xref: /linux/drivers/dma/at_xdmac.c (revision 23db0ed34f9e3756d243c5dc56d9f7c1fadecf89)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Driver for the Atmel Extensible DMA Controller (aka XDMAC on AT91 systems)
4  *
5  * Copyright (C) 2014 Atmel Corporation
6  *
7  * Author: Ludovic Desroches <ludovic.desroches@atmel.com>
8  */
9 
10 #include <asm/barrier.h>
11 #include <dt-bindings/dma/at91.h>
12 #include <linux/clk.h>
13 #include <linux/dmaengine.h>
14 #include <linux/dmapool.h>
15 #include <linux/interrupt.h>
16 #include <linux/irq.h>
17 #include <linux/kernel.h>
18 #include <linux/list.h>
19 #include <linux/module.h>
20 #include <linux/of_dma.h>
21 #include <linux/of_platform.h>
22 #include <linux/platform_device.h>
23 #include <linux/pm.h>
24 #include <linux/pm_runtime.h>
25 
26 #include "dmaengine.h"
27 
28 /* Global registers */
29 #define AT_XDMAC_GTYPE		0x00	/* Global Type Register */
30 #define		AT_XDMAC_NB_CH(i)	(((i) & 0x1F) + 1)		/* Number of Channels Minus One */
31 #define		AT_XDMAC_FIFO_SZ(i)	(((i) >> 5) & 0x7FF)		/* Number of Bytes */
32 #define		AT_XDMAC_NB_REQ(i)	((((i) >> 16) & 0x3F) + 1)	/* Number of Peripheral Requests Minus One */
33 #define AT_XDMAC_GCFG		0x04	/* Global Configuration Register */
34 #define		AT_XDMAC_WRHP(i)		(((i) & 0xF) << 4)
35 #define		AT_XDMAC_WRMP(i)		(((i) & 0xF) << 8)
36 #define		AT_XDMAC_WRLP(i)		(((i) & 0xF) << 12)
37 #define		AT_XDMAC_RDHP(i)		(((i) & 0xF) << 16)
38 #define		AT_XDMAC_RDMP(i)		(((i) & 0xF) << 20)
39 #define		AT_XDMAC_RDLP(i)		(((i) & 0xF) << 24)
40 #define		AT_XDMAC_RDSG(i)		(((i) & 0xF) << 28)
41 #define AT_XDMAC_GCFG_M2M	(AT_XDMAC_RDLP(0xF) | AT_XDMAC_WRLP(0xF))
42 #define AT_XDMAC_GCFG_P2M	(AT_XDMAC_RDSG(0x1) | AT_XDMAC_RDHP(0x3) | \
43 				AT_XDMAC_WRHP(0x5))
44 #define AT_XDMAC_GWAC		0x08	/* Global Weighted Arbiter Configuration Register */
45 #define		AT_XDMAC_PW0(i)		(((i) & 0xF) << 0)
46 #define		AT_XDMAC_PW1(i)		(((i) & 0xF) << 4)
47 #define		AT_XDMAC_PW2(i)		(((i) & 0xF) << 8)
48 #define		AT_XDMAC_PW3(i)		(((i) & 0xF) << 12)
49 #define AT_XDMAC_GWAC_M2M	0
50 #define AT_XDMAC_GWAC_P2M	(AT_XDMAC_PW0(0xF) | AT_XDMAC_PW2(0xF))
51 
52 #define AT_XDMAC_GIE		0x0C	/* Global Interrupt Enable Register */
53 #define AT_XDMAC_GID		0x10	/* Global Interrupt Disable Register */
54 #define AT_XDMAC_GIM		0x14	/* Global Interrupt Mask Register */
55 #define AT_XDMAC_GIS		0x18	/* Global Interrupt Status Register */
56 #define AT_XDMAC_GE		0x1C	/* Global Channel Enable Register */
57 #define AT_XDMAC_GD		0x20	/* Global Channel Disable Register */
58 #define AT_XDMAC_GS		0x24	/* Global Channel Status Register */
59 #define AT_XDMAC_VERSION	0xFFC	/* XDMAC Version Register */
60 
61 /* Channel relative registers offsets */
62 #define AT_XDMAC_CIE		0x00	/* Channel Interrupt Enable Register */
63 #define		AT_XDMAC_CIE_BIE	BIT(0)	/* End of Block Interrupt Enable Bit */
64 #define		AT_XDMAC_CIE_LIE	BIT(1)	/* End of Linked List Interrupt Enable Bit */
65 #define		AT_XDMAC_CIE_DIE	BIT(2)	/* End of Disable Interrupt Enable Bit */
66 #define		AT_XDMAC_CIE_FIE	BIT(3)	/* End of Flush Interrupt Enable Bit */
67 #define		AT_XDMAC_CIE_RBEIE	BIT(4)	/* Read Bus Error Interrupt Enable Bit */
68 #define		AT_XDMAC_CIE_WBEIE	BIT(5)	/* Write Bus Error Interrupt Enable Bit */
69 #define		AT_XDMAC_CIE_ROIE	BIT(6)	/* Request Overflow Interrupt Enable Bit */
70 #define AT_XDMAC_CID		0x04	/* Channel Interrupt Disable Register */
71 #define		AT_XDMAC_CID_BID	BIT(0)	/* End of Block Interrupt Disable Bit */
72 #define		AT_XDMAC_CID_LID	BIT(1)	/* End of Linked List Interrupt Disable Bit */
73 #define		AT_XDMAC_CID_DID	BIT(2)	/* End of Disable Interrupt Disable Bit */
74 #define		AT_XDMAC_CID_FID	BIT(3)	/* End of Flush Interrupt Disable Bit */
75 #define		AT_XDMAC_CID_RBEID	BIT(4)	/* Read Bus Error Interrupt Disable Bit */
76 #define		AT_XDMAC_CID_WBEID	BIT(5)	/* Write Bus Error Interrupt Disable Bit */
77 #define		AT_XDMAC_CID_ROID	BIT(6)	/* Request Overflow Interrupt Disable Bit */
78 #define AT_XDMAC_CIM		0x08	/* Channel Interrupt Mask Register */
79 #define		AT_XDMAC_CIM_BIM	BIT(0)	/* End of Block Interrupt Mask Bit */
80 #define		AT_XDMAC_CIM_LIM	BIT(1)	/* End of Linked List Interrupt Mask Bit */
81 #define		AT_XDMAC_CIM_DIM	BIT(2)	/* End of Disable Interrupt Mask Bit */
82 #define		AT_XDMAC_CIM_FIM	BIT(3)	/* End of Flush Interrupt Mask Bit */
83 #define		AT_XDMAC_CIM_RBEIM	BIT(4)	/* Read Bus Error Interrupt Mask Bit */
84 #define		AT_XDMAC_CIM_WBEIM	BIT(5)	/* Write Bus Error Interrupt Mask Bit */
85 #define		AT_XDMAC_CIM_ROIM	BIT(6)	/* Request Overflow Interrupt Mask Bit */
86 #define AT_XDMAC_CIS		0x0C	/* Channel Interrupt Status Register */
87 #define		AT_XDMAC_CIS_BIS	BIT(0)	/* End of Block Interrupt Status Bit */
88 #define		AT_XDMAC_CIS_LIS	BIT(1)	/* End of Linked List Interrupt Status Bit */
89 #define		AT_XDMAC_CIS_DIS	BIT(2)	/* End of Disable Interrupt Status Bit */
90 #define		AT_XDMAC_CIS_FIS	BIT(3)	/* End of Flush Interrupt Status Bit */
91 #define		AT_XDMAC_CIS_RBEIS	BIT(4)	/* Read Bus Error Interrupt Status Bit */
92 #define		AT_XDMAC_CIS_WBEIS	BIT(5)	/* Write Bus Error Interrupt Status Bit */
93 #define		AT_XDMAC_CIS_ROIS	BIT(6)	/* Request Overflow Interrupt Status Bit */
94 #define AT_XDMAC_CSA		0x10	/* Channel Source Address Register */
95 #define AT_XDMAC_CDA		0x14	/* Channel Destination Address Register */
96 #define AT_XDMAC_CNDA		0x18	/* Channel Next Descriptor Address Register */
97 #define		AT_XDMAC_CNDA_NDAIF(i)	((i) & 0x1)			/* Channel x Next Descriptor Interface */
98 #define		AT_XDMAC_CNDA_NDA(i)	((i) & 0xfffffffc)		/* Channel x Next Descriptor Address */
99 #define AT_XDMAC_CNDC		0x1C	/* Channel Next Descriptor Control Register */
100 #define		AT_XDMAC_CNDC_NDE		(0x1 << 0)		/* Channel x Next Descriptor Enable */
101 #define		AT_XDMAC_CNDC_NDSUP		(0x1 << 1)		/* Channel x Next Descriptor Source Update */
102 #define		AT_XDMAC_CNDC_NDDUP		(0x1 << 2)		/* Channel x Next Descriptor Destination Update */
103 #define		AT_XDMAC_CNDC_NDVIEW_MASK	GENMASK(28, 27)
104 #define		AT_XDMAC_CNDC_NDVIEW_NDV0	(0x0 << 3)		/* Channel x Next Descriptor View 0 */
105 #define		AT_XDMAC_CNDC_NDVIEW_NDV1	(0x1 << 3)		/* Channel x Next Descriptor View 1 */
106 #define		AT_XDMAC_CNDC_NDVIEW_NDV2	(0x2 << 3)		/* Channel x Next Descriptor View 2 */
107 #define		AT_XDMAC_CNDC_NDVIEW_NDV3	(0x3 << 3)		/* Channel x Next Descriptor View 3 */
108 #define AT_XDMAC_CUBC		0x20	/* Channel Microblock Control Register */
109 #define AT_XDMAC_CBC		0x24	/* Channel Block Control Register */
110 #define AT_XDMAC_CC		0x28	/* Channel Configuration Register */
111 #define		AT_XDMAC_CC_TYPE	(0x1 << 0)	/* Channel Transfer Type */
112 #define			AT_XDMAC_CC_TYPE_MEM_TRAN	(0x0 << 0)	/* Memory to Memory Transfer */
113 #define			AT_XDMAC_CC_TYPE_PER_TRAN	(0x1 << 0)	/* Peripheral to Memory or Memory to Peripheral Transfer */
114 #define		AT_XDMAC_CC_MBSIZE_MASK	(0x3 << 1)
115 #define			AT_XDMAC_CC_MBSIZE_SINGLE	(0x0 << 1)
116 #define			AT_XDMAC_CC_MBSIZE_FOUR		(0x1 << 1)
117 #define			AT_XDMAC_CC_MBSIZE_EIGHT	(0x2 << 1)
118 #define			AT_XDMAC_CC_MBSIZE_SIXTEEN	(0x3 << 1)
119 #define		AT_XDMAC_CC_DSYNC	(0x1 << 4)	/* Channel Synchronization */
120 #define			AT_XDMAC_CC_DSYNC_PER2MEM	(0x0 << 4)
121 #define			AT_XDMAC_CC_DSYNC_MEM2PER	(0x1 << 4)
122 #define		AT_XDMAC_CC_PROT	(0x1 << 5)	/* Channel Protection */
123 #define			AT_XDMAC_CC_PROT_SEC		(0x0 << 5)
124 #define			AT_XDMAC_CC_PROT_UNSEC		(0x1 << 5)
125 #define		AT_XDMAC_CC_SWREQ	(0x1 << 6)	/* Channel Software Request Trigger */
126 #define			AT_XDMAC_CC_SWREQ_HWR_CONNECTED	(0x0 << 6)
127 #define			AT_XDMAC_CC_SWREQ_SWR_CONNECTED	(0x1 << 6)
128 #define		AT_XDMAC_CC_MEMSET	(0x1 << 7)	/* Channel Fill Block of memory */
129 #define			AT_XDMAC_CC_MEMSET_NORMAL_MODE	(0x0 << 7)
130 #define			AT_XDMAC_CC_MEMSET_HW_MODE	(0x1 << 7)
131 #define		AT_XDMAC_CC_CSIZE(i)	((0x7 & (i)) << 8)	/* Channel Chunk Size */
132 #define		AT_XDMAC_CC_DWIDTH_OFFSET	11
133 #define		AT_XDMAC_CC_DWIDTH_MASK	(0x3 << AT_XDMAC_CC_DWIDTH_OFFSET)
134 #define		AT_XDMAC_CC_DWIDTH(i)	((0x3 & (i)) << AT_XDMAC_CC_DWIDTH_OFFSET)	/* Channel Data Width */
135 #define			AT_XDMAC_CC_DWIDTH_BYTE		0x0
136 #define			AT_XDMAC_CC_DWIDTH_HALFWORD	0x1
137 #define			AT_XDMAC_CC_DWIDTH_WORD		0x2
138 #define			AT_XDMAC_CC_DWIDTH_DWORD	0x3
139 #define		AT_XDMAC_CC_SIF(i)	((0x1 & (i)) << 13)	/* Channel Source Interface Identifier */
140 #define		AT_XDMAC_CC_DIF(i)	((0x1 & (i)) << 14)	/* Channel Destination Interface Identifier */
141 #define		AT_XDMAC_CC_SAM_MASK	(0x3 << 16)	/* Channel Source Addressing Mode */
142 #define			AT_XDMAC_CC_SAM_FIXED_AM	(0x0 << 16)
143 #define			AT_XDMAC_CC_SAM_INCREMENTED_AM	(0x1 << 16)
144 #define			AT_XDMAC_CC_SAM_UBS_AM		(0x2 << 16)
145 #define			AT_XDMAC_CC_SAM_UBS_DS_AM	(0x3 << 16)
146 #define		AT_XDMAC_CC_DAM_MASK	(0x3 << 18)	/* Channel Source Addressing Mode */
147 #define			AT_XDMAC_CC_DAM_FIXED_AM	(0x0 << 18)
148 #define			AT_XDMAC_CC_DAM_INCREMENTED_AM	(0x1 << 18)
149 #define			AT_XDMAC_CC_DAM_UBS_AM		(0x2 << 18)
150 #define			AT_XDMAC_CC_DAM_UBS_DS_AM	(0x3 << 18)
151 #define		AT_XDMAC_CC_INITD	(0x1 << 21)	/* Channel Initialization Terminated (read only) */
152 #define			AT_XDMAC_CC_INITD_TERMINATED	(0x0 << 21)
153 #define			AT_XDMAC_CC_INITD_IN_PROGRESS	(0x1 << 21)
154 #define		AT_XDMAC_CC_RDIP	(0x1 << 22)	/* Read in Progress (read only) */
155 #define			AT_XDMAC_CC_RDIP_DONE		(0x0 << 22)
156 #define			AT_XDMAC_CC_RDIP_IN_PROGRESS	(0x1 << 22)
157 #define		AT_XDMAC_CC_WRIP	(0x1 << 23)	/* Write in Progress (read only) */
158 #define			AT_XDMAC_CC_WRIP_DONE		(0x0 << 23)
159 #define			AT_XDMAC_CC_WRIP_IN_PROGRESS	(0x1 << 23)
160 #define		AT_XDMAC_CC_PERID(i)	((0x7f & (i)) << 24)	/* Channel Peripheral Identifier */
161 #define AT_XDMAC_CDS_MSP	0x2C	/* Channel Data Stride Memory Set Pattern */
162 #define AT_XDMAC_CSUS		0x30	/* Channel Source Microblock Stride */
163 #define AT_XDMAC_CDUS		0x34	/* Channel Destination Microblock Stride */
164 
165 /* Microblock control members */
166 #define AT_XDMAC_MBR_UBC_UBLEN_MAX	0xFFFFFFUL	/* Maximum Microblock Length */
167 #define AT_XDMAC_MBR_UBC_NDE		(0x1 << 24)	/* Next Descriptor Enable */
168 #define AT_XDMAC_MBR_UBC_NSEN		(0x1 << 25)	/* Next Descriptor Source Update */
169 #define AT_XDMAC_MBR_UBC_NDEN		(0x1 << 26)	/* Next Descriptor Destination Update */
170 #define AT_XDMAC_MBR_UBC_NDV0		(0x0 << 27)	/* Next Descriptor View 0 */
171 #define AT_XDMAC_MBR_UBC_NDV1		(0x1 << 27)	/* Next Descriptor View 1 */
172 #define AT_XDMAC_MBR_UBC_NDV2		(0x2 << 27)	/* Next Descriptor View 2 */
173 #define AT_XDMAC_MBR_UBC_NDV3		(0x3 << 27)	/* Next Descriptor View 3 */
174 
175 #define AT_XDMAC_MAX_CHAN	0x20
176 #define AT_XDMAC_MAX_CSIZE	16	/* 16 data */
177 #define AT_XDMAC_MAX_DWIDTH	8	/* 64 bits */
178 #define AT_XDMAC_RESIDUE_MAX_RETRIES	5
179 
180 #define AT_XDMAC_DMA_BUSWIDTHS\
181 	(BIT(DMA_SLAVE_BUSWIDTH_UNDEFINED) |\
182 	BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |\
183 	BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |\
184 	BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) |\
185 	BIT(DMA_SLAVE_BUSWIDTH_8_BYTES))
186 
187 enum atc_status {
188 	AT_XDMAC_CHAN_IS_CYCLIC = 0,
189 	AT_XDMAC_CHAN_IS_PAUSED,
190 	AT_XDMAC_CHAN_IS_PAUSED_INTERNAL,
191 };
192 
193 struct at_xdmac_layout {
194 	/* Global Channel Read Suspend Register */
195 	u8				grs;
196 	/* Global Write Suspend Register */
197 	u8				gws;
198 	/* Global Channel Read Write Suspend Register */
199 	u8				grws;
200 	/* Global Channel Read Write Resume Register */
201 	u8				grwr;
202 	/* Global Channel Software Request Register */
203 	u8				gswr;
204 	/* Global channel Software Request Status Register */
205 	u8				gsws;
206 	/* Global Channel Software Flush Request Register */
207 	u8				gswf;
208 	/* Channel reg base */
209 	u8				chan_cc_reg_base;
210 	/* Source/Destination Interface must be specified or not */
211 	bool				sdif;
212 	/* AXI queue priority configuration supported */
213 	bool				axi_config;
214 };
215 
216 /* ----- Channels ----- */
217 struct at_xdmac_chan {
218 	struct dma_chan			chan;
219 	void __iomem			*ch_regs;
220 	u32				mask;		/* Channel Mask */
221 	u32				cfg;		/* Channel Configuration Register */
222 	u8				perid;		/* Peripheral ID */
223 	u8				perif;		/* Peripheral Interface */
224 	u8				memif;		/* Memory Interface */
225 	u32				save_cc;
226 	u32				save_cim;
227 	u32				save_cnda;
228 	u32				save_cndc;
229 	u32				irq_status;
230 	unsigned long			status;
231 	struct tasklet_struct		tasklet;
232 	struct dma_slave_config		sconfig;
233 
234 	spinlock_t			lock;
235 
236 	struct list_head		xfers_list;
237 	struct list_head		free_descs_list;
238 };
239 
240 
241 /* ----- Controller ----- */
242 struct at_xdmac {
243 	struct dma_device	dma;
244 	void __iomem		*regs;
245 	struct device		*dev;
246 	int			irq;
247 	struct clk		*clk;
248 	u32			save_gim;
249 	u32			save_gs;
250 	struct dma_pool		*at_xdmac_desc_pool;
251 	const struct at_xdmac_layout	*layout;
252 	struct at_xdmac_chan	chan[];
253 };
254 
255 
256 /* ----- Descriptors ----- */
257 
258 /* Linked List Descriptor */
259 struct at_xdmac_lld {
260 	u32 mbr_nda;	/* Next Descriptor Member */
261 	u32 mbr_ubc;	/* Microblock Control Member */
262 	u32 mbr_sa;	/* Source Address Member */
263 	u32 mbr_da;	/* Destination Address Member */
264 	u32 mbr_cfg;	/* Configuration Register */
265 	u32 mbr_bc;	/* Block Control Register */
266 	u32 mbr_ds;	/* Data Stride Register */
267 	u32 mbr_sus;	/* Source Microblock Stride Register */
268 	u32 mbr_dus;	/* Destination Microblock Stride Register */
269 };
270 
271 /* 64-bit alignment needed to update CNDA and CUBC registers in an atomic way. */
272 struct at_xdmac_desc {
273 	struct at_xdmac_lld		lld;
274 	enum dma_transfer_direction	direction;
275 	struct dma_async_tx_descriptor	tx_dma_desc;
276 	struct list_head		desc_node;
277 	/* Following members are only used by the first descriptor */
278 	bool				active_xfer;
279 	unsigned int			xfer_size;
280 	struct list_head		descs_list;
281 	struct list_head		xfer_node;
282 } __aligned(sizeof(u64));
283 
284 static const struct at_xdmac_layout at_xdmac_sama5d4_layout = {
285 	.grs = 0x28,
286 	.gws = 0x2C,
287 	.grws = 0x30,
288 	.grwr = 0x34,
289 	.gswr = 0x38,
290 	.gsws = 0x3C,
291 	.gswf = 0x40,
292 	.chan_cc_reg_base = 0x50,
293 	.sdif = true,
294 	.axi_config = false,
295 };
296 
297 static const struct at_xdmac_layout at_xdmac_sama7g5_layout = {
298 	.grs = 0x30,
299 	.gws = 0x38,
300 	.grws = 0x40,
301 	.grwr = 0x44,
302 	.gswr = 0x48,
303 	.gsws = 0x4C,
304 	.gswf = 0x50,
305 	.chan_cc_reg_base = 0x60,
306 	.sdif = false,
307 	.axi_config = true,
308 };
309 
at_xdmac_chan_reg_base(struct at_xdmac * atxdmac,unsigned int chan_nb)310 static inline void __iomem *at_xdmac_chan_reg_base(struct at_xdmac *atxdmac, unsigned int chan_nb)
311 {
312 	return atxdmac->regs + (atxdmac->layout->chan_cc_reg_base + chan_nb * 0x40);
313 }
314 
315 #define at_xdmac_read(atxdmac, reg) readl_relaxed((atxdmac)->regs + (reg))
316 #define at_xdmac_write(atxdmac, reg, value) \
317 	writel_relaxed((value), (atxdmac)->regs + (reg))
318 
319 #define at_xdmac_chan_read(atchan, reg) readl_relaxed((atchan)->ch_regs + (reg))
320 #define at_xdmac_chan_write(atchan, reg, value) writel_relaxed((value), (atchan)->ch_regs + (reg))
321 
to_at_xdmac_chan(struct dma_chan * dchan)322 static inline struct at_xdmac_chan *to_at_xdmac_chan(struct dma_chan *dchan)
323 {
324 	return container_of(dchan, struct at_xdmac_chan, chan);
325 }
326 
chan2dev(struct dma_chan * chan)327 static struct device *chan2dev(struct dma_chan *chan)
328 {
329 	return &chan->dev->device;
330 }
331 
to_at_xdmac(struct dma_device * ddev)332 static inline struct at_xdmac *to_at_xdmac(struct dma_device *ddev)
333 {
334 	return container_of(ddev, struct at_xdmac, dma);
335 }
336 
txd_to_at_desc(struct dma_async_tx_descriptor * txd)337 static inline struct at_xdmac_desc *txd_to_at_desc(struct dma_async_tx_descriptor *txd)
338 {
339 	return container_of(txd, struct at_xdmac_desc, tx_dma_desc);
340 }
341 
at_xdmac_chan_is_cyclic(struct at_xdmac_chan * atchan)342 static inline int at_xdmac_chan_is_cyclic(struct at_xdmac_chan *atchan)
343 {
344 	return test_bit(AT_XDMAC_CHAN_IS_CYCLIC, &atchan->status);
345 }
346 
at_xdmac_chan_is_paused(struct at_xdmac_chan * atchan)347 static inline int at_xdmac_chan_is_paused(struct at_xdmac_chan *atchan)
348 {
349 	return test_bit(AT_XDMAC_CHAN_IS_PAUSED, &atchan->status);
350 }
351 
at_xdmac_chan_is_paused_internal(struct at_xdmac_chan * atchan)352 static inline int at_xdmac_chan_is_paused_internal(struct at_xdmac_chan *atchan)
353 {
354 	return test_bit(AT_XDMAC_CHAN_IS_PAUSED_INTERNAL, &atchan->status);
355 }
356 
at_xdmac_chan_is_peripheral_xfer(u32 cfg)357 static inline bool at_xdmac_chan_is_peripheral_xfer(u32 cfg)
358 {
359 	return cfg & AT_XDMAC_CC_TYPE_PER_TRAN;
360 }
361 
at_xdmac_get_dwidth(u32 cfg)362 static inline u8 at_xdmac_get_dwidth(u32 cfg)
363 {
364 	return (cfg & AT_XDMAC_CC_DWIDTH_MASK) >> AT_XDMAC_CC_DWIDTH_OFFSET;
365 };
366 
367 static unsigned int init_nr_desc_per_channel = 64;
368 module_param(init_nr_desc_per_channel, uint, 0644);
369 MODULE_PARM_DESC(init_nr_desc_per_channel,
370 		 "initial descriptors per channel (default: 64)");
371 
372 
at_xdmac_runtime_suspend_descriptors(struct at_xdmac_chan * atchan)373 static void at_xdmac_runtime_suspend_descriptors(struct at_xdmac_chan *atchan)
374 {
375 	struct at_xdmac		*atxdmac = to_at_xdmac(atchan->chan.device);
376 	struct at_xdmac_desc	*desc, *_desc;
377 
378 	list_for_each_entry_safe(desc, _desc, &atchan->xfers_list, xfer_node) {
379 		if (!desc->active_xfer)
380 			continue;
381 
382 		pm_runtime_mark_last_busy(atxdmac->dev);
383 		pm_runtime_put_autosuspend(atxdmac->dev);
384 	}
385 }
386 
at_xdmac_runtime_resume_descriptors(struct at_xdmac_chan * atchan)387 static int at_xdmac_runtime_resume_descriptors(struct at_xdmac_chan *atchan)
388 {
389 	struct at_xdmac		*atxdmac = to_at_xdmac(atchan->chan.device);
390 	struct at_xdmac_desc	*desc, *_desc;
391 	int			ret;
392 
393 	list_for_each_entry_safe(desc, _desc, &atchan->xfers_list, xfer_node) {
394 		if (!desc->active_xfer)
395 			continue;
396 
397 		ret = pm_runtime_resume_and_get(atxdmac->dev);
398 		if (ret < 0)
399 			return ret;
400 	}
401 
402 	return 0;
403 }
404 
at_xdmac_chan_is_enabled(struct at_xdmac_chan * atchan)405 static bool at_xdmac_chan_is_enabled(struct at_xdmac_chan *atchan)
406 {
407 	struct at_xdmac		*atxdmac = to_at_xdmac(atchan->chan.device);
408 	int			ret;
409 
410 	ret = pm_runtime_resume_and_get(atxdmac->dev);
411 	if (ret < 0)
412 		return false;
413 
414 	ret = !!(at_xdmac_chan_read(atchan, AT_XDMAC_GS) & atchan->mask);
415 
416 	pm_runtime_mark_last_busy(atxdmac->dev);
417 	pm_runtime_put_autosuspend(atxdmac->dev);
418 
419 	return ret;
420 }
421 
at_xdmac_off(struct at_xdmac * atxdmac,bool suspend_descriptors)422 static void at_xdmac_off(struct at_xdmac *atxdmac, bool suspend_descriptors)
423 {
424 	struct dma_chan		*chan, *_chan;
425 	struct at_xdmac_chan	*atchan;
426 	int			ret;
427 
428 	ret = pm_runtime_resume_and_get(atxdmac->dev);
429 	if (ret < 0)
430 		return;
431 
432 	at_xdmac_write(atxdmac, AT_XDMAC_GD, -1L);
433 
434 	/* Wait that all chans are disabled. */
435 	while (at_xdmac_read(atxdmac, AT_XDMAC_GS))
436 		cpu_relax();
437 
438 	at_xdmac_write(atxdmac, AT_XDMAC_GID, -1L);
439 
440 	/* Decrement runtime PM ref counter for each active descriptor. */
441 	if (!list_empty(&atxdmac->dma.channels) && suspend_descriptors) {
442 		list_for_each_entry_safe(chan, _chan, &atxdmac->dma.channels,
443 					 device_node) {
444 			atchan = to_at_xdmac_chan(chan);
445 			at_xdmac_runtime_suspend_descriptors(atchan);
446 		}
447 	}
448 
449 	pm_runtime_mark_last_busy(atxdmac->dev);
450 	pm_runtime_put_autosuspend(atxdmac->dev);
451 }
452 
453 /* Call with lock hold. */
at_xdmac_start_xfer(struct at_xdmac_chan * atchan,struct at_xdmac_desc * first)454 static void at_xdmac_start_xfer(struct at_xdmac_chan *atchan,
455 				struct at_xdmac_desc *first)
456 {
457 	struct at_xdmac	*atxdmac = to_at_xdmac(atchan->chan.device);
458 	u32		reg;
459 	int		ret;
460 
461 	ret = pm_runtime_resume_and_get(atxdmac->dev);
462 	if (ret < 0)
463 		return;
464 
465 	dev_vdbg(chan2dev(&atchan->chan), "%s: desc 0x%p\n", __func__, first);
466 
467 	/* Set transfer as active to not try to start it again. */
468 	first->active_xfer = true;
469 
470 	/* Tell xdmac where to get the first descriptor. */
471 	reg = AT_XDMAC_CNDA_NDA(first->tx_dma_desc.phys);
472 	if (atxdmac->layout->sdif)
473 		reg |= AT_XDMAC_CNDA_NDAIF(atchan->memif);
474 
475 	at_xdmac_chan_write(atchan, AT_XDMAC_CNDA, reg);
476 
477 	/*
478 	 * When doing non cyclic transfer we need to use the next
479 	 * descriptor view 2 since some fields of the configuration register
480 	 * depend on transfer size and src/dest addresses.
481 	 */
482 	if (at_xdmac_chan_is_cyclic(atchan))
483 		reg = AT_XDMAC_CNDC_NDVIEW_NDV1;
484 	else if ((first->lld.mbr_ubc &
485 		  AT_XDMAC_CNDC_NDVIEW_MASK) == AT_XDMAC_MBR_UBC_NDV3)
486 		reg = AT_XDMAC_CNDC_NDVIEW_NDV3;
487 	else
488 		reg = AT_XDMAC_CNDC_NDVIEW_NDV2;
489 	/*
490 	 * Even if the register will be updated from the configuration in the
491 	 * descriptor when using view 2 or higher, the PROT bit won't be set
492 	 * properly. This bit can be modified only by using the channel
493 	 * configuration register.
494 	 */
495 	at_xdmac_chan_write(atchan, AT_XDMAC_CC, first->lld.mbr_cfg);
496 
497 	reg |= AT_XDMAC_CNDC_NDDUP
498 	       | AT_XDMAC_CNDC_NDSUP
499 	       | AT_XDMAC_CNDC_NDE;
500 	at_xdmac_chan_write(atchan, AT_XDMAC_CNDC, reg);
501 
502 	dev_vdbg(chan2dev(&atchan->chan),
503 		 "%s: CC=0x%08x CNDA=0x%08x, CNDC=0x%08x, CSA=0x%08x, CDA=0x%08x, CUBC=0x%08x\n",
504 		 __func__, at_xdmac_chan_read(atchan, AT_XDMAC_CC),
505 		 at_xdmac_chan_read(atchan, AT_XDMAC_CNDA),
506 		 at_xdmac_chan_read(atchan, AT_XDMAC_CNDC),
507 		 at_xdmac_chan_read(atchan, AT_XDMAC_CSA),
508 		 at_xdmac_chan_read(atchan, AT_XDMAC_CDA),
509 		 at_xdmac_chan_read(atchan, AT_XDMAC_CUBC));
510 
511 	at_xdmac_chan_write(atchan, AT_XDMAC_CID, 0xffffffff);
512 	reg = AT_XDMAC_CIE_RBEIE | AT_XDMAC_CIE_WBEIE;
513 	/*
514 	 * Request Overflow Error is only for peripheral synchronized transfers
515 	 */
516 	if (at_xdmac_chan_is_peripheral_xfer(first->lld.mbr_cfg))
517 		reg |= AT_XDMAC_CIE_ROIE;
518 
519 	/*
520 	 * There is no end of list when doing cyclic dma, we need to get
521 	 * an interrupt after each periods.
522 	 */
523 	if (at_xdmac_chan_is_cyclic(atchan))
524 		at_xdmac_chan_write(atchan, AT_XDMAC_CIE,
525 				    reg | AT_XDMAC_CIE_BIE);
526 	else
527 		at_xdmac_chan_write(atchan, AT_XDMAC_CIE,
528 				    reg | AT_XDMAC_CIE_LIE);
529 	at_xdmac_write(atxdmac, AT_XDMAC_GIE, atchan->mask);
530 	dev_vdbg(chan2dev(&atchan->chan),
531 		 "%s: enable channel (0x%08x)\n", __func__, atchan->mask);
532 	wmb();
533 	at_xdmac_write(atxdmac, AT_XDMAC_GE, atchan->mask);
534 
535 	dev_vdbg(chan2dev(&atchan->chan),
536 		 "%s: CC=0x%08x CNDA=0x%08x, CNDC=0x%08x, CSA=0x%08x, CDA=0x%08x, CUBC=0x%08x\n",
537 		 __func__, at_xdmac_chan_read(atchan, AT_XDMAC_CC),
538 		 at_xdmac_chan_read(atchan, AT_XDMAC_CNDA),
539 		 at_xdmac_chan_read(atchan, AT_XDMAC_CNDC),
540 		 at_xdmac_chan_read(atchan, AT_XDMAC_CSA),
541 		 at_xdmac_chan_read(atchan, AT_XDMAC_CDA),
542 		 at_xdmac_chan_read(atchan, AT_XDMAC_CUBC));
543 }
544 
at_xdmac_tx_submit(struct dma_async_tx_descriptor * tx)545 static dma_cookie_t at_xdmac_tx_submit(struct dma_async_tx_descriptor *tx)
546 {
547 	struct at_xdmac_desc	*desc = txd_to_at_desc(tx);
548 	struct at_xdmac_chan	*atchan = to_at_xdmac_chan(tx->chan);
549 	dma_cookie_t		cookie;
550 	unsigned long		irqflags;
551 
552 	spin_lock_irqsave(&atchan->lock, irqflags);
553 	cookie = dma_cookie_assign(tx);
554 
555 	list_add_tail(&desc->xfer_node, &atchan->xfers_list);
556 	spin_unlock_irqrestore(&atchan->lock, irqflags);
557 
558 	dev_vdbg(chan2dev(tx->chan), "%s: atchan 0x%p, add desc 0x%p to xfers_list\n",
559 		 __func__, atchan, desc);
560 
561 	return cookie;
562 }
563 
at_xdmac_alloc_desc(struct dma_chan * chan,gfp_t gfp_flags)564 static struct at_xdmac_desc *at_xdmac_alloc_desc(struct dma_chan *chan,
565 						 gfp_t gfp_flags)
566 {
567 	struct at_xdmac_desc	*desc;
568 	struct at_xdmac		*atxdmac = to_at_xdmac(chan->device);
569 	dma_addr_t		phys;
570 
571 	desc = dma_pool_zalloc(atxdmac->at_xdmac_desc_pool, gfp_flags, &phys);
572 	if (desc) {
573 		INIT_LIST_HEAD(&desc->descs_list);
574 		dma_async_tx_descriptor_init(&desc->tx_dma_desc, chan);
575 		desc->tx_dma_desc.tx_submit = at_xdmac_tx_submit;
576 		desc->tx_dma_desc.phys = phys;
577 	}
578 
579 	return desc;
580 }
581 
at_xdmac_init_used_desc(struct at_xdmac_desc * desc)582 static void at_xdmac_init_used_desc(struct at_xdmac_desc *desc)
583 {
584 	memset(&desc->lld, 0, sizeof(desc->lld));
585 	INIT_LIST_HEAD(&desc->descs_list);
586 	desc->direction = DMA_TRANS_NONE;
587 	desc->xfer_size = 0;
588 	desc->active_xfer = false;
589 }
590 
591 /* Call must be protected by lock. */
at_xdmac_get_desc(struct at_xdmac_chan * atchan)592 static struct at_xdmac_desc *at_xdmac_get_desc(struct at_xdmac_chan *atchan)
593 {
594 	struct at_xdmac_desc *desc;
595 
596 	if (list_empty(&atchan->free_descs_list)) {
597 		desc = at_xdmac_alloc_desc(&atchan->chan, GFP_NOWAIT);
598 	} else {
599 		desc = list_first_entry(&atchan->free_descs_list,
600 					struct at_xdmac_desc, desc_node);
601 		list_del(&desc->desc_node);
602 		at_xdmac_init_used_desc(desc);
603 	}
604 
605 	return desc;
606 }
607 
at_xdmac_queue_desc(struct dma_chan * chan,struct at_xdmac_desc * prev,struct at_xdmac_desc * desc)608 static void at_xdmac_queue_desc(struct dma_chan *chan,
609 				struct at_xdmac_desc *prev,
610 				struct at_xdmac_desc *desc)
611 {
612 	if (!prev || !desc)
613 		return;
614 
615 	prev->lld.mbr_nda = desc->tx_dma_desc.phys;
616 	prev->lld.mbr_ubc |= AT_XDMAC_MBR_UBC_NDE;
617 
618 	dev_dbg(chan2dev(chan),	"%s: chain lld: prev=0x%p, mbr_nda=%pad\n",
619 		__func__, prev, &prev->lld.mbr_nda);
620 }
621 
at_xdmac_increment_block_count(struct dma_chan * chan,struct at_xdmac_desc * desc)622 static inline void at_xdmac_increment_block_count(struct dma_chan *chan,
623 						  struct at_xdmac_desc *desc)
624 {
625 	if (!desc)
626 		return;
627 
628 	desc->lld.mbr_bc++;
629 
630 	dev_dbg(chan2dev(chan),
631 		"%s: incrementing the block count of the desc 0x%p\n",
632 		__func__, desc);
633 }
634 
at_xdmac_xlate(struct of_phandle_args * dma_spec,struct of_dma * of_dma)635 static struct dma_chan *at_xdmac_xlate(struct of_phandle_args *dma_spec,
636 				       struct of_dma *of_dma)
637 {
638 	struct at_xdmac		*atxdmac = of_dma->of_dma_data;
639 	struct at_xdmac_chan	*atchan;
640 	struct dma_chan		*chan;
641 	struct device		*dev = atxdmac->dma.dev;
642 
643 	if (dma_spec->args_count != 1) {
644 		dev_err(dev, "dma phandler args: bad number of args\n");
645 		return NULL;
646 	}
647 
648 	chan = dma_get_any_slave_channel(&atxdmac->dma);
649 	if (!chan) {
650 		dev_err(dev, "can't get a dma channel\n");
651 		return NULL;
652 	}
653 
654 	atchan = to_at_xdmac_chan(chan);
655 	atchan->memif = AT91_XDMAC_DT_GET_MEM_IF(dma_spec->args[0]);
656 	atchan->perif = AT91_XDMAC_DT_GET_PER_IF(dma_spec->args[0]);
657 	atchan->perid = AT91_XDMAC_DT_GET_PERID(dma_spec->args[0]);
658 	dev_dbg(dev, "chan dt cfg: memif=%u perif=%u perid=%u\n",
659 		 atchan->memif, atchan->perif, atchan->perid);
660 
661 	return chan;
662 }
663 
at_xdmac_compute_chan_conf(struct dma_chan * chan,enum dma_transfer_direction direction)664 static int at_xdmac_compute_chan_conf(struct dma_chan *chan,
665 				      enum dma_transfer_direction direction)
666 {
667 	struct at_xdmac_chan	*atchan = to_at_xdmac_chan(chan);
668 	struct at_xdmac		*atxdmac = to_at_xdmac(atchan->chan.device);
669 	int			csize, dwidth;
670 
671 	if (direction == DMA_DEV_TO_MEM) {
672 		atchan->cfg =
673 			AT91_XDMAC_DT_PERID(atchan->perid)
674 			| AT_XDMAC_CC_DAM_INCREMENTED_AM
675 			| AT_XDMAC_CC_SAM_FIXED_AM
676 			| AT_XDMAC_CC_SWREQ_HWR_CONNECTED
677 			| AT_XDMAC_CC_DSYNC_PER2MEM
678 			| AT_XDMAC_CC_MBSIZE_SIXTEEN
679 			| AT_XDMAC_CC_TYPE_PER_TRAN;
680 		if (atxdmac->layout->sdif)
681 			atchan->cfg |= AT_XDMAC_CC_DIF(atchan->memif) |
682 				       AT_XDMAC_CC_SIF(atchan->perif);
683 
684 		csize = ffs(atchan->sconfig.src_maxburst) - 1;
685 		if (csize < 0) {
686 			dev_err(chan2dev(chan), "invalid src maxburst value\n");
687 			return -EINVAL;
688 		}
689 		atchan->cfg |= AT_XDMAC_CC_CSIZE(csize);
690 		dwidth = ffs(atchan->sconfig.src_addr_width) - 1;
691 		if (dwidth < 0) {
692 			dev_err(chan2dev(chan), "invalid src addr width value\n");
693 			return -EINVAL;
694 		}
695 		atchan->cfg |= AT_XDMAC_CC_DWIDTH(dwidth);
696 	} else if (direction == DMA_MEM_TO_DEV) {
697 		atchan->cfg =
698 			AT91_XDMAC_DT_PERID(atchan->perid)
699 			| AT_XDMAC_CC_DAM_FIXED_AM
700 			| AT_XDMAC_CC_SAM_INCREMENTED_AM
701 			| AT_XDMAC_CC_SWREQ_HWR_CONNECTED
702 			| AT_XDMAC_CC_DSYNC_MEM2PER
703 			| AT_XDMAC_CC_MBSIZE_SIXTEEN
704 			| AT_XDMAC_CC_TYPE_PER_TRAN;
705 		if (atxdmac->layout->sdif)
706 			atchan->cfg |= AT_XDMAC_CC_DIF(atchan->perif) |
707 				       AT_XDMAC_CC_SIF(atchan->memif);
708 
709 		csize = ffs(atchan->sconfig.dst_maxburst) - 1;
710 		if (csize < 0) {
711 			dev_err(chan2dev(chan), "invalid src maxburst value\n");
712 			return -EINVAL;
713 		}
714 		atchan->cfg |= AT_XDMAC_CC_CSIZE(csize);
715 		dwidth = ffs(atchan->sconfig.dst_addr_width) - 1;
716 		if (dwidth < 0) {
717 			dev_err(chan2dev(chan), "invalid dst addr width value\n");
718 			return -EINVAL;
719 		}
720 		atchan->cfg |= AT_XDMAC_CC_DWIDTH(dwidth);
721 	}
722 
723 	dev_dbg(chan2dev(chan),	"%s: cfg=0x%08x\n", __func__, atchan->cfg);
724 
725 	return 0;
726 }
727 
728 /*
729  * Only check that maxburst and addr width values are supported by
730  * the controller but not that the configuration is good to perform the
731  * transfer since we don't know the direction at this stage.
732  */
at_xdmac_check_slave_config(struct dma_slave_config * sconfig)733 static int at_xdmac_check_slave_config(struct dma_slave_config *sconfig)
734 {
735 	if ((sconfig->src_maxburst > AT_XDMAC_MAX_CSIZE)
736 	    || (sconfig->dst_maxburst > AT_XDMAC_MAX_CSIZE))
737 		return -EINVAL;
738 
739 	if ((sconfig->src_addr_width > AT_XDMAC_MAX_DWIDTH)
740 	    || (sconfig->dst_addr_width > AT_XDMAC_MAX_DWIDTH))
741 		return -EINVAL;
742 
743 	return 0;
744 }
745 
at_xdmac_set_slave_config(struct dma_chan * chan,struct dma_slave_config * sconfig)746 static int at_xdmac_set_slave_config(struct dma_chan *chan,
747 				      struct dma_slave_config *sconfig)
748 {
749 	struct at_xdmac_chan	*atchan = to_at_xdmac_chan(chan);
750 
751 	if (at_xdmac_check_slave_config(sconfig)) {
752 		dev_err(chan2dev(chan), "invalid slave configuration\n");
753 		return -EINVAL;
754 	}
755 
756 	memcpy(&atchan->sconfig, sconfig, sizeof(atchan->sconfig));
757 
758 	return 0;
759 }
760 
761 static struct dma_async_tx_descriptor *
at_xdmac_prep_slave_sg(struct dma_chan * chan,struct scatterlist * sgl,unsigned int sg_len,enum dma_transfer_direction direction,unsigned long flags,void * context)762 at_xdmac_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
763 		       unsigned int sg_len, enum dma_transfer_direction direction,
764 		       unsigned long flags, void *context)
765 {
766 	struct at_xdmac_chan		*atchan = to_at_xdmac_chan(chan);
767 	struct at_xdmac_desc		*first = NULL, *prev = NULL;
768 	struct scatterlist		*sg;
769 	int				i;
770 	unsigned int			xfer_size = 0;
771 	unsigned long			irqflags;
772 	struct dma_async_tx_descriptor	*ret = NULL;
773 
774 	if (!sgl)
775 		return NULL;
776 
777 	if (!is_slave_direction(direction)) {
778 		dev_err(chan2dev(chan), "invalid DMA direction\n");
779 		return NULL;
780 	}
781 
782 	dev_dbg(chan2dev(chan), "%s: sg_len=%d, dir=%s, flags=0x%lx\n",
783 		 __func__, sg_len,
784 		 direction == DMA_MEM_TO_DEV ? "to device" : "from device",
785 		 flags);
786 
787 	/* Protect dma_sconfig field that can be modified by set_slave_conf. */
788 	spin_lock_irqsave(&atchan->lock, irqflags);
789 
790 	if (at_xdmac_compute_chan_conf(chan, direction))
791 		goto spin_unlock;
792 
793 	/* Prepare descriptors. */
794 	for_each_sg(sgl, sg, sg_len, i) {
795 		struct at_xdmac_desc	*desc = NULL;
796 		u32			len, mem, dwidth, fixed_dwidth;
797 
798 		len = sg_dma_len(sg);
799 		mem = sg_dma_address(sg);
800 		if (unlikely(!len)) {
801 			dev_err(chan2dev(chan), "sg data length is zero\n");
802 			goto spin_unlock;
803 		}
804 		dev_dbg(chan2dev(chan), "%s: * sg%d len=%u, mem=0x%08x\n",
805 			 __func__, i, len, mem);
806 
807 		desc = at_xdmac_get_desc(atchan);
808 		if (!desc) {
809 			dev_err(chan2dev(chan), "can't get descriptor\n");
810 			if (first)
811 				list_splice_tail_init(&first->descs_list,
812 						      &atchan->free_descs_list);
813 			goto spin_unlock;
814 		}
815 
816 		/* Linked list descriptor setup. */
817 		if (direction == DMA_DEV_TO_MEM) {
818 			desc->lld.mbr_sa = atchan->sconfig.src_addr;
819 			desc->lld.mbr_da = mem;
820 		} else {
821 			desc->lld.mbr_sa = mem;
822 			desc->lld.mbr_da = atchan->sconfig.dst_addr;
823 		}
824 		dwidth = at_xdmac_get_dwidth(atchan->cfg);
825 		fixed_dwidth = IS_ALIGNED(len, 1 << dwidth)
826 			       ? dwidth
827 			       : AT_XDMAC_CC_DWIDTH_BYTE;
828 		desc->lld.mbr_ubc = AT_XDMAC_MBR_UBC_NDV2			/* next descriptor view */
829 			| AT_XDMAC_MBR_UBC_NDEN					/* next descriptor dst parameter update */
830 			| AT_XDMAC_MBR_UBC_NSEN					/* next descriptor src parameter update */
831 			| (len >> fixed_dwidth);				/* microblock length */
832 		desc->lld.mbr_cfg = (atchan->cfg & ~AT_XDMAC_CC_DWIDTH_MASK) |
833 				    AT_XDMAC_CC_DWIDTH(fixed_dwidth);
834 		dev_dbg(chan2dev(chan),
835 			 "%s: lld: mbr_sa=%pad, mbr_da=%pad, mbr_ubc=0x%08x\n",
836 			 __func__, &desc->lld.mbr_sa, &desc->lld.mbr_da, desc->lld.mbr_ubc);
837 
838 		/* Chain lld. */
839 		if (prev)
840 			at_xdmac_queue_desc(chan, prev, desc);
841 
842 		prev = desc;
843 		if (!first)
844 			first = desc;
845 
846 		dev_dbg(chan2dev(chan), "%s: add desc 0x%p to descs_list 0x%p\n",
847 			 __func__, desc, first);
848 		list_add_tail(&desc->desc_node, &first->descs_list);
849 		xfer_size += len;
850 	}
851 
852 
853 	first->tx_dma_desc.flags = flags;
854 	first->xfer_size = xfer_size;
855 	first->direction = direction;
856 	ret = &first->tx_dma_desc;
857 
858 spin_unlock:
859 	spin_unlock_irqrestore(&atchan->lock, irqflags);
860 	return ret;
861 }
862 
863 static struct dma_async_tx_descriptor *
at_xdmac_prep_dma_cyclic(struct dma_chan * chan,dma_addr_t buf_addr,size_t buf_len,size_t period_len,enum dma_transfer_direction direction,unsigned long flags)864 at_xdmac_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t buf_addr,
865 			 size_t buf_len, size_t period_len,
866 			 enum dma_transfer_direction direction,
867 			 unsigned long flags)
868 {
869 	struct at_xdmac_chan	*atchan = to_at_xdmac_chan(chan);
870 	struct at_xdmac_desc	*first = NULL, *prev = NULL;
871 	unsigned int		periods = buf_len / period_len;
872 	int			i;
873 	unsigned long		irqflags;
874 
875 	dev_dbg(chan2dev(chan), "%s: buf_addr=%pad, buf_len=%zd, period_len=%zd, dir=%s, flags=0x%lx\n",
876 		__func__, &buf_addr, buf_len, period_len,
877 		direction == DMA_MEM_TO_DEV ? "mem2per" : "per2mem", flags);
878 
879 	if (!is_slave_direction(direction)) {
880 		dev_err(chan2dev(chan), "invalid DMA direction\n");
881 		return NULL;
882 	}
883 
884 	if (test_and_set_bit(AT_XDMAC_CHAN_IS_CYCLIC, &atchan->status)) {
885 		dev_err(chan2dev(chan), "channel currently used\n");
886 		return NULL;
887 	}
888 
889 	if (at_xdmac_compute_chan_conf(chan, direction))
890 		return NULL;
891 
892 	for (i = 0; i < periods; i++) {
893 		struct at_xdmac_desc	*desc = NULL;
894 
895 		spin_lock_irqsave(&atchan->lock, irqflags);
896 		desc = at_xdmac_get_desc(atchan);
897 		if (!desc) {
898 			dev_err(chan2dev(chan), "can't get descriptor\n");
899 			if (first)
900 				list_splice_tail_init(&first->descs_list,
901 						      &atchan->free_descs_list);
902 			spin_unlock_irqrestore(&atchan->lock, irqflags);
903 			return NULL;
904 		}
905 		spin_unlock_irqrestore(&atchan->lock, irqflags);
906 		dev_dbg(chan2dev(chan),
907 			"%s: desc=0x%p, tx_dma_desc.phys=%pad\n",
908 			__func__, desc, &desc->tx_dma_desc.phys);
909 
910 		if (direction == DMA_DEV_TO_MEM) {
911 			desc->lld.mbr_sa = atchan->sconfig.src_addr;
912 			desc->lld.mbr_da = buf_addr + i * period_len;
913 		} else {
914 			desc->lld.mbr_sa = buf_addr + i * period_len;
915 			desc->lld.mbr_da = atchan->sconfig.dst_addr;
916 		}
917 		desc->lld.mbr_cfg = atchan->cfg;
918 		desc->lld.mbr_ubc = AT_XDMAC_MBR_UBC_NDV1
919 			| AT_XDMAC_MBR_UBC_NDEN
920 			| AT_XDMAC_MBR_UBC_NSEN
921 			| period_len >> at_xdmac_get_dwidth(desc->lld.mbr_cfg);
922 
923 		dev_dbg(chan2dev(chan),
924 			 "%s: lld: mbr_sa=%pad, mbr_da=%pad, mbr_ubc=0x%08x\n",
925 			 __func__, &desc->lld.mbr_sa, &desc->lld.mbr_da, desc->lld.mbr_ubc);
926 
927 		/* Chain lld. */
928 		if (prev)
929 			at_xdmac_queue_desc(chan, prev, desc);
930 
931 		prev = desc;
932 		if (!first)
933 			first = desc;
934 
935 		dev_dbg(chan2dev(chan), "%s: add desc 0x%p to descs_list 0x%p\n",
936 			 __func__, desc, first);
937 		list_add_tail(&desc->desc_node, &first->descs_list);
938 	}
939 
940 	at_xdmac_queue_desc(chan, prev, first);
941 	first->tx_dma_desc.flags = flags;
942 	first->xfer_size = buf_len;
943 	first->direction = direction;
944 
945 	return &first->tx_dma_desc;
946 }
947 
at_xdmac_align_width(struct dma_chan * chan,dma_addr_t addr)948 static inline u32 at_xdmac_align_width(struct dma_chan *chan, dma_addr_t addr)
949 {
950 	u32 width;
951 
952 	/*
953 	 * Check address alignment to select the greater data width we
954 	 * can use.
955 	 *
956 	 * Some XDMAC implementations don't provide dword transfer, in
957 	 * this case selecting dword has the same behavior as
958 	 * selecting word transfers.
959 	 */
960 	if (!(addr & 7)) {
961 		width = AT_XDMAC_CC_DWIDTH_DWORD;
962 		dev_dbg(chan2dev(chan), "%s: dwidth: double word\n", __func__);
963 	} else if (!(addr & 3)) {
964 		width = AT_XDMAC_CC_DWIDTH_WORD;
965 		dev_dbg(chan2dev(chan), "%s: dwidth: word\n", __func__);
966 	} else if (!(addr & 1)) {
967 		width = AT_XDMAC_CC_DWIDTH_HALFWORD;
968 		dev_dbg(chan2dev(chan), "%s: dwidth: half word\n", __func__);
969 	} else {
970 		width = AT_XDMAC_CC_DWIDTH_BYTE;
971 		dev_dbg(chan2dev(chan), "%s: dwidth: byte\n", __func__);
972 	}
973 
974 	return width;
975 }
976 
977 static struct at_xdmac_desc *
at_xdmac_interleaved_queue_desc(struct dma_chan * chan,struct at_xdmac_chan * atchan,struct at_xdmac_desc * prev,dma_addr_t src,dma_addr_t dst,struct dma_interleaved_template * xt,struct data_chunk * chunk)978 at_xdmac_interleaved_queue_desc(struct dma_chan *chan,
979 				struct at_xdmac_chan *atchan,
980 				struct at_xdmac_desc *prev,
981 				dma_addr_t src, dma_addr_t dst,
982 				struct dma_interleaved_template *xt,
983 				struct data_chunk *chunk)
984 {
985 	struct at_xdmac_desc	*desc;
986 	u32			dwidth;
987 	unsigned long		flags;
988 	size_t			ublen;
989 	/*
990 	 * WARNING: The channel configuration is set here since there is no
991 	 * dmaengine_slave_config call in this case. Moreover we don't know the
992 	 * direction, it involves we can't dynamically set the source and dest
993 	 * interface so we have to use the same one. Only interface 0 allows EBI
994 	 * access. Hopefully we can access DDR through both ports (at least on
995 	 * SAMA5D4x), so we can use the same interface for source and dest,
996 	 * that solves the fact we don't know the direction.
997 	 * ERRATA: Even if useless for memory transfers, the PERID has to not
998 	 * match the one of another channel. If not, it could lead to spurious
999 	 * flag status.
1000 	 * For SAMA7G5x case, the SIF and DIF fields are no longer used.
1001 	 * Thus, no need to have the SIF/DIF interfaces here.
1002 	 * For SAMA5D4x and SAMA5D2x the SIF and DIF are already configured as
1003 	 * zero.
1004 	 */
1005 	u32			chan_cc = AT_XDMAC_CC_PERID(0x7f)
1006 					| AT_XDMAC_CC_MBSIZE_SIXTEEN
1007 					| AT_XDMAC_CC_TYPE_MEM_TRAN;
1008 
1009 	dwidth = at_xdmac_align_width(chan, src | dst | chunk->size);
1010 	if (chunk->size >= (AT_XDMAC_MBR_UBC_UBLEN_MAX << dwidth)) {
1011 		dev_dbg(chan2dev(chan),
1012 			"%s: chunk too big (%zu, max size %lu)...\n",
1013 			__func__, chunk->size,
1014 			AT_XDMAC_MBR_UBC_UBLEN_MAX << dwidth);
1015 		return NULL;
1016 	}
1017 
1018 	if (prev)
1019 		dev_dbg(chan2dev(chan),
1020 			"Adding items at the end of desc 0x%p\n", prev);
1021 
1022 	if (xt->src_inc) {
1023 		if (xt->src_sgl)
1024 			chan_cc |=  AT_XDMAC_CC_SAM_UBS_AM;
1025 		else
1026 			chan_cc |=  AT_XDMAC_CC_SAM_INCREMENTED_AM;
1027 	}
1028 
1029 	if (xt->dst_inc) {
1030 		if (xt->dst_sgl)
1031 			chan_cc |=  AT_XDMAC_CC_DAM_UBS_AM;
1032 		else
1033 			chan_cc |=  AT_XDMAC_CC_DAM_INCREMENTED_AM;
1034 	}
1035 
1036 	spin_lock_irqsave(&atchan->lock, flags);
1037 	desc = at_xdmac_get_desc(atchan);
1038 	spin_unlock_irqrestore(&atchan->lock, flags);
1039 	if (!desc) {
1040 		dev_err(chan2dev(chan), "can't get descriptor\n");
1041 		return NULL;
1042 	}
1043 
1044 	chan_cc |= AT_XDMAC_CC_DWIDTH(dwidth);
1045 
1046 	ublen = chunk->size >> dwidth;
1047 
1048 	desc->lld.mbr_sa = src;
1049 	desc->lld.mbr_da = dst;
1050 	desc->lld.mbr_sus = dmaengine_get_src_icg(xt, chunk);
1051 	desc->lld.mbr_dus = dmaengine_get_dst_icg(xt, chunk);
1052 
1053 	desc->lld.mbr_ubc = AT_XDMAC_MBR_UBC_NDV3
1054 		| AT_XDMAC_MBR_UBC_NDEN
1055 		| AT_XDMAC_MBR_UBC_NSEN
1056 		| ublen;
1057 	desc->lld.mbr_cfg = chan_cc;
1058 
1059 	dev_dbg(chan2dev(chan),
1060 		"%s: lld: mbr_sa=%pad, mbr_da=%pad, mbr_ubc=0x%08x, mbr_cfg=0x%08x\n",
1061 		__func__, &desc->lld.mbr_sa, &desc->lld.mbr_da,
1062 		desc->lld.mbr_ubc, desc->lld.mbr_cfg);
1063 
1064 	/* Chain lld. */
1065 	if (prev)
1066 		at_xdmac_queue_desc(chan, prev, desc);
1067 
1068 	return desc;
1069 }
1070 
1071 static struct dma_async_tx_descriptor *
at_xdmac_prep_interleaved(struct dma_chan * chan,struct dma_interleaved_template * xt,unsigned long flags)1072 at_xdmac_prep_interleaved(struct dma_chan *chan,
1073 			  struct dma_interleaved_template *xt,
1074 			  unsigned long flags)
1075 {
1076 	struct at_xdmac_chan	*atchan = to_at_xdmac_chan(chan);
1077 	struct at_xdmac_desc	*prev = NULL, *first = NULL;
1078 	dma_addr_t		dst_addr, src_addr;
1079 	size_t			src_skip = 0, dst_skip = 0, len = 0;
1080 	struct data_chunk	*chunk;
1081 	int			i;
1082 
1083 	if (!xt || !xt->numf || (xt->dir != DMA_MEM_TO_MEM))
1084 		return NULL;
1085 
1086 	/*
1087 	 * TODO: Handle the case where we have to repeat a chain of
1088 	 * descriptors...
1089 	 */
1090 	if ((xt->numf > 1) && (xt->frame_size > 1))
1091 		return NULL;
1092 
1093 	dev_dbg(chan2dev(chan), "%s: src=%pad, dest=%pad, numf=%zu, frame_size=%zu, flags=0x%lx\n",
1094 		__func__, &xt->src_start, &xt->dst_start,	xt->numf,
1095 		xt->frame_size, flags);
1096 
1097 	src_addr = xt->src_start;
1098 	dst_addr = xt->dst_start;
1099 
1100 	if (xt->numf > 1) {
1101 		first = at_xdmac_interleaved_queue_desc(chan, atchan,
1102 							NULL,
1103 							src_addr, dst_addr,
1104 							xt, xt->sgl);
1105 		if (!first)
1106 			return NULL;
1107 
1108 		/* Length of the block is (BLEN+1) microblocks. */
1109 		for (i = 0; i < xt->numf - 1; i++)
1110 			at_xdmac_increment_block_count(chan, first);
1111 
1112 		dev_dbg(chan2dev(chan), "%s: add desc 0x%p to descs_list 0x%p\n",
1113 			__func__, first, first);
1114 		list_add_tail(&first->desc_node, &first->descs_list);
1115 	} else {
1116 		for (i = 0; i < xt->frame_size; i++) {
1117 			size_t src_icg = 0, dst_icg = 0;
1118 			struct at_xdmac_desc *desc;
1119 
1120 			chunk = xt->sgl + i;
1121 
1122 			dst_icg = dmaengine_get_dst_icg(xt, chunk);
1123 			src_icg = dmaengine_get_src_icg(xt, chunk);
1124 
1125 			src_skip = chunk->size + src_icg;
1126 			dst_skip = chunk->size + dst_icg;
1127 
1128 			dev_dbg(chan2dev(chan),
1129 				"%s: chunk size=%zu, src icg=%zu, dst icg=%zu\n",
1130 				__func__, chunk->size, src_icg, dst_icg);
1131 
1132 			desc = at_xdmac_interleaved_queue_desc(chan, atchan,
1133 							       prev,
1134 							       src_addr, dst_addr,
1135 							       xt, chunk);
1136 			if (!desc) {
1137 				if (first)
1138 					list_splice_tail_init(&first->descs_list,
1139 							      &atchan->free_descs_list);
1140 				return NULL;
1141 			}
1142 
1143 			if (!first)
1144 				first = desc;
1145 
1146 			dev_dbg(chan2dev(chan), "%s: add desc 0x%p to descs_list 0x%p\n",
1147 				__func__, desc, first);
1148 			list_add_tail(&desc->desc_node, &first->descs_list);
1149 
1150 			if (xt->src_sgl)
1151 				src_addr += src_skip;
1152 
1153 			if (xt->dst_sgl)
1154 				dst_addr += dst_skip;
1155 
1156 			len += chunk->size;
1157 			prev = desc;
1158 		}
1159 	}
1160 
1161 	first->tx_dma_desc.cookie = -EBUSY;
1162 	first->tx_dma_desc.flags = flags;
1163 	first->xfer_size = len;
1164 
1165 	return &first->tx_dma_desc;
1166 }
1167 
1168 static struct dma_async_tx_descriptor *
at_xdmac_prep_dma_memcpy(struct dma_chan * chan,dma_addr_t dest,dma_addr_t src,size_t len,unsigned long flags)1169 at_xdmac_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
1170 			 size_t len, unsigned long flags)
1171 {
1172 	struct at_xdmac_chan	*atchan = to_at_xdmac_chan(chan);
1173 	struct at_xdmac_desc	*first = NULL, *prev = NULL;
1174 	size_t			remaining_size = len, xfer_size = 0, ublen;
1175 	dma_addr_t		src_addr = src, dst_addr = dest;
1176 	u32			dwidth;
1177 	/*
1178 	 * WARNING: We don't know the direction, it involves we can't
1179 	 * dynamically set the source and dest interface so we have to use the
1180 	 * same one. Only interface 0 allows EBI access. Hopefully we can
1181 	 * access DDR through both ports (at least on SAMA5D4x), so we can use
1182 	 * the same interface for source and dest, that solves the fact we
1183 	 * don't know the direction.
1184 	 * ERRATA: Even if useless for memory transfers, the PERID has to not
1185 	 * match the one of another channel. If not, it could lead to spurious
1186 	 * flag status.
1187 	 * For SAMA7G5x case, the SIF and DIF fields are no longer used.
1188 	 * Thus, no need to have the SIF/DIF interfaces here.
1189 	 * For SAMA5D4x and SAMA5D2x the SIF and DIF are already configured as
1190 	 * zero.
1191 	 */
1192 	u32			chan_cc = AT_XDMAC_CC_PERID(0x7f)
1193 					| AT_XDMAC_CC_DAM_INCREMENTED_AM
1194 					| AT_XDMAC_CC_SAM_INCREMENTED_AM
1195 					| AT_XDMAC_CC_MBSIZE_SIXTEEN
1196 					| AT_XDMAC_CC_TYPE_MEM_TRAN;
1197 	unsigned long		irqflags;
1198 
1199 	dev_dbg(chan2dev(chan), "%s: src=%pad, dest=%pad, len=%zd, flags=0x%lx\n",
1200 		__func__, &src, &dest, len, flags);
1201 
1202 	if (unlikely(!len))
1203 		return NULL;
1204 
1205 	dwidth = at_xdmac_align_width(chan, src_addr | dst_addr);
1206 
1207 	/* Prepare descriptors. */
1208 	while (remaining_size) {
1209 		struct at_xdmac_desc	*desc = NULL;
1210 
1211 		dev_dbg(chan2dev(chan), "%s: remaining_size=%zu\n", __func__, remaining_size);
1212 
1213 		spin_lock_irqsave(&atchan->lock, irqflags);
1214 		desc = at_xdmac_get_desc(atchan);
1215 		spin_unlock_irqrestore(&atchan->lock, irqflags);
1216 		if (!desc) {
1217 			dev_err(chan2dev(chan), "can't get descriptor\n");
1218 			if (first)
1219 				list_splice_tail_init(&first->descs_list,
1220 						      &atchan->free_descs_list);
1221 			return NULL;
1222 		}
1223 
1224 		/* Update src and dest addresses. */
1225 		src_addr += xfer_size;
1226 		dst_addr += xfer_size;
1227 
1228 		if (remaining_size >= AT_XDMAC_MBR_UBC_UBLEN_MAX << dwidth)
1229 			xfer_size = AT_XDMAC_MBR_UBC_UBLEN_MAX << dwidth;
1230 		else
1231 			xfer_size = remaining_size;
1232 
1233 		dev_dbg(chan2dev(chan), "%s: xfer_size=%zu\n", __func__, xfer_size);
1234 
1235 		/* Check remaining length and change data width if needed. */
1236 		dwidth = at_xdmac_align_width(chan,
1237 					      src_addr | dst_addr | xfer_size);
1238 		chan_cc &= ~AT_XDMAC_CC_DWIDTH_MASK;
1239 		chan_cc |= AT_XDMAC_CC_DWIDTH(dwidth);
1240 
1241 		ublen = xfer_size >> dwidth;
1242 		remaining_size -= xfer_size;
1243 
1244 		desc->lld.mbr_sa = src_addr;
1245 		desc->lld.mbr_da = dst_addr;
1246 		desc->lld.mbr_ubc = AT_XDMAC_MBR_UBC_NDV2
1247 			| AT_XDMAC_MBR_UBC_NDEN
1248 			| AT_XDMAC_MBR_UBC_NSEN
1249 			| ublen;
1250 		desc->lld.mbr_cfg = chan_cc;
1251 
1252 		dev_dbg(chan2dev(chan),
1253 			 "%s: lld: mbr_sa=%pad, mbr_da=%pad, mbr_ubc=0x%08x, mbr_cfg=0x%08x\n",
1254 			 __func__, &desc->lld.mbr_sa, &desc->lld.mbr_da, desc->lld.mbr_ubc, desc->lld.mbr_cfg);
1255 
1256 		/* Chain lld. */
1257 		if (prev)
1258 			at_xdmac_queue_desc(chan, prev, desc);
1259 
1260 		prev = desc;
1261 		if (!first)
1262 			first = desc;
1263 
1264 		dev_dbg(chan2dev(chan), "%s: add desc 0x%p to descs_list 0x%p\n",
1265 			 __func__, desc, first);
1266 		list_add_tail(&desc->desc_node, &first->descs_list);
1267 	}
1268 
1269 	first->tx_dma_desc.flags = flags;
1270 	first->xfer_size = len;
1271 
1272 	return &first->tx_dma_desc;
1273 }
1274 
at_xdmac_memset_create_desc(struct dma_chan * chan,struct at_xdmac_chan * atchan,dma_addr_t dst_addr,size_t len,int value)1275 static struct at_xdmac_desc *at_xdmac_memset_create_desc(struct dma_chan *chan,
1276 							 struct at_xdmac_chan *atchan,
1277 							 dma_addr_t dst_addr,
1278 							 size_t len,
1279 							 int value)
1280 {
1281 	struct at_xdmac_desc	*desc;
1282 	unsigned long		flags;
1283 	size_t			ublen;
1284 	u32			dwidth;
1285 	char			pattern;
1286 	/*
1287 	 * WARNING: The channel configuration is set here since there is no
1288 	 * dmaengine_slave_config call in this case. Moreover we don't know the
1289 	 * direction, it involves we can't dynamically set the source and dest
1290 	 * interface so we have to use the same one. Only interface 0 allows EBI
1291 	 * access. Hopefully we can access DDR through both ports (at least on
1292 	 * SAMA5D4x), so we can use the same interface for source and dest,
1293 	 * that solves the fact we don't know the direction.
1294 	 * ERRATA: Even if useless for memory transfers, the PERID has to not
1295 	 * match the one of another channel. If not, it could lead to spurious
1296 	 * flag status.
1297 	 * For SAMA7G5x case, the SIF and DIF fields are no longer used.
1298 	 * Thus, no need to have the SIF/DIF interfaces here.
1299 	 * For SAMA5D4x and SAMA5D2x the SIF and DIF are already configured as
1300 	 * zero.
1301 	 */
1302 	u32			chan_cc = AT_XDMAC_CC_PERID(0x7f)
1303 					| AT_XDMAC_CC_DAM_UBS_AM
1304 					| AT_XDMAC_CC_SAM_INCREMENTED_AM
1305 					| AT_XDMAC_CC_MBSIZE_SIXTEEN
1306 					| AT_XDMAC_CC_MEMSET_HW_MODE
1307 					| AT_XDMAC_CC_TYPE_MEM_TRAN;
1308 
1309 	dwidth = at_xdmac_align_width(chan, dst_addr);
1310 
1311 	if (len >= (AT_XDMAC_MBR_UBC_UBLEN_MAX << dwidth)) {
1312 		dev_err(chan2dev(chan),
1313 			"%s: Transfer too large, aborting...\n",
1314 			__func__);
1315 		return NULL;
1316 	}
1317 
1318 	spin_lock_irqsave(&atchan->lock, flags);
1319 	desc = at_xdmac_get_desc(atchan);
1320 	spin_unlock_irqrestore(&atchan->lock, flags);
1321 	if (!desc) {
1322 		dev_err(chan2dev(chan), "can't get descriptor\n");
1323 		return NULL;
1324 	}
1325 
1326 	chan_cc |= AT_XDMAC_CC_DWIDTH(dwidth);
1327 
1328 	/* Only the first byte of value is to be used according to dmaengine */
1329 	pattern = (char)value;
1330 
1331 	ublen = len >> dwidth;
1332 
1333 	desc->lld.mbr_da = dst_addr;
1334 	desc->lld.mbr_ds = (pattern << 24) |
1335 			   (pattern << 16) |
1336 			   (pattern << 8) |
1337 			   pattern;
1338 	desc->lld.mbr_ubc = AT_XDMAC_MBR_UBC_NDV3
1339 		| AT_XDMAC_MBR_UBC_NDEN
1340 		| AT_XDMAC_MBR_UBC_NSEN
1341 		| ublen;
1342 	desc->lld.mbr_cfg = chan_cc;
1343 
1344 	dev_dbg(chan2dev(chan),
1345 		"%s: lld: mbr_da=%pad, mbr_ds=0x%08x, mbr_ubc=0x%08x, mbr_cfg=0x%08x\n",
1346 		__func__, &desc->lld.mbr_da, desc->lld.mbr_ds, desc->lld.mbr_ubc,
1347 		desc->lld.mbr_cfg);
1348 
1349 	return desc;
1350 }
1351 
1352 static struct dma_async_tx_descriptor *
at_xdmac_prep_dma_memset(struct dma_chan * chan,dma_addr_t dest,int value,size_t len,unsigned long flags)1353 at_xdmac_prep_dma_memset(struct dma_chan *chan, dma_addr_t dest, int value,
1354 			 size_t len, unsigned long flags)
1355 {
1356 	struct at_xdmac_chan	*atchan = to_at_xdmac_chan(chan);
1357 	struct at_xdmac_desc	*desc;
1358 
1359 	dev_dbg(chan2dev(chan), "%s: dest=%pad, len=%zu, pattern=0x%x, flags=0x%lx\n",
1360 		__func__, &dest, len, value, flags);
1361 
1362 	if (unlikely(!len))
1363 		return NULL;
1364 
1365 	desc = at_xdmac_memset_create_desc(chan, atchan, dest, len, value);
1366 	if (!desc)
1367 		return NULL;
1368 	list_add_tail(&desc->desc_node, &desc->descs_list);
1369 
1370 	desc->tx_dma_desc.cookie = -EBUSY;
1371 	desc->tx_dma_desc.flags = flags;
1372 	desc->xfer_size = len;
1373 
1374 	return &desc->tx_dma_desc;
1375 }
1376 
1377 static struct dma_async_tx_descriptor *
at_xdmac_prep_dma_memset_sg(struct dma_chan * chan,struct scatterlist * sgl,unsigned int sg_len,int value,unsigned long flags)1378 at_xdmac_prep_dma_memset_sg(struct dma_chan *chan, struct scatterlist *sgl,
1379 			    unsigned int sg_len, int value,
1380 			    unsigned long flags)
1381 {
1382 	struct at_xdmac_chan	*atchan = to_at_xdmac_chan(chan);
1383 	struct at_xdmac_desc	*desc, *pdesc = NULL,
1384 				*ppdesc = NULL, *first = NULL;
1385 	struct scatterlist	*sg, *psg = NULL, *ppsg = NULL;
1386 	size_t			stride = 0, pstride = 0, len = 0;
1387 	int			i;
1388 
1389 	if (!sgl)
1390 		return NULL;
1391 
1392 	dev_dbg(chan2dev(chan), "%s: sg_len=%d, value=0x%x, flags=0x%lx\n",
1393 		__func__, sg_len, value, flags);
1394 
1395 	/* Prepare descriptors. */
1396 	for_each_sg(sgl, sg, sg_len, i) {
1397 		dev_dbg(chan2dev(chan), "%s: dest=%pad, len=%d, pattern=0x%x, flags=0x%lx\n",
1398 			__func__, &sg_dma_address(sg), sg_dma_len(sg),
1399 			value, flags);
1400 		desc = at_xdmac_memset_create_desc(chan, atchan,
1401 						   sg_dma_address(sg),
1402 						   sg_dma_len(sg),
1403 						   value);
1404 		if (!desc && first)
1405 			list_splice_tail_init(&first->descs_list,
1406 					      &atchan->free_descs_list);
1407 
1408 		if (!first)
1409 			first = desc;
1410 
1411 		/* Update our strides */
1412 		pstride = stride;
1413 		if (psg)
1414 			stride = sg_dma_address(sg) -
1415 				(sg_dma_address(psg) + sg_dma_len(psg));
1416 
1417 		/*
1418 		 * The scatterlist API gives us only the address and
1419 		 * length of each elements.
1420 		 *
1421 		 * Unfortunately, we don't have the stride, which we
1422 		 * will need to compute.
1423 		 *
1424 		 * That make us end up in a situation like this one:
1425 		 *    len    stride    len    stride    len
1426 		 * +-------+        +-------+        +-------+
1427 		 * |  N-2  |        |  N-1  |        |   N   |
1428 		 * +-------+        +-------+        +-------+
1429 		 *
1430 		 * We need all these three elements (N-2, N-1 and N)
1431 		 * to actually take the decision on whether we need to
1432 		 * queue N-1 or reuse N-2.
1433 		 *
1434 		 * We will only consider N if it is the last element.
1435 		 */
1436 		if (ppdesc && pdesc) {
1437 			if ((stride == pstride) &&
1438 			    (sg_dma_len(ppsg) == sg_dma_len(psg))) {
1439 				dev_dbg(chan2dev(chan),
1440 					"%s: desc 0x%p can be merged with desc 0x%p\n",
1441 					__func__, pdesc, ppdesc);
1442 
1443 				/*
1444 				 * Increment the block count of the
1445 				 * N-2 descriptor
1446 				 */
1447 				at_xdmac_increment_block_count(chan, ppdesc);
1448 				ppdesc->lld.mbr_dus = stride;
1449 
1450 				/*
1451 				 * Put back the N-1 descriptor in the
1452 				 * free descriptor list
1453 				 */
1454 				list_add_tail(&pdesc->desc_node,
1455 					      &atchan->free_descs_list);
1456 
1457 				/*
1458 				 * Make our N-1 descriptor pointer
1459 				 * point to the N-2 since they were
1460 				 * actually merged.
1461 				 */
1462 				pdesc = ppdesc;
1463 
1464 			/*
1465 			 * Rule out the case where we don't have
1466 			 * pstride computed yet (our second sg
1467 			 * element)
1468 			 *
1469 			 * We also want to catch the case where there
1470 			 * would be a negative stride,
1471 			 */
1472 			} else if (pstride ||
1473 				   sg_dma_address(sg) < sg_dma_address(psg)) {
1474 				/*
1475 				 * Queue the N-1 descriptor after the
1476 				 * N-2
1477 				 */
1478 				at_xdmac_queue_desc(chan, ppdesc, pdesc);
1479 
1480 				/*
1481 				 * Add the N-1 descriptor to the list
1482 				 * of the descriptors used for this
1483 				 * transfer
1484 				 */
1485 				list_add_tail(&desc->desc_node,
1486 					      &first->descs_list);
1487 				dev_dbg(chan2dev(chan),
1488 					"%s: add desc 0x%p to descs_list 0x%p\n",
1489 					__func__, desc, first);
1490 			}
1491 		}
1492 
1493 		/*
1494 		 * If we are the last element, just see if we have the
1495 		 * same size than the previous element.
1496 		 *
1497 		 * If so, we can merge it with the previous descriptor
1498 		 * since we don't care about the stride anymore.
1499 		 */
1500 		if ((i == (sg_len - 1)) &&
1501 		    sg_dma_len(psg) == sg_dma_len(sg)) {
1502 			dev_dbg(chan2dev(chan),
1503 				"%s: desc 0x%p can be merged with desc 0x%p\n",
1504 				__func__, desc, pdesc);
1505 
1506 			/*
1507 			 * Increment the block count of the N-1
1508 			 * descriptor
1509 			 */
1510 			at_xdmac_increment_block_count(chan, pdesc);
1511 			pdesc->lld.mbr_dus = stride;
1512 
1513 			/*
1514 			 * Put back the N descriptor in the free
1515 			 * descriptor list
1516 			 */
1517 			list_add_tail(&desc->desc_node,
1518 				      &atchan->free_descs_list);
1519 		}
1520 
1521 		/* Update our descriptors */
1522 		ppdesc = pdesc;
1523 		pdesc = desc;
1524 
1525 		/* Update our scatter pointers */
1526 		ppsg = psg;
1527 		psg = sg;
1528 
1529 		len += sg_dma_len(sg);
1530 	}
1531 
1532 	first->tx_dma_desc.cookie = -EBUSY;
1533 	first->tx_dma_desc.flags = flags;
1534 	first->xfer_size = len;
1535 
1536 	return &first->tx_dma_desc;
1537 }
1538 
1539 static enum dma_status
at_xdmac_tx_status(struct dma_chan * chan,dma_cookie_t cookie,struct dma_tx_state * txstate)1540 at_xdmac_tx_status(struct dma_chan *chan, dma_cookie_t cookie,
1541 		   struct dma_tx_state *txstate)
1542 {
1543 	struct at_xdmac_chan	*atchan = to_at_xdmac_chan(chan);
1544 	struct at_xdmac		*atxdmac = to_at_xdmac(atchan->chan.device);
1545 	struct at_xdmac_desc	*desc, *_desc, *iter;
1546 	struct list_head	*descs_list;
1547 	enum dma_status		ret;
1548 	int			residue, retry, pm_status;
1549 	u32			cur_nda, check_nda, cur_ubc, mask, value;
1550 	u8			dwidth = 0;
1551 	unsigned long		flags;
1552 	bool			initd;
1553 
1554 	ret = dma_cookie_status(chan, cookie, txstate);
1555 	if (ret == DMA_COMPLETE || !txstate)
1556 		return ret;
1557 
1558 	pm_status = pm_runtime_resume_and_get(atxdmac->dev);
1559 	if (pm_status < 0)
1560 		return DMA_ERROR;
1561 
1562 	spin_lock_irqsave(&atchan->lock, flags);
1563 
1564 	desc = list_first_entry(&atchan->xfers_list, struct at_xdmac_desc, xfer_node);
1565 
1566 	/*
1567 	 * If the transfer has not been started yet, don't need to compute the
1568 	 * residue, it's the transfer length.
1569 	 */
1570 	if (!desc->active_xfer) {
1571 		dma_set_residue(txstate, desc->xfer_size);
1572 		goto spin_unlock;
1573 	}
1574 
1575 	residue = desc->xfer_size;
1576 	/*
1577 	 * Flush FIFO: only relevant when the transfer is source peripheral
1578 	 * synchronized. Flush is needed before reading CUBC because data in
1579 	 * the FIFO are not reported by CUBC. Reporting a residue of the
1580 	 * transfer length while we have data in FIFO can cause issue.
1581 	 * Usecase: atmel USART has a timeout which means I have received
1582 	 * characters but there is no more character received for a while. On
1583 	 * timeout, it requests the residue. If the data are in the DMA FIFO,
1584 	 * we will return a residue of the transfer length. It means no data
1585 	 * received. If an application is waiting for these data, it will hang
1586 	 * since we won't have another USART timeout without receiving new
1587 	 * data.
1588 	 */
1589 	mask = AT_XDMAC_CC_TYPE | AT_XDMAC_CC_DSYNC;
1590 	value = AT_XDMAC_CC_TYPE_PER_TRAN | AT_XDMAC_CC_DSYNC_PER2MEM;
1591 	if ((desc->lld.mbr_cfg & mask) == value) {
1592 		at_xdmac_write(atxdmac, atxdmac->layout->gswf, atchan->mask);
1593 		while (!(at_xdmac_chan_read(atchan, AT_XDMAC_CIS) & AT_XDMAC_CIS_FIS))
1594 			cpu_relax();
1595 	}
1596 
1597 	/*
1598 	 * The easiest way to compute the residue should be to pause the DMA
1599 	 * but doing this can lead to miss some data as some devices don't
1600 	 * have FIFO.
1601 	 * We need to read several registers because:
1602 	 * - DMA is running therefore a descriptor change is possible while
1603 	 * reading these registers
1604 	 * - When the block transfer is done, the value of the CUBC register
1605 	 * is set to its initial value until the fetch of the next descriptor.
1606 	 * This value will corrupt the residue calculation so we have to skip
1607 	 * it.
1608 	 *
1609 	 * INITD --------                    ------------
1610 	 *              |____________________|
1611 	 *       _______________________  _______________
1612 	 * NDA       @desc2             \/   @desc3
1613 	 *       _______________________/\_______________
1614 	 *       __________  ___________  _______________
1615 	 * CUBC       0    \/ MAX desc1 \/  MAX desc2
1616 	 *       __________/\___________/\_______________
1617 	 *
1618 	 * Since descriptors are aligned on 64 bits, we can assume that
1619 	 * the update of NDA and CUBC is atomic.
1620 	 * Memory barriers are used to ensure the read order of the registers.
1621 	 * A max number of retries is set because unlikely it could never ends.
1622 	 */
1623 	for (retry = 0; retry < AT_XDMAC_RESIDUE_MAX_RETRIES; retry++) {
1624 		check_nda = at_xdmac_chan_read(atchan, AT_XDMAC_CNDA) & 0xfffffffc;
1625 		rmb();
1626 		cur_ubc = at_xdmac_chan_read(atchan, AT_XDMAC_CUBC);
1627 		rmb();
1628 		initd = !!(at_xdmac_chan_read(atchan, AT_XDMAC_CC) & AT_XDMAC_CC_INITD);
1629 		rmb();
1630 		cur_nda = at_xdmac_chan_read(atchan, AT_XDMAC_CNDA) & 0xfffffffc;
1631 		rmb();
1632 
1633 		if ((check_nda == cur_nda) && initd)
1634 			break;
1635 	}
1636 
1637 	if (unlikely(retry >= AT_XDMAC_RESIDUE_MAX_RETRIES)) {
1638 		ret = DMA_ERROR;
1639 		goto spin_unlock;
1640 	}
1641 
1642 	/*
1643 	 * Flush FIFO: only relevant when the transfer is source peripheral
1644 	 * synchronized. Another flush is needed here because CUBC is updated
1645 	 * when the controller sends the data write command. It can lead to
1646 	 * report data that are not written in the memory or the device. The
1647 	 * FIFO flush ensures that data are really written.
1648 	 */
1649 	if ((desc->lld.mbr_cfg & mask) == value) {
1650 		at_xdmac_write(atxdmac, atxdmac->layout->gswf, atchan->mask);
1651 		while (!(at_xdmac_chan_read(atchan, AT_XDMAC_CIS) & AT_XDMAC_CIS_FIS))
1652 			cpu_relax();
1653 	}
1654 
1655 	/*
1656 	 * Remove size of all microblocks already transferred and the current
1657 	 * one. Then add the remaining size to transfer of the current
1658 	 * microblock.
1659 	 */
1660 	descs_list = &desc->descs_list;
1661 	list_for_each_entry_safe(iter, _desc, descs_list, desc_node) {
1662 		dwidth = at_xdmac_get_dwidth(iter->lld.mbr_cfg);
1663 		residue -= (iter->lld.mbr_ubc & 0xffffff) << dwidth;
1664 		if ((iter->lld.mbr_nda & 0xfffffffc) == cur_nda) {
1665 			desc = iter;
1666 			break;
1667 		}
1668 	}
1669 	residue += cur_ubc << dwidth;
1670 
1671 	dma_set_residue(txstate, residue);
1672 
1673 	dev_dbg(chan2dev(chan),
1674 		 "%s: desc=0x%p, tx_dma_desc.phys=%pad, tx_status=%d, cookie=%d, residue=%d\n",
1675 		 __func__, desc, &desc->tx_dma_desc.phys, ret, cookie, residue);
1676 
1677 spin_unlock:
1678 	spin_unlock_irqrestore(&atchan->lock, flags);
1679 	pm_runtime_mark_last_busy(atxdmac->dev);
1680 	pm_runtime_put_autosuspend(atxdmac->dev);
1681 	return ret;
1682 }
1683 
at_xdmac_advance_work(struct at_xdmac_chan * atchan)1684 static void at_xdmac_advance_work(struct at_xdmac_chan *atchan)
1685 {
1686 	struct at_xdmac_desc	*desc;
1687 
1688 	/*
1689 	 * If channel is enabled, do nothing, advance_work will be triggered
1690 	 * after the interruption.
1691 	 */
1692 	if (at_xdmac_chan_is_enabled(atchan) || list_empty(&atchan->xfers_list))
1693 		return;
1694 
1695 	desc = list_first_entry(&atchan->xfers_list, struct at_xdmac_desc,
1696 				xfer_node);
1697 	dev_vdbg(chan2dev(&atchan->chan), "%s: desc 0x%p\n", __func__, desc);
1698 	if (!desc->active_xfer)
1699 		at_xdmac_start_xfer(atchan, desc);
1700 }
1701 
at_xdmac_handle_cyclic(struct at_xdmac_chan * atchan)1702 static void at_xdmac_handle_cyclic(struct at_xdmac_chan *atchan)
1703 {
1704 	struct at_xdmac_desc		*desc;
1705 	struct dma_async_tx_descriptor	*txd;
1706 
1707 	spin_lock_irq(&atchan->lock);
1708 	dev_dbg(chan2dev(&atchan->chan), "%s: status=0x%08x\n",
1709 		__func__, atchan->irq_status);
1710 	if (list_empty(&atchan->xfers_list)) {
1711 		spin_unlock_irq(&atchan->lock);
1712 		return;
1713 	}
1714 	desc = list_first_entry(&atchan->xfers_list, struct at_xdmac_desc,
1715 				xfer_node);
1716 	spin_unlock_irq(&atchan->lock);
1717 	txd = &desc->tx_dma_desc;
1718 	if (txd->flags & DMA_PREP_INTERRUPT)
1719 		dmaengine_desc_get_callback_invoke(txd, NULL);
1720 }
1721 
1722 /* Called with atchan->lock held. */
at_xdmac_handle_error(struct at_xdmac_chan * atchan)1723 static void at_xdmac_handle_error(struct at_xdmac_chan *atchan)
1724 {
1725 	struct at_xdmac		*atxdmac = to_at_xdmac(atchan->chan.device);
1726 	struct at_xdmac_desc	*bad_desc;
1727 	int			ret;
1728 
1729 	ret = pm_runtime_resume_and_get(atxdmac->dev);
1730 	if (ret < 0)
1731 		return;
1732 
1733 	/*
1734 	 * The descriptor currently at the head of the active list is
1735 	 * broken. Since we don't have any way to report errors, we'll
1736 	 * just have to scream loudly and try to continue with other
1737 	 * descriptors queued (if any).
1738 	 */
1739 	if (atchan->irq_status & AT_XDMAC_CIS_RBEIS)
1740 		dev_err(chan2dev(&atchan->chan), "read bus error!!!");
1741 	if (atchan->irq_status & AT_XDMAC_CIS_WBEIS)
1742 		dev_err(chan2dev(&atchan->chan), "write bus error!!!");
1743 	if (atchan->irq_status & AT_XDMAC_CIS_ROIS)
1744 		dev_err(chan2dev(&atchan->chan), "request overflow error!!!");
1745 
1746 	/* Channel must be disabled first as it's not done automatically */
1747 	at_xdmac_write(atxdmac, AT_XDMAC_GD, atchan->mask);
1748 	while (at_xdmac_read(atxdmac, AT_XDMAC_GS) & atchan->mask)
1749 		cpu_relax();
1750 
1751 	bad_desc = list_first_entry(&atchan->xfers_list,
1752 				    struct at_xdmac_desc,
1753 				    xfer_node);
1754 
1755 	/* Print bad descriptor's details if needed */
1756 	dev_dbg(chan2dev(&atchan->chan),
1757 		"%s: lld: mbr_sa=%pad, mbr_da=%pad, mbr_ubc=0x%08x\n",
1758 		__func__, &bad_desc->lld.mbr_sa, &bad_desc->lld.mbr_da,
1759 		bad_desc->lld.mbr_ubc);
1760 
1761 	pm_runtime_mark_last_busy(atxdmac->dev);
1762 	pm_runtime_put_autosuspend(atxdmac->dev);
1763 
1764 	/* Then continue with usual descriptor management */
1765 }
1766 
at_xdmac_tasklet(struct tasklet_struct * t)1767 static void at_xdmac_tasklet(struct tasklet_struct *t)
1768 {
1769 	struct at_xdmac_chan	*atchan = from_tasklet(atchan, t, tasklet);
1770 	struct at_xdmac		*atxdmac = to_at_xdmac(atchan->chan.device);
1771 	struct at_xdmac_desc	*desc;
1772 	struct dma_async_tx_descriptor *txd;
1773 	u32			error_mask;
1774 
1775 	if (at_xdmac_chan_is_cyclic(atchan))
1776 		return at_xdmac_handle_cyclic(atchan);
1777 
1778 	error_mask = AT_XDMAC_CIS_RBEIS | AT_XDMAC_CIS_WBEIS |
1779 		AT_XDMAC_CIS_ROIS;
1780 
1781 	spin_lock_irq(&atchan->lock);
1782 
1783 	dev_dbg(chan2dev(&atchan->chan), "%s: status=0x%08x\n",
1784 		__func__, atchan->irq_status);
1785 
1786 	if (!(atchan->irq_status & AT_XDMAC_CIS_LIS) &&
1787 	    !(atchan->irq_status & error_mask)) {
1788 		spin_unlock_irq(&atchan->lock);
1789 		return;
1790 	}
1791 
1792 	if (atchan->irq_status & error_mask)
1793 		at_xdmac_handle_error(atchan);
1794 
1795 	desc = list_first_entry(&atchan->xfers_list, struct at_xdmac_desc,
1796 				xfer_node);
1797 	dev_vdbg(chan2dev(&atchan->chan), "%s: desc 0x%p\n", __func__, desc);
1798 	if (!desc->active_xfer) {
1799 		dev_err(chan2dev(&atchan->chan), "Xfer not active: exiting");
1800 		spin_unlock_irq(&atchan->lock);
1801 		return;
1802 	}
1803 
1804 	txd = &desc->tx_dma_desc;
1805 	dma_cookie_complete(txd);
1806 	/* Remove the transfer from the transfer list. */
1807 	list_del(&desc->xfer_node);
1808 	spin_unlock_irq(&atchan->lock);
1809 
1810 	if (txd->flags & DMA_PREP_INTERRUPT)
1811 		dmaengine_desc_get_callback_invoke(txd, NULL);
1812 
1813 	dma_run_dependencies(txd);
1814 
1815 	spin_lock_irq(&atchan->lock);
1816 	/* Move the xfer descriptors into the free descriptors list. */
1817 	list_splice_tail_init(&desc->descs_list, &atchan->free_descs_list);
1818 	at_xdmac_advance_work(atchan);
1819 	spin_unlock_irq(&atchan->lock);
1820 
1821 	/*
1822 	 * Decrement runtime PM ref counter incremented in
1823 	 * at_xdmac_start_xfer().
1824 	 */
1825 	pm_runtime_mark_last_busy(atxdmac->dev);
1826 	pm_runtime_put_autosuspend(atxdmac->dev);
1827 }
1828 
at_xdmac_interrupt(int irq,void * dev_id)1829 static irqreturn_t at_xdmac_interrupt(int irq, void *dev_id)
1830 {
1831 	struct at_xdmac		*atxdmac = (struct at_xdmac *)dev_id;
1832 	struct at_xdmac_chan	*atchan;
1833 	u32			imr, status, pending;
1834 	u32			chan_imr, chan_status;
1835 	int			i, ret = IRQ_NONE;
1836 
1837 	do {
1838 		imr = at_xdmac_read(atxdmac, AT_XDMAC_GIM);
1839 		status = at_xdmac_read(atxdmac, AT_XDMAC_GIS);
1840 		pending = status & imr;
1841 
1842 		dev_vdbg(atxdmac->dma.dev,
1843 			 "%s: status=0x%08x, imr=0x%08x, pending=0x%08x\n",
1844 			 __func__, status, imr, pending);
1845 
1846 		if (!pending)
1847 			break;
1848 
1849 		/* We have to find which channel has generated the interrupt. */
1850 		for (i = 0; i < atxdmac->dma.chancnt; i++) {
1851 			if (!((1 << i) & pending))
1852 				continue;
1853 
1854 			atchan = &atxdmac->chan[i];
1855 			chan_imr = at_xdmac_chan_read(atchan, AT_XDMAC_CIM);
1856 			chan_status = at_xdmac_chan_read(atchan, AT_XDMAC_CIS);
1857 			atchan->irq_status = chan_status & chan_imr;
1858 			dev_vdbg(atxdmac->dma.dev,
1859 				 "%s: chan%d: imr=0x%x, status=0x%x\n",
1860 				 __func__, i, chan_imr, chan_status);
1861 			dev_vdbg(chan2dev(&atchan->chan),
1862 				 "%s: CC=0x%08x CNDA=0x%08x, CNDC=0x%08x, CSA=0x%08x, CDA=0x%08x, CUBC=0x%08x\n",
1863 				 __func__,
1864 				 at_xdmac_chan_read(atchan, AT_XDMAC_CC),
1865 				 at_xdmac_chan_read(atchan, AT_XDMAC_CNDA),
1866 				 at_xdmac_chan_read(atchan, AT_XDMAC_CNDC),
1867 				 at_xdmac_chan_read(atchan, AT_XDMAC_CSA),
1868 				 at_xdmac_chan_read(atchan, AT_XDMAC_CDA),
1869 				 at_xdmac_chan_read(atchan, AT_XDMAC_CUBC));
1870 
1871 			if (atchan->irq_status & (AT_XDMAC_CIS_RBEIS | AT_XDMAC_CIS_WBEIS))
1872 				at_xdmac_write(atxdmac, AT_XDMAC_GD, atchan->mask);
1873 
1874 			tasklet_schedule(&atchan->tasklet);
1875 			ret = IRQ_HANDLED;
1876 		}
1877 
1878 	} while (pending);
1879 
1880 	return ret;
1881 }
1882 
at_xdmac_issue_pending(struct dma_chan * chan)1883 static void at_xdmac_issue_pending(struct dma_chan *chan)
1884 {
1885 	struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan);
1886 	unsigned long flags;
1887 
1888 	dev_dbg(chan2dev(&atchan->chan), "%s\n", __func__);
1889 
1890 	spin_lock_irqsave(&atchan->lock, flags);
1891 	at_xdmac_advance_work(atchan);
1892 	spin_unlock_irqrestore(&atchan->lock, flags);
1893 
1894 	return;
1895 }
1896 
at_xdmac_device_config(struct dma_chan * chan,struct dma_slave_config * config)1897 static int at_xdmac_device_config(struct dma_chan *chan,
1898 				  struct dma_slave_config *config)
1899 {
1900 	struct at_xdmac_chan	*atchan = to_at_xdmac_chan(chan);
1901 	int ret;
1902 	unsigned long		flags;
1903 
1904 	dev_dbg(chan2dev(chan), "%s\n", __func__);
1905 
1906 	spin_lock_irqsave(&atchan->lock, flags);
1907 	ret = at_xdmac_set_slave_config(chan, config);
1908 	spin_unlock_irqrestore(&atchan->lock, flags);
1909 
1910 	return ret;
1911 }
1912 
at_xdmac_device_pause_set(struct at_xdmac * atxdmac,struct at_xdmac_chan * atchan)1913 static void at_xdmac_device_pause_set(struct at_xdmac *atxdmac,
1914 				      struct at_xdmac_chan *atchan)
1915 {
1916 	at_xdmac_write(atxdmac, atxdmac->layout->grws, atchan->mask);
1917 	while (at_xdmac_chan_read(atchan, AT_XDMAC_CC) &
1918 	       (AT_XDMAC_CC_WRIP | AT_XDMAC_CC_RDIP))
1919 		cpu_relax();
1920 }
1921 
at_xdmac_device_pause_internal(struct at_xdmac_chan * atchan)1922 static void at_xdmac_device_pause_internal(struct at_xdmac_chan *atchan)
1923 {
1924 	struct at_xdmac		*atxdmac = to_at_xdmac(atchan->chan.device);
1925 	unsigned long		flags;
1926 
1927 	spin_lock_irqsave(&atchan->lock, flags);
1928 	set_bit(AT_XDMAC_CHAN_IS_PAUSED_INTERNAL, &atchan->status);
1929 	at_xdmac_device_pause_set(atxdmac, atchan);
1930 	spin_unlock_irqrestore(&atchan->lock, flags);
1931 }
1932 
at_xdmac_device_pause(struct dma_chan * chan)1933 static int at_xdmac_device_pause(struct dma_chan *chan)
1934 {
1935 	struct at_xdmac_chan	*atchan = to_at_xdmac_chan(chan);
1936 	struct at_xdmac		*atxdmac = to_at_xdmac(atchan->chan.device);
1937 	unsigned long		flags;
1938 	int			ret;
1939 
1940 	dev_dbg(chan2dev(chan), "%s\n", __func__);
1941 
1942 	if (test_and_set_bit(AT_XDMAC_CHAN_IS_PAUSED, &atchan->status))
1943 		return 0;
1944 
1945 	ret = pm_runtime_resume_and_get(atxdmac->dev);
1946 	if (ret < 0)
1947 		return ret;
1948 
1949 	spin_lock_irqsave(&atchan->lock, flags);
1950 
1951 	at_xdmac_device_pause_set(atxdmac, atchan);
1952 	/* Decrement runtime PM ref counter for each active descriptor. */
1953 	at_xdmac_runtime_suspend_descriptors(atchan);
1954 
1955 	spin_unlock_irqrestore(&atchan->lock, flags);
1956 
1957 	pm_runtime_mark_last_busy(atxdmac->dev);
1958 	pm_runtime_put_autosuspend(atxdmac->dev);
1959 
1960 	return 0;
1961 }
1962 
at_xdmac_device_resume_internal(struct at_xdmac_chan * atchan)1963 static void at_xdmac_device_resume_internal(struct at_xdmac_chan *atchan)
1964 {
1965 	struct at_xdmac		*atxdmac = to_at_xdmac(atchan->chan.device);
1966 	unsigned long		flags;
1967 
1968 	spin_lock_irqsave(&atchan->lock, flags);
1969 	at_xdmac_write(atxdmac, atxdmac->layout->grwr, atchan->mask);
1970 	clear_bit(AT_XDMAC_CHAN_IS_PAUSED_INTERNAL, &atchan->status);
1971 	spin_unlock_irqrestore(&atchan->lock, flags);
1972 }
1973 
at_xdmac_device_resume(struct dma_chan * chan)1974 static int at_xdmac_device_resume(struct dma_chan *chan)
1975 {
1976 	struct at_xdmac_chan	*atchan = to_at_xdmac_chan(chan);
1977 	struct at_xdmac		*atxdmac = to_at_xdmac(atchan->chan.device);
1978 	unsigned long		flags;
1979 	int			ret;
1980 
1981 	dev_dbg(chan2dev(chan), "%s\n", __func__);
1982 
1983 	ret = pm_runtime_resume_and_get(atxdmac->dev);
1984 	if (ret < 0)
1985 		return ret;
1986 
1987 	spin_lock_irqsave(&atchan->lock, flags);
1988 	if (!at_xdmac_chan_is_paused(atchan))
1989 		goto unlock;
1990 
1991 	/* Increment runtime PM ref counter for each active descriptor. */
1992 	ret = at_xdmac_runtime_resume_descriptors(atchan);
1993 	if (ret < 0)
1994 		goto unlock;
1995 
1996 	at_xdmac_write(atxdmac, atxdmac->layout->grwr, atchan->mask);
1997 	clear_bit(AT_XDMAC_CHAN_IS_PAUSED, &atchan->status);
1998 
1999 unlock:
2000 	spin_unlock_irqrestore(&atchan->lock, flags);
2001 	pm_runtime_mark_last_busy(atxdmac->dev);
2002 	pm_runtime_put_autosuspend(atxdmac->dev);
2003 
2004 	return ret;
2005 }
2006 
at_xdmac_device_terminate_all(struct dma_chan * chan)2007 static int at_xdmac_device_terminate_all(struct dma_chan *chan)
2008 {
2009 	struct at_xdmac_desc	*desc, *_desc;
2010 	struct at_xdmac_chan	*atchan = to_at_xdmac_chan(chan);
2011 	struct at_xdmac		*atxdmac = to_at_xdmac(atchan->chan.device);
2012 	unsigned long		flags;
2013 	int			ret;
2014 
2015 	dev_dbg(chan2dev(chan), "%s\n", __func__);
2016 
2017 	ret = pm_runtime_resume_and_get(atxdmac->dev);
2018 	if (ret < 0)
2019 		return ret;
2020 
2021 	spin_lock_irqsave(&atchan->lock, flags);
2022 	at_xdmac_write(atxdmac, AT_XDMAC_GD, atchan->mask);
2023 	while (at_xdmac_read(atxdmac, AT_XDMAC_GS) & atchan->mask)
2024 		cpu_relax();
2025 
2026 	/* Cancel all pending transfers. */
2027 	list_for_each_entry_safe(desc, _desc, &atchan->xfers_list, xfer_node) {
2028 		list_del(&desc->xfer_node);
2029 		list_splice_tail_init(&desc->descs_list,
2030 				      &atchan->free_descs_list);
2031 		/*
2032 		 * We incremented the runtime PM reference count on
2033 		 * at_xdmac_start_xfer() for this descriptor. Now it's time
2034 		 * to release it.
2035 		 */
2036 		if (desc->active_xfer) {
2037 			pm_runtime_put_autosuspend(atxdmac->dev);
2038 			pm_runtime_mark_last_busy(atxdmac->dev);
2039 		}
2040 	}
2041 
2042 	clear_bit(AT_XDMAC_CHAN_IS_PAUSED, &atchan->status);
2043 	clear_bit(AT_XDMAC_CHAN_IS_CYCLIC, &atchan->status);
2044 	spin_unlock_irqrestore(&atchan->lock, flags);
2045 
2046 	pm_runtime_mark_last_busy(atxdmac->dev);
2047 	pm_runtime_put_autosuspend(atxdmac->dev);
2048 
2049 	return 0;
2050 }
2051 
at_xdmac_alloc_chan_resources(struct dma_chan * chan)2052 static int at_xdmac_alloc_chan_resources(struct dma_chan *chan)
2053 {
2054 	struct at_xdmac_chan	*atchan = to_at_xdmac_chan(chan);
2055 	struct at_xdmac_desc	*desc;
2056 	int			i;
2057 
2058 	if (at_xdmac_chan_is_enabled(atchan)) {
2059 		dev_err(chan2dev(chan),
2060 			"can't allocate channel resources (channel enabled)\n");
2061 		return -EIO;
2062 	}
2063 
2064 	if (!list_empty(&atchan->free_descs_list)) {
2065 		dev_err(chan2dev(chan),
2066 			"can't allocate channel resources (channel not free from a previous use)\n");
2067 		return -EIO;
2068 	}
2069 
2070 	for (i = 0; i < init_nr_desc_per_channel; i++) {
2071 		desc = at_xdmac_alloc_desc(chan, GFP_KERNEL);
2072 		if (!desc) {
2073 			if (i == 0) {
2074 				dev_warn(chan2dev(chan),
2075 					 "can't allocate any descriptors\n");
2076 				return -EIO;
2077 			}
2078 			dev_warn(chan2dev(chan),
2079 				"only %d descriptors have been allocated\n", i);
2080 			break;
2081 		}
2082 		list_add_tail(&desc->desc_node, &atchan->free_descs_list);
2083 	}
2084 
2085 	dma_cookie_init(chan);
2086 
2087 	dev_dbg(chan2dev(chan), "%s: allocated %d descriptors\n", __func__, i);
2088 
2089 	return i;
2090 }
2091 
at_xdmac_free_chan_resources(struct dma_chan * chan)2092 static void at_xdmac_free_chan_resources(struct dma_chan *chan)
2093 {
2094 	struct at_xdmac_chan	*atchan = to_at_xdmac_chan(chan);
2095 	struct at_xdmac		*atxdmac = to_at_xdmac(chan->device);
2096 	struct at_xdmac_desc	*desc, *_desc;
2097 
2098 	list_for_each_entry_safe(desc, _desc, &atchan->free_descs_list, desc_node) {
2099 		dev_dbg(chan2dev(chan), "%s: freeing descriptor %p\n", __func__, desc);
2100 		list_del(&desc->desc_node);
2101 		dma_pool_free(atxdmac->at_xdmac_desc_pool, desc, desc->tx_dma_desc.phys);
2102 	}
2103 
2104 	return;
2105 }
2106 
at_xdmac_axi_config(struct platform_device * pdev)2107 static void at_xdmac_axi_config(struct platform_device *pdev)
2108 {
2109 	struct at_xdmac	*atxdmac = (struct at_xdmac *)platform_get_drvdata(pdev);
2110 	bool dev_m2m = false;
2111 	u32 dma_requests;
2112 
2113 	if (!atxdmac->layout->axi_config)
2114 		return; /* Not supported */
2115 
2116 	if (!of_property_read_u32(pdev->dev.of_node, "dma-requests",
2117 				  &dma_requests)) {
2118 		dev_info(&pdev->dev, "controller in mem2mem mode.\n");
2119 		dev_m2m = true;
2120 	}
2121 
2122 	if (dev_m2m) {
2123 		at_xdmac_write(atxdmac, AT_XDMAC_GCFG, AT_XDMAC_GCFG_M2M);
2124 		at_xdmac_write(atxdmac, AT_XDMAC_GWAC, AT_XDMAC_GWAC_M2M);
2125 	} else {
2126 		at_xdmac_write(atxdmac, AT_XDMAC_GCFG, AT_XDMAC_GCFG_P2M);
2127 		at_xdmac_write(atxdmac, AT_XDMAC_GWAC, AT_XDMAC_GWAC_P2M);
2128 	}
2129 }
2130 
atmel_xdmac_prepare(struct device * dev)2131 static int __maybe_unused atmel_xdmac_prepare(struct device *dev)
2132 {
2133 	struct at_xdmac		*atxdmac = dev_get_drvdata(dev);
2134 	struct dma_chan		*chan, *_chan;
2135 
2136 	list_for_each_entry_safe(chan, _chan, &atxdmac->dma.channels, device_node) {
2137 		struct at_xdmac_chan	*atchan = to_at_xdmac_chan(chan);
2138 
2139 		/* Wait for transfer completion, except in cyclic case. */
2140 		if (at_xdmac_chan_is_enabled(atchan) && !at_xdmac_chan_is_cyclic(atchan))
2141 			return -EAGAIN;
2142 	}
2143 	return 0;
2144 }
2145 
atmel_xdmac_suspend(struct device * dev)2146 static int __maybe_unused atmel_xdmac_suspend(struct device *dev)
2147 {
2148 	struct at_xdmac		*atxdmac = dev_get_drvdata(dev);
2149 	struct dma_chan		*chan, *_chan;
2150 	int			ret;
2151 
2152 	ret = pm_runtime_resume_and_get(atxdmac->dev);
2153 	if (ret < 0)
2154 		return ret;
2155 
2156 	list_for_each_entry_safe(chan, _chan, &atxdmac->dma.channels, device_node) {
2157 		struct at_xdmac_chan	*atchan = to_at_xdmac_chan(chan);
2158 
2159 		atchan->save_cc = at_xdmac_chan_read(atchan, AT_XDMAC_CC);
2160 		if (at_xdmac_chan_is_cyclic(atchan)) {
2161 			if (!at_xdmac_chan_is_paused(atchan)) {
2162 				dev_warn(chan2dev(chan), "%s: channel %d not paused\n",
2163 					 __func__, chan->chan_id);
2164 				at_xdmac_device_pause_internal(atchan);
2165 				at_xdmac_runtime_suspend_descriptors(atchan);
2166 			}
2167 			atchan->save_cim = at_xdmac_chan_read(atchan, AT_XDMAC_CIM);
2168 			atchan->save_cnda = at_xdmac_chan_read(atchan, AT_XDMAC_CNDA);
2169 			atchan->save_cndc = at_xdmac_chan_read(atchan, AT_XDMAC_CNDC);
2170 		}
2171 	}
2172 	atxdmac->save_gim = at_xdmac_read(atxdmac, AT_XDMAC_GIM);
2173 	atxdmac->save_gs = at_xdmac_read(atxdmac, AT_XDMAC_GS);
2174 
2175 	at_xdmac_off(atxdmac, false);
2176 	pm_runtime_mark_last_busy(atxdmac->dev);
2177 	pm_runtime_put_noidle(atxdmac->dev);
2178 	clk_disable_unprepare(atxdmac->clk);
2179 
2180 	return 0;
2181 }
2182 
atmel_xdmac_resume(struct device * dev)2183 static int __maybe_unused atmel_xdmac_resume(struct device *dev)
2184 {
2185 	struct at_xdmac		*atxdmac = dev_get_drvdata(dev);
2186 	struct at_xdmac_chan	*atchan;
2187 	struct dma_chan		*chan, *_chan;
2188 	struct platform_device	*pdev = container_of(dev, struct platform_device, dev);
2189 	int			i, ret;
2190 
2191 	ret = clk_prepare_enable(atxdmac->clk);
2192 	if (ret)
2193 		return ret;
2194 
2195 	pm_runtime_get_noresume(atxdmac->dev);
2196 
2197 	at_xdmac_axi_config(pdev);
2198 
2199 	/* Clear pending interrupts. */
2200 	for (i = 0; i < atxdmac->dma.chancnt; i++) {
2201 		atchan = &atxdmac->chan[i];
2202 		while (at_xdmac_chan_read(atchan, AT_XDMAC_CIS))
2203 			cpu_relax();
2204 	}
2205 
2206 	at_xdmac_write(atxdmac, AT_XDMAC_GIE, atxdmac->save_gim);
2207 	list_for_each_entry_safe(chan, _chan, &atxdmac->dma.channels, device_node) {
2208 		atchan = to_at_xdmac_chan(chan);
2209 
2210 		at_xdmac_chan_write(atchan, AT_XDMAC_CC, atchan->save_cc);
2211 		if (at_xdmac_chan_is_cyclic(atchan)) {
2212 			/*
2213 			 * Resume only channels not explicitly paused by
2214 			 * consumers.
2215 			 */
2216 			if (at_xdmac_chan_is_paused_internal(atchan)) {
2217 				ret = at_xdmac_runtime_resume_descriptors(atchan);
2218 				if (ret < 0)
2219 					return ret;
2220 				at_xdmac_device_resume_internal(atchan);
2221 			}
2222 
2223 			/*
2224 			 * We may resume from a deep sleep state where power
2225 			 * to DMA controller is cut-off. Thus, restore the
2226 			 * suspend state of channels set though dmaengine API.
2227 			 */
2228 			else if (at_xdmac_chan_is_paused(atchan))
2229 				at_xdmac_device_pause_set(atxdmac, atchan);
2230 
2231 			at_xdmac_chan_write(atchan, AT_XDMAC_CNDA, atchan->save_cnda);
2232 			at_xdmac_chan_write(atchan, AT_XDMAC_CNDC, atchan->save_cndc);
2233 			at_xdmac_chan_write(atchan, AT_XDMAC_CIE, atchan->save_cim);
2234 			wmb();
2235 			if (atxdmac->save_gs & atchan->mask)
2236 				at_xdmac_write(atxdmac, AT_XDMAC_GE, atchan->mask);
2237 		}
2238 	}
2239 
2240 	pm_runtime_mark_last_busy(atxdmac->dev);
2241 	pm_runtime_put_autosuspend(atxdmac->dev);
2242 
2243 	return 0;
2244 }
2245 
atmel_xdmac_runtime_suspend(struct device * dev)2246 static int __maybe_unused atmel_xdmac_runtime_suspend(struct device *dev)
2247 {
2248 	struct at_xdmac *atxdmac = dev_get_drvdata(dev);
2249 
2250 	clk_disable(atxdmac->clk);
2251 
2252 	return 0;
2253 }
2254 
atmel_xdmac_runtime_resume(struct device * dev)2255 static int __maybe_unused atmel_xdmac_runtime_resume(struct device *dev)
2256 {
2257 	struct at_xdmac *atxdmac = dev_get_drvdata(dev);
2258 
2259 	return clk_enable(atxdmac->clk);
2260 }
2261 
at_xdmac_probe(struct platform_device * pdev)2262 static int at_xdmac_probe(struct platform_device *pdev)
2263 {
2264 	struct at_xdmac	*atxdmac;
2265 	int		irq, nr_channels, i, ret;
2266 	void __iomem	*base;
2267 	u32		reg;
2268 
2269 	irq = platform_get_irq(pdev, 0);
2270 	if (irq < 0)
2271 		return irq;
2272 
2273 	base = devm_platform_ioremap_resource(pdev, 0);
2274 	if (IS_ERR(base))
2275 		return PTR_ERR(base);
2276 
2277 	/*
2278 	 * Read number of xdmac channels, read helper function can't be used
2279 	 * since atxdmac is not yet allocated and we need to know the number
2280 	 * of channels to do the allocation.
2281 	 */
2282 	reg = readl_relaxed(base + AT_XDMAC_GTYPE);
2283 	nr_channels = AT_XDMAC_NB_CH(reg);
2284 	if (nr_channels > AT_XDMAC_MAX_CHAN) {
2285 		dev_err(&pdev->dev, "invalid number of channels (%u)\n",
2286 			nr_channels);
2287 		return -EINVAL;
2288 	}
2289 
2290 	atxdmac = devm_kzalloc(&pdev->dev,
2291 			       struct_size(atxdmac, chan, nr_channels),
2292 			       GFP_KERNEL);
2293 	if (!atxdmac) {
2294 		dev_err(&pdev->dev, "can't allocate at_xdmac structure\n");
2295 		return -ENOMEM;
2296 	}
2297 
2298 	atxdmac->regs = base;
2299 	atxdmac->irq = irq;
2300 	atxdmac->dev = &pdev->dev;
2301 
2302 	atxdmac->layout = of_device_get_match_data(&pdev->dev);
2303 	if (!atxdmac->layout)
2304 		return -ENODEV;
2305 
2306 	atxdmac->clk = devm_clk_get(&pdev->dev, "dma_clk");
2307 	if (IS_ERR(atxdmac->clk)) {
2308 		dev_err(&pdev->dev, "can't get dma_clk\n");
2309 		return PTR_ERR(atxdmac->clk);
2310 	}
2311 
2312 	/* Do not use dev res to prevent races with tasklet */
2313 	ret = request_irq(atxdmac->irq, at_xdmac_interrupt, 0, "at_xdmac", atxdmac);
2314 	if (ret) {
2315 		dev_err(&pdev->dev, "can't request irq\n");
2316 		return ret;
2317 	}
2318 
2319 	ret = clk_prepare_enable(atxdmac->clk);
2320 	if (ret) {
2321 		dev_err(&pdev->dev, "can't prepare or enable clock\n");
2322 		goto err_free_irq;
2323 	}
2324 
2325 	atxdmac->at_xdmac_desc_pool =
2326 		dmam_pool_create(dev_name(&pdev->dev), &pdev->dev,
2327 				sizeof(struct at_xdmac_desc), 4, 0);
2328 	if (!atxdmac->at_xdmac_desc_pool) {
2329 		dev_err(&pdev->dev, "no memory for descriptors dma pool\n");
2330 		ret = -ENOMEM;
2331 		goto err_clk_disable;
2332 	}
2333 
2334 	dma_cap_set(DMA_CYCLIC, atxdmac->dma.cap_mask);
2335 	dma_cap_set(DMA_INTERLEAVE, atxdmac->dma.cap_mask);
2336 	dma_cap_set(DMA_MEMCPY, atxdmac->dma.cap_mask);
2337 	dma_cap_set(DMA_MEMSET, atxdmac->dma.cap_mask);
2338 	dma_cap_set(DMA_MEMSET_SG, atxdmac->dma.cap_mask);
2339 	dma_cap_set(DMA_SLAVE, atxdmac->dma.cap_mask);
2340 	/*
2341 	 * Without DMA_PRIVATE the driver is not able to allocate more than
2342 	 * one channel, second allocation fails in private_candidate.
2343 	 */
2344 	dma_cap_set(DMA_PRIVATE, atxdmac->dma.cap_mask);
2345 	atxdmac->dma.dev				= &pdev->dev;
2346 	atxdmac->dma.device_alloc_chan_resources	= at_xdmac_alloc_chan_resources;
2347 	atxdmac->dma.device_free_chan_resources		= at_xdmac_free_chan_resources;
2348 	atxdmac->dma.device_tx_status			= at_xdmac_tx_status;
2349 	atxdmac->dma.device_issue_pending		= at_xdmac_issue_pending;
2350 	atxdmac->dma.device_prep_dma_cyclic		= at_xdmac_prep_dma_cyclic;
2351 	atxdmac->dma.device_prep_interleaved_dma	= at_xdmac_prep_interleaved;
2352 	atxdmac->dma.device_prep_dma_memcpy		= at_xdmac_prep_dma_memcpy;
2353 	atxdmac->dma.device_prep_dma_memset		= at_xdmac_prep_dma_memset;
2354 	atxdmac->dma.device_prep_dma_memset_sg		= at_xdmac_prep_dma_memset_sg;
2355 	atxdmac->dma.device_prep_slave_sg		= at_xdmac_prep_slave_sg;
2356 	atxdmac->dma.device_config			= at_xdmac_device_config;
2357 	atxdmac->dma.device_pause			= at_xdmac_device_pause;
2358 	atxdmac->dma.device_resume			= at_xdmac_device_resume;
2359 	atxdmac->dma.device_terminate_all		= at_xdmac_device_terminate_all;
2360 	atxdmac->dma.src_addr_widths = AT_XDMAC_DMA_BUSWIDTHS;
2361 	atxdmac->dma.dst_addr_widths = AT_XDMAC_DMA_BUSWIDTHS;
2362 	atxdmac->dma.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
2363 	atxdmac->dma.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
2364 
2365 	platform_set_drvdata(pdev, atxdmac);
2366 
2367 	pm_runtime_set_autosuspend_delay(&pdev->dev, 500);
2368 	pm_runtime_use_autosuspend(&pdev->dev);
2369 	pm_runtime_set_active(&pdev->dev);
2370 	pm_runtime_enable(&pdev->dev);
2371 	pm_runtime_get_noresume(&pdev->dev);
2372 
2373 	/* Init channels. */
2374 	INIT_LIST_HEAD(&atxdmac->dma.channels);
2375 
2376 	/* Disable all chans and interrupts. */
2377 	at_xdmac_off(atxdmac, true);
2378 
2379 	for (i = 0; i < nr_channels; i++) {
2380 		struct at_xdmac_chan *atchan = &atxdmac->chan[i];
2381 
2382 		atchan->chan.device = &atxdmac->dma;
2383 		list_add_tail(&atchan->chan.device_node,
2384 			      &atxdmac->dma.channels);
2385 
2386 		atchan->ch_regs = at_xdmac_chan_reg_base(atxdmac, i);
2387 		atchan->mask = 1 << i;
2388 
2389 		spin_lock_init(&atchan->lock);
2390 		INIT_LIST_HEAD(&atchan->xfers_list);
2391 		INIT_LIST_HEAD(&atchan->free_descs_list);
2392 		tasklet_setup(&atchan->tasklet, at_xdmac_tasklet);
2393 
2394 		/* Clear pending interrupts. */
2395 		while (at_xdmac_chan_read(atchan, AT_XDMAC_CIS))
2396 			cpu_relax();
2397 	}
2398 
2399 	ret = dma_async_device_register(&atxdmac->dma);
2400 	if (ret) {
2401 		dev_err(&pdev->dev, "fail to register DMA engine device\n");
2402 		goto err_pm_disable;
2403 	}
2404 
2405 	ret = of_dma_controller_register(pdev->dev.of_node,
2406 					 at_xdmac_xlate, atxdmac);
2407 	if (ret) {
2408 		dev_err(&pdev->dev, "could not register of dma controller\n");
2409 		goto err_dma_unregister;
2410 	}
2411 
2412 	dev_info(&pdev->dev, "%d channels, mapped at 0x%p\n",
2413 		 nr_channels, atxdmac->regs);
2414 
2415 	at_xdmac_axi_config(pdev);
2416 
2417 	pm_runtime_mark_last_busy(&pdev->dev);
2418 	pm_runtime_put_autosuspend(&pdev->dev);
2419 
2420 	return 0;
2421 
2422 err_dma_unregister:
2423 	dma_async_device_unregister(&atxdmac->dma);
2424 err_pm_disable:
2425 	pm_runtime_put_noidle(&pdev->dev);
2426 	pm_runtime_disable(&pdev->dev);
2427 	pm_runtime_set_suspended(&pdev->dev);
2428 	pm_runtime_dont_use_autosuspend(&pdev->dev);
2429 err_clk_disable:
2430 	clk_disable_unprepare(atxdmac->clk);
2431 err_free_irq:
2432 	free_irq(atxdmac->irq, atxdmac);
2433 	return ret;
2434 }
2435 
at_xdmac_remove(struct platform_device * pdev)2436 static void at_xdmac_remove(struct platform_device *pdev)
2437 {
2438 	struct at_xdmac	*atxdmac = (struct at_xdmac *)platform_get_drvdata(pdev);
2439 	int		i;
2440 
2441 	at_xdmac_off(atxdmac, true);
2442 	of_dma_controller_free(pdev->dev.of_node);
2443 	dma_async_device_unregister(&atxdmac->dma);
2444 	pm_runtime_disable(atxdmac->dev);
2445 	pm_runtime_set_suspended(&pdev->dev);
2446 	pm_runtime_dont_use_autosuspend(&pdev->dev);
2447 	clk_disable_unprepare(atxdmac->clk);
2448 
2449 	free_irq(atxdmac->irq, atxdmac);
2450 
2451 	for (i = 0; i < atxdmac->dma.chancnt; i++) {
2452 		struct at_xdmac_chan *atchan = &atxdmac->chan[i];
2453 
2454 		tasklet_kill(&atchan->tasklet);
2455 		at_xdmac_free_chan_resources(&atchan->chan);
2456 	}
2457 }
2458 
2459 static const struct dev_pm_ops __maybe_unused atmel_xdmac_dev_pm_ops = {
2460 	.prepare	= atmel_xdmac_prepare,
2461 	SET_LATE_SYSTEM_SLEEP_PM_OPS(atmel_xdmac_suspend, atmel_xdmac_resume)
2462 	SET_RUNTIME_PM_OPS(atmel_xdmac_runtime_suspend,
2463 			   atmel_xdmac_runtime_resume, NULL)
2464 };
2465 
2466 static const struct of_device_id atmel_xdmac_dt_ids[] = {
2467 	{
2468 		.compatible = "atmel,sama5d4-dma",
2469 		.data = &at_xdmac_sama5d4_layout,
2470 	}, {
2471 		.compatible = "microchip,sama7g5-dma",
2472 		.data = &at_xdmac_sama7g5_layout,
2473 	}, {
2474 		/* sentinel */
2475 	}
2476 };
2477 MODULE_DEVICE_TABLE(of, atmel_xdmac_dt_ids);
2478 
2479 static struct platform_driver at_xdmac_driver = {
2480 	.probe		= at_xdmac_probe,
2481 	.remove		= at_xdmac_remove,
2482 	.driver = {
2483 		.name		= "at_xdmac",
2484 		.of_match_table	= of_match_ptr(atmel_xdmac_dt_ids),
2485 		.pm		= pm_ptr(&atmel_xdmac_dev_pm_ops),
2486 	}
2487 };
2488 
at_xdmac_init(void)2489 static int __init at_xdmac_init(void)
2490 {
2491 	return platform_driver_register(&at_xdmac_driver);
2492 }
2493 subsys_initcall(at_xdmac_init);
2494 
at_xdmac_exit(void)2495 static void __exit at_xdmac_exit(void)
2496 {
2497 	platform_driver_unregister(&at_xdmac_driver);
2498 }
2499 module_exit(at_xdmac_exit);
2500 
2501 MODULE_DESCRIPTION("Atmel Extended DMA Controller driver");
2502 MODULE_AUTHOR("Ludovic Desroches <ludovic.desroches@atmel.com>");
2503 MODULE_LICENSE("GPL");
2504