xref: /linux/drivers/phy/rockchip/phy-rockchip-inno-dsidphy.c (revision 0623fdf30b1105c22f58baeeca954c803bdf5f8b)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2018 Rockchip Electronics Co. Ltd.
4  *
5  * Author: Wyon Bi <bivvy.bi@rock-chips.com>
6  */
7 
8 #include <linux/bits.h>
9 #include <linux/kernel.h>
10 #include <linux/clk.h>
11 #include <linux/iopoll.h>
12 #include <linux/clk-provider.h>
13 #include <linux/delay.h>
14 #include <linux/init.h>
15 #include <linux/mfd/syscon.h>
16 #include <linux/module.h>
17 #include <linux/of.h>
18 #include <linux/platform_device.h>
19 #include <linux/pm_runtime.h>
20 #include <linux/reset.h>
21 #include <linux/time64.h>
22 
23 #include <linux/phy/phy.h>
24 #include <linux/phy/phy-mipi-dphy.h>
25 
26 #define UPDATE(x, h, l)	(((x) << (l)) & GENMASK((h), (l)))
27 
28 /*
29  * The offset address[7:0] is distributed two parts, one from the bit7 to bit5
30  * is the first address, the other from the bit4 to bit0 is the second address.
31  * when you configure the registers, you must set both of them. The Clock Lane
32  * and Data Lane use the same registers with the same second address, but the
33  * first address is different.
34  */
35 #define FIRST_ADDRESS(x)		(((x) & 0x7) << 5)
36 #define SECOND_ADDRESS(x)		(((x) & 0x1f) << 0)
37 #define PHY_REG(first, second)		(FIRST_ADDRESS(first) | \
38 					 SECOND_ADDRESS(second))
39 
40 /* Analog Register Part: reg00 */
41 #define BANDGAP_POWER_MASK			BIT(7)
42 #define BANDGAP_POWER_DOWN			BIT(7)
43 #define BANDGAP_POWER_ON			0
44 #define LANE_EN_MASK				GENMASK(6, 2)
45 #define LANE_EN_CK				BIT(6)
46 #define LANE_EN_3				BIT(5)
47 #define LANE_EN_2				BIT(4)
48 #define LANE_EN_1				BIT(3)
49 #define LANE_EN_0				BIT(2)
50 #define POWER_WORK_MASK				GENMASK(1, 0)
51 #define POWER_WORK_ENABLE			UPDATE(1, 1, 0)
52 #define POWER_WORK_DISABLE			UPDATE(2, 1, 0)
53 /* Analog Register Part: reg01 */
54 #define REG_SYNCRST_MASK			BIT(2)
55 #define REG_SYNCRST_RESET			BIT(2)
56 #define REG_SYNCRST_NORMAL			0
57 #define REG_LDOPD_MASK				BIT(1)
58 #define REG_LDOPD_POWER_DOWN			BIT(1)
59 #define REG_LDOPD_POWER_ON			0
60 #define REG_PLLPD_MASK				BIT(0)
61 #define REG_PLLPD_POWER_DOWN			BIT(0)
62 #define REG_PLLPD_POWER_ON			0
63 /* Analog Register Part: reg03 */
64 #define REG_FBDIV_HI_MASK			BIT(5)
65 #define REG_FBDIV_HI(x)				UPDATE((x >> 8), 5, 5)
66 #define REG_PREDIV_MASK				GENMASK(4, 0)
67 #define REG_PREDIV(x)				UPDATE(x, 4, 0)
68 /* Analog Register Part: reg04 */
69 #define REG_FBDIV_LO_MASK			GENMASK(7, 0)
70 #define REG_FBDIV_LO(x)				UPDATE(x, 7, 0)
71 /* Analog Register Part: reg05 */
72 #define SAMPLE_CLOCK_PHASE_MASK			GENMASK(6, 4)
73 #define SAMPLE_CLOCK_PHASE(x)			UPDATE(x, 6, 4)
74 #define CLOCK_LANE_SKEW_PHASE_MASK		GENMASK(2, 0)
75 #define CLOCK_LANE_SKEW_PHASE(x)		UPDATE(x, 2, 0)
76 /* Analog Register Part: reg06 */
77 #define DATA_LANE_3_SKEW_PHASE_MASK		GENMASK(6, 4)
78 #define DATA_LANE_3_SKEW_PHASE(x)		UPDATE(x, 6, 4)
79 #define DATA_LANE_2_SKEW_PHASE_MASK		GENMASK(2, 0)
80 #define DATA_LANE_2_SKEW_PHASE(x)		UPDATE(x, 2, 0)
81 /* Analog Register Part: reg07 */
82 #define DATA_LANE_1_SKEW_PHASE_MASK		GENMASK(6, 4)
83 #define DATA_LANE_1_SKEW_PHASE(x)		UPDATE(x, 6, 4)
84 #define DATA_LANE_0_SKEW_PHASE_MASK		GENMASK(2, 0)
85 #define DATA_LANE_0_SKEW_PHASE(x)		UPDATE(x, 2, 0)
86 /* Analog Register Part: reg08 */
87 #define PLL_POST_DIV_ENABLE_MASK		BIT(5)
88 #define PLL_POST_DIV_ENABLE			BIT(5)
89 #define SAMPLE_CLOCK_DIRECTION_MASK		BIT(4)
90 #define SAMPLE_CLOCK_DIRECTION_REVERSE		BIT(4)
91 #define SAMPLE_CLOCK_DIRECTION_FORWARD		0
92 #define LOWFRE_EN_MASK				BIT(5)
93 #define PLL_OUTPUT_FREQUENCY_DIV_BY_1		0
94 #define PLL_OUTPUT_FREQUENCY_DIV_BY_2		1
95 /* Analog Register Part: reg0b */
96 #define CLOCK_LANE_VOD_RANGE_SET_MASK		GENMASK(3, 0)
97 #define CLOCK_LANE_VOD_RANGE_SET(x)		UPDATE(x, 3, 0)
98 #define VOD_MIN_RANGE				0x1
99 #define VOD_MID_RANGE				0x3
100 #define VOD_BIG_RANGE				0x7
101 #define VOD_MAX_RANGE				0xf
102 /* Analog Register Part: reg18 */
103 #define LANE0_PRE_EMPHASIS_ENABLE_MASK		BIT(6)
104 #define LANE0_PRE_EMPHASIS_ENABLE		BIT(6)
105 #define LANE0_PRE_EMPHASIS_DISABLE		0
106 #define LANE1_PRE_EMPHASIS_ENABLE_MASK		BIT(5)
107 #define LANE1_PRE_EMPHASIS_ENABLE		BIT(5)
108 #define LANE1_PRE_EMPHASIS_DISABLE		0
109 /* Analog Register Part: reg19 */
110 #define PRE_EMPHASIS_RANGE_SET_MASK		GENMASK(7, 6)
111 #define PRE_EMPHASIS_RANGE_SET(x)		UPDATE(x, 7, 6)
112 /* Analog Register Part: reg1E */
113 #define PLL_MODE_SEL_MASK			GENMASK(6, 5)
114 #define PLL_MODE_SEL_LVDS_MODE			0
115 #define PLL_MODE_SEL_MIPI_MODE			BIT(5)
116 /* Analog Register Part: reg20 */
117 #define LANE0_PRE_EMPHASIS_RANGE_SET_MASK	GENMASK(7, 6)
118 #define LANE0_PRE_EMPHASIS_RANGE_SET(x)		UPDATE(x, 7, 6)
119 /* Analog Register Part: reg21 */
120 #define LANE1_PRE_EMPHASIS_RANGE_SET_MASK	GENMASK(7, 6)
121 #define LANE1_PRE_EMPHASIS_RANGE_SET(x)		UPDATE(x, 7, 6)
122 #define PRE_EMPHASIS_MIN_RANGE			0x0
123 #define PRE_EMPHASIS_MID_RANGE			0x1
124 #define PRE_EMPHASIS_MAX_RANGE			0x2
125 #define PRE_EMPHASIS_RESERVED_RANGE		0x3
126 /* Digital Register Part: reg00 */
127 #define REG_DIG_RSTN_MASK			BIT(0)
128 #define REG_DIG_RSTN_NORMAL			BIT(0)
129 #define REG_DIG_RSTN_RESET			0
130 /* Digital Register Part: reg01 */
131 #define INVERT_TXCLKESC_MASK			BIT(1)
132 #define INVERT_TXCLKESC_ENABLE			BIT(1)
133 #define INVERT_TXCLKESC_DISABLE			0
134 #define INVERT_TXBYTECLKHS_MASK			BIT(0)
135 #define INVERT_TXBYTECLKHS_ENABLE		BIT(0)
136 #define INVERT_TXBYTECLKHS_DISABLE		0
137 /* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg05 */
138 #define T_LPX_CNT_MASK				GENMASK(5, 0)
139 #define T_LPX_CNT(x)				UPDATE(x, 5, 0)
140 /* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg06 */
141 #define T_HS_ZERO_CNT_HI_MASK			BIT(7)
142 #define T_HS_ZERO_CNT_HI(x)			UPDATE(x, 7, 7)
143 #define T_HS_PREPARE_CNT_MASK			GENMASK(6, 0)
144 #define T_HS_PREPARE_CNT(x)			UPDATE(x, 6, 0)
145 /* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg07 */
146 #define T_HS_ZERO_CNT_LO_MASK			GENMASK(5, 0)
147 #define T_HS_ZERO_CNT_LO(x)			UPDATE(x, 5, 0)
148 /* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg08 */
149 #define T_HS_TRAIL_CNT_MASK			GENMASK(6, 0)
150 #define T_HS_TRAIL_CNT(x)			UPDATE(x, 6, 0)
151 /* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg09 */
152 #define T_HS_EXIT_CNT_LO_MASK			GENMASK(4, 0)
153 #define T_HS_EXIT_CNT_LO(x)			UPDATE(x, 4, 0)
154 /* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg0a */
155 #define T_CLK_POST_CNT_LO_MASK			GENMASK(3, 0)
156 #define T_CLK_POST_CNT_LO(x)			UPDATE(x, 3, 0)
157 /* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg0c */
158 #define LPDT_TX_PPI_SYNC_MASK			BIT(2)
159 #define LPDT_TX_PPI_SYNC_ENABLE			BIT(2)
160 #define LPDT_TX_PPI_SYNC_DISABLE		0
161 #define T_WAKEUP_CNT_HI_MASK			GENMASK(1, 0)
162 #define T_WAKEUP_CNT_HI(x)			UPDATE(x, 1, 0)
163 /* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg0d */
164 #define T_WAKEUP_CNT_LO_MASK			GENMASK(7, 0)
165 #define T_WAKEUP_CNT_LO(x)			UPDATE(x, 7, 0)
166 /* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg0e */
167 #define T_CLK_PRE_CNT_MASK			GENMASK(3, 0)
168 #define T_CLK_PRE_CNT(x)			UPDATE(x, 3, 0)
169 /* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg10 */
170 #define T_CLK_POST_CNT_HI_MASK			GENMASK(7, 6)
171 #define T_CLK_POST_CNT_HI(x)			UPDATE(x, 7, 6)
172 #define T_TA_GO_CNT_MASK			GENMASK(5, 0)
173 #define T_TA_GO_CNT(x)				UPDATE(x, 5, 0)
174 /* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg11 */
175 #define T_HS_EXIT_CNT_HI_MASK			BIT(6)
176 #define T_HS_EXIT_CNT_HI(x)			UPDATE(x, 6, 6)
177 #define T_TA_SURE_CNT_MASK			GENMASK(5, 0)
178 #define T_TA_SURE_CNT(x)			UPDATE(x, 5, 0)
179 /* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg12 */
180 #define T_TA_WAIT_CNT_MASK			GENMASK(5, 0)
181 #define T_TA_WAIT_CNT(x)			UPDATE(x, 5, 0)
182 /* LVDS Register Part: reg00 */
183 #define LVDS_DIGITAL_INTERNAL_RESET_MASK	BIT(2)
184 #define LVDS_DIGITAL_INTERNAL_RESET_DISABLE	BIT(2)
185 #define LVDS_DIGITAL_INTERNAL_RESET_ENABLE	0
186 /* LVDS Register Part: reg01 */
187 #define LVDS_DIGITAL_INTERNAL_ENABLE_MASK	BIT(7)
188 #define LVDS_DIGITAL_INTERNAL_ENABLE		BIT(7)
189 #define LVDS_DIGITAL_INTERNAL_DISABLE		0
190 /* LVDS Register Part: reg03 */
191 #define MODE_ENABLE_MASK			GENMASK(2, 0)
192 #define TTL_MODE_ENABLE				BIT(2)
193 #define LVDS_MODE_ENABLE			BIT(1)
194 #define MIPI_MODE_ENABLE			BIT(0)
195 /* LVDS Register Part: reg0b */
196 #define LVDS_LANE_EN_MASK			GENMASK(7, 3)
197 #define LVDS_DATA_LANE0_EN			BIT(7)
198 #define LVDS_DATA_LANE1_EN			BIT(6)
199 #define LVDS_DATA_LANE2_EN			BIT(5)
200 #define LVDS_DATA_LANE3_EN			BIT(4)
201 #define LVDS_CLK_LANE_EN			BIT(3)
202 #define LVDS_PLL_POWER_MASK			BIT(2)
203 #define LVDS_PLL_POWER_OFF			BIT(2)
204 #define LVDS_PLL_POWER_ON			0
205 #define LVDS_BANDGAP_POWER_MASK			BIT(0)
206 #define LVDS_BANDGAP_POWER_DOWN			BIT(0)
207 #define LVDS_BANDGAP_POWER_ON			0
208 
209 #define DSI_PHY_RSTZ		0xa0
210 #define PHY_ENABLECLK		BIT(2)
211 #define DSI_PHY_STATUS		0xb0
212 #define PHY_LOCK		BIT(0)
213 
214 enum phy_max_rate {
215 	MAX_1GHZ,
216 	MAX_1_5GHZ,
217 	MAX_2_5GHZ,
218 };
219 
220 struct inno_video_phy_plat_data {
221 	const struct inno_mipi_dphy_timing *inno_mipi_dphy_timing_table;
222 	const unsigned int num_timings;
223 	enum phy_max_rate max_rate;
224 	unsigned int max_lanes;
225 };
226 
227 struct inno_dsidphy {
228 	struct device *dev;
229 	struct clk *ref_clk;
230 	struct clk *pclk_phy;
231 	struct clk *pclk_host;
232 	const struct inno_video_phy_plat_data *pdata;
233 	void __iomem *phy_base;
234 	void __iomem *host_base;
235 	struct reset_control *rst;
236 	enum phy_mode mode;
237 	struct phy_configure_opts_mipi_dphy dphy_cfg;
238 
239 	struct clk *pll_clk;
240 	struct {
241 		struct clk_hw hw;
242 		u8 prediv;
243 		u16 fbdiv;
244 		unsigned long rate;
245 	} pll;
246 };
247 
248 enum {
249 	REGISTER_PART_ANALOG,
250 	REGISTER_PART_DIGITAL,
251 	REGISTER_PART_CLOCK_LANE,
252 	REGISTER_PART_DATA0_LANE,
253 	REGISTER_PART_DATA1_LANE,
254 	REGISTER_PART_DATA2_LANE,
255 	REGISTER_PART_DATA3_LANE,
256 	REGISTER_PART_LVDS,
257 };
258 
259 struct inno_mipi_dphy_timing {
260 	unsigned long rate;
261 	u8 lpx;
262 	u8 hs_prepare;
263 	u8 clk_lane_hs_zero;
264 	u8 data_lane_hs_zero;
265 	u8 hs_trail;
266 };
267 
268 static const
269 struct inno_mipi_dphy_timing inno_mipi_dphy_timing_table_max_1ghz[] = {
270 	{ 110000000, 0x0, 0x20, 0x16, 0x02, 0x22},
271 	{ 150000000, 0x0, 0x06, 0x16, 0x03, 0x45},
272 	{ 200000000, 0x0, 0x18, 0x17, 0x04, 0x0b},
273 	{ 250000000, 0x0, 0x05, 0x17, 0x05, 0x16},
274 	{ 300000000, 0x0, 0x51, 0x18, 0x06, 0x2c},
275 	{ 400000000, 0x0, 0x64, 0x19, 0x07, 0x33},
276 	{ 500000000, 0x0, 0x20, 0x1b, 0x07, 0x4e},
277 	{ 600000000, 0x0, 0x6a, 0x1d, 0x08, 0x3a},
278 	{ 700000000, 0x0, 0x3e, 0x1e, 0x08, 0x6a},
279 	{ 800000000, 0x0, 0x21, 0x1f, 0x09, 0x29},
280 	{1000000000, 0x0, 0x09, 0x20, 0x09, 0x27},
281 };
282 
283 static const
284 struct inno_mipi_dphy_timing inno_mipi_dphy_timing_table_max_1_5ghz[] = {
285 	{ 110, 0x02, 0x7f, 0x16, 0x02, 0x02},
286 	{ 150, 0x02, 0x7f, 0x16, 0x03, 0x02},
287 	{ 200, 0x02, 0x7f, 0x17, 0x04, 0x02},
288 	{ 250, 0x02, 0x7f, 0x17, 0x05, 0x04},
289 	{ 300, 0x02, 0x7f, 0x18, 0x06, 0x04},
290 	{ 400, 0x03, 0x7e, 0x19, 0x07, 0x04},
291 	{ 500, 0x03, 0x7c, 0x1b, 0x07, 0x08},
292 	{ 600, 0x03, 0x70, 0x1d, 0x08, 0x10},
293 	{ 700, 0x05, 0x40, 0x1e, 0x08, 0x30},
294 	{ 800, 0x05, 0x02, 0x1f, 0x09, 0x30},
295 	{1000, 0x05, 0x08, 0x20, 0x09, 0x30},
296 	{1200, 0x06, 0x03, 0x32, 0x14, 0x0f},
297 	{1400, 0x09, 0x03, 0x32, 0x14, 0x0f},
298 	{1500, 0x0d, 0x42, 0x36, 0x0e, 0x0f},
299 };
300 
301 static const
302 struct inno_mipi_dphy_timing inno_mipi_dphy_timing_table_max_2_5ghz[] = {
303 	{ 110000000, 0x02, 0x7f, 0x16, 0x02, 0x02},
304 	{ 150000000, 0x02, 0x7f, 0x16, 0x03, 0x02},
305 	{ 200000000, 0x02, 0x7f, 0x17, 0x04, 0x02},
306 	{ 250000000, 0x02, 0x7f, 0x17, 0x05, 0x04},
307 	{ 300000000, 0x02, 0x7f, 0x18, 0x06, 0x04},
308 	{ 400000000, 0x03, 0x7e, 0x19, 0x07, 0x04},
309 	{ 500000000, 0x03, 0x7c, 0x1b, 0x07, 0x08},
310 	{ 600000000, 0x03, 0x70, 0x1d, 0x08, 0x10},
311 	{ 700000000, 0x05, 0x40, 0x1e, 0x08, 0x30},
312 	{ 800000000, 0x05, 0x02, 0x1f, 0x09, 0x30},
313 	{1000000000, 0x05, 0x08, 0x20, 0x09, 0x30},
314 	{1200000000, 0x06, 0x03, 0x32, 0x14, 0x0f},
315 	{1400000000, 0x09, 0x03, 0x32, 0x14, 0x0f},
316 	{1600000000, 0x0d, 0x42, 0x36, 0x0e, 0x0f},
317 	{1800000000, 0x0e, 0x47, 0x7a, 0x0e, 0x0f},
318 	{2000000000, 0x11, 0x64, 0x7a, 0x0e, 0x0b},
319 	{2200000000, 0x13, 0x64, 0x7e, 0x15, 0x0b},
320 	{2400000000, 0x13, 0x33, 0x7f, 0x15, 0x6a},
321 	{2500000000, 0x15, 0x54, 0x7f, 0x15, 0x6a},
322 };
323 
phy_update_bits(struct inno_dsidphy * inno,u8 first,u8 second,u8 mask,u8 val)324 static void phy_update_bits(struct inno_dsidphy *inno,
325 			    u8 first, u8 second, u8 mask, u8 val)
326 {
327 	u32 reg = PHY_REG(first, second) << 2;
328 	unsigned int tmp, orig;
329 
330 	orig = readl(inno->phy_base + reg);
331 	tmp = orig & ~mask;
332 	tmp |= val & mask;
333 	writel(tmp, inno->phy_base + reg);
334 }
335 
inno_dsidphy_pll_calc_rate(struct inno_dsidphy * inno,unsigned long rate)336 static unsigned long inno_dsidphy_pll_calc_rate(struct inno_dsidphy *inno,
337 						unsigned long rate)
338 {
339 	unsigned long prate = clk_get_rate(inno->ref_clk);
340 	unsigned long best_freq = 0;
341 	unsigned long fref, fout;
342 	u8 min_prediv, max_prediv;
343 	u8 _prediv, best_prediv = 1;
344 	u16 _fbdiv, best_fbdiv = 1;
345 	u32 min_delta = UINT_MAX;
346 
347 	/*
348 	 * The PLL output frequency can be calculated using a simple formula:
349 	 * PLL_Output_Frequency = (FREF / PREDIV * FBDIV) / 2
350 	 * PLL_Output_Frequency: it is equal to DDR-Clock-Frequency * 2
351 	 */
352 	fref = prate / 2;
353 	if (rate > 1000000000UL)
354 		fout = 1000000000UL;
355 	else
356 		fout = rate;
357 
358 	/* 5Mhz < Fref / prediv < 40MHz */
359 	min_prediv = DIV_ROUND_UP(fref, 40000000);
360 	max_prediv = fref / 5000000;
361 
362 	for (_prediv = min_prediv; _prediv <= max_prediv; _prediv++) {
363 		u64 tmp;
364 		u32 delta;
365 
366 		tmp = (u64)fout * _prediv;
367 		do_div(tmp, fref);
368 		_fbdiv = tmp;
369 
370 		/*
371 		 * The possible settings of feedback divider are
372 		 * 12, 13, 14, 16, ~ 511
373 		 */
374 		if (_fbdiv == 15)
375 			continue;
376 
377 		if (_fbdiv < 12 || _fbdiv > 511)
378 			continue;
379 
380 		tmp = (u64)_fbdiv * fref;
381 		do_div(tmp, _prediv);
382 
383 		delta = abs(fout - tmp);
384 		if (!delta) {
385 			best_prediv = _prediv;
386 			best_fbdiv = _fbdiv;
387 			best_freq = tmp;
388 			break;
389 		} else if (delta < min_delta) {
390 			best_prediv = _prediv;
391 			best_fbdiv = _fbdiv;
392 			best_freq = tmp;
393 			min_delta = delta;
394 		}
395 	}
396 
397 	if (best_freq) {
398 		inno->pll.prediv = best_prediv;
399 		inno->pll.fbdiv = best_fbdiv;
400 		inno->pll.rate = best_freq;
401 	}
402 
403 	return best_freq;
404 }
405 
inno_dsidphy_mipi_mode_enable(struct inno_dsidphy * inno)406 static void inno_dsidphy_mipi_mode_enable(struct inno_dsidphy *inno)
407 {
408 	struct phy_configure_opts_mipi_dphy *cfg = &inno->dphy_cfg;
409 	const struct inno_mipi_dphy_timing *timings;
410 	u32 t_txbyteclkhs, t_txclkesc;
411 	u32 txbyteclkhs, txclkesc, esc_clk_div;
412 	u32 hs_exit, clk_post, clk_pre, wakeup, lpx, ta_go, ta_sure, ta_wait;
413 	u32 hs_prepare, hs_trail, hs_zero, clk_lane_hs_zero, data_lane_hs_zero;
414 	unsigned int i;
415 	u32 val;
416 
417 	timings = inno->pdata->inno_mipi_dphy_timing_table;
418 
419 	inno_dsidphy_pll_calc_rate(inno, cfg->hs_clk_rate);
420 
421 	/* Select MIPI mode */
422 	phy_update_bits(inno, REGISTER_PART_LVDS, 0x03,
423 			MODE_ENABLE_MASK, MIPI_MODE_ENABLE);
424 	/* Configure PLL */
425 	phy_update_bits(inno, REGISTER_PART_ANALOG, 0x03,
426 			REG_PREDIV_MASK, REG_PREDIV(inno->pll.prediv));
427 	phy_update_bits(inno, REGISTER_PART_ANALOG, 0x03,
428 			REG_FBDIV_HI_MASK, REG_FBDIV_HI(inno->pll.fbdiv));
429 	phy_update_bits(inno, REGISTER_PART_ANALOG, 0x04,
430 			REG_FBDIV_LO_MASK, REG_FBDIV_LO(inno->pll.fbdiv));
431 	if (inno->pdata->max_rate == MAX_2_5GHZ) {
432 		phy_update_bits(inno, REGISTER_PART_ANALOG, 0x08,
433 				PLL_POST_DIV_ENABLE_MASK, PLL_POST_DIV_ENABLE);
434 		phy_update_bits(inno, REGISTER_PART_ANALOG, 0x0b,
435 				CLOCK_LANE_VOD_RANGE_SET_MASK,
436 				CLOCK_LANE_VOD_RANGE_SET(VOD_MAX_RANGE));
437 	} else if (inno->pdata->max_rate == MAX_1_5GHZ) {
438 		phy_update_bits(inno, REGISTER_PART_ANALOG, 0x18,
439 				LANE0_PRE_EMPHASIS_ENABLE_MASK, LANE0_PRE_EMPHASIS_ENABLE);
440 		phy_update_bits(inno, REGISTER_PART_ANALOG, 0x18,
441 				LANE1_PRE_EMPHASIS_ENABLE_MASK, LANE1_PRE_EMPHASIS_ENABLE);
442 		phy_update_bits(inno, REGISTER_PART_ANALOG, 0x19,
443 				PRE_EMPHASIS_RANGE_SET_MASK,
444 				PRE_EMPHASIS_RANGE_SET(PRE_EMPHASIS_MID_RANGE));
445 		phy_update_bits(inno, REGISTER_PART_ANALOG, 0x1a,
446 				LANE0_PRE_EMPHASIS_RANGE_SET_MASK,
447 				LANE0_PRE_EMPHASIS_RANGE_SET(PRE_EMPHASIS_MID_RANGE));
448 		phy_update_bits(inno, REGISTER_PART_ANALOG, 0x1b,
449 				LANE1_PRE_EMPHASIS_RANGE_SET_MASK,
450 				LANE1_PRE_EMPHASIS_RANGE_SET(PRE_EMPHASIS_MID_RANGE));
451 		phy_update_bits(inno, REGISTER_PART_ANALOG, 0x0b,
452 				CLOCK_LANE_VOD_RANGE_SET_MASK,
453 				CLOCK_LANE_VOD_RANGE_SET(VOD_MAX_RANGE));
454 	}
455 	/* Enable PLL and LDO */
456 	phy_update_bits(inno, REGISTER_PART_ANALOG, 0x01,
457 			REG_LDOPD_MASK | REG_PLLPD_MASK,
458 			REG_LDOPD_POWER_ON | REG_PLLPD_POWER_ON);
459 	/* Reset analog */
460 	phy_update_bits(inno, REGISTER_PART_ANALOG, 0x01,
461 			REG_SYNCRST_MASK, REG_SYNCRST_RESET);
462 	udelay(1);
463 	phy_update_bits(inno, REGISTER_PART_ANALOG, 0x01,
464 			REG_SYNCRST_MASK, REG_SYNCRST_NORMAL);
465 	/* Reset digital */
466 	phy_update_bits(inno, REGISTER_PART_DIGITAL, 0x00,
467 			REG_DIG_RSTN_MASK, REG_DIG_RSTN_RESET);
468 	udelay(1);
469 	phy_update_bits(inno, REGISTER_PART_DIGITAL, 0x00,
470 			REG_DIG_RSTN_MASK, REG_DIG_RSTN_NORMAL);
471 
472 	txbyteclkhs = inno->pll.rate / 8;
473 	t_txbyteclkhs = div_u64(PSEC_PER_SEC, txbyteclkhs);
474 
475 	esc_clk_div = DIV_ROUND_UP(txbyteclkhs, 20000000);
476 	txclkesc = txbyteclkhs / esc_clk_div;
477 	t_txclkesc = div_u64(PSEC_PER_SEC, txclkesc);
478 
479 	/*
480 	 * The value of counter for HS Ths-exit
481 	 * Ths-exit = Tpin_txbyteclkhs * value
482 	 */
483 	hs_exit = DIV_ROUND_UP(cfg->hs_exit, t_txbyteclkhs);
484 	/*
485 	 * The value of counter for HS Tclk-post
486 	 * Tclk-post = Tpin_txbyteclkhs * value
487 	 */
488 	clk_post = DIV_ROUND_UP(cfg->clk_post, t_txbyteclkhs);
489 	/*
490 	 * The value of counter for HS Tclk-pre
491 	 * Tclk-pre = Tpin_txbyteclkhs * value
492 	 */
493 	clk_pre = DIV_ROUND_UP(cfg->clk_pre, BITS_PER_BYTE);
494 
495 	/*
496 	 * The value of counter for HS Tta-go
497 	 * Tta-go for turnaround
498 	 * Tta-go = Ttxclkesc * value
499 	 */
500 	ta_go = DIV_ROUND_UP(cfg->ta_go, t_txclkesc);
501 	/*
502 	 * The value of counter for HS Tta-sure
503 	 * Tta-sure for turnaround
504 	 * Tta-sure = Ttxclkesc * value
505 	 */
506 	ta_sure = DIV_ROUND_UP(cfg->ta_sure, t_txclkesc);
507 	/*
508 	 * The value of counter for HS Tta-wait
509 	 * Tta-wait for turnaround
510 	 * Tta-wait = Ttxclkesc * value
511 	 */
512 	ta_wait = DIV_ROUND_UP(cfg->ta_get, t_txclkesc);
513 
514 	for (i = 0; i < inno->pdata->num_timings; i++)
515 		if (inno->pll.rate <= timings[i].rate)
516 			break;
517 
518 	if (i == inno->pdata->num_timings)
519 		--i;
520 
521 	/*
522 	 * The value of counter for HS Tlpx Time
523 	 * Tlpx = Tpin_txbyteclkhs * (2 + value)
524 	 */
525 	if (inno->pdata->max_rate == MAX_1GHZ) {
526 		lpx = DIV_ROUND_UP(cfg->lpx, t_txbyteclkhs);
527 		if (lpx >= 2)
528 			lpx -= 2;
529 	} else
530 		lpx = timings[i].lpx;
531 
532 	hs_prepare = timings[i].hs_prepare;
533 	hs_trail = timings[i].hs_trail;
534 	clk_lane_hs_zero = timings[i].clk_lane_hs_zero;
535 	data_lane_hs_zero = timings[i].data_lane_hs_zero;
536 	wakeup = 0x3ff;
537 
538 	for (i = REGISTER_PART_CLOCK_LANE; i <= REGISTER_PART_DATA3_LANE; i++) {
539 		if (i == REGISTER_PART_CLOCK_LANE)
540 			hs_zero = clk_lane_hs_zero;
541 		else
542 			hs_zero = data_lane_hs_zero;
543 
544 		phy_update_bits(inno, i, 0x05, T_LPX_CNT_MASK,
545 				T_LPX_CNT(lpx));
546 		phy_update_bits(inno, i, 0x06, T_HS_PREPARE_CNT_MASK,
547 				T_HS_PREPARE_CNT(hs_prepare));
548 		if (inno->pdata->max_rate == MAX_2_5GHZ)
549 			phy_update_bits(inno, i, 0x06, T_HS_ZERO_CNT_HI_MASK,
550 					T_HS_ZERO_CNT_HI(hs_zero >> 6));
551 		phy_update_bits(inno, i, 0x07, T_HS_ZERO_CNT_LO_MASK,
552 				T_HS_ZERO_CNT_LO(hs_zero));
553 		phy_update_bits(inno, i, 0x08, T_HS_TRAIL_CNT_MASK,
554 				T_HS_TRAIL_CNT(hs_trail));
555 		if (inno->pdata->max_rate == MAX_2_5GHZ)
556 			phy_update_bits(inno, i, 0x11, T_HS_EXIT_CNT_HI_MASK,
557 					T_HS_EXIT_CNT_HI(hs_exit >> 5));
558 		phy_update_bits(inno, i, 0x09, T_HS_EXIT_CNT_LO_MASK,
559 				T_HS_EXIT_CNT_LO(hs_exit));
560 		if (inno->pdata->max_rate == MAX_2_5GHZ)
561 			phy_update_bits(inno, i, 0x10, T_CLK_POST_CNT_HI_MASK,
562 					T_CLK_POST_CNT_HI(clk_post >> 4));
563 		phy_update_bits(inno, i, 0x0a, T_CLK_POST_CNT_LO_MASK,
564 				T_CLK_POST_CNT_LO(clk_post));
565 		phy_update_bits(inno, i, 0x0e, T_CLK_PRE_CNT_MASK,
566 				T_CLK_PRE_CNT(clk_pre));
567 		phy_update_bits(inno, i, 0x0c, T_WAKEUP_CNT_HI_MASK,
568 				T_WAKEUP_CNT_HI(wakeup >> 8));
569 		phy_update_bits(inno, i, 0x0d, T_WAKEUP_CNT_LO_MASK,
570 				T_WAKEUP_CNT_LO(wakeup));
571 		phy_update_bits(inno, i, 0x10, T_TA_GO_CNT_MASK,
572 				T_TA_GO_CNT(ta_go));
573 		phy_update_bits(inno, i, 0x11, T_TA_SURE_CNT_MASK,
574 				T_TA_SURE_CNT(ta_sure));
575 		phy_update_bits(inno, i, 0x12, T_TA_WAIT_CNT_MASK,
576 				T_TA_WAIT_CNT(ta_wait));
577 	}
578 
579 	/* Enable lanes on analog part */
580 	switch (inno->pdata->max_lanes) {
581 	case 1:
582 		val =  LANE_EN_0;
583 		break;
584 	case 2:
585 		val =  LANE_EN_0 | LANE_EN_1;
586 		break;
587 	case 3:
588 		val = LANE_EN_0 | LANE_EN_1 | LANE_EN_2;
589 		break;
590 	case 4:
591 	default:
592 		val = LANE_EN_0 | LANE_EN_1 | LANE_EN_2 | LANE_EN_3;
593 		break;
594 	}
595 
596 	phy_update_bits(inno, REGISTER_PART_ANALOG, 0x00,
597 			LANE_EN_MASK, LANE_EN_CK | val);
598 }
599 
inno_dsidphy_lvds_mode_enable(struct inno_dsidphy * inno)600 static void inno_dsidphy_lvds_mode_enable(struct inno_dsidphy *inno)
601 {
602 	u8 prediv = 2;
603 	u16 fbdiv = 28;
604 
605 	/* Sample clock reverse direction */
606 	phy_update_bits(inno, REGISTER_PART_ANALOG, 0x08,
607 			SAMPLE_CLOCK_DIRECTION_MASK | LOWFRE_EN_MASK,
608 			SAMPLE_CLOCK_DIRECTION_REVERSE |
609 			PLL_OUTPUT_FREQUENCY_DIV_BY_1);
610 
611 	/* Select LVDS mode */
612 	phy_update_bits(inno, REGISTER_PART_LVDS, 0x03,
613 			MODE_ENABLE_MASK, LVDS_MODE_ENABLE);
614 	/* Configure PLL */
615 	phy_update_bits(inno, REGISTER_PART_ANALOG, 0x03,
616 			REG_PREDIV_MASK, REG_PREDIV(prediv));
617 	phy_update_bits(inno, REGISTER_PART_ANALOG, 0x03,
618 			REG_FBDIV_HI_MASK, REG_FBDIV_HI(fbdiv));
619 	phy_update_bits(inno, REGISTER_PART_ANALOG, 0x04,
620 			REG_FBDIV_LO_MASK, REG_FBDIV_LO(fbdiv));
621 	phy_update_bits(inno, REGISTER_PART_LVDS, 0x08, 0xff, 0xfc);
622 	/* Enable PLL and Bandgap */
623 	phy_update_bits(inno, REGISTER_PART_LVDS, 0x0b,
624 			LVDS_PLL_POWER_MASK | LVDS_BANDGAP_POWER_MASK,
625 			LVDS_PLL_POWER_ON | LVDS_BANDGAP_POWER_ON);
626 
627 	msleep(20);
628 
629 	/* Select PLL mode */
630 	phy_update_bits(inno, REGISTER_PART_ANALOG, 0x1e,
631 			PLL_MODE_SEL_MASK, PLL_MODE_SEL_LVDS_MODE);
632 
633 	/* Reset LVDS digital logic */
634 	phy_update_bits(inno, REGISTER_PART_LVDS, 0x00,
635 			LVDS_DIGITAL_INTERNAL_RESET_MASK,
636 			LVDS_DIGITAL_INTERNAL_RESET_ENABLE);
637 	udelay(1);
638 	phy_update_bits(inno, REGISTER_PART_LVDS, 0x00,
639 			LVDS_DIGITAL_INTERNAL_RESET_MASK,
640 			LVDS_DIGITAL_INTERNAL_RESET_DISABLE);
641 	/* Enable LVDS digital logic */
642 	phy_update_bits(inno, REGISTER_PART_LVDS, 0x01,
643 			LVDS_DIGITAL_INTERNAL_ENABLE_MASK,
644 			LVDS_DIGITAL_INTERNAL_ENABLE);
645 	/* Enable LVDS analog driver */
646 	phy_update_bits(inno, REGISTER_PART_LVDS, 0x0b,
647 			LVDS_LANE_EN_MASK, LVDS_CLK_LANE_EN |
648 			LVDS_DATA_LANE0_EN | LVDS_DATA_LANE1_EN |
649 			LVDS_DATA_LANE2_EN | LVDS_DATA_LANE3_EN);
650 }
651 
inno_dsidphy_power_on(struct phy * phy)652 static int inno_dsidphy_power_on(struct phy *phy)
653 {
654 	struct inno_dsidphy *inno = phy_get_drvdata(phy);
655 
656 	clk_prepare_enable(inno->pclk_phy);
657 	clk_prepare_enable(inno->ref_clk);
658 	pm_runtime_get_sync(inno->dev);
659 
660 	/* Bandgap power on */
661 	phy_update_bits(inno, REGISTER_PART_ANALOG, 0x00,
662 			BANDGAP_POWER_MASK, BANDGAP_POWER_ON);
663 	/* Enable power work */
664 	phy_update_bits(inno, REGISTER_PART_ANALOG, 0x00,
665 			POWER_WORK_MASK, POWER_WORK_ENABLE);
666 
667 	switch (inno->mode) {
668 	case PHY_MODE_MIPI_DPHY:
669 		inno_dsidphy_mipi_mode_enable(inno);
670 		break;
671 	case PHY_MODE_LVDS:
672 		inno_dsidphy_lvds_mode_enable(inno);
673 		break;
674 	default:
675 		return -EINVAL;
676 	}
677 
678 	return 0;
679 }
680 
inno_dsidphy_power_off(struct phy * phy)681 static int inno_dsidphy_power_off(struct phy *phy)
682 {
683 	struct inno_dsidphy *inno = phy_get_drvdata(phy);
684 
685 	phy_update_bits(inno, REGISTER_PART_ANALOG, 0x00, LANE_EN_MASK, 0);
686 	phy_update_bits(inno, REGISTER_PART_ANALOG, 0x01,
687 			REG_LDOPD_MASK | REG_PLLPD_MASK,
688 			REG_LDOPD_POWER_DOWN | REG_PLLPD_POWER_DOWN);
689 	phy_update_bits(inno, REGISTER_PART_ANALOG, 0x00,
690 			POWER_WORK_MASK, POWER_WORK_DISABLE);
691 	phy_update_bits(inno, REGISTER_PART_ANALOG, 0x00,
692 			BANDGAP_POWER_MASK, BANDGAP_POWER_DOWN);
693 
694 	phy_update_bits(inno, REGISTER_PART_LVDS, 0x0b, LVDS_LANE_EN_MASK, 0);
695 	phy_update_bits(inno, REGISTER_PART_LVDS, 0x01,
696 			LVDS_DIGITAL_INTERNAL_ENABLE_MASK,
697 			LVDS_DIGITAL_INTERNAL_DISABLE);
698 	phy_update_bits(inno, REGISTER_PART_LVDS, 0x0b,
699 			LVDS_PLL_POWER_MASK | LVDS_BANDGAP_POWER_MASK,
700 			LVDS_PLL_POWER_OFF | LVDS_BANDGAP_POWER_DOWN);
701 
702 	pm_runtime_put(inno->dev);
703 	clk_disable_unprepare(inno->ref_clk);
704 	clk_disable_unprepare(inno->pclk_phy);
705 
706 	return 0;
707 }
708 
inno_dsidphy_set_mode(struct phy * phy,enum phy_mode mode,int submode)709 static int inno_dsidphy_set_mode(struct phy *phy, enum phy_mode mode,
710 				   int submode)
711 {
712 	struct inno_dsidphy *inno = phy_get_drvdata(phy);
713 
714 	switch (mode) {
715 	case PHY_MODE_MIPI_DPHY:
716 	case PHY_MODE_LVDS:
717 		inno->mode = mode;
718 		break;
719 	default:
720 		return -EINVAL;
721 	}
722 
723 	return 0;
724 }
725 
inno_dsidphy_configure(struct phy * phy,union phy_configure_opts * opts)726 static int inno_dsidphy_configure(struct phy *phy,
727 				  union phy_configure_opts *opts)
728 {
729 	struct inno_dsidphy *inno = phy_get_drvdata(phy);
730 	int ret;
731 
732 	if (inno->mode != PHY_MODE_MIPI_DPHY)
733 		return -EINVAL;
734 
735 	ret = phy_mipi_dphy_config_validate(&opts->mipi_dphy);
736 	if (ret)
737 		return ret;
738 
739 	memcpy(&inno->dphy_cfg, &opts->mipi_dphy, sizeof(inno->dphy_cfg));
740 
741 	return 0;
742 }
743 
744 static const struct phy_ops inno_dsidphy_ops = {
745 	.configure = inno_dsidphy_configure,
746 	.set_mode = inno_dsidphy_set_mode,
747 	.power_on = inno_dsidphy_power_on,
748 	.power_off = inno_dsidphy_power_off,
749 	.owner = THIS_MODULE,
750 };
751 
752 static const struct inno_video_phy_plat_data max_1ghz_video_phy_plat_data = {
753 	.inno_mipi_dphy_timing_table = inno_mipi_dphy_timing_table_max_1ghz,
754 	.num_timings = ARRAY_SIZE(inno_mipi_dphy_timing_table_max_1ghz),
755 	.max_rate = MAX_1GHZ,
756 	.max_lanes = 4,
757 };
758 
759 static const struct inno_video_phy_plat_data max_1_5ghz_video_phy_plat_data = {
760 	.inno_mipi_dphy_timing_table = inno_mipi_dphy_timing_table_max_1_5ghz,
761 	.num_timings = ARRAY_SIZE(inno_mipi_dphy_timing_table_max_1_5ghz),
762 	.max_rate = MAX_1_5GHZ,
763 	.max_lanes = 2,
764 };
765 
766 static const struct inno_video_phy_plat_data max_2_5ghz_video_phy_plat_data = {
767 	.inno_mipi_dphy_timing_table = inno_mipi_dphy_timing_table_max_2_5ghz,
768 	.num_timings = ARRAY_SIZE(inno_mipi_dphy_timing_table_max_2_5ghz),
769 	.max_rate = MAX_2_5GHZ,
770 	.max_lanes = 4,
771 };
772 
inno_dsidphy_probe(struct platform_device * pdev)773 static int inno_dsidphy_probe(struct platform_device *pdev)
774 {
775 	struct device *dev = &pdev->dev;
776 	struct inno_dsidphy *inno;
777 	struct phy_provider *phy_provider;
778 	struct phy *phy;
779 	int ret;
780 
781 	inno = devm_kzalloc(dev, sizeof(*inno), GFP_KERNEL);
782 	if (!inno)
783 		return -ENOMEM;
784 
785 	inno->dev = dev;
786 	inno->pdata = of_device_get_match_data(inno->dev);
787 	platform_set_drvdata(pdev, inno);
788 
789 	inno->phy_base = devm_platform_ioremap_resource(pdev, 0);
790 	if (IS_ERR(inno->phy_base))
791 		return PTR_ERR(inno->phy_base);
792 
793 	inno->ref_clk = devm_clk_get(dev, "ref");
794 	if (IS_ERR(inno->ref_clk)) {
795 		ret = PTR_ERR(inno->ref_clk);
796 		dev_err(dev, "failed to get ref clock: %d\n", ret);
797 		return ret;
798 	}
799 
800 	inno->pclk_phy = devm_clk_get(dev, "pclk");
801 	if (IS_ERR(inno->pclk_phy)) {
802 		ret = PTR_ERR(inno->pclk_phy);
803 		dev_err(dev, "failed to get phy pclk: %d\n", ret);
804 		return ret;
805 	}
806 
807 	inno->rst = devm_reset_control_get(dev, "apb");
808 	if (IS_ERR(inno->rst)) {
809 		ret = PTR_ERR(inno->rst);
810 		dev_err(dev, "failed to get system reset control: %d\n", ret);
811 		return ret;
812 	}
813 
814 	phy = devm_phy_create(dev, NULL, &inno_dsidphy_ops);
815 	if (IS_ERR(phy)) {
816 		ret = PTR_ERR(phy);
817 		dev_err(dev, "failed to create phy: %d\n", ret);
818 		return ret;
819 	}
820 
821 	phy_set_drvdata(phy, inno);
822 
823 	phy_provider = devm_of_phy_provider_register(dev, of_phy_simple_xlate);
824 	if (IS_ERR(phy_provider)) {
825 		ret = PTR_ERR(phy_provider);
826 		dev_err(dev, "failed to register phy provider: %d\n", ret);
827 		return ret;
828 	}
829 
830 	pm_runtime_enable(dev);
831 
832 	return 0;
833 }
834 
inno_dsidphy_remove(struct platform_device * pdev)835 static void inno_dsidphy_remove(struct platform_device *pdev)
836 {
837 	struct inno_dsidphy *inno = platform_get_drvdata(pdev);
838 
839 	pm_runtime_disable(inno->dev);
840 }
841 
842 static const struct of_device_id inno_dsidphy_of_match[] = {
843 	{
844 		.compatible = "rockchip,px30-dsi-dphy",
845 		.data = &max_1ghz_video_phy_plat_data,
846 	}, {
847 		.compatible = "rockchip,rk3128-dsi-dphy",
848 		.data = &max_1ghz_video_phy_plat_data,
849 	}, {
850 		.compatible = "rockchip,rk3368-dsi-dphy",
851 		.data = &max_1ghz_video_phy_plat_data,
852 	}, {
853 		.compatible = "rockchip,rk3506-dsi-dphy",
854 		.data = &max_1_5ghz_video_phy_plat_data,
855 	}, {
856 		.compatible = "rockchip,rk3568-dsi-dphy",
857 		.data = &max_2_5ghz_video_phy_plat_data,
858 	}, {
859 		.compatible = "rockchip,rv1126-dsi-dphy",
860 		.data = &max_2_5ghz_video_phy_plat_data,
861 	},
862 	{}
863 };
864 MODULE_DEVICE_TABLE(of, inno_dsidphy_of_match);
865 
866 static struct platform_driver inno_dsidphy_driver = {
867 	.driver = {
868 		.name = "inno-dsidphy",
869 		.of_match_table	= of_match_ptr(inno_dsidphy_of_match),
870 	},
871 	.probe = inno_dsidphy_probe,
872 	.remove = inno_dsidphy_remove,
873 };
874 module_platform_driver(inno_dsidphy_driver);
875 
876 MODULE_AUTHOR("Wyon Bi <bivvy.bi@rock-chips.com>");
877 MODULE_DESCRIPTION("Innosilicon MIPI/LVDS/TTL Video Combo PHY driver");
878 MODULE_LICENSE("GPL v2");
879