xref: /linux/security/selinux/avc.c (revision 09a0fa92e5b45e99cf435b2fbf5ebcf889cf8780)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Implementation of the kernel access vector cache (AVC).
4  *
5  * Authors:  Stephen Smalley, <stephen.smalley.work@gmail.com>
6  *	     James Morris <jmorris@redhat.com>
7  *
8  * Update:   KaiGai, Kohei <kaigai@ak.jp.nec.com>
9  *	Replaced the avc_lock spinlock by RCU.
10  *
11  * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
12  */
13 #include <linux/types.h>
14 #include <linux/stddef.h>
15 #include <linux/kernel.h>
16 #include <linux/slab.h>
17 #include <linux/fs.h>
18 #include <linux/dcache.h>
19 #include <linux/init.h>
20 #include <linux/skbuff.h>
21 #include <linux/percpu.h>
22 #include <linux/list.h>
23 #include <net/sock.h>
24 #include <linux/un.h>
25 #include <net/af_unix.h>
26 #include <linux/ip.h>
27 #include <linux/audit.h>
28 #include <linux/ipv6.h>
29 #include <net/ipv6.h>
30 #include "avc.h"
31 #include "avc_ss.h"
32 #include "classmap.h"
33 
34 #define CREATE_TRACE_POINTS
35 #include <trace/events/avc.h>
36 
37 #define AVC_CACHE_SLOTS			512
38 #define AVC_DEF_CACHE_THRESHOLD		512
39 #define AVC_CACHE_RECLAIM		16
40 
41 #ifdef CONFIG_SECURITY_SELINUX_AVC_STATS
42 #define avc_cache_stats_incr(field)	this_cpu_inc(avc_cache_stats.field)
43 #else
44 #define avc_cache_stats_incr(field)	do {} while (0)
45 #endif
46 
47 struct avc_entry {
48 	u32			ssid;
49 	u32			tsid;
50 	u16			tclass;
51 	struct av_decision	avd;
52 	struct avc_xperms_node	*xp_node;
53 };
54 
55 struct avc_node {
56 	struct avc_entry	ae;
57 	struct hlist_node	list; /* anchored in avc_cache->slots[i] */
58 	struct rcu_head		rhead;
59 };
60 
61 struct avc_xperms_decision_node {
62 	struct extended_perms_decision xpd;
63 	struct list_head xpd_list; /* list of extended_perms_decision */
64 };
65 
66 struct avc_xperms_node {
67 	struct extended_perms xp;
68 	struct list_head xpd_head; /* list head of extended_perms_decision */
69 };
70 
71 struct avc_cache {
72 	struct hlist_head	slots[AVC_CACHE_SLOTS]; /* head for avc_node->list */
73 	spinlock_t		slots_lock[AVC_CACHE_SLOTS]; /* lock for writes */
74 	atomic_t		lru_hint;	/* LRU hint for reclaim scan */
75 	atomic_t		active_nodes;
76 	u32			latest_notif;	/* latest revocation notification */
77 };
78 
79 struct avc_callback_node {
80 	int (*callback) (u32 event);
81 	u32 events;
82 	struct avc_callback_node *next;
83 };
84 
85 #ifdef CONFIG_SECURITY_SELINUX_AVC_STATS
86 DEFINE_PER_CPU(struct avc_cache_stats, avc_cache_stats) = { 0 };
87 #endif
88 
89 struct selinux_avc {
90 	unsigned int avc_cache_threshold;
91 	struct avc_cache avc_cache;
92 };
93 
94 static struct selinux_avc selinux_avc;
95 
selinux_avc_init(void)96 void selinux_avc_init(void)
97 {
98 	int i;
99 
100 	selinux_avc.avc_cache_threshold = AVC_DEF_CACHE_THRESHOLD;
101 	for (i = 0; i < AVC_CACHE_SLOTS; i++) {
102 		INIT_HLIST_HEAD(&selinux_avc.avc_cache.slots[i]);
103 		spin_lock_init(&selinux_avc.avc_cache.slots_lock[i]);
104 	}
105 	atomic_set(&selinux_avc.avc_cache.active_nodes, 0);
106 	atomic_set(&selinux_avc.avc_cache.lru_hint, 0);
107 }
108 
avc_get_cache_threshold(void)109 unsigned int avc_get_cache_threshold(void)
110 {
111 	return selinux_avc.avc_cache_threshold;
112 }
113 
avc_set_cache_threshold(unsigned int cache_threshold)114 void avc_set_cache_threshold(unsigned int cache_threshold)
115 {
116 	selinux_avc.avc_cache_threshold = cache_threshold;
117 }
118 
119 static struct avc_callback_node *avc_callbacks __ro_after_init;
120 static struct kmem_cache *avc_node_cachep __ro_after_init;
121 static struct kmem_cache *avc_xperms_data_cachep __ro_after_init;
122 static struct kmem_cache *avc_xperms_decision_cachep __ro_after_init;
123 static struct kmem_cache *avc_xperms_cachep __ro_after_init;
124 
avc_hash(u32 ssid,u32 tsid,u16 tclass)125 static inline u32 avc_hash(u32 ssid, u32 tsid, u16 tclass)
126 {
127 	return (ssid ^ (tsid<<2) ^ (tclass<<4)) & (AVC_CACHE_SLOTS - 1);
128 }
129 
130 /**
131  * avc_init - Initialize the AVC.
132  *
133  * Initialize the access vector cache.
134  */
avc_init(void)135 void __init avc_init(void)
136 {
137 	avc_node_cachep = KMEM_CACHE(avc_node, SLAB_PANIC);
138 	avc_xperms_cachep = KMEM_CACHE(avc_xperms_node, SLAB_PANIC);
139 	avc_xperms_decision_cachep = KMEM_CACHE(avc_xperms_decision_node, SLAB_PANIC);
140 	avc_xperms_data_cachep = KMEM_CACHE(extended_perms_data, SLAB_PANIC);
141 }
142 
avc_get_hash_stats(char * page)143 int avc_get_hash_stats(char *page)
144 {
145 	int i, chain_len, max_chain_len, slots_used;
146 	struct avc_node *node;
147 	struct hlist_head *head;
148 
149 	rcu_read_lock();
150 
151 	slots_used = 0;
152 	max_chain_len = 0;
153 	for (i = 0; i < AVC_CACHE_SLOTS; i++) {
154 		head = &selinux_avc.avc_cache.slots[i];
155 		if (!hlist_empty(head)) {
156 			slots_used++;
157 			chain_len = 0;
158 			hlist_for_each_entry_rcu(node, head, list)
159 				chain_len++;
160 			if (chain_len > max_chain_len)
161 				max_chain_len = chain_len;
162 		}
163 	}
164 
165 	rcu_read_unlock();
166 
167 	return scnprintf(page, PAGE_SIZE, "entries: %d\nbuckets used: %d/%d\n"
168 			 "longest chain: %d\n",
169 			 atomic_read(&selinux_avc.avc_cache.active_nodes),
170 			 slots_used, AVC_CACHE_SLOTS, max_chain_len);
171 }
172 
173 /*
174  * using a linked list for extended_perms_decision lookup because the list is
175  * always small. i.e. less than 5, typically 1
176  */
177 static struct extended_perms_decision *
avc_xperms_decision_lookup(u8 driver,u8 base_perm,struct avc_xperms_node * xp_node)178 avc_xperms_decision_lookup(u8 driver, u8 base_perm,
179 			   struct avc_xperms_node *xp_node)
180 {
181 	struct avc_xperms_decision_node *xpd_node;
182 
183 	list_for_each_entry(xpd_node, &xp_node->xpd_head, xpd_list) {
184 		if (xpd_node->xpd.driver == driver &&
185 		    xpd_node->xpd.base_perm == base_perm)
186 			return &xpd_node->xpd;
187 	}
188 	return NULL;
189 }
190 
191 static inline unsigned int
avc_xperms_has_perm(struct extended_perms_decision * xpd,u8 perm,u8 which)192 avc_xperms_has_perm(struct extended_perms_decision *xpd,
193 					u8 perm, u8 which)
194 {
195 	unsigned int rc = 0;
196 
197 	if ((which == XPERMS_ALLOWED) &&
198 			(xpd->used & XPERMS_ALLOWED))
199 		rc = security_xperm_test(xpd->allowed->p, perm);
200 	else if ((which == XPERMS_AUDITALLOW) &&
201 			(xpd->used & XPERMS_AUDITALLOW))
202 		rc = security_xperm_test(xpd->auditallow->p, perm);
203 	else if ((which == XPERMS_DONTAUDIT) &&
204 			(xpd->used & XPERMS_DONTAUDIT))
205 		rc = security_xperm_test(xpd->dontaudit->p, perm);
206 	return rc;
207 }
208 
avc_xperms_allow_perm(struct avc_xperms_node * xp_node,u8 driver,u8 base_perm,u8 perm)209 static void avc_xperms_allow_perm(struct avc_xperms_node *xp_node,
210 				  u8 driver, u8 base_perm, u8 perm)
211 {
212 	struct extended_perms_decision *xpd;
213 	security_xperm_set(xp_node->xp.drivers.p, driver);
214 	xp_node->xp.base_perms |= base_perm;
215 	xpd = avc_xperms_decision_lookup(driver, base_perm, xp_node);
216 	if (xpd && xpd->allowed)
217 		security_xperm_set(xpd->allowed->p, perm);
218 }
219 
avc_xperms_decision_free(struct avc_xperms_decision_node * xpd_node)220 static void avc_xperms_decision_free(struct avc_xperms_decision_node *xpd_node)
221 {
222 	struct extended_perms_decision *xpd;
223 
224 	xpd = &xpd_node->xpd;
225 	if (xpd->allowed)
226 		kmem_cache_free(avc_xperms_data_cachep, xpd->allowed);
227 	if (xpd->auditallow)
228 		kmem_cache_free(avc_xperms_data_cachep, xpd->auditallow);
229 	if (xpd->dontaudit)
230 		kmem_cache_free(avc_xperms_data_cachep, xpd->dontaudit);
231 	kmem_cache_free(avc_xperms_decision_cachep, xpd_node);
232 }
233 
avc_xperms_free(struct avc_xperms_node * xp_node)234 static void avc_xperms_free(struct avc_xperms_node *xp_node)
235 {
236 	struct avc_xperms_decision_node *xpd_node, *tmp;
237 
238 	if (!xp_node)
239 		return;
240 
241 	list_for_each_entry_safe(xpd_node, tmp, &xp_node->xpd_head, xpd_list) {
242 		list_del(&xpd_node->xpd_list);
243 		avc_xperms_decision_free(xpd_node);
244 	}
245 	kmem_cache_free(avc_xperms_cachep, xp_node);
246 }
247 
avc_copy_xperms_decision(struct extended_perms_decision * dest,struct extended_perms_decision * src)248 static void avc_copy_xperms_decision(struct extended_perms_decision *dest,
249 					struct extended_perms_decision *src)
250 {
251 	dest->base_perm = src->base_perm;
252 	dest->driver = src->driver;
253 	dest->used = src->used;
254 	if (dest->used & XPERMS_ALLOWED)
255 		memcpy(dest->allowed->p, src->allowed->p,
256 				sizeof(src->allowed->p));
257 	if (dest->used & XPERMS_AUDITALLOW)
258 		memcpy(dest->auditallow->p, src->auditallow->p,
259 				sizeof(src->auditallow->p));
260 	if (dest->used & XPERMS_DONTAUDIT)
261 		memcpy(dest->dontaudit->p, src->dontaudit->p,
262 				sizeof(src->dontaudit->p));
263 }
264 
265 /*
266  * similar to avc_copy_xperms_decision, but only copy decision
267  * information relevant to this perm
268  */
avc_quick_copy_xperms_decision(u8 perm,struct extended_perms_decision * dest,struct extended_perms_decision * src)269 static inline void avc_quick_copy_xperms_decision(u8 perm,
270 			struct extended_perms_decision *dest,
271 			struct extended_perms_decision *src)
272 {
273 	/*
274 	 * compute index of the u32 of the 256 bits (8 u32s) that contain this
275 	 * command permission
276 	 */
277 	u8 i = perm >> 5;
278 
279 	dest->base_perm = src->base_perm;
280 	dest->used = src->used;
281 	if (dest->used & XPERMS_ALLOWED)
282 		dest->allowed->p[i] = src->allowed->p[i];
283 	if (dest->used & XPERMS_AUDITALLOW)
284 		dest->auditallow->p[i] = src->auditallow->p[i];
285 	if (dest->used & XPERMS_DONTAUDIT)
286 		dest->dontaudit->p[i] = src->dontaudit->p[i];
287 }
288 
289 static struct avc_xperms_decision_node
avc_xperms_decision_alloc(u8 which)290 		*avc_xperms_decision_alloc(u8 which)
291 {
292 	struct avc_xperms_decision_node *xpd_node;
293 	struct extended_perms_decision *xpd;
294 
295 	xpd_node = kmem_cache_zalloc(avc_xperms_decision_cachep,
296 				     GFP_NOWAIT | __GFP_NOWARN);
297 	if (!xpd_node)
298 		return NULL;
299 
300 	xpd = &xpd_node->xpd;
301 	if (which & XPERMS_ALLOWED) {
302 		xpd->allowed = kmem_cache_zalloc(avc_xperms_data_cachep,
303 						GFP_NOWAIT | __GFP_NOWARN);
304 		if (!xpd->allowed)
305 			goto error;
306 	}
307 	if (which & XPERMS_AUDITALLOW) {
308 		xpd->auditallow = kmem_cache_zalloc(avc_xperms_data_cachep,
309 						GFP_NOWAIT | __GFP_NOWARN);
310 		if (!xpd->auditallow)
311 			goto error;
312 	}
313 	if (which & XPERMS_DONTAUDIT) {
314 		xpd->dontaudit = kmem_cache_zalloc(avc_xperms_data_cachep,
315 						GFP_NOWAIT | __GFP_NOWARN);
316 		if (!xpd->dontaudit)
317 			goto error;
318 	}
319 	return xpd_node;
320 error:
321 	avc_xperms_decision_free(xpd_node);
322 	return NULL;
323 }
324 
avc_add_xperms_decision(struct avc_node * node,struct extended_perms_decision * src)325 static int avc_add_xperms_decision(struct avc_node *node,
326 			struct extended_perms_decision *src)
327 {
328 	struct avc_xperms_decision_node *dest_xpd;
329 
330 	dest_xpd = avc_xperms_decision_alloc(src->used);
331 	if (!dest_xpd)
332 		return -ENOMEM;
333 	avc_copy_xperms_decision(&dest_xpd->xpd, src);
334 	list_add(&dest_xpd->xpd_list, &node->ae.xp_node->xpd_head);
335 	node->ae.xp_node->xp.len++;
336 	return 0;
337 }
338 
avc_xperms_alloc(void)339 static struct avc_xperms_node *avc_xperms_alloc(void)
340 {
341 	struct avc_xperms_node *xp_node;
342 
343 	xp_node = kmem_cache_zalloc(avc_xperms_cachep, GFP_NOWAIT | __GFP_NOWARN);
344 	if (!xp_node)
345 		return xp_node;
346 	INIT_LIST_HEAD(&xp_node->xpd_head);
347 	return xp_node;
348 }
349 
avc_xperms_populate(struct avc_node * node,struct avc_xperms_node * src)350 static int avc_xperms_populate(struct avc_node *node,
351 				struct avc_xperms_node *src)
352 {
353 	struct avc_xperms_node *dest;
354 	struct avc_xperms_decision_node *dest_xpd;
355 	struct avc_xperms_decision_node *src_xpd;
356 
357 	if (src->xp.len == 0)
358 		return 0;
359 	dest = avc_xperms_alloc();
360 	if (!dest)
361 		return -ENOMEM;
362 
363 	memcpy(dest->xp.drivers.p, src->xp.drivers.p, sizeof(dest->xp.drivers.p));
364 	dest->xp.len = src->xp.len;
365 	dest->xp.base_perms = src->xp.base_perms;
366 
367 	/* for each source xpd allocate a destination xpd and copy */
368 	list_for_each_entry(src_xpd, &src->xpd_head, xpd_list) {
369 		dest_xpd = avc_xperms_decision_alloc(src_xpd->xpd.used);
370 		if (!dest_xpd)
371 			goto error;
372 		avc_copy_xperms_decision(&dest_xpd->xpd, &src_xpd->xpd);
373 		list_add(&dest_xpd->xpd_list, &dest->xpd_head);
374 	}
375 	node->ae.xp_node = dest;
376 	return 0;
377 error:
378 	avc_xperms_free(dest);
379 	return -ENOMEM;
380 
381 }
382 
avc_xperms_audit_required(u32 requested,struct av_decision * avd,struct extended_perms_decision * xpd,u8 perm,int result,u32 * deniedp)383 static inline u32 avc_xperms_audit_required(u32 requested,
384 					struct av_decision *avd,
385 					struct extended_perms_decision *xpd,
386 					u8 perm,
387 					int result,
388 					u32 *deniedp)
389 {
390 	u32 denied, audited;
391 
392 	denied = requested & ~avd->allowed;
393 	if (unlikely(denied)) {
394 		audited = denied & avd->auditdeny;
395 		if (audited && xpd) {
396 			if (avc_xperms_has_perm(xpd, perm, XPERMS_DONTAUDIT))
397 				audited = 0;
398 		}
399 	} else if (result) {
400 		audited = denied = requested;
401 	} else {
402 		audited = requested & avd->auditallow;
403 		if (audited && xpd) {
404 			if (!avc_xperms_has_perm(xpd, perm, XPERMS_AUDITALLOW))
405 				audited = 0;
406 		}
407 	}
408 
409 	*deniedp = denied;
410 	return audited;
411 }
412 
avc_xperms_audit(u32 ssid,u32 tsid,u16 tclass,u32 requested,struct av_decision * avd,struct extended_perms_decision * xpd,u8 perm,int result,struct common_audit_data * ad)413 static inline int avc_xperms_audit(u32 ssid, u32 tsid, u16 tclass,
414 				   u32 requested, struct av_decision *avd,
415 				   struct extended_perms_decision *xpd,
416 				   u8 perm, int result,
417 				   struct common_audit_data *ad)
418 {
419 	u32 audited, denied;
420 
421 	audited = avc_xperms_audit_required(
422 			requested, avd, xpd, perm, result, &denied);
423 	if (likely(!audited))
424 		return 0;
425 	return slow_avc_audit(ssid, tsid, tclass, requested,
426 			audited, denied, result, ad);
427 }
428 
avc_node_free(struct rcu_head * rhead)429 static void avc_node_free(struct rcu_head *rhead)
430 {
431 	struct avc_node *node = container_of(rhead, struct avc_node, rhead);
432 	avc_xperms_free(node->ae.xp_node);
433 	kmem_cache_free(avc_node_cachep, node);
434 	avc_cache_stats_incr(frees);
435 }
436 
avc_node_delete(struct avc_node * node)437 static void avc_node_delete(struct avc_node *node)
438 {
439 	hlist_del_rcu(&node->list);
440 	call_rcu(&node->rhead, avc_node_free);
441 	atomic_dec(&selinux_avc.avc_cache.active_nodes);
442 }
443 
avc_node_kill(struct avc_node * node)444 static void avc_node_kill(struct avc_node *node)
445 {
446 	avc_xperms_free(node->ae.xp_node);
447 	kmem_cache_free(avc_node_cachep, node);
448 	avc_cache_stats_incr(frees);
449 	atomic_dec(&selinux_avc.avc_cache.active_nodes);
450 }
451 
avc_node_replace(struct avc_node * new,struct avc_node * old)452 static void avc_node_replace(struct avc_node *new, struct avc_node *old)
453 {
454 	hlist_replace_rcu(&old->list, &new->list);
455 	call_rcu(&old->rhead, avc_node_free);
456 	atomic_dec(&selinux_avc.avc_cache.active_nodes);
457 }
458 
avc_reclaim_node(void)459 static inline int avc_reclaim_node(void)
460 {
461 	struct avc_node *node;
462 	int hvalue, try, ecx;
463 	unsigned long flags;
464 	struct hlist_head *head;
465 	spinlock_t *lock;
466 
467 	for (try = 0, ecx = 0; try < AVC_CACHE_SLOTS; try++) {
468 		hvalue = atomic_inc_return(&selinux_avc.avc_cache.lru_hint) &
469 			(AVC_CACHE_SLOTS - 1);
470 		head = &selinux_avc.avc_cache.slots[hvalue];
471 		lock = &selinux_avc.avc_cache.slots_lock[hvalue];
472 
473 		if (!spin_trylock_irqsave(lock, flags))
474 			continue;
475 
476 		rcu_read_lock();
477 		hlist_for_each_entry(node, head, list) {
478 			avc_node_delete(node);
479 			avc_cache_stats_incr(reclaims);
480 			ecx++;
481 			if (ecx >= AVC_CACHE_RECLAIM) {
482 				rcu_read_unlock();
483 				spin_unlock_irqrestore(lock, flags);
484 				goto out;
485 			}
486 		}
487 		rcu_read_unlock();
488 		spin_unlock_irqrestore(lock, flags);
489 	}
490 out:
491 	return ecx;
492 }
493 
avc_alloc_node(void)494 static struct avc_node *avc_alloc_node(void)
495 {
496 	struct avc_node *node;
497 
498 	node = kmem_cache_zalloc(avc_node_cachep, GFP_NOWAIT | __GFP_NOWARN);
499 	if (!node)
500 		goto out;
501 
502 	INIT_HLIST_NODE(&node->list);
503 	avc_cache_stats_incr(allocations);
504 
505 	if (atomic_inc_return(&selinux_avc.avc_cache.active_nodes) >
506 	    selinux_avc.avc_cache_threshold)
507 		avc_reclaim_node();
508 
509 out:
510 	return node;
511 }
512 
avc_node_populate(struct avc_node * node,u32 ssid,u32 tsid,u16 tclass,struct av_decision * avd)513 static void avc_node_populate(struct avc_node *node, u32 ssid, u32 tsid, u16 tclass, struct av_decision *avd)
514 {
515 	node->ae.ssid = ssid;
516 	node->ae.tsid = tsid;
517 	node->ae.tclass = tclass;
518 	memcpy(&node->ae.avd, avd, sizeof(node->ae.avd));
519 }
520 
avc_search_node(u32 ssid,u32 tsid,u16 tclass)521 static inline struct avc_node *avc_search_node(u32 ssid, u32 tsid, u16 tclass)
522 {
523 	struct avc_node *node, *ret = NULL;
524 	u32 hvalue;
525 	struct hlist_head *head;
526 
527 	hvalue = avc_hash(ssid, tsid, tclass);
528 	head = &selinux_avc.avc_cache.slots[hvalue];
529 	hlist_for_each_entry_rcu(node, head, list) {
530 		if (ssid == node->ae.ssid &&
531 		    tclass == node->ae.tclass &&
532 		    tsid == node->ae.tsid) {
533 			ret = node;
534 			break;
535 		}
536 	}
537 
538 	return ret;
539 }
540 
541 /**
542  * avc_lookup - Look up an AVC entry.
543  * @ssid: source security identifier
544  * @tsid: target security identifier
545  * @tclass: target security class
546  *
547  * Look up an AVC entry that is valid for the
548  * (@ssid, @tsid), interpreting the permissions
549  * based on @tclass.  If a valid AVC entry exists,
550  * then this function returns the avc_node.
551  * Otherwise, this function returns NULL.
552  */
avc_lookup(u32 ssid,u32 tsid,u16 tclass)553 static struct avc_node *avc_lookup(u32 ssid, u32 tsid, u16 tclass)
554 {
555 	struct avc_node *node;
556 
557 	avc_cache_stats_incr(lookups);
558 	node = avc_search_node(ssid, tsid, tclass);
559 
560 	if (node)
561 		return node;
562 
563 	avc_cache_stats_incr(misses);
564 	return NULL;
565 }
566 
avc_latest_notif_update(u32 seqno,int is_insert)567 static int avc_latest_notif_update(u32 seqno, int is_insert)
568 {
569 	int ret = 0;
570 	static DEFINE_SPINLOCK(notif_lock);
571 	unsigned long flag;
572 
573 	spin_lock_irqsave(&notif_lock, flag);
574 	if (is_insert) {
575 		if (seqno < selinux_avc.avc_cache.latest_notif) {
576 			pr_warn("SELinux: avc:  seqno %d < latest_notif %d\n",
577 			       seqno, selinux_avc.avc_cache.latest_notif);
578 			ret = -EAGAIN;
579 		}
580 	} else {
581 		if (seqno > selinux_avc.avc_cache.latest_notif)
582 			selinux_avc.avc_cache.latest_notif = seqno;
583 	}
584 	spin_unlock_irqrestore(&notif_lock, flag);
585 
586 	return ret;
587 }
588 
589 /**
590  * avc_insert - Insert an AVC entry.
591  * @ssid: source security identifier
592  * @tsid: target security identifier
593  * @tclass: target security class
594  * @avd: resulting av decision
595  * @xp_node: resulting extended permissions
596  *
597  * Insert an AVC entry for the SID pair
598  * (@ssid, @tsid) and class @tclass.
599  * The access vectors and the sequence number are
600  * normally provided by the security server in
601  * response to a security_compute_av() call.  If the
602  * sequence number @avd->seqno is not less than the latest
603  * revocation notification, then the function copies
604  * the access vectors into a cache entry.
605  */
avc_insert(u32 ssid,u32 tsid,u16 tclass,struct av_decision * avd,struct avc_xperms_node * xp_node)606 static void avc_insert(u32 ssid, u32 tsid, u16 tclass,
607 		       struct av_decision *avd, struct avc_xperms_node *xp_node)
608 {
609 	struct avc_node *pos, *node = NULL;
610 	u32 hvalue;
611 	unsigned long flag;
612 	spinlock_t *lock;
613 	struct hlist_head *head;
614 
615 	if (avc_latest_notif_update(avd->seqno, 1))
616 		return;
617 
618 	node = avc_alloc_node();
619 	if (!node)
620 		return;
621 
622 	avc_node_populate(node, ssid, tsid, tclass, avd);
623 	if (avc_xperms_populate(node, xp_node)) {
624 		avc_node_kill(node);
625 		return;
626 	}
627 
628 	hvalue = avc_hash(ssid, tsid, tclass);
629 	head = &selinux_avc.avc_cache.slots[hvalue];
630 	lock = &selinux_avc.avc_cache.slots_lock[hvalue];
631 	spin_lock_irqsave(lock, flag);
632 	hlist_for_each_entry(pos, head, list) {
633 		if (pos->ae.ssid == ssid &&
634 			pos->ae.tsid == tsid &&
635 			pos->ae.tclass == tclass) {
636 			avc_node_replace(node, pos);
637 			goto found;
638 		}
639 	}
640 	hlist_add_head_rcu(&node->list, head);
641 found:
642 	spin_unlock_irqrestore(lock, flag);
643 }
644 
645 /**
646  * avc_audit_pre_callback - SELinux specific information
647  * will be called by generic audit code
648  * @ab: the audit buffer
649  * @a: audit_data
650  */
avc_audit_pre_callback(struct audit_buffer * ab,void * a)651 static void avc_audit_pre_callback(struct audit_buffer *ab, void *a)
652 {
653 	struct common_audit_data *ad = a;
654 	struct selinux_audit_data *sad = ad->selinux_audit_data;
655 	u32 av = sad->audited, perm;
656 	const char *const *perms;
657 	u32 i;
658 
659 	audit_log_format(ab, "avc:  %s ", sad->denied ? "denied" : "granted");
660 
661 	if (av == 0) {
662 		audit_log_format(ab, " null");
663 		return;
664 	}
665 
666 	perms = secclass_map[sad->tclass-1].perms;
667 
668 	audit_log_format(ab, " {");
669 	i = 0;
670 	perm = 1;
671 	while (i < (sizeof(av) * 8)) {
672 		if ((perm & av) && perms[i]) {
673 			audit_log_format(ab, " %s", perms[i]);
674 			av &= ~perm;
675 		}
676 		i++;
677 		perm <<= 1;
678 	}
679 
680 	if (av)
681 		audit_log_format(ab, " 0x%x", av);
682 
683 	audit_log_format(ab, " } for ");
684 }
685 
686 /**
687  * avc_audit_post_callback - SELinux specific information
688  * will be called by generic audit code
689  * @ab: the audit buffer
690  * @a: audit_data
691  */
avc_audit_post_callback(struct audit_buffer * ab,void * a)692 static void avc_audit_post_callback(struct audit_buffer *ab, void *a)
693 {
694 	struct common_audit_data *ad = a;
695 	struct selinux_audit_data *sad = ad->selinux_audit_data;
696 	char *scontext = NULL;
697 	char *tcontext = NULL;
698 	const char *tclass = NULL;
699 	u32 scontext_len;
700 	u32 tcontext_len;
701 	int rc;
702 
703 	rc = security_sid_to_context(sad->ssid, &scontext,
704 				     &scontext_len);
705 	if (rc)
706 		audit_log_format(ab, " ssid=%d", sad->ssid);
707 	else
708 		audit_log_format(ab, " scontext=%s", scontext);
709 
710 	rc = security_sid_to_context(sad->tsid, &tcontext,
711 				     &tcontext_len);
712 	if (rc)
713 		audit_log_format(ab, " tsid=%d", sad->tsid);
714 	else
715 		audit_log_format(ab, " tcontext=%s", tcontext);
716 
717 	tclass = secclass_map[sad->tclass-1].name;
718 	audit_log_format(ab, " tclass=%s", tclass);
719 
720 	if (sad->denied)
721 		audit_log_format(ab, " permissive=%u", sad->result ? 0 : 1);
722 
723 	trace_selinux_audited(sad, scontext, tcontext, tclass);
724 	kfree(tcontext);
725 	kfree(scontext);
726 
727 	/* in case of invalid context report also the actual context string */
728 	rc = security_sid_to_context_inval(sad->ssid, &scontext,
729 					   &scontext_len);
730 	if (!rc && scontext) {
731 		if (scontext_len && scontext[scontext_len - 1] == '\0')
732 			scontext_len--;
733 		audit_log_format(ab, " srawcon=");
734 		audit_log_n_untrustedstring(ab, scontext, scontext_len);
735 		kfree(scontext);
736 	}
737 
738 	rc = security_sid_to_context_inval(sad->tsid, &scontext,
739 					   &scontext_len);
740 	if (!rc && scontext) {
741 		if (scontext_len && scontext[scontext_len - 1] == '\0')
742 			scontext_len--;
743 		audit_log_format(ab, " trawcon=");
744 		audit_log_n_untrustedstring(ab, scontext, scontext_len);
745 		kfree(scontext);
746 	}
747 }
748 
749 /*
750  * This is the slow part of avc audit with big stack footprint.
751  * Note that it is non-blocking and can be called from under
752  * rcu_read_lock().
753  */
slow_avc_audit(u32 ssid,u32 tsid,u16 tclass,u32 requested,u32 audited,u32 denied,int result,struct common_audit_data * a)754 noinline int slow_avc_audit(u32 ssid, u32 tsid, u16 tclass,
755 			    u32 requested, u32 audited, u32 denied, int result,
756 			    struct common_audit_data *a)
757 {
758 	struct common_audit_data stack_data;
759 	struct selinux_audit_data sad;
760 
761 	if (WARN_ON(!tclass || tclass >= ARRAY_SIZE(secclass_map)))
762 		return -EINVAL;
763 
764 	if (!a) {
765 		a = &stack_data;
766 		a->type = LSM_AUDIT_DATA_NONE;
767 	}
768 
769 	sad.tclass = tclass;
770 	sad.requested = requested;
771 	sad.ssid = ssid;
772 	sad.tsid = tsid;
773 	sad.audited = audited;
774 	sad.denied = denied;
775 	sad.result = result;
776 
777 	a->selinux_audit_data = &sad;
778 
779 	common_lsm_audit(a, avc_audit_pre_callback, avc_audit_post_callback);
780 	return 0;
781 }
782 
783 /**
784  * avc_add_callback - Register a callback for security events.
785  * @callback: callback function
786  * @events: security events
787  *
788  * Register a callback function for events in the set @events.
789  * Returns %0 on success or -%ENOMEM if insufficient memory
790  * exists to add the callback.
791  */
avc_add_callback(int (* callback)(u32 event),u32 events)792 int __init avc_add_callback(int (*callback)(u32 event), u32 events)
793 {
794 	struct avc_callback_node *c;
795 	int rc = 0;
796 
797 	c = kmalloc(sizeof(*c), GFP_KERNEL);
798 	if (!c) {
799 		rc = -ENOMEM;
800 		goto out;
801 	}
802 
803 	c->callback = callback;
804 	c->events = events;
805 	c->next = avc_callbacks;
806 	avc_callbacks = c;
807 out:
808 	return rc;
809 }
810 
811 /**
812  * avc_update_node - Update an AVC entry
813  * @event : Updating event
814  * @perms : Permission mask bits
815  * @driver: xperm driver information
816  * @base_perm: the base permission associated with the extended permission
817  * @xperm: xperm permissions
818  * @ssid: AVC entry source sid
819  * @tsid: AVC entry target sid
820  * @tclass : AVC entry target object class
821  * @seqno : sequence number when decision was made
822  * @xpd: extended_perms_decision to be added to the node
823  * @flags: the AVC_* flags, e.g. AVC_EXTENDED_PERMS, or 0.
824  *
825  * if a valid AVC entry doesn't exist,this function returns -ENOENT.
826  * if kmalloc() called internal returns NULL, this function returns -ENOMEM.
827  * otherwise, this function updates the AVC entry. The original AVC-entry object
828  * will release later by RCU.
829  */
avc_update_node(u32 event,u32 perms,u8 driver,u8 base_perm,u8 xperm,u32 ssid,u32 tsid,u16 tclass,u32 seqno,struct extended_perms_decision * xpd,u32 flags)830 static int avc_update_node(u32 event, u32 perms, u8 driver, u8 base_perm,
831 			   u8 xperm, u32 ssid, u32 tsid, u16 tclass, u32 seqno,
832 			   struct extended_perms_decision *xpd, u32 flags)
833 {
834 	u32 hvalue;
835 	int rc = 0;
836 	unsigned long flag;
837 	struct avc_node *pos, *node, *orig = NULL;
838 	struct hlist_head *head;
839 	spinlock_t *lock;
840 
841 	node = avc_alloc_node();
842 	if (!node) {
843 		rc = -ENOMEM;
844 		goto out;
845 	}
846 
847 	/* Lock the target slot */
848 	hvalue = avc_hash(ssid, tsid, tclass);
849 
850 	head = &selinux_avc.avc_cache.slots[hvalue];
851 	lock = &selinux_avc.avc_cache.slots_lock[hvalue];
852 
853 	spin_lock_irqsave(lock, flag);
854 
855 	hlist_for_each_entry(pos, head, list) {
856 		if (ssid == pos->ae.ssid &&
857 		    tsid == pos->ae.tsid &&
858 		    tclass == pos->ae.tclass &&
859 		    seqno == pos->ae.avd.seqno){
860 			orig = pos;
861 			break;
862 		}
863 	}
864 
865 	if (!orig) {
866 		rc = -ENOENT;
867 		avc_node_kill(node);
868 		goto out_unlock;
869 	}
870 
871 	/*
872 	 * Copy and replace original node.
873 	 */
874 
875 	avc_node_populate(node, ssid, tsid, tclass, &orig->ae.avd);
876 
877 	if (orig->ae.xp_node) {
878 		rc = avc_xperms_populate(node, orig->ae.xp_node);
879 		if (rc) {
880 			avc_node_kill(node);
881 			goto out_unlock;
882 		}
883 	}
884 
885 	switch (event) {
886 	case AVC_CALLBACK_GRANT:
887 		node->ae.avd.allowed |= perms;
888 		if (node->ae.xp_node && (flags & AVC_EXTENDED_PERMS))
889 			avc_xperms_allow_perm(node->ae.xp_node, driver, base_perm, xperm);
890 		break;
891 	case AVC_CALLBACK_TRY_REVOKE:
892 	case AVC_CALLBACK_REVOKE:
893 		node->ae.avd.allowed &= ~perms;
894 		break;
895 	case AVC_CALLBACK_AUDITALLOW_ENABLE:
896 		node->ae.avd.auditallow |= perms;
897 		break;
898 	case AVC_CALLBACK_AUDITALLOW_DISABLE:
899 		node->ae.avd.auditallow &= ~perms;
900 		break;
901 	case AVC_CALLBACK_AUDITDENY_ENABLE:
902 		node->ae.avd.auditdeny |= perms;
903 		break;
904 	case AVC_CALLBACK_AUDITDENY_DISABLE:
905 		node->ae.avd.auditdeny &= ~perms;
906 		break;
907 	case AVC_CALLBACK_ADD_XPERMS:
908 		rc = avc_add_xperms_decision(node, xpd);
909 		if (rc) {
910 			avc_node_kill(node);
911 			goto out_unlock;
912 		}
913 		break;
914 	}
915 	avc_node_replace(node, orig);
916 out_unlock:
917 	spin_unlock_irqrestore(lock, flag);
918 out:
919 	return rc;
920 }
921 
922 /**
923  * avc_flush - Flush the cache
924  */
avc_flush(void)925 static void avc_flush(void)
926 {
927 	struct hlist_head *head;
928 	struct avc_node *node;
929 	spinlock_t *lock;
930 	unsigned long flag;
931 	int i;
932 
933 	for (i = 0; i < AVC_CACHE_SLOTS; i++) {
934 		head = &selinux_avc.avc_cache.slots[i];
935 		lock = &selinux_avc.avc_cache.slots_lock[i];
936 
937 		spin_lock_irqsave(lock, flag);
938 		/*
939 		 * With preemptable RCU, the outer spinlock does not
940 		 * prevent RCU grace periods from ending.
941 		 */
942 		rcu_read_lock();
943 		hlist_for_each_entry(node, head, list)
944 			avc_node_delete(node);
945 		rcu_read_unlock();
946 		spin_unlock_irqrestore(lock, flag);
947 	}
948 }
949 
950 /**
951  * avc_ss_reset - Flush the cache and revalidate migrated permissions.
952  * @seqno: policy sequence number
953  */
avc_ss_reset(u32 seqno)954 int avc_ss_reset(u32 seqno)
955 {
956 	struct avc_callback_node *c;
957 	int rc = 0, tmprc;
958 
959 	avc_flush();
960 
961 	for (c = avc_callbacks; c; c = c->next) {
962 		if (c->events & AVC_CALLBACK_RESET) {
963 			tmprc = c->callback(AVC_CALLBACK_RESET);
964 			/* save the first error encountered for the return
965 			   value and continue processing the callbacks */
966 			if (!rc)
967 				rc = tmprc;
968 		}
969 	}
970 
971 	avc_latest_notif_update(seqno, 0);
972 	return rc;
973 }
974 
975 /**
976  * avc_compute_av - Add an entry to the AVC based on the security policy
977  * @ssid: subject
978  * @tsid: object/target
979  * @tclass: object class
980  * @avd: access vector decision
981  * @xp_node: AVC extended permissions node
982  *
983  * Slow-path helper function for avc_has_perm_noaudit, when the avc_node lookup
984  * fails.  Don't inline this, since it's the slow-path and just results in a
985  * bigger stack frame.
986  */
avc_compute_av(u32 ssid,u32 tsid,u16 tclass,struct av_decision * avd,struct avc_xperms_node * xp_node)987 static noinline void avc_compute_av(u32 ssid, u32 tsid, u16 tclass,
988 				    struct av_decision *avd,
989 				    struct avc_xperms_node *xp_node)
990 {
991 	INIT_LIST_HEAD(&xp_node->xpd_head);
992 	security_compute_av(ssid, tsid, tclass, avd, &xp_node->xp);
993 	avc_insert(ssid, tsid, tclass, avd, xp_node);
994 }
995 
avc_denied(u32 ssid,u32 tsid,u16 tclass,u32 requested,u8 driver,u8 base_perm,u8 xperm,unsigned int flags,struct av_decision * avd)996 static noinline int avc_denied(u32 ssid, u32 tsid, u16 tclass, u32 requested,
997 			       u8 driver, u8 base_perm, u8 xperm,
998 			       unsigned int flags, struct av_decision *avd)
999 {
1000 	if (flags & AVC_STRICT)
1001 		return -EACCES;
1002 
1003 	if (enforcing_enabled() &&
1004 	    !(avd->flags & AVD_FLAGS_PERMISSIVE))
1005 		return -EACCES;
1006 
1007 	avc_update_node(AVC_CALLBACK_GRANT, requested, driver, base_perm,
1008 			xperm, ssid, tsid, tclass, avd->seqno, NULL, flags);
1009 	return 0;
1010 }
1011 
1012 /*
1013  * The avc extended permissions logic adds an additional 256 bits of
1014  * permissions to an avc node when extended permissions for that node are
1015  * specified in the avtab. If the additional 256 permissions is not adequate,
1016  * as-is the case with ioctls, then multiple may be chained together and the
1017  * driver field is used to specify which set contains the permission.
1018  */
avc_has_extended_perms(u32 ssid,u32 tsid,u16 tclass,u32 requested,u8 driver,u8 base_perm,u8 xperm,struct common_audit_data * ad)1019 int avc_has_extended_perms(u32 ssid, u32 tsid, u16 tclass, u32 requested,
1020 			   u8 driver, u8 base_perm, u8 xperm,
1021 			   struct common_audit_data *ad)
1022 {
1023 	struct avc_node *node;
1024 	struct av_decision avd;
1025 	u32 denied;
1026 	struct extended_perms_decision local_xpd;
1027 	struct extended_perms_decision *xpd = NULL;
1028 	struct extended_perms_data allowed;
1029 	struct extended_perms_data auditallow;
1030 	struct extended_perms_data dontaudit;
1031 	struct avc_xperms_node local_xp_node;
1032 	struct avc_xperms_node *xp_node;
1033 	int rc = 0, rc2;
1034 
1035 	xp_node = &local_xp_node;
1036 	if (WARN_ON(!requested))
1037 		return -EACCES;
1038 
1039 	rcu_read_lock();
1040 
1041 	node = avc_lookup(ssid, tsid, tclass);
1042 	if (unlikely(!node)) {
1043 		avc_compute_av(ssid, tsid, tclass, &avd, xp_node);
1044 	} else {
1045 		memcpy(&avd, &node->ae.avd, sizeof(avd));
1046 		xp_node = node->ae.xp_node;
1047 	}
1048 	/* if extended permissions are not defined, only consider av_decision */
1049 	if (!xp_node || !xp_node->xp.len)
1050 		goto decision;
1051 
1052 	local_xpd.allowed = &allowed;
1053 	local_xpd.auditallow = &auditallow;
1054 	local_xpd.dontaudit = &dontaudit;
1055 
1056 	xpd = avc_xperms_decision_lookup(driver, base_perm, xp_node);
1057 	if (unlikely(!xpd)) {
1058 		/*
1059 		 * Compute the extended_perms_decision only if the driver
1060 		 * is flagged and the base permission is known.
1061 		 */
1062 		if (!security_xperm_test(xp_node->xp.drivers.p, driver) ||
1063 		    !(xp_node->xp.base_perms & base_perm)) {
1064 			avd.allowed &= ~requested;
1065 			goto decision;
1066 		}
1067 		rcu_read_unlock();
1068 		security_compute_xperms_decision(ssid, tsid, tclass, driver,
1069 						 base_perm, &local_xpd);
1070 		rcu_read_lock();
1071 		avc_update_node(AVC_CALLBACK_ADD_XPERMS, requested, driver,
1072 				base_perm, xperm, ssid, tsid, tclass, avd.seqno,
1073 				&local_xpd, 0);
1074 	} else {
1075 		avc_quick_copy_xperms_decision(xperm, &local_xpd, xpd);
1076 	}
1077 	xpd = &local_xpd;
1078 
1079 	if (!avc_xperms_has_perm(xpd, xperm, XPERMS_ALLOWED))
1080 		avd.allowed &= ~requested;
1081 
1082 decision:
1083 	denied = requested & ~(avd.allowed);
1084 	if (unlikely(denied))
1085 		rc = avc_denied(ssid, tsid, tclass, requested, driver,
1086 				base_perm, xperm, AVC_EXTENDED_PERMS, &avd);
1087 
1088 	rcu_read_unlock();
1089 
1090 	rc2 = avc_xperms_audit(ssid, tsid, tclass, requested,
1091 			&avd, xpd, xperm, rc, ad);
1092 	if (rc2)
1093 		return rc2;
1094 	return rc;
1095 }
1096 
1097 /**
1098  * avc_perm_nonode - Add an entry to the AVC
1099  * @ssid: subject
1100  * @tsid: object/target
1101  * @tclass: object class
1102  * @requested: requested permissions
1103  * @flags: AVC flags
1104  * @avd: access vector decision
1105  *
1106  * This is the "we have no node" part of avc_has_perm_noaudit(), which is
1107  * unlikely and needs extra stack space for the new node that we generate, so
1108  * don't inline it.
1109  */
avc_perm_nonode(u32 ssid,u32 tsid,u16 tclass,u32 requested,unsigned int flags,struct av_decision * avd)1110 static noinline int avc_perm_nonode(u32 ssid, u32 tsid, u16 tclass,
1111 				    u32 requested, unsigned int flags,
1112 				    struct av_decision *avd)
1113 {
1114 	u32 denied;
1115 	struct avc_xperms_node xp_node;
1116 
1117 	avc_compute_av(ssid, tsid, tclass, avd, &xp_node);
1118 	denied = requested & ~(avd->allowed);
1119 	if (unlikely(denied))
1120 		return avc_denied(ssid, tsid, tclass, requested, 0, 0, 0,
1121 				  flags, avd);
1122 	return 0;
1123 }
1124 
1125 /**
1126  * avc_has_perm_noaudit - Check permissions but perform no auditing.
1127  * @ssid: source security identifier
1128  * @tsid: target security identifier
1129  * @tclass: target security class
1130  * @requested: requested permissions, interpreted based on @tclass
1131  * @flags:  AVC_STRICT or 0
1132  * @avd: access vector decisions
1133  *
1134  * Check the AVC to determine whether the @requested permissions are granted
1135  * for the SID pair (@ssid, @tsid), interpreting the permissions
1136  * based on @tclass, and call the security server on a cache miss to obtain
1137  * a new decision and add it to the cache.  Return a copy of the decisions
1138  * in @avd.  Return %0 if all @requested permissions are granted,
1139  * -%EACCES if any permissions are denied, or another -errno upon
1140  * other errors.  This function is typically called by avc_has_perm(),
1141  * but may also be called directly to separate permission checking from
1142  * auditing, e.g. in cases where a lock must be held for the check but
1143  * should be released for the auditing.
1144  */
avc_has_perm_noaudit(u32 ssid,u32 tsid,u16 tclass,u32 requested,unsigned int flags,struct av_decision * avd)1145 inline int avc_has_perm_noaudit(u32 ssid, u32 tsid,
1146 				u16 tclass, u32 requested,
1147 				unsigned int flags,
1148 				struct av_decision *avd)
1149 {
1150 	u32 denied;
1151 	struct avc_node *node;
1152 
1153 	if (WARN_ON(!requested))
1154 		return -EACCES;
1155 
1156 	rcu_read_lock();
1157 	node = avc_lookup(ssid, tsid, tclass);
1158 	if (unlikely(!node)) {
1159 		rcu_read_unlock();
1160 		return avc_perm_nonode(ssid, tsid, tclass, requested,
1161 				       flags, avd);
1162 	}
1163 	denied = requested & ~node->ae.avd.allowed;
1164 	memcpy(avd, &node->ae.avd, sizeof(*avd));
1165 	rcu_read_unlock();
1166 
1167 	if (unlikely(denied))
1168 		return avc_denied(ssid, tsid, tclass, requested, 0, 0, 0,
1169 				  flags, avd);
1170 	return 0;
1171 }
1172 
1173 /**
1174  * avc_has_perm - Check permissions and perform any appropriate auditing.
1175  * @ssid: source security identifier
1176  * @tsid: target security identifier
1177  * @tclass: target security class
1178  * @requested: requested permissions, interpreted based on @tclass
1179  * @auditdata: auxiliary audit data
1180  *
1181  * Check the AVC to determine whether the @requested permissions are granted
1182  * for the SID pair (@ssid, @tsid), interpreting the permissions
1183  * based on @tclass, and call the security server on a cache miss to obtain
1184  * a new decision and add it to the cache.  Audit the granting or denial of
1185  * permissions in accordance with the policy.  Return %0 if all @requested
1186  * permissions are granted, -%EACCES if any permissions are denied, or
1187  * another -errno upon other errors.
1188  */
avc_has_perm(u32 ssid,u32 tsid,u16 tclass,u32 requested,struct common_audit_data * auditdata)1189 int avc_has_perm(u32 ssid, u32 tsid, u16 tclass,
1190 		 u32 requested, struct common_audit_data *auditdata)
1191 {
1192 	struct av_decision avd;
1193 	int rc, rc2;
1194 
1195 	rc = avc_has_perm_noaudit(ssid, tsid, tclass, requested, 0,
1196 				  &avd);
1197 
1198 	rc2 = avc_audit(ssid, tsid, tclass, requested, &avd, rc,
1199 			auditdata);
1200 	if (rc2)
1201 		return rc2;
1202 	return rc;
1203 }
1204 
avc_policy_seqno(void)1205 u32 avc_policy_seqno(void)
1206 {
1207 	return selinux_avc.avc_cache.latest_notif;
1208 }
1209