1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/drivers/mmc/host/au1xmmc.c - AU1XX0 MMC driver
4 *
5 * Copyright (c) 2005, Advanced Micro Devices, Inc.
6 *
7 * Developed with help from the 2.4.30 MMC AU1XXX controller including
8 * the following copyright notices:
9 * Copyright (c) 2003-2004 Embedded Edge, LLC.
10 * Portions Copyright (C) 2002 Embedix, Inc
11 * Copyright 2002 Hewlett-Packard Company
12
13 * 2.6 version of this driver inspired by:
14 * (drivers/mmc/wbsd.c) Copyright (C) 2004-2005 Pierre Ossman,
15 * All Rights Reserved.
16 * (drivers/mmc/pxa.c) Copyright (C) 2003 Russell King,
17 * All Rights Reserved.
18 *
19
20 */
21
22 /* Why don't we use the SD controllers' carddetect feature?
23 *
24 * From the AU1100 MMC application guide:
25 * If the Au1100-based design is intended to support both MultiMediaCards
26 * and 1- or 4-data bit SecureDigital cards, then the solution is to
27 * connect a weak (560KOhm) pull-up resistor to connector pin 1.
28 * In doing so, a MMC card never enters SPI-mode communications,
29 * but now the SecureDigital card-detect feature of CD/DAT3 is ineffective
30 * (the low to high transition will not occur).
31 */
32
33 #include <linux/clk.h>
34 #include <linux/module.h>
35 #include <linux/init.h>
36 #include <linux/platform_device.h>
37 #include <linux/mm.h>
38 #include <linux/interrupt.h>
39 #include <linux/dma-mapping.h>
40 #include <linux/scatterlist.h>
41 #include <linux/highmem.h>
42 #include <linux/leds.h>
43 #include <linux/mmc/host.h>
44 #include <linux/slab.h>
45 #include <linux/workqueue.h>
46
47 #include <asm/io.h>
48 #include <asm/mach-au1x00/au1000.h>
49 #include <asm/mach-au1x00/au1xxx_dbdma.h>
50 #include <asm/mach-au1x00/au1100_mmc.h>
51
52 #define DRIVER_NAME "au1xxx-mmc"
53
54 /* Set this to enable special debugging macros */
55 /* #define DEBUG */
56
57 #ifdef DEBUG
58 #define DBG(fmt, idx, args...) \
59 pr_debug("au1xmmc(%d): DEBUG: " fmt, idx, ##args)
60 #else
61 #define DBG(fmt, idx, args...) do {} while (0)
62 #endif
63
64 /* Hardware definitions */
65 #define AU1XMMC_DESCRIPTOR_COUNT 1
66
67 /* max DMA seg size: 64KB on Au1100, 4MB on Au1200 */
68 #define AU1100_MMC_DESCRIPTOR_SIZE 0x0000ffff
69 #define AU1200_MMC_DESCRIPTOR_SIZE 0x003fffff
70
71 #define AU1XMMC_OCR (MMC_VDD_27_28 | MMC_VDD_28_29 | MMC_VDD_29_30 | \
72 MMC_VDD_30_31 | MMC_VDD_31_32 | MMC_VDD_32_33 | \
73 MMC_VDD_33_34 | MMC_VDD_34_35 | MMC_VDD_35_36)
74
75 /* This gives us a hard value for the stop command that we can write directly
76 * to the command register.
77 */
78 #define STOP_CMD \
79 (SD_CMD_RT_1B | SD_CMD_CT_7 | (0xC << SD_CMD_CI_SHIFT) | SD_CMD_GO)
80
81 /* This is the set of interrupts that we configure by default. */
82 #define AU1XMMC_INTERRUPTS \
83 (SD_CONFIG_SC | SD_CONFIG_DT | SD_CONFIG_RAT | \
84 SD_CONFIG_CR | SD_CONFIG_I)
85
86 /* The poll event (looking for insert/remove events runs twice a second. */
87 #define AU1XMMC_DETECT_TIMEOUT (HZ/2)
88
89 struct au1xmmc_host {
90 struct mmc_host *mmc;
91 struct mmc_request *mrq;
92
93 u32 flags;
94 void __iomem *iobase;
95 u32 clock;
96 u32 bus_width;
97 u32 power_mode;
98
99 int status;
100
101 struct {
102 int len;
103 int dir;
104 } dma;
105
106 struct {
107 int index;
108 int offset;
109 int len;
110 } pio;
111
112 u32 tx_chan;
113 u32 rx_chan;
114
115 int irq;
116
117 struct work_struct finish_bh_work;
118 struct work_struct data_bh_work;
119 struct au1xmmc_platform_data *platdata;
120 struct platform_device *pdev;
121 struct resource *ioarea;
122 struct clk *clk;
123 };
124
125 /* Status flags used by the host structure */
126 #define HOST_F_XMIT 0x0001
127 #define HOST_F_RECV 0x0002
128 #define HOST_F_DMA 0x0010
129 #define HOST_F_DBDMA 0x0020
130 #define HOST_F_ACTIVE 0x0100
131 #define HOST_F_STOP 0x1000
132
133 #define HOST_S_IDLE 0x0001
134 #define HOST_S_CMD 0x0002
135 #define HOST_S_DATA 0x0003
136 #define HOST_S_STOP 0x0004
137
138 /* Easy access macros */
139 #define HOST_STATUS(h) ((h)->iobase + SD_STATUS)
140 #define HOST_CONFIG(h) ((h)->iobase + SD_CONFIG)
141 #define HOST_ENABLE(h) ((h)->iobase + SD_ENABLE)
142 #define HOST_TXPORT(h) ((h)->iobase + SD_TXPORT)
143 #define HOST_RXPORT(h) ((h)->iobase + SD_RXPORT)
144 #define HOST_CMDARG(h) ((h)->iobase + SD_CMDARG)
145 #define HOST_BLKSIZE(h) ((h)->iobase + SD_BLKSIZE)
146 #define HOST_CMD(h) ((h)->iobase + SD_CMD)
147 #define HOST_CONFIG2(h) ((h)->iobase + SD_CONFIG2)
148 #define HOST_TIMEOUT(h) ((h)->iobase + SD_TIMEOUT)
149 #define HOST_DEBUG(h) ((h)->iobase + SD_DEBUG)
150
151 #define DMA_CHANNEL(h) \
152 (((h)->flags & HOST_F_XMIT) ? (h)->tx_chan : (h)->rx_chan)
153
has_dbdma(void)154 static inline int has_dbdma(void)
155 {
156 switch (alchemy_get_cputype()) {
157 case ALCHEMY_CPU_AU1200:
158 case ALCHEMY_CPU_AU1300:
159 return 1;
160 default:
161 return 0;
162 }
163 }
164
IRQ_ON(struct au1xmmc_host * host,u32 mask)165 static inline void IRQ_ON(struct au1xmmc_host *host, u32 mask)
166 {
167 u32 val = __raw_readl(HOST_CONFIG(host));
168 val |= mask;
169 __raw_writel(val, HOST_CONFIG(host));
170 wmb(); /* drain writebuffer */
171 }
172
FLUSH_FIFO(struct au1xmmc_host * host)173 static inline void FLUSH_FIFO(struct au1xmmc_host *host)
174 {
175 u32 val = __raw_readl(HOST_CONFIG2(host));
176
177 __raw_writel(val | SD_CONFIG2_FF, HOST_CONFIG2(host));
178 wmb(); /* drain writebuffer */
179 mdelay(1);
180
181 /* SEND_STOP will turn off clock control - this re-enables it */
182 val &= ~SD_CONFIG2_DF;
183
184 __raw_writel(val, HOST_CONFIG2(host));
185 wmb(); /* drain writebuffer */
186 }
187
IRQ_OFF(struct au1xmmc_host * host,u32 mask)188 static inline void IRQ_OFF(struct au1xmmc_host *host, u32 mask)
189 {
190 u32 val = __raw_readl(HOST_CONFIG(host));
191 val &= ~mask;
192 __raw_writel(val, HOST_CONFIG(host));
193 wmb(); /* drain writebuffer */
194 }
195
SEND_STOP(struct au1xmmc_host * host)196 static inline void SEND_STOP(struct au1xmmc_host *host)
197 {
198 u32 config2;
199
200 WARN_ON(host->status != HOST_S_DATA);
201 host->status = HOST_S_STOP;
202
203 config2 = __raw_readl(HOST_CONFIG2(host));
204 __raw_writel(config2 | SD_CONFIG2_DF, HOST_CONFIG2(host));
205 wmb(); /* drain writebuffer */
206
207 /* Send the stop command */
208 __raw_writel(STOP_CMD, HOST_CMD(host));
209 wmb(); /* drain writebuffer */
210 }
211
au1xmmc_set_power(struct au1xmmc_host * host,int state)212 static void au1xmmc_set_power(struct au1xmmc_host *host, int state)
213 {
214 if (host->platdata && host->platdata->set_power)
215 host->platdata->set_power(host->mmc, state);
216 }
217
au1xmmc_card_inserted(struct mmc_host * mmc)218 static int au1xmmc_card_inserted(struct mmc_host *mmc)
219 {
220 struct au1xmmc_host *host = mmc_priv(mmc);
221
222 if (host->platdata && host->platdata->card_inserted)
223 return !!host->platdata->card_inserted(host->mmc);
224
225 return -ENOSYS;
226 }
227
au1xmmc_card_readonly(struct mmc_host * mmc)228 static int au1xmmc_card_readonly(struct mmc_host *mmc)
229 {
230 struct au1xmmc_host *host = mmc_priv(mmc);
231
232 if (host->platdata && host->platdata->card_readonly)
233 return !!host->platdata->card_readonly(mmc);
234
235 return -ENOSYS;
236 }
237
au1xmmc_finish_request(struct au1xmmc_host * host)238 static void au1xmmc_finish_request(struct au1xmmc_host *host)
239 {
240 struct mmc_request *mrq = host->mrq;
241
242 host->mrq = NULL;
243 host->flags &= HOST_F_ACTIVE | HOST_F_DMA;
244
245 host->dma.len = 0;
246 host->dma.dir = 0;
247
248 host->pio.index = 0;
249 host->pio.offset = 0;
250 host->pio.len = 0;
251
252 host->status = HOST_S_IDLE;
253
254 mmc_request_done(host->mmc, mrq);
255 }
256
au1xmmc_finish_bh_work(struct work_struct * t)257 static void au1xmmc_finish_bh_work(struct work_struct *t)
258 {
259 struct au1xmmc_host *host = from_work(host, t, finish_bh_work);
260 au1xmmc_finish_request(host);
261 }
262
au1xmmc_send_command(struct au1xmmc_host * host,struct mmc_command * cmd,struct mmc_data * data)263 static int au1xmmc_send_command(struct au1xmmc_host *host,
264 struct mmc_command *cmd, struct mmc_data *data)
265 {
266 u32 mmccmd = (cmd->opcode << SD_CMD_CI_SHIFT);
267
268 switch (mmc_resp_type(cmd)) {
269 case MMC_RSP_NONE:
270 break;
271 case MMC_RSP_R1:
272 mmccmd |= SD_CMD_RT_1;
273 break;
274 case MMC_RSP_R1B:
275 mmccmd |= SD_CMD_RT_1B;
276 break;
277 case MMC_RSP_R2:
278 mmccmd |= SD_CMD_RT_2;
279 break;
280 case MMC_RSP_R3:
281 mmccmd |= SD_CMD_RT_3;
282 break;
283 default:
284 pr_info("au1xmmc: unhandled response type %02x\n",
285 mmc_resp_type(cmd));
286 return -EINVAL;
287 }
288
289 if (data) {
290 if (data->flags & MMC_DATA_READ) {
291 if (data->blocks > 1)
292 mmccmd |= SD_CMD_CT_4;
293 else
294 mmccmd |= SD_CMD_CT_2;
295 } else if (data->flags & MMC_DATA_WRITE) {
296 if (data->blocks > 1)
297 mmccmd |= SD_CMD_CT_3;
298 else
299 mmccmd |= SD_CMD_CT_1;
300 }
301 }
302
303 __raw_writel(cmd->arg, HOST_CMDARG(host));
304 wmb(); /* drain writebuffer */
305
306 __raw_writel((mmccmd | SD_CMD_GO), HOST_CMD(host));
307 wmb(); /* drain writebuffer */
308
309 /* Wait for the command to go on the line */
310 while (__raw_readl(HOST_CMD(host)) & SD_CMD_GO)
311 /* nop */;
312
313 return 0;
314 }
315
au1xmmc_data_complete(struct au1xmmc_host * host,u32 status)316 static void au1xmmc_data_complete(struct au1xmmc_host *host, u32 status)
317 {
318 struct mmc_request *mrq = host->mrq;
319 struct mmc_data *data;
320 u32 crc;
321
322 WARN_ON((host->status != HOST_S_DATA) && (host->status != HOST_S_STOP));
323
324 if (host->mrq == NULL)
325 return;
326
327 data = mrq->cmd->data;
328
329 if (status == 0)
330 status = __raw_readl(HOST_STATUS(host));
331
332 /* The transaction is really over when the SD_STATUS_DB bit is clear */
333 while ((host->flags & HOST_F_XMIT) && (status & SD_STATUS_DB))
334 status = __raw_readl(HOST_STATUS(host));
335
336 data->error = 0;
337 dma_unmap_sg(mmc_dev(host->mmc), data->sg, data->sg_len, host->dma.dir);
338
339 /* Process any errors */
340 crc = (status & (SD_STATUS_WC | SD_STATUS_RC));
341 if (host->flags & HOST_F_XMIT)
342 crc |= ((status & 0x07) == 0x02) ? 0 : 1;
343
344 if (crc)
345 data->error = -EILSEQ;
346
347 /* Clear the CRC bits */
348 __raw_writel(SD_STATUS_WC | SD_STATUS_RC, HOST_STATUS(host));
349
350 data->bytes_xfered = 0;
351
352 if (!data->error) {
353 if (host->flags & (HOST_F_DMA | HOST_F_DBDMA)) {
354 u32 chan = DMA_CHANNEL(host);
355
356 chan_tab_t *c = *((chan_tab_t **)chan);
357 au1x_dma_chan_t *cp = c->chan_ptr;
358 data->bytes_xfered = cp->ddma_bytecnt;
359 } else
360 data->bytes_xfered =
361 (data->blocks * data->blksz) - host->pio.len;
362 }
363
364 au1xmmc_finish_request(host);
365 }
366
au1xmmc_data_bh_work(struct work_struct * t)367 static void au1xmmc_data_bh_work(struct work_struct *t)
368 {
369 struct au1xmmc_host *host = from_work(host, t, data_bh_work);
370
371 u32 status = __raw_readl(HOST_STATUS(host));
372 au1xmmc_data_complete(host, status);
373 }
374
375 #define AU1XMMC_MAX_TRANSFER 8
376
au1xmmc_send_pio(struct au1xmmc_host * host)377 static void au1xmmc_send_pio(struct au1xmmc_host *host)
378 {
379 struct mmc_data *data;
380 int sg_len, max, count;
381 unsigned char *sg_ptr, val;
382 u32 status;
383 struct scatterlist *sg;
384
385 data = host->mrq->data;
386
387 if (!(host->flags & HOST_F_XMIT))
388 return;
389
390 /* This is the pointer to the data buffer */
391 sg = &data->sg[host->pio.index];
392 sg_ptr = kmap_local_page(sg_page(sg)) + sg->offset + host->pio.offset;
393
394 /* This is the space left inside the buffer */
395 sg_len = data->sg[host->pio.index].length - host->pio.offset;
396
397 /* Check if we need less than the size of the sg_buffer */
398 max = (sg_len > host->pio.len) ? host->pio.len : sg_len;
399 if (max > AU1XMMC_MAX_TRANSFER)
400 max = AU1XMMC_MAX_TRANSFER;
401
402 for (count = 0; count < max; count++) {
403 status = __raw_readl(HOST_STATUS(host));
404
405 if (!(status & SD_STATUS_TH))
406 break;
407
408 val = sg_ptr[count];
409
410 __raw_writel((unsigned long)val, HOST_TXPORT(host));
411 wmb(); /* drain writebuffer */
412 }
413 kunmap_local(sg_ptr);
414
415 host->pio.len -= count;
416 host->pio.offset += count;
417
418 if (count == sg_len) {
419 host->pio.index++;
420 host->pio.offset = 0;
421 }
422
423 if (host->pio.len == 0) {
424 IRQ_OFF(host, SD_CONFIG_TH);
425
426 if (host->flags & HOST_F_STOP)
427 SEND_STOP(host);
428
429 queue_work(system_bh_wq, &host->data_bh_work);
430 }
431 }
432
au1xmmc_receive_pio(struct au1xmmc_host * host)433 static void au1xmmc_receive_pio(struct au1xmmc_host *host)
434 {
435 struct mmc_data *data;
436 int max, count, sg_len = 0;
437 unsigned char *sg_ptr = NULL;
438 u32 status, val;
439 struct scatterlist *sg;
440
441 data = host->mrq->data;
442
443 if (!(host->flags & HOST_F_RECV))
444 return;
445
446 max = host->pio.len;
447
448 if (host->pio.index < host->dma.len) {
449 sg = &data->sg[host->pio.index];
450 sg_ptr = kmap_local_page(sg_page(sg)) + sg->offset + host->pio.offset;
451
452 /* This is the space left inside the buffer */
453 sg_len = sg_dma_len(&data->sg[host->pio.index]) - host->pio.offset;
454
455 /* Check if we need less than the size of the sg_buffer */
456 if (sg_len < max)
457 max = sg_len;
458 }
459
460 if (max > AU1XMMC_MAX_TRANSFER)
461 max = AU1XMMC_MAX_TRANSFER;
462
463 for (count = 0; count < max; count++) {
464 status = __raw_readl(HOST_STATUS(host));
465
466 if (!(status & SD_STATUS_NE))
467 break;
468
469 if (status & SD_STATUS_RC) {
470 DBG("RX CRC Error [%d + %d].\n", host->pdev->id,
471 host->pio.len, count);
472 break;
473 }
474
475 if (status & SD_STATUS_RO) {
476 DBG("RX Overrun [%d + %d]\n", host->pdev->id,
477 host->pio.len, count);
478 break;
479 }
480 else if (status & SD_STATUS_RU) {
481 DBG("RX Underrun [%d + %d]\n", host->pdev->id,
482 host->pio.len, count);
483 break;
484 }
485
486 val = __raw_readl(HOST_RXPORT(host));
487
488 if (sg_ptr)
489 sg_ptr[count] = (unsigned char)(val & 0xFF);
490 }
491 if (sg_ptr)
492 kunmap_local(sg_ptr);
493
494 host->pio.len -= count;
495 host->pio.offset += count;
496
497 if (sg_len && count == sg_len) {
498 host->pio.index++;
499 host->pio.offset = 0;
500 }
501
502 if (host->pio.len == 0) {
503 /* IRQ_OFF(host, SD_CONFIG_RA | SD_CONFIG_RF); */
504 IRQ_OFF(host, SD_CONFIG_NE);
505
506 if (host->flags & HOST_F_STOP)
507 SEND_STOP(host);
508
509 queue_work(system_bh_wq, &host->data_bh_work);
510 }
511 }
512
513 /* This is called when a command has been completed - grab the response
514 * and check for errors. Then start the data transfer if it is indicated.
515 */
au1xmmc_cmd_complete(struct au1xmmc_host * host,u32 status)516 static void au1xmmc_cmd_complete(struct au1xmmc_host *host, u32 status)
517 {
518 struct mmc_request *mrq = host->mrq;
519 struct mmc_command *cmd;
520 u32 r[4];
521 int i, trans;
522
523 if (!host->mrq)
524 return;
525
526 cmd = mrq->cmd;
527 cmd->error = 0;
528
529 if (cmd->flags & MMC_RSP_PRESENT) {
530 if (cmd->flags & MMC_RSP_136) {
531 r[0] = __raw_readl(host->iobase + SD_RESP3);
532 r[1] = __raw_readl(host->iobase + SD_RESP2);
533 r[2] = __raw_readl(host->iobase + SD_RESP1);
534 r[3] = __raw_readl(host->iobase + SD_RESP0);
535
536 /* The CRC is omitted from the response, so really
537 * we only got 120 bytes, but the engine expects
538 * 128 bits, so we have to shift things up.
539 */
540 for (i = 0; i < 4; i++) {
541 cmd->resp[i] = (r[i] & 0x00FFFFFF) << 8;
542 if (i != 3)
543 cmd->resp[i] |= (r[i + 1] & 0xFF000000) >> 24;
544 }
545 } else {
546 /* Techincally, we should be getting all 48 bits of
547 * the response (SD_RESP1 + SD_RESP2), but because
548 * our response omits the CRC, our data ends up
549 * being shifted 8 bits to the right. In this case,
550 * that means that the OSR data starts at bit 31,
551 * so we can just read RESP0 and return that.
552 */
553 cmd->resp[0] = __raw_readl(host->iobase + SD_RESP0);
554 }
555 }
556
557 /* Figure out errors */
558 if (status & (SD_STATUS_SC | SD_STATUS_WC | SD_STATUS_RC))
559 cmd->error = -EILSEQ;
560
561 trans = host->flags & (HOST_F_XMIT | HOST_F_RECV);
562
563 if (!trans || cmd->error) {
564 IRQ_OFF(host, SD_CONFIG_TH | SD_CONFIG_RA | SD_CONFIG_RF);
565 queue_work(system_bh_wq, &host->finish_bh_work);
566 return;
567 }
568
569 host->status = HOST_S_DATA;
570
571 if ((host->flags & (HOST_F_DMA | HOST_F_DBDMA))) {
572 u32 channel = DMA_CHANNEL(host);
573
574 /* Start the DBDMA as soon as the buffer gets something in it */
575
576 if (host->flags & HOST_F_RECV) {
577 u32 mask = SD_STATUS_DB | SD_STATUS_NE;
578
579 while((status & mask) != mask)
580 status = __raw_readl(HOST_STATUS(host));
581 }
582
583 au1xxx_dbdma_start(channel);
584 }
585 }
586
au1xmmc_set_clock(struct au1xmmc_host * host,int rate)587 static void au1xmmc_set_clock(struct au1xmmc_host *host, int rate)
588 {
589 unsigned int pbus = clk_get_rate(host->clk);
590 unsigned int divisor = ((pbus / rate) / 2) - 1;
591 u32 config;
592
593 config = __raw_readl(HOST_CONFIG(host));
594
595 config &= ~(SD_CONFIG_DIV);
596 config |= (divisor & SD_CONFIG_DIV) | SD_CONFIG_DE;
597
598 __raw_writel(config, HOST_CONFIG(host));
599 wmb(); /* drain writebuffer */
600 }
601
au1xmmc_prepare_data(struct au1xmmc_host * host,struct mmc_data * data)602 static int au1xmmc_prepare_data(struct au1xmmc_host *host,
603 struct mmc_data *data)
604 {
605 int datalen = data->blocks * data->blksz;
606
607 if (data->flags & MMC_DATA_READ)
608 host->flags |= HOST_F_RECV;
609 else
610 host->flags |= HOST_F_XMIT;
611
612 if (host->mrq->stop)
613 host->flags |= HOST_F_STOP;
614
615 host->dma.dir = DMA_BIDIRECTIONAL;
616
617 host->dma.len = dma_map_sg(mmc_dev(host->mmc), data->sg,
618 data->sg_len, host->dma.dir);
619
620 if (host->dma.len == 0)
621 return -ETIMEDOUT;
622
623 __raw_writel(data->blksz - 1, HOST_BLKSIZE(host));
624
625 if (host->flags & (HOST_F_DMA | HOST_F_DBDMA)) {
626 int i;
627 u32 channel = DMA_CHANNEL(host);
628
629 au1xxx_dbdma_stop(channel);
630
631 for (i = 0; i < host->dma.len; i++) {
632 u32 ret = 0, flags = DDMA_FLAGS_NOIE;
633 struct scatterlist *sg = &data->sg[i];
634 int sg_len = sg->length;
635
636 int len = (datalen > sg_len) ? sg_len : datalen;
637
638 if (i == host->dma.len - 1)
639 flags = DDMA_FLAGS_IE;
640
641 if (host->flags & HOST_F_XMIT) {
642 ret = au1xxx_dbdma_put_source(channel,
643 sg_phys(sg), len, flags);
644 } else {
645 ret = au1xxx_dbdma_put_dest(channel,
646 sg_phys(sg), len, flags);
647 }
648
649 if (!ret)
650 goto dataerr;
651
652 datalen -= len;
653 }
654 } else {
655 host->pio.index = 0;
656 host->pio.offset = 0;
657 host->pio.len = datalen;
658
659 if (host->flags & HOST_F_XMIT)
660 IRQ_ON(host, SD_CONFIG_TH);
661 else
662 IRQ_ON(host, SD_CONFIG_NE);
663 /* IRQ_ON(host, SD_CONFIG_RA | SD_CONFIG_RF); */
664 }
665
666 return 0;
667
668 dataerr:
669 dma_unmap_sg(mmc_dev(host->mmc), data->sg, data->sg_len,
670 host->dma.dir);
671 return -ETIMEDOUT;
672 }
673
674 /* This actually starts a command or data transaction */
au1xmmc_request(struct mmc_host * mmc,struct mmc_request * mrq)675 static void au1xmmc_request(struct mmc_host* mmc, struct mmc_request* mrq)
676 {
677 struct au1xmmc_host *host = mmc_priv(mmc);
678 int ret = 0;
679
680 WARN_ON(irqs_disabled());
681 WARN_ON(host->status != HOST_S_IDLE);
682
683 host->mrq = mrq;
684 host->status = HOST_S_CMD;
685
686 /* fail request immediately if no card is present */
687 if (0 == au1xmmc_card_inserted(mmc)) {
688 mrq->cmd->error = -ENOMEDIUM;
689 au1xmmc_finish_request(host);
690 return;
691 }
692
693 if (mrq->data) {
694 FLUSH_FIFO(host);
695 ret = au1xmmc_prepare_data(host, mrq->data);
696 }
697
698 if (!ret)
699 ret = au1xmmc_send_command(host, mrq->cmd, mrq->data);
700
701 if (ret) {
702 mrq->cmd->error = ret;
703 au1xmmc_finish_request(host);
704 }
705 }
706
au1xmmc_reset_controller(struct au1xmmc_host * host)707 static void au1xmmc_reset_controller(struct au1xmmc_host *host)
708 {
709 /* Apply the clock */
710 __raw_writel(SD_ENABLE_CE, HOST_ENABLE(host));
711 wmb(); /* drain writebuffer */
712 mdelay(1);
713
714 __raw_writel(SD_ENABLE_R | SD_ENABLE_CE, HOST_ENABLE(host));
715 wmb(); /* drain writebuffer */
716 mdelay(5);
717
718 __raw_writel(~0, HOST_STATUS(host));
719 wmb(); /* drain writebuffer */
720
721 __raw_writel(0, HOST_BLKSIZE(host));
722 __raw_writel(0x001fffff, HOST_TIMEOUT(host));
723 wmb(); /* drain writebuffer */
724
725 __raw_writel(SD_CONFIG2_EN, HOST_CONFIG2(host));
726 wmb(); /* drain writebuffer */
727
728 __raw_writel(SD_CONFIG2_EN | SD_CONFIG2_FF, HOST_CONFIG2(host));
729 wmb(); /* drain writebuffer */
730 mdelay(1);
731
732 __raw_writel(SD_CONFIG2_EN, HOST_CONFIG2(host));
733 wmb(); /* drain writebuffer */
734
735 /* Configure interrupts */
736 __raw_writel(AU1XMMC_INTERRUPTS, HOST_CONFIG(host));
737 wmb(); /* drain writebuffer */
738 }
739
740
au1xmmc_set_ios(struct mmc_host * mmc,struct mmc_ios * ios)741 static void au1xmmc_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
742 {
743 struct au1xmmc_host *host = mmc_priv(mmc);
744 u32 config2;
745
746 if (ios->power_mode == MMC_POWER_OFF)
747 au1xmmc_set_power(host, 0);
748 else if (ios->power_mode == MMC_POWER_ON) {
749 au1xmmc_set_power(host, 1);
750 }
751
752 if (ios->clock && ios->clock != host->clock) {
753 au1xmmc_set_clock(host, ios->clock);
754 host->clock = ios->clock;
755 }
756
757 config2 = __raw_readl(HOST_CONFIG2(host));
758 switch (ios->bus_width) {
759 case MMC_BUS_WIDTH_8:
760 config2 |= SD_CONFIG2_BB;
761 break;
762 case MMC_BUS_WIDTH_4:
763 config2 &= ~SD_CONFIG2_BB;
764 config2 |= SD_CONFIG2_WB;
765 break;
766 case MMC_BUS_WIDTH_1:
767 config2 &= ~(SD_CONFIG2_WB | SD_CONFIG2_BB);
768 break;
769 }
770 __raw_writel(config2, HOST_CONFIG2(host));
771 wmb(); /* drain writebuffer */
772 }
773
774 #define STATUS_TIMEOUT (SD_STATUS_RAT | SD_STATUS_DT)
775 #define STATUS_DATA_IN (SD_STATUS_NE)
776 #define STATUS_DATA_OUT (SD_STATUS_TH)
777
au1xmmc_irq(int irq,void * dev_id)778 static irqreturn_t au1xmmc_irq(int irq, void *dev_id)
779 {
780 struct au1xmmc_host *host = dev_id;
781 u32 status;
782
783 status = __raw_readl(HOST_STATUS(host));
784
785 if (!(status & SD_STATUS_I))
786 return IRQ_NONE; /* not ours */
787
788 if (status & SD_STATUS_SI) /* SDIO */
789 mmc_signal_sdio_irq(host->mmc);
790
791 if (host->mrq && (status & STATUS_TIMEOUT)) {
792 if (status & SD_STATUS_RAT)
793 host->mrq->cmd->error = -ETIMEDOUT;
794 else if (status & SD_STATUS_DT)
795 host->mrq->data->error = -ETIMEDOUT;
796
797 /* In PIO mode, interrupts might still be enabled */
798 IRQ_OFF(host, SD_CONFIG_NE | SD_CONFIG_TH);
799
800 /* IRQ_OFF(host, SD_CONFIG_TH | SD_CONFIG_RA | SD_CONFIG_RF); */
801 queue_work(system_bh_wq, &host->finish_bh_work);
802 }
803 #if 0
804 else if (status & SD_STATUS_DD) {
805 /* Sometimes we get a DD before a NE in PIO mode */
806 if (!(host->flags & HOST_F_DMA) && (status & SD_STATUS_NE))
807 au1xmmc_receive_pio(host);
808 else {
809 au1xmmc_data_complete(host, status);
810 /* queue_work(system_bh_wq, &host->data_bh_work); */
811 }
812 }
813 #endif
814 else if (status & SD_STATUS_CR) {
815 if (host->status == HOST_S_CMD)
816 au1xmmc_cmd_complete(host, status);
817
818 } else if (!(host->flags & HOST_F_DMA)) {
819 if ((host->flags & HOST_F_XMIT) && (status & STATUS_DATA_OUT))
820 au1xmmc_send_pio(host);
821 else if ((host->flags & HOST_F_RECV) && (status & STATUS_DATA_IN))
822 au1xmmc_receive_pio(host);
823
824 } else if (status & 0x203F3C70) {
825 DBG("Unhandled status %8.8x\n", host->pdev->id,
826 status);
827 }
828
829 __raw_writel(status, HOST_STATUS(host));
830 wmb(); /* drain writebuffer */
831
832 return IRQ_HANDLED;
833 }
834
835 /* 8bit memory DMA device */
836 static dbdev_tab_t au1xmmc_mem_dbdev = {
837 .dev_id = DSCR_CMD0_ALWAYS,
838 .dev_flags = DEV_FLAGS_ANYUSE,
839 .dev_tsize = 0,
840 .dev_devwidth = 8,
841 .dev_physaddr = 0x00000000,
842 .dev_intlevel = 0,
843 .dev_intpolarity = 0,
844 };
845 static int memid;
846
au1xmmc_dbdma_callback(int irq,void * dev_id)847 static void au1xmmc_dbdma_callback(int irq, void *dev_id)
848 {
849 struct au1xmmc_host *host = (struct au1xmmc_host *)dev_id;
850
851 /* Avoid spurious interrupts */
852 if (!host->mrq)
853 return;
854
855 if (host->flags & HOST_F_STOP)
856 SEND_STOP(host);
857
858 queue_work(system_bh_wq, &host->data_bh_work);
859 }
860
au1xmmc_dbdma_init(struct au1xmmc_host * host)861 static int au1xmmc_dbdma_init(struct au1xmmc_host *host)
862 {
863 struct resource *res;
864 int txid, rxid;
865
866 res = platform_get_resource(host->pdev, IORESOURCE_DMA, 0);
867 if (!res)
868 return -ENODEV;
869 txid = res->start;
870
871 res = platform_get_resource(host->pdev, IORESOURCE_DMA, 1);
872 if (!res)
873 return -ENODEV;
874 rxid = res->start;
875
876 if (!memid)
877 return -ENODEV;
878
879 host->tx_chan = au1xxx_dbdma_chan_alloc(memid, txid,
880 au1xmmc_dbdma_callback, (void *)host);
881 if (!host->tx_chan) {
882 dev_err(&host->pdev->dev, "cannot allocate TX DMA\n");
883 return -ENODEV;
884 }
885
886 host->rx_chan = au1xxx_dbdma_chan_alloc(rxid, memid,
887 au1xmmc_dbdma_callback, (void *)host);
888 if (!host->rx_chan) {
889 dev_err(&host->pdev->dev, "cannot allocate RX DMA\n");
890 au1xxx_dbdma_chan_free(host->tx_chan);
891 return -ENODEV;
892 }
893
894 au1xxx_dbdma_set_devwidth(host->tx_chan, 8);
895 au1xxx_dbdma_set_devwidth(host->rx_chan, 8);
896
897 au1xxx_dbdma_ring_alloc(host->tx_chan, AU1XMMC_DESCRIPTOR_COUNT);
898 au1xxx_dbdma_ring_alloc(host->rx_chan, AU1XMMC_DESCRIPTOR_COUNT);
899
900 /* DBDMA is good to go */
901 host->flags |= HOST_F_DMA | HOST_F_DBDMA;
902
903 return 0;
904 }
905
au1xmmc_dbdma_shutdown(struct au1xmmc_host * host)906 static void au1xmmc_dbdma_shutdown(struct au1xmmc_host *host)
907 {
908 if (host->flags & HOST_F_DMA) {
909 host->flags &= ~HOST_F_DMA;
910 au1xxx_dbdma_chan_free(host->tx_chan);
911 au1xxx_dbdma_chan_free(host->rx_chan);
912 }
913 }
914
au1xmmc_enable_sdio_irq(struct mmc_host * mmc,int en)915 static void au1xmmc_enable_sdio_irq(struct mmc_host *mmc, int en)
916 {
917 struct au1xmmc_host *host = mmc_priv(mmc);
918
919 if (en)
920 IRQ_ON(host, SD_CONFIG_SI);
921 else
922 IRQ_OFF(host, SD_CONFIG_SI);
923 }
924
925 static const struct mmc_host_ops au1xmmc_ops = {
926 .request = au1xmmc_request,
927 .set_ios = au1xmmc_set_ios,
928 .get_ro = au1xmmc_card_readonly,
929 .get_cd = au1xmmc_card_inserted,
930 .enable_sdio_irq = au1xmmc_enable_sdio_irq,
931 };
932
au1xmmc_probe(struct platform_device * pdev)933 static int au1xmmc_probe(struct platform_device *pdev)
934 {
935 struct mmc_host *mmc;
936 struct au1xmmc_host *host;
937 struct resource *r;
938 int ret, iflag;
939
940 mmc = mmc_alloc_host(sizeof(struct au1xmmc_host), &pdev->dev);
941 if (!mmc) {
942 dev_err(&pdev->dev, "no memory for mmc_host\n");
943 ret = -ENOMEM;
944 goto out0;
945 }
946
947 host = mmc_priv(mmc);
948 host->mmc = mmc;
949 host->platdata = pdev->dev.platform_data;
950 host->pdev = pdev;
951
952 ret = -ENODEV;
953 r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
954 if (!r) {
955 dev_err(&pdev->dev, "no mmio defined\n");
956 goto out1;
957 }
958
959 host->ioarea = request_mem_region(r->start, resource_size(r),
960 pdev->name);
961 if (!host->ioarea) {
962 dev_err(&pdev->dev, "mmio already in use\n");
963 goto out1;
964 }
965
966 host->iobase = ioremap(r->start, 0x3c);
967 if (!host->iobase) {
968 dev_err(&pdev->dev, "cannot remap mmio\n");
969 goto out2;
970 }
971
972 host->irq = platform_get_irq(pdev, 0);
973 if (host->irq < 0) {
974 ret = host->irq;
975 goto out3;
976 }
977
978 mmc->ops = &au1xmmc_ops;
979
980 mmc->f_min = 450000;
981 mmc->f_max = 24000000;
982
983 mmc->max_blk_size = 2048;
984 mmc->max_blk_count = 512;
985
986 mmc->ocr_avail = AU1XMMC_OCR;
987 mmc->caps = MMC_CAP_4_BIT_DATA | MMC_CAP_SDIO_IRQ;
988 mmc->max_segs = AU1XMMC_DESCRIPTOR_COUNT;
989
990 iflag = IRQF_SHARED; /* Au1100/Au1200: one int for both ctrls */
991
992 switch (alchemy_get_cputype()) {
993 case ALCHEMY_CPU_AU1100:
994 mmc->max_seg_size = AU1100_MMC_DESCRIPTOR_SIZE;
995 break;
996 case ALCHEMY_CPU_AU1200:
997 mmc->max_seg_size = AU1200_MMC_DESCRIPTOR_SIZE;
998 break;
999 case ALCHEMY_CPU_AU1300:
1000 iflag = 0; /* nothing is shared */
1001 mmc->max_seg_size = AU1200_MMC_DESCRIPTOR_SIZE;
1002 mmc->f_max = 52000000;
1003 if (host->ioarea->start == AU1100_SD0_PHYS_ADDR)
1004 mmc->caps |= MMC_CAP_8_BIT_DATA;
1005 break;
1006 }
1007
1008 ret = request_irq(host->irq, au1xmmc_irq, iflag, DRIVER_NAME, host);
1009 if (ret) {
1010 dev_err(&pdev->dev, "cannot grab IRQ\n");
1011 goto out3;
1012 }
1013
1014 host->clk = clk_get(&pdev->dev, ALCHEMY_PERIPH_CLK);
1015 if (IS_ERR(host->clk)) {
1016 dev_err(&pdev->dev, "cannot find clock\n");
1017 ret = PTR_ERR(host->clk);
1018 goto out_irq;
1019 }
1020
1021 ret = clk_prepare_enable(host->clk);
1022 if (ret) {
1023 dev_err(&pdev->dev, "cannot enable clock\n");
1024 goto out_clk;
1025 }
1026
1027 host->status = HOST_S_IDLE;
1028
1029 /* board-specific carddetect setup, if any */
1030 if (host->platdata && host->platdata->cd_setup) {
1031 ret = host->platdata->cd_setup(mmc, 1);
1032 if (ret) {
1033 dev_warn(&pdev->dev, "board CD setup failed\n");
1034 mmc->caps |= MMC_CAP_NEEDS_POLL;
1035 }
1036 } else
1037 mmc->caps |= MMC_CAP_NEEDS_POLL;
1038
1039 /* platform may not be able to use all advertised caps */
1040 if (host->platdata)
1041 mmc->caps &= ~(host->platdata->mask_host_caps);
1042
1043 INIT_WORK(&host->data_bh_work, au1xmmc_data_bh_work);
1044
1045 INIT_WORK(&host->finish_bh_work, au1xmmc_finish_bh_work);
1046
1047 if (has_dbdma()) {
1048 ret = au1xmmc_dbdma_init(host);
1049 if (ret)
1050 pr_info(DRIVER_NAME ": DBDMA init failed; using PIO\n");
1051 }
1052
1053 #ifdef CONFIG_LEDS_CLASS
1054 if (host->platdata && host->platdata->led) {
1055 struct led_classdev *led = host->platdata->led;
1056 led->name = mmc_hostname(mmc);
1057 led->brightness = LED_OFF;
1058 led->default_trigger = mmc_hostname(mmc);
1059 ret = led_classdev_register(mmc_dev(mmc), led);
1060 if (ret)
1061 goto out5;
1062 }
1063 #endif
1064
1065 au1xmmc_reset_controller(host);
1066
1067 ret = mmc_add_host(mmc);
1068 if (ret) {
1069 dev_err(&pdev->dev, "cannot add mmc host\n");
1070 goto out6;
1071 }
1072
1073 platform_set_drvdata(pdev, host);
1074
1075 pr_info(DRIVER_NAME ": MMC Controller %d set up at %p"
1076 " (mode=%s)\n", pdev->id, host->iobase,
1077 host->flags & HOST_F_DMA ? "dma" : "pio");
1078
1079 return 0; /* all ok */
1080
1081 out6:
1082 #ifdef CONFIG_LEDS_CLASS
1083 if (host->platdata && host->platdata->led)
1084 led_classdev_unregister(host->platdata->led);
1085 out5:
1086 #endif
1087 __raw_writel(0, HOST_ENABLE(host));
1088 __raw_writel(0, HOST_CONFIG(host));
1089 __raw_writel(0, HOST_CONFIG2(host));
1090 wmb(); /* drain writebuffer */
1091
1092 if (host->flags & HOST_F_DBDMA)
1093 au1xmmc_dbdma_shutdown(host);
1094
1095 cancel_work_sync(&host->data_bh_work);
1096 cancel_work_sync(&host->finish_bh_work);
1097
1098 if (host->platdata && host->platdata->cd_setup &&
1099 !(mmc->caps & MMC_CAP_NEEDS_POLL))
1100 host->platdata->cd_setup(mmc, 0);
1101
1102 clk_disable_unprepare(host->clk);
1103 out_clk:
1104 clk_put(host->clk);
1105 out_irq:
1106 free_irq(host->irq, host);
1107 out3:
1108 iounmap((void *)host->iobase);
1109 out2:
1110 release_resource(host->ioarea);
1111 kfree(host->ioarea);
1112 out1:
1113 mmc_free_host(mmc);
1114 out0:
1115 return ret;
1116 }
1117
au1xmmc_remove(struct platform_device * pdev)1118 static void au1xmmc_remove(struct platform_device *pdev)
1119 {
1120 struct au1xmmc_host *host = platform_get_drvdata(pdev);
1121
1122 if (host) {
1123 mmc_remove_host(host->mmc);
1124
1125 #ifdef CONFIG_LEDS_CLASS
1126 if (host->platdata && host->platdata->led)
1127 led_classdev_unregister(host->platdata->led);
1128 #endif
1129
1130 if (host->platdata && host->platdata->cd_setup &&
1131 !(host->mmc->caps & MMC_CAP_NEEDS_POLL))
1132 host->platdata->cd_setup(host->mmc, 0);
1133
1134 __raw_writel(0, HOST_ENABLE(host));
1135 __raw_writel(0, HOST_CONFIG(host));
1136 __raw_writel(0, HOST_CONFIG2(host));
1137 wmb(); /* drain writebuffer */
1138
1139 cancel_work_sync(&host->data_bh_work);
1140 cancel_work_sync(&host->finish_bh_work);
1141
1142 if (host->flags & HOST_F_DBDMA)
1143 au1xmmc_dbdma_shutdown(host);
1144
1145 au1xmmc_set_power(host, 0);
1146
1147 clk_disable_unprepare(host->clk);
1148 clk_put(host->clk);
1149
1150 free_irq(host->irq, host);
1151 iounmap((void *)host->iobase);
1152 release_resource(host->ioarea);
1153 kfree(host->ioarea);
1154
1155 mmc_free_host(host->mmc);
1156 }
1157 }
1158
1159 #ifdef CONFIG_PM
au1xmmc_suspend(struct platform_device * pdev,pm_message_t state)1160 static int au1xmmc_suspend(struct platform_device *pdev, pm_message_t state)
1161 {
1162 struct au1xmmc_host *host = platform_get_drvdata(pdev);
1163
1164 __raw_writel(0, HOST_CONFIG2(host));
1165 __raw_writel(0, HOST_CONFIG(host));
1166 __raw_writel(0xffffffff, HOST_STATUS(host));
1167 __raw_writel(0, HOST_ENABLE(host));
1168 wmb(); /* drain writebuffer */
1169
1170 return 0;
1171 }
1172
au1xmmc_resume(struct platform_device * pdev)1173 static int au1xmmc_resume(struct platform_device *pdev)
1174 {
1175 struct au1xmmc_host *host = platform_get_drvdata(pdev);
1176
1177 au1xmmc_reset_controller(host);
1178
1179 return 0;
1180 }
1181 #else
1182 #define au1xmmc_suspend NULL
1183 #define au1xmmc_resume NULL
1184 #endif
1185
1186 static struct platform_driver au1xmmc_driver = {
1187 .probe = au1xmmc_probe,
1188 .remove_new = au1xmmc_remove,
1189 .suspend = au1xmmc_suspend,
1190 .resume = au1xmmc_resume,
1191 .driver = {
1192 .name = DRIVER_NAME,
1193 .probe_type = PROBE_PREFER_ASYNCHRONOUS,
1194 },
1195 };
1196
au1xmmc_init(void)1197 static int __init au1xmmc_init(void)
1198 {
1199 if (has_dbdma()) {
1200 /* DSCR_CMD0_ALWAYS has a stride of 32 bits, we need a stride
1201 * of 8 bits. And since devices are shared, we need to create
1202 * our own to avoid freaking out other devices.
1203 */
1204 memid = au1xxx_ddma_add_device(&au1xmmc_mem_dbdev);
1205 if (!memid)
1206 pr_err("au1xmmc: cannot add memory dbdma\n");
1207 }
1208 return platform_driver_register(&au1xmmc_driver);
1209 }
1210
au1xmmc_exit(void)1211 static void __exit au1xmmc_exit(void)
1212 {
1213 if (has_dbdma() && memid)
1214 au1xxx_ddma_del_device(memid);
1215
1216 platform_driver_unregister(&au1xmmc_driver);
1217 }
1218
1219 module_init(au1xmmc_init);
1220 module_exit(au1xmmc_exit);
1221
1222 MODULE_AUTHOR("Advanced Micro Devices, Inc");
1223 MODULE_DESCRIPTION("MMC/SD driver for the Alchemy Au1XXX");
1224 MODULE_LICENSE("GPL");
1225 MODULE_ALIAS("platform:au1xxx-mmc");
1226