xref: /linux/drivers/iio/adc/at91-sama5d2_adc.c (revision df02351331671abb26788bc13f6d276e26ae068f)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Atmel ADC driver for SAMA5D2 devices and compatible.
4  *
5  * Copyright (C) 2015 Atmel,
6  *               2015 Ludovic Desroches <ludovic.desroches@atmel.com>
7  *		 2021 Microchip Technology, Inc. and its subsidiaries
8  *		 2021 Eugen Hristev <eugen.hristev@microchip.com>
9  */
10 
11 #include <linux/bitops.h>
12 #include <linux/cleanup.h>
13 #include <linux/clk.h>
14 #include <linux/delay.h>
15 #include <linux/dma-mapping.h>
16 #include <linux/dmaengine.h>
17 #include <linux/interrupt.h>
18 #include <linux/io.h>
19 #include <linux/module.h>
20 #include <linux/mod_devicetable.h>
21 #include <linux/platform_device.h>
22 #include <linux/property.h>
23 #include <linux/sched.h>
24 #include <linux/units.h>
25 #include <linux/wait.h>
26 #include <linux/iio/iio.h>
27 #include <linux/iio/sysfs.h>
28 #include <linux/iio/buffer.h>
29 #include <linux/iio/trigger.h>
30 #include <linux/iio/trigger_consumer.h>
31 #include <linux/iio/triggered_buffer.h>
32 #include <linux/nvmem-consumer.h>
33 #include <linux/pinctrl/consumer.h>
34 #include <linux/pm_runtime.h>
35 #include <linux/regulator/consumer.h>
36 
37 #include <dt-bindings/iio/adc/at91-sama5d2_adc.h>
38 
39 struct at91_adc_reg_layout {
40 /* Control Register */
41 	u16				CR;
42 /* Software Reset */
43 #define	AT91_SAMA5D2_CR_SWRST		BIT(0)
44 /* Start Conversion */
45 #define	AT91_SAMA5D2_CR_START		BIT(1)
46 /* Touchscreen Calibration */
47 #define	AT91_SAMA5D2_CR_TSCALIB		BIT(2)
48 /* Comparison Restart */
49 #define	AT91_SAMA5D2_CR_CMPRST		BIT(4)
50 
51 /* Mode Register */
52 	u16				MR;
53 /* Trigger Selection */
54 #define	AT91_SAMA5D2_MR_TRGSEL(v)	((v) << 1)
55 /* ADTRG */
56 #define	AT91_SAMA5D2_MR_TRGSEL_TRIG0	0
57 /* TIOA0 */
58 #define	AT91_SAMA5D2_MR_TRGSEL_TRIG1	1
59 /* TIOA1 */
60 #define	AT91_SAMA5D2_MR_TRGSEL_TRIG2	2
61 /* TIOA2 */
62 #define	AT91_SAMA5D2_MR_TRGSEL_TRIG3	3
63 /* PWM event line 0 */
64 #define	AT91_SAMA5D2_MR_TRGSEL_TRIG4	4
65 /* PWM event line 1 */
66 #define	AT91_SAMA5D2_MR_TRGSEL_TRIG5	5
67 /* TIOA3 */
68 #define	AT91_SAMA5D2_MR_TRGSEL_TRIG6	6
69 /* RTCOUT0 */
70 #define	AT91_SAMA5D2_MR_TRGSEL_TRIG7	7
71 /* Sleep Mode */
72 #define	AT91_SAMA5D2_MR_SLEEP		BIT(5)
73 /* Fast Wake Up */
74 #define	AT91_SAMA5D2_MR_FWUP		BIT(6)
75 /* Prescaler Rate Selection */
76 #define	AT91_SAMA5D2_MR_PRESCAL(v)	((v) << AT91_SAMA5D2_MR_PRESCAL_OFFSET)
77 #define	AT91_SAMA5D2_MR_PRESCAL_OFFSET	8
78 #define	AT91_SAMA5D2_MR_PRESCAL_MAX	0xff
79 #define AT91_SAMA5D2_MR_PRESCAL_MASK	GENMASK(15, 8)
80 /* Startup Time */
81 #define	AT91_SAMA5D2_MR_STARTUP(v)	((v) << 16)
82 #define AT91_SAMA5D2_MR_STARTUP_MASK	GENMASK(19, 16)
83 /* Minimum startup time for temperature sensor */
84 #define AT91_SAMA5D2_MR_STARTUP_TS_MIN	(50)
85 /* Analog Change */
86 #define	AT91_SAMA5D2_MR_ANACH		BIT(23)
87 /* Tracking Time */
88 #define	AT91_SAMA5D2_MR_TRACKTIM(v)	((v) << 24)
89 #define	AT91_SAMA5D2_MR_TRACKTIM_TS	6
90 #define	AT91_SAMA5D2_MR_TRACKTIM_MAX	0xf
91 /* Transfer Time */
92 #define	AT91_SAMA5D2_MR_TRANSFER(v)	((v) << 28)
93 #define	AT91_SAMA5D2_MR_TRANSFER_MAX	0x3
94 /* Use Sequence Enable */
95 #define	AT91_SAMA5D2_MR_USEQ		BIT(31)
96 
97 /* Channel Sequence Register 1 */
98 	u16				SEQR1;
99 /* Channel Sequence Register 2 */
100 	u16				SEQR2;
101 /* Channel Enable Register */
102 	u16				CHER;
103 /* Channel Disable Register */
104 	u16				CHDR;
105 /* Channel Status Register */
106 	u16				CHSR;
107 /* Last Converted Data Register */
108 	u16				LCDR;
109 /* Interrupt Enable Register */
110 	u16				IER;
111 /* Interrupt Enable Register - TS X measurement ready */
112 #define AT91_SAMA5D2_IER_XRDY   BIT(20)
113 /* Interrupt Enable Register - TS Y measurement ready */
114 #define AT91_SAMA5D2_IER_YRDY   BIT(21)
115 /* Interrupt Enable Register - TS pressure measurement ready */
116 #define AT91_SAMA5D2_IER_PRDY   BIT(22)
117 /* Interrupt Enable Register - Data ready */
118 #define AT91_SAMA5D2_IER_DRDY   BIT(24)
119 /* Interrupt Enable Register - general overrun error */
120 #define AT91_SAMA5D2_IER_GOVRE BIT(25)
121 /* Interrupt Enable Register - Pen detect */
122 #define AT91_SAMA5D2_IER_PEN    BIT(29)
123 /* Interrupt Enable Register - No pen detect */
124 #define AT91_SAMA5D2_IER_NOPEN  BIT(30)
125 
126 /* Interrupt Disable Register */
127 	u16				IDR;
128 /* Interrupt Mask Register */
129 	u16				IMR;
130 /* Interrupt Status Register */
131 	u16				ISR;
132 /* End of Conversion Interrupt Enable Register */
133 	u16				EOC_IER;
134 /* End of Conversion Interrupt Disable Register */
135 	u16				EOC_IDR;
136 /* End of Conversion Interrupt Mask Register */
137 	u16				EOC_IMR;
138 /* End of Conversion Interrupt Status Register */
139 	u16				EOC_ISR;
140 /* Interrupt Status Register - Pen touching sense status */
141 #define AT91_SAMA5D2_ISR_PENS   BIT(31)
142 /* Last Channel Trigger Mode Register */
143 	u16				LCTMR;
144 /* Last Channel Compare Window Register */
145 	u16				LCCWR;
146 /* Overrun Status Register */
147 	u16				OVER;
148 /* Extended Mode Register */
149 	u16				EMR;
150 /* Extended Mode Register - Oversampling rate */
151 #define AT91_SAMA5D2_EMR_OSR(V, M)		(((V) << 16) & (M))
152 #define AT91_SAMA5D2_EMR_OSR_1SAMPLES		0
153 #define AT91_SAMA5D2_EMR_OSR_4SAMPLES		1
154 #define AT91_SAMA5D2_EMR_OSR_16SAMPLES		2
155 #define AT91_SAMA5D2_EMR_OSR_64SAMPLES		3
156 #define AT91_SAMA5D2_EMR_OSR_256SAMPLES		4
157 
158 /* Extended Mode Register - TRACKX */
159 #define AT91_SAMA5D2_TRACKX_MASK		GENMASK(23, 22)
160 #define AT91_SAMA5D2_TRACKX(x)			(((x) << 22) & \
161 						 AT91_SAMA5D2_TRACKX_MASK)
162 /* TRACKX for temperature sensor. */
163 #define AT91_SAMA5D2_TRACKX_TS			(1)
164 
165 /* Extended Mode Register - Averaging on single trigger event */
166 #define AT91_SAMA5D2_EMR_ASTE(V)		((V) << 20)
167 
168 /* Compare Window Register */
169 	u16				CWR;
170 /* Channel Gain Register */
171 	u16				CGR;
172 /* Channel Offset Register */
173 	u16				COR;
174 /* Channel Offset Register differential offset - constant, not a register */
175 	u16				COR_diff_offset;
176 /* Analog Control Register */
177 	u16				ACR;
178 /* Analog Control Register - Pen detect sensitivity mask */
179 #define AT91_SAMA5D2_ACR_PENDETSENS_MASK        GENMASK(1, 0)
180 /* Analog Control Register - Source last channel */
181 #define AT91_SAMA5D2_ACR_SRCLCH		BIT(16)
182 
183 /* Touchscreen Mode Register */
184 	u16				TSMR;
185 /* Touchscreen Mode Register - No touch mode */
186 #define AT91_SAMA5D2_TSMR_TSMODE_NONE           0
187 /* Touchscreen Mode Register - 4 wire screen, no pressure measurement */
188 #define AT91_SAMA5D2_TSMR_TSMODE_4WIRE_NO_PRESS 1
189 /* Touchscreen Mode Register - 4 wire screen, pressure measurement */
190 #define AT91_SAMA5D2_TSMR_TSMODE_4WIRE_PRESS    2
191 /* Touchscreen Mode Register - 5 wire screen */
192 #define AT91_SAMA5D2_TSMR_TSMODE_5WIRE          3
193 /* Touchscreen Mode Register - Average samples mask */
194 #define AT91_SAMA5D2_TSMR_TSAV_MASK             GENMASK(5, 4)
195 /* Touchscreen Mode Register - Average samples */
196 #define AT91_SAMA5D2_TSMR_TSAV(x)               ((x) << 4)
197 /* Touchscreen Mode Register - Touch/trigger frequency ratio mask */
198 #define AT91_SAMA5D2_TSMR_TSFREQ_MASK           GENMASK(11, 8)
199 /* Touchscreen Mode Register - Touch/trigger frequency ratio */
200 #define AT91_SAMA5D2_TSMR_TSFREQ(x)             ((x) << 8)
201 /* Touchscreen Mode Register - Pen Debounce Time mask */
202 #define AT91_SAMA5D2_TSMR_PENDBC_MASK           GENMASK(31, 28)
203 /* Touchscreen Mode Register - Pen Debounce Time */
204 #define AT91_SAMA5D2_TSMR_PENDBC(x)            ((x) << 28)
205 /* Touchscreen Mode Register - No DMA for touch measurements */
206 #define AT91_SAMA5D2_TSMR_NOTSDMA               BIT(22)
207 /* Touchscreen Mode Register - Disable pen detection */
208 #define AT91_SAMA5D2_TSMR_PENDET_DIS            (0 << 24)
209 /* Touchscreen Mode Register - Enable pen detection */
210 #define AT91_SAMA5D2_TSMR_PENDET_ENA            BIT(24)
211 
212 /* Touchscreen X Position Register */
213 	u16				XPOSR;
214 /* Touchscreen Y Position Register */
215 	u16				YPOSR;
216 /* Touchscreen Pressure Register */
217 	u16				PRESSR;
218 /* Trigger Register */
219 	u16				TRGR;
220 /* Mask for TRGMOD field of TRGR register */
221 #define AT91_SAMA5D2_TRGR_TRGMOD_MASK GENMASK(2, 0)
222 /* No trigger, only software trigger can start conversions */
223 #define AT91_SAMA5D2_TRGR_TRGMOD_NO_TRIGGER 0
224 /* Trigger Mode external trigger rising edge */
225 #define AT91_SAMA5D2_TRGR_TRGMOD_EXT_TRIG_RISE 1
226 /* Trigger Mode external trigger falling edge */
227 #define AT91_SAMA5D2_TRGR_TRGMOD_EXT_TRIG_FALL 2
228 /* Trigger Mode external trigger any edge */
229 #define AT91_SAMA5D2_TRGR_TRGMOD_EXT_TRIG_ANY 3
230 /* Trigger Mode internal periodic */
231 #define AT91_SAMA5D2_TRGR_TRGMOD_PERIODIC 5
232 /* Trigger Mode - trigger period mask */
233 #define AT91_SAMA5D2_TRGR_TRGPER_MASK           GENMASK(31, 16)
234 /* Trigger Mode - trigger period */
235 #define AT91_SAMA5D2_TRGR_TRGPER(x)             ((x) << 16)
236 
237 /* Correction Select Register */
238 	u16				COSR;
239 /* Correction Value Register */
240 	u16				CVR;
241 /* Channel Error Correction Register */
242 	u16				CECR;
243 /* Write Protection Mode Register */
244 	u16				WPMR;
245 /* Write Protection Status Register */
246 	u16				WPSR;
247 /* Version Register */
248 	u16				VERSION;
249 /* Temperature Sensor Mode Register */
250 	u16				TEMPMR;
251 /* Temperature Sensor Mode - Temperature sensor on */
252 #define AT91_SAMA5D2_TEMPMR_TEMPON	BIT(0)
253 };
254 
255 static const struct at91_adc_reg_layout sama5d2_layout = {
256 	.CR =			0x00,
257 	.MR =			0x04,
258 	.SEQR1 =		0x08,
259 	.SEQR2 =		0x0c,
260 	.CHER =			0x10,
261 	.CHDR =			0x14,
262 	.CHSR =			0x18,
263 	.LCDR =			0x20,
264 	.IER =			0x24,
265 	.IDR =			0x28,
266 	.IMR =			0x2c,
267 	.ISR =			0x30,
268 	.LCTMR =		0x34,
269 	.LCCWR =		0x38,
270 	.OVER =			0x3c,
271 	.EMR =			0x40,
272 	.CWR =			0x44,
273 	.CGR =			0x48,
274 	.COR =			0x4c,
275 	.COR_diff_offset =	16,
276 	.ACR =			0x94,
277 	.TSMR =			0xb0,
278 	.XPOSR =		0xb4,
279 	.YPOSR =		0xb8,
280 	.PRESSR =		0xbc,
281 	.TRGR =			0xc0,
282 	.COSR =			0xd0,
283 	.CVR =			0xd4,
284 	.CECR =			0xd8,
285 	.WPMR =			0xe4,
286 	.WPSR =			0xe8,
287 	.VERSION =		0xfc,
288 };
289 
290 static const struct at91_adc_reg_layout sama7g5_layout = {
291 	.CR =			0x00,
292 	.MR =			0x04,
293 	.SEQR1 =		0x08,
294 	.SEQR2 =		0x0c,
295 	.CHER =			0x10,
296 	.CHDR =			0x14,
297 	.CHSR =			0x18,
298 	.LCDR =			0x20,
299 	.IER =			0x24,
300 	.IDR =			0x28,
301 	.IMR =			0x2c,
302 	.ISR =			0x30,
303 	.EOC_IER =		0x34,
304 	.EOC_IDR =		0x38,
305 	.EOC_IMR =		0x3c,
306 	.EOC_ISR =		0x40,
307 	.TEMPMR =		0x44,
308 	.OVER =			0x4c,
309 	.EMR =			0x50,
310 	.CWR =			0x54,
311 	.COR =			0x5c,
312 	.COR_diff_offset =	0,
313 	.ACR =			0xe0,
314 	.TRGR =			0x100,
315 	.COSR =			0x104,
316 	.CVR =			0x108,
317 	.CECR =			0x10c,
318 	.WPMR =			0x118,
319 	.WPSR =			0x11c,
320 	.VERSION =		0x130,
321 };
322 
323 #define AT91_SAMA5D2_TOUCH_SAMPLE_PERIOD_US          2000    /* 2ms */
324 #define AT91_SAMA5D2_TOUCH_PEN_DETECT_DEBOUNCE_US    200
325 
326 #define AT91_SAMA5D2_XYZ_MASK		GENMASK(11, 0)
327 
328 #define AT91_SAMA5D2_MAX_POS_BITS			12
329 
330 #define AT91_HWFIFO_MAX_SIZE_STR	"128"
331 #define AT91_HWFIFO_MAX_SIZE		128
332 
333 #define AT91_SAMA_CHAN_SINGLE(index, num, addr, rbits)			\
334 	{								\
335 		.type = IIO_VOLTAGE,					\
336 		.channel = num,						\
337 		.address = addr,					\
338 		.scan_index = index,					\
339 		.scan_type = {						\
340 			.sign = 'u',					\
341 			.realbits = rbits,				\
342 			.storagebits = 16,				\
343 		},							\
344 		.info_mask_separate = BIT(IIO_CHAN_INFO_RAW),		\
345 		.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE),	\
346 		.info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ)|\
347 				BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO),	\
348 		.info_mask_shared_by_all_available =			\
349 				BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO),	\
350 		.datasheet_name = "CH"#num,				\
351 		.indexed = 1,						\
352 	}
353 
354 #define AT91_SAMA5D2_CHAN_SINGLE(index, num, addr)			\
355 	AT91_SAMA_CHAN_SINGLE(index, num, addr, 14)
356 
357 #define AT91_SAMA7G5_CHAN_SINGLE(index, num, addr)			\
358 	AT91_SAMA_CHAN_SINGLE(index, num, addr, 16)
359 
360 #define AT91_SAMA_CHAN_DIFF(index, num, num2, addr, rbits)		\
361 	{								\
362 		.type = IIO_VOLTAGE,					\
363 		.differential = 1,					\
364 		.channel = num,						\
365 		.channel2 = num2,					\
366 		.address = addr,					\
367 		.scan_index = index,					\
368 		.scan_type = {						\
369 			.sign = 's',					\
370 			.realbits = rbits,				\
371 			.storagebits = 16,				\
372 		},							\
373 		.info_mask_separate = BIT(IIO_CHAN_INFO_RAW),		\
374 		.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE),	\
375 		.info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ)|\
376 				BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO),	\
377 		.info_mask_shared_by_all_available =			\
378 				BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO),	\
379 		.datasheet_name = "CH"#num"-CH"#num2,			\
380 		.indexed = 1,						\
381 	}
382 
383 #define AT91_SAMA5D2_CHAN_DIFF(index, num, num2, addr)			\
384 	AT91_SAMA_CHAN_DIFF(index, num, num2, addr, 14)
385 
386 #define AT91_SAMA7G5_CHAN_DIFF(index, num, num2, addr)			\
387 	AT91_SAMA_CHAN_DIFF(index, num, num2, addr, 16)
388 
389 #define AT91_SAMA5D2_CHAN_TOUCH(num, name, mod)				\
390 	{								\
391 		.type = IIO_POSITIONRELATIVE,				\
392 		.modified = 1,						\
393 		.channel = num,						\
394 		.channel2 = mod,					\
395 		.scan_index = num,					\
396 		.scan_type = {						\
397 			.sign = 'u',					\
398 			.realbits = 12,					\
399 			.storagebits = 16,				\
400 		},							\
401 		.info_mask_separate = BIT(IIO_CHAN_INFO_RAW),		\
402 		.info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ)|\
403 				BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO),	\
404 		.info_mask_shared_by_all_available =			\
405 				BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO),	\
406 		.datasheet_name = name,					\
407 	}
408 #define AT91_SAMA5D2_CHAN_PRESSURE(num, name)				\
409 	{								\
410 		.type = IIO_PRESSURE,					\
411 		.channel = num,						\
412 		.scan_index = num,					\
413 		.scan_type = {						\
414 			.sign = 'u',					\
415 			.realbits = 12,					\
416 			.storagebits = 16,				\
417 		},							\
418 		.info_mask_separate = BIT(IIO_CHAN_INFO_RAW),		\
419 		.info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ)|\
420 				BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO),	\
421 		.info_mask_shared_by_all_available =			\
422 				BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO),	\
423 		.datasheet_name = name,					\
424 	}
425 
426 #define AT91_SAMA5D2_CHAN_TEMP(num, name, addr)				\
427 	{								\
428 		.type = IIO_TEMP,					\
429 		.channel = num,						\
430 		.address =  addr,					\
431 		.scan_index = num,					\
432 		.info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED),	\
433 		.info_mask_shared_by_all =				\
434 				BIT(IIO_CHAN_INFO_PROCESSED) |		\
435 				BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO),	\
436 		.info_mask_shared_by_all_available =			\
437 				BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO),	\
438 		.datasheet_name = name,					\
439 	}
440 
441 #define at91_adc_readl(st, reg)						\
442 	readl_relaxed((st)->base + (st)->soc_info.platform->layout->reg)
443 #define at91_adc_read_chan(st, reg)					\
444 	readl_relaxed((st)->base + reg)
445 #define at91_adc_writel(st, reg, val)					\
446 	writel_relaxed(val, (st)->base + (st)->soc_info.platform->layout->reg)
447 
448 /**
449  * struct at91_adc_platform - at91-sama5d2 platform information struct
450  * @layout:		pointer to the reg layout struct
451  * @adc_channels:	pointer to an array of channels for registering in
452  *			the iio subsystem
453  * @nr_channels:	number of physical channels available
454  * @touch_chan_x:	index of the touchscreen X channel
455  * @touch_chan_y:	index of the touchscreen Y channel
456  * @touch_chan_p:	index of the touchscreen P channel
457  * @max_channels:	number of total channels
458  * @max_index:		highest channel index (highest index may be higher
459  *			than the total channel number)
460  * @hw_trig_cnt:	number of possible hardware triggers
461  * @osr_mask:		oversampling ratio bitmask on EMR register
462  * @oversampling_avail:	available oversampling values
463  * @oversampling_avail_no: number of available oversampling values
464  * @chan_realbits:	realbits for registered channels
465  * @temp_chan:		temperature channel index
466  * @temp_sensor:	temperature sensor supported
467  */
468 struct at91_adc_platform {
469 	const struct at91_adc_reg_layout	*layout;
470 	const struct iio_chan_spec		(*adc_channels)[];
471 	unsigned int				nr_channels;
472 	unsigned int				touch_chan_x;
473 	unsigned int				touch_chan_y;
474 	unsigned int				touch_chan_p;
475 	unsigned int				max_channels;
476 	unsigned int				max_index;
477 	unsigned int				hw_trig_cnt;
478 	unsigned int				osr_mask;
479 	unsigned int				oversampling_avail[5];
480 	unsigned int				oversampling_avail_no;
481 	unsigned int				chan_realbits;
482 	unsigned int				temp_chan;
483 	bool					temp_sensor;
484 };
485 
486 /**
487  * struct at91_adc_temp_sensor_clb - at91-sama5d2 temperature sensor
488  * calibration data structure
489  * @p1: P1 calibration temperature
490  * @p4: P4 calibration voltage
491  * @p6: P6 calibration voltage
492  */
493 struct at91_adc_temp_sensor_clb {
494 	u32 p1;
495 	u32 p4;
496 	u32 p6;
497 };
498 
499 /**
500  * enum at91_adc_ts_clb_idx - calibration indexes in NVMEM buffer
501  * @AT91_ADC_TS_CLB_IDX_P1: index for P1
502  * @AT91_ADC_TS_CLB_IDX_P4: index for P4
503  * @AT91_ADC_TS_CLB_IDX_P6: index for P6
504  * @AT91_ADC_TS_CLB_IDX_MAX: max index for temperature calibration packet in OTP
505  */
506 enum at91_adc_ts_clb_idx {
507 	AT91_ADC_TS_CLB_IDX_P1 = 2,
508 	AT91_ADC_TS_CLB_IDX_P4 = 5,
509 	AT91_ADC_TS_CLB_IDX_P6 = 7,
510 	AT91_ADC_TS_CLB_IDX_MAX = 19,
511 };
512 
513 /* Temperature sensor calibration - Vtemp voltage sensitivity to temperature. */
514 #define AT91_ADC_TS_VTEMP_DT		(2080U)
515 
516 /**
517  * struct at91_adc_soc_info - at91-sama5d2 soc information struct
518  * @startup_time:	device startup time
519  * @min_sample_rate:	minimum sample rate in Hz
520  * @max_sample_rate:	maximum sample rate in Hz
521  * @platform:		pointer to the platform structure
522  * @temp_sensor_clb:	temperature sensor calibration data structure
523  */
524 struct at91_adc_soc_info {
525 	unsigned			startup_time;
526 	unsigned			min_sample_rate;
527 	unsigned			max_sample_rate;
528 	const struct at91_adc_platform	*platform;
529 	struct at91_adc_temp_sensor_clb	temp_sensor_clb;
530 };
531 
532 struct at91_adc_trigger {
533 	char				*name;
534 	unsigned int			trgmod_value;
535 	unsigned int			edge_type;
536 	bool				hw_trig;
537 };
538 
539 /**
540  * struct at91_adc_dma - at91-sama5d2 dma information struct
541  * @dma_chan:		the dma channel acquired
542  * @rx_buf:		dma coherent allocated area
543  * @rx_dma_buf:		dma handler for the buffer
544  * @phys_addr:		physical address of the ADC base register
545  * @buf_idx:		index inside the dma buffer where reading was last done
546  * @rx_buf_sz:		size of buffer used by DMA operation
547  * @watermark:		number of conversions to copy before DMA triggers irq
548  * @dma_ts:		hold the start timestamp of dma operation
549  */
550 struct at91_adc_dma {
551 	struct dma_chan			*dma_chan;
552 	u8				*rx_buf;
553 	dma_addr_t			rx_dma_buf;
554 	phys_addr_t			phys_addr;
555 	int				buf_idx;
556 	int				rx_buf_sz;
557 	int				watermark;
558 	s64				dma_ts;
559 };
560 
561 /**
562  * struct at91_adc_touch - at91-sama5d2 touchscreen information struct
563  * @sample_period_val:		the value for periodic trigger interval
564  * @touching:			is the pen touching the screen or not
565  * @x_pos:			temporary placeholder for pressure computation
566  * @channels_bitmask:		bitmask with the touchscreen channels enabled
567  * @workq:			workqueue for buffer data pushing
568  */
569 struct at91_adc_touch {
570 	u16				sample_period_val;
571 	bool				touching;
572 	u16				x_pos;
573 	unsigned long			channels_bitmask;
574 	struct work_struct		workq;
575 };
576 
577 /**
578  * struct at91_adc_temp - at91-sama5d2 temperature information structure
579  * @sample_period_val:	sample period value
580  * @saved_sample_rate:	saved sample rate
581  * @saved_oversampling:	saved oversampling
582  */
583 struct at91_adc_temp {
584 	u16				sample_period_val;
585 	u16				saved_sample_rate;
586 	u16				saved_oversampling;
587 };
588 
589 /*
590  * Buffer size requirements:
591  * No channels * bytes_per_channel(2) + timestamp bytes (8)
592  * Divided by 2 because we need half words.
593  * We assume 32 channels for now, has to be increased if needed.
594  * Nobody minds a buffer being too big.
595  */
596 #define AT91_BUFFER_MAX_HWORDS ((32 * 2 + 8) / 2)
597 
598 struct at91_adc_state {
599 	void __iomem			*base;
600 	int				irq;
601 	struct clk			*per_clk;
602 	struct regulator		*reg;
603 	struct regulator		*vref;
604 	int				vref_uv;
605 	unsigned int			current_sample_rate;
606 	struct iio_trigger		*trig;
607 	const struct at91_adc_trigger	*selected_trig;
608 	const struct iio_chan_spec	*chan;
609 	bool				conversion_done;
610 	u32				conversion_value;
611 	unsigned int			oversampling_ratio;
612 	struct at91_adc_soc_info	soc_info;
613 	wait_queue_head_t		wq_data_available;
614 	struct at91_adc_dma		dma_st;
615 	struct at91_adc_touch		touch_st;
616 	struct at91_adc_temp		temp_st;
617 	struct iio_dev			*indio_dev;
618 	struct device			*dev;
619 	/* Ensure naturally aligned timestamp */
620 	u16				buffer[AT91_BUFFER_MAX_HWORDS] __aligned(8);
621 	/*
622 	 * lock to prevent concurrent 'single conversion' requests through
623 	 * sysfs.
624 	 */
625 	struct mutex			lock;
626 };
627 
628 static const struct at91_adc_trigger at91_adc_trigger_list[] = {
629 	{
630 		.name = "external_rising",
631 		.trgmod_value = AT91_SAMA5D2_TRGR_TRGMOD_EXT_TRIG_RISE,
632 		.edge_type = IRQ_TYPE_EDGE_RISING,
633 		.hw_trig = true,
634 	},
635 	{
636 		.name = "external_falling",
637 		.trgmod_value = AT91_SAMA5D2_TRGR_TRGMOD_EXT_TRIG_FALL,
638 		.edge_type = IRQ_TYPE_EDGE_FALLING,
639 		.hw_trig = true,
640 	},
641 	{
642 		.name = "external_any",
643 		.trgmod_value = AT91_SAMA5D2_TRGR_TRGMOD_EXT_TRIG_ANY,
644 		.edge_type = IRQ_TYPE_EDGE_BOTH,
645 		.hw_trig = true,
646 	},
647 	{
648 		.name = "software",
649 		.trgmod_value = AT91_SAMA5D2_TRGR_TRGMOD_NO_TRIGGER,
650 		.edge_type = IRQ_TYPE_NONE,
651 		.hw_trig = false,
652 	},
653 };
654 
655 static const struct iio_chan_spec at91_sama5d2_adc_channels[] = {
656 	AT91_SAMA5D2_CHAN_SINGLE(0, 0, 0x50),
657 	AT91_SAMA5D2_CHAN_SINGLE(1, 1, 0x54),
658 	AT91_SAMA5D2_CHAN_SINGLE(2, 2, 0x58),
659 	AT91_SAMA5D2_CHAN_SINGLE(3, 3, 0x5c),
660 	AT91_SAMA5D2_CHAN_SINGLE(4, 4, 0x60),
661 	AT91_SAMA5D2_CHAN_SINGLE(5, 5, 0x64),
662 	AT91_SAMA5D2_CHAN_SINGLE(6, 6, 0x68),
663 	AT91_SAMA5D2_CHAN_SINGLE(7, 7, 0x6c),
664 	AT91_SAMA5D2_CHAN_SINGLE(8, 8, 0x70),
665 	AT91_SAMA5D2_CHAN_SINGLE(9, 9, 0x74),
666 	AT91_SAMA5D2_CHAN_SINGLE(10, 10, 0x78),
667 	AT91_SAMA5D2_CHAN_SINGLE(11, 11, 0x7c),
668 	/* original ABI has the differential channels with a gap in between */
669 	AT91_SAMA5D2_CHAN_DIFF(12, 0, 1, 0x50),
670 	AT91_SAMA5D2_CHAN_DIFF(14, 2, 3, 0x58),
671 	AT91_SAMA5D2_CHAN_DIFF(16, 4, 5, 0x60),
672 	AT91_SAMA5D2_CHAN_DIFF(18, 6, 7, 0x68),
673 	AT91_SAMA5D2_CHAN_DIFF(20, 8, 9, 0x70),
674 	AT91_SAMA5D2_CHAN_DIFF(22, 10, 11, 0x78),
675 	IIO_CHAN_SOFT_TIMESTAMP(23),
676 	AT91_SAMA5D2_CHAN_TOUCH(24, "x", IIO_MOD_X),
677 	AT91_SAMA5D2_CHAN_TOUCH(25, "y", IIO_MOD_Y),
678 	AT91_SAMA5D2_CHAN_PRESSURE(26, "pressure"),
679 };
680 
681 static const struct iio_chan_spec at91_sama7g5_adc_channels[] = {
682 	AT91_SAMA7G5_CHAN_SINGLE(0, 0, 0x60),
683 	AT91_SAMA7G5_CHAN_SINGLE(1, 1, 0x64),
684 	AT91_SAMA7G5_CHAN_SINGLE(2, 2, 0x68),
685 	AT91_SAMA7G5_CHAN_SINGLE(3, 3, 0x6c),
686 	AT91_SAMA7G5_CHAN_SINGLE(4, 4, 0x70),
687 	AT91_SAMA7G5_CHAN_SINGLE(5, 5, 0x74),
688 	AT91_SAMA7G5_CHAN_SINGLE(6, 6, 0x78),
689 	AT91_SAMA7G5_CHAN_SINGLE(7, 7, 0x7c),
690 	AT91_SAMA7G5_CHAN_SINGLE(8, 8, 0x80),
691 	AT91_SAMA7G5_CHAN_SINGLE(9, 9, 0x84),
692 	AT91_SAMA7G5_CHAN_SINGLE(10, 10, 0x88),
693 	AT91_SAMA7G5_CHAN_SINGLE(11, 11, 0x8c),
694 	AT91_SAMA7G5_CHAN_SINGLE(12, 12, 0x90),
695 	AT91_SAMA7G5_CHAN_SINGLE(13, 13, 0x94),
696 	AT91_SAMA7G5_CHAN_SINGLE(14, 14, 0x98),
697 	AT91_SAMA7G5_CHAN_SINGLE(15, 15, 0x9c),
698 	AT91_SAMA7G5_CHAN_DIFF(16, 0, 1, 0x60),
699 	AT91_SAMA7G5_CHAN_DIFF(17, 2, 3, 0x68),
700 	AT91_SAMA7G5_CHAN_DIFF(18, 4, 5, 0x70),
701 	AT91_SAMA7G5_CHAN_DIFF(19, 6, 7, 0x78),
702 	AT91_SAMA7G5_CHAN_DIFF(20, 8, 9, 0x80),
703 	AT91_SAMA7G5_CHAN_DIFF(21, 10, 11, 0x88),
704 	AT91_SAMA7G5_CHAN_DIFF(22, 12, 13, 0x90),
705 	AT91_SAMA7G5_CHAN_DIFF(23, 14, 15, 0x98),
706 	IIO_CHAN_SOFT_TIMESTAMP(24),
707 	AT91_SAMA5D2_CHAN_TEMP(AT91_SAMA7G5_ADC_TEMP_CHANNEL, "temp", 0xdc),
708 };
709 
710 static const struct at91_adc_platform sama5d2_platform = {
711 	.layout = &sama5d2_layout,
712 	.adc_channels = &at91_sama5d2_adc_channels,
713 #define AT91_SAMA5D2_SINGLE_CHAN_CNT 12
714 #define AT91_SAMA5D2_DIFF_CHAN_CNT 6
715 	.nr_channels = AT91_SAMA5D2_SINGLE_CHAN_CNT +
716 		       AT91_SAMA5D2_DIFF_CHAN_CNT,
717 #define AT91_SAMA5D2_TOUCH_X_CHAN_IDX	(AT91_SAMA5D2_SINGLE_CHAN_CNT + \
718 					AT91_SAMA5D2_DIFF_CHAN_CNT * 2)
719 	.touch_chan_x = AT91_SAMA5D2_TOUCH_X_CHAN_IDX,
720 #define AT91_SAMA5D2_TOUCH_Y_CHAN_IDX	(AT91_SAMA5D2_TOUCH_X_CHAN_IDX + 1)
721 	.touch_chan_y = AT91_SAMA5D2_TOUCH_Y_CHAN_IDX,
722 #define AT91_SAMA5D2_TOUCH_P_CHAN_IDX	(AT91_SAMA5D2_TOUCH_Y_CHAN_IDX + 1)
723 	.touch_chan_p = AT91_SAMA5D2_TOUCH_P_CHAN_IDX,
724 #define AT91_SAMA5D2_MAX_CHAN_IDX	AT91_SAMA5D2_TOUCH_P_CHAN_IDX
725 	.max_channels = ARRAY_SIZE(at91_sama5d2_adc_channels),
726 	.max_index = AT91_SAMA5D2_MAX_CHAN_IDX,
727 #define AT91_SAMA5D2_HW_TRIG_CNT	3
728 	.hw_trig_cnt = AT91_SAMA5D2_HW_TRIG_CNT,
729 	.osr_mask = GENMASK(17, 16),
730 	.oversampling_avail = { 1, 4, 16, },
731 	.oversampling_avail_no = 3,
732 	.chan_realbits = 14,
733 };
734 
735 static const struct at91_adc_platform sama7g5_platform = {
736 	.layout = &sama7g5_layout,
737 	.adc_channels = &at91_sama7g5_adc_channels,
738 #define AT91_SAMA7G5_SINGLE_CHAN_CNT	16
739 #define AT91_SAMA7G5_DIFF_CHAN_CNT	8
740 #define AT91_SAMA7G5_TEMP_CHAN_CNT	1
741 	.nr_channels = AT91_SAMA7G5_SINGLE_CHAN_CNT +
742 		       AT91_SAMA7G5_DIFF_CHAN_CNT +
743 		       AT91_SAMA7G5_TEMP_CHAN_CNT,
744 #define AT91_SAMA7G5_MAX_CHAN_IDX	(AT91_SAMA7G5_SINGLE_CHAN_CNT + \
745 					AT91_SAMA7G5_DIFF_CHAN_CNT + \
746 					AT91_SAMA7G5_TEMP_CHAN_CNT)
747 	.max_channels = ARRAY_SIZE(at91_sama7g5_adc_channels),
748 	.max_index = AT91_SAMA7G5_MAX_CHAN_IDX,
749 #define AT91_SAMA7G5_HW_TRIG_CNT	3
750 	.hw_trig_cnt = AT91_SAMA7G5_HW_TRIG_CNT,
751 	.osr_mask = GENMASK(18, 16),
752 	.oversampling_avail = { 1, 4, 16, 64, 256, },
753 	.oversampling_avail_no = 5,
754 	.chan_realbits = 16,
755 	.temp_sensor = true,
756 	.temp_chan = AT91_SAMA7G5_ADC_TEMP_CHANNEL,
757 };
758 
at91_adc_chan_xlate(struct iio_dev * indio_dev,int chan)759 static int at91_adc_chan_xlate(struct iio_dev *indio_dev, int chan)
760 {
761 	int i;
762 
763 	for (i = 0; i < indio_dev->num_channels; i++) {
764 		if (indio_dev->channels[i].scan_index == chan)
765 			return i;
766 	}
767 	return -EINVAL;
768 }
769 
770 static inline struct iio_chan_spec const *
at91_adc_chan_get(struct iio_dev * indio_dev,int chan)771 at91_adc_chan_get(struct iio_dev *indio_dev, int chan)
772 {
773 	int index = at91_adc_chan_xlate(indio_dev, chan);
774 
775 	if (index < 0)
776 		return NULL;
777 	return indio_dev->channels + index;
778 }
779 
at91_adc_fwnode_xlate(struct iio_dev * indio_dev,const struct fwnode_reference_args * iiospec)780 static inline int at91_adc_fwnode_xlate(struct iio_dev *indio_dev,
781 					const struct fwnode_reference_args *iiospec)
782 {
783 	return at91_adc_chan_xlate(indio_dev, iiospec->args[0]);
784 }
785 
at91_adc_active_scan_mask_to_reg(struct iio_dev * indio_dev)786 static unsigned int at91_adc_active_scan_mask_to_reg(struct iio_dev *indio_dev)
787 {
788 	u32 mask = 0;
789 	u8 bit;
790 	struct at91_adc_state *st = iio_priv(indio_dev);
791 
792 	for_each_set_bit(bit, indio_dev->active_scan_mask,
793 			 indio_dev->num_channels) {
794 		struct iio_chan_spec const *chan =
795 			 at91_adc_chan_get(indio_dev, bit);
796 		mask |= BIT(chan->channel);
797 	}
798 
799 	return mask & GENMASK(st->soc_info.platform->nr_channels, 0);
800 }
801 
at91_adc_cor(struct at91_adc_state * st,struct iio_chan_spec const * chan)802 static void at91_adc_cor(struct at91_adc_state *st,
803 			 struct iio_chan_spec const *chan)
804 {
805 	u32 cor, cur_cor;
806 
807 	cor = BIT(chan->channel) | BIT(chan->channel2);
808 
809 	cur_cor = at91_adc_readl(st, COR);
810 	cor <<= st->soc_info.platform->layout->COR_diff_offset;
811 	if (chan->differential)
812 		at91_adc_writel(st, COR, cur_cor | cor);
813 	else
814 		at91_adc_writel(st, COR, cur_cor & ~cor);
815 }
816 
at91_adc_irq_status(struct at91_adc_state * st,u32 * status,u32 * eoc)817 static void at91_adc_irq_status(struct at91_adc_state *st, u32 *status,
818 				u32 *eoc)
819 {
820 	*status = at91_adc_readl(st, ISR);
821 	if (st->soc_info.platform->layout->EOC_ISR)
822 		*eoc = at91_adc_readl(st, EOC_ISR);
823 	else
824 		*eoc = *status;
825 }
826 
at91_adc_irq_mask(struct at91_adc_state * st,u32 * status,u32 * eoc)827 static void at91_adc_irq_mask(struct at91_adc_state *st, u32 *status, u32 *eoc)
828 {
829 	*status = at91_adc_readl(st, IMR);
830 	if (st->soc_info.platform->layout->EOC_IMR)
831 		*eoc = at91_adc_readl(st, EOC_IMR);
832 	else
833 		*eoc = *status;
834 }
835 
at91_adc_eoc_dis(struct at91_adc_state * st,unsigned int channel)836 static void at91_adc_eoc_dis(struct at91_adc_state *st, unsigned int channel)
837 {
838 	/*
839 	 * On some products having the EOC bits in a separate register,
840 	 * errata recommends not writing this register (EOC_IDR).
841 	 * On products having the EOC bits in the IDR register, it's fine to write it.
842 	 */
843 	if (!st->soc_info.platform->layout->EOC_IDR)
844 		at91_adc_writel(st, IDR, BIT(channel));
845 }
846 
at91_adc_eoc_ena(struct at91_adc_state * st,unsigned int channel)847 static void at91_adc_eoc_ena(struct at91_adc_state *st, unsigned int channel)
848 {
849 	if (!st->soc_info.platform->layout->EOC_IDR)
850 		at91_adc_writel(st, IER, BIT(channel));
851 	else
852 		at91_adc_writel(st, EOC_IER, BIT(channel));
853 }
854 
at91_adc_config_emr(struct at91_adc_state * st,u32 oversampling_ratio,u32 trackx)855 static int at91_adc_config_emr(struct at91_adc_state *st,
856 			       u32 oversampling_ratio, u32 trackx)
857 {
858 	/* configure the extended mode register */
859 	unsigned int emr, osr;
860 	unsigned int osr_mask = st->soc_info.platform->osr_mask;
861 	int i, ret;
862 
863 	/* Check against supported oversampling values. */
864 	for (i = 0; i < st->soc_info.platform->oversampling_avail_no; i++) {
865 		if (oversampling_ratio == st->soc_info.platform->oversampling_avail[i])
866 			break;
867 	}
868 	if (i == st->soc_info.platform->oversampling_avail_no)
869 		return -EINVAL;
870 
871 	/* select oversampling ratio from configuration */
872 	switch (oversampling_ratio) {
873 	case 1:
874 		osr = AT91_SAMA5D2_EMR_OSR(AT91_SAMA5D2_EMR_OSR_1SAMPLES,
875 					   osr_mask);
876 		break;
877 	case 4:
878 		osr = AT91_SAMA5D2_EMR_OSR(AT91_SAMA5D2_EMR_OSR_4SAMPLES,
879 					   osr_mask);
880 		break;
881 	case 16:
882 		osr = AT91_SAMA5D2_EMR_OSR(AT91_SAMA5D2_EMR_OSR_16SAMPLES,
883 					   osr_mask);
884 		break;
885 	case 64:
886 		osr = AT91_SAMA5D2_EMR_OSR(AT91_SAMA5D2_EMR_OSR_64SAMPLES,
887 					   osr_mask);
888 		break;
889 	case 256:
890 		osr = AT91_SAMA5D2_EMR_OSR(AT91_SAMA5D2_EMR_OSR_256SAMPLES,
891 					   osr_mask);
892 		break;
893 	}
894 
895 	ret = pm_runtime_resume_and_get(st->dev);
896 	if (ret < 0)
897 		return ret;
898 
899 	emr = at91_adc_readl(st, EMR);
900 	/* select oversampling per single trigger event */
901 	emr |= AT91_SAMA5D2_EMR_ASTE(1);
902 	/* delete leftover content if it's the case */
903 	emr &= ~(osr_mask | AT91_SAMA5D2_TRACKX_MASK);
904 	/* Update osr and trackx. */
905 	emr |= osr | AT91_SAMA5D2_TRACKX(trackx);
906 	at91_adc_writel(st, EMR, emr);
907 
908 	pm_runtime_mark_last_busy(st->dev);
909 	pm_runtime_put_autosuspend(st->dev);
910 
911 	st->oversampling_ratio = oversampling_ratio;
912 
913 	return 0;
914 }
915 
at91_adc_adjust_val_osr(struct at91_adc_state * st,int * val)916 static int at91_adc_adjust_val_osr(struct at91_adc_state *st, int *val)
917 {
918 	int nbits, diff;
919 
920 	if (st->oversampling_ratio == 1)
921 		nbits = 12;
922 	else if (st->oversampling_ratio == 4)
923 		nbits = 13;
924 	else if (st->oversampling_ratio == 16)
925 		nbits = 14;
926 	else if (st->oversampling_ratio == 64)
927 		nbits = 15;
928 	else if (st->oversampling_ratio == 256)
929 		nbits = 16;
930 	else
931 		/* Should not happen. */
932 		return -EINVAL;
933 
934 	/*
935 	 * We have nbits of real data and channel is registered as
936 	 * st->soc_info.platform->chan_realbits, so shift left diff bits.
937 	 */
938 	diff = st->soc_info.platform->chan_realbits - nbits;
939 	*val <<= diff;
940 
941 	return IIO_VAL_INT;
942 }
943 
at91_adc_adjust_val_osr_array(struct at91_adc_state * st,void * buf,int len)944 static void at91_adc_adjust_val_osr_array(struct at91_adc_state *st, void *buf,
945 					  int len)
946 {
947 	int i = 0, val;
948 	u16 *buf_u16 = (u16 *) buf;
949 
950 	/*
951 	 * We are converting each two bytes (each sample).
952 	 * First convert the byte based array to u16, and convert each sample
953 	 * separately.
954 	 * Each value is two bytes in an array of chars, so to not shift
955 	 * more than we need, save the value separately.
956 	 * len is in bytes, so divide by two to get number of samples.
957 	 */
958 	while (i < len / 2) {
959 		val = buf_u16[i];
960 		at91_adc_adjust_val_osr(st, &val);
961 		buf_u16[i] = val;
962 		i++;
963 	}
964 }
965 
at91_adc_configure_touch(struct at91_adc_state * st,bool state)966 static int at91_adc_configure_touch(struct at91_adc_state *st, bool state)
967 {
968 	u32 clk_khz = st->current_sample_rate / 1000;
969 	int i = 0, ret;
970 	u16 pendbc;
971 	u32 tsmr, acr;
972 
973 	if (state) {
974 		ret = pm_runtime_resume_and_get(st->dev);
975 		if (ret < 0)
976 			return ret;
977 	} else {
978 		/* disabling touch IRQs and setting mode to no touch enabled */
979 		at91_adc_writel(st, IDR,
980 				AT91_SAMA5D2_IER_PEN | AT91_SAMA5D2_IER_NOPEN);
981 		at91_adc_writel(st, TSMR, 0);
982 
983 		pm_runtime_mark_last_busy(st->dev);
984 		pm_runtime_put_autosuspend(st->dev);
985 		return 0;
986 	}
987 	/*
988 	 * debounce time is in microseconds, we need it in milliseconds to
989 	 * multiply with kilohertz, so, divide by 1000, but after the multiply.
990 	 * round up to make sure pendbc is at least 1
991 	 */
992 	pendbc = round_up(AT91_SAMA5D2_TOUCH_PEN_DETECT_DEBOUNCE_US *
993 			  clk_khz / 1000, 1);
994 
995 	/* get the required exponent */
996 	while (pendbc >> i++)
997 		;
998 
999 	pendbc = i;
1000 
1001 	tsmr = AT91_SAMA5D2_TSMR_TSMODE_4WIRE_PRESS;
1002 
1003 	tsmr |= AT91_SAMA5D2_TSMR_TSAV(2) & AT91_SAMA5D2_TSMR_TSAV_MASK;
1004 	tsmr |= AT91_SAMA5D2_TSMR_PENDBC(pendbc) &
1005 		AT91_SAMA5D2_TSMR_PENDBC_MASK;
1006 	tsmr |= AT91_SAMA5D2_TSMR_NOTSDMA;
1007 	tsmr |= AT91_SAMA5D2_TSMR_PENDET_ENA;
1008 	tsmr |= AT91_SAMA5D2_TSMR_TSFREQ(2) & AT91_SAMA5D2_TSMR_TSFREQ_MASK;
1009 
1010 	at91_adc_writel(st, TSMR, tsmr);
1011 
1012 	acr =  at91_adc_readl(st, ACR);
1013 	acr &= ~AT91_SAMA5D2_ACR_PENDETSENS_MASK;
1014 	acr |= 0x02 & AT91_SAMA5D2_ACR_PENDETSENS_MASK;
1015 	at91_adc_writel(st, ACR, acr);
1016 
1017 	/* Sample Period Time = (TRGPER + 1) / ADCClock */
1018 	st->touch_st.sample_period_val =
1019 				 round_up((AT91_SAMA5D2_TOUCH_SAMPLE_PERIOD_US *
1020 				 clk_khz / 1000) - 1, 1);
1021 	/* enable pen detect IRQ */
1022 	at91_adc_writel(st, IER, AT91_SAMA5D2_IER_PEN);
1023 
1024 	return 0;
1025 }
1026 
at91_adc_touch_pos(struct at91_adc_state * st,int reg)1027 static u16 at91_adc_touch_pos(struct at91_adc_state *st, int reg)
1028 {
1029 	u32 val = 0;
1030 	u32 scale, result, pos;
1031 
1032 	/*
1033 	 * to obtain the actual position we must divide by scale
1034 	 * and multiply with max, where
1035 	 * max = 2^AT91_SAMA5D2_MAX_POS_BITS - 1
1036 	 */
1037 	/* first half of register is the x or y, second half is the scale */
1038 	if (reg == st->soc_info.platform->layout->XPOSR)
1039 		val = at91_adc_readl(st, XPOSR);
1040 	else if (reg == st->soc_info.platform->layout->YPOSR)
1041 		val = at91_adc_readl(st, YPOSR);
1042 
1043 	if (!val)
1044 		dev_dbg(&st->indio_dev->dev, "pos is 0\n");
1045 
1046 	pos = val & AT91_SAMA5D2_XYZ_MASK;
1047 	result = (pos << AT91_SAMA5D2_MAX_POS_BITS) - pos;
1048 	scale = (val >> 16) & AT91_SAMA5D2_XYZ_MASK;
1049 	if (scale == 0) {
1050 		dev_err(&st->indio_dev->dev, "scale is 0\n");
1051 		return 0;
1052 	}
1053 	result /= scale;
1054 
1055 	return result;
1056 }
1057 
at91_adc_touch_x_pos(struct at91_adc_state * st)1058 static u16 at91_adc_touch_x_pos(struct at91_adc_state *st)
1059 {
1060 	st->touch_st.x_pos = at91_adc_touch_pos(st, st->soc_info.platform->layout->XPOSR);
1061 	return st->touch_st.x_pos;
1062 }
1063 
at91_adc_touch_y_pos(struct at91_adc_state * st)1064 static u16 at91_adc_touch_y_pos(struct at91_adc_state *st)
1065 {
1066 	return at91_adc_touch_pos(st, st->soc_info.platform->layout->YPOSR);
1067 }
1068 
at91_adc_touch_pressure(struct at91_adc_state * st)1069 static u16 at91_adc_touch_pressure(struct at91_adc_state *st)
1070 {
1071 	u32 val;
1072 	u32 z1, z2;
1073 	u32 pres;
1074 	u32 rxp = 1;
1075 	u32 factor = 1000;
1076 
1077 	/* calculate the pressure */
1078 	val = at91_adc_readl(st, PRESSR);
1079 	z1 = val & AT91_SAMA5D2_XYZ_MASK;
1080 	z2 = (val >> 16) & AT91_SAMA5D2_XYZ_MASK;
1081 
1082 	if (z1 != 0)
1083 		pres = rxp * (st->touch_st.x_pos * factor / 1024) *
1084 			(z2 * factor / z1 - factor) /
1085 			factor;
1086 	else
1087 		pres = 0xFFFF;       /* no pen contact */
1088 
1089 	/*
1090 	 * The pressure from device grows down, minimum is 0xFFFF, maximum 0x0.
1091 	 * We compute it this way, but let's return it in the expected way,
1092 	 * growing from 0 to 0xFFFF.
1093 	 */
1094 	return 0xFFFF - pres;
1095 }
1096 
at91_adc_read_position(struct at91_adc_state * st,int chan,u16 * val)1097 static int at91_adc_read_position(struct at91_adc_state *st, int chan, u16 *val)
1098 {
1099 	*val = 0;
1100 	if (!st->touch_st.touching)
1101 		return -ENODATA;
1102 	if (chan == st->soc_info.platform->touch_chan_x)
1103 		*val = at91_adc_touch_x_pos(st);
1104 	else if (chan == st->soc_info.platform->touch_chan_y)
1105 		*val = at91_adc_touch_y_pos(st);
1106 	else
1107 		return -ENODATA;
1108 
1109 	return IIO_VAL_INT;
1110 }
1111 
at91_adc_read_pressure(struct at91_adc_state * st,int chan,u16 * val)1112 static int at91_adc_read_pressure(struct at91_adc_state *st, int chan, u16 *val)
1113 {
1114 	*val = 0;
1115 	if (!st->touch_st.touching)
1116 		return -ENODATA;
1117 	if (chan == st->soc_info.platform->touch_chan_p)
1118 		*val = at91_adc_touch_pressure(st);
1119 	else
1120 		return -ENODATA;
1121 
1122 	return IIO_VAL_INT;
1123 }
1124 
at91_adc_configure_trigger_registers(struct at91_adc_state * st,bool state)1125 static void at91_adc_configure_trigger_registers(struct at91_adc_state *st,
1126 						 bool state)
1127 {
1128 	u32 status = at91_adc_readl(st, TRGR);
1129 
1130 	/* clear TRGMOD */
1131 	status &= ~AT91_SAMA5D2_TRGR_TRGMOD_MASK;
1132 
1133 	if (state)
1134 		status |= st->selected_trig->trgmod_value;
1135 
1136 	/* set/unset hw trigger */
1137 	at91_adc_writel(st, TRGR, status);
1138 }
1139 
at91_adc_configure_trigger(struct iio_trigger * trig,bool state)1140 static int at91_adc_configure_trigger(struct iio_trigger *trig, bool state)
1141 {
1142 	struct iio_dev *indio = iio_trigger_get_drvdata(trig);
1143 	struct at91_adc_state *st = iio_priv(indio);
1144 	int ret;
1145 
1146 	if (state) {
1147 		ret = pm_runtime_resume_and_get(st->dev);
1148 		if (ret < 0)
1149 			return ret;
1150 	}
1151 
1152 	at91_adc_configure_trigger_registers(st, state);
1153 
1154 	if (!state) {
1155 		pm_runtime_mark_last_busy(st->dev);
1156 		pm_runtime_put_autosuspend(st->dev);
1157 	}
1158 
1159 	return 0;
1160 }
1161 
at91_adc_reenable_trigger(struct iio_trigger * trig)1162 static void at91_adc_reenable_trigger(struct iio_trigger *trig)
1163 {
1164 	struct iio_dev *indio = iio_trigger_get_drvdata(trig);
1165 	struct at91_adc_state *st = iio_priv(indio);
1166 
1167 	/* if we are using DMA, we must not reenable irq after each trigger */
1168 	if (st->dma_st.dma_chan)
1169 		return;
1170 
1171 	enable_irq(st->irq);
1172 
1173 	/* Needed to ACK the DRDY interruption */
1174 	at91_adc_readl(st, LCDR);
1175 }
1176 
1177 static const struct iio_trigger_ops at91_adc_trigger_ops = {
1178 	.set_trigger_state = &at91_adc_configure_trigger,
1179 	.reenable = &at91_adc_reenable_trigger,
1180 	.validate_device = iio_trigger_validate_own_device,
1181 };
1182 
at91_adc_dma_size_done(struct at91_adc_state * st)1183 static int at91_adc_dma_size_done(struct at91_adc_state *st)
1184 {
1185 	struct dma_tx_state state;
1186 	enum dma_status status;
1187 	int i, size;
1188 
1189 	status = dmaengine_tx_status(st->dma_st.dma_chan,
1190 				     st->dma_st.dma_chan->cookie,
1191 				     &state);
1192 	if (status != DMA_IN_PROGRESS)
1193 		return 0;
1194 
1195 	/* Transferred length is size in bytes from end of buffer */
1196 	i = st->dma_st.rx_buf_sz - state.residue;
1197 
1198 	/* Return available bytes */
1199 	if (i >= st->dma_st.buf_idx)
1200 		size = i - st->dma_st.buf_idx;
1201 	else
1202 		size = st->dma_st.rx_buf_sz + i - st->dma_st.buf_idx;
1203 	return size;
1204 }
1205 
at91_dma_buffer_done(void * data)1206 static void at91_dma_buffer_done(void *data)
1207 {
1208 	struct iio_dev *indio_dev = data;
1209 
1210 	iio_trigger_poll_nested(indio_dev->trig);
1211 }
1212 
at91_adc_dma_start(struct iio_dev * indio_dev)1213 static int at91_adc_dma_start(struct iio_dev *indio_dev)
1214 {
1215 	struct at91_adc_state *st = iio_priv(indio_dev);
1216 	struct dma_async_tx_descriptor *desc;
1217 	dma_cookie_t cookie;
1218 	int ret;
1219 	u8 bit;
1220 
1221 	if (!st->dma_st.dma_chan)
1222 		return 0;
1223 
1224 	/* we start a new DMA, so set buffer index to start */
1225 	st->dma_st.buf_idx = 0;
1226 
1227 	/*
1228 	 * compute buffer size w.r.t. watermark and enabled channels.
1229 	 * scan_bytes is aligned so we need an exact size for DMA
1230 	 */
1231 	st->dma_st.rx_buf_sz = 0;
1232 
1233 	for_each_set_bit(bit, indio_dev->active_scan_mask,
1234 			 indio_dev->num_channels) {
1235 		struct iio_chan_spec const *chan =
1236 					 at91_adc_chan_get(indio_dev, bit);
1237 
1238 		if (!chan)
1239 			continue;
1240 
1241 		st->dma_st.rx_buf_sz += chan->scan_type.storagebits / 8;
1242 	}
1243 	st->dma_st.rx_buf_sz *= st->dma_st.watermark;
1244 
1245 	/* Prepare a DMA cyclic transaction */
1246 	desc = dmaengine_prep_dma_cyclic(st->dma_st.dma_chan,
1247 					 st->dma_st.rx_dma_buf,
1248 					 st->dma_st.rx_buf_sz,
1249 					 st->dma_st.rx_buf_sz / 2,
1250 					 DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT);
1251 
1252 	if (!desc) {
1253 		dev_err(&indio_dev->dev, "cannot prepare DMA cyclic\n");
1254 		return -EBUSY;
1255 	}
1256 
1257 	desc->callback = at91_dma_buffer_done;
1258 	desc->callback_param = indio_dev;
1259 
1260 	cookie = dmaengine_submit(desc);
1261 	ret = dma_submit_error(cookie);
1262 	if (ret) {
1263 		dev_err(&indio_dev->dev, "cannot submit DMA cyclic\n");
1264 		dmaengine_terminate_async(st->dma_st.dma_chan);
1265 		return ret;
1266 	}
1267 
1268 	/* enable general overrun error signaling */
1269 	at91_adc_writel(st, IER, AT91_SAMA5D2_IER_GOVRE);
1270 	/* Issue pending DMA requests */
1271 	dma_async_issue_pending(st->dma_st.dma_chan);
1272 
1273 	/* consider current time as DMA start time for timestamps */
1274 	st->dma_st.dma_ts = iio_get_time_ns(indio_dev);
1275 
1276 	dev_dbg(&indio_dev->dev, "DMA cyclic started\n");
1277 
1278 	return 0;
1279 }
1280 
at91_adc_buffer_check_use_irq(struct iio_dev * indio,struct at91_adc_state * st)1281 static bool at91_adc_buffer_check_use_irq(struct iio_dev *indio,
1282 					  struct at91_adc_state *st)
1283 {
1284 	/* if using DMA, we do not use our own IRQ (we use DMA-controller) */
1285 	if (st->dma_st.dma_chan)
1286 		return false;
1287 	/* if the trigger is not ours, then it has its own IRQ */
1288 	if (iio_trigger_validate_own_device(indio->trig, indio))
1289 		return false;
1290 	return true;
1291 }
1292 
at91_adc_current_chan_is_touch(struct iio_dev * indio_dev)1293 static bool at91_adc_current_chan_is_touch(struct iio_dev *indio_dev)
1294 {
1295 	struct at91_adc_state *st = iio_priv(indio_dev);
1296 
1297 	return !!bitmap_subset(indio_dev->active_scan_mask,
1298 			       &st->touch_st.channels_bitmask,
1299 			       st->soc_info.platform->max_index + 1);
1300 }
1301 
at91_adc_buffer_prepare(struct iio_dev * indio_dev)1302 static int at91_adc_buffer_prepare(struct iio_dev *indio_dev)
1303 {
1304 	int ret;
1305 	u8 bit;
1306 	struct at91_adc_state *st = iio_priv(indio_dev);
1307 
1308 	/* check if we are enabling triggered buffer or the touchscreen */
1309 	if (at91_adc_current_chan_is_touch(indio_dev))
1310 		return at91_adc_configure_touch(st, true);
1311 
1312 	/* if we are not in triggered mode, we cannot enable the buffer. */
1313 	if (!(iio_device_get_current_mode(indio_dev) & INDIO_ALL_TRIGGERED_MODES))
1314 		return -EINVAL;
1315 
1316 	ret = pm_runtime_resume_and_get(st->dev);
1317 	if (ret < 0)
1318 		return ret;
1319 
1320 	/* we continue with the triggered buffer */
1321 	ret = at91_adc_dma_start(indio_dev);
1322 	if (ret) {
1323 		dev_err(&indio_dev->dev, "buffer prepare failed\n");
1324 		goto pm_runtime_put;
1325 	}
1326 
1327 	for_each_set_bit(bit, indio_dev->active_scan_mask,
1328 			 indio_dev->num_channels) {
1329 		struct iio_chan_spec const *chan =
1330 					at91_adc_chan_get(indio_dev, bit);
1331 		if (!chan)
1332 			continue;
1333 		/* these channel types cannot be handled by this trigger */
1334 		if (chan->type == IIO_POSITIONRELATIVE ||
1335 		    chan->type == IIO_PRESSURE ||
1336 		    chan->type == IIO_TEMP)
1337 			continue;
1338 
1339 		at91_adc_cor(st, chan);
1340 
1341 		at91_adc_writel(st, CHER, BIT(chan->channel));
1342 	}
1343 
1344 	if (at91_adc_buffer_check_use_irq(indio_dev, st))
1345 		at91_adc_writel(st, IER, AT91_SAMA5D2_IER_DRDY);
1346 
1347 pm_runtime_put:
1348 	pm_runtime_mark_last_busy(st->dev);
1349 	pm_runtime_put_autosuspend(st->dev);
1350 	return ret;
1351 }
1352 
at91_adc_buffer_postdisable(struct iio_dev * indio_dev)1353 static int at91_adc_buffer_postdisable(struct iio_dev *indio_dev)
1354 {
1355 	struct at91_adc_state *st = iio_priv(indio_dev);
1356 	int ret;
1357 	u8 bit;
1358 
1359 	/* check if we are disabling triggered buffer or the touchscreen */
1360 	if (at91_adc_current_chan_is_touch(indio_dev))
1361 		return at91_adc_configure_touch(st, false);
1362 
1363 	/* if we are not in triggered mode, nothing to do here */
1364 	if (!(iio_device_get_current_mode(indio_dev) & INDIO_ALL_TRIGGERED_MODES))
1365 		return -EINVAL;
1366 
1367 	ret = pm_runtime_resume_and_get(st->dev);
1368 	if (ret < 0)
1369 		return ret;
1370 
1371 	/*
1372 	 * For each enable channel we must disable it in hardware.
1373 	 * In the case of DMA, we must read the last converted value
1374 	 * to clear EOC status and not get a possible interrupt later.
1375 	 * This value is being read by DMA from LCDR anyway, so it's not lost.
1376 	 */
1377 	for_each_set_bit(bit, indio_dev->active_scan_mask,
1378 			 indio_dev->num_channels) {
1379 		struct iio_chan_spec const *chan =
1380 					at91_adc_chan_get(indio_dev, bit);
1381 
1382 		if (!chan)
1383 			continue;
1384 		/* these channel types are virtual, no need to do anything */
1385 		if (chan->type == IIO_POSITIONRELATIVE ||
1386 		    chan->type == IIO_PRESSURE ||
1387 		    chan->type == IIO_TEMP)
1388 			continue;
1389 
1390 		at91_adc_writel(st, CHDR, BIT(chan->channel));
1391 
1392 		if (st->dma_st.dma_chan)
1393 			at91_adc_read_chan(st, chan->address);
1394 	}
1395 
1396 	if (at91_adc_buffer_check_use_irq(indio_dev, st))
1397 		at91_adc_writel(st, IDR, AT91_SAMA5D2_IER_DRDY);
1398 
1399 	/* read overflow register to clear possible overflow status */
1400 	at91_adc_readl(st, OVER);
1401 
1402 	/* if we are using DMA we must clear registers and end DMA */
1403 	if (st->dma_st.dma_chan)
1404 		dmaengine_terminate_sync(st->dma_st.dma_chan);
1405 
1406 	pm_runtime_mark_last_busy(st->dev);
1407 	pm_runtime_put_autosuspend(st->dev);
1408 
1409 	return 0;
1410 }
1411 
1412 static const struct iio_buffer_setup_ops at91_buffer_setup_ops = {
1413 	.postdisable = &at91_adc_buffer_postdisable,
1414 };
1415 
at91_adc_allocate_trigger(struct iio_dev * indio,char * trigger_name)1416 static struct iio_trigger *at91_adc_allocate_trigger(struct iio_dev *indio,
1417 						     char *trigger_name)
1418 {
1419 	struct iio_trigger *trig;
1420 	int ret;
1421 
1422 	trig = devm_iio_trigger_alloc(&indio->dev, "%s-dev%d-%s", indio->name,
1423 				iio_device_id(indio), trigger_name);
1424 	if (!trig)
1425 		return ERR_PTR(-ENOMEM);
1426 
1427 	trig->dev.parent = indio->dev.parent;
1428 	iio_trigger_set_drvdata(trig, indio);
1429 	trig->ops = &at91_adc_trigger_ops;
1430 
1431 	ret = devm_iio_trigger_register(&indio->dev, trig);
1432 	if (ret)
1433 		return ERR_PTR(ret);
1434 
1435 	return trig;
1436 }
1437 
at91_adc_trigger_handler_nodma(struct iio_dev * indio_dev,struct iio_poll_func * pf)1438 static void at91_adc_trigger_handler_nodma(struct iio_dev *indio_dev,
1439 					   struct iio_poll_func *pf)
1440 {
1441 	struct at91_adc_state *st = iio_priv(indio_dev);
1442 	int i = 0;
1443 	int val;
1444 	u8 bit;
1445 	u32 mask = at91_adc_active_scan_mask_to_reg(indio_dev);
1446 	unsigned int timeout = 50;
1447 	u32 status, imr, eoc = 0, eoc_imr;
1448 
1449 	/*
1450 	 * Check if the conversion is ready. If not, wait a little bit, and
1451 	 * in case of timeout exit with an error.
1452 	 */
1453 	while (((eoc & mask) != mask) && timeout) {
1454 		at91_adc_irq_status(st, &status, &eoc);
1455 		at91_adc_irq_mask(st, &imr, &eoc_imr);
1456 		usleep_range(50, 100);
1457 		timeout--;
1458 	}
1459 
1460 	/* Cannot read data, not ready. Continue without reporting data */
1461 	if (!timeout)
1462 		return;
1463 
1464 	for_each_set_bit(bit, indio_dev->active_scan_mask,
1465 			 indio_dev->num_channels) {
1466 		struct iio_chan_spec const *chan =
1467 					at91_adc_chan_get(indio_dev, bit);
1468 
1469 		if (!chan)
1470 			continue;
1471 		/*
1472 		 * Our external trigger only supports the voltage channels.
1473 		 * In case someone requested a different type of channel
1474 		 * just put zeroes to buffer.
1475 		 * This should not happen because we check the scan mode
1476 		 * and scan mask when we enable the buffer, and we don't allow
1477 		 * the buffer to start with a mixed mask (voltage and something
1478 		 * else).
1479 		 * Thus, emit a warning.
1480 		 */
1481 		if (chan->type == IIO_VOLTAGE) {
1482 			val = at91_adc_read_chan(st, chan->address);
1483 			at91_adc_adjust_val_osr(st, &val);
1484 			st->buffer[i] = val;
1485 		} else {
1486 			st->buffer[i] = 0;
1487 			WARN(true, "This trigger cannot handle this type of channel");
1488 		}
1489 		i++;
1490 	}
1491 	iio_push_to_buffers_with_timestamp(indio_dev, st->buffer,
1492 					   pf->timestamp);
1493 }
1494 
at91_adc_trigger_handler_dma(struct iio_dev * indio_dev)1495 static void at91_adc_trigger_handler_dma(struct iio_dev *indio_dev)
1496 {
1497 	struct at91_adc_state *st = iio_priv(indio_dev);
1498 	int transferred_len = at91_adc_dma_size_done(st);
1499 	s64 ns = iio_get_time_ns(indio_dev);
1500 	s64 interval;
1501 	int sample_index = 0, sample_count, sample_size;
1502 
1503 	u32 status = at91_adc_readl(st, ISR);
1504 	/* if we reached this point, we cannot sample faster */
1505 	if (status & AT91_SAMA5D2_IER_GOVRE)
1506 		pr_info_ratelimited("%s: conversion overrun detected\n",
1507 				    indio_dev->name);
1508 
1509 	sample_size = div_s64(st->dma_st.rx_buf_sz, st->dma_st.watermark);
1510 
1511 	sample_count = div_s64(transferred_len, sample_size);
1512 
1513 	/*
1514 	 * interval between samples is total time since last transfer handling
1515 	 * divided by the number of samples (total size divided by sample size)
1516 	 */
1517 	interval = div_s64((ns - st->dma_st.dma_ts), sample_count);
1518 
1519 	while (transferred_len >= sample_size) {
1520 		/*
1521 		 * for all the values in the current sample,
1522 		 * adjust the values inside the buffer for oversampling
1523 		 */
1524 		at91_adc_adjust_val_osr_array(st,
1525 					&st->dma_st.rx_buf[st->dma_st.buf_idx],
1526 					sample_size);
1527 
1528 		iio_push_to_buffers_with_timestamp(indio_dev,
1529 				(st->dma_st.rx_buf + st->dma_st.buf_idx),
1530 				(st->dma_st.dma_ts + interval * sample_index));
1531 		/* adjust remaining length */
1532 		transferred_len -= sample_size;
1533 		/* adjust buffer index */
1534 		st->dma_st.buf_idx += sample_size;
1535 		/* in case of reaching end of buffer, reset index */
1536 		if (st->dma_st.buf_idx >= st->dma_st.rx_buf_sz)
1537 			st->dma_st.buf_idx = 0;
1538 		sample_index++;
1539 	}
1540 	/* adjust saved time for next transfer handling */
1541 	st->dma_st.dma_ts = iio_get_time_ns(indio_dev);
1542 }
1543 
at91_adc_trigger_handler(int irq,void * p)1544 static irqreturn_t at91_adc_trigger_handler(int irq, void *p)
1545 {
1546 	struct iio_poll_func *pf = p;
1547 	struct iio_dev *indio_dev = pf->indio_dev;
1548 	struct at91_adc_state *st = iio_priv(indio_dev);
1549 
1550 	/*
1551 	 * If it's not our trigger, start a conversion now, as we are
1552 	 * actually polling the trigger now.
1553 	 */
1554 	if (iio_trigger_validate_own_device(indio_dev->trig, indio_dev))
1555 		at91_adc_writel(st, CR, AT91_SAMA5D2_CR_START);
1556 
1557 	if (st->dma_st.dma_chan)
1558 		at91_adc_trigger_handler_dma(indio_dev);
1559 	else
1560 		at91_adc_trigger_handler_nodma(indio_dev, pf);
1561 
1562 	iio_trigger_notify_done(indio_dev->trig);
1563 
1564 	return IRQ_HANDLED;
1565 }
1566 
at91_adc_startup_time(unsigned startup_time_min,unsigned adc_clk_khz)1567 static unsigned at91_adc_startup_time(unsigned startup_time_min,
1568 				      unsigned adc_clk_khz)
1569 {
1570 	static const unsigned int startup_lookup[] = {
1571 		  0,   8,  16,  24,
1572 		 64,  80,  96, 112,
1573 		512, 576, 640, 704,
1574 		768, 832, 896, 960
1575 		};
1576 	unsigned ticks_min, i;
1577 
1578 	/*
1579 	 * Since the adc frequency is checked before, there is no reason
1580 	 * to not meet the startup time constraint.
1581 	 */
1582 
1583 	ticks_min = startup_time_min * adc_clk_khz / 1000;
1584 	for (i = 0; i < ARRAY_SIZE(startup_lookup); i++)
1585 		if (startup_lookup[i] > ticks_min)
1586 			break;
1587 
1588 	return i;
1589 }
1590 
at91_adc_setup_samp_freq(struct iio_dev * indio_dev,unsigned freq,unsigned int startup_time,unsigned int tracktim)1591 static void at91_adc_setup_samp_freq(struct iio_dev *indio_dev, unsigned freq,
1592 				     unsigned int startup_time,
1593 				     unsigned int tracktim)
1594 {
1595 	struct at91_adc_state *st = iio_priv(indio_dev);
1596 	unsigned f_per, prescal, startup, mr;
1597 	int ret;
1598 
1599 	f_per = clk_get_rate(st->per_clk);
1600 	prescal = (f_per / (2 * freq)) - 1;
1601 
1602 	startup = at91_adc_startup_time(startup_time, freq / 1000);
1603 
1604 	ret = pm_runtime_resume_and_get(st->dev);
1605 	if (ret < 0)
1606 		return;
1607 
1608 	mr = at91_adc_readl(st, MR);
1609 	mr &= ~(AT91_SAMA5D2_MR_STARTUP_MASK | AT91_SAMA5D2_MR_PRESCAL_MASK);
1610 	mr |= AT91_SAMA5D2_MR_STARTUP(startup);
1611 	mr |= AT91_SAMA5D2_MR_PRESCAL(prescal);
1612 	mr |= AT91_SAMA5D2_MR_TRACKTIM(tracktim);
1613 	at91_adc_writel(st, MR, mr);
1614 
1615 	pm_runtime_mark_last_busy(st->dev);
1616 	pm_runtime_put_autosuspend(st->dev);
1617 
1618 	dev_dbg(&indio_dev->dev, "freq: %u, startup: %u, prescal: %u, tracktim=%u\n",
1619 		freq, startup, prescal, tracktim);
1620 	st->current_sample_rate = freq;
1621 }
1622 
at91_adc_get_sample_freq(struct at91_adc_state * st)1623 static inline unsigned at91_adc_get_sample_freq(struct at91_adc_state *st)
1624 {
1625 	return st->current_sample_rate;
1626 }
1627 
at91_adc_touch_data_handler(struct iio_dev * indio_dev)1628 static void at91_adc_touch_data_handler(struct iio_dev *indio_dev)
1629 {
1630 	struct at91_adc_state *st = iio_priv(indio_dev);
1631 	u8 bit;
1632 	u16 val;
1633 	int i = 0;
1634 
1635 	for_each_set_bit(bit, indio_dev->active_scan_mask,
1636 			 st->soc_info.platform->max_index + 1) {
1637 		struct iio_chan_spec const *chan =
1638 					 at91_adc_chan_get(indio_dev, bit);
1639 
1640 		if (chan->type == IIO_POSITIONRELATIVE)
1641 			at91_adc_read_position(st, chan->channel, &val);
1642 		else if (chan->type == IIO_PRESSURE)
1643 			at91_adc_read_pressure(st, chan->channel, &val);
1644 		else
1645 			continue;
1646 		st->buffer[i] = val;
1647 		i++;
1648 	}
1649 	/*
1650 	 * Schedule work to push to buffers.
1651 	 * This is intended to push to the callback buffer that another driver
1652 	 * registered. We are still in a handler from our IRQ. If we push
1653 	 * directly, it means the other driver has it's callback called
1654 	 * from our IRQ context. Which is something we better avoid.
1655 	 * Let's schedule it after our IRQ is completed.
1656 	 */
1657 	schedule_work(&st->touch_st.workq);
1658 }
1659 
at91_adc_pen_detect_interrupt(struct at91_adc_state * st)1660 static void at91_adc_pen_detect_interrupt(struct at91_adc_state *st)
1661 {
1662 	at91_adc_writel(st, IDR, AT91_SAMA5D2_IER_PEN);
1663 	at91_adc_writel(st, IER, AT91_SAMA5D2_IER_NOPEN |
1664 			AT91_SAMA5D2_IER_XRDY | AT91_SAMA5D2_IER_YRDY |
1665 			AT91_SAMA5D2_IER_PRDY);
1666 	at91_adc_writel(st, TRGR, AT91_SAMA5D2_TRGR_TRGMOD_PERIODIC |
1667 			AT91_SAMA5D2_TRGR_TRGPER(st->touch_st.sample_period_val));
1668 	st->touch_st.touching = true;
1669 }
1670 
at91_adc_no_pen_detect_interrupt(struct iio_dev * indio_dev)1671 static void at91_adc_no_pen_detect_interrupt(struct iio_dev *indio_dev)
1672 {
1673 	struct at91_adc_state *st = iio_priv(indio_dev);
1674 
1675 	at91_adc_writel(st, TRGR, AT91_SAMA5D2_TRGR_TRGMOD_NO_TRIGGER);
1676 	at91_adc_writel(st, IDR, AT91_SAMA5D2_IER_NOPEN |
1677 			AT91_SAMA5D2_IER_XRDY | AT91_SAMA5D2_IER_YRDY |
1678 			AT91_SAMA5D2_IER_PRDY);
1679 	st->touch_st.touching = false;
1680 
1681 	at91_adc_touch_data_handler(indio_dev);
1682 
1683 	at91_adc_writel(st, IER, AT91_SAMA5D2_IER_PEN);
1684 }
1685 
at91_adc_workq_handler(struct work_struct * workq)1686 static void at91_adc_workq_handler(struct work_struct *workq)
1687 {
1688 	struct at91_adc_touch *touch_st = container_of(workq,
1689 					struct at91_adc_touch, workq);
1690 	struct at91_adc_state *st = container_of(touch_st,
1691 					struct at91_adc_state, touch_st);
1692 	struct iio_dev *indio_dev = st->indio_dev;
1693 
1694 	iio_push_to_buffers(indio_dev, st->buffer);
1695 }
1696 
at91_adc_interrupt(int irq,void * private)1697 static irqreturn_t at91_adc_interrupt(int irq, void *private)
1698 {
1699 	struct iio_dev *indio = private;
1700 	struct at91_adc_state *st = iio_priv(indio);
1701 	u32 status, eoc, imr, eoc_imr;
1702 	u32 rdy_mask = AT91_SAMA5D2_IER_XRDY | AT91_SAMA5D2_IER_YRDY |
1703 			AT91_SAMA5D2_IER_PRDY;
1704 
1705 	at91_adc_irq_status(st, &status, &eoc);
1706 	at91_adc_irq_mask(st, &imr, &eoc_imr);
1707 
1708 	if (!(status & imr) && !(eoc & eoc_imr))
1709 		return IRQ_NONE;
1710 	if (status & AT91_SAMA5D2_IER_PEN) {
1711 		/* pen detected IRQ */
1712 		at91_adc_pen_detect_interrupt(st);
1713 	} else if ((status & AT91_SAMA5D2_IER_NOPEN)) {
1714 		/* nopen detected IRQ */
1715 		at91_adc_no_pen_detect_interrupt(indio);
1716 	} else if ((status & AT91_SAMA5D2_ISR_PENS) &&
1717 		   ((status & rdy_mask) == rdy_mask)) {
1718 		/* periodic trigger IRQ - during pen sense */
1719 		at91_adc_touch_data_handler(indio);
1720 	} else if (status & AT91_SAMA5D2_ISR_PENS) {
1721 		/*
1722 		 * touching, but the measurements are not ready yet.
1723 		 * read and ignore.
1724 		 */
1725 		status = at91_adc_readl(st, XPOSR);
1726 		status = at91_adc_readl(st, YPOSR);
1727 		status = at91_adc_readl(st, PRESSR);
1728 	} else if (iio_buffer_enabled(indio) &&
1729 		   (status & AT91_SAMA5D2_IER_DRDY)) {
1730 		/* triggered buffer without DMA */
1731 		disable_irq_nosync(irq);
1732 		iio_trigger_poll(indio->trig);
1733 	} else if (iio_buffer_enabled(indio) && st->dma_st.dma_chan) {
1734 		/* triggered buffer with DMA - should not happen */
1735 		disable_irq_nosync(irq);
1736 		WARN(true, "Unexpected irq occurred\n");
1737 	} else if (!iio_buffer_enabled(indio)) {
1738 		/* software requested conversion */
1739 		st->conversion_value = at91_adc_read_chan(st, st->chan->address);
1740 		st->conversion_done = true;
1741 		wake_up_interruptible(&st->wq_data_available);
1742 	}
1743 	return IRQ_HANDLED;
1744 }
1745 
1746 /* This needs to be called with direct mode claimed and st->lock locked. */
at91_adc_read_info_raw(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,int * val)1747 static int at91_adc_read_info_raw(struct iio_dev *indio_dev,
1748 				  struct iio_chan_spec const *chan, int *val)
1749 {
1750 	struct at91_adc_state *st = iio_priv(indio_dev);
1751 	u16 tmp_val;
1752 	int ret;
1753 
1754 	ret = pm_runtime_resume_and_get(st->dev);
1755 	if (ret < 0)
1756 		return ret;
1757 
1758 	/*
1759 	 * Keep in mind that we cannot use software trigger or touchscreen
1760 	 * if external trigger is enabled
1761 	 */
1762 	if (chan->type == IIO_POSITIONRELATIVE) {
1763 		ret = at91_adc_read_position(st, chan->channel,
1764 					     &tmp_val);
1765 		*val = tmp_val;
1766 		if (ret > 0)
1767 			ret = at91_adc_adjust_val_osr(st, val);
1768 
1769 		goto pm_runtime_put;
1770 	}
1771 	if (chan->type == IIO_PRESSURE) {
1772 		ret = at91_adc_read_pressure(st, chan->channel,
1773 					     &tmp_val);
1774 		*val = tmp_val;
1775 		if (ret > 0)
1776 			ret = at91_adc_adjust_val_osr(st, val);
1777 
1778 		goto pm_runtime_put;
1779 	}
1780 
1781 	/* in this case we have a voltage or temperature channel */
1782 
1783 	st->chan = chan;
1784 
1785 	at91_adc_cor(st, chan);
1786 	at91_adc_writel(st, CHER, BIT(chan->channel));
1787 	/*
1788 	 * TEMPMR.TEMPON needs to update after CHER otherwise if none
1789 	 * of the channels are enabled and TEMPMR.TEMPON = 1 will
1790 	 * trigger DRDY interruption while preparing for temperature read.
1791 	 */
1792 	if (chan->type == IIO_TEMP)
1793 		at91_adc_writel(st, TEMPMR, AT91_SAMA5D2_TEMPMR_TEMPON);
1794 	at91_adc_eoc_ena(st, chan->channel);
1795 	at91_adc_writel(st, CR, AT91_SAMA5D2_CR_START);
1796 
1797 	ret = wait_event_interruptible_timeout(st->wq_data_available,
1798 					       st->conversion_done,
1799 					       msecs_to_jiffies(1000));
1800 	if (ret == 0)
1801 		ret = -ETIMEDOUT;
1802 
1803 	if (ret > 0) {
1804 		*val = st->conversion_value;
1805 		ret = at91_adc_adjust_val_osr(st, val);
1806 		if (chan->scan_type.sign == 's')
1807 			*val = sign_extend32(*val,
1808 					     chan->scan_type.realbits - 1);
1809 		st->conversion_done = false;
1810 	}
1811 
1812 	at91_adc_eoc_dis(st, st->chan->channel);
1813 	if (chan->type == IIO_TEMP)
1814 		at91_adc_writel(st, TEMPMR, 0U);
1815 	at91_adc_writel(st, CHDR, BIT(chan->channel));
1816 
1817 	/* Needed to ACK the DRDY interruption */
1818 	at91_adc_readl(st, LCDR);
1819 
1820 pm_runtime_put:
1821 	pm_runtime_mark_last_busy(st->dev);
1822 	pm_runtime_put_autosuspend(st->dev);
1823 	return ret;
1824 }
1825 
at91_adc_read_info_locked(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,int * val)1826 static int at91_adc_read_info_locked(struct iio_dev *indio_dev,
1827 				     struct iio_chan_spec const *chan, int *val)
1828 {
1829 	struct at91_adc_state *st = iio_priv(indio_dev);
1830 
1831 	guard(mutex)(&st->lock);
1832 
1833 	return at91_adc_read_info_raw(indio_dev, chan, val);
1834 }
1835 
at91_adc_temp_sensor_configure(struct at91_adc_state * st,bool start)1836 static void at91_adc_temp_sensor_configure(struct at91_adc_state *st,
1837 					   bool start)
1838 {
1839 	u32 sample_rate, oversampling_ratio;
1840 	u32 startup_time, tracktim, trackx;
1841 
1842 	if (start) {
1843 		/*
1844 		 * Configure the sensor for best accuracy: 10MHz frequency,
1845 		 * oversampling rate of 256, tracktim=0xf and trackx=1.
1846 		 */
1847 		sample_rate = 10 * MEGA;
1848 		oversampling_ratio = 256;
1849 		startup_time = AT91_SAMA5D2_MR_STARTUP_TS_MIN;
1850 		tracktim = AT91_SAMA5D2_MR_TRACKTIM_TS;
1851 		trackx = AT91_SAMA5D2_TRACKX_TS;
1852 
1853 		st->temp_st.saved_sample_rate = st->current_sample_rate;
1854 		st->temp_st.saved_oversampling = st->oversampling_ratio;
1855 	} else {
1856 		/* Go back to previous settings. */
1857 		sample_rate = st->temp_st.saved_sample_rate;
1858 		oversampling_ratio = st->temp_st.saved_oversampling;
1859 		startup_time = st->soc_info.startup_time;
1860 		tracktim = 0;
1861 		trackx = 0;
1862 	}
1863 
1864 	at91_adc_setup_samp_freq(st->indio_dev, sample_rate, startup_time,
1865 				 tracktim);
1866 	at91_adc_config_emr(st, oversampling_ratio, trackx);
1867 }
1868 
at91_adc_read_temp(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,int * val)1869 static int at91_adc_read_temp(struct iio_dev *indio_dev,
1870 			      struct iio_chan_spec const *chan, int *val)
1871 {
1872 	struct at91_adc_state *st = iio_priv(indio_dev);
1873 	struct at91_adc_temp_sensor_clb *clb = &st->soc_info.temp_sensor_clb;
1874 	u64 div1, div2;
1875 	u32 tmp;
1876 	int ret, vbg, vtemp;
1877 
1878 	guard(mutex)(&st->lock);
1879 
1880 	ret = pm_runtime_resume_and_get(st->dev);
1881 	if (ret < 0)
1882 		return ret;
1883 
1884 	at91_adc_temp_sensor_configure(st, true);
1885 
1886 	/* Read VBG. */
1887 	tmp = at91_adc_readl(st, ACR);
1888 	tmp |= AT91_SAMA5D2_ACR_SRCLCH;
1889 	at91_adc_writel(st, ACR, tmp);
1890 	ret = at91_adc_read_info_raw(indio_dev, chan, &vbg);
1891 	if (ret < 0)
1892 		goto restore_config;
1893 
1894 	/* Read VTEMP. */
1895 	tmp &= ~AT91_SAMA5D2_ACR_SRCLCH;
1896 	at91_adc_writel(st, ACR, tmp);
1897 	ret = at91_adc_read_info_raw(indio_dev, chan, &vtemp);
1898 
1899 restore_config:
1900 	/* Revert previous settings. */
1901 	at91_adc_temp_sensor_configure(st, false);
1902 	pm_runtime_mark_last_busy(st->dev);
1903 	pm_runtime_put_autosuspend(st->dev);
1904 	if (ret < 0)
1905 		return ret;
1906 
1907 	/*
1908 	 * Temp[milli] = p1[milli] + (vtemp * clb->p6 - clb->p4 * vbg)/
1909 	 *			     (vbg * AT91_ADC_TS_VTEMP_DT)
1910 	 */
1911 	div1 = DIV_ROUND_CLOSEST_ULL(((u64)vtemp * clb->p6), vbg);
1912 	div1 = DIV_ROUND_CLOSEST_ULL((div1 * 1000), AT91_ADC_TS_VTEMP_DT);
1913 	div2 = DIV_ROUND_CLOSEST_ULL((u64)clb->p4, AT91_ADC_TS_VTEMP_DT);
1914 	div2 *= 1000;
1915 	*val = clb->p1 + (int)div1 - (int)div2;
1916 
1917 	return ret;
1918 }
1919 
at91_adc_read_raw(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,int * val,int * val2,long mask)1920 static int at91_adc_read_raw(struct iio_dev *indio_dev,
1921 			     struct iio_chan_spec const *chan,
1922 			     int *val, int *val2, long mask)
1923 {
1924 	struct at91_adc_state *st = iio_priv(indio_dev);
1925 	int ret;
1926 
1927 	switch (mask) {
1928 	case IIO_CHAN_INFO_RAW:
1929 		if (!iio_device_claim_direct(indio_dev))
1930 			return -EBUSY;
1931 
1932 		ret = at91_adc_read_info_locked(indio_dev, chan, val);
1933 		iio_device_release_direct(indio_dev);
1934 		return ret;
1935 
1936 	case IIO_CHAN_INFO_SCALE:
1937 		*val = st->vref_uv / 1000;
1938 		if (chan->differential)
1939 			*val *= 2;
1940 		*val2 = chan->scan_type.realbits;
1941 		return IIO_VAL_FRACTIONAL_LOG2;
1942 
1943 	case IIO_CHAN_INFO_PROCESSED:
1944 		if (chan->type != IIO_TEMP)
1945 			return -EINVAL;
1946 		if (!iio_device_claim_direct(indio_dev))
1947 			return -EBUSY;
1948 
1949 		ret = at91_adc_read_temp(indio_dev, chan, val);
1950 		iio_device_release_direct(indio_dev);
1951 
1952 		return ret;
1953 
1954 	case IIO_CHAN_INFO_SAMP_FREQ:
1955 		*val = at91_adc_get_sample_freq(st);
1956 		return IIO_VAL_INT;
1957 
1958 	case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
1959 		*val = st->oversampling_ratio;
1960 		return IIO_VAL_INT;
1961 
1962 	default:
1963 		return -EINVAL;
1964 	}
1965 }
1966 
at91_adc_write_raw(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,int val,int val2,long mask)1967 static int at91_adc_write_raw(struct iio_dev *indio_dev,
1968 			      struct iio_chan_spec const *chan,
1969 			      int val, int val2, long mask)
1970 {
1971 	struct at91_adc_state *st = iio_priv(indio_dev);
1972 	int ret;
1973 
1974 	switch (mask) {
1975 	case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
1976 		/* if no change, optimize out */
1977 		if (val == st->oversampling_ratio)
1978 			return 0;
1979 
1980 		if (!iio_device_claim_direct(indio_dev))
1981 			return -EBUSY;
1982 		mutex_lock(&st->lock);
1983 		/* update ratio */
1984 		ret = at91_adc_config_emr(st, val, 0);
1985 		mutex_unlock(&st->lock);
1986 		iio_device_release_direct(indio_dev);
1987 		return ret;
1988 	case IIO_CHAN_INFO_SAMP_FREQ:
1989 		if (val < st->soc_info.min_sample_rate ||
1990 		    val > st->soc_info.max_sample_rate)
1991 			return -EINVAL;
1992 
1993 		if (!iio_device_claim_direct(indio_dev))
1994 			return -EBUSY;
1995 		mutex_lock(&st->lock);
1996 		at91_adc_setup_samp_freq(indio_dev, val,
1997 					 st->soc_info.startup_time, 0);
1998 		mutex_unlock(&st->lock);
1999 		iio_device_release_direct(indio_dev);
2000 		return 0;
2001 	default:
2002 		return -EINVAL;
2003 	}
2004 }
2005 
at91_adc_read_avail(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,const int ** vals,int * type,int * length,long mask)2006 static int at91_adc_read_avail(struct iio_dev *indio_dev,
2007 			       struct iio_chan_spec const *chan,
2008 			       const int **vals, int *type, int *length,
2009 			       long mask)
2010 {
2011 	struct at91_adc_state *st = iio_priv(indio_dev);
2012 
2013 	switch (mask) {
2014 	case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
2015 		*vals = (int *)st->soc_info.platform->oversampling_avail;
2016 		*type = IIO_VAL_INT;
2017 		*length = st->soc_info.platform->oversampling_avail_no;
2018 		return IIO_AVAIL_LIST;
2019 	default:
2020 		return -EINVAL;
2021 	}
2022 }
2023 
at91_adc_dma_init(struct at91_adc_state * st)2024 static void at91_adc_dma_init(struct at91_adc_state *st)
2025 {
2026 	struct device *dev = &st->indio_dev->dev;
2027 	struct dma_slave_config config = {0};
2028 	/* we have 2 bytes for each channel */
2029 	unsigned int sample_size = st->soc_info.platform->nr_channels * 2;
2030 	/*
2031 	 * We make the buffer double the size of the fifo,
2032 	 * such that DMA uses one half of the buffer (full fifo size)
2033 	 * and the software uses the other half to read/write.
2034 	 */
2035 	unsigned int pages = DIV_ROUND_UP(AT91_HWFIFO_MAX_SIZE *
2036 					  sample_size * 2, PAGE_SIZE);
2037 
2038 	if (st->dma_st.dma_chan)
2039 		return;
2040 
2041 	st->dma_st.dma_chan = dma_request_chan(dev, "rx");
2042 	if (IS_ERR(st->dma_st.dma_chan))  {
2043 		dev_info(dev, "can't get DMA channel\n");
2044 		st->dma_st.dma_chan = NULL;
2045 		goto dma_exit;
2046 	}
2047 
2048 	st->dma_st.rx_buf = dma_alloc_coherent(st->dma_st.dma_chan->device->dev,
2049 					       pages * PAGE_SIZE,
2050 					       &st->dma_st.rx_dma_buf,
2051 					       GFP_KERNEL);
2052 	if (!st->dma_st.rx_buf) {
2053 		dev_info(dev, "can't allocate coherent DMA area\n");
2054 		goto dma_chan_disable;
2055 	}
2056 
2057 	/* Configure DMA channel to read data register */
2058 	config.direction = DMA_DEV_TO_MEM;
2059 	config.src_addr = (phys_addr_t)(st->dma_st.phys_addr
2060 			  + st->soc_info.platform->layout->LCDR);
2061 	config.src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
2062 	config.src_maxburst = 1;
2063 	config.dst_maxburst = 1;
2064 
2065 	if (dmaengine_slave_config(st->dma_st.dma_chan, &config)) {
2066 		dev_info(dev, "can't configure DMA slave\n");
2067 		goto dma_free_area;
2068 	}
2069 
2070 	dev_info(dev, "using %s for rx DMA transfers\n",
2071 		 dma_chan_name(st->dma_st.dma_chan));
2072 
2073 	return;
2074 
2075 dma_free_area:
2076 	dma_free_coherent(st->dma_st.dma_chan->device->dev, pages * PAGE_SIZE,
2077 			  st->dma_st.rx_buf, st->dma_st.rx_dma_buf);
2078 dma_chan_disable:
2079 	dma_release_channel(st->dma_st.dma_chan);
2080 	st->dma_st.dma_chan = NULL;
2081 dma_exit:
2082 	dev_info(dev, "continuing without DMA support\n");
2083 }
2084 
at91_adc_dma_disable(struct at91_adc_state * st)2085 static void at91_adc_dma_disable(struct at91_adc_state *st)
2086 {
2087 	struct device *dev = &st->indio_dev->dev;
2088 	/* we have 2 bytes for each channel */
2089 	unsigned int sample_size = st->soc_info.platform->nr_channels * 2;
2090 	unsigned int pages = DIV_ROUND_UP(AT91_HWFIFO_MAX_SIZE *
2091 					  sample_size * 2, PAGE_SIZE);
2092 
2093 	/* if we are not using DMA, just return */
2094 	if (!st->dma_st.dma_chan)
2095 		return;
2096 
2097 	/* wait for all transactions to be terminated first*/
2098 	dmaengine_terminate_sync(st->dma_st.dma_chan);
2099 
2100 	dma_free_coherent(st->dma_st.dma_chan->device->dev, pages * PAGE_SIZE,
2101 			  st->dma_st.rx_buf, st->dma_st.rx_dma_buf);
2102 	dma_release_channel(st->dma_st.dma_chan);
2103 	st->dma_st.dma_chan = NULL;
2104 
2105 	dev_info(dev, "continuing without DMA support\n");
2106 }
2107 
at91_adc_set_watermark(struct iio_dev * indio_dev,unsigned int val)2108 static int at91_adc_set_watermark(struct iio_dev *indio_dev, unsigned int val)
2109 {
2110 	struct at91_adc_state *st = iio_priv(indio_dev);
2111 	int ret;
2112 
2113 	if (val > AT91_HWFIFO_MAX_SIZE)
2114 		val = AT91_HWFIFO_MAX_SIZE;
2115 
2116 	if (!st->selected_trig->hw_trig) {
2117 		dev_dbg(&indio_dev->dev, "we need hw trigger for DMA\n");
2118 		return 0;
2119 	}
2120 
2121 	dev_dbg(&indio_dev->dev, "new watermark is %u\n", val);
2122 	st->dma_st.watermark = val;
2123 
2124 	/*
2125 	 * The logic here is: if we have watermark 1, it means we do
2126 	 * each conversion with it's own IRQ, thus we don't need DMA.
2127 	 * If the watermark is higher, we do DMA to do all the transfers in bulk
2128 	 */
2129 
2130 	if (val == 1)
2131 		at91_adc_dma_disable(st);
2132 	else if (val > 1)
2133 		at91_adc_dma_init(st);
2134 
2135 	/*
2136 	 * We can start the DMA only after setting the watermark and
2137 	 * having the DMA initialization completed
2138 	 */
2139 	ret = at91_adc_buffer_prepare(indio_dev);
2140 	if (ret)
2141 		at91_adc_dma_disable(st);
2142 
2143 	return ret;
2144 }
2145 
at91_adc_update_scan_mode(struct iio_dev * indio_dev,const unsigned long * scan_mask)2146 static int at91_adc_update_scan_mode(struct iio_dev *indio_dev,
2147 				     const unsigned long *scan_mask)
2148 {
2149 	struct at91_adc_state *st = iio_priv(indio_dev);
2150 
2151 	if (bitmap_subset(scan_mask, &st->touch_st.channels_bitmask,
2152 			  st->soc_info.platform->max_index + 1))
2153 		return 0;
2154 	/*
2155 	 * if the new bitmap is a combination of touchscreen and regular
2156 	 * channels, then we are not fine
2157 	 */
2158 	if (bitmap_intersects(&st->touch_st.channels_bitmask, scan_mask,
2159 			      st->soc_info.platform->max_index + 1))
2160 		return -EINVAL;
2161 	return 0;
2162 }
2163 
at91_adc_hw_init(struct iio_dev * indio_dev)2164 static void at91_adc_hw_init(struct iio_dev *indio_dev)
2165 {
2166 	struct at91_adc_state *st = iio_priv(indio_dev);
2167 
2168 	at91_adc_writel(st, CR, AT91_SAMA5D2_CR_SWRST);
2169 	if (st->soc_info.platform->layout->EOC_IDR)
2170 		at91_adc_writel(st, EOC_IDR, 0xffffffff);
2171 	at91_adc_writel(st, IDR, 0xffffffff);
2172 	/*
2173 	 * Transfer field must be set to 2 according to the datasheet and
2174 	 * allows different analog settings for each channel.
2175 	 */
2176 	at91_adc_writel(st, MR,
2177 			AT91_SAMA5D2_MR_TRANSFER(2) | AT91_SAMA5D2_MR_ANACH);
2178 
2179 	at91_adc_setup_samp_freq(indio_dev, st->soc_info.min_sample_rate,
2180 				 st->soc_info.startup_time, 0);
2181 
2182 	/* configure extended mode register */
2183 	at91_adc_config_emr(st, st->oversampling_ratio, 0);
2184 }
2185 
at91_adc_get_fifo_state(struct device * dev,struct device_attribute * attr,char * buf)2186 static ssize_t at91_adc_get_fifo_state(struct device *dev,
2187 				       struct device_attribute *attr, char *buf)
2188 {
2189 	struct iio_dev *indio_dev = dev_to_iio_dev(dev);
2190 	struct at91_adc_state *st = iio_priv(indio_dev);
2191 
2192 	return sysfs_emit(buf, "%d\n", !!st->dma_st.dma_chan);
2193 }
2194 
at91_adc_get_watermark(struct device * dev,struct device_attribute * attr,char * buf)2195 static ssize_t at91_adc_get_watermark(struct device *dev,
2196 				      struct device_attribute *attr, char *buf)
2197 {
2198 	struct iio_dev *indio_dev = dev_to_iio_dev(dev);
2199 	struct at91_adc_state *st = iio_priv(indio_dev);
2200 
2201 	return sysfs_emit(buf, "%d\n", st->dma_st.watermark);
2202 }
2203 
2204 static IIO_DEVICE_ATTR(hwfifo_enabled, 0444,
2205 		       at91_adc_get_fifo_state, NULL, 0);
2206 static IIO_DEVICE_ATTR(hwfifo_watermark, 0444,
2207 		       at91_adc_get_watermark, NULL, 0);
2208 
2209 IIO_STATIC_CONST_DEVICE_ATTR(hwfifo_watermark_min, "2");
2210 IIO_STATIC_CONST_DEVICE_ATTR(hwfifo_watermark_max, AT91_HWFIFO_MAX_SIZE_STR);
2211 
2212 static const struct iio_dev_attr *at91_adc_fifo_attributes[] = {
2213 	&iio_dev_attr_hwfifo_watermark_min,
2214 	&iio_dev_attr_hwfifo_watermark_max,
2215 	&iio_dev_attr_hwfifo_watermark,
2216 	&iio_dev_attr_hwfifo_enabled,
2217 	NULL,
2218 };
2219 
2220 static const struct iio_info at91_adc_info = {
2221 	.read_avail = &at91_adc_read_avail,
2222 	.read_raw = &at91_adc_read_raw,
2223 	.write_raw = &at91_adc_write_raw,
2224 	.update_scan_mode = &at91_adc_update_scan_mode,
2225 	.fwnode_xlate = &at91_adc_fwnode_xlate,
2226 	.hwfifo_set_watermark = &at91_adc_set_watermark,
2227 };
2228 
at91_adc_buffer_and_trigger_init(struct device * dev,struct iio_dev * indio)2229 static int at91_adc_buffer_and_trigger_init(struct device *dev,
2230 					    struct iio_dev *indio)
2231 {
2232 	struct at91_adc_state *st = iio_priv(indio);
2233 	const struct iio_dev_attr **fifo_attrs;
2234 	int ret;
2235 
2236 	if (st->selected_trig->hw_trig)
2237 		fifo_attrs = at91_adc_fifo_attributes;
2238 	else
2239 		fifo_attrs = NULL;
2240 
2241 	ret = devm_iio_triggered_buffer_setup_ext(&indio->dev, indio,
2242 		&iio_pollfunc_store_time, &at91_adc_trigger_handler,
2243 		IIO_BUFFER_DIRECTION_IN, &at91_buffer_setup_ops, fifo_attrs);
2244 	if (ret < 0) {
2245 		dev_err(dev, "couldn't initialize the buffer.\n");
2246 		return ret;
2247 	}
2248 
2249 	if (!st->selected_trig->hw_trig)
2250 		return 0;
2251 
2252 	st->trig = at91_adc_allocate_trigger(indio, st->selected_trig->name);
2253 	if (IS_ERR(st->trig)) {
2254 		dev_err(dev, "could not allocate trigger\n");
2255 		return PTR_ERR(st->trig);
2256 	}
2257 
2258 	/*
2259 	 * Initially the iio buffer has a length of 2 and
2260 	 * a watermark of 1
2261 	 */
2262 	st->dma_st.watermark = 1;
2263 
2264 	return 0;
2265 }
2266 
at91_adc_temp_sensor_init(struct at91_adc_state * st,struct device * dev)2267 static int at91_adc_temp_sensor_init(struct at91_adc_state *st,
2268 				     struct device *dev)
2269 {
2270 	struct at91_adc_temp_sensor_clb *clb = &st->soc_info.temp_sensor_clb;
2271 	struct nvmem_cell *temp_calib;
2272 	u32 *buf;
2273 	size_t len;
2274 	int ret = 0;
2275 
2276 	if (!st->soc_info.platform->temp_sensor)
2277 		return 0;
2278 
2279 	/* Get the calibration data from NVMEM. */
2280 	temp_calib = devm_nvmem_cell_get(dev, "temperature_calib");
2281 	if (IS_ERR(temp_calib)) {
2282 		ret = PTR_ERR(temp_calib);
2283 		if (ret != -ENOENT)
2284 			dev_err(dev, "Failed to get temperature_calib cell!\n");
2285 		return ret;
2286 	}
2287 
2288 	buf = nvmem_cell_read(temp_calib, &len);
2289 	if (IS_ERR(buf)) {
2290 		dev_err(dev, "Failed to read calibration data!\n");
2291 		return PTR_ERR(buf);
2292 	}
2293 	if (len < AT91_ADC_TS_CLB_IDX_MAX * 4) {
2294 		dev_err(dev, "Invalid calibration data!\n");
2295 		ret = -EINVAL;
2296 		goto free_buf;
2297 	}
2298 
2299 	/* Store calibration data for later use. */
2300 	clb->p1 = buf[AT91_ADC_TS_CLB_IDX_P1];
2301 	clb->p4 = buf[AT91_ADC_TS_CLB_IDX_P4];
2302 	clb->p6 = buf[AT91_ADC_TS_CLB_IDX_P6];
2303 
2304 	/*
2305 	 * We prepare here the conversion to milli to avoid doing it on hotpath.
2306 	 */
2307 	clb->p1 = clb->p1 * 1000;
2308 
2309 free_buf:
2310 	kfree(buf);
2311 	return ret;
2312 }
2313 
at91_adc_probe(struct platform_device * pdev)2314 static int at91_adc_probe(struct platform_device *pdev)
2315 {
2316 	struct device *dev = &pdev->dev;
2317 	struct iio_dev *indio_dev;
2318 	struct at91_adc_state *st;
2319 	struct resource	*res;
2320 	int ret, i, num_channels;
2321 	u32 edge_type = IRQ_TYPE_NONE;
2322 
2323 	indio_dev = devm_iio_device_alloc(&pdev->dev, sizeof(*st));
2324 	if (!indio_dev)
2325 		return -ENOMEM;
2326 
2327 	st = iio_priv(indio_dev);
2328 	st->indio_dev = indio_dev;
2329 
2330 	st->soc_info.platform = device_get_match_data(dev);
2331 
2332 	ret = at91_adc_temp_sensor_init(st, &pdev->dev);
2333 	/* Don't register temperature channel if initialization failed. */
2334 	if (ret)
2335 		num_channels = st->soc_info.platform->max_channels - 1;
2336 	else
2337 		num_channels = st->soc_info.platform->max_channels;
2338 
2339 	indio_dev->name = dev_name(&pdev->dev);
2340 	indio_dev->modes = INDIO_DIRECT_MODE | INDIO_BUFFER_SOFTWARE;
2341 	indio_dev->info = &at91_adc_info;
2342 	indio_dev->channels = *st->soc_info.platform->adc_channels;
2343 	indio_dev->num_channels = num_channels;
2344 
2345 	bitmap_set(&st->touch_st.channels_bitmask,
2346 		   st->soc_info.platform->touch_chan_x, 1);
2347 	bitmap_set(&st->touch_st.channels_bitmask,
2348 		   st->soc_info.platform->touch_chan_y, 1);
2349 	bitmap_set(&st->touch_st.channels_bitmask,
2350 		   st->soc_info.platform->touch_chan_p, 1);
2351 
2352 	st->oversampling_ratio = 1;
2353 
2354 	ret = device_property_read_u32(dev, "atmel,min-sample-rate-hz",
2355 				       &st->soc_info.min_sample_rate);
2356 	if (ret) {
2357 		dev_err(&pdev->dev,
2358 			"invalid or missing value for atmel,min-sample-rate-hz\n");
2359 		return ret;
2360 	}
2361 
2362 	ret = device_property_read_u32(dev, "atmel,max-sample-rate-hz",
2363 				       &st->soc_info.max_sample_rate);
2364 	if (ret) {
2365 		dev_err(&pdev->dev,
2366 			"invalid or missing value for atmel,max-sample-rate-hz\n");
2367 		return ret;
2368 	}
2369 
2370 	ret = device_property_read_u32(dev, "atmel,startup-time-ms",
2371 				       &st->soc_info.startup_time);
2372 	if (ret) {
2373 		dev_err(&pdev->dev,
2374 			"invalid or missing value for atmel,startup-time-ms\n");
2375 		return ret;
2376 	}
2377 
2378 	ret = device_property_read_u32(dev, "atmel,trigger-edge-type",
2379 				       &edge_type);
2380 	if (ret) {
2381 		dev_dbg(&pdev->dev,
2382 			"atmel,trigger-edge-type not specified, only software trigger available\n");
2383 	}
2384 
2385 	st->selected_trig = NULL;
2386 
2387 	/* find the right trigger, or no trigger at all */
2388 	for (i = 0; i < st->soc_info.platform->hw_trig_cnt + 1; i++)
2389 		if (at91_adc_trigger_list[i].edge_type == edge_type) {
2390 			st->selected_trig = &at91_adc_trigger_list[i];
2391 			break;
2392 		}
2393 
2394 	if (!st->selected_trig) {
2395 		dev_err(&pdev->dev, "invalid external trigger edge value\n");
2396 		return -EINVAL;
2397 	}
2398 
2399 	init_waitqueue_head(&st->wq_data_available);
2400 	mutex_init(&st->lock);
2401 	INIT_WORK(&st->touch_st.workq, at91_adc_workq_handler);
2402 
2403 	st->base = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
2404 	if (IS_ERR(st->base))
2405 		return PTR_ERR(st->base);
2406 
2407 	/* if we plan to use DMA, we need the physical address of the regs */
2408 	st->dma_st.phys_addr = res->start;
2409 
2410 	st->irq = platform_get_irq(pdev, 0);
2411 	if (st->irq < 0)
2412 		return st->irq;
2413 
2414 	st->per_clk = devm_clk_get(&pdev->dev, "adc_clk");
2415 	if (IS_ERR(st->per_clk))
2416 		return PTR_ERR(st->per_clk);
2417 
2418 	st->reg = devm_regulator_get(&pdev->dev, "vddana");
2419 	if (IS_ERR(st->reg))
2420 		return PTR_ERR(st->reg);
2421 
2422 	st->vref = devm_regulator_get(&pdev->dev, "vref");
2423 	if (IS_ERR(st->vref))
2424 		return PTR_ERR(st->vref);
2425 
2426 	ret = devm_request_irq(&pdev->dev, st->irq, at91_adc_interrupt, 0,
2427 			       pdev->dev.driver->name, indio_dev);
2428 	if (ret)
2429 		return ret;
2430 
2431 	ret = regulator_enable(st->reg);
2432 	if (ret)
2433 		return ret;
2434 
2435 	ret = regulator_enable(st->vref);
2436 	if (ret)
2437 		goto reg_disable;
2438 
2439 	st->vref_uv = regulator_get_voltage(st->vref);
2440 	if (st->vref_uv <= 0) {
2441 		ret = -EINVAL;
2442 		goto vref_disable;
2443 	}
2444 
2445 	ret = clk_prepare_enable(st->per_clk);
2446 	if (ret)
2447 		goto vref_disable;
2448 
2449 	platform_set_drvdata(pdev, indio_dev);
2450 	st->dev = &pdev->dev;
2451 	pm_runtime_set_autosuspend_delay(st->dev, 500);
2452 	pm_runtime_use_autosuspend(st->dev);
2453 	pm_runtime_set_active(st->dev);
2454 	pm_runtime_enable(st->dev);
2455 	pm_runtime_get_noresume(st->dev);
2456 
2457 	at91_adc_hw_init(indio_dev);
2458 
2459 	ret = at91_adc_buffer_and_trigger_init(&pdev->dev, indio_dev);
2460 	if (ret < 0)
2461 		goto err_pm_disable;
2462 
2463 	if (dma_coerce_mask_and_coherent(&indio_dev->dev, DMA_BIT_MASK(32)))
2464 		dev_info(&pdev->dev, "cannot set DMA mask to 32-bit\n");
2465 
2466 	ret = iio_device_register(indio_dev);
2467 	if (ret < 0)
2468 		goto dma_disable;
2469 
2470 	if (st->selected_trig->hw_trig)
2471 		dev_info(&pdev->dev, "setting up trigger as %s\n",
2472 			 st->selected_trig->name);
2473 
2474 	dev_info(&pdev->dev, "version: %x\n",
2475 		 readl_relaxed(st->base + st->soc_info.platform->layout->VERSION));
2476 
2477 	pm_runtime_mark_last_busy(st->dev);
2478 	pm_runtime_put_autosuspend(st->dev);
2479 
2480 	return 0;
2481 
2482 dma_disable:
2483 	at91_adc_dma_disable(st);
2484 err_pm_disable:
2485 	pm_runtime_put_noidle(st->dev);
2486 	pm_runtime_disable(st->dev);
2487 	pm_runtime_set_suspended(st->dev);
2488 	pm_runtime_dont_use_autosuspend(st->dev);
2489 	clk_disable_unprepare(st->per_clk);
2490 vref_disable:
2491 	regulator_disable(st->vref);
2492 reg_disable:
2493 	regulator_disable(st->reg);
2494 	return ret;
2495 }
2496 
at91_adc_remove(struct platform_device * pdev)2497 static void at91_adc_remove(struct platform_device *pdev)
2498 {
2499 	struct iio_dev *indio_dev = platform_get_drvdata(pdev);
2500 	struct at91_adc_state *st = iio_priv(indio_dev);
2501 
2502 	iio_device_unregister(indio_dev);
2503 
2504 	at91_adc_dma_disable(st);
2505 
2506 	pm_runtime_disable(st->dev);
2507 	pm_runtime_set_suspended(st->dev);
2508 	clk_disable_unprepare(st->per_clk);
2509 
2510 	regulator_disable(st->vref);
2511 	regulator_disable(st->reg);
2512 }
2513 
at91_adc_suspend(struct device * dev)2514 static int at91_adc_suspend(struct device *dev)
2515 {
2516 	struct iio_dev *indio_dev = dev_get_drvdata(dev);
2517 	struct at91_adc_state *st = iio_priv(indio_dev);
2518 	int ret;
2519 
2520 	ret = pm_runtime_resume_and_get(st->dev);
2521 	if (ret < 0)
2522 		return ret;
2523 
2524 	if (iio_buffer_enabled(indio_dev))
2525 		at91_adc_buffer_postdisable(indio_dev);
2526 
2527 	/*
2528 	 * Do a sofware reset of the ADC before we go to suspend.
2529 	 * this will ensure that all pins are free from being muxed by the ADC
2530 	 * and can be used by for other devices.
2531 	 * Otherwise, ADC will hog them and we can't go to suspend mode.
2532 	 */
2533 	at91_adc_writel(st, CR, AT91_SAMA5D2_CR_SWRST);
2534 
2535 	pm_runtime_mark_last_busy(st->dev);
2536 	pm_runtime_put_noidle(st->dev);
2537 	clk_disable_unprepare(st->per_clk);
2538 	regulator_disable(st->vref);
2539 	regulator_disable(st->reg);
2540 
2541 	return pinctrl_pm_select_sleep_state(dev);
2542 }
2543 
at91_adc_resume(struct device * dev)2544 static int at91_adc_resume(struct device *dev)
2545 {
2546 	struct iio_dev *indio_dev = dev_get_drvdata(dev);
2547 	struct at91_adc_state *st = iio_priv(indio_dev);
2548 	int ret;
2549 
2550 	ret = pinctrl_pm_select_default_state(dev);
2551 	if (ret)
2552 		goto resume_failed;
2553 
2554 	ret = regulator_enable(st->reg);
2555 	if (ret)
2556 		goto resume_failed;
2557 
2558 	ret = regulator_enable(st->vref);
2559 	if (ret)
2560 		goto reg_disable_resume;
2561 
2562 	ret = clk_prepare_enable(st->per_clk);
2563 	if (ret)
2564 		goto vref_disable_resume;
2565 
2566 	pm_runtime_get_noresume(st->dev);
2567 
2568 	at91_adc_hw_init(indio_dev);
2569 
2570 	/* reconfiguring trigger hardware state */
2571 	if (iio_buffer_enabled(indio_dev)) {
2572 		ret = at91_adc_buffer_prepare(indio_dev);
2573 		if (ret)
2574 			goto pm_runtime_put;
2575 
2576 		at91_adc_configure_trigger_registers(st, true);
2577 	}
2578 
2579 	pm_runtime_mark_last_busy(st->dev);
2580 	pm_runtime_put_autosuspend(st->dev);
2581 
2582 	return 0;
2583 
2584 pm_runtime_put:
2585 	pm_runtime_mark_last_busy(st->dev);
2586 	pm_runtime_put_noidle(st->dev);
2587 	clk_disable_unprepare(st->per_clk);
2588 vref_disable_resume:
2589 	regulator_disable(st->vref);
2590 reg_disable_resume:
2591 	regulator_disable(st->reg);
2592 resume_failed:
2593 	dev_err(&indio_dev->dev, "failed to resume\n");
2594 	return ret;
2595 }
2596 
at91_adc_runtime_suspend(struct device * dev)2597 static int at91_adc_runtime_suspend(struct device *dev)
2598 {
2599 	struct iio_dev *indio_dev = dev_get_drvdata(dev);
2600 	struct at91_adc_state *st = iio_priv(indio_dev);
2601 
2602 	clk_disable(st->per_clk);
2603 
2604 	return 0;
2605 }
2606 
at91_adc_runtime_resume(struct device * dev)2607 static int at91_adc_runtime_resume(struct device *dev)
2608 {
2609 	struct iio_dev *indio_dev = dev_get_drvdata(dev);
2610 	struct at91_adc_state *st = iio_priv(indio_dev);
2611 
2612 	return clk_enable(st->per_clk);
2613 }
2614 
2615 static const struct dev_pm_ops at91_adc_pm_ops = {
2616 	SYSTEM_SLEEP_PM_OPS(at91_adc_suspend, at91_adc_resume)
2617 	RUNTIME_PM_OPS(at91_adc_runtime_suspend, at91_adc_runtime_resume,
2618 		       NULL)
2619 };
2620 
2621 static const struct of_device_id at91_adc_dt_match[] = {
2622 	{
2623 		.compatible = "atmel,sama5d2-adc",
2624 		.data = (const void *)&sama5d2_platform,
2625 	}, {
2626 		.compatible = "microchip,sama7g5-adc",
2627 		.data = (const void *)&sama7g5_platform,
2628 	}, {
2629 		/* sentinel */
2630 	}
2631 };
2632 MODULE_DEVICE_TABLE(of, at91_adc_dt_match);
2633 
2634 static struct platform_driver at91_adc_driver = {
2635 	.probe = at91_adc_probe,
2636 	.remove = at91_adc_remove,
2637 	.driver = {
2638 		.name = "at91-sama5d2_adc",
2639 		.of_match_table = at91_adc_dt_match,
2640 		.pm = pm_ptr(&at91_adc_pm_ops),
2641 	},
2642 };
2643 module_platform_driver(at91_adc_driver)
2644 
2645 MODULE_AUTHOR("Ludovic Desroches <ludovic.desroches@microchip.com>");
2646 MODULE_AUTHOR("Eugen Hristev <eugen.hristev@microchip.com");
2647 MODULE_DESCRIPTION("Atmel AT91 SAMA5D2 ADC");
2648 MODULE_LICENSE("GPL v2");
2649