stat(s, BARN_GET_FAIL); 4929 } 4930 4931 local_unlock(&s->cpu_sheaves->lock); 4932 4933 4934 if (!sheaf) 4935 sheaf = alloc_empty_sheaf(s, gfp); 4936 4937 if (sheaf) { 4938 sheaf->capacity = s->sheaf_capacity; 4939 sheaf->pfmemalloc = false; 4940 4941 if (sheaf->size < size && 4942 __prefill_sheaf_pfmemalloc(s, sheaf, gfp)) { 4943 sheaf_flush_unused(s, sheaf); 4944 free_empty_sheaf(s, sheaf); 4945 sheaf = NULL; 4946 } 4947 } 4948 4949 return sheaf; 4950 } 4951 4952 /* 4953 * Use this to return a sheaf obtained by kmem_cache_prefill_sheaf() 4954 * 4955 * If the sheaf cannot simply become the percpu spare sheaf, but there's space 4956 * for a full sheaf in the barn, we try to refill the sheaf back to the cache's 4957 * sheaf_capacity to avoid handling partially full sheaves. 4958 * 4959 * If the refill fails because gfp is e.g. GFP_NOWAIT, or the barn is full, the 4960 * sheaf is instead flushed and freed. 4961 */ 4962 void kmem_cache_return_sheaf(struct kmem_cache *s, gfp_t gfp, 4963 struct slab_sheaf *sheaf) 4964 { 4965 struct slub_percpu_sheaves *pcs; 4966 struct node_barn *barn; 4967 4968 if (unlikely((sheaf->capacity != s->sheaf_capacity) 4969 || sheaf->pfmemalloc)) { 4970 sheaf_flush_unused(s, sheaf); 4971 kfree(sheaf); 4972 return; 4973 } 4974 4975 local_lock(&s->cpu_sheaves->lock); 4976 pcs = this_cpu_ptr(s->cpu_sheaves); 4977 barn = get_barn(s); 4978 4979 if (!pcs->spare) { 4980 pcs->spare = sheaf; 4981 sheaf = NULL; 4982 stat(s, SHEAF_RETURN_FAST); 4983 } 4984 4985 local_unlock(&s->cpu_sheaves->lock); 4986 4987 if (!sheaf) 4988 return; 4989 4990 stat(s, SHEAF_RETURN_SLOW); 4991 4992 /* 4993 * If the barn has too many full sheaves or we fail to refill the sheaf, 4994 * simply flush and free it. 4995 */ 4996 if (!barn || data_race(barn->nr_full) >= MAX_FULL_SHEAVES || 4997 refill_sheaf(s, sheaf, gfp)) { 4998 sheaf_flush_unused(s, sheaf); 4999 free_empty_sheaf(s, sheaf); 5000 return; 5001 } 5002 5003 barn_put_full_sheaf(barn, sheaf); 5004 stat(s, BARN_PUT); 5005 } 5006 5007 /* 5008 * refill a sheaf previously returned by kmem_cache_prefill_sheaf to at least 5009 * the given size 5010 * 5011 * the sheaf might be replaced by a new one when requesting more than 5012 * s->sheaf_capacity objects if such replacement is necessary, but the refill 5013 * fails (returning -ENOMEM), the existing sheaf is left intact 5014 * 5015 * In practice we always refill to full sheaf's capacity. 5016 */ 5017 int kmem_cache_refill_sheaf(struct kmem_cache *s, gfp_t gfp, 5018 struct slab_sheaf **sheafp, unsigned int size) 5019 { 5020 struct slab_sheaf *sheaf; 5021 5022 /* 5023 * TODO: do we want to support *sheaf == NULL to be equivalent of 5024 * kmem_cache_prefill_sheaf() ? 5025 */ 5026 if (!sheafp || !(*sheafp)) 5027 return -EINVAL; 5028 5029 sheaf = *sheafp; 5030 if (sheaf->size >= size) 5031 return 0; 5032 5033 if (likely(sheaf->capacity >= size)) { 5034 if (likely(sheaf->capacity == s->sheaf_capacity)) 5035 return __prefill_sheaf_pfmemalloc(s, sheaf, gfp); 5036 5037 if (!__kmem_cache_alloc_bulk(s, gfp, sheaf->capacity - sheaf->size, 5038 &sheaf->objects[sheaf->size])) { 5039 return -ENOMEM; 5040 } 5041 sheaf->size = sheaf->capacity; 5042 5043 return 0; 5044 } 5045 5046 /* 5047 * We had a regular sized sheaf and need an oversize one, or we had an 5048 * oversize one already but need a larger one now. 5049 * This should be a very rare path so let's not complicate it. 5050 */ 5051 sheaf = kmem_cache_prefill_sheaf(s, gfp, size); 5052 if (!sheaf) 5053 return -ENOMEM; 5054 5055 kmem_cache_return_sheaf(s, gfp, *sheafp); 5056 *sheafp = sheaf; 5057 return 0; 5058 } 5059 5060 /* 5061 * Allocate from a sheaf obtained by kmem_cache_prefill_sheaf() 5062 * 5063 * Guaranteed not to fail as many allocations as was the requested size. 5064 * After the sheaf is emptied, it fails - no fallback to the slab cache itself. 5065 * 5066 * The gfp parameter is meant only to specify __GFP_ZERO or __GFP_ACCOUNT 5067 * memcg charging is forced over limit if necessary, to avoid failure. 5068 * 5069 * It is possible that the allocation comes from kfence and then the sheaf 5070 * size is not decreased. 5071 */ 5072 void * 5073 kmem_cache_alloc_from_sheaf_noprof(struct kmem_cache *s, gfp_t gfp, 5074 struct slab_sheaf *sheaf) 5075 { 5076 void *ret = NULL; 5077 bool init; 5078 5079 if (sheaf->size == 0) 5080 goto out; 5081 5082 ret = kfence_alloc(s, s->object_size, gfp); 5083 5084 if (likely(!ret)) 5085 ret = sheaf->objects[--sheaf->size]; 5086 5087 init = slab_want_init_on_alloc(gfp, s); 5088 5089 /* add __GFP_NOFAIL to force successful memcg charging */ 5090 slab_post_alloc_hook(s, NULL, gfp | __GFP_NOFAIL, 1, &ret, init, s->object_size); 5091 out: 5092 trace_kmem_cache_alloc(_RET_IP_, ret, s, gfp, NUMA_NO_NODE); 5093 5094 return ret; 5095 } 5096 5097 unsigned int kmem_cache_sheaf_size(struct slab_sheaf *sheaf) 5098 { 5099 return sheaf->size; 5100 } 5101 /* 5102 * To avoid unnecessary overhead, we pass through large allocation requests 5103 * directly to the page allocator. We use __GFP_COMP, because we will need to 5104 * know the allocation order to free the pages properly in kfree. 5105 */ 5106 static void *___kmalloc_large_node(size_t size, gfp_t flags, int node) 5107 { 5108 struct page *page; 5109 void *ptr = NULL; 5110 unsigned int order = get_order(size); 5111 5112 if (unlikely(flags & GFP_SLAB_BUG_MASK)) 5113 flags = kmalloc_fix_flags(flags); 5114 5115 flags |= __GFP_COMP; 5116 5117 if (node == NUMA_NO_NODE) 5118 page = alloc_frozen_pages_noprof(flags, order); 5119 else 5120 page = __alloc_frozen_pages_noprof(flags, order, node, NULL); 5121 5122 if (page) { 5123 ptr = page_address(page); 5124 mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE_B, 5125 PAGE_SIZE << order); 5126 __SetPageLargeKmalloc(page); 5127 } 5128 5129 ptr = kasan_kmalloc_large(ptr, size, flags); 5130 /* As ptr might get tagged, call kmemleak hook after KASAN. */ 5131 kmemleak_alloc(ptr, size, 1, flags); 5132 kmsan_kmalloc_large(ptr, size, flags); 5133 5134 return ptr; 5135 } 5136 5137 void *__kmalloc_large_noprof(size_t size, gfp_t flags) 5138 { 5139 void *ret = ___kmalloc_large_node(size, flags, NUMA_NO_NODE); 5140 5141 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << get_order(size), 5142 flags, NUMA_NO_NODE); 5143 return ret; 5144 } 5145 EXPORT_SYMBOL(__kmalloc_large_noprof); 5146 5147 void *__kmalloc_large_node_noprof(size_t size, gfp_t flags, int node) 5148 { 5149 void *ret = ___kmalloc_large_node(size, flags, node); 5150 5151 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << get_order(size), 5152 flags, node); 5153 return ret; 5154 } 5155 EXPORT_SYMBOL(__kmalloc_large_node_noprof); 5156 5157 static __always_inline 5158 void *__do_kmalloc_node(size_t size, kmem_buckets *b, gfp_t flags, int node, 5159 unsigned long caller) 5160 { 5161 struct kmem_cache *s; 5162 void *ret; 5163 5164 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) { 5165 ret = __kmalloc_large_node_noprof(size, flags, node); 5166 trace_kmalloc(caller, ret, size, 5167 PAGE_SIZE << get_order(size), flags, node); 5168 return ret; 5169 } 5170 5171 if (unlikely(!size)) 5172 return ZERO_SIZE_PTR; 5173 5174 s = kmalloc_slab(size, b, flags, caller); 5175 5176 ret = slab_alloc_node(s, NULL, flags, node, caller, size); 5177 ret = kasan_kmalloc(s, ret, size, flags); 5178 trace_kmalloc(caller, ret, size, s->size, flags, node); 5179 return ret; 5180 } 5181 void *__kmalloc_node_noprof(DECL_BUCKET_PARAMS(size, b), gfp_t flags, int node) 5182 { 5183 return __do_kmalloc_node(size, PASS_BUCKET_PARAM(b), flags, node, _RET_IP_); 5184 } 5185 EXPORT_SYMBOL(__kmalloc_node_noprof); 5186 5187 void *__kmalloc_noprof(size_t size, gfp_t flags) 5188 { 5189 return __do_kmalloc_node(size, NULL, flags, NUMA_NO_NODE, _RET_IP_); 5190 } 5191 EXPORT_SYMBOL(__kmalloc_noprof); 5192 5193 /** 5194 * kmalloc_nolock - Allocate an object of given size from any context. 5195 * @size: size to allocate 5196 * @gfp_flags: GFP flags. Only __GFP_ACCOUNT, __GFP_ZERO, __GFP_NO_OBJ_EXT 5197 * allowed. 5198 * @node: node number of the target node. 5199 * 5200 * Return: pointer to the new object or NULL in case of error. 5201 * NULL does not mean EBUSY or EAGAIN. It means ENOMEM. 5202 * There is no reason to call it again and expect !NULL. 5203 */ 5204 void *kmalloc_nolock_noprof(size_t size, gfp_t gfp_flags, int node) 5205 { 5206 gfp_t alloc_gfp = __GFP_NOWARN | __GFP_NOMEMALLOC | gfp_flags; 5207 struct kmem_cache *s; 5208 bool can_retry = true; 5209 void *ret; 5210 5211 VM_WARN_ON_ONCE(gfp_flags & ~(__GFP_ACCOUNT | __GFP_ZERO | 5212 __GFP_NO_OBJ_EXT)); 5213 5214 if (unlikely(!size)) 5215 return ZERO_SIZE_PTR; 5216 5217 /* 5218 * See the comment for the same check in 5219 * alloc_frozen_pages_nolock_noprof() 5220 */ 5221 if (IS_ENABLED(CONFIG_PREEMPT_RT) && (in_nmi() || in_hardirq())) 5222 return NULL; 5223 5224 retry: 5225 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) 5226 return NULL; 5227 s = kmalloc_slab(size, NULL, alloc_gfp, _RET_IP_); 5228 5229 if (!(s->flags & __CMPXCHG_DOUBLE) && !kmem_cache_debug(s)) 5230 /* 5231 * kmalloc_nolock() is not supported on architectures that 5232 * don't implement cmpxchg16b and thus need slab_lock() 5233 * which could be preempted by a nmi. 5234 * But debug caches don't use that and only rely on 5235 * kmem_cache_node->list_lock, so kmalloc_nolock() can attempt 5236 * to allocate from debug caches by 5237 * spin_trylock_irqsave(&n->list_lock, ...) 5238 */ 5239 return NULL; 5240 5241 ret = alloc_from_pcs(s, alloc_gfp, node); 5242 if (ret) 5243 goto success; 5244 5245 /* 5246 * Do not call slab_alloc_node(), since trylock mode isn't 5247 * compatible with slab_pre_alloc_hook/should_failslab and 5248 * kfence_alloc. Hence call __slab_alloc_node() (at most twice) 5249 * and slab_post_alloc_hook() directly. 5250 */ 5251 ret = __slab_alloc_node(s, alloc_gfp, node, _RET_IP_, size); 5252 5253 /* 5254 * It's possible we failed due to trylock as we preempted someone with 5255 * the sheaves locked, and the list_lock is also held by another cpu. 5256 * But it should be rare that multiple kmalloc buckets would have 5257 * sheaves locked, so try a larger one. 5258 */ 5259 if (!ret && can_retry) { 5260 /* pick the next kmalloc bucket */ 5261 size = s->object_size + 1; 5262 /* 5263 * Another alternative is to 5264 * if (memcg) alloc_gfp &= ~__GFP_ACCOUNT; 5265 * else if (!memcg) alloc_gfp |= __GFP_ACCOUNT; 5266 * to retry from bucket of the same size. 5267 */ 5268 can_retry = false; 5269 goto retry; 5270 } 5271 5272 success: 5273 maybe_wipe_obj_freeptr(s, ret); 5274 slab_post_alloc_hook(s, NULL, alloc_gfp, 1, &ret, 5275 slab_want_init_on_alloc(alloc_gfp, s), size); 5276 5277 ret = kasan_kmalloc(s, ret, size, alloc_gfp); 5278 return ret; 5279 } 5280 EXPORT_SYMBOL_GPL(kmalloc_nolock_noprof); 5281 5282 void *__kmalloc_node_track_caller_noprof(DECL_BUCKET_PARAMS(size, b), gfp_t flags, 5283 int node, unsigned long caller) 5284 { 5285 return __do_kmalloc_node(size, PASS_BUCKET_PARAM(b), flags, node, caller); 5286 5287 } 5288 EXPORT_SYMBOL(__kmalloc_node_track_caller_noprof); 5289 5290 void *__kmalloc_cache_noprof(struct kmem_cache *s, gfp_t gfpflags, size_t size) 5291 { 5292 void *ret = slab_alloc_node(s, NULL, gfpflags, NUMA_NO_NODE, 5293 _RET_IP_, size); 5294 5295 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags, NUMA_NO_NODE); 5296 5297 ret = kasan_kmalloc(s, ret, size, gfpflags); 5298 return ret; 5299 } 5300 EXPORT_SYMBOL(__kmalloc_cache_noprof); 5301 5302 void *__kmalloc_cache_node_noprof(struct kmem_cache *s, gfp_t gfpflags, 5303 int node, size_t size) 5304 { 5305 void *ret = slab_alloc_node(s, NULL, gfpflags, node, _RET_IP_, size); 5306 5307 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags, node); 5308 5309 ret = kasan_kmalloc(s, ret, size, gfpflags); 5310 return ret; 5311 } 5312 EXPORT_SYMBOL(__kmalloc_cache_node_noprof); 5313 5314 static noinline void free_to_partial_list( 5315 struct kmem_cache *s, struct slab *slab, 5316 void *head, void *tail, int bulk_cnt, 5317 unsigned long addr) 5318 { 5319 struct kmem_cache_node *n = get_node(s, slab_nid(slab)); 5320 struct slab *slab_free = NULL; 5321 int cnt = bulk_cnt; 5322 unsigned long flags; 5323 depot_stack_handle_t handle = 0; 5324 5325 /* 5326 * We cannot use GFP_NOWAIT as there are callsites where waking up 5327 * kswapd could deadlock 5328 */ 5329 if (s->flags & SLAB_STORE_USER) 5330 handle = set_track_prepare(__GFP_NOWARN); 5331 5332 spin_lock_irqsave(&n->list_lock, flags); 5333 5334 if (free_debug_processing(s, slab, head, tail, &cnt, addr, handle)) { 5335 void *prior = slab->freelist; 5336 5337 /* Perform the actual freeing while we still hold the locks */ 5338 slab->inuse -= cnt; 5339 set_freepointer(s, tail, prior); 5340 slab->freelist = head; 5341 5342 /* 5343 * If the slab is empty, and node's partial list is full, 5344 * it should be discarded anyway no matter it's on full or 5345 * partial list. 5346 */ 5347 if (slab->inuse == 0 && n->nr_partial >= s->min_partial) 5348 slab_free = slab; 5349 5350 if (!prior) { 5351 /* was on full list */ 5352 remove_full(s, n, slab); 5353 if (!slab_free) { 5354 add_partial(n, slab, ADD_TO_TAIL); 5355 stat(s, FREE_ADD_PARTIAL); 5356 } 5357 } else if (slab_free) { 5358 remove_partial(n, slab); 5359 stat(s, FREE_REMOVE_PARTIAL); 5360 } 5361 } 5362 5363 if (slab_free) { 5364 /* 5365 * Update the counters while still holding n->list_lock to 5366 * prevent spurious validation warnings 5367 */ 5368 dec_slabs_node(s, slab_nid(slab_free), slab_free->objects); 5369 } 5370 5371 spin_unlock_irqrestore(&n->list_lock, flags); 5372 5373 if (slab_free) { 5374 stat(s, FREE_SLAB); 5375 free_slab(s, slab_free); 5376 } 5377 } 5378 5379 /* 5380 * Slow path handling. This may still be called frequently since objects 5381 * have a longer lifetime than the cpu slabs in most processing loads. 5382 * 5383 * So we still attempt to reduce cache line usage. Just take the slab 5384 * lock and free the item. If there is no additional partial slab 5385 * handling required then we can return immediately. 5386 */ 5387 static void __slab_free(struct kmem_cache *s, struct slab *slab, 5388 void *head, void *tail, int cnt, 5389 unsigned long addr) 5390 5391 { 5392 bool was_full; 5393 struct freelist_counters old, new; 5394 struct kmem_cache_node *n = NULL; 5395 unsigned long flags; 5396 bool on_node_partial; 5397 5398 if (IS_ENABLED(CONFIG_SLUB_TINY) || kmem_cache_debug(s)) { 5399 free_to_partial_list(s, slab, head, tail, cnt, addr); 5400 return; 5401 } 5402 5403 do { 5404 if (unlikely(n)) { 5405 spin_unlock_irqrestore(&n->list_lock, flags); 5406 n = NULL; 5407 } 5408 5409 old.freelist = slab->freelist; 5410 old.counters = slab->counters; 5411 5412 was_full = (old.freelist == NULL); 5413 5414 set_freepointer(s, tail, old.freelist); 5415 5416 new.freelist = head; 5417 new.counters = old.counters; 5418 new.inuse -= cnt; 5419 5420 /* 5421 * Might need to be taken off (due to becoming empty) or added 5422 * to (due to not being full anymore) the partial list. 5423 * Unless it's frozen. 5424 */ 5425 if (!new.inuse || was_full) { 5426 5427 n = get_node(s, slab_nid(slab)); 5428 /* 5429 * Speculatively acquire the list_lock. 5430 * If the cmpxchg does not succeed then we may 5431 * drop the list_lock without any processing. 5432 * 5433 * Otherwise the list_lock will synchronize with 5434 * other processors updating the list of slabs. 5435 */ 5436 spin_lock_irqsave(&n->list_lock, flags); 5437 5438 on_node_partial = slab_test_node_partial(slab); 5439 } 5440 5441 } while (!slab_update_freelist(s, slab, &old, &new, "__slab_free")); 5442 5443 if (likely(!n)) { 5444 /* 5445 * We didn't take the list_lock because the slab was already on 5446 * the partial list and will remain there. 5447 */ 5448 return; 5449 } 5450 5451 /* 5452 * This slab was partially empty but not on the per-node partial list, 5453 * in which case we shouldn't manipulate its list, just return. 5454 */ 5455 if (!was_full && !on_node_partial) { 5456 spin_unlock_irqrestore(&n->list_lock, flags); 5457 return; 5458 } 5459 5460 /* 5461 * If slab became empty, should we add/keep it on the partial list or we 5462 * have enough? 5463 */ 5464 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) 5465 goto slab_empty; 5466 5467 /* 5468 * Objects left in the slab. If it was not on the partial list before 5469 * then add it. 5470 */ 5471 if (unlikely(was_full)) { 5472 add_partial(n, slab, ADD_TO_TAIL); 5473 stat(s, FREE_ADD_PARTIAL); 5474 } 5475 spin_unlock_irqrestore(&n->list_lock, flags); 5476 return; 5477 5478 slab_empty: 5479 /* 5480 * The slab could have a single object and thus go from full to empty in 5481 * a single free, but more likely it was on the partial list. Remove it. 5482 */ 5483 if (likely(!was_full)) { 5484 remove_partial(n, slab); 5485 stat(s, FREE_REMOVE_PARTIAL); 5486 } 5487 5488 spin_unlock_irqrestore(&n->list_lock, flags); 5489 stat(s, FREE_SLAB); 5490 discard_slab(s, slab); 5491 } 5492 5493 /* 5494 * pcs is locked. We should have get rid of the spare sheaf and obtained an 5495 * empty sheaf, while the main sheaf is full. We want to install the empty sheaf 5496 * as a main sheaf, and make the current main sheaf a spare sheaf. 5497 * 5498 * However due to having relinquished the cpu_sheaves lock when obtaining 5499 * the empty sheaf, we need to handle some unlikely but possible cases. 5500 * 5501 * If we put any sheaf to barn here, it's because we were interrupted or have 5502 * been migrated to a different cpu, which should be rare enough so just ignore 5503 * the barn's limits to simplify the handling. 5504 * 5505 * An alternative scenario that gets us here is when we fail 5506 * barn_replace_full_sheaf(), because there's no empty sheaf available in the 5507 * barn, so we had to allocate it by alloc_empty_sheaf(). But because we saw the 5508 * limit on full sheaves was not exceeded, we assume it didn't change and just 5509 * put the full sheaf there. 5510 */ 5511 static void __pcs_install_empty_sheaf(struct kmem_cache *s, 5512 struct slub_percpu_sheaves *pcs, struct slab_sheaf *empty, 5513 struct node_barn *barn) 5514 { 5515 lockdep_assert_held(this_cpu_ptr(&s->cpu_sheaves->lock)); 5516 5517 /* This is what we expect to find if nobody interrupted us. */ 5518 if (likely(!pcs->spare)) { 5519 pcs->spare = pcs->main; 5520 pcs->main = empty; 5521 return; 5522 } 5523 5524 /* 5525 * Unlikely because if the main sheaf had space, we would have just 5526 * freed to it. Get rid of our empty sheaf. 5527 */ 5528 if (pcs->main->size < s->sheaf_capacity) { 5529 barn_put_empty_sheaf(barn, empty); 5530 return; 5531 } 5532 5533 /* Also unlikely for the same reason */ 5534 if (pcs->spare->size < s->sheaf_capacity) { 5535 swap(pcs->main, pcs->spare); 5536 barn_put_empty_sheaf(barn, empty); 5537 return; 5538 } 5539 5540 /* 5541 * We probably failed barn_replace_full_sheaf() due to no empty sheaf 5542 * available there, but we allocated one, so finish the job. 5543 */ 5544 barn_put_full_sheaf(barn, pcs->main); 5545 stat(s, BARN_PUT); 5546 pcs->main = empty; 5547 } 5548 5549 /* 5550 * Replace the full main sheaf with a (at least partially) empty sheaf. 5551 * 5552 * Must be called with the cpu_sheaves local lock locked. If successful, returns 5553 * the pcs pointer and the local lock locked (possibly on a different cpu than 5554 * initially called). If not successful, returns NULL and the local lock 5555 * unlocked. 5556 */ 5557 static struct slub_percpu_sheaves * 5558 __pcs_replace_full_main(struct kmem_cache *s, struct slub_percpu_sheaves *pcs, 5559 bool allow_spin) 5560 { 5561 struct slab_sheaf *empty; 5562 struct node_barn *barn; 5563 bool put_fail; 5564 5565 restart: 5566 lockdep_assert_held(this_cpu_ptr(&s->cpu_sheaves->lock)); 5567 5568 /* Bootstrap or debug cache, back off */ 5569 if (unlikely(!cache_has_sheaves(s))) { 5570 local_unlock(&s->cpu_sheaves->lock); 5571 return NULL; 5572 } 5573 5574 barn = get_barn(s); 5575 if (!barn) { 5576 local_unlock(&s->cpu_sheaves->lock); 5577 return NULL; 5578 } 5579 5580 put_fail = false; 5581 5582 if (!pcs->spare) { 5583 empty = barn_get_empty_sheaf(barn, allow_spin); 5584 if (empty) { 5585 pcs->spare = pcs->main; 5586 pcs->main = empty; 5587 return pcs; 5588 } 5589 goto alloc_empty; 5590 } 5591 5592 if (pcs->spare->size < s->sheaf_capacity) { 5593 swap(pcs->main, pcs->spare); 5594 return pcs; 5595 } 5596 5597 empty = barn_replace_full_sheaf(barn, pcs->main, allow_spin); 5598 5599 if (!IS_ERR(empty)) { 5600 stat(s, BARN_PUT); 5601 pcs->main = empty; 5602 return pcs; 5603 } 5604 5605 /* sheaf_flush_unused() doesn't support !allow_spin */ 5606 if (PTR_ERR(empty) == -E2BIG && allow_spin) { 5607 /* Since we got here, spare exists and is full */ 5608 struct slab_sheaf *to_flush = pcs->spare; 5609 5610 stat(s, BARN_PUT_FAIL); 5611 5612 pcs->spare = NULL; 5613 local_unlock(&s->cpu_sheaves->lock); 5614 5615 sheaf_flush_unused(s, to_flush); 5616 empty = to_flush; 5617 goto got_empty; 5618 } 5619 5620 /* 5621 * We could not replace full sheaf because barn had no empty 5622 * sheaves. We can still allocate it and put the full sheaf in 5623 * __pcs_install_empty_sheaf(), but if we fail to allocate it, 5624 * make sure to count the fail. 5625 */ 5626 put_fail = true; 5627 5628 alloc_empty: 5629 local_unlock(&s->cpu_sheaves->lock); 5630 5631 /* 5632 * alloc_empty_sheaf() doesn't support !allow_spin and it's 5633 * easier to fall back to freeing directly without sheaves 5634 * than add the support (and to sheaf_flush_unused() above) 5635 */ 5636 if (!allow_spin) 5637 return NULL; 5638 5639 empty = alloc_empty_sheaf(s, GFP_NOWAIT); 5640 if (empty) 5641 goto got_empty; 5642 5643 if (put_fail) 5644 stat(s, BARN_PUT_FAIL); 5645 5646 if (!sheaf_flush_main(s)) 5647 return NULL; 5648 5649 if (!local_trylock(&s->cpu_sheaves->lock)) 5650 return NULL; 5651 5652 pcs = this_cpu_ptr(s->cpu_sheaves); 5653 5654 /* 5655 * we flushed the main sheaf so it should be empty now, 5656 * but in case we got preempted or migrated, we need to 5657 * check again 5658 */ 5659 if (pcs->main->size == s->sheaf_capacity) 5660 goto restart; 5661 5662 return pcs; 5663 5664 got_empty: 5665 if (!local_trylock(&s->cpu_sheaves->lock)) { 5666 barn_put_empty_sheaf(barn, empty); 5667 return NULL; 5668 } 5669 5670 pcs = this_cpu_ptr(s->cpu_sheaves); 5671 __pcs_install_empty_sheaf(s, pcs, empty, barn); 5672 5673 return pcs; 5674 } 5675 5676 /* 5677 * Free an object to the percpu sheaves. 5678 * The object is expected to have passed slab_free_hook() already. 5679 */ 5680 static __fastpath_inline 5681 bool free_to_pcs(struct kmem_cache *s, void *object, bool allow_spin) 5682 { 5683 struct slub_percpu_sheaves *pcs; 5684 5685 if (!local_trylock(&s->cpu_sheaves->lock)) 5686 return false; 5687 5688 pcs = this_cpu_ptr(s->cpu_sheaves); 5689 5690 if (unlikely(pcs->main->size == s->sheaf_capacity)) { 5691 5692 pcs = __pcs_replace_full_main(s, pcs, allow_spin); 5693 if (unlikely(!pcs)) 5694 return false; 5695 } 5696 5697 pcs->main->objects[pcs->main->size++] = object; 5698 5699 local_unlock(&s->cpu_sheaves->lock); 5700 5701 stat(s, FREE_FASTPATH); 5702 5703 return true; 5704 } 5705 5706 static void rcu_free_sheaf(struct rcu_head *head) 5707 { 5708 struct kmem_cache_node *n; 5709 struct slab_sheaf *sheaf; 5710 struct node_barn *barn = NULL; 5711 struct kmem_cache *s; 5712 5713 sheaf = container_of(head, struct slab_sheaf, rcu_head); 5714 5715 s = sheaf->cache; 5716 5717 /* 5718 * This may remove some objects due to slab_free_hook() returning false, 5719 * so that the sheaf might no longer be completely full. But it's easier 5720 * to handle it as full (unless it became completely empty), as the code 5721 * handles it fine. The only downside is that sheaf will serve fewer 5722 * allocations when reused. It only happens due to debugging, which is a 5723 * performance hit anyway. 5724 * 5725 * If it returns true, there was at least one object from pfmemalloc 5726 * slab so simply flush everything. 5727 */ 5728 if (__rcu_free_sheaf_prepare(s, sheaf)) 5729 goto flush; 5730 5731 n = get_node(s, sheaf->node); 5732 if (!n) 5733 goto flush; 5734 5735 barn = n->barn; 5736 5737 /* due to slab_free_hook() */ 5738 if (unlikely(sheaf->size == 0)) 5739 goto empty; 5740 5741 /* 5742 * Checking nr_full/nr_empty outside lock avoids contention in case the 5743 * barn is at the respective limit. Due to the race we might go over the 5744 * limit but that should be rare and harmless. 5745 */ 5746 5747 if (data_race(barn->nr_full) < MAX_FULL_SHEAVES) { 5748 stat(s, BARN_PUT); 5749 barn_put_full_sheaf(barn, sheaf); 5750 return; 5751 } 5752 5753 flush: 5754 stat(s, BARN_PUT_FAIL); 5755 sheaf_flush_unused(s, sheaf); 5756 5757 empty: 5758 if (barn && data_race(barn->nr_empty) < MAX_EMPTY_SHEAVES) { 5759 barn_put_empty_sheaf(barn, sheaf); 5760 return; 5761 } 5762 5763 free_empty_sheaf(s, sheaf); 5764 } 5765 5766 /* 5767 * kvfree_call_rcu() can be called while holding a raw_spinlock_t. Since 5768 * __kfree_rcu_sheaf() may acquire a spinlock_t (sleeping lock on PREEMPT_RT), 5769 * this would violate lock nesting rules. Therefore, kvfree_call_rcu() avoids 5770 * this problem by bypassing the sheaves layer entirely on PREEMPT_RT. 5771 * 5772 * However, lockdep still complains that it is invalid to acquire spinlock_t 5773 * while holding raw_spinlock_t, even on !PREEMPT_RT where spinlock_t is a 5774 * spinning lock. Tell lockdep that acquiring spinlock_t is valid here 5775 * by temporarily raising the wait-type to LD_WAIT_CONFIG. 5776 */ 5777 static DEFINE_WAIT_OVERRIDE_MAP(kfree_rcu_sheaf_map, LD_WAIT_CONFIG); 5778 5779 bool __kfree_rcu_sheaf(struct kmem_cache *s, void *obj) 5780 { 5781 struct slub_percpu_sheaves *pcs; 5782 struct slab_sheaf *rcu_sheaf; 5783 5784 if (WARN_ON_ONCE(IS_ENABLED(CONFIG_PREEMPT_RT))) 5785 return false; 5786 5787 lock_map_acquire_try(&kfree_rcu_sheaf_map); 5788 5789 if (!local_trylock(&s->cpu_sheaves->lock)) 5790 goto fail; 5791 5792 pcs = this_cpu_ptr(s->cpu_sheaves); 5793 5794 if (unlikely(!pcs->rcu_free)) { 5795 5796 struct slab_sheaf *empty; 5797 struct node_barn *barn; 5798 5799 /* Bootstrap or debug cache, fall back */ 5800 if (unlikely(!cache_has_sheaves(s))) { 5801 local_unlock(&s->cpu_sheaves->lock); 5802 goto fail; 5803 } 5804 5805 if (pcs->spare && pcs->spare->size == 0) { 5806 pcs->rcu_free = pcs->spare; 5807 pcs->spare = NULL; 5808 goto do_free; 5809 } 5810 5811 barn = get_barn(s); 5812 if (!barn) { 5813 local_unlock(&s->cpu_sheaves->lock); 5814 goto fail; 5815 } 5816 5817 empty = barn_get_empty_sheaf(barn, true); 5818 5819 if (empty) { 5820 pcs->rcu_free = empty; 5821 goto do_free; 5822 } 5823 5824 local_unlock(&s->cpu_sheaves->lock); 5825 5826 empty = alloc_empty_sheaf(s, GFP_NOWAIT); 5827 5828 if (!empty) 5829 goto fail; 5830 5831 if (!local_trylock(&s->cpu_sheaves->lock)) { 5832 barn_put_empty_sheaf(barn, empty); 5833 goto fail; 5834 } 5835 5836 pcs = this_cpu_ptr(s->cpu_sheaves); 5837 5838 if (unlikely(pcs->rcu_free)) 5839 barn_put_empty_sheaf(barn, empty); 5840 else 5841 pcs->rcu_free = empty; 5842 } 5843 5844 do_free: 5845 5846 rcu_sheaf = pcs->rcu_free; 5847 5848 /* 5849 * Since we flush immediately when size reaches capacity, we never reach 5850 * this with size already at capacity, so no OOB write is possible. 5851 */ 5852 rcu_sheaf->objects[rcu_sheaf->size++] = obj; 5853 5854 if (likely(rcu_sheaf->size < s->sheaf_capacity)) { 5855 rcu_sheaf = NULL; 5856 } else { 5857 pcs->rcu_free = NULL; 5858 rcu_sheaf->node = numa_mem_id(); 5859 } 5860 5861 /* 5862 * we flush before local_unlock to make sure a racing 5863 * flush_all_rcu_sheaves() doesn't miss this sheaf 5864 */ 5865 if (rcu_sheaf) 5866 call_rcu(&rcu_sheaf->rcu_head, rcu_free_sheaf); 5867 5868 local_unlock(&s->cpu_sheaves->lock); 5869 5870 stat(s, FREE_RCU_SHEAF); 5871 lock_map_release(&kfree_rcu_sheaf_map); 5872 return true; 5873 5874 fail: 5875 stat(s, FREE_RCU_SHEAF_FAIL); 5876 lock_map_release(&kfree_rcu_sheaf_map); 5877 return false; 5878 } 5879 5880 /* 5881 * Bulk free objects to the percpu sheaves. 5882 * Unlike free_to_pcs() this includes the calls to all necessary hooks 5883 * and the fallback to freeing to slab pages. 5884 */ 5885 static void free_to_pcs_bulk(struct kmem_cache *s, size_t size, void **p) 5886 { 5887 struct slub_percpu_sheaves *pcs; 5888 struct slab_sheaf *main, *empty; 5889 bool init = slab_want_init_on_free(s); 5890 unsigned int batch, i = 0; 5891 struct node_barn *barn; 5892 void *remote_objects[PCS_BATCH_MAX]; 5893 unsigned int remote_nr = 0; 5894 int node = numa_mem_id(); 5895 5896 next_remote_batch: 5897 while (i < size) { 5898 struct slab *slab = virt_to_slab(p[i]); 5899 5900 memcg_slab_free_hook(s, slab, p + i, 1); 5901 alloc_tagging_slab_free_hook(s, slab, p + i, 1); 5902 5903 if (unlikely(!slab_free_hook(s, p[i], init, false))) { 5904 p[i] = p[--size]; 5905 continue; 5906 } 5907 5908 if (unlikely((IS_ENABLED(CONFIG_NUMA) && slab_nid(slab) != node) 5909 || slab_test_pfmemalloc(slab))) { 5910 remote_objects[remote_nr] = p[i]; 5911 p[i] = p[--size]; 5912 if (++remote_nr >= PCS_BATCH_MAX) 5913 goto flush_remote; 5914 continue; 5915 } 5916 5917 i++; 5918 } 5919 5920 if (!size) 5921 goto flush_remote; 5922 5923 next_batch: 5924 if (!local_trylock(&s->cpu_sheaves->lock)) 5925 goto fallback; 5926 5927 pcs = this_cpu_ptr(s->cpu_sheaves); 5928 5929 if (likely(pcs->main->size < s->sheaf_capacity)) 5930 goto do_free; 5931 5932 barn = get_barn(s); 5933 if (!barn) 5934 goto no_empty; 5935 5936 if (!pcs->spare) { 5937 empty = barn_get_empty_sheaf(barn, true); 5938 if (!empty) 5939 goto no_empty; 5940 5941 pcs->spare = pcs->main; 5942 pcs->main = empty; 5943 goto do_free; 5944 } 5945 5946 if (pcs->spare->size < s->sheaf_capacity) { 5947 swap(pcs->main, pcs->spare); 5948 goto do_free; 5949 } 5950 5951 empty = barn_replace_full_sheaf(barn, pcs->main, true); 5952 if (IS_ERR(empty)) { 5953 stat(s, BARN_PUT_FAIL); 5954 goto no_empty; 5955 } 5956 5957 stat(s, BARN_PUT); 5958 pcs->main = empty; 5959 5960 do_free: 5961 main = pcs->main; 5962 batch = min(size, s->sheaf_capacity - main->size); 5963 5964 memcpy(main->objects + main->size, p, batch * sizeof(void *)); 5965 main->size += batch; 5966 5967 local_unlock(&s->cpu_sheaves->lock); 5968 5969 stat_add(s, FREE_FASTPATH, batch); 5970 5971 if (batch < size) { 5972 p += batch; 5973 size -= batch; 5974 goto next_batch; 5975 } 5976 5977 if (remote_nr) 5978 goto flush_remote; 5979 5980 return; 5981 5982 no_empty: 5983 local_unlock(&s->cpu_sheaves->lock); 5984 5985 /* 5986 * if we depleted all empty sheaves in the barn or there are too 5987 * many full sheaves, free the rest to slab pages 5988 */ 5989 fallback: 5990 __kmem_cache_free_bulk(s, size, p); 5991 stat_add(s, FREE_SLOWPATH, size); 5992 5993 flush_remote: 5994 if (remote_nr) { 5995 __kmem_cache_free_bulk(s, remote_nr, &remote_objects[0]); 5996 stat_add(s, FREE_SLOWPATH, remote_nr); 5997 if (i < size) { 5998 remote_nr = 0; 5999 goto next_remote_batch; 6000 } 6001 } 6002 } 6003 6004 struct defer_free { 6005 struct llist_head objects; 6006 struct irq_work work; 6007 }; 6008 6009 static void free_deferred_objects(struct irq_work *work); 6010 6011 static DEFINE_PER_CPU(struct defer_free, defer_free_objects) = { 6012 .objects = LLIST_HEAD_INIT(objects), 6013 .work = IRQ_WORK_INIT(free_deferred_objects), 6014 }; 6015 6016 /* 6017 * In PREEMPT_RT irq_work runs in per-cpu kthread, so it's safe 6018 * to take sleeping spin_locks from __slab_free(). 6019 * In !PREEMPT_RT irq_work will run after local_unlock_irqrestore(). 6020 */ 6021 static void free_deferred_objects(struct irq_work *work) 6022 { 6023 struct defer_free *df = container_of(work, struct defer_free, work); 6024 struct llist_head *objs = &df->objects; 6025 struct llist_node *llnode, *pos, *t; 6026 6027 if (llist_empty(objs)) 6028 return; 6029 6030 llnode = llist_del_all(objs); 6031 llist_for_each_safe(pos, t, llnode) { 6032 struct kmem_cache *s; 6033 struct slab *slab; 6034 void *x = pos; 6035 6036 slab = virt_to_slab(x); 6037 s = slab->slab_cache; 6038 6039 /* Point 'x' back to the beginning of allocated object */ 6040 x -= s->offset; 6041 6042 /* 6043 * We used freepointer in 'x' to link 'x' into df->objects. 6044 * Clear it to NULL to avoid false positive detection 6045 * of "Freepointer corruption". 6046 */ 6047 set_freepointer(s, x, NULL); 6048 6049 __slab_free(s, slab, x, x, 1, _THIS_IP_); 6050 stat(s, FREE_SLOWPATH); 6051 } 6052 } 6053 6054 static void defer_free(struct kmem_cache *s, void *head) 6055 { 6056 struct defer_free *df; 6057 6058 guard(preempt)(); 6059 6060 head = kasan_reset_tag(head); 6061 6062 df = this_cpu_ptr(&defer_free_objects); 6063 if (llist_add(head + s->offset, &df->objects)) 6064 irq_work_queue(&df->work); 6065 } 6066 6067 void defer_free_barrier(void) 6068 { 6069 int cpu; 6070 6071 for_each_possible_cpu(cpu) 6072 irq_work_sync(&per_cpu_ptr(&defer_free_objects, cpu)->work); 6073 } 6074 6075 static __fastpath_inline 6076 void slab_free(struct kmem_cache *s, struct slab *slab, void *object, 6077 unsigned long addr) 6078 { 6079 memcg_slab_free_hook(s, slab, &object, 1); 6080 alloc_tagging_slab_free_hook(s, slab, &object, 1); 6081 6082 if (unlikely(!slab_free_hook(s, object, slab_want_init_on_free(s), false))) 6083 return; 6084 6085 if (likely(!IS_ENABLED(CONFIG_NUMA) || slab_nid(slab) == numa_mem_id()) 6086 && likely(!slab_test_pfmemalloc(slab))) { 6087 if (likely(free_to_pcs(s, object, true))) 6088 return; 6089 } 6090 6091 __slab_free(s, slab, object, object, 1, addr); 6092 stat(s, FREE_SLOWPATH); 6093 } 6094 6095 #ifdef CONFIG_MEMCG 6096 /* Do not inline the rare memcg charging failed path into the allocation path */ 6097 static noinline 6098 void memcg_alloc_abort_single(struct kmem_cache *s, void *object) 6099 { 6100 struct slab *slab = virt_to_slab(object); 6101 6102 alloc_tagging_slab_free_hook(s, slab, &object, 1); 6103 6104 if (likely(slab_free_hook(s, object, slab_want_init_on_free(s), false))) 6105 __slab_free(s, slab, object, object, 1, _RET_IP_); 6106 } 6107 #endif 6108 6109 static __fastpath_inline 6110 void slab_free_bulk(struct kmem_cache *s, struct slab *slab, void *head, 6111 void *tail, void **p, int cnt, unsigned long addr) 6112 { 6113 memcg_slab_free_hook(s, slab, p, cnt); 6114 alloc_tagging_slab_free_hook(s, slab, p, cnt); 6115 /* 6116 * With KASAN enabled slab_free_freelist_hook modifies the freelist 6117 * to remove objects, whose reuse must be delayed. 6118 */ 6119 if (likely(slab_free_freelist_hook(s, &head, &tail, &cnt))) { 6120 __slab_free(s, slab, head, tail, cnt, addr); 6121 stat_add(s, FREE_SLOWPATH, cnt); 6122 } 6123 } 6124 6125 #ifdef CONFIG_SLUB_RCU_DEBUG 6126 static void slab_free_after_rcu_debug(struct rcu_head *rcu_head) 6127 { 6128 struct rcu_delayed_free *delayed_free = 6129 container_of(rcu_head, struct rcu_delayed_free, head); 6130 void *object = delayed_free->object; 6131 struct slab *slab = virt_to_slab(object); 6132 struct kmem_cache *s; 6133 6134 kfree(delayed_free); 6135 6136 if (WARN_ON(is_kfence_address(object))) 6137 return; 6138 6139 /* find the object and the cache again */ 6140 if (WARN_ON(!slab)) 6141 return; 6142 s = slab->slab_cache; 6143 if (WARN_ON(!(s->flags & SLAB_TYPESAFE_BY_RCU))) 6144 return; 6145 6146 /* resume freeing */ 6147 if (slab_free_hook(s, object, slab_want_init_on_free(s), true)) { 6148 __slab_free(s, slab, object, object, 1, _THIS_IP_); 6149 stat(s, FREE_SLOWPATH); 6150 } 6151 } 6152 #endif /* CONFIG_SLUB_RCU_DEBUG */ 6153 6154 #ifdef CONFIG_KASAN_GENERIC 6155 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr) 6156 { 6157 __slab_free(cache, virt_to_slab(x), x, x, 1, addr); 6158 stat(cache, FREE_SLOWPATH); 6159 } 6160 #endif 6161 6162 static noinline void warn_free_bad_obj(struct kmem_cache *s, void *obj) 6163 { 6164 struct kmem_cache *cachep; 6165 struct slab *slab; 6166 6167 slab = virt_to_slab(obj); 6168 if (WARN_ONCE(!slab, 6169 "kmem_cache_free(%s, %p): object is not in a slab page\n", 6170 s->name, obj)) 6171 return; 6172 6173 cachep = slab->slab_cache; 6174 6175 if (WARN_ONCE(cachep != s, 6176 "kmem_cache_free(%s, %p): object belongs to different cache %s\n", 6177 s->name, obj, cachep ? cachep->name : "(NULL)")) { 6178 if (cachep) 6179 print_tracking(cachep, obj); 6180 return; 6181 } 6182 } 6183 6184 /** 6185 * kmem_cache_free - Deallocate an object 6186 * @s: The cache the allocation was from. 6187 * @x: The previously allocated object. 6188 * 6189 * Free an object which was previously allocated from this 6190 * cache. 6191 */ 6192 void kmem_cache_free(struct kmem_cache *s, void *x) 6193 { 6194 struct slab *slab; 6195 6196 slab = virt_to_slab(x); 6197 6198 if (IS_ENABLED(CONFIG_SLAB_FREELIST_HARDENED) || 6199 kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS)) { 6200 6201 /* 6202 * Intentionally leak the object in these cases, because it 6203 * would be too dangerous to continue. 6204 */ 6205 if (unlikely(!slab || (slab->slab_cache != s))) { 6206 warn_free_bad_obj(s, x); 6207 return; 6208 } 6209 } 6210 6211 trace_kmem_cache_free(_RET_IP_, x, s); 6212 slab_free(s, slab, x, _RET_IP_); 6213 } 6214 EXPORT_SYMBOL(kmem_cache_free); 6215 6216 static inline size_t slab_ksize(struct slab *slab) 6217 { 6218 struct kmem_cache *s = slab->slab_cache; 6219 6220 #ifdef CONFIG_SLUB_DEBUG 6221 /* 6222 * Debugging requires use of the padding between object 6223 * and whatever may come after it. 6224 */ 6225 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON)) 6226 return s->object_size; 6227 #endif 6228 if (s->flags & SLAB_KASAN) 6229 return s->object_size; 6230 /* 6231 * If we have the need to store the freelist pointer 6232 * or any other metadata back there then we can 6233 * only use the space before that information. 6234 */ 6235 if (s->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_STORE_USER)) 6236 return s->inuse; 6237 else if (obj_exts_in_object(s, slab)) 6238 return s->inuse; 6239 /* 6240 * Else we can use all the padding etc for the allocation 6241 */ 6242 return s->size; 6243 } 6244 6245 static size_t __ksize(const void *object) 6246 { 6247 struct page *page; 6248 struct slab *slab; 6249 6250 if (unlikely(object == ZERO_SIZE_PTR)) 6251 return 0; 6252 6253 page = virt_to_page(object); 6254 6255 if (unlikely(PageLargeKmalloc(page))) 6256 return large_kmalloc_size(page); 6257 6258 slab = page_slab(page); 6259 /* Delete this after we're sure there are no users */ 6260 if (WARN_ON(!slab)) 6261 return page_size(page); 6262 6263 #ifdef CONFIG_SLUB_DEBUG 6264 skip_orig_size_check(slab->slab_cache, object); 6265 #endif 6266 6267 return slab_ksize(slab); 6268 } 6269 6270 /** 6271 * ksize -- Report full size of underlying allocation 6272 * @objp: pointer to the object 6273 * 6274 * This should only be used internally to query the true size of allocations. 6275 * It is not meant to be a way to discover the usable size of an allocation 6276 * after the fact. Instead, use kmalloc_size_roundup(). Using memory beyond 6277 * the originally requested allocation size may trigger KASAN, UBSAN_BOUNDS, 6278 * and/or FORTIFY_SOURCE. 6279 * 6280 * Return: size of the actual memory used by @objp in bytes 6281 */ 6282 size_t ksize(const void *objp) 6283 { 6284 /* 6285 * We need to first check that the pointer to the object is valid. 6286 * The KASAN report printed from ksize() is more useful, then when 6287 * it's printed later when the behaviour could be undefined due to 6288 * a potential use-after-free or double-free. 6289 * 6290 * We use kasan_check_byte(), which is supported for the hardware 6291 * tag-based KASAN mode, unlike kasan_check_read/write(). 6292 * 6293 * If the pointed to memory is invalid, we return 0 to avoid users of 6294 * ksize() writing to and potentially corrupting the memory region. 6295 * 6296 * We want to perform the check before __ksize(), to avoid potentially 6297 * crashing in __ksize() due to accessing invalid metadata. 6298 */ 6299 if (unlikely(ZERO_OR_NULL_PTR(objp)) || !kasan_check_byte(objp)) 6300 return 0; 6301 6302 return kfence_ksize(objp) ?: __ksize(objp); 6303 } 6304 EXPORT_SYMBOL(ksize); 6305 6306 static void free_large_kmalloc(struct page *page, void *object) 6307 { 6308 unsigned int order = compound_order(page); 6309 6310 if (WARN_ON_ONCE(!PageLargeKmalloc(page))) { 6311 dump_page(page, "Not a kmalloc allocation"); 6312 return; 6313 } 6314 6315 if (WARN_ON_ONCE(order == 0)) 6316 pr_warn_once("object pointer: 0x%p\n", object); 6317 6318 kmemleak_free(object); 6319 kasan_kfree_large(object); 6320 kmsan_kfree_large(object); 6321 6322 mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE_B, 6323 -(PAGE_SIZE << order)); 6324 __ClearPageLargeKmalloc(page); 6325 free_frozen_pages(page, order); 6326 } 6327 6328 /* 6329 * Given an rcu_head embedded within an object obtained from kvmalloc at an 6330 * offset < 4k, free the object in question. 6331 */ 6332 void kvfree_rcu_cb(struct rcu_head *head) 6333 { 6334 void *obj = head; 6335 struct page *page; 6336 struct slab *slab; 6337 struct kmem_cache *s; 6338 void *slab_addr; 6339 6340 if (is_vmalloc_addr(obj)) { 6341 obj = (void *) PAGE_ALIGN_DOWN((unsigned long)obj); 6342 vfree(obj); 6343 return; 6344 } 6345 6346 page = virt_to_page(obj); 6347 slab = page_slab(page); 6348 if (!slab) { 6349 /* 6350 * rcu_head offset can be only less than page size so no need to 6351 * consider allocation order 6352 */ 6353 obj = (void *) PAGE_ALIGN_DOWN((unsigned long)obj); 6354 free_large_kmalloc(page, obj); 6355 return; 6356 } 6357 6358 s = slab->slab_cache; 6359 slab_addr = slab_address(slab); 6360 6361 if (is_kfence_address(obj)) { 6362 obj = kfence_object_start(obj); 6363 } else { 6364 unsigned int idx = __obj_to_index(s, slab_addr, obj); 6365 6366 obj = slab_addr + s->size * idx; 6367 obj = fixup_red_left(s, obj); 6368 } 6369 6370 slab_free(s, slab, obj, _RET_IP_); 6371 } 6372 6373 /** 6374 * kfree - free previously allocated memory 6375 * @object: pointer returned by kmalloc() or kmem_cache_alloc() 6376 * 6377 * If @object is NULL, no operation is performed. 6378 */ 6379 void kfree(const void *object) 6380 { 6381 struct page *page; 6382 struct slab *slab; 6383 struct kmem_cache *s; 6384 void *x = (void *)object; 6385 6386 trace_kfree(_RET_IP_, object); 6387 6388 if (unlikely(ZERO_OR_NULL_PTR(object))) 6389 return; 6390 6391 page = virt_to_page(object); 6392 slab = page_slab(page); 6393 if (!slab) { 6394 free_large_kmalloc(page, (void *)object); 6395 return; 6396 } 6397 6398 s = slab->slab_cache; 6399 slab_free(s, slab, x, _RET_IP_); 6400 } 6401 EXPORT_SYMBOL(kfree); 6402 6403 /* 6404 * Can be called while holding raw_spinlock_t or from IRQ and NMI, 6405 * but ONLY for objects allocated by kmalloc_nolock(). 6406 * Debug checks (like kmemleak and kfence) were skipped on allocation, 6407 * hence 6408 * obj = kmalloc(); kfree_nolock(obj); 6409 * will miss kmemleak/kfence book keeping and will cause false positives. 6410 * large_kmalloc is not supported either. 6411 */ 6412 void kfree_nolock(const void *object) 6413 { 6414 struct slab *slab; 6415 struct kmem_cache *s; 6416 void *x = (void *)object; 6417 6418 if (unlikely(ZERO_OR_NULL_PTR(object))) 6419 return; 6420 6421 slab = virt_to_slab(object); 6422 if (unlikely(!slab)) { 6423 WARN_ONCE(1, "large_kmalloc is not supported by kfree_nolock()"); 6424 return; 6425 } 6426 6427 s = slab->slab_cache; 6428 6429 memcg_slab_free_hook(s, slab, &x, 1); 6430 alloc_tagging_slab_free_hook(s, slab, &x, 1); 6431 /* 6432 * Unlike slab_free() do NOT call the following: 6433 * kmemleak_free_recursive(x, s->flags); 6434 * debug_check_no_locks_freed(x, s->object_size); 6435 * debug_check_no_obj_freed(x, s->object_size); 6436 * __kcsan_check_access(x, s->object_size, ..); 6437 * kfence_free(x); 6438 * since they take spinlocks or not safe from any context. 6439 */ 6440 kmsan_slab_free(s, x); 6441 /* 6442 * If KASAN finds a kernel bug it will do kasan_report_invalid_free() 6443 * which will call raw_spin_lock_irqsave() which is technically 6444 * unsafe from NMI, but take chance and report kernel bug. 6445 * The sequence of 6446 * kasan_report_invalid_free() -> raw_spin_lock_irqsave() -> NMI 6447 * -> kfree_nolock() -> kasan_report_invalid_free() on the same CPU 6448 * is double buggy and deserves to deadlock. 6449 */ 6450 if (kasan_slab_pre_free(s, x)) 6451 return; 6452 /* 6453 * memcg, kasan_slab_pre_free are done for 'x'. 6454 * The only thing left is kasan_poison without quarantine, 6455 * since kasan quarantine takes locks and not supported from NMI. 6456 */ 6457 kasan_slab_free(s, x, false, false, /* skip quarantine */true); 6458 6459 if (likely(!IS_ENABLED(CONFIG_NUMA) || slab_nid(slab) == numa_mem_id())) { 6460 if (likely(free_to_pcs(s, x, false))) 6461 return; 6462 } 6463 6464 /* 6465 * __slab_free() can locklessly cmpxchg16 into a slab, but then it might 6466 * need to take spin_lock for further processing. 6467 * Avoid the complexity and simply add to a deferred list. 6468 */ 6469 defer_free(s, x); 6470 } 6471 EXPORT_SYMBOL_GPL(kfree_nolock); 6472 6473 static __always_inline __realloc_size(2) void * 6474 __do_krealloc(const void *p, size_t new_size, unsigned long align, gfp_t flags, int nid) 6475 { 6476 void *ret; 6477 size_t ks = 0; 6478 int orig_size = 0; 6479 struct kmem_cache *s = NULL; 6480 6481 if (unlikely(ZERO_OR_NULL_PTR(p))) 6482 goto alloc_new; 6483 6484 /* Check for double-free. */ 6485 if (!kasan_check_byte(p)) 6486 return NULL; 6487 6488 /* 6489 * If reallocation is not necessary (e. g. the new size is less 6490 * than the current allocated size), the current allocation will be 6491 * preserved unless __GFP_THISNODE is set. In the latter case a new 6492 * allocation on the requested node will be attempted. 6493 */ 6494 if (unlikely(flags & __GFP_THISNODE) && nid != NUMA_NO_NODE && 6495 nid != page_to_nid(virt_to_page(p))) 6496 goto alloc_new; 6497 6498 if (is_kfence_address(p)) { 6499 ks = orig_size = kfence_ksize(p); 6500 } else { 6501 struct page *page = virt_to_page(p); 6502 struct slab *slab = page_slab(page); 6503 6504 if (!slab) { 6505 /* Big kmalloc object */ 6506 ks = page_size(page); 6507 WARN_ON(ks <= KMALLOC_MAX_CACHE_SIZE); 6508 WARN_ON(p != page_address(page)); 6509 } else { 6510 s = slab->slab_cache; 6511 orig_size = get_orig_size(s, (void *)p); 6512 ks = s->object_size; 6513 } 6514 } 6515 6516 /* If the old object doesn't fit, allocate a bigger one */ 6517 if (new_size > ks) 6518 goto alloc_new; 6519 6520 /* If the old object doesn't satisfy the new alignment, allocate a new one */ 6521 if (!IS_ALIGNED((unsigned long)p, align)) 6522 goto alloc_new; 6523 6524 /* Zero out spare memory. */ 6525 if (want_init_on_alloc(flags)) { 6526 kasan_disable_current(); 6527 if (orig_size && orig_size < new_size) 6528 memset(kasan_reset_tag(p) + orig_size, 0, new_size - orig_size); 6529 else 6530 memset(kasan_reset_tag(p) + new_size, 0, ks - new_size); 6531 kasan_enable_current(); 6532 } 6533 6534 /* Setup kmalloc redzone when needed */ 6535 if (s && slub_debug_orig_size(s)) { 6536 set_orig_size(s, (void *)p, new_size); 6537 if (s->flags & SLAB_RED_ZONE && new_size < ks) 6538 memset_no_sanitize_memory(kasan_reset_tag(p) + new_size, 6539 SLUB_RED_ACTIVE, ks - new_size); 6540 } 6541 6542 p = kasan_krealloc(p, new_size, flags); 6543 return (void *)p; 6544 6545 alloc_new: 6546 ret = kmalloc_node_track_caller_noprof(new_size, flags, nid, _RET_IP_); 6547 if (ret && p) { 6548 /* Disable KASAN checks as the object's redzone is accessed. */ 6549 kasan_disable_current(); 6550 memcpy(ret, kasan_reset_tag(p), orig_size ?: ks); 6551 kasan_enable_current(); 6552 } 6553 6554 return ret; 6555 } 6556 6557 /** 6558 * krealloc_node_align - reallocate memory. The contents will remain unchanged. 6559 * @p: object to reallocate memory for. 6560 * @new_size: how many bytes of memory are required. 6561 * @align: desired alignment. 6562 * @flags: the type of memory to allocate. 6563 * @nid: NUMA node or NUMA_NO_NODE 6564 * 6565 * If @p is %NULL, krealloc() behaves exactly like kmalloc(). If @new_size 6566 * is 0 and @p is not a %NULL pointer, the object pointed to is freed. 6567 * 6568 * Only alignments up to those guaranteed by kmalloc() will be honored. Please see 6569 * Documentation/core-api/memory-allocation.rst for more details. 6570 * 6571 * If __GFP_ZERO logic is requested, callers must ensure that, starting with the 6572 * initial memory allocation, every subsequent call to this API for the same 6573 * memory allocation is flagged with __GFP_ZERO. Otherwise, it is possible that 6574 * __GFP_ZERO is not fully honored by this API. 6575 * 6576 * When slub_debug_orig_size() is off, krealloc() only knows about the bucket 6577 * size of an allocation (but not the exact size it was allocated with) and 6578 * hence implements the following semantics for shrinking and growing buffers 6579 * with __GFP_ZERO:: 6580 * 6581 * new bucket 6582 * 0 size size 6583 * |--------|----------------| 6584 * | keep | zero | 6585 * 6586 * Otherwise, the original allocation size 'orig_size' could be used to 6587 * precisely clear the requested size, and the new size will also be stored 6588 * as the new 'orig_size'. 6589 * 6590 * In any case, the contents of the object pointed to are preserved up to the 6591 * lesser of the new and old sizes. 6592 * 6593 * Return: pointer to the allocated memory or %NULL in case of error 6594 */ 6595 void *krealloc_node_align_noprof(const void *p, size_t new_size, unsigned long align, 6596 gfp_t flags, int nid) 6597 { 6598 void *ret; 6599 6600 if (unlikely(!new_size)) { 6601 kfree(p); 6602 return ZERO_SIZE_PTR; 6603 } 6604 6605 ret = __do_krealloc(p, new_size, align, flags, nid); 6606 if (ret && kasan_reset_tag(p) != kasan_reset_tag(ret)) 6607 kfree(p); 6608 6609 return ret; 6610 } 6611 EXPORT_SYMBOL(krealloc_node_align_noprof); 6612 6613 static gfp_t kmalloc_gfp_adjust(gfp_t flags, size_t size) 6614 { 6615 /* 6616 * We want to attempt a large physically contiguous block first because 6617 * it is less likely to fragment multiple larger blocks and therefore 6618 * contribute to a long term fragmentation less than vmalloc fallback. 6619 * However make sure that larger requests are not too disruptive - i.e. 6620 * do not direct reclaim unless physically continuous memory is preferred 6621 * (__GFP_RETRY_MAYFAIL mode). We still kick in kswapd/kcompactd to 6622 * start working in the background 6623 */ 6624 if (size > PAGE_SIZE) { 6625 flags |= __GFP_NOWARN; 6626 6627 if (!(flags & __GFP_RETRY_MAYFAIL)) 6628 flags &= ~__GFP_DIRECT_RECLAIM; 6629 6630 /* nofail semantic is implemented by the vmalloc fallback */ 6631 flags &= ~__GFP_NOFAIL; 6632 } 6633 6634 return flags; 6635 } 6636 6637 /** 6638 * __kvmalloc_node - attempt to allocate physically contiguous memory, but upon 6639 * failure, fall back to non-contiguous (vmalloc) allocation. 6640 * @size: size of the request. 6641 * @b: which set of kmalloc buckets to allocate from. 6642 * @align: desired alignment. 6643 * @flags: gfp mask for the allocation - must be compatible (superset) with GFP_KERNEL. 6644 * @node: numa node to allocate from 6645 * 6646 * Only alignments up to those guaranteed by kmalloc() will be honored. Please see 6647 * Documentation/core-api/memory-allocation.rst for more details. 6648 * 6649 * Uses kmalloc to get the memory but if the allocation fails then falls back 6650 * to the vmalloc allocator. Use kvfree for freeing the memory. 6651 * 6652 * GFP_NOWAIT and GFP_ATOMIC are supported, the __GFP_NORETRY modifier is not. 6653 * __GFP_RETRY_MAYFAIL is supported, and it should be used only if kmalloc is 6654 * preferable to the vmalloc fallback, due to visible performance drawbacks. 6655 * 6656 * Return: pointer to the allocated memory of %NULL in case of failure 6657 */ 6658 void *__kvmalloc_node_noprof(DECL_BUCKET_PARAMS(size, b), unsigned long align, 6659 gfp_t flags, int node) 6660 { 6661 bool allow_block; 6662 void *ret; 6663 6664 /* 6665 * It doesn't really make sense to fallback to vmalloc for sub page 6666 * requests 6667 */ 6668 ret = __do_kmalloc_node(size, PASS_BUCKET_PARAM(b), 6669 kmalloc_gfp_adjust(flags, size), 6670 node, _RET_IP_); 6671 if (ret || size <= PAGE_SIZE) 6672 return ret; 6673 6674 /* Don't even allow crazy sizes */ 6675 if (unlikely(size > INT_MAX)) { 6676 WARN_ON_ONCE(!(flags & __GFP_NOWARN)); 6677 return NULL; 6678 } 6679 6680 /* 6681 * For non-blocking the VM_ALLOW_HUGE_VMAP is not used 6682 * because the huge-mapping path in vmalloc contains at 6683 * least one might_sleep() call. 6684 * 6685 * TODO: Revise huge-mapping path to support non-blocking 6686 * flags. 6687 */ 6688 allow_block = gfpflags_allow_blocking(flags); 6689 6690 /* 6691 * kvmalloc() can always use VM_ALLOW_HUGE_VMAP, 6692 * since the callers already cannot assume anything 6693 * about the resulting pointer, and cannot play 6694 * protection games. 6695 */ 6696 return __vmalloc_node_range_noprof(size, align, VMALLOC_START, VMALLOC_END, 6697 flags, PAGE_KERNEL, allow_block ? VM_ALLOW_HUGE_VMAP:0, 6698 node, __builtin_return_address(0)); 6699 } 6700 EXPORT_SYMBOL(__kvmalloc_node_noprof); 6701 6702 /** 6703 * kvfree() - Free memory. 6704 * @addr: Pointer to allocated memory. 6705 * 6706 * kvfree frees memory allocated by any of vmalloc(), kmalloc() or kvmalloc(). 6707 * It is slightly more efficient to use kfree() or vfree() if you are certain 6708 * that you know which one to use. 6709 * 6710 * Context: Either preemptible task context or not-NMI interrupt. 6711 */ 6712 void kvfree(const void *addr) 6713 { 6714 if (is_vmalloc_addr(addr)) 6715 vfree(addr); 6716 else 6717 kfree(addr); 6718 } 6719 EXPORT_SYMBOL(kvfree); 6720 6721 /** 6722 * kvfree_sensitive - Free a data object containing sensitive information. 6723 * @addr: address of the data object to be freed. 6724 * @len: length of the data object. 6725 * 6726 * Use the special memzero_explicit() function to clear the content of a 6727 * kvmalloc'ed object containing sensitive data to make sure that the 6728 * compiler won't optimize out the data clearing. 6729 */ 6730 void kvfree_sensitive(const void *addr, size_t len) 6731 { 6732 if (likely(!ZERO_OR_NULL_PTR(addr))) { 6733 memzero_explicit((void *)addr, len); 6734 kvfree(addr); 6735 } 6736 } 6737 EXPORT_SYMBOL(kvfree_sensitive); 6738 6739 /** 6740 * kvrealloc_node_align - reallocate memory; contents remain unchanged 6741 * @p: object to reallocate memory for 6742 * @size: the size to reallocate 6743 * @align: desired alignment 6744 * @flags: the flags for the page level allocator 6745 * @nid: NUMA node id 6746 * 6747 * If @p is %NULL, kvrealloc() behaves exactly like kvmalloc(). If @size is 0 6748 * and @p is not a %NULL pointer, the object pointed to is freed. 6749 * 6750 * Only alignments up to those guaranteed by kmalloc() will be honored. Please see 6751 * Documentation/core-api/memory-allocation.rst for more details. 6752 * 6753 * If __GFP_ZERO logic is requested, callers must ensure that, starting with the 6754 * initial memory allocation, every subsequent call to this API for the same 6755 * memory allocation is flagged with __GFP_ZERO. Otherwise, it is possible that 6756 * __GFP_ZERO is not fully honored by this API. 6757 * 6758 * In any case, the contents of the object pointed to are preserved up to the 6759 * lesser of the new and old sizes. 6760 * 6761 * This function must not be called concurrently with itself or kvfree() for the 6762 * same memory allocation. 6763 * 6764 * Return: pointer to the allocated memory or %NULL in case of error 6765 */ 6766 void *kvrealloc_node_align_noprof(const void *p, size_t size, unsigned long align, 6767 gfp_t flags, int nid) 6768 { 6769 void *n; 6770 6771 if (is_vmalloc_addr(p)) 6772 return vrealloc_node_align_noprof(p, size, align, flags, nid); 6773 6774 n = krealloc_node_align_noprof(p, size, align, kmalloc_gfp_adjust(flags, size), nid); 6775 if (!n) { 6776 /* We failed to krealloc(), fall back to kvmalloc(). */ 6777 n = kvmalloc_node_align_noprof(size, align, flags, nid); 6778 if (!n) 6779 return NULL; 6780 6781 if (p) { 6782 /* We already know that `p` is not a vmalloc address. */ 6783 kasan_disable_current(); 6784 memcpy(n, kasan_reset_tag(p), ksize(p)); 6785 kasan_enable_current(); 6786 6787 kfree(p); 6788 } 6789 } 6790 6791 return n; 6792 } 6793 EXPORT_SYMBOL(kvrealloc_node_align_noprof); 6794 6795 struct detached_freelist { 6796 struct slab *slab; 6797 void *tail; 6798 void *freelist; 6799 int cnt; 6800 struct kmem_cache *s; 6801 }; 6802 6803 /* 6804 * This function progressively scans the array with free objects (with 6805 * a limited look ahead) and extract objects belonging to the same 6806 * slab. It builds a detached freelist directly within the given 6807 * slab/objects. This can happen without any need for 6808 * synchronization, because the objects are owned by running process. 6809 * The freelist is build up as a single linked list in the objects. 6810 * The idea is, that this detached freelist can then be bulk 6811 * transferred to the real freelist(s), but only requiring a single 6812 * synchronization primitive. Look ahead in the array is limited due 6813 * to performance reasons. 6814 */ 6815 static inline 6816 int build_detached_freelist(struct kmem_cache *s, size_t size, 6817 void **p, struct detached_freelist *df) 6818 { 6819 int lookahead = 3; 6820 void *object; 6821 struct page *page; 6822 struct slab *slab; 6823 size_t same; 6824 6825 object = p[--size]; 6826 page = virt_to_page(object); 6827 slab = page_slab(page); 6828 if (!s) { 6829 /* Handle kalloc'ed objects */ 6830 if (!slab) { 6831 free_large_kmalloc(page, object); 6832 df->slab = NULL; 6833 return size; 6834 } 6835 /* Derive kmem_cache from object */ 6836 df->slab = slab; 6837 df->s = slab->slab_cache; 6838 } else { 6839 df->slab = slab; 6840 df->s = s; 6841 } 6842 6843 /* Start new detached freelist */ 6844 df->tail = object; 6845 df->freelist = object; 6846 df->cnt = 1; 6847 6848 if (is_kfence_address(object)) 6849 return size; 6850 6851 set_freepointer(df->s, object, NULL); 6852 6853 same = size; 6854 while (size) { 6855 object = p[--size]; 6856 /* df->slab is always set at this point */ 6857 if (df->slab == virt_to_slab(object)) { 6858 /* Opportunity build freelist */ 6859 set_freepointer(df->s, object, df->freelist); 6860 df->freelist = object; 6861 df->cnt++; 6862 same--; 6863 if (size != same) 6864 swap(p[size], p[same]); 6865 continue; 6866 } 6867 6868 /* Limit look ahead search */ 6869 if (!--lookahead) 6870 break; 6871 } 6872 6873 return same; 6874 } 6875 6876 /* 6877 * Internal bulk free of objects that were not initialised by the post alloc 6878 * hooks and thus should not be processed by the free hooks 6879 */ 6880 static void __kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p) 6881 { 6882 if (!size) 6883 return; 6884 6885 do { 6886 struct detached_freelist df; 6887 6888 size = build_detached_freelist(s, size, p, &df); 6889 if (!df.slab) 6890 continue; 6891 6892 if (kfence_free(df.freelist)) 6893 continue; 6894 6895 __slab_free(df.s, df.slab, df.freelist, df.tail, df.cnt, 6896 _RET_IP_); 6897 } while (likely(size)); 6898 } 6899 6900 /* Note that interrupts must be enabled when calling this function. */ 6901 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p) 6902 { 6903 if (!size) 6904 return; 6905 6906 /* 6907 * freeing to sheaves is so incompatible with the detached freelist so 6908 * once we go that way, we have to do everything differently 6909 */ 6910 if (s && cache_has_sheaves(s)) { 6911 free_to_pcs_bulk(s, size, p); 6912 return; 6913 } 6914 6915 do { 6916 struct detached_freelist df; 6917 6918 size = build_detached_freelist(s, size, p, &df); 6919 if (!df.slab) 6920 continue; 6921 6922 slab_free_bulk(df.s, df.slab, df.freelist, df.tail, &p[size], 6923 df.cnt, _RET_IP_); 6924 } while (likely(size)); 6925 } 6926 EXPORT_SYMBOL(kmem_cache_free_bulk); 6927 6928 static unsigned int 6929 __refill_objects_node(struct kmem_cache *s, void **p, gfp_t gfp, unsigned int min, 6930 unsigned int max, struct kmem_cache_node *n, 6931 bool allow_spin) 6932 { 6933 struct partial_bulk_context pc; 6934 struct slab *slab, *slab2; 6935 unsigned int refilled = 0; 6936 unsigned long flags; 6937 void *object; 6938 6939 pc.flags = gfp; 6940 pc.min_objects = min; 6941 pc.max_objects = max; 6942 6943 if (!get_partial_node_bulk(s, n, &pc, allow_spin)) 6944 return 0; 6945 6946 list_for_each_entry_safe(slab, slab2, &pc.slabs, slab_list) { 6947 6948 list_del(&slab->slab_list); 6949 6950 object = get_freelist_nofreeze(s, slab); 6951 6952 while (object && refilled < max) { 6953 p[refilled] = object; 6954 object = get_freepointer(s, object); 6955 maybe_wipe_obj_freeptr(s, p[refilled]); 6956 6957 refilled++; 6958 } 6959 6960 /* 6961 * Freelist had more objects than we can accommodate, we need to 6962 * free them back. We can treat it like a detached freelist, just 6963 * need to find the tail object. 6964 */ 6965 if (unlikely(object)) { 6966 void *head = object; 6967 void *tail; 6968 int cnt = 0; 6969 6970 do { 6971 tail = object; 6972 cnt++; 6973 object = get_freepointer(s, object); 6974 } while (object); 6975 __slab_free(s, slab, head, tail, cnt, _RET_IP_); 6976 } 6977 6978 if (refilled >= max) 6979 break; 6980 } 6981 6982 if (unlikely(!list_empty(&pc.slabs))) { 6983 spin_lock_irqsave(&n->list_lock, flags); 6984 6985 list_for_each_entry_safe(slab, slab2, &pc.slabs, slab_list) { 6986 6987 if (unlikely(!slab->inuse && n->nr_partial >= s->min_partial)) 6988 continue; 6989 6990 list_del(&slab->slab_list); 6991 add_partial(n, slab, ADD_TO_HEAD); 6992 } 6993 6994 spin_unlock_irqrestore(&n->list_lock, flags); 6995 6996 /* any slabs left are completely free and for discard */ 6997 list_for_each_entry_safe(slab, slab2, &pc.slabs, slab_list) { 6998 6999 list_del(&slab->slab_list); 7000 discard_slab(s, slab); 7001 } 7002 } 7003 7004 return refilled; 7005 } 7006 7007 #ifdef CONFIG_NUMA 7008 static unsigned int 7009 __refill_objects_any(struct kmem_cache *s, void **p, gfp_t gfp, unsigned int min, 7010 unsigned int max) 7011 { 7012 struct zonelist *zonelist; 7013 struct zoneref *z; 7014 struct zone *zone; 7015 enum zone_type highest_zoneidx = gfp_zone(gfp); 7016 unsigned int cpuset_mems_cookie; 7017 unsigned int refilled = 0; 7018 7019 /* see get_from_any_partial() for the defrag ratio description */ 7020 if (!s->remote_node_defrag_ratio || 7021 get_cycles() % 1024 > s->remote_node_defrag_ratio) 7022 return 0; 7023 7024 do { 7025 cpuset_mems_cookie = read_mems_allowed_begin(); 7026 zonelist = node_zonelist(mempolicy_slab_node(), gfp); 7027 for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) { 7028 struct kmem_cache_node *n; 7029 unsigned int r; 7030 7031 n = get_node(s, zone_to_nid(zone)); 7032 7033 if (!n || !cpuset_zone_allowed(zone, gfp) || 7034 n->nr_partial <= s->min_partial) 7035 continue; 7036 7037 r = __refill_objects_node(s, p, gfp, min, max, n, 7038 /* allow_spin = */ false); 7039 refilled += r; 7040 7041 if (r >= min) { 7042 /* 7043 * Don't check read_mems_allowed_retry() here - 7044 * if mems_allowed was updated in parallel, that 7045 * was a harmless race between allocation and 7046 * the cpuset update 7047 */ 7048 return refilled; 7049 } 7050 p += r; 7051 min -= r; 7052 max -= r; 7053 } 7054 } while (read_mems_allowed_retry(cpuset_mems_cookie)); 7055 7056 return refilled; 7057 } 7058 #else 7059 static inline unsigned int 7060 __refill_objects_any(struct kmem_cache *s, void **p, gfp_t gfp, unsigned int min, 7061 unsigned int max) 7062 { 7063 return 0; 7064 } 7065 #endif 7066 7067 static unsigned int 7068 refill_objects(struct kmem_cache *s, void **p, gfp_t gfp, unsigned int min, 7069 unsigned int max) 7070 { 7071 int local_node = numa_mem_id(); 7072 unsigned int refilled; 7073 struct slab *slab; 7074 7075 if (WARN_ON_ONCE(!gfpflags_allow_spinning(gfp))) 7076 return 0; 7077 7078 refilled = __refill_objects_node(s, p, gfp, min, max, 7079 get_node(s, local_node), 7080 /* allow_spin = */ true); 7081 if (refilled >= min) 7082 return refilled; 7083 7084 refilled += __refill_objects_any(s, p + refilled, gfp, min - refilled, 7085 max - refilled); 7086 if (refilled >= min) 7087 return refilled; 7088 7089 new_slab: 7090 7091 slab = new_slab(s, gfp, local_node); 7092 if (!slab) 7093 goto out; 7094 7095 stat(s, ALLOC_SLAB); 7096 7097 /* 7098 * TODO: possible optimization - if we know we will consume the whole 7099 * slab we might skip creating the freelist? 7100 */ 7101 refilled += alloc_from_new_slab(s, slab, p + refilled, max - refilled, 7102 /* allow_spin = */ true); 7103 7104 if (refilled < min) 7105 goto new_slab; 7106 7107 out: 7108 return refilled; 7109 } 7110 7111 static inline 7112 int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size, 7113 void **p) 7114 { 7115 int i; 7116 7117 if (IS_ENABLED(CONFIG_SLUB_TINY) || kmem_cache_debug(s)) { 7118 for (i = 0; i < size; i++) { 7119 7120 p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE, _RET_IP_, 7121 s->object_size); 7122 if (unlikely(!p[i])) 7123 goto error; 7124 7125 maybe_wipe_obj_freeptr(s, p[i]); 7126 } 7127 } else { 7128 i = refill_objects(s, p, flags, size, size); 7129 if (i < size) 7130 goto error; 7131 stat_add(s, ALLOC_SLOWPATH, i); 7132 } 7133 7134 return i; 7135 7136 error: 7137 __kmem_cache_free_bulk(s, i, p); 7138 return 0; 7139 7140 } 7141 7142 /* 7143 * Note that interrupts must be enabled when calling this function and gfp 7144 * flags must allow spinning. 7145 */ 7146 int kmem_cache_alloc_bulk_noprof(struct kmem_cache *s, gfp_t flags, size_t size, 7147 void **p) 7148 { 7149 unsigned int i = 0; 7150 void *kfence_obj; 7151 7152 if (!size) 7153 return 0; 7154 7155 s = slab_pre_alloc_hook(s, flags); 7156 if (unlikely(!s)) 7157 return 0; 7158 7159 /* 7160 * to make things simpler, only assume at most once kfence allocated 7161 * object per bulk allocation and choose its index randomly 7162 */ 7163 kfence_obj = kfence_alloc(s, s->object_size, flags); 7164 7165 if (unlikely(kfence_obj)) { 7166 if (unlikely(size == 1)) { 7167 p[0] = kfence_obj; 7168 goto out; 7169 } 7170 size--; 7171 } 7172 7173 i = alloc_from_pcs_bulk(s, flags, size, p); 7174 7175 if (i < size) { 7176 /* 7177 * If we ran out of memory, don't bother with freeing back to 7178 * the percpu sheaves, we have bigger problems. 7179 */ 7180 if (unlikely(__kmem_cache_alloc_bulk(s, flags, size - i, p + i) == 0)) { 7181 if (i > 0) 7182 __kmem_cache_free_bulk(s, i, p); 7183 if (kfence_obj) 7184 __kfence_free(kfence_obj); 7185 return 0; 7186 } 7187 } 7188 7189 if (unlikely(kfence_obj)) { 7190 int idx = get_random_u32_below(size + 1); 7191 7192 if (idx != size) 7193 p[size] = p[idx]; 7194 p[idx] = kfence_obj; 7195 7196 size++; 7197 } 7198 7199 out: 7200 /* 7201 * memcg and kmem_cache debug support and memory initialization. 7202 * Done outside of the IRQ disabled fastpath loop. 7203 */ 7204 if (unlikely(!slab_post_alloc_hook(s, NULL, flags, size, p, 7205 slab_want_init_on_alloc(flags, s), s->object_size))) { 7206 return 0; 7207 } 7208 7209 return size; 7210 } 7211 EXPORT_SYMBOL(kmem_cache_alloc_bulk_noprof); 7212 7213 /* 7214 * Object placement in a slab is made very easy because we always start at 7215 * offset 0. If we tune the size of the object to the alignment then we can 7216 * get the required alignment by putting one properly sized object after 7217 * another. 7218 * 7219 * Notice that the allocation order determines the sizes of the per cpu 7220 * caches. Each processor has always one slab available for allocations. 7221 * Increasing the allocation order reduces the number of times that slabs 7222 * must be moved on and off the partial lists and is therefore a factor in 7223 * locking overhead. 7224 */ 7225 7226 /* 7227 * Minimum / Maximum order of slab pages. This influences locking overhead 7228 * and slab fragmentation. A higher order reduces the number of partial slabs 7229 * and increases the number of allocations possible without having to 7230 * take the list_lock. 7231 */ 7232 static unsigned int slub_min_order; 7233 static unsigned int slub_max_order = 7234 IS_ENABLED(CONFIG_SLUB_TINY) ? 1 : PAGE_ALLOC_COSTLY_ORDER; 7235 static unsigned int slub_min_objects; 7236 7237 /* 7238 * Calculate the order of allocation given an slab object size. 7239 * 7240 * The order of allocation has significant impact on performance and other 7241 * system components. Generally order 0 allocations should be preferred since 7242 * order 0 does not cause fragmentation in the page allocator. Larger objects 7243 * be problematic to put into order 0 slabs because there may be too much 7244 * unused space left. We go to a higher order if more than 1/16th of the slab 7245 * would be wasted. 7246 * 7247 * In order to reach satisfactory performance we must ensure that a minimum 7248 * number of objects is in one slab. Otherwise we may generate too much 7249 * activity on the partial lists which requires taking the list_lock. This is 7250 * less a concern for large slabs though which are rarely used. 7251 * 7252 * slab_max_order specifies the order where we begin to stop considering the 7253 * number of objects in a slab as critical. If we reach slab_max_order then 7254 * we try to keep the page order as low as possible. So we accept more waste 7255 * of space in favor of a small page order. 7256 * 7257 * Higher order allocations also allow the placement of more objects in a 7258 * slab and thereby reduce object handling overhead. If the user has 7259 * requested a higher minimum order then we start with that one instead of 7260 * the smallest order which will fit the object. 7261 */ 7262 static inline unsigned int calc_slab_order(unsigned int size, 7263 unsigned int min_order, unsigned int max_order, 7264 unsigned int fract_leftover) 7265 { 7266 unsigned int order; 7267 7268 for (order = min_order; order <= max_order; order++) { 7269 7270 unsigned int slab_size = (unsigned int)PAGE_SIZE << order; 7271 unsigned int rem; 7272 7273 rem = slab_size % size; 7274 7275 if (rem <= slab_size / fract_leftover) 7276 break; 7277 } 7278 7279 return order; 7280 } 7281 7282 static inline int calculate_order(unsigned int size) 7283 { 7284 unsigned int order; 7285 unsigned int min_objects; 7286 unsigned int max_objects; 7287 unsigned int min_order; 7288 7289 min_objects = slub_min_objects; 7290 if (!min_objects) { 7291 /* 7292 * Some architectures will only update present cpus when 7293 * onlining them, so don't trust the number if it's just 1. But 7294 * we also don't want to use nr_cpu_ids always, as on some other 7295 * architectures, there can be many possible cpus, but never 7296 * onlined. Here we compromise between trying to avoid too high 7297 * order on systems that appear larger than they are, and too 7298 * low order on systems that appear smaller than they are. 7299 */ 7300 unsigned int nr_cpus = num_present_cpus(); 7301 if (nr_cpus <= 1) 7302 nr_cpus = nr_cpu_ids; 7303 min_objects = 4 * (fls(nr_cpus) + 1); 7304 } 7305 /* min_objects can't be 0 because get_order(0) is undefined */ 7306 max_objects = max(order_objects(slub_max_order, size), 1U); 7307 min_objects = min(min_objects, max_objects); 7308 7309 min_order = max_t(unsigned int, slub_min_order, 7310 get_order(min_objects * size)); 7311 if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE) 7312 return get_order(size * MAX_OBJS_PER_PAGE) - 1; 7313 7314 /* 7315 * Attempt to find best configuration for a slab. This works by first 7316 * attempting to generate a layout with the best possible configuration 7317 * and backing off gradually. 7318 * 7319 * We start with accepting at most 1/16 waste and try to find the 7320 * smallest order from min_objects-derived/slab_min_order up to 7321 * slab_max_order that will satisfy the constraint. Note that increasing 7322 * the order can only result in same or less fractional waste, not more. 7323 * 7324 * If that fails, we increase the acceptable fraction of waste and try 7325 * again. The last iteration with fraction of 1/2 would effectively 7326 * accept any waste and give us the order determined by min_objects, as 7327 * long as at least single object fits within slab_max_order. 7328 */ 7329 for (unsigned int fraction = 16; fraction > 1; fraction /= 2) { 7330 order = calc_slab_order(size, min_order, slub_max_order, 7331 fraction); 7332 if (order <= slub_max_order) 7333 return order; 7334 } 7335 7336 /* 7337 * Doh this slab cannot be placed using slab_max_order. 7338 */ 7339 order = get_order(size); 7340 if (order <= MAX_PAGE_ORDER) 7341 return order; 7342 return -ENOSYS; 7343 } 7344 7345 static void 7346 init_kmem_cache_node(struct kmem_cache_node *n, struct node_barn *barn) 7347 { 7348 n->nr_partial = 0; 7349 spin_lock_init(&n->list_lock); 7350 INIT_LIST_HEAD(&n->partial); 7351 #ifdef CONFIG_SLUB_DEBUG 7352 atomic_long_set(&n->nr_slabs, 0); 7353 atomic_long_set(&n->total_objects, 0); 7354 INIT_LIST_HEAD(&n->full); 7355 #endif 7356 n->barn = barn; 7357 if (barn) 7358 barn_init(barn); 7359 } 7360 7361 #ifdef CONFIG_SLUB_STATS 7362 static inline int alloc_kmem_cache_stats(struct kmem_cache *s) 7363 { 7364 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE < 7365 NR_KMALLOC_TYPES * KMALLOC_SHIFT_HIGH * 7366 sizeof(struct kmem_cache_stats)); 7367 7368 s->cpu_stats = alloc_percpu(struct kmem_cache_stats); 7369 7370 if (!s->cpu_stats) 7371 return 0; 7372 7373 return 1; 7374 } 7375 #endif 7376 7377 static int init_percpu_sheaves(struct kmem_cache *s) 7378 { 7379 static struct slab_sheaf bootstrap_sheaf = {}; 7380 int cpu; 7381 7382 for_each_possible_cpu(cpu) { 7383 struct slub_percpu_sheaves *pcs; 7384 7385 pcs = per_cpu_ptr(s->cpu_sheaves, cpu); 7386 7387 local_trylock_init(&pcs->lock); 7388 7389 /* 7390 * Bootstrap sheaf has zero size so fast-path allocation fails. 7391 * It has also size == s->sheaf_capacity, so fast-path free 7392 * fails. In the slow paths we recognize the situation by 7393 * checking s->sheaf_capacity. This allows fast paths to assume 7394 * s->cpu_sheaves and pcs->main always exists and are valid. 7395 * It's also safe to share the single static bootstrap_sheaf 7396 * with zero-sized objects array as it's never modified. 7397 * 7398 * Bootstrap_sheaf also has NULL pointer to kmem_cache so we 7399 * recognize it and not attempt to free it when destroying the 7400 * cache. 7401 * 7402 * We keep bootstrap_sheaf for kmem_cache and kmem_cache_node, 7403 * caches with debug enabled, and all caches with SLUB_TINY. 7404 * For kmalloc caches it's used temporarily during the initial 7405 * bootstrap. 7406 */ 7407 if (!s->sheaf_capacity) 7408 pcs->main = &bootstrap_sheaf; 7409 else 7410 pcs->main = alloc_empty_sheaf(s, GFP_KERNEL); 7411 7412 if (!pcs->main) 7413 return -ENOMEM; 7414 } 7415 7416 return 0; 7417 } 7418 7419 static struct kmem_cache *kmem_cache_node; 7420 7421 /* 7422 * No kmalloc_node yet so do it by hand. We know that this is the first 7423 * slab on the node for this slabcache. There are no concurrent accesses 7424 * possible. 7425 * 7426 * Note that this function only works on the kmem_cache_node 7427 * when allocating for the kmem_cache_node. This is used for bootstrapping 7428 * memory on a fresh node that has no slab structures yet. 7429 */ 7430 static void early_kmem_cache_node_alloc(int node) 7431 { 7432 struct slab *slab; 7433 struct kmem_cache_node *n; 7434 7435 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node)); 7436 7437 slab = new_slab(kmem_cache_node, GFP_NOWAIT, node); 7438 7439 BUG_ON(!slab); 7440 if (slab_nid(slab) != node) { 7441 pr_err("SLUB: Unable to allocate memory from node %d\n", node); 7442 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n"); 7443 } 7444 7445 n = slab->freelist; 7446 BUG_ON(!n); 7447 #ifdef CONFIG_SLUB_DEBUG 7448 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE); 7449 #endif 7450 n = kasan_slab_alloc(kmem_cache_node, n, GFP_KERNEL, false); 7451 slab->freelist = get_freepointer(kmem_cache_node, n); 7452 slab->inuse = 1; 7453 kmem_cache_node->node[node] = n; 7454 init_kmem_cache_node(n, NULL); 7455 inc_slabs_node(kmem_cache_node, node, slab->objects); 7456 7457 /* 7458 * No locks need to be taken here as it has just been 7459 * initialized and there is no concurrent access. 7460 */ 7461 __add_partial(n, slab, ADD_TO_HEAD); 7462 } 7463 7464 static void free_kmem_cache_nodes(struct kmem_cache *s) 7465 { 7466 int node; 7467 struct kmem_cache_node *n; 7468 7469 for_each_kmem_cache_node(s, node, n) { 7470 if (n->barn) { 7471 WARN_ON(n->barn->nr_full); 7472 WARN_ON(n->barn->nr_empty); 7473 kfree(n->barn); 7474 n->barn = NULL; 7475 } 7476 7477 s->node[node] = NULL; 7478 kmem_cache_free(kmem_cache_node, n); 7479 } 7480 } 7481 7482 void __kmem_cache_release(struct kmem_cache *s) 7483 { 7484 cache_random_seq_destroy(s); 7485 pcs_destroy(s); 7486 #ifdef CONFIG_SLUB_STATS 7487 free_percpu(s->cpu_stats); 7488 #endif 7489 free_kmem_cache_nodes(s); 7490 } 7491 7492 static int init_kmem_cache_nodes(struct kmem_cache *s) 7493 { 7494 int node; 7495 7496 for_each_node_mask(node, slab_nodes) { 7497 struct kmem_cache_node *n; 7498 struct node_barn *barn = NULL; 7499 7500 if (slab_state == DOWN) { 7501 early_kmem_cache_node_alloc(node); 7502 continue; 7503 } 7504 7505 if (cache_has_sheaves(s)) { 7506 barn = kmalloc_node(sizeof(*barn), GFP_KERNEL, node); 7507 7508 if (!barn) 7509 return 0; 7510 } 7511 7512 n = kmem_cache_alloc_node(kmem_cache_node, 7513 GFP_KERNEL, node); 7514 if (!n) { 7515 kfree(barn); 7516 return 0; 7517 } 7518 7519 init_kmem_cache_node(n, barn); 7520 7521 s->node[node] = n; 7522 } 7523 return 1; 7524 } 7525 7526 static unsigned int calculate_sheaf_capacity(struct kmem_cache *s, 7527 struct kmem_cache_args *args) 7528 7529 { 7530 unsigned int capacity; 7531 size_t size; 7532 7533 7534 if (IS_ENABLED(CONFIG_SLUB_TINY) || s->flags & SLAB_DEBUG_FLAGS) 7535 return 0; 7536 7537 /* 7538 * Bootstrap caches can't have sheaves for now (SLAB_NO_OBJ_EXT). 7539 * SLAB_NOLEAKTRACE caches (e.g., kmemleak's object_cache) must not 7540 * have sheaves to avoid recursion when sheaf allocation triggers 7541 * kmemleak tracking. 7542 */ 7543 if (s->flags & (SLAB_NO_OBJ_EXT | SLAB_NOLEAKTRACE)) 7544 return 0; 7545 7546 /* 7547 * For now we use roughly similar formula (divided by two as there are 7548 * two percpu sheaves) as what was used for percpu partial slabs, which 7549 * should result in similar lock contention (barn or list_lock) 7550 */ 7551 if (s->size >= PAGE_SIZE) 7552 capacity = 4; 7553 else if (s->size >= 1024) 7554 capacity = 12; 7555 else if (s->size >= 256) 7556 capacity = 26; 7557 else 7558 capacity = 60; 7559 7560 /* Increment capacity to make sheaf exactly a kmalloc size bucket */ 7561 size = struct_size_t(struct slab_sheaf, objects, capacity); 7562 size = kmalloc_size_roundup(size); 7563 capacity = (size - struct_size_t(struct slab_sheaf, objects, 0)) / sizeof(void *); 7564 7565 /* 7566 * Respect an explicit request for capacity that's typically motivated by 7567 * expected maximum size of kmem_cache_prefill_sheaf() to not end up 7568 * using low-performance oversize sheaves 7569 */ 7570 return max(capacity, args->sheaf_capacity); 7571 } 7572 7573 /* 7574 * calculate_sizes() determines the order and the distribution of data within 7575 * a slab object. 7576 */ 7577 static int calculate_sizes(struct kmem_cache_args *args, struct kmem_cache *s) 7578 { 7579 slab_flags_t flags = s->flags; 7580 unsigned int size = s->object_size; 7581 unsigned int aligned_size; 7582 unsigned int order; 7583 7584 /* 7585 * Round up object size to the next word boundary. We can only 7586 * place the free pointer at word boundaries and this determines 7587 * the possible location of the free pointer. 7588 */ 7589 size = ALIGN(size, sizeof(void *)); 7590 7591 #ifdef CONFIG_SLUB_DEBUG 7592 /* 7593 * Determine if we can poison the object itself. If the user of 7594 * the slab may touch the object after free or before allocation 7595 * then we should never poison the object itself. 7596 */ 7597 if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) && 7598 !s->ctor) 7599 s->flags |= __OBJECT_POISON; 7600 else 7601 s->flags &= ~__OBJECT_POISON; 7602 7603 7604 /* 7605 * If we are Redzoning and there is no space between the end of the 7606 * object and the following fields, add one word so the right Redzone 7607 * is non-empty. 7608 */ 7609 if ((flags & SLAB_RED_ZONE) && size == s->object_size) 7610 size += sizeof(void *); 7611 #endif 7612 7613 /* 7614 * With that we have determined the number of bytes in actual use 7615 * by the object and redzoning. 7616 */ 7617 s->inuse = size; 7618 7619 if (((flags & SLAB_TYPESAFE_BY_RCU) && !args->use_freeptr_offset) || 7620 (flags & SLAB_POISON) || 7621 (s->ctor && !args->use_freeptr_offset) || 7622 ((flags & SLAB_RED_ZONE) && 7623 (s->object_size < sizeof(void *) || slub_debug_orig_size(s)))) { 7624 /* 7625 * Relocate free pointer after the object if it is not 7626 * permitted to overwrite the first word of the object on 7627 * kmem_cache_free. 7628 * 7629 * This is the case if we do RCU, have a constructor, are 7630 * poisoning the objects, or are redzoning an object smaller 7631 * than sizeof(void *) or are redzoning an object with 7632 * slub_debug_orig_size() enabled, in which case the right 7633 * redzone may be extended. 7634 * 7635 * The assumption that s->offset >= s->inuse means free 7636 * pointer is outside of the object is used in the 7637 * freeptr_outside_object() function. If that is no 7638 * longer true, the function needs to be modified. 7639 */ 7640 s->offset = size; 7641 size += sizeof(void *); 7642 } else if (((flags & SLAB_TYPESAFE_BY_RCU) || s->ctor) && 7643 args->use_freeptr_offset) { 7644 s->offset = args->freeptr_offset; 7645 } else { 7646 /* 7647 * Store freelist pointer near middle of object to keep 7648 * it away from the edges of the object to avoid small 7649 * sized over/underflows from neighboring allocations. 7650 */ 7651 s->offset = ALIGN_DOWN(s->object_size / 2, sizeof(void *)); 7652 } 7653 7654 #ifdef CONFIG_SLUB_DEBUG 7655 if (flags & SLAB_STORE_USER) { 7656 /* 7657 * Need to store information about allocs and frees after 7658 * the object. 7659 */ 7660 size += 2 * sizeof(struct track); 7661 7662 /* Save the original kmalloc request size */ 7663 if (flags & SLAB_KMALLOC) 7664 size += sizeof(unsigned long); 7665 } 7666 #endif 7667 7668 kasan_cache_create(s, &size, &s->flags); 7669 #ifdef CONFIG_SLUB_DEBUG 7670 if (flags & SLAB_RED_ZONE) { 7671 /* 7672 * Add some empty padding so that we can catch 7673 * overwrites from earlier objects rather than let 7674 * tracking information or the free pointer be 7675 * corrupted if a user writes before the start 7676 * of the object. 7677 */ 7678 size += sizeof(void *); 7679 7680 s->red_left_pad = sizeof(void *); 7681 s->red_left_pad = ALIGN(s->red_left_pad, s->align); 7682 size += s->red_left_pad; 7683 } 7684 #endif 7685 7686 /* 7687 * SLUB stores one object immediately after another beginning from 7688 * offset 0. In order to align the objects we have to simply size 7689 * each object to conform to the alignment. 7690 */ 7691 aligned_size = ALIGN(size, s->align); 7692 #if defined(CONFIG_SLAB_OBJ_EXT) && defined(CONFIG_64BIT) 7693 if (slab_args_unmergeable(args, s->flags) && 7694 (aligned_size - size >= sizeof(struct slabobj_ext))) 7695 s->flags |= SLAB_OBJ_EXT_IN_OBJ; 7696 #endif 7697 size = aligned_size; 7698 7699 s->size = size; 7700 s->reciprocal_size = reciprocal_value(size); 7701 order = calculate_order(size); 7702 7703 if ((int)order < 0) 7704 return 0; 7705 7706 s->allocflags = __GFP_COMP; 7707 7708 if (s->flags & SLAB_CACHE_DMA) 7709 s->allocflags |= GFP_DMA; 7710 7711 if (s->flags & SLAB_CACHE_DMA32) 7712 s->allocflags |= GFP_DMA32; 7713 7714 if (s->flags & SLAB_RECLAIM_ACCOUNT) 7715 s->allocflags |= __GFP_RECLAIMABLE; 7716 7717 /* 7718 * For KMALLOC_NORMAL caches we enable sheaves later by 7719 * bootstrap_kmalloc_sheaves() to avoid recursion 7720 */ 7721 if (!is_kmalloc_normal(s)) 7722 s->sheaf_capacity = calculate_sheaf_capacity(s, args); 7723 7724 /* 7725 * Determine the number of objects per slab 7726 */ 7727 s->oo = oo_make(order, size); 7728 s->min = oo_make(get_order(size), size); 7729 7730 return !!oo_objects(s->oo); 7731 } 7732 7733 static void list_slab_objects(struct kmem_cache *s, struct slab *slab) 7734 { 7735 #ifdef CONFIG_SLUB_DEBUG 7736 void *addr = slab_address(slab); 7737 void *p; 7738 7739 if (!slab_add_kunit_errors()) 7740 slab_bug(s, "Objects remaining on __kmem_cache_shutdown()"); 7741 7742 spin_lock(&object_map_lock); 7743 __fill_map(object_map, s, slab); 7744 7745 for_each_object(p, s, addr, slab->objects) { 7746 7747 if (!test_bit(__obj_to_index(s, addr, p), object_map)) { 7748 if (slab_add_kunit_errors()) 7749 continue; 7750 pr_err("Object 0x%p @offset=%tu\n", p, p - addr); 7751 print_tracking(s, p); 7752 } 7753 } 7754 spin_unlock(&object_map_lock); 7755 7756 __slab_err(slab); 7757 #endif 7758 } 7759 7760 /* 7761 * Attempt to free all partial slabs on a node. 7762 * This is called from __kmem_cache_shutdown(). We must take list_lock 7763 * because sysfs file might still access partial list after the shutdowning. 7764 */ 7765 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n) 7766 { 7767 LIST_HEAD(discard); 7768 struct slab *slab, *h; 7769 7770 BUG_ON(irqs_disabled()); 7771 spin_lock_irq(&n->list_lock); 7772 list_for_each_entry_safe(slab, h, &n->partial, slab_list) { 7773 if (!slab->inuse) { 7774 remove_partial(n, slab); 7775 list_add(&slab->slab_list, &discard); 7776 } else { 7777 list_slab_objects(s, slab); 7778 } 7779 } 7780 spin_unlock_irq(&n->list_lock); 7781 7782 list_for_each_entry_safe(slab, h, &discard, slab_list) 7783 discard_slab(s, slab); 7784 } 7785 7786 bool __kmem_cache_empty(struct kmem_cache *s) 7787 { 7788 int node; 7789 struct kmem_cache_node *n; 7790 7791 for_each_kmem_cache_node(s, node, n) 7792 if (n->nr_partial || node_nr_slabs(n)) 7793 return false; 7794 return true; 7795 } 7796 7797 /* 7798 * Release all resources used by a slab cache. 7799 */ 7800 int __kmem_cache_shutdown(struct kmem_cache *s) 7801 { 7802 int node; 7803 struct kmem_cache_node *n; 7804 7805 flush_all_cpus_locked(s); 7806 7807 /* we might have rcu sheaves in flight */ 7808 if (cache_has_sheaves(s)) 7809 rcu_barrier(); 7810 7811 /* Attempt to free all objects */ 7812 for_each_kmem_cache_node(s, node, n) { 7813 if (n->barn) 7814 barn_shrink(s, n->barn); 7815 free_partial(s, n); 7816 if (n->nr_partial || node_nr_slabs(n)) 7817 return 1; 7818 } 7819 return 0; 7820 } 7821 7822 #ifdef CONFIG_PRINTK 7823 void __kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab) 7824 { 7825 void *base; 7826 int __maybe_unused i; 7827 unsigned int objnr; 7828 void *objp; 7829 void *objp0; 7830 struct kmem_cache *s = slab->slab_cache; 7831 struct track __maybe_unused *trackp; 7832 7833 kpp->kp_ptr = object; 7834 kpp->kp_slab = slab; 7835 kpp->kp_slab_cache = s; 7836 base = slab_address(slab); 7837 objp0 = kasan_reset_tag(object); 7838 #ifdef CONFIG_SLUB_DEBUG 7839 objp = restore_red_left(s, objp0); 7840 #else 7841 objp = objp0; 7842 #endif 7843 objnr = obj_to_index(s, slab, objp); 7844 kpp->kp_data_offset = (unsigned long)((char *)objp0 - (char *)objp); 7845 objp = base + s->size * objnr; 7846 kpp->kp_objp = objp; 7847 if (WARN_ON_ONCE(objp < base || objp >= base + slab->objects * s->size 7848 || (objp - base) % s->size) || 7849 !(s->flags & SLAB_STORE_USER)) 7850 return; 7851 #ifdef CONFIG_SLUB_DEBUG 7852 objp = fixup_red_left(s, objp); 7853 trackp = get_track(s, objp, TRACK_ALLOC); 7854 kpp->kp_ret = (void *)trackp->addr; 7855 #ifdef CONFIG_STACKDEPOT 7856 { 7857 depot_stack_handle_t handle; 7858 unsigned long *entries; 7859 unsigned int nr_entries; 7860 7861 handle = READ_ONCE(trackp->handle); 7862 if (handle) { 7863 nr_entries = stack_depot_fetch(handle, &entries); 7864 for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++) 7865 kpp->kp_stack[i] = (void *)entries[i]; 7866 } 7867 7868 trackp = get_track(s, objp, TRACK_FREE); 7869 handle = READ_ONCE(trackp->handle); 7870 if (handle) { 7871 nr_entries = stack_depot_fetch(handle, &entries); 7872 for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++) 7873 kpp->kp_free_stack[i] = (void *)entries[i]; 7874 } 7875 } 7876 #endif 7877 #endif 7878 } 7879 #endif 7880 7881 /******************************************************************** 7882 * Kmalloc subsystem 7883 *******************************************************************/ 7884 7885 static int __init setup_slub_min_order(const char *str, const struct kernel_param *kp) 7886 { 7887 int ret; 7888 7889 ret = kstrtouint(str, 0, &slub_min_order); 7890 if (ret) 7891 return ret; 7892 7893 if (slub_min_order > slub_max_order) 7894 slub_max_order = slub_min_order; 7895 7896 return 0; 7897 } 7898 7899 static const struct kernel_param_ops param_ops_slab_min_order __initconst = { 7900 .set = setup_slub_min_order, 7901 }; 7902 __core_param_cb(slab_min_order, ¶m_ops_slab_min_order, &slub_min_order, 0); 7903 __core_param_cb(slub_min_order, ¶m_ops_slab_min_order, &slub_min_order, 0); 7904 7905 static int __init setup_slub_max_order(const char *str, const struct kernel_param *kp) 7906 { 7907 int ret; 7908 7909 ret = kstrtouint(str, 0, &slub_max_order); 7910 if (ret) 7911 return ret; 7912 7913 slub_max_order = min_t(unsigned int, slub_max_order, MAX_PAGE_ORDER); 7914 7915 if (slub_min_order > slub_max_order) 7916 slub_min_order = slub_max_order; 7917 7918 return 0; 7919 } 7920 7921 static const struct kernel_param_ops param_ops_slab_max_order __initconst = { 7922 .set = setup_slub_max_order, 7923 }; 7924 __core_param_cb(slab_max_order, ¶m_ops_slab_max_order, &slub_max_order, 0); 7925 __core_param_cb(slub_max_order, ¶m_ops_slab_max_order, &slub_max_order, 0); 7926 7927 core_param(slab_min_objects, slub_min_objects, uint, 0); 7928 core_param(slub_min_objects, slub_min_objects, uint, 0); 7929 7930 #ifdef CONFIG_NUMA 7931 static int __init setup_slab_strict_numa(const char *str, const struct kernel_param *kp) 7932 { 7933 if (nr_node_ids > 1) { 7934 static_branch_enable(&strict_numa); 7935 pr_info("SLUB: Strict NUMA enabled.\n"); 7936 } else { 7937 pr_warn("slab_strict_numa parameter set on non NUMA system.\n"); 7938 } 7939 7940 return 0; 7941 } 7942 7943 static const struct kernel_param_ops param_ops_slab_strict_numa __initconst = { 7944 .flags = KERNEL_PARAM_OPS_FL_NOARG, 7945 .set = setup_slab_strict_numa, 7946 }; 7947 __core_param_cb(slab_strict_numa, ¶m_ops_slab_strict_numa, NULL, 0); 7948 #endif 7949 7950 7951 #ifdef CONFIG_HARDENED_USERCOPY 7952 /* 7953 * Rejects incorrectly sized objects and objects that are to be copied 7954 * to/from userspace but do not fall entirely within the containing slab 7955 * cache's usercopy region. 7956 * 7957 * Returns NULL if check passes, otherwise const char * to name of cache 7958 * to indicate an error. 7959 */ 7960 void __check_heap_object(const void *ptr, unsigned long n, 7961 const struct slab *slab, bool to_user) 7962 { 7963 struct kmem_cache *s; 7964 unsigned int offset; 7965 bool is_kfence = is_kfence_address(ptr); 7966 7967 ptr = kasan_reset_tag(ptr); 7968 7969 /* Find object and usable object size. */ 7970 s = slab->slab_cache; 7971 7972 /* Reject impossible pointers. */ 7973 if (ptr < slab_address(slab)) 7974 usercopy_abort("SLUB object not in SLUB page?!", NULL, 7975 to_user, 0, n); 7976 7977 /* Find offset within object. */ 7978 if (is_kfence) 7979 offset = ptr - kfence_object_start(ptr); 7980 else 7981 offset = (ptr - slab_address(slab)) % s->size; 7982 7983 /* Adjust for redzone and reject if within the redzone. */ 7984 if (!is_kfence && kmem_cache_debug_flags(s, SLAB_RED_ZONE)) { 7985 if (offset < s->red_left_pad) 7986 usercopy_abort("SLUB object in left red zone", 7987 s->name, to_user, offset, n); 7988 offset -= s->red_left_pad; 7989 } 7990 7991 /* Allow address range falling entirely within usercopy region. */ 7992 if (offset >= s->useroffset && 7993 offset - s->useroffset <= s->usersize && 7994 n <= s->useroffset - offset + s->usersize) 7995 return; 7996 7997 usercopy_abort("SLUB object", s->name, to_user, offset, n); 7998 } 7999 #endif /* CONFIG_HARDENED_USERCOPY */ 8000 8001 #define SHRINK_PROMOTE_MAX 32 8002 8003 /* 8004 * kmem_cache_shrink discards empty slabs and promotes the slabs filled 8005 * up most to the head of the partial lists. New allocations will then 8006 * fill those up and thus they can be removed from the partial lists. 8007 * 8008 * The slabs with the least items are placed last. This results in them 8009 * being allocated from last increasing the chance that the last objects 8010 * are freed in them. 8011 */ 8012 static int __kmem_cache_do_shrink(struct kmem_cache *s) 8013 { 8014 int node; 8015 int i; 8016 struct kmem_cache_node *n; 8017 struct slab *slab; 8018 struct slab *t; 8019 struct list_head discard; 8020 struct list_head promote[SHRINK_PROMOTE_MAX]; 8021 unsigned long flags; 8022 int ret = 0; 8023 8024 for_each_kmem_cache_node(s, node, n) { 8025 INIT_LIST_HEAD(&discard); 8026 for (i = 0; i < SHRINK_PROMOTE_MAX; i++) 8027 INIT_LIST_HEAD(promote + i); 8028 8029 if (n->barn) 8030 barn_shrink(s, n->barn); 8031 8032 spin_lock_irqsave(&n->list_lock, flags); 8033 8034 /* 8035 * Build lists of slabs to discard or promote. 8036 * 8037 * Note that concurrent frees may occur while we hold the 8038 * list_lock. slab->inuse here is the upper limit. 8039 */ 8040 list_for_each_entry_safe(slab, t, &n->partial, slab_list) { 8041 int free = slab->objects - slab->inuse; 8042 8043 /* Do not reread slab->inuse */ 8044 barrier(); 8045 8046 /* We do not keep full slabs on the list */ 8047 BUG_ON(free <= 0); 8048 8049 if (free == slab->objects) { 8050 list_move(&slab->slab_list, &discard); 8051 slab_clear_node_partial(slab); 8052 n->nr_partial--; 8053 dec_slabs_node(s, node, slab->objects); 8054 } else if (free <= SHRINK_PROMOTE_MAX) 8055 list_move(&slab->slab_list, promote + free - 1); 8056 } 8057 8058 /* 8059 * Promote the slabs filled up most to the head of the 8060 * partial list. 8061 */ 8062 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--) 8063 list_splice(promote + i, &n->partial); 8064 8065 spin_unlock_irqrestore(&n->list_lock, flags); 8066 8067 /* Release empty slabs */ 8068 list_for_each_entry_safe(slab, t, &discard, slab_list) 8069 free_slab(s, slab); 8070 8071 if (node_nr_slabs(n)) 8072 ret = 1; 8073 } 8074 8075 return ret; 8076 } 8077 8078 int __kmem_cache_shrink(struct kmem_cache *s) 8079 { 8080 flush_all(s); 8081 return __kmem_cache_do_shrink(s); 8082 } 8083 8084 static int slab_mem_going_offline_callback(void) 8085 { 8086 struct kmem_cache *s; 8087 8088 mutex_lock(&slab_mutex); 8089 list_for_each_entry(s, &slab_caches, list) { 8090 flush_all_cpus_locked(s); 8091 __kmem_cache_do_shrink(s); 8092 } 8093 mutex_unlock(&slab_mutex); 8094 8095 return 0; 8096 } 8097 8098 static int slab_mem_going_online_callback(int nid) 8099 { 8100 struct kmem_cache_node *n; 8101 struct kmem_cache *s; 8102 int ret = 0; 8103 8104 /* 8105 * We are bringing a node online. No memory is available yet. We must 8106 * allocate a kmem_cache_node structure in order to bring the node 8107 * online. 8108 */ 8109 mutex_lock(&slab_mutex); 8110 list_for_each_entry(s, &slab_caches, list) { 8111 struct node_barn *barn = NULL; 8112 8113 /* 8114 * The structure may already exist if the node was previously 8115 * onlined and offlined. 8116 */ 8117 if (get_node(s, nid)) 8118 continue; 8119 8120 if (cache_has_sheaves(s)) { 8121 barn = kmalloc_node(sizeof(*barn), GFP_KERNEL, nid); 8122 8123 if (!barn) { 8124 ret = -ENOMEM; 8125 goto out; 8126 } 8127 } 8128 8129 /* 8130 * XXX: kmem_cache_alloc_node will fallback to other nodes 8131 * since memory is not yet available from the node that 8132 * is brought up. 8133 */ 8134 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL); 8135 if (!n) { 8136 kfree(barn); 8137 ret = -ENOMEM; 8138 goto out; 8139 } 8140 8141 init_kmem_cache_node(n, barn); 8142 8143 s->node[nid] = n; 8144 } 8145 /* 8146 * Any cache created after this point will also have kmem_cache_node 8147 * initialized for the new node. 8148 */ 8149 node_set(nid, slab_nodes); 8150 out: 8151 mutex_unlock(&slab_mutex); 8152 return ret; 8153 } 8154 8155 static int slab_memory_callback(struct notifier_block *self, 8156 unsigned long action, void *arg) 8157 { 8158 struct node_notify *nn = arg; 8159 int nid = nn->nid; 8160 int ret = 0; 8161 8162 switch (action) { 8163 case NODE_ADDING_FIRST_MEMORY: 8164 ret = slab_mem_going_online_callback(nid); 8165 break; 8166 case NODE_REMOVING_LAST_MEMORY: 8167 ret = slab_mem_going_offline_callback(); 8168 break; 8169 } 8170 if (ret) 8171 ret = notifier_from_errno(ret); 8172 else 8173 ret = NOTIFY_OK; 8174 return ret; 8175 } 8176 8177 /******************************************************************** 8178 * Basic setup of slabs 8179 *******************************************************************/ 8180 8181 /* 8182 * Used for early kmem_cache structures that were allocated using 8183 * the page allocator. Allocate them properly then fix up the pointers 8184 * that may be pointing to the wrong kmem_cache structure. 8185 */ 8186 8187 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache) 8188 { 8189 int node; 8190 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT); 8191 struct kmem_cache_node *n; 8192 8193 memcpy(s, static_cache, kmem_cache->object_size); 8194 8195 for_each_kmem_cache_node(s, node, n) { 8196 struct slab *p; 8197 8198 list_for_each_entry(p, &n->partial, slab_list) 8199 p->slab_cache = s; 8200 8201 #ifdef CONFIG_SLUB_DEBUG 8202 list_for_each_entry(p, &n->full, slab_list) 8203 p->slab_cache = s; 8204 #endif 8205 } 8206 list_add(&s->list, &slab_caches); 8207 return s; 8208 } 8209 8210 /* 8211 * Finish the sheaves initialization done normally by init_percpu_sheaves() and 8212 * init_kmem_cache_nodes(). For normal kmalloc caches we have to bootstrap it 8213 * since sheaves and barns are allocated by kmalloc. 8214 */ 8215 static void __init bootstrap_cache_sheaves(struct kmem_cache *s) 8216 { 8217 struct kmem_cache_args empty_args = {}; 8218 unsigned int capacity; 8219 bool failed = false; 8220 int node, cpu; 8221 8222 capacity = calculate_sheaf_capacity(s, &empty_args); 8223 8224 /* capacity can be 0 due to debugging or SLUB_TINY */ 8225 if (!capacity) 8226 return; 8227 8228 for_each_node_mask(node, slab_nodes) { 8229 struct node_barn *barn; 8230 8231 barn = kmalloc_node(sizeof(*barn), GFP_KERNEL, node); 8232 8233 if (!barn) { 8234 failed = true; 8235 goto out; 8236 } 8237 8238 barn_init(barn); 8239 get_node(s, node)->barn = barn; 8240 } 8241 8242 for_each_possible_cpu(cpu) { 8243 struct slub_percpu_sheaves *pcs; 8244 8245 pcs = per_cpu_ptr(s->cpu_sheaves, cpu); 8246 8247 pcs->main = __alloc_empty_sheaf(s, GFP_KERNEL, capacity); 8248 8249 if (!pcs->main) { 8250 failed = true; 8251 break; 8252 } 8253 } 8254 8255 out: 8256 /* 8257 * It's still early in boot so treat this like same as a failure to 8258 * create the kmalloc cache in the first place 8259 */ 8260 if (failed) 8261 panic("Out of memory when creating kmem_cache %s\n", s->name); 8262 8263 s->sheaf_capacity = capacity; 8264 } 8265 8266 static void __init bootstrap_kmalloc_sheaves(void) 8267 { 8268 enum kmalloc_cache_type type; 8269 8270 for (type = KMALLOC_NORMAL; type <= KMALLOC_RANDOM_END; type++) { 8271 for (int idx = 0; idx < KMALLOC_SHIFT_HIGH + 1; idx++) { 8272 if (kmalloc_caches[type][idx]) 8273 bootstrap_cache_sheaves(kmalloc_caches[type][idx]); 8274 } 8275 } 8276 } 8277 8278 void __init kmem_cache_init(void) 8279 { 8280 static __initdata struct kmem_cache boot_kmem_cache, 8281 boot_kmem_cache_node; 8282 int node; 8283 8284 if (debug_guardpage_minorder()) 8285 slub_max_order = 0; 8286 8287 /* Inform pointer hashing choice about slub debugging state. */ 8288 hash_pointers_finalize(__slub_debug_enabled()); 8289 8290 kmem_cache_node = &boot_kmem_cache_node; 8291 kmem_cache = &boot_kmem_cache; 8292 8293 /* 8294 * Initialize the nodemask for which we will allocate per node 8295 * structures. Here we don't need taking slab_mutex yet. 8296 */ 8297 for_each_node_state(node, N_MEMORY) 8298 node_set(node, slab_nodes); 8299 8300 create_boot_cache(kmem_cache_node, "kmem_cache_node", 8301 sizeof(struct kmem_cache_node), 8302 SLAB_HWCACHE_ALIGN | SLAB_NO_OBJ_EXT, 0, 0); 8303 8304 hotplug_node_notifier(slab_memory_callback, SLAB_CALLBACK_PRI); 8305 8306 /* Able to allocate the per node structures */ 8307 slab_state = PARTIAL; 8308 8309 create_boot_cache(kmem_cache, "kmem_cache", 8310 offsetof(struct kmem_cache, node) + 8311 nr_node_ids * sizeof(struct kmem_cache_node *), 8312 SLAB_HWCACHE_ALIGN | SLAB_NO_OBJ_EXT, 0, 0); 8313 8314 kmem_cache = bootstrap(&boot_kmem_cache); 8315 kmem_cache_node = bootstrap(&boot_kmem_cache_node); 8316 8317 /* Now we can use the kmem_cache to allocate kmalloc slabs */ 8318 setup_kmalloc_cache_index_table(); 8319 create_kmalloc_caches(); 8320 8321 bootstrap_kmalloc_sheaves(); 8322 8323 /* Setup random freelists for each cache */ 8324 init_freelist_randomization(); 8325 8326 cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL, 8327 slub_cpu_dead); 8328 8329 pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n", 8330 cache_line_size(), 8331 slub_min_order, slub_max_order, slub_min_objects, 8332 nr_cpu_ids, nr_node_ids); 8333 } 8334 8335 void __init kmem_cache_init_late(void) 8336 { 8337 flushwq = alloc_workqueue("slub_flushwq", WQ_MEM_RECLAIM | WQ_PERCPU, 8338 0); 8339 WARN_ON(!flushwq); 8340 } 8341 8342 int do_kmem_cache_create(struct kmem_cache *s, const char *name, 8343 unsigned int size, struct kmem_cache_args *args, 8344 slab_flags_t flags) 8345 { 8346 int err = -EINVAL; 8347 8348 s->name = name; 8349 s->size = s->object_size = size; 8350 8351 s->flags = kmem_cache_flags(flags, s->name); 8352 #ifdef CONFIG_SLAB_FREELIST_HARDENED 8353 s->random = get_random_long(); 8354 #endif 8355 s->align = args->align; 8356 s->ctor = args->ctor; 8357 #ifdef CONFIG_HARDENED_USERCOPY 8358 s->useroffset = args->useroffset; 8359 s->usersize = args->usersize; 8360 #endif 8361 8362 if (!calculate_sizes(args, s)) 8363 goto out; 8364 if (disable_higher_order_debug) { 8365 /* 8366 * Disable debugging flags that store metadata if the min slab 8367 * order increased. 8368 */ 8369 if (get_order(s->size) > get_order(s->object_size)) { 8370 s->flags &= ~DEBUG_METADATA_FLAGS; 8371 s->offset = 0; 8372 if (!calculate_sizes(args, s)) 8373 goto out; 8374 } 8375 } 8376 8377 #ifdef system_has_freelist_aba 8378 if (system_has_freelist_aba() && !(s->flags & SLAB_NO_CMPXCHG)) { 8379 /* Enable fast mode */ 8380 s->flags |= __CMPXCHG_DOUBLE; 8381 } 8382 #endif 8383 8384 /* 8385 * The larger the object size is, the more slabs we want on the partial 8386 * list to avoid pounding the page allocator excessively. 8387 */ 8388 s->min_partial = min_t(unsigned long, MAX_PARTIAL, ilog2(s->size) / 2); 8389 s->min_partial = max_t(unsigned long, MIN_PARTIAL, s->min_partial); 8390 8391 s->cpu_sheaves = alloc_percpu(struct slub_percpu_sheaves); 8392 if (!s->cpu_sheaves) { 8393 err = -ENOMEM; 8394 goto out; 8395 } 8396 8397 #ifdef CONFIG_NUMA 8398 s->remote_node_defrag_ratio = 1000; 8399 #endif 8400 8401 /* Initialize the pre-computed randomized freelist if slab is up */ 8402 if (slab_state >= UP) { 8403 if (init_cache_random_seq(s)) 8404 goto out; 8405 } 8406 8407 if (!init_kmem_cache_nodes(s)) 8408 goto out; 8409 8410 #ifdef CONFIG_SLUB_STATS 8411 if (!alloc_kmem_cache_stats(s)) 8412 goto out; 8413 #endif 8414 8415 err = init_percpu_sheaves(s); 8416 if (err) 8417 goto out; 8418 8419 err = 0; 8420 8421 /* Mutex is not taken during early boot */ 8422 if (slab_state <= UP) 8423 goto out; 8424 8425 /* 8426 * Failing to create sysfs files is not critical to SLUB functionality. 8427 * If it fails, proceed with cache creation without these files. 8428 */ 8429 if (sysfs_slab_add(s)) 8430 pr_err("SLUB: Unable to add cache %s to sysfs\n", s->name); 8431 8432 if (s->flags & SLAB_STORE_USER) 8433 debugfs_slab_add(s); 8434 8435 out: 8436 if (err) 8437 __kmem_cache_release(s); 8438 return err; 8439 } 8440 8441 #ifdef SLAB_SUPPORTS_SYSFS 8442 static int count_inuse(struct slab *slab) 8443 { 8444 return slab->inuse; 8445 } 8446 8447 static int count_total(struct slab *slab) 8448 { 8449 return slab->objects; 8450 } 8451 #endif 8452 8453 #ifdef CONFIG_SLUB_DEBUG 8454 static void validate_slab(struct kmem_cache *s, struct slab *slab, 8455 unsigned long *obj_map) 8456 { 8457 void *p; 8458 void *addr = slab_address(slab); 8459 8460 if (!validate_slab_ptr(slab)) { 8461 slab_err(s, slab, "Not a valid slab page"); 8462 return; 8463 } 8464 8465 if (!check_slab(s, slab) || !on_freelist(s, slab, NULL)) 8466 return; 8467 8468 /* Now we know that a valid freelist exists */ 8469 __fill_map(obj_map, s, slab); 8470 for_each_object(p, s, addr, slab->objects) { 8471 u8 val = test_bit(__obj_to_index(s, addr, p), obj_map) ? 8472 SLUB_RED_INACTIVE : SLUB_RED_ACTIVE; 8473 8474 if (!check_object(s, slab, p, val)) 8475 break; 8476 } 8477 } 8478 8479 static int validate_slab_node(struct kmem_cache *s, 8480 struct kmem_cache_node *n, unsigned long *obj_map) 8481 { 8482 unsigned long count = 0; 8483 struct slab *slab; 8484 unsigned long flags; 8485 8486 spin_lock_irqsave(&n->list_lock, flags); 8487 8488 list_for_each_entry(slab, &n->partial, slab_list) { 8489 validate_slab(s, slab, obj_map); 8490 count++; 8491 } 8492 if (count != n->nr_partial) { 8493 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n", 8494 s->name, count, n->nr_partial); 8495 slab_add_kunit_errors(); 8496 } 8497 8498 if (!(s->flags & SLAB_STORE_USER)) 8499 goto out; 8500 8501 list_for_each_entry(slab, &n->full, slab_list) { 8502 validate_slab(s, slab, obj_map); 8503 count++; 8504 } 8505 if (count != node_nr_slabs(n)) { 8506 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n", 8507 s->name, count, node_nr_slabs(n)); 8508 slab_add_kunit_errors(); 8509 } 8510 8511 out: 8512 spin_unlock_irqrestore(&n->list_lock, flags); 8513 return count; 8514 } 8515 8516 long validate_slab_cache(struct kmem_cache *s) 8517 { 8518 int node; 8519 unsigned long count = 0; 8520 struct kmem_cache_node *n; 8521 unsigned long *obj_map; 8522 8523 obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL); 8524 if (!obj_map) 8525 return -ENOMEM; 8526 8527 flush_all(s); 8528 for_each_kmem_cache_node(s, node, n) 8529 count += validate_slab_node(s, n, obj_map); 8530 8531 bitmap_free(obj_map); 8532 8533 return count; 8534 } 8535 EXPORT_SYMBOL(validate_slab_cache); 8536 8537 #ifdef CONFIG_DEBUG_FS 8538 /* 8539 * Generate lists of code addresses where slabcache objects are allocated 8540 * and freed. 8541 */ 8542 8543 struct location { 8544 depot_stack_handle_t handle; 8545 unsigned long count; 8546 unsigned long addr; 8547 unsigned long waste; 8548 long long sum_time; 8549 long min_time; 8550 long max_time; 8551 long min_pid; 8552 long max_pid; 8553 DECLARE_BITMAP(cpus, NR_CPUS); 8554 nodemask_t nodes; 8555 }; 8556 8557 struct loc_track { 8558 unsigned long max; 8559 unsigned long count; 8560 struct location *loc; 8561 loff_t idx; 8562 }; 8563 8564 static struct dentry *slab_debugfs_root; 8565 8566 static void free_loc_track(struct loc_track *t) 8567 { 8568 if (t->max) 8569 free_pages((unsigned long)t->loc, 8570 get_order(sizeof(struct location) * t->max)); 8571 } 8572 8573 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags) 8574 { 8575 struct location *l; 8576 int order; 8577 8578 order = get_order(sizeof(struct location) * max); 8579 8580 l = (void *)__get_free_pages(flags, order); 8581 if (!l) 8582 return 0; 8583 8584 if (t->count) { 8585 memcpy(l, t->loc, sizeof(struct location) * t->count); 8586 free_loc_track(t); 8587 } 8588 t->max = max; 8589 t->loc = l; 8590 return 1; 8591 } 8592 8593 static int add_location(struct loc_track *t, struct kmem_cache *s, 8594 const struct track *track, 8595 unsigned int orig_size) 8596 { 8597 long start, end, pos; 8598 struct location *l; 8599 unsigned long caddr, chandle, cwaste; 8600 unsigned long age = jiffies - track->when; 8601 depot_stack_handle_t handle = 0; 8602 unsigned int waste = s->object_size - orig_size; 8603 8604 #ifdef CONFIG_STACKDEPOT 8605 handle = READ_ONCE(track->handle); 8606 #endif 8607 start = -1; 8608 end = t->count; 8609 8610 for ( ; ; ) { 8611 pos = start + (end - start + 1) / 2; 8612 8613 /* 8614 * There is nothing at "end". If we end up there 8615 * we need to add something to before end. 8616 */ 8617 if (pos == end) 8618 break; 8619 8620 l = &t->loc[pos]; 8621 caddr = l->addr; 8622 chandle = l->handle; 8623 cwaste = l->waste; 8624 if ((track->addr == caddr) && (handle == chandle) && 8625 (waste == cwaste)) { 8626 8627 l->count++; 8628 if (track->when) { 8629 l->sum_time += age; 8630 if (age < l->min_time) 8631 l->min_time = age; 8632 if (age > l->max_time) 8633 l->max_time = age; 8634 8635 if (track->pid < l->min_pid) 8636 l->min_pid = track->pid; 8637 if (track->pid > l->max_pid) 8638 l->max_pid = track->pid; 8639 8640 cpumask_set_cpu(track->cpu, 8641 to_cpumask(l->cpus)); 8642 } 8643 node_set(page_to_nid(virt_to_page(track)), l->nodes); 8644 return 1; 8645 } 8646 8647 if (track->addr < caddr) 8648 end = pos; 8649 else if (track->addr == caddr && handle < chandle) 8650 end = pos; 8651 else if (track->addr == caddr && handle == chandle && 8652 waste < cwaste) 8653 end = pos; 8654 else 8655 start = pos; 8656 } 8657 8658 /* 8659 * Not found. Insert new tracking element. 8660 */ 8661 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC)) 8662 return 0; 8663 8664 l = t->loc + pos; 8665 if (pos < t->count) 8666 memmove(l + 1, l, 8667 (t->count - pos) * sizeof(struct location)); 8668 t->count++; 8669 l->count = 1; 8670 l->addr = track->addr; 8671 l->sum_time = age; 8672 l->min_time = age; 8673 l->max_time = age; 8674 l->min_pid = track->pid; 8675 l->max_pid = track->pid; 8676 l->handle = handle; 8677 l->waste = waste; 8678 cpumask_clear(to_cpumask(l->cpus)); 8679 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus)); 8680 nodes_clear(l->nodes); 8681 node_set(page_to_nid(virt_to_page(track)), l->nodes); 8682 return 1; 8683 } 8684 8685 static void process_slab(struct loc_track *t, struct kmem_cache *s, 8686 struct slab *slab, enum track_item alloc, 8687 unsigned long *obj_map) 8688 { 8689 void *addr = slab_address(slab); 8690 bool is_alloc = (alloc == TRACK_ALLOC); 8691 void *p; 8692 8693 __fill_map(obj_map, s, slab); 8694 8695 for_each_object(p, s, addr, slab->objects) 8696 if (!test_bit(__obj_to_index(s, addr, p), obj_map)) 8697 add_location(t, s, get_track(s, p, alloc), 8698 is_alloc ? get_orig_size(s, p) : 8699 s->object_size); 8700 } 8701 #endif /* CONFIG_DEBUG_FS */ 8702 #endif /* CONFIG_SLUB_DEBUG */ 8703 8704 #ifdef SLAB_SUPPORTS_SYSFS 8705 enum slab_stat_type { 8706 SL_ALL, /* All slabs */ 8707 SL_PARTIAL, /* Only partially allocated slabs */ 8708 SL_CPU, /* Only slabs used for cpu caches */ 8709 SL_OBJECTS, /* Determine allocated objects not slabs */ 8710 SL_TOTAL /* Determine object capacity not slabs */ 8711 }; 8712 8713 #define SO_ALL (1 << SL_ALL) 8714 #define SO_PARTIAL (1 << SL_PARTIAL) 8715 #define SO_CPU (1 << SL_CPU) 8716 #define SO_OBJECTS (1 << SL_OBJECTS) 8717 #define SO_TOTAL (1 << SL_TOTAL) 8718 8719 static ssize_t show_slab_objects(struct kmem_cache *s, 8720 char *buf, unsigned long flags) 8721 { 8722 unsigned long total = 0; 8723 int node; 8724 int x; 8725 unsigned long *nodes; 8726 int len = 0; 8727 8728 nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL); 8729 if (!nodes) 8730 return -ENOMEM; 8731 8732 /* 8733 * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex" 8734 * already held which will conflict with an existing lock order: 8735 * 8736 * mem_hotplug_lock->slab_mutex->kernfs_mutex 8737 * 8738 * We don't really need mem_hotplug_lock (to hold off 8739 * slab_mem_going_offline_callback) here because slab's memory hot 8740 * unplug code doesn't destroy the kmem_cache->node[] data. 8741 */ 8742 8743 #ifdef CONFIG_SLUB_DEBUG 8744 if (flags & SO_ALL) { 8745 struct kmem_cache_node *n; 8746 8747 for_each_kmem_cache_node(s, node, n) { 8748 8749 if (flags & SO_TOTAL) 8750 x = node_nr_objs(n); 8751 else if (flags & SO_OBJECTS) 8752 x = node_nr_objs(n) - count_partial(n, count_free); 8753 else 8754 x = node_nr_slabs(n); 8755 total += x; 8756 nodes[node] += x; 8757 } 8758 8759 } else 8760 #endif 8761 if (flags & SO_PARTIAL) { 8762 struct kmem_cache_node *n; 8763 8764 for_each_kmem_cache_node(s, node, n) { 8765 if (flags & SO_TOTAL) 8766 x = count_partial(n, count_total); 8767 else if (flags & SO_OBJECTS) 8768 x = count_partial(n, count_inuse); 8769 else 8770 x = n->nr_partial; 8771 total += x; 8772 nodes[node] += x; 8773 } 8774 } 8775 8776 len += sysfs_emit_at(buf, len, "%lu", total); 8777 #ifdef CONFIG_NUMA 8778 for (node = 0; node < nr_node_ids; node++) { 8779 if (nodes[node]) 8780 len += sysfs_emit_at(buf, len, " N%d=%lu", 8781 node, nodes[node]); 8782 } 8783 #endif 8784 len += sysfs_emit_at(buf, len, "\n"); 8785 kfree(nodes); 8786 8787 return len; 8788 } 8789 8790 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr) 8791 #define to_slab(n) container_of(n, struct kmem_cache, kobj) 8792 8793 struct slab_attribute { 8794 struct attribute attr; 8795 ssize_t (*show)(struct kmem_cache *s, char *buf); 8796 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count); 8797 }; 8798 8799 #define SLAB_ATTR_RO(_name) \ 8800 static struct slab_attribute _name##_attr = __ATTR_RO_MODE(_name, 0400) 8801 8802 #define SLAB_ATTR(_name) \ 8803 static struct slab_attribute _name##_attr = __ATTR_RW_MODE(_name, 0600) 8804 8805 static ssize_t slab_size_show(struct kmem_cache *s, char *buf) 8806 { 8807 return sysfs_emit(buf, "%u\n", s->size); 8808 } 8809 SLAB_ATTR_RO(slab_size); 8810 8811 static ssize_t align_show(struct kmem_cache *s, char *buf) 8812 { 8813 return sysfs_emit(buf, "%u\n", s->align); 8814 } 8815 SLAB_ATTR_RO(align); 8816 8817 static ssize_t object_size_show(struct kmem_cache *s, char *buf) 8818 { 8819 return sysfs_emit(buf, "%u\n", s->object_size); 8820 } 8821 SLAB_ATTR_RO(object_size); 8822 8823 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf) 8824 { 8825 return sysfs_emit(buf, "%u\n", oo_objects(s->oo)); 8826 } 8827 SLAB_ATTR_RO(objs_per_slab); 8828 8829 static ssize_t order_show(struct kmem_cache *s, char *buf) 8830 { 8831 return sysfs_emit(buf, "%u\n", oo_order(s->oo)); 8832 } 8833 SLAB_ATTR_RO(order); 8834 8835 static ssize_t sheaf_capacity_show(struct kmem_cache *s, char *buf) 8836 { 8837 return sysfs_emit(buf, "%u\n", s->sheaf_capacity); 8838 } 8839 SLAB_ATTR_RO(sheaf_capacity); 8840 8841 static ssize_t min_partial_show(struct kmem_cache *s, char *buf) 8842 { 8843 return sysfs_emit(buf, "%lu\n", s->min_partial); 8844 } 8845 8846 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf, 8847 size_t length) 8848 { 8849 unsigned long min; 8850 int err; 8851 8852 err = kstrtoul(buf, 10, &min); 8853 if (err) 8854 return err; 8855 8856 s->min_partial = min; 8857 return length; 8858 } 8859 SLAB_ATTR(min_partial); 8860 8861 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf) 8862 { 8863 return sysfs_emit(buf, "0\n"); 8864 } 8865 8866 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf, 8867 size_t length) 8868 { 8869 unsigned int objects; 8870 int err; 8871 8872 err = kstrtouint(buf, 10, &objects); 8873 if (err) 8874 return err; 8875 if (objects) 8876 return -EINVAL; 8877 8878 return length; 8879 } 8880 SLAB_ATTR(cpu_partial); 8881 8882 static ssize_t ctor_show(struct kmem_cache *s, char *buf) 8883 { 8884 if (!s->ctor) 8885 return 0; 8886 return sysfs_emit(buf, "%pS\n", s->ctor); 8887 } 8888 SLAB_ATTR_RO(ctor); 8889 8890 static ssize_t aliases_show(struct kmem_cache *s, char *buf) 8891 { 8892 return sysfs_emit(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1); 8893 } 8894 SLAB_ATTR_RO(aliases); 8895 8896 static ssize_t partial_show(struct kmem_cache *s, char *buf) 8897 { 8898 return show_slab_objects(s, buf, SO_PARTIAL); 8899 } 8900 SLAB_ATTR_RO(partial); 8901 8902 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf) 8903 { 8904 return show_slab_objects(s, buf, SO_CPU); 8905 } 8906 SLAB_ATTR_RO(cpu_slabs); 8907 8908 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf) 8909 { 8910 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS); 8911 } 8912 SLAB_ATTR_RO(objects_partial); 8913 8914 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf) 8915 { 8916 return sysfs_emit(buf, "0(0)\n"); 8917 } 8918 SLAB_ATTR_RO(slabs_cpu_partial); 8919 8920 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf) 8921 { 8922 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT)); 8923 } 8924 SLAB_ATTR_RO(reclaim_account); 8925 8926 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf) 8927 { 8928 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN)); 8929 } 8930 SLAB_ATTR_RO(hwcache_align); 8931 8932 #ifdef CONFIG_ZONE_DMA 8933 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf) 8934 { 8935 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA)); 8936 } 8937 SLAB_ATTR_RO(cache_dma); 8938 #endif 8939 8940 #ifdef CONFIG_HARDENED_USERCOPY 8941 static ssize_t usersize_show(struct kmem_cache *s, char *buf) 8942 { 8943 return sysfs_emit(buf, "%u\n", s->usersize); 8944 } 8945 SLAB_ATTR_RO(usersize); 8946 #endif 8947 8948 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf) 8949 { 8950 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU)); 8951 } 8952 SLAB_ATTR_RO(destroy_by_rcu); 8953 8954 #ifdef CONFIG_SLUB_DEBUG 8955 static ssize_t slabs_show(struct kmem_cache *s, char *buf) 8956 { 8957 return show_slab_objects(s, buf, SO_ALL); 8958 } 8959 SLAB_ATTR_RO(slabs); 8960 8961 static ssize_t total_objects_show(struct kmem_cache *s, char *buf) 8962 { 8963 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL); 8964 } 8965 SLAB_ATTR_RO(total_objects); 8966 8967 static ssize_t objects_show(struct kmem_cache *s, char *buf) 8968 { 8969 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS); 8970 } 8971 SLAB_ATTR_RO(objects); 8972 8973 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf) 8974 { 8975 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS)); 8976 } 8977 SLAB_ATTR_RO(sanity_checks); 8978 8979 static ssize_t trace_show(struct kmem_cache *s, char *buf) 8980 { 8981 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TRACE)); 8982 } 8983 SLAB_ATTR_RO(trace); 8984 8985 static ssize_t red_zone_show(struct kmem_cache *s, char *buf) 8986 { 8987 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE)); 8988 } 8989 8990 SLAB_ATTR_RO(red_zone); 8991 8992 static ssize_t poison_show(struct kmem_cache *s, char *buf) 8993 { 8994 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_POISON)); 8995 } 8996 8997 SLAB_ATTR_RO(poison); 8998 8999 static ssize_t store_user_show(struct kmem_cache *s, char *buf) 9000 { 9001 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_STORE_USER)); 9002 } 9003 9004 SLAB_ATTR_RO(store_user); 9005 9006 static ssize_t validate_show(struct kmem_cache *s, char *buf) 9007 { 9008 return 0; 9009 } 9010 9011 static ssize_t validate_store(struct kmem_cache *s, 9012 const char *buf, size_t length) 9013 { 9014 int ret = -EINVAL; 9015 9016 if (buf[0] == '1' && kmem_cache_debug(s)) { 9017 ret = validate_slab_cache(s); 9018 if (ret >= 0) 9019 ret = length; 9020 } 9021 return ret; 9022 } 9023 SLAB_ATTR(validate); 9024 9025 #endif /* CONFIG_SLUB_DEBUG */ 9026 9027 #ifdef CONFIG_FAILSLAB 9028 static ssize_t failslab_show(struct kmem_cache *s, char *buf) 9029 { 9030 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB)); 9031 } 9032 9033 static ssize_t failslab_store(struct kmem_cache *s, const char *buf, 9034 size_t length) 9035 { 9036 if (s->refcount > 1) 9037 return -EINVAL; 9038 9039 if (buf[0] == '1') 9040 WRITE_ONCE(s->flags, s->flags | SLAB_FAILSLAB); 9041 else 9042 WRITE_ONCE(s->flags, s->flags & ~SLAB_FAILSLAB); 9043 9044 return length; 9045 } 9046 SLAB_ATTR(failslab); 9047 #endif 9048 9049 static ssize_t shrink_show(struct kmem_cache *s, char *buf) 9050 { 9051 return 0; 9052 } 9053 9054 static ssize_t shrink_store(struct kmem_cache *s, 9055 const char *buf, size_t length) 9056 { 9057 if (buf[0] == '1') 9058 kmem_cache_shrink(s); 9059 else 9060 return -EINVAL; 9061 return length; 9062 } 9063 SLAB_ATTR(shrink); 9064 9065 #ifdef CONFIG_NUMA 9066 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf) 9067 { 9068 return sysfs_emit(buf, "%u\n", s->remote_node_defrag_ratio / 10); 9069 } 9070 9071 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s, 9072 const char *buf, size_t length) 9073 { 9074 unsigned int ratio; 9075 int err; 9076 9077 err = kstrtouint(buf, 10, &ratio); 9078 if (err) 9079 return err; 9080 if (ratio > 100) 9081 return -ERANGE; 9082 9083 s->remote_node_defrag_ratio = ratio * 10; 9084 9085 return length; 9086 } 9087 SLAB_ATTR(remote_node_defrag_ratio); 9088 #endif 9089 9090 #ifdef CONFIG_SLUB_STATS 9091 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si) 9092 { 9093 unsigned long sum = 0; 9094 int cpu; 9095 int len = 0; 9096 int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL); 9097 9098 if (!data) 9099 return -ENOMEM; 9100 9101 for_each_online_cpu(cpu) { 9102 unsigned int x = per_cpu_ptr(s->cpu_stats, cpu)->stat[si]; 9103 9104 data[cpu] = x; 9105 sum += x; 9106 } 9107 9108 len += sysfs_emit_at(buf, len, "%lu", sum); 9109 9110 #ifdef CONFIG_SMP 9111 for_each_online_cpu(cpu) { 9112 if (data[cpu]) 9113 len += sysfs_emit_at(buf, len, " C%d=%u", 9114 cpu, data[cpu]); 9115 } 9116 #endif 9117 kfree(data); 9118 len += sysfs_emit_at(buf, len, "\n"); 9119 9120 return len; 9121 } 9122 9123 static void clear_stat(struct kmem_cache *s, enum stat_item si) 9124 { 9125 int cpu; 9126 9127 for_each_online_cpu(cpu) 9128 per_cpu_ptr(s->cpu_stats, cpu)->stat[si] = 0; 9129 } 9130 9131 #define STAT_ATTR(si, text) \ 9132 static ssize_t text##_show(struct kmem_cache *s, char *buf) \ 9133 { \ 9134 return show_stat(s, buf, si); \ 9135 } \ 9136 static ssize_t text##_store(struct kmem_cache *s, \ 9137 const char *buf, size_t length) \ 9138 { \ 9139 if (buf[0] != '0') \ 9140 return -EINVAL; \ 9141 clear_stat(s, si); \ 9142 return length; \ 9143 } \ 9144 SLAB_ATTR(text); \ 9145 9146 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath); 9147 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath); 9148 STAT_ATTR(FREE_RCU_SHEAF, free_rcu_sheaf); 9149 STAT_ATTR(FREE_RCU_SHEAF_FAIL, free_rcu_sheaf_fail); 9150 STAT_ATTR(FREE_FASTPATH, free_fastpath); 9151 STAT_ATTR(FREE_SLOWPATH, free_slowpath); 9152 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial); 9153 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial); 9154 STAT_ATTR(ALLOC_SLAB, alloc_slab); 9155 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch); 9156 STAT_ATTR(FREE_SLAB, free_slab); 9157 STAT_ATTR(ORDER_FALLBACK, order_fallback); 9158 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail); 9159 STAT_ATTR(SHEAF_FLUSH, sheaf_flush); 9160 STAT_ATTR(SHEAF_REFILL, sheaf_refill); 9161 STAT_ATTR(SHEAF_ALLOC, sheaf_alloc); 9162 STAT_ATTR(SHEAF_FREE, sheaf_free); 9163 STAT_ATTR(BARN_GET, barn_get); 9164 STAT_ATTR(BARN_GET_FAIL, barn_get_fail); 9165 STAT_ATTR(BARN_PUT, barn_put); 9166 STAT_ATTR(BARN_PUT_FAIL, barn_put_fail); 9167 STAT_ATTR(SHEAF_PREFILL_FAST, sheaf_prefill_fast); 9168 STAT_ATTR(SHEAF_PREFILL_SLOW, sheaf_prefill_slow); 9169 STAT_ATTR(SHEAF_PREFILL_OVERSIZE, sheaf_prefill_oversize); 9170 STAT_ATTR(SHEAF_RETURN_FAST, sheaf_return_fast); 9171 STAT_ATTR(SHEAF_RETURN_SLOW, sheaf_return_slow); 9172 #endif /* CONFIG_SLUB_STATS */ 9173 9174 #ifdef CONFIG_KFENCE 9175 static ssize_t skip_kfence_show(struct kmem_cache *s, char *buf) 9176 { 9177 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_SKIP_KFENCE)); 9178 } 9179 9180 static ssize_t skip_kfence_store(struct kmem_cache *s, 9181 const char *buf, size_t length) 9182 { 9183 int ret = length; 9184 9185 if (buf[0] == '0') 9186 s->flags &= ~SLAB_SKIP_KFENCE; 9187 else if (buf[0] == '1') 9188 s->flags |= SLAB_SKIP_KFENCE; 9189 else 9190 ret = -EINVAL; 9191 9192 return ret; 9193 } 9194 SLAB_ATTR(skip_kfence); 9195 #endif 9196 9197 static struct attribute *slab_attrs[] = { 9198 &slab_size_attr.attr, 9199 &object_size_attr.attr, 9200 &objs_per_slab_attr.attr, 9201 &order_attr.attr, 9202 &sheaf_capacity_attr.attr, 9203 &min_partial_attr.attr, 9204 &cpu_partial_attr.attr, 9205 &objects_partial_attr.attr, 9206 &partial_attr.attr, 9207 &cpu_slabs_attr.attr, 9208 &ctor_attr.attr, 9209 &aliases_attr.attr, 9210 &align_attr.attr, 9211 &hwcache_align_attr.attr, 9212 &reclaim_account_attr.attr, 9213 &destroy_by_rcu_attr.attr, 9214 &shrink_attr.attr, 9215 &slabs_cpu_partial_attr.attr, 9216 #ifdef CONFIG_SLUB_DEBUG 9217 &total_objects_attr.attr, 9218 &objects_attr.attr, 9219 &slabs_attr.attr, 9220 &sanity_checks_attr.attr, 9221 &trace_attr.attr, 9222 &red_zone_attr.attr, 9223 &poison_attr.attr, 9224 &store_user_attr.attr, 9225 &validate_attr.attr, 9226 #endif 9227 #ifdef CONFIG_ZONE_DMA 9228 &cache_dma_attr.attr, 9229 #endif 9230 #ifdef CONFIG_NUMA 9231 &remote_node_defrag_ratio_attr.attr, 9232 #endif 9233 #ifdef CONFIG_SLUB_STATS 9234 &alloc_fastpath_attr.attr, 9235 &alloc_slowpath_attr.attr, 9236 &free_rcu_sheaf_attr.attr, 9237 &free_rcu_sheaf_fail_attr.attr, 9238 &free_fastpath_attr.attr, 9239 &free_slowpath_attr.attr, 9240 &free_add_partial_attr.attr, 9241 &free_remove_partial_attr.attr, 9242 &alloc_slab_attr.attr, 9243 &alloc_node_mismatch_attr.attr, 9244 &free_slab_attr.attr, 9245 &order_fallback_attr.attr, 9246 &cmpxchg_double_fail_attr.attr, 9247 &sheaf_flush_attr.attr, 9248 &sheaf_refill_attr.attr, 9249 &sheaf_alloc_attr.attr, 9250 &sheaf_free_attr.attr, 9251 &barn_get_attr.attr, 9252 &barn_get_fail_attr.attr, 9253 &barn_put_attr.attr, 9254 &barn_put_fail_attr.attr, 9255 &sheaf_prefill_fast_attr.attr, 9256 &sheaf_prefill_slow_attr.attr, 9257 &sheaf_prefill_oversize_attr.attr, 9258 &sheaf_return_fast_attr.attr, 9259 &sheaf_return_slow_attr.attr, 9260 #endif 9261 #ifdef CONFIG_FAILSLAB 9262 &failslab_attr.attr, 9263 #endif 9264 #ifdef CONFIG_HARDENED_USERCOPY 9265 &usersize_attr.attr, 9266 #endif 9267 #ifdef CONFIG_KFENCE 9268 &skip_kfence_attr.attr, 9269 #endif 9270 9271 NULL 9272 }; 9273 9274 static const struct attribute_group slab_attr_group = { 9275 .attrs = slab_attrs, 9276 }; 9277 9278 static ssize_t slab_attr_show(struct kobject *kobj, 9279 struct attribute *attr, 9280 char *buf) 9281 { 9282 struct slab_attribute *attribute; 9283 struct kmem_cache *s; 9284 9285 attribute = to_slab_attr(attr); 9286 s = to_slab(kobj); 9287 9288 if (!attribute->show) 9289 return -EIO; 9290 9291 return attribute->show(s, buf); 9292 } 9293 9294 static ssize_t slab_attr_store(struct kobject *kobj, 9295 struct attribute *attr, 9296 const char *buf, size_t len) 9297 { 9298 struct slab_attribute *attribute; 9299 struct kmem_cache *s; 9300 9301 attribute = to_slab_attr(attr); 9302 s = to_slab(kobj); 9303 9304 if (!attribute->store) 9305 return -EIO; 9306 9307 return attribute->store(s, buf, len); 9308 } 9309 9310 static void kmem_cache_release(struct kobject *k) 9311 { 9312 slab_kmem_cache_release(to_slab(k)); 9313 } 9314 9315 static const struct sysfs_ops slab_sysfs_ops = { 9316 .show = slab_attr_show, 9317 .store = slab_attr_store, 9318 }; 9319 9320 static const struct kobj_type slab_ktype = { 9321 .sysfs_ops = &slab_sysfs_ops, 9322 .release = kmem_cache_release, 9323 }; 9324 9325 static struct kset *slab_kset; 9326 9327 static inline struct kset *cache_kset(struct kmem_cache *s) 9328 { 9329 return slab_kset; 9330 } 9331 9332 #define ID_STR_LENGTH 32 9333 9334 /* Create a unique string id for a slab cache: 9335 * 9336 * Format :[flags-]size 9337 */ 9338 static char *create_unique_id(struct kmem_cache *s) 9339 { 9340 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL); 9341 char *p = name; 9342 9343 if (!name) 9344 return ERR_PTR(-ENOMEM); 9345 9346 *p++ = ':'; 9347 /* 9348 * First flags affecting slabcache operations. We will only 9349 * get here for aliasable slabs so we do not need to support 9350 * too many flags. The flags here must cover all flags that 9351 * are matched during merging to guarantee that the id is 9352 * unique. 9353 */ 9354 if (s->flags & SLAB_CACHE_DMA) 9355 *p++ = 'd'; 9356 if (s->flags & SLAB_CACHE_DMA32) 9357 *p++ = 'D'; 9358 if (s->flags & SLAB_RECLAIM_ACCOUNT) 9359 *p++ = 'a'; 9360 if (s->flags & SLAB_CONSISTENCY_CHECKS) 9361 *p++ = 'F'; 9362 if (s->flags & SLAB_ACCOUNT) 9363 *p++ = 'A'; 9364 if (p != name + 1) 9365 *p++ = '-'; 9366 p += snprintf(p, ID_STR_LENGTH - (p - name), "%07u", s->size); 9367 9368 if (WARN_ON(p > name + ID_STR_LENGTH - 1)) { 9369 kfree(name); 9370 return ERR_PTR(-EINVAL); 9371 } 9372 kmsan_unpoison_memory(name, p - name); 9373 return name; 9374 } 9375 9376 static int sysfs_slab_add(struct kmem_cache *s) 9377 { 9378 int err; 9379 const char *name; 9380 struct kset *kset = cache_kset(s); 9381 int unmergeable = slab_unmergeable(s); 9382 9383 if (!unmergeable && disable_higher_order_debug && 9384 (slub_debug & DEBUG_METADATA_FLAGS)) 9385 unmergeable = 1; 9386 9387 if (unmergeable) { 9388 /* 9389 * Slabcache can never be merged so we can use the name proper. 9390 * This is typically the case for debug situations. In that 9391 * case we can catch duplicate names easily. 9392 */ 9393 sysfs_remove_link(&slab_kset->kobj, s->name); 9394 name = s->name; 9395 } else { 9396 /* 9397 * Create a unique name for the slab as a target 9398 * for the symlinks. 9399 */ 9400 name = create_unique_id(s); 9401 if (IS_ERR(name)) 9402 return PTR_ERR(name); 9403 } 9404 9405 s->kobj.kset = kset; 9406 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name); 9407 if (err) 9408 goto out; 9409 9410 err = sysfs_create_group(&s->kobj, &slab_attr_group); 9411 if (err) 9412 goto out_del_kobj; 9413 9414 if (!unmergeable) { 9415 /* Setup first alias */ 9416 sysfs_slab_alias(s, s->name); 9417 } 9418 out: 9419 if (!unmergeable) 9420 kfree(name); 9421 return err; 9422 out_del_kobj: 9423 kobject_del(&s->kobj); 9424 goto out; 9425 } 9426 9427 void sysfs_slab_unlink(struct kmem_cache *s) 9428 { 9429 if (s->kobj.state_in_sysfs) 9430 kobject_del(&s->kobj); 9431 } 9432 9433 void sysfs_slab_release(struct kmem_cache *s) 9434 { 9435 kobject_put(&s->kobj); 9436 } 9437 9438 /* 9439 * Need to buffer aliases during bootup until sysfs becomes 9440 * available lest we lose that information. 9441 */ 9442 struct saved_alias { 9443 struct kmem_cache *s; 9444 const char *name; 9445 struct saved_alias *next; 9446 }; 9447 9448 static struct saved_alias *alias_list; 9449 9450 int sysfs_slab_alias(struct kmem_cache *s, const char *name) 9451 { 9452 struct saved_alias *al; 9453 9454 if (slab_state == FULL) { 9455 /* 9456 * If we have a leftover link then remove it. 9457 */ 9458 sysfs_remove_link(&slab_kset->kobj, name); 9459 /* 9460 * The original cache may have failed to generate sysfs file. 9461 * In that case, sysfs_create_link() returns -ENOENT and 9462 * symbolic link creation is skipped. 9463 */ 9464 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name); 9465 } 9466 9467 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL); 9468 if (!al) 9469 return -ENOMEM; 9470 9471 al->s = s; 9472 al->name = name; 9473 al->next = alias_list; 9474 alias_list = al; 9475 kmsan_unpoison_memory(al, sizeof(*al)); 9476 return 0; 9477 } 9478 9479 static int __init slab_sysfs_init(void) 9480 { 9481 struct kmem_cache *s; 9482 int err; 9483 9484 mutex_lock(&slab_mutex); 9485 9486 slab_kset = kset_create_and_add("slab", NULL, kernel_kobj); 9487 if (!slab_kset) { 9488 mutex_unlock(&slab_mutex); 9489 pr_err("Cannot register slab subsystem.\n"); 9490 return -ENOMEM; 9491 } 9492 9493 slab_state = FULL; 9494 9495 list_for_each_entry(s, &slab_caches, list) { 9496 err = sysfs_slab_add(s); 9497 if (err) 9498 pr_err("SLUB: Unable to add boot slab %s to sysfs\n", 9499 s->name); 9500 } 9501 9502 while (alias_list) { 9503 struct saved_alias *al = alias_list; 9504 9505 alias_list = alias_list->next; 9506 err = sysfs_slab_alias(al->s, al->name); 9507 if (err) 9508 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n", 9509 al->name); 9510 kfree(al); 9511 } 9512 9513 mutex_unlock(&slab_mutex); 9514 return 0; 9515 } 9516 late_initcall(slab_sysfs_init); 9517 #endif /* SLAB_SUPPORTS_SYSFS */ 9518 9519 #if defined(CONFIG_SLUB_DEBUG) && defined(CONFIG_DEBUG_FS) 9520 static int slab_debugfs_show(struct seq_file *seq, void *v) 9521 { 9522 struct loc_track *t = seq->private; 9523 struct location *l; 9524 unsigned long idx; 9525 9526 idx = (unsigned long) t->idx; 9527 if (idx < t->count) { 9528 l = &t->loc[idx]; 9529 9530 seq_printf(seq, "%7ld ", l->count); 9531 9532 if (l->addr) 9533 seq_printf(seq, "%pS", (void *)l->addr); 9534 else 9535 seq_puts(seq, "<not-available>"); 9536 9537 if (l->waste) 9538 seq_printf(seq, " waste=%lu/%lu", 9539 l->count * l->waste, l->waste); 9540 9541 if (l->sum_time != l->min_time) { 9542 seq_printf(seq, " age=%ld/%llu/%ld", 9543 l->min_time, div_u64(l->sum_time, l->count), 9544 l->max_time); 9545 } else 9546 seq_printf(seq, " age=%ld", l->min_time); 9547 9548 if (l->min_pid != l->max_pid) 9549 seq_printf(seq, " pid=%ld-%ld", l->min_pid, l->max_pid); 9550 else 9551 seq_printf(seq, " pid=%ld", 9552 l->min_pid); 9553 9554 if (num_online_cpus() > 1 && !cpumask_empty(to_cpumask(l->cpus))) 9555 seq_printf(seq, " cpus=%*pbl", 9556 cpumask_pr_args(to_cpumask(l->cpus))); 9557 9558 if (nr_online_nodes > 1 && !nodes_empty(l->nodes)) 9559 seq_printf(seq, " nodes=%*pbl", 9560 nodemask_pr_args(&l->nodes)); 9561 9562 #ifdef CONFIG_STACKDEPOT 9563 { 9564 depot_stack_handle_t handle; 9565 unsigned long *entries; 9566 unsigned int nr_entries, j; 9567 9568 handle = READ_ONCE(l->handle); 9569 if (handle) { 9570 nr_entries = stack_depot_fetch(handle, &entries); 9571 seq_puts(seq, "\n"); 9572 for (j = 0; j < nr_entries; j++) 9573 seq_printf(seq, " %pS\n", (void *)entries[j]); 9574 } 9575 } 9576 #endif 9577 seq_puts(seq, "\n"); 9578 } 9579 9580 if (!idx && !t->count) 9581 seq_puts(seq, "No data\n"); 9582 9583 return 0; 9584 } 9585 9586 static void slab_debugfs_stop(struct seq_file *seq, void *v) 9587 { 9588 } 9589 9590 static void *slab_debugfs_next(struct seq_file *seq, void *v, loff_t *ppos) 9591 { 9592 struct loc_track *t = seq->private; 9593 9594 t->idx = ++(*ppos); 9595 if (*ppos <= t->count) 9596 return ppos; 9597 9598 return NULL; 9599 } 9600 9601 static int cmp_loc_by_count(const void *a, const void *b) 9602 { 9603 struct location *loc1 = (struct location *)a; 9604 struct location *loc2 = (struct location *)b; 9605 9606 return cmp_int(loc2->count, loc1->count); 9607 } 9608 9609 static void *slab_debugfs_start(struct seq_file *seq, loff_t *ppos) 9610 { 9611 struct loc_track *t = seq->private; 9612 9613 t->idx = *ppos; 9614 return ppos; 9615 } 9616 9617 static const struct seq_operations slab_debugfs_sops = { 9618 .start = slab_debugfs_start, 9619 .next = slab_debugfs_next, 9620 .stop = slab_debugfs_stop, 9621 .show = slab_debugfs_show, 9622 }; 9623 9624 static int slab_debug_trace_open(struct inode *inode, struct file *filep) 9625 { 9626 9627 struct kmem_cache_node *n; 9628 enum track_item alloc; 9629 int node; 9630 struct loc_track *t = __seq_open_private(filep, &slab_debugfs_sops, 9631 sizeof(struct loc_track)); 9632 struct kmem_cache *s = file_inode(filep)->i_private; 9633 unsigned long *obj_map; 9634 9635 if (!t) 9636 return -ENOMEM; 9637 9638 obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL); 9639 if (!obj_map) { 9640 seq_release_private(inode, filep); 9641 return -ENOMEM; 9642 } 9643 9644 alloc = debugfs_get_aux_num(filep); 9645 9646 if (!alloc_loc_track(t, PAGE_SIZE / sizeof(struct location), GFP_KERNEL)) { 9647 bitmap_free(obj_map); 9648 seq_release_private(inode, filep); 9649 return -ENOMEM; 9650 } 9651 9652 for_each_kmem_cache_node(s, node, n) { 9653 unsigned long flags; 9654 struct slab *slab; 9655 9656 if (!node_nr_slabs(n)) 9657 continue; 9658 9659 spin_lock_irqsave(&n->list_lock, flags); 9660 list_for_each_entry(slab, &n->partial, slab_list) 9661 process_slab(t, s, slab, alloc, obj_map); 9662 list_for_each_entry(slab, &n->full, slab_list) 9663 process_slab(t, s, slab, alloc, obj_map); 9664 spin_unlock_irqrestore(&n->list_lock, flags); 9665 } 9666 9667 /* Sort locations by count */ 9668 sort(t->loc, t->count, sizeof(struct location), 9669 cmp_loc_by_count, NULL); 9670 9671 bitmap_free(obj_map); 9672 return 0; 9673 } 9674 9675 static int slab_debug_trace_release(struct inode *inode, struct file *file) 9676 { 9677 struct seq_file *seq = file->private_data; 9678 struct loc_track *t = seq->private; 9679 9680 free_loc_track(t); 9681 return seq_release_private(inode, file); 9682 } 9683 9684 static const struct file_operations slab_debugfs_fops = { 9685 .open = slab_debug_trace_open, 9686 .read = seq_read, 9687 .llseek = seq_lseek, 9688 .release = slab_debug_trace_release, 9689 }; 9690 9691 static void debugfs_slab_add(struct kmem_cache *s) 9692 { 9693 struct dentry *slab_cache_dir; 9694 9695 if (unlikely(!slab_debugfs_root)) 9696 return; 9697 9698 slab_cache_dir = debugfs_create_dir(s->name, slab_debugfs_root); 9699 9700 debugfs_create_file_aux_num("alloc_traces", 0400, slab_cache_dir, s, 9701 TRACK_ALLOC, &slab_debugfs_fops); 9702 9703 debugfs_create_file_aux_num("free_traces", 0400, slab_cache_dir, s, 9704 TRACK_FREE, &slab_debugfs_fops); 9705 } 9706 9707 void debugfs_slab_release(struct kmem_cache *s) 9708 { 9709 debugfs_lookup_and_remove(s->name, slab_debugfs_root); 9710 } 9711 9712 static int __init slab_debugfs_init(void) 9713 { 9714 struct kmem_cache *s; 9715 9716 slab_debugfs_root = debugfs_create_dir("slab", NULL); 9717 9718 list_for_each_entry(s, &slab_caches, list) 9719 if (s->flags & SLAB_STORE_USER) 9720 debugfs_slab_add(s); 9721 9722 return 0; 9723 9724 } 9725 __initcall(slab_debugfs_init); 9726 #endif 9727 /* 9728 * The /proc/slabinfo ABI 9729 */ 9730 #ifdef CONFIG_SLUB_DEBUG 9731 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo) 9732 { 9733 unsigned long nr_slabs = 0; 9734 unsigned long nr_objs = 0; 9735 unsigned long nr_free = 0; 9736 int node; 9737 struct kmem_cache_node *n; 9738 9739 for_each_kmem_cache_node(s, node, n) { 9740 nr_slabs += node_nr_slabs(n); 9741 nr_objs += node_nr_objs(n); 9742 nr_free += count_partial_free_approx(n); 9743 } 9744 9745 sinfo->active_objs = nr_objs - nr_free; 9746 sinfo->num_objs = nr_objs; 9747 sinfo->active_slabs = nr_slabs; 9748 sinfo->num_slabs = nr_slabs; 9749 sinfo->objects_per_slab = oo_objects(s->oo); 9750 sinfo->cache_order = oo_order(s->oo); 9751 } 9752 #endif /* CONFIG_SLUB_DEBUG */ 9753