1 /*
2 * Copyright 2011 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * VA LINUX SYSTEMS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21 * OTHER DEALINGS IN THE SOFTWARE.
22 */
23
24 #ifndef DRM_FOURCC_H
25 #define DRM_FOURCC_H
26
27 #include "drm.h"
28
29 #if defined(__cplusplus)
30 extern "C" {
31 #endif
32
33 /**
34 * DOC: overview
35 *
36 * In the DRM subsystem, framebuffer pixel formats are described using the
37 * fourcc codes defined in `include/uapi/drm/drm_fourcc.h`. In addition to the
38 * fourcc code, a Format Modifier may optionally be provided, in order to
39 * further describe the buffer's format - for example tiling or compression.
40 *
41 * Format Modifiers
42 * ----------------
43 *
44 * Format modifiers are used in conjunction with a fourcc code, forming a
45 * unique fourcc:modifier pair. This format:modifier pair must fully define the
46 * format and data layout of the buffer, and should be the only way to describe
47 * that particular buffer.
48 *
49 * Having multiple fourcc:modifier pairs which describe the same layout should
50 * be avoided, as such aliases run the risk of different drivers exposing
51 * different names for the same data format, forcing userspace to understand
52 * that they are aliases.
53 *
54 * Format modifiers may change any property of the buffer, including the number
55 * of planes and/or the required allocation size. Format modifiers are
56 * vendor-namespaced, and as such the relationship between a fourcc code and a
57 * modifier is specific to the modifier being used. For example, some modifiers
58 * may preserve meaning - such as number of planes - from the fourcc code,
59 * whereas others may not.
60 *
61 * Modifiers must uniquely encode buffer layout. In other words, a buffer must
62 * match only a single modifier. A modifier must not be a subset of layouts of
63 * another modifier. For instance, it's incorrect to encode pitch alignment in
64 * a modifier: a buffer may match a 64-pixel aligned modifier and a 32-pixel
65 * aligned modifier. That said, modifiers can have implicit minimal
66 * requirements.
67 *
68 * For modifiers where the combination of fourcc code and modifier can alias,
69 * a canonical pair needs to be defined and used by all drivers. Preferred
70 * combinations are also encouraged where all combinations might lead to
71 * confusion and unnecessarily reduced interoperability. An example for the
72 * latter is AFBC, where the ABGR layouts are preferred over ARGB layouts.
73 *
74 * There are two kinds of modifier users:
75 *
76 * - Kernel and user-space drivers: for drivers it's important that modifiers
77 * don't alias, otherwise two drivers might support the same format but use
78 * different aliases, preventing them from sharing buffers in an efficient
79 * format.
80 * - Higher-level programs interfacing with KMS/GBM/EGL/Vulkan/etc: these users
81 * see modifiers as opaque tokens they can check for equality and intersect.
82 * These users mustn't need to know to reason about the modifier value
83 * (i.e. they are not expected to extract information out of the modifier).
84 *
85 * Vendors should document their modifier usage in as much detail as
86 * possible, to ensure maximum compatibility across devices, drivers and
87 * applications.
88 *
89 * The authoritative list of format modifier codes is found in
90 * `include/uapi/drm/drm_fourcc.h`
91 *
92 * Open Source User Waiver
93 * -----------------------
94 *
95 * Because this is the authoritative source for pixel formats and modifiers
96 * referenced by GL, Vulkan extensions and other standards and hence used both
97 * by open source and closed source driver stacks, the usual requirement for an
98 * upstream in-kernel or open source userspace user does not apply.
99 *
100 * To ensure, as much as feasible, compatibility across stacks and avoid
101 * confusion with incompatible enumerations stakeholders for all relevant driver
102 * stacks should approve additions.
103 */
104
105 #define fourcc_code(a, b, c, d) ((__u32)(a) | ((__u32)(b) << 8) | \
106 ((__u32)(c) << 16) | ((__u32)(d) << 24))
107
108 #define DRM_FORMAT_BIG_ENDIAN (1U<<31) /* format is big endian instead of little endian */
109
110 /* Reserve 0 for the invalid format specifier */
111 #define DRM_FORMAT_INVALID 0
112
113 /* color index */
114 #define DRM_FORMAT_C1 fourcc_code('C', '1', ' ', ' ') /* [7:0] C0:C1:C2:C3:C4:C5:C6:C7 1:1:1:1:1:1:1:1 eight pixels/byte */
115 #define DRM_FORMAT_C2 fourcc_code('C', '2', ' ', ' ') /* [7:0] C0:C1:C2:C3 2:2:2:2 four pixels/byte */
116 #define DRM_FORMAT_C4 fourcc_code('C', '4', ' ', ' ') /* [7:0] C0:C1 4:4 two pixels/byte */
117 #define DRM_FORMAT_C8 fourcc_code('C', '8', ' ', ' ') /* [7:0] C */
118
119 /* 1 bpp Darkness (inverse relationship between channel value and brightness) */
120 #define DRM_FORMAT_D1 fourcc_code('D', '1', ' ', ' ') /* [7:0] D0:D1:D2:D3:D4:D5:D6:D7 1:1:1:1:1:1:1:1 eight pixels/byte */
121
122 /* 2 bpp Darkness (inverse relationship between channel value and brightness) */
123 #define DRM_FORMAT_D2 fourcc_code('D', '2', ' ', ' ') /* [7:0] D0:D1:D2:D3 2:2:2:2 four pixels/byte */
124
125 /* 4 bpp Darkness (inverse relationship between channel value and brightness) */
126 #define DRM_FORMAT_D4 fourcc_code('D', '4', ' ', ' ') /* [7:0] D0:D1 4:4 two pixels/byte */
127
128 /* 8 bpp Darkness (inverse relationship between channel value and brightness) */
129 #define DRM_FORMAT_D8 fourcc_code('D', '8', ' ', ' ') /* [7:0] D */
130
131 /* 1 bpp Red (direct relationship between channel value and brightness) */
132 #define DRM_FORMAT_R1 fourcc_code('R', '1', ' ', ' ') /* [7:0] R0:R1:R2:R3:R4:R5:R6:R7 1:1:1:1:1:1:1:1 eight pixels/byte */
133
134 /* 2 bpp Red (direct relationship between channel value and brightness) */
135 #define DRM_FORMAT_R2 fourcc_code('R', '2', ' ', ' ') /* [7:0] R0:R1:R2:R3 2:2:2:2 four pixels/byte */
136
137 /* 4 bpp Red (direct relationship between channel value and brightness) */
138 #define DRM_FORMAT_R4 fourcc_code('R', '4', ' ', ' ') /* [7:0] R0:R1 4:4 two pixels/byte */
139
140 /* 8 bpp Red (direct relationship between channel value and brightness) */
141 #define DRM_FORMAT_R8 fourcc_code('R', '8', ' ', ' ') /* [7:0] R */
142
143 /* 10 bpp Red (direct relationship between channel value and brightness) */
144 #define DRM_FORMAT_R10 fourcc_code('R', '1', '0', ' ') /* [15:0] x:R 6:10 little endian */
145
146 /* 12 bpp Red (direct relationship between channel value and brightness) */
147 #define DRM_FORMAT_R12 fourcc_code('R', '1', '2', ' ') /* [15:0] x:R 4:12 little endian */
148
149 /* 16 bpp Red (direct relationship between channel value and brightness) */
150 #define DRM_FORMAT_R16 fourcc_code('R', '1', '6', ' ') /* [15:0] R little endian */
151
152 /* 16 bpp RG */
153 #define DRM_FORMAT_RG88 fourcc_code('R', 'G', '8', '8') /* [15:0] R:G 8:8 little endian */
154 #define DRM_FORMAT_GR88 fourcc_code('G', 'R', '8', '8') /* [15:0] G:R 8:8 little endian */
155
156 /* 32 bpp RG */
157 #define DRM_FORMAT_RG1616 fourcc_code('R', 'G', '3', '2') /* [31:0] R:G 16:16 little endian */
158 #define DRM_FORMAT_GR1616 fourcc_code('G', 'R', '3', '2') /* [31:0] G:R 16:16 little endian */
159
160 /* 8 bpp RGB */
161 #define DRM_FORMAT_RGB332 fourcc_code('R', 'G', 'B', '8') /* [7:0] R:G:B 3:3:2 */
162 #define DRM_FORMAT_BGR233 fourcc_code('B', 'G', 'R', '8') /* [7:0] B:G:R 2:3:3 */
163
164 /* 16 bpp RGB */
165 #define DRM_FORMAT_XRGB4444 fourcc_code('X', 'R', '1', '2') /* [15:0] x:R:G:B 4:4:4:4 little endian */
166 #define DRM_FORMAT_XBGR4444 fourcc_code('X', 'B', '1', '2') /* [15:0] x:B:G:R 4:4:4:4 little endian */
167 #define DRM_FORMAT_RGBX4444 fourcc_code('R', 'X', '1', '2') /* [15:0] R:G:B:x 4:4:4:4 little endian */
168 #define DRM_FORMAT_BGRX4444 fourcc_code('B', 'X', '1', '2') /* [15:0] B:G:R:x 4:4:4:4 little endian */
169
170 #define DRM_FORMAT_ARGB4444 fourcc_code('A', 'R', '1', '2') /* [15:0] A:R:G:B 4:4:4:4 little endian */
171 #define DRM_FORMAT_ABGR4444 fourcc_code('A', 'B', '1', '2') /* [15:0] A:B:G:R 4:4:4:4 little endian */
172 #define DRM_FORMAT_RGBA4444 fourcc_code('R', 'A', '1', '2') /* [15:0] R:G:B:A 4:4:4:4 little endian */
173 #define DRM_FORMAT_BGRA4444 fourcc_code('B', 'A', '1', '2') /* [15:0] B:G:R:A 4:4:4:4 little endian */
174
175 #define DRM_FORMAT_XRGB1555 fourcc_code('X', 'R', '1', '5') /* [15:0] x:R:G:B 1:5:5:5 little endian */
176 #define DRM_FORMAT_XBGR1555 fourcc_code('X', 'B', '1', '5') /* [15:0] x:B:G:R 1:5:5:5 little endian */
177 #define DRM_FORMAT_RGBX5551 fourcc_code('R', 'X', '1', '5') /* [15:0] R:G:B:x 5:5:5:1 little endian */
178 #define DRM_FORMAT_BGRX5551 fourcc_code('B', 'X', '1', '5') /* [15:0] B:G:R:x 5:5:5:1 little endian */
179
180 #define DRM_FORMAT_ARGB1555 fourcc_code('A', 'R', '1', '5') /* [15:0] A:R:G:B 1:5:5:5 little endian */
181 #define DRM_FORMAT_ABGR1555 fourcc_code('A', 'B', '1', '5') /* [15:0] A:B:G:R 1:5:5:5 little endian */
182 #define DRM_FORMAT_RGBA5551 fourcc_code('R', 'A', '1', '5') /* [15:0] R:G:B:A 5:5:5:1 little endian */
183 #define DRM_FORMAT_BGRA5551 fourcc_code('B', 'A', '1', '5') /* [15:0] B:G:R:A 5:5:5:1 little endian */
184
185 #define DRM_FORMAT_RGB565 fourcc_code('R', 'G', '1', '6') /* [15:0] R:G:B 5:6:5 little endian */
186 #define DRM_FORMAT_BGR565 fourcc_code('B', 'G', '1', '6') /* [15:0] B:G:R 5:6:5 little endian */
187
188 /* 24 bpp RGB */
189 #define DRM_FORMAT_RGB888 fourcc_code('R', 'G', '2', '4') /* [23:0] R:G:B little endian */
190 #define DRM_FORMAT_BGR888 fourcc_code('B', 'G', '2', '4') /* [23:0] B:G:R little endian */
191
192 /* 32 bpp RGB */
193 #define DRM_FORMAT_XRGB8888 fourcc_code('X', 'R', '2', '4') /* [31:0] x:R:G:B 8:8:8:8 little endian */
194 #define DRM_FORMAT_XBGR8888 fourcc_code('X', 'B', '2', '4') /* [31:0] x:B:G:R 8:8:8:8 little endian */
195 #define DRM_FORMAT_RGBX8888 fourcc_code('R', 'X', '2', '4') /* [31:0] R:G:B:x 8:8:8:8 little endian */
196 #define DRM_FORMAT_BGRX8888 fourcc_code('B', 'X', '2', '4') /* [31:0] B:G:R:x 8:8:8:8 little endian */
197
198 #define DRM_FORMAT_ARGB8888 fourcc_code('A', 'R', '2', '4') /* [31:0] A:R:G:B 8:8:8:8 little endian */
199 #define DRM_FORMAT_ABGR8888 fourcc_code('A', 'B', '2', '4') /* [31:0] A:B:G:R 8:8:8:8 little endian */
200 #define DRM_FORMAT_RGBA8888 fourcc_code('R', 'A', '2', '4') /* [31:0] R:G:B:A 8:8:8:8 little endian */
201 #define DRM_FORMAT_BGRA8888 fourcc_code('B', 'A', '2', '4') /* [31:0] B:G:R:A 8:8:8:8 little endian */
202
203 #define DRM_FORMAT_XRGB2101010 fourcc_code('X', 'R', '3', '0') /* [31:0] x:R:G:B 2:10:10:10 little endian */
204 #define DRM_FORMAT_XBGR2101010 fourcc_code('X', 'B', '3', '0') /* [31:0] x:B:G:R 2:10:10:10 little endian */
205 #define DRM_FORMAT_RGBX1010102 fourcc_code('R', 'X', '3', '0') /* [31:0] R:G:B:x 10:10:10:2 little endian */
206 #define DRM_FORMAT_BGRX1010102 fourcc_code('B', 'X', '3', '0') /* [31:0] B:G:R:x 10:10:10:2 little endian */
207
208 #define DRM_FORMAT_ARGB2101010 fourcc_code('A', 'R', '3', '0') /* [31:0] A:R:G:B 2:10:10:10 little endian */
209 #define DRM_FORMAT_ABGR2101010 fourcc_code('A', 'B', '3', '0') /* [31:0] A:B:G:R 2:10:10:10 little endian */
210 #define DRM_FORMAT_RGBA1010102 fourcc_code('R', 'A', '3', '0') /* [31:0] R:G:B:A 10:10:10:2 little endian */
211 #define DRM_FORMAT_BGRA1010102 fourcc_code('B', 'A', '3', '0') /* [31:0] B:G:R:A 10:10:10:2 little endian */
212
213 /* 64 bpp RGB */
214 #define DRM_FORMAT_XRGB16161616 fourcc_code('X', 'R', '4', '8') /* [63:0] x:R:G:B 16:16:16:16 little endian */
215 #define DRM_FORMAT_XBGR16161616 fourcc_code('X', 'B', '4', '8') /* [63:0] x:B:G:R 16:16:16:16 little endian */
216
217 #define DRM_FORMAT_ARGB16161616 fourcc_code('A', 'R', '4', '8') /* [63:0] A:R:G:B 16:16:16:16 little endian */
218 #define DRM_FORMAT_ABGR16161616 fourcc_code('A', 'B', '4', '8') /* [63:0] A:B:G:R 16:16:16:16 little endian */
219
220 /*
221 * Floating point 64bpp RGB
222 * IEEE 754-2008 binary16 half-precision float
223 * [15:0] sign:exponent:mantissa 1:5:10
224 */
225 #define DRM_FORMAT_XRGB16161616F fourcc_code('X', 'R', '4', 'H') /* [63:0] x:R:G:B 16:16:16:16 little endian */
226 #define DRM_FORMAT_XBGR16161616F fourcc_code('X', 'B', '4', 'H') /* [63:0] x:B:G:R 16:16:16:16 little endian */
227
228 #define DRM_FORMAT_ARGB16161616F fourcc_code('A', 'R', '4', 'H') /* [63:0] A:R:G:B 16:16:16:16 little endian */
229 #define DRM_FORMAT_ABGR16161616F fourcc_code('A', 'B', '4', 'H') /* [63:0] A:B:G:R 16:16:16:16 little endian */
230
231 /*
232 * RGBA format with 10-bit components packed in 64-bit per pixel, with 6 bits
233 * of unused padding per component:
234 */
235 #define DRM_FORMAT_AXBXGXRX106106106106 fourcc_code('A', 'B', '1', '0') /* [63:0] A:x:B:x:G:x:R:x 10:6:10:6:10:6:10:6 little endian */
236
237 /* packed YCbCr */
238 #define DRM_FORMAT_YUYV fourcc_code('Y', 'U', 'Y', 'V') /* [31:0] Cr0:Y1:Cb0:Y0 8:8:8:8 little endian */
239 #define DRM_FORMAT_YVYU fourcc_code('Y', 'V', 'Y', 'U') /* [31:0] Cb0:Y1:Cr0:Y0 8:8:8:8 little endian */
240 #define DRM_FORMAT_UYVY fourcc_code('U', 'Y', 'V', 'Y') /* [31:0] Y1:Cr0:Y0:Cb0 8:8:8:8 little endian */
241 #define DRM_FORMAT_VYUY fourcc_code('V', 'Y', 'U', 'Y') /* [31:0] Y1:Cb0:Y0:Cr0 8:8:8:8 little endian */
242
243 #define DRM_FORMAT_AYUV fourcc_code('A', 'Y', 'U', 'V') /* [31:0] A:Y:Cb:Cr 8:8:8:8 little endian */
244 #define DRM_FORMAT_AVUY8888 fourcc_code('A', 'V', 'U', 'Y') /* [31:0] A:Cr:Cb:Y 8:8:8:8 little endian */
245 #define DRM_FORMAT_XYUV8888 fourcc_code('X', 'Y', 'U', 'V') /* [31:0] X:Y:Cb:Cr 8:8:8:8 little endian */
246 #define DRM_FORMAT_XVUY8888 fourcc_code('X', 'V', 'U', 'Y') /* [31:0] X:Cr:Cb:Y 8:8:8:8 little endian */
247 #define DRM_FORMAT_VUY888 fourcc_code('V', 'U', '2', '4') /* [23:0] Cr:Cb:Y 8:8:8 little endian */
248 #define DRM_FORMAT_VUY101010 fourcc_code('V', 'U', '3', '0') /* Y followed by U then V, 10:10:10. Non-linear modifier only */
249
250 /*
251 * packed Y2xx indicate for each component, xx valid data occupy msb
252 * 16-xx padding occupy lsb
253 */
254 #define DRM_FORMAT_Y210 fourcc_code('Y', '2', '1', '0') /* [63:0] Cr0:0:Y1:0:Cb0:0:Y0:0 10:6:10:6:10:6:10:6 little endian per 2 Y pixels */
255 #define DRM_FORMAT_Y212 fourcc_code('Y', '2', '1', '2') /* [63:0] Cr0:0:Y1:0:Cb0:0:Y0:0 12:4:12:4:12:4:12:4 little endian per 2 Y pixels */
256 #define DRM_FORMAT_Y216 fourcc_code('Y', '2', '1', '6') /* [63:0] Cr0:Y1:Cb0:Y0 16:16:16:16 little endian per 2 Y pixels */
257
258 /*
259 * packed Y4xx indicate for each component, xx valid data occupy msb
260 * 16-xx padding occupy lsb except Y410
261 */
262 #define DRM_FORMAT_Y410 fourcc_code('Y', '4', '1', '0') /* [31:0] A:Cr:Y:Cb 2:10:10:10 little endian */
263 #define DRM_FORMAT_Y412 fourcc_code('Y', '4', '1', '2') /* [63:0] A:0:Cr:0:Y:0:Cb:0 12:4:12:4:12:4:12:4 little endian */
264 #define DRM_FORMAT_Y416 fourcc_code('Y', '4', '1', '6') /* [63:0] A:Cr:Y:Cb 16:16:16:16 little endian */
265
266 #define DRM_FORMAT_XVYU2101010 fourcc_code('X', 'V', '3', '0') /* [31:0] X:Cr:Y:Cb 2:10:10:10 little endian */
267 #define DRM_FORMAT_XVYU12_16161616 fourcc_code('X', 'V', '3', '6') /* [63:0] X:0:Cr:0:Y:0:Cb:0 12:4:12:4:12:4:12:4 little endian */
268 #define DRM_FORMAT_XVYU16161616 fourcc_code('X', 'V', '4', '8') /* [63:0] X:Cr:Y:Cb 16:16:16:16 little endian */
269
270 /*
271 * packed YCbCr420 2x2 tiled formats
272 * first 64 bits will contain Y,Cb,Cr components for a 2x2 tile
273 */
274 /* [63:0] A3:A2:Y3:0:Cr0:0:Y2:0:A1:A0:Y1:0:Cb0:0:Y0:0 1:1:8:2:8:2:8:2:1:1:8:2:8:2:8:2 little endian */
275 #define DRM_FORMAT_Y0L0 fourcc_code('Y', '0', 'L', '0')
276 /* [63:0] X3:X2:Y3:0:Cr0:0:Y2:0:X1:X0:Y1:0:Cb0:0:Y0:0 1:1:8:2:8:2:8:2:1:1:8:2:8:2:8:2 little endian */
277 #define DRM_FORMAT_X0L0 fourcc_code('X', '0', 'L', '0')
278
279 /* [63:0] A3:A2:Y3:Cr0:Y2:A1:A0:Y1:Cb0:Y0 1:1:10:10:10:1:1:10:10:10 little endian */
280 #define DRM_FORMAT_Y0L2 fourcc_code('Y', '0', 'L', '2')
281 /* [63:0] X3:X2:Y3:Cr0:Y2:X1:X0:Y1:Cb0:Y0 1:1:10:10:10:1:1:10:10:10 little endian */
282 #define DRM_FORMAT_X0L2 fourcc_code('X', '0', 'L', '2')
283
284 /*
285 * 1-plane YUV 4:2:0
286 * In these formats, the component ordering is specified (Y, followed by U
287 * then V), but the exact Linear layout is undefined.
288 * These formats can only be used with a non-Linear modifier.
289 */
290 #define DRM_FORMAT_YUV420_8BIT fourcc_code('Y', 'U', '0', '8')
291 #define DRM_FORMAT_YUV420_10BIT fourcc_code('Y', 'U', '1', '0')
292
293 /*
294 * 2 plane RGB + A
295 * index 0 = RGB plane, same format as the corresponding non _A8 format has
296 * index 1 = A plane, [7:0] A
297 */
298 #define DRM_FORMAT_XRGB8888_A8 fourcc_code('X', 'R', 'A', '8')
299 #define DRM_FORMAT_XBGR8888_A8 fourcc_code('X', 'B', 'A', '8')
300 #define DRM_FORMAT_RGBX8888_A8 fourcc_code('R', 'X', 'A', '8')
301 #define DRM_FORMAT_BGRX8888_A8 fourcc_code('B', 'X', 'A', '8')
302 #define DRM_FORMAT_RGB888_A8 fourcc_code('R', '8', 'A', '8')
303 #define DRM_FORMAT_BGR888_A8 fourcc_code('B', '8', 'A', '8')
304 #define DRM_FORMAT_RGB565_A8 fourcc_code('R', '5', 'A', '8')
305 #define DRM_FORMAT_BGR565_A8 fourcc_code('B', '5', 'A', '8')
306
307 /*
308 * 2 plane YCbCr
309 * index 0 = Y plane, [7:0] Y
310 * index 1 = Cr:Cb plane, [15:0] Cr:Cb little endian
311 * or
312 * index 1 = Cb:Cr plane, [15:0] Cb:Cr little endian
313 */
314 #define DRM_FORMAT_NV12 fourcc_code('N', 'V', '1', '2') /* 2x2 subsampled Cr:Cb plane */
315 #define DRM_FORMAT_NV21 fourcc_code('N', 'V', '2', '1') /* 2x2 subsampled Cb:Cr plane */
316 #define DRM_FORMAT_NV16 fourcc_code('N', 'V', '1', '6') /* 2x1 subsampled Cr:Cb plane */
317 #define DRM_FORMAT_NV61 fourcc_code('N', 'V', '6', '1') /* 2x1 subsampled Cb:Cr plane */
318 #define DRM_FORMAT_NV24 fourcc_code('N', 'V', '2', '4') /* non-subsampled Cr:Cb plane */
319 #define DRM_FORMAT_NV42 fourcc_code('N', 'V', '4', '2') /* non-subsampled Cb:Cr plane */
320 /*
321 * 2 plane YCbCr
322 * index 0 = Y plane, [39:0] Y3:Y2:Y1:Y0 little endian
323 * index 1 = Cr:Cb plane, [39:0] Cr1:Cb1:Cr0:Cb0 little endian
324 */
325 #define DRM_FORMAT_NV15 fourcc_code('N', 'V', '1', '5') /* 2x2 subsampled Cr:Cb plane */
326 #define DRM_FORMAT_NV20 fourcc_code('N', 'V', '2', '0') /* 2x1 subsampled Cr:Cb plane */
327 #define DRM_FORMAT_NV30 fourcc_code('N', 'V', '3', '0') /* non-subsampled Cr:Cb plane */
328
329 /*
330 * 2 plane YCbCr MSB aligned
331 * index 0 = Y plane, [15:0] Y:x [10:6] little endian
332 * index 1 = Cr:Cb plane, [31:0] Cr:x:Cb:x [10:6:10:6] little endian
333 */
334 #define DRM_FORMAT_P210 fourcc_code('P', '2', '1', '0') /* 2x1 subsampled Cr:Cb plane, 10 bit per channel */
335
336 /*
337 * 2 plane YCbCr MSB aligned
338 * index 0 = Y plane, [15:0] Y:x [10:6] little endian
339 * index 1 = Cr:Cb plane, [31:0] Cr:x:Cb:x [10:6:10:6] little endian
340 */
341 #define DRM_FORMAT_P010 fourcc_code('P', '0', '1', '0') /* 2x2 subsampled Cr:Cb plane 10 bits per channel */
342
343 /*
344 * 2 plane YCbCr MSB aligned
345 * index 0 = Y plane, [15:0] Y:x [12:4] little endian
346 * index 1 = Cr:Cb plane, [31:0] Cr:x:Cb:x [12:4:12:4] little endian
347 */
348 #define DRM_FORMAT_P012 fourcc_code('P', '0', '1', '2') /* 2x2 subsampled Cr:Cb plane 12 bits per channel */
349
350 /*
351 * 2 plane YCbCr MSB aligned
352 * index 0 = Y plane, [15:0] Y little endian
353 * index 1 = Cr:Cb plane, [31:0] Cr:Cb [16:16] little endian
354 */
355 #define DRM_FORMAT_P016 fourcc_code('P', '0', '1', '6') /* 2x2 subsampled Cr:Cb plane 16 bits per channel */
356
357 /* 2 plane YCbCr420.
358 * 3 10 bit components and 2 padding bits packed into 4 bytes.
359 * index 0 = Y plane, [31:0] x:Y2:Y1:Y0 2:10:10:10 little endian
360 * index 1 = Cr:Cb plane, [63:0] x:Cr2:Cb2:Cr1:x:Cb1:Cr0:Cb0 [2:10:10:10:2:10:10:10] little endian
361 */
362 #define DRM_FORMAT_P030 fourcc_code('P', '0', '3', '0') /* 2x2 subsampled Cr:Cb plane 10 bits per channel packed */
363
364 /* 3 plane non-subsampled (444) YCbCr
365 * 16 bits per component, but only 10 bits are used and 6 bits are padded
366 * index 0: Y plane, [15:0] Y:x [10:6] little endian
367 * index 1: Cb plane, [15:0] Cb:x [10:6] little endian
368 * index 2: Cr plane, [15:0] Cr:x [10:6] little endian
369 */
370 #define DRM_FORMAT_Q410 fourcc_code('Q', '4', '1', '0')
371
372 /* 3 plane non-subsampled (444) YCrCb
373 * 16 bits per component, but only 10 bits are used and 6 bits are padded
374 * index 0: Y plane, [15:0] Y:x [10:6] little endian
375 * index 1: Cr plane, [15:0] Cr:x [10:6] little endian
376 * index 2: Cb plane, [15:0] Cb:x [10:6] little endian
377 */
378 #define DRM_FORMAT_Q401 fourcc_code('Q', '4', '0', '1')
379
380 /*
381 * 3 plane YCbCr
382 * index 0: Y plane, [7:0] Y
383 * index 1: Cb plane, [7:0] Cb
384 * index 2: Cr plane, [7:0] Cr
385 * or
386 * index 1: Cr plane, [7:0] Cr
387 * index 2: Cb plane, [7:0] Cb
388 */
389 #define DRM_FORMAT_YUV410 fourcc_code('Y', 'U', 'V', '9') /* 4x4 subsampled Cb (1) and Cr (2) planes */
390 #define DRM_FORMAT_YVU410 fourcc_code('Y', 'V', 'U', '9') /* 4x4 subsampled Cr (1) and Cb (2) planes */
391 #define DRM_FORMAT_YUV411 fourcc_code('Y', 'U', '1', '1') /* 4x1 subsampled Cb (1) and Cr (2) planes */
392 #define DRM_FORMAT_YVU411 fourcc_code('Y', 'V', '1', '1') /* 4x1 subsampled Cr (1) and Cb (2) planes */
393 #define DRM_FORMAT_YUV420 fourcc_code('Y', 'U', '1', '2') /* 2x2 subsampled Cb (1) and Cr (2) planes */
394 #define DRM_FORMAT_YVU420 fourcc_code('Y', 'V', '1', '2') /* 2x2 subsampled Cr (1) and Cb (2) planes */
395 #define DRM_FORMAT_YUV422 fourcc_code('Y', 'U', '1', '6') /* 2x1 subsampled Cb (1) and Cr (2) planes */
396 #define DRM_FORMAT_YVU422 fourcc_code('Y', 'V', '1', '6') /* 2x1 subsampled Cr (1) and Cb (2) planes */
397 #define DRM_FORMAT_YUV444 fourcc_code('Y', 'U', '2', '4') /* non-subsampled Cb (1) and Cr (2) planes */
398 #define DRM_FORMAT_YVU444 fourcc_code('Y', 'V', '2', '4') /* non-subsampled Cr (1) and Cb (2) planes */
399
400
401 /*
402 * Format Modifiers:
403 *
404 * Format modifiers describe, typically, a re-ordering or modification
405 * of the data in a plane of an FB. This can be used to express tiled/
406 * swizzled formats, or compression, or a combination of the two.
407 *
408 * The upper 8 bits of the format modifier are a vendor-id as assigned
409 * below. The lower 56 bits are assigned as vendor sees fit.
410 */
411
412 /* Vendor Ids: */
413 #define DRM_FORMAT_MOD_VENDOR_NONE 0
414 #define DRM_FORMAT_MOD_VENDOR_INTEL 0x01
415 #define DRM_FORMAT_MOD_VENDOR_AMD 0x02
416 #define DRM_FORMAT_MOD_VENDOR_NVIDIA 0x03
417 #define DRM_FORMAT_MOD_VENDOR_SAMSUNG 0x04
418 #define DRM_FORMAT_MOD_VENDOR_QCOM 0x05
419 #define DRM_FORMAT_MOD_VENDOR_VIVANTE 0x06
420 #define DRM_FORMAT_MOD_VENDOR_BROADCOM 0x07
421 #define DRM_FORMAT_MOD_VENDOR_ARM 0x08
422 #define DRM_FORMAT_MOD_VENDOR_ALLWINNER 0x09
423 #define DRM_FORMAT_MOD_VENDOR_AMLOGIC 0x0a
424
425 /* add more to the end as needed */
426
427 #define DRM_FORMAT_RESERVED ((1ULL << 56) - 1)
428
429 #define fourcc_mod_get_vendor(modifier) \
430 (((modifier) >> 56) & 0xff)
431
432 #define fourcc_mod_is_vendor(modifier, vendor) \
433 (fourcc_mod_get_vendor(modifier) == DRM_FORMAT_MOD_VENDOR_## vendor)
434
435 #define fourcc_mod_code(vendor, val) \
436 ((((__u64)DRM_FORMAT_MOD_VENDOR_## vendor) << 56) | ((val) & 0x00ffffffffffffffULL))
437
438 /*
439 * Format Modifier tokens:
440 *
441 * When adding a new token please document the layout with a code comment,
442 * similar to the fourcc codes above. drm_fourcc.h is considered the
443 * authoritative source for all of these.
444 *
445 * Generic modifier names:
446 *
447 * DRM_FORMAT_MOD_GENERIC_* definitions are used to provide vendor-neutral names
448 * for layouts which are common across multiple vendors. To preserve
449 * compatibility, in cases where a vendor-specific definition already exists and
450 * a generic name for it is desired, the common name is a purely symbolic alias
451 * and must use the same numerical value as the original definition.
452 *
453 * Note that generic names should only be used for modifiers which describe
454 * generic layouts (such as pixel re-ordering), which may have
455 * independently-developed support across multiple vendors.
456 *
457 * In future cases where a generic layout is identified before merging with a
458 * vendor-specific modifier, a new 'GENERIC' vendor or modifier using vendor
459 * 'NONE' could be considered. This should only be for obvious, exceptional
460 * cases to avoid polluting the 'GENERIC' namespace with modifiers which only
461 * apply to a single vendor.
462 *
463 * Generic names should not be used for cases where multiple hardware vendors
464 * have implementations of the same standardised compression scheme (such as
465 * AFBC). In those cases, all implementations should use the same format
466 * modifier(s), reflecting the vendor of the standard.
467 */
468
469 #define DRM_FORMAT_MOD_GENERIC_16_16_TILE DRM_FORMAT_MOD_SAMSUNG_16_16_TILE
470
471 /*
472 * Invalid Modifier
473 *
474 * This modifier can be used as a sentinel to terminate the format modifiers
475 * list, or to initialize a variable with an invalid modifier. It might also be
476 * used to report an error back to userspace for certain APIs.
477 */
478 #define DRM_FORMAT_MOD_INVALID fourcc_mod_code(NONE, DRM_FORMAT_RESERVED)
479
480 /*
481 * Linear Layout
482 *
483 * Just plain linear layout. Note that this is different from no specifying any
484 * modifier (e.g. not setting DRM_MODE_FB_MODIFIERS in the DRM_ADDFB2 ioctl),
485 * which tells the driver to also take driver-internal information into account
486 * and so might actually result in a tiled framebuffer.
487 */
488 #define DRM_FORMAT_MOD_LINEAR fourcc_mod_code(NONE, 0)
489
490 /*
491 * Deprecated: use DRM_FORMAT_MOD_LINEAR instead
492 *
493 * The "none" format modifier doesn't actually mean that the modifier is
494 * implicit, instead it means that the layout is linear. Whether modifiers are
495 * used is out-of-band information carried in an API-specific way (e.g. in a
496 * flag for drm_mode_fb_cmd2).
497 */
498 #define DRM_FORMAT_MOD_NONE 0
499
500 /* Intel framebuffer modifiers */
501
502 /*
503 * Intel X-tiling layout
504 *
505 * This is a tiled layout using 4Kb tiles (except on gen2 where the tiles 2Kb)
506 * in row-major layout. Within the tile bytes are laid out row-major, with
507 * a platform-dependent stride. On top of that the memory can apply
508 * platform-depending swizzling of some higher address bits into bit6.
509 *
510 * Note that this layout is only accurate on intel gen 8+ or valleyview chipsets.
511 * On earlier platforms the is highly platforms specific and not useful for
512 * cross-driver sharing. It exists since on a given platform it does uniquely
513 * identify the layout in a simple way for i915-specific userspace, which
514 * facilitated conversion of userspace to modifiers. Additionally the exact
515 * format on some really old platforms is not known.
516 */
517 #define I915_FORMAT_MOD_X_TILED fourcc_mod_code(INTEL, 1)
518
519 /*
520 * Intel Y-tiling layout
521 *
522 * This is a tiled layout using 4Kb tiles (except on gen2 where the tiles 2Kb)
523 * in row-major layout. Within the tile bytes are laid out in OWORD (16 bytes)
524 * chunks column-major, with a platform-dependent height. On top of that the
525 * memory can apply platform-depending swizzling of some higher address bits
526 * into bit6.
527 *
528 * Note that this layout is only accurate on intel gen 8+ or valleyview chipsets.
529 * On earlier platforms the is highly platforms specific and not useful for
530 * cross-driver sharing. It exists since on a given platform it does uniquely
531 * identify the layout in a simple way for i915-specific userspace, which
532 * facilitated conversion of userspace to modifiers. Additionally the exact
533 * format on some really old platforms is not known.
534 */
535 #define I915_FORMAT_MOD_Y_TILED fourcc_mod_code(INTEL, 2)
536
537 /*
538 * Intel Yf-tiling layout
539 *
540 * This is a tiled layout using 4Kb tiles in row-major layout.
541 * Within the tile pixels are laid out in 16 256 byte units / sub-tiles which
542 * are arranged in four groups (two wide, two high) with column-major layout.
543 * Each group therefore consists out of four 256 byte units, which are also laid
544 * out as 2x2 column-major.
545 * 256 byte units are made out of four 64 byte blocks of pixels, producing
546 * either a square block or a 2:1 unit.
547 * 64 byte blocks of pixels contain four pixel rows of 16 bytes, where the width
548 * in pixel depends on the pixel depth.
549 */
550 #define I915_FORMAT_MOD_Yf_TILED fourcc_mod_code(INTEL, 3)
551
552 /*
553 * Intel color control surface (CCS) for render compression
554 *
555 * The framebuffer format must be one of the 8:8:8:8 RGB formats.
556 * The main surface will be plane index 0 and must be Y/Yf-tiled,
557 * the CCS will be plane index 1.
558 *
559 * Each CCS tile matches a 1024x512 pixel area of the main surface.
560 * To match certain aspects of the 3D hardware the CCS is
561 * considered to be made up of normal 128Bx32 Y tiles, Thus
562 * the CCS pitch must be specified in multiples of 128 bytes.
563 *
564 * In reality the CCS tile appears to be a 64Bx64 Y tile, composed
565 * of QWORD (8 bytes) chunks instead of OWORD (16 bytes) chunks.
566 * But that fact is not relevant unless the memory is accessed
567 * directly.
568 */
569 #define I915_FORMAT_MOD_Y_TILED_CCS fourcc_mod_code(INTEL, 4)
570 #define I915_FORMAT_MOD_Yf_TILED_CCS fourcc_mod_code(INTEL, 5)
571
572 /*
573 * Intel color control surfaces (CCS) for Gen-12 render compression.
574 *
575 * The main surface is Y-tiled and at plane index 0, the CCS is linear and
576 * at index 1. A 64B CCS cache line corresponds to an area of 4x1 tiles in
577 * main surface. In other words, 4 bits in CCS map to a main surface cache
578 * line pair. The main surface pitch is required to be a multiple of four
579 * Y-tile widths.
580 */
581 #define I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS fourcc_mod_code(INTEL, 6)
582
583 /*
584 * Intel color control surfaces (CCS) for Gen-12 media compression
585 *
586 * The main surface is Y-tiled and at plane index 0, the CCS is linear and
587 * at index 1. A 64B CCS cache line corresponds to an area of 4x1 tiles in
588 * main surface. In other words, 4 bits in CCS map to a main surface cache
589 * line pair. The main surface pitch is required to be a multiple of four
590 * Y-tile widths. For semi-planar formats like NV12, CCS planes follow the
591 * Y and UV planes i.e., planes 0 and 1 are used for Y and UV surfaces,
592 * planes 2 and 3 for the respective CCS.
593 */
594 #define I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS fourcc_mod_code(INTEL, 7)
595
596 /*
597 * Intel Color Control Surface with Clear Color (CCS) for Gen-12 render
598 * compression.
599 *
600 * The main surface is Y-tiled and is at plane index 0 whereas CCS is linear
601 * and at index 1. The clear color is stored at index 2, and the pitch should
602 * be 64 bytes aligned. The clear color structure is 256 bits. The first 128 bits
603 * represents Raw Clear Color Red, Green, Blue and Alpha color each represented
604 * by 32 bits. The raw clear color is consumed by the 3d engine and generates
605 * the converted clear color of size 64 bits. The first 32 bits store the Lower
606 * Converted Clear Color value and the next 32 bits store the Higher Converted
607 * Clear Color value when applicable. The Converted Clear Color values are
608 * consumed by the DE. The last 64 bits are used to store Color Discard Enable
609 * and Depth Clear Value Valid which are ignored by the DE. A CCS cache line
610 * corresponds to an area of 4x1 tiles in the main surface. The main surface
611 * pitch is required to be a multiple of 4 tile widths.
612 */
613 #define I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS_CC fourcc_mod_code(INTEL, 8)
614
615 /*
616 * Intel Tile 4 layout
617 *
618 * This is a tiled layout using 4KB tiles in a row-major layout. It has the same
619 * shape as Tile Y at two granularities: 4KB (128B x 32) and 64B (16B x 4). It
620 * only differs from Tile Y at the 256B granularity in between. At this
621 * granularity, Tile Y has a shape of 16B x 32 rows, but this tiling has a shape
622 * of 64B x 8 rows.
623 */
624 #define I915_FORMAT_MOD_4_TILED fourcc_mod_code(INTEL, 9)
625
626 /*
627 * Intel color control surfaces (CCS) for DG2 render compression.
628 *
629 * The main surface is Tile 4 and at plane index 0. The CCS data is stored
630 * outside of the GEM object in a reserved memory area dedicated for the
631 * storage of the CCS data for all RC/RC_CC/MC compressible GEM objects. The
632 * main surface pitch is required to be a multiple of four Tile 4 widths.
633 */
634 #define I915_FORMAT_MOD_4_TILED_DG2_RC_CCS fourcc_mod_code(INTEL, 10)
635
636 /*
637 * Intel color control surfaces (CCS) for DG2 media compression.
638 *
639 * The main surface is Tile 4 and at plane index 0. For semi-planar formats
640 * like NV12, the Y and UV planes are Tile 4 and are located at plane indices
641 * 0 and 1, respectively. The CCS for all planes are stored outside of the
642 * GEM object in a reserved memory area dedicated for the storage of the
643 * CCS data for all RC/RC_CC/MC compressible GEM objects. The main surface
644 * pitch is required to be a multiple of four Tile 4 widths.
645 */
646 #define I915_FORMAT_MOD_4_TILED_DG2_MC_CCS fourcc_mod_code(INTEL, 11)
647
648 /*
649 * Intel Color Control Surface with Clear Color (CCS) for DG2 render compression.
650 *
651 * The main surface is Tile 4 and at plane index 0. The CCS data is stored
652 * outside of the GEM object in a reserved memory area dedicated for the
653 * storage of the CCS data for all RC/RC_CC/MC compressible GEM objects. The
654 * main surface pitch is required to be a multiple of four Tile 4 widths. The
655 * clear color is stored at plane index 1 and the pitch should be 64 bytes
656 * aligned. The format of the 256 bits of clear color data matches the one used
657 * for the I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS_CC modifier, see its description
658 * for details.
659 */
660 #define I915_FORMAT_MOD_4_TILED_DG2_RC_CCS_CC fourcc_mod_code(INTEL, 12)
661
662 /*
663 * Intel Color Control Surfaces (CCS) for display ver. 14 render compression.
664 *
665 * The main surface is tile4 and at plane index 0, the CCS is linear and
666 * at index 1. A 64B CCS cache line corresponds to an area of 4x1 tiles in
667 * main surface. In other words, 4 bits in CCS map to a main surface cache
668 * line pair. The main surface pitch is required to be a multiple of four
669 * tile4 widths.
670 */
671 #define I915_FORMAT_MOD_4_TILED_MTL_RC_CCS fourcc_mod_code(INTEL, 13)
672
673 /*
674 * Intel Color Control Surfaces (CCS) for display ver. 14 media compression
675 *
676 * The main surface is tile4 and at plane index 0, the CCS is linear and
677 * at index 1. A 64B CCS cache line corresponds to an area of 4x1 tiles in
678 * main surface. In other words, 4 bits in CCS map to a main surface cache
679 * line pair. The main surface pitch is required to be a multiple of four
680 * tile4 widths. For semi-planar formats like NV12, CCS planes follow the
681 * Y and UV planes i.e., planes 0 and 1 are used for Y and UV surfaces,
682 * planes 2 and 3 for the respective CCS.
683 */
684 #define I915_FORMAT_MOD_4_TILED_MTL_MC_CCS fourcc_mod_code(INTEL, 14)
685
686 /*
687 * Intel Color Control Surface with Clear Color (CCS) for display ver. 14 render
688 * compression.
689 *
690 * The main surface is tile4 and is at plane index 0 whereas CCS is linear
691 * and at index 1. The clear color is stored at index 2, and the pitch should
692 * be ignored. The clear color structure is 256 bits. The first 128 bits
693 * represents Raw Clear Color Red, Green, Blue and Alpha color each represented
694 * by 32 bits. The raw clear color is consumed by the 3d engine and generates
695 * the converted clear color of size 64 bits. The first 32 bits store the Lower
696 * Converted Clear Color value and the next 32 bits store the Higher Converted
697 * Clear Color value when applicable. The Converted Clear Color values are
698 * consumed by the DE. The last 64 bits are used to store Color Discard Enable
699 * and Depth Clear Value Valid which are ignored by the DE. A CCS cache line
700 * corresponds to an area of 4x1 tiles in the main surface. The main surface
701 * pitch is required to be a multiple of 4 tile widths.
702 */
703 #define I915_FORMAT_MOD_4_TILED_MTL_RC_CCS_CC fourcc_mod_code(INTEL, 15)
704
705 /*
706 * Intel Color Control Surfaces (CCS) for graphics ver. 20 unified compression
707 * on integrated graphics
708 *
709 * The main surface is Tile 4 and at plane index 0. For semi-planar formats
710 * like NV12, the Y and UV planes are Tile 4 and are located at plane indices
711 * 0 and 1, respectively. The CCS for all planes are stored outside of the
712 * GEM object in a reserved memory area dedicated for the storage of the
713 * CCS data for all compressible GEM objects.
714 */
715 #define I915_FORMAT_MOD_4_TILED_LNL_CCS fourcc_mod_code(INTEL, 16)
716
717 /*
718 * Intel Color Control Surfaces (CCS) for graphics ver. 20 unified compression
719 * on discrete graphics
720 *
721 * The main surface is Tile 4 and at plane index 0. For semi-planar formats
722 * like NV12, the Y and UV planes are Tile 4 and are located at plane indices
723 * 0 and 1, respectively. The CCS for all planes are stored outside of the
724 * GEM object in a reserved memory area dedicated for the storage of the
725 * CCS data for all compressible GEM objects. The GEM object must be stored in
726 * contiguous memory with a size aligned to 64KB
727 */
728 #define I915_FORMAT_MOD_4_TILED_BMG_CCS fourcc_mod_code(INTEL, 17)
729
730 /*
731 * Tiled, NV12MT, grouped in 64 (pixels) x 32 (lines) -sized macroblocks
732 *
733 * Macroblocks are laid in a Z-shape, and each pixel data is following the
734 * standard NV12 style.
735 * As for NV12, an image is the result of two frame buffers: one for Y,
736 * one for the interleaved Cb/Cr components (1/2 the height of the Y buffer).
737 * Alignment requirements are (for each buffer):
738 * - multiple of 128 pixels for the width
739 * - multiple of 32 pixels for the height
740 *
741 * For more information: see https://linuxtv.org/downloads/v4l-dvb-apis/re32.html
742 */
743 #define DRM_FORMAT_MOD_SAMSUNG_64_32_TILE fourcc_mod_code(SAMSUNG, 1)
744
745 /*
746 * Tiled, 16 (pixels) x 16 (lines) - sized macroblocks
747 *
748 * This is a simple tiled layout using tiles of 16x16 pixels in a row-major
749 * layout. For YCbCr formats Cb/Cr components are taken in such a way that
750 * they correspond to their 16x16 luma block.
751 */
752 #define DRM_FORMAT_MOD_SAMSUNG_16_16_TILE fourcc_mod_code(SAMSUNG, 2)
753
754 /*
755 * Qualcomm Compressed Format
756 *
757 * Refers to a compressed variant of the base format that is compressed.
758 * Implementation may be platform and base-format specific.
759 *
760 * Each macrotile consists of m x n (mostly 4 x 4) tiles.
761 * Pixel data pitch/stride is aligned with macrotile width.
762 * Pixel data height is aligned with macrotile height.
763 * Entire pixel data buffer is aligned with 4k(bytes).
764 */
765 #define DRM_FORMAT_MOD_QCOM_COMPRESSED fourcc_mod_code(QCOM, 1)
766
767 /*
768 * Qualcomm Tiled Format
769 *
770 * Similar to DRM_FORMAT_MOD_QCOM_COMPRESSED but not compressed.
771 * Implementation may be platform and base-format specific.
772 *
773 * Each macrotile consists of m x n (mostly 4 x 4) tiles.
774 * Pixel data pitch/stride is aligned with macrotile width.
775 * Pixel data height is aligned with macrotile height.
776 * Entire pixel data buffer is aligned with 4k(bytes).
777 */
778 #define DRM_FORMAT_MOD_QCOM_TILED3 fourcc_mod_code(QCOM, 3)
779
780 /*
781 * Qualcomm Alternate Tiled Format
782 *
783 * Alternate tiled format typically only used within GMEM.
784 * Implementation may be platform and base-format specific.
785 */
786 #define DRM_FORMAT_MOD_QCOM_TILED2 fourcc_mod_code(QCOM, 2)
787
788
789 /* Vivante framebuffer modifiers */
790
791 /*
792 * Vivante 4x4 tiling layout
793 *
794 * This is a simple tiled layout using tiles of 4x4 pixels in a row-major
795 * layout.
796 */
797 #define DRM_FORMAT_MOD_VIVANTE_TILED fourcc_mod_code(VIVANTE, 1)
798
799 /*
800 * Vivante 64x64 super-tiling layout
801 *
802 * This is a tiled layout using 64x64 pixel super-tiles, where each super-tile
803 * contains 8x4 groups of 2x4 tiles of 4x4 pixels (like above) each, all in row-
804 * major layout.
805 *
806 * For more information: see
807 * https://github.com/etnaviv/etna_viv/blob/master/doc/hardware.md#texture-tiling
808 */
809 #define DRM_FORMAT_MOD_VIVANTE_SUPER_TILED fourcc_mod_code(VIVANTE, 2)
810
811 /*
812 * Vivante 4x4 tiling layout for dual-pipe
813 *
814 * Same as the 4x4 tiling layout, except every second 4x4 pixel tile starts at a
815 * different base address. Offsets from the base addresses are therefore halved
816 * compared to the non-split tiled layout.
817 */
818 #define DRM_FORMAT_MOD_VIVANTE_SPLIT_TILED fourcc_mod_code(VIVANTE, 3)
819
820 /*
821 * Vivante 64x64 super-tiling layout for dual-pipe
822 *
823 * Same as the 64x64 super-tiling layout, except every second 4x4 pixel tile
824 * starts at a different base address. Offsets from the base addresses are
825 * therefore halved compared to the non-split super-tiled layout.
826 */
827 #define DRM_FORMAT_MOD_VIVANTE_SPLIT_SUPER_TILED fourcc_mod_code(VIVANTE, 4)
828
829 /*
830 * Vivante TS (tile-status) buffer modifiers. They can be combined with all of
831 * the color buffer tiling modifiers defined above. When TS is present it's a
832 * separate buffer containing the clear/compression status of each tile. The
833 * modifiers are defined as VIVANTE_MOD_TS_c_s, where c is the color buffer
834 * tile size in bytes covered by one entry in the status buffer and s is the
835 * number of status bits per entry.
836 * We reserve the top 8 bits of the Vivante modifier space for tile status
837 * clear/compression modifiers, as future cores might add some more TS layout
838 * variations.
839 */
840 #define VIVANTE_MOD_TS_64_4 (1ULL << 48)
841 #define VIVANTE_MOD_TS_64_2 (2ULL << 48)
842 #define VIVANTE_MOD_TS_128_4 (3ULL << 48)
843 #define VIVANTE_MOD_TS_256_4 (4ULL << 48)
844 #define VIVANTE_MOD_TS_MASK (0xfULL << 48)
845
846 /*
847 * Vivante compression modifiers. Those depend on a TS modifier being present
848 * as the TS bits get reinterpreted as compression tags instead of simple
849 * clear markers when compression is enabled.
850 */
851 #define VIVANTE_MOD_COMP_DEC400 (1ULL << 52)
852 #define VIVANTE_MOD_COMP_MASK (0xfULL << 52)
853
854 /* Masking out the extension bits will yield the base modifier. */
855 #define VIVANTE_MOD_EXT_MASK (VIVANTE_MOD_TS_MASK | \
856 VIVANTE_MOD_COMP_MASK)
857
858 /* NVIDIA frame buffer modifiers */
859
860 /*
861 * Tegra Tiled Layout, used by Tegra 2, 3 and 4.
862 *
863 * Pixels are arranged in simple tiles of 16 x 16 bytes.
864 */
865 #define DRM_FORMAT_MOD_NVIDIA_TEGRA_TILED fourcc_mod_code(NVIDIA, 1)
866
867 /*
868 * Generalized Block Linear layout, used by desktop GPUs starting with NV50/G80,
869 * and Tegra GPUs starting with Tegra K1.
870 *
871 * Pixels are arranged in Groups of Bytes (GOBs). GOB size and layout varies
872 * based on the architecture generation. GOBs themselves are then arranged in
873 * 3D blocks, with the block dimensions (in terms of GOBs) always being a power
874 * of two, and hence expressible as their log2 equivalent (E.g., "2" represents
875 * a block depth or height of "4").
876 *
877 * Chapter 20 "Pixel Memory Formats" of the Tegra X1 TRM describes this format
878 * in full detail.
879 *
880 * Macro
881 * Bits Param Description
882 * ---- ----- -----------------------------------------------------------------
883 *
884 * 3:0 h log2(height) of each block, in GOBs. Placed here for
885 * compatibility with the existing
886 * DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK()-based modifiers.
887 *
888 * 4:4 - Must be 1, to indicate block-linear layout. Necessary for
889 * compatibility with the existing
890 * DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK()-based modifiers.
891 *
892 * 8:5 - Reserved (To support 3D-surfaces with variable log2(depth) block
893 * size). Must be zero.
894 *
895 * Note there is no log2(width) parameter. Some portions of the
896 * hardware support a block width of two gobs, but it is impractical
897 * to use due to lack of support elsewhere, and has no known
898 * benefits.
899 *
900 * 11:9 - Reserved (To support 2D-array textures with variable array stride
901 * in blocks, specified via log2(tile width in blocks)). Must be
902 * zero.
903 *
904 * 19:12 k Page Kind. This value directly maps to a field in the page
905 * tables of all GPUs >= NV50. It affects the exact layout of bits
906 * in memory and can be derived from the tuple
907 *
908 * (format, GPU model, compression type, samples per pixel)
909 *
910 * Where compression type is defined below. If GPU model were
911 * implied by the format modifier, format, or memory buffer, page
912 * kind would not need to be included in the modifier itself, but
913 * since the modifier should define the layout of the associated
914 * memory buffer independent from any device or other context, it
915 * must be included here.
916 *
917 * 21:20 g GOB Height and Page Kind Generation. The height of a GOB changed
918 * starting with Fermi GPUs. Additionally, the mapping between page
919 * kind and bit layout has changed at various points.
920 *
921 * 0 = Gob Height 8, Fermi - Volta, Tegra K1+ Page Kind mapping
922 * 1 = Gob Height 4, G80 - GT2XX Page Kind mapping
923 * 2 = Gob Height 8, Turing+ Page Kind mapping
924 * 3 = Reserved for future use.
925 *
926 * 22:22 s Sector layout. On Tegra GPUs prior to Xavier, there is a further
927 * bit remapping step that occurs at an even lower level than the
928 * page kind and block linear swizzles. This causes the layout of
929 * surfaces mapped in those SOC's GPUs to be incompatible with the
930 * equivalent mapping on other GPUs in the same system.
931 *
932 * 0 = Tegra K1 - Tegra Parker/TX2 Layout.
933 * 1 = Desktop GPU and Tegra Xavier+ Layout
934 *
935 * 25:23 c Lossless Framebuffer Compression type.
936 *
937 * 0 = none
938 * 1 = ROP/3D, layout 1, exact compression format implied by Page
939 * Kind field
940 * 2 = ROP/3D, layout 2, exact compression format implied by Page
941 * Kind field
942 * 3 = CDE horizontal
943 * 4 = CDE vertical
944 * 5 = Reserved for future use
945 * 6 = Reserved for future use
946 * 7 = Reserved for future use
947 *
948 * 55:25 - Reserved for future use. Must be zero.
949 */
950 #define DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(c, s, g, k, h) \
951 fourcc_mod_code(NVIDIA, (0x10 | \
952 ((h) & 0xf) | \
953 (((k) & 0xff) << 12) | \
954 (((g) & 0x3) << 20) | \
955 (((s) & 0x1) << 22) | \
956 (((c) & 0x7) << 23)))
957
958 /* To grandfather in prior block linear format modifiers to the above layout,
959 * the page kind "0", which corresponds to "pitch/linear" and hence is unusable
960 * with block-linear layouts, is remapped within drivers to the value 0xfe,
961 * which corresponds to the "generic" kind used for simple single-sample
962 * uncompressed color formats on Fermi - Volta GPUs.
963 */
964 static inline __u64
drm_fourcc_canonicalize_nvidia_format_mod(__u64 modifier)965 drm_fourcc_canonicalize_nvidia_format_mod(__u64 modifier)
966 {
967 if (!(modifier & 0x10) || (modifier & (0xff << 12)))
968 return modifier;
969 else
970 return modifier | (0xfe << 12);
971 }
972
973 /*
974 * 16Bx2 Block Linear layout, used by Tegra K1 and later
975 *
976 * Pixels are arranged in 64x8 Groups Of Bytes (GOBs). GOBs are then stacked
977 * vertically by a power of 2 (1 to 32 GOBs) to form a block.
978 *
979 * Within a GOB, data is ordered as 16B x 2 lines sectors laid in Z-shape.
980 *
981 * Parameter 'v' is the log2 encoding of the number of GOBs stacked vertically.
982 * Valid values are:
983 *
984 * 0 == ONE_GOB
985 * 1 == TWO_GOBS
986 * 2 == FOUR_GOBS
987 * 3 == EIGHT_GOBS
988 * 4 == SIXTEEN_GOBS
989 * 5 == THIRTYTWO_GOBS
990 *
991 * Chapter 20 "Pixel Memory Formats" of the Tegra X1 TRM describes this format
992 * in full detail.
993 */
994 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(v) \
995 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 0, 0, 0, (v))
996
997 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_ONE_GOB \
998 DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(0)
999 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_TWO_GOB \
1000 DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(1)
1001 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_FOUR_GOB \
1002 DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(2)
1003 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_EIGHT_GOB \
1004 DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(3)
1005 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_SIXTEEN_GOB \
1006 DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(4)
1007 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_THIRTYTWO_GOB \
1008 DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(5)
1009
1010 /*
1011 * Some Broadcom modifiers take parameters, for example the number of
1012 * vertical lines in the image. Reserve the lower 32 bits for modifier
1013 * type, and the next 24 bits for parameters. Top 8 bits are the
1014 * vendor code.
1015 */
1016 #define __fourcc_mod_broadcom_param_shift 8
1017 #define __fourcc_mod_broadcom_param_bits 48
1018 #define fourcc_mod_broadcom_code(val, params) \
1019 fourcc_mod_code(BROADCOM, ((((__u64)params) << __fourcc_mod_broadcom_param_shift) | val))
1020 #define fourcc_mod_broadcom_param(m) \
1021 ((int)(((m) >> __fourcc_mod_broadcom_param_shift) & \
1022 ((1ULL << __fourcc_mod_broadcom_param_bits) - 1)))
1023 #define fourcc_mod_broadcom_mod(m) \
1024 ((m) & ~(((1ULL << __fourcc_mod_broadcom_param_bits) - 1) << \
1025 __fourcc_mod_broadcom_param_shift))
1026
1027 /*
1028 * Broadcom VC4 "T" format
1029 *
1030 * This is the primary layout that the V3D GPU can texture from (it
1031 * can't do linear). The T format has:
1032 *
1033 * - 64b utiles of pixels in a raster-order grid according to cpp. It's 4x4
1034 * pixels at 32 bit depth.
1035 *
1036 * - 1k subtiles made of a 4x4 raster-order grid of 64b utiles (so usually
1037 * 16x16 pixels).
1038 *
1039 * - 4k tiles made of a 2x2 grid of 1k subtiles (so usually 32x32 pixels). On
1040 * even 4k tile rows, they're arranged as (BL, TL, TR, BR), and on odd rows
1041 * they're (TR, BR, BL, TL), where bottom left is start of memory.
1042 *
1043 * - an image made of 4k tiles in rows either left-to-right (even rows of 4k
1044 * tiles) or right-to-left (odd rows of 4k tiles).
1045 */
1046 #define DRM_FORMAT_MOD_BROADCOM_VC4_T_TILED fourcc_mod_code(BROADCOM, 1)
1047
1048 /*
1049 * Broadcom SAND format
1050 *
1051 * This is the native format that the H.264 codec block uses. For VC4
1052 * HVS, it is only valid for H.264 (NV12/21) and RGBA modes.
1053 *
1054 * The image can be considered to be split into columns, and the
1055 * columns are placed consecutively into memory. The width of those
1056 * columns can be either 32, 64, 128, or 256 pixels, but in practice
1057 * only 128 pixel columns are used.
1058 *
1059 * The pitch between the start of each column is set to optimally
1060 * switch between SDRAM banks. This is passed as the number of lines
1061 * of column width in the modifier (we can't use the stride value due
1062 * to various core checks that look at it , so you should set the
1063 * stride to width*cpp).
1064 *
1065 * Note that the column height for this format modifier is the same
1066 * for all of the planes, assuming that each column contains both Y
1067 * and UV. Some SAND-using hardware stores UV in a separate tiled
1068 * image from Y to reduce the column height, which is not supported
1069 * with these modifiers.
1070 *
1071 * The DRM_FORMAT_MOD_BROADCOM_SAND128_COL_HEIGHT modifier is also
1072 * supported for DRM_FORMAT_P030 where the columns remain as 128 bytes
1073 * wide, but as this is a 10 bpp format that translates to 96 pixels.
1074 */
1075
1076 #define DRM_FORMAT_MOD_BROADCOM_SAND32_COL_HEIGHT(v) \
1077 fourcc_mod_broadcom_code(2, v)
1078 #define DRM_FORMAT_MOD_BROADCOM_SAND64_COL_HEIGHT(v) \
1079 fourcc_mod_broadcom_code(3, v)
1080 #define DRM_FORMAT_MOD_BROADCOM_SAND128_COL_HEIGHT(v) \
1081 fourcc_mod_broadcom_code(4, v)
1082 #define DRM_FORMAT_MOD_BROADCOM_SAND256_COL_HEIGHT(v) \
1083 fourcc_mod_broadcom_code(5, v)
1084
1085 #define DRM_FORMAT_MOD_BROADCOM_SAND32 \
1086 DRM_FORMAT_MOD_BROADCOM_SAND32_COL_HEIGHT(0)
1087 #define DRM_FORMAT_MOD_BROADCOM_SAND64 \
1088 DRM_FORMAT_MOD_BROADCOM_SAND64_COL_HEIGHT(0)
1089 #define DRM_FORMAT_MOD_BROADCOM_SAND128 \
1090 DRM_FORMAT_MOD_BROADCOM_SAND128_COL_HEIGHT(0)
1091 #define DRM_FORMAT_MOD_BROADCOM_SAND256 \
1092 DRM_FORMAT_MOD_BROADCOM_SAND256_COL_HEIGHT(0)
1093
1094 /* Broadcom UIF format
1095 *
1096 * This is the common format for the current Broadcom multimedia
1097 * blocks, including V3D 3.x and newer, newer video codecs, and
1098 * displays.
1099 *
1100 * The image consists of utiles (64b blocks), UIF blocks (2x2 utiles),
1101 * and macroblocks (4x4 UIF blocks). Those 4x4 UIF block groups are
1102 * stored in columns, with padding between the columns to ensure that
1103 * moving from one column to the next doesn't hit the same SDRAM page
1104 * bank.
1105 *
1106 * To calculate the padding, it is assumed that each hardware block
1107 * and the software driving it knows the platform's SDRAM page size,
1108 * number of banks, and XOR address, and that it's identical between
1109 * all blocks using the format. This tiling modifier will use XOR as
1110 * necessary to reduce the padding. If a hardware block can't do XOR,
1111 * the assumption is that a no-XOR tiling modifier will be created.
1112 */
1113 #define DRM_FORMAT_MOD_BROADCOM_UIF fourcc_mod_code(BROADCOM, 6)
1114
1115 /*
1116 * Arm Framebuffer Compression (AFBC) modifiers
1117 *
1118 * AFBC is a proprietary lossless image compression protocol and format.
1119 * It provides fine-grained random access and minimizes the amount of data
1120 * transferred between IP blocks.
1121 *
1122 * AFBC has several features which may be supported and/or used, which are
1123 * represented using bits in the modifier. Not all combinations are valid,
1124 * and different devices or use-cases may support different combinations.
1125 *
1126 * Further information on the use of AFBC modifiers can be found in
1127 * Documentation/gpu/afbc.rst
1128 */
1129
1130 /*
1131 * The top 4 bits (out of the 56 bits allotted for specifying vendor specific
1132 * modifiers) denote the category for modifiers. Currently we have three
1133 * categories of modifiers ie AFBC, MISC and AFRC. We can have a maximum of
1134 * sixteen different categories.
1135 */
1136 #define DRM_FORMAT_MOD_ARM_CODE(__type, __val) \
1137 fourcc_mod_code(ARM, ((__u64)(__type) << 52) | ((__val) & 0x000fffffffffffffULL))
1138
1139 #define DRM_FORMAT_MOD_ARM_TYPE_AFBC 0x00
1140 #define DRM_FORMAT_MOD_ARM_TYPE_MISC 0x01
1141
1142 #define DRM_FORMAT_MOD_ARM_AFBC(__afbc_mode) \
1143 DRM_FORMAT_MOD_ARM_CODE(DRM_FORMAT_MOD_ARM_TYPE_AFBC, __afbc_mode)
1144
1145 /*
1146 * AFBC superblock size
1147 *
1148 * Indicates the superblock size(s) used for the AFBC buffer. The buffer
1149 * size (in pixels) must be aligned to a multiple of the superblock size.
1150 * Four lowest significant bits(LSBs) are reserved for block size.
1151 *
1152 * Where one superblock size is specified, it applies to all planes of the
1153 * buffer (e.g. 16x16, 32x8). When multiple superblock sizes are specified,
1154 * the first applies to the Luma plane and the second applies to the Chroma
1155 * plane(s). e.g. (32x8_64x4 means 32x8 Luma, with 64x4 Chroma).
1156 * Multiple superblock sizes are only valid for multi-plane YCbCr formats.
1157 */
1158 #define AFBC_FORMAT_MOD_BLOCK_SIZE_MASK 0xf
1159 #define AFBC_FORMAT_MOD_BLOCK_SIZE_16x16 (1ULL)
1160 #define AFBC_FORMAT_MOD_BLOCK_SIZE_32x8 (2ULL)
1161 #define AFBC_FORMAT_MOD_BLOCK_SIZE_64x4 (3ULL)
1162 #define AFBC_FORMAT_MOD_BLOCK_SIZE_32x8_64x4 (4ULL)
1163
1164 /*
1165 * AFBC lossless colorspace transform
1166 *
1167 * Indicates that the buffer makes use of the AFBC lossless colorspace
1168 * transform.
1169 */
1170 #define AFBC_FORMAT_MOD_YTR (1ULL << 4)
1171
1172 /*
1173 * AFBC block-split
1174 *
1175 * Indicates that the payload of each superblock is split. The second
1176 * half of the payload is positioned at a predefined offset from the start
1177 * of the superblock payload.
1178 */
1179 #define AFBC_FORMAT_MOD_SPLIT (1ULL << 5)
1180
1181 /*
1182 * AFBC sparse layout
1183 *
1184 * This flag indicates that the payload of each superblock must be stored at a
1185 * predefined position relative to the other superblocks in the same AFBC
1186 * buffer. This order is the same order used by the header buffer. In this mode
1187 * each superblock is given the same amount of space as an uncompressed
1188 * superblock of the particular format would require, rounding up to the next
1189 * multiple of 128 bytes in size.
1190 */
1191 #define AFBC_FORMAT_MOD_SPARSE (1ULL << 6)
1192
1193 /*
1194 * AFBC copy-block restrict
1195 *
1196 * Buffers with this flag must obey the copy-block restriction. The restriction
1197 * is such that there are no copy-blocks referring across the border of 8x8
1198 * blocks. For the subsampled data the 8x8 limitation is also subsampled.
1199 */
1200 #define AFBC_FORMAT_MOD_CBR (1ULL << 7)
1201
1202 /*
1203 * AFBC tiled layout
1204 *
1205 * The tiled layout groups superblocks in 8x8 or 4x4 tiles, where all
1206 * superblocks inside a tile are stored together in memory. 8x8 tiles are used
1207 * for pixel formats up to and including 32 bpp while 4x4 tiles are used for
1208 * larger bpp formats. The order between the tiles is scan line.
1209 * When the tiled layout is used, the buffer size (in pixels) must be aligned
1210 * to the tile size.
1211 */
1212 #define AFBC_FORMAT_MOD_TILED (1ULL << 8)
1213
1214 /*
1215 * AFBC solid color blocks
1216 *
1217 * Indicates that the buffer makes use of solid-color blocks, whereby bandwidth
1218 * can be reduced if a whole superblock is a single color.
1219 */
1220 #define AFBC_FORMAT_MOD_SC (1ULL << 9)
1221
1222 /*
1223 * AFBC double-buffer
1224 *
1225 * Indicates that the buffer is allocated in a layout safe for front-buffer
1226 * rendering.
1227 */
1228 #define AFBC_FORMAT_MOD_DB (1ULL << 10)
1229
1230 /*
1231 * AFBC buffer content hints
1232 *
1233 * Indicates that the buffer includes per-superblock content hints.
1234 */
1235 #define AFBC_FORMAT_MOD_BCH (1ULL << 11)
1236
1237 /* AFBC uncompressed storage mode
1238 *
1239 * Indicates that the buffer is using AFBC uncompressed storage mode.
1240 * In this mode all superblock payloads in the buffer use the uncompressed
1241 * storage mode, which is usually only used for data which cannot be compressed.
1242 * The buffer layout is the same as for AFBC buffers without USM set, this only
1243 * affects the storage mode of the individual superblocks. Note that even a
1244 * buffer without USM set may use uncompressed storage mode for some or all
1245 * superblocks, USM just guarantees it for all.
1246 */
1247 #define AFBC_FORMAT_MOD_USM (1ULL << 12)
1248
1249 /*
1250 * Arm Fixed-Rate Compression (AFRC) modifiers
1251 *
1252 * AFRC is a proprietary fixed rate image compression protocol and format,
1253 * designed to provide guaranteed bandwidth and memory footprint
1254 * reductions in graphics and media use-cases.
1255 *
1256 * AFRC buffers consist of one or more planes, with the same components
1257 * and meaning as an uncompressed buffer using the same pixel format.
1258 *
1259 * Within each plane, the pixel/luma/chroma values are grouped into
1260 * "coding unit" blocks which are individually compressed to a
1261 * fixed size (in bytes). All coding units within a given plane of a buffer
1262 * store the same number of values, and have the same compressed size.
1263 *
1264 * The coding unit size is configurable, allowing different rates of compression.
1265 *
1266 * The start of each AFRC buffer plane must be aligned to an alignment granule which
1267 * depends on the coding unit size.
1268 *
1269 * Coding Unit Size Plane Alignment
1270 * ---------------- ---------------
1271 * 16 bytes 1024 bytes
1272 * 24 bytes 512 bytes
1273 * 32 bytes 2048 bytes
1274 *
1275 * Coding units are grouped into paging tiles. AFRC buffer dimensions must be aligned
1276 * to a multiple of the paging tile dimensions.
1277 * The dimensions of each paging tile depend on whether the buffer is optimised for
1278 * scanline (SCAN layout) or rotated (ROT layout) access.
1279 *
1280 * Layout Paging Tile Width Paging Tile Height
1281 * ------ ----------------- ------------------
1282 * SCAN 16 coding units 4 coding units
1283 * ROT 8 coding units 8 coding units
1284 *
1285 * The dimensions of each coding unit depend on the number of components
1286 * in the compressed plane and whether the buffer is optimised for
1287 * scanline (SCAN layout) or rotated (ROT layout) access.
1288 *
1289 * Number of Components in Plane Layout Coding Unit Width Coding Unit Height
1290 * ----------------------------- --------- ----------------- ------------------
1291 * 1 SCAN 16 samples 4 samples
1292 * Example: 16x4 luma samples in a 'Y' plane
1293 * 16x4 chroma 'V' values, in the 'V' plane of a fully-planar YUV buffer
1294 * ----------------------------- --------- ----------------- ------------------
1295 * 1 ROT 8 samples 8 samples
1296 * Example: 8x8 luma samples in a 'Y' plane
1297 * 8x8 chroma 'V' values, in the 'V' plane of a fully-planar YUV buffer
1298 * ----------------------------- --------- ----------------- ------------------
1299 * 2 DONT CARE 8 samples 4 samples
1300 * Example: 8x4 chroma pairs in the 'UV' plane of a semi-planar YUV buffer
1301 * ----------------------------- --------- ----------------- ------------------
1302 * 3 DONT CARE 4 samples 4 samples
1303 * Example: 4x4 pixels in an RGB buffer without alpha
1304 * ----------------------------- --------- ----------------- ------------------
1305 * 4 DONT CARE 4 samples 4 samples
1306 * Example: 4x4 pixels in an RGB buffer with alpha
1307 */
1308
1309 #define DRM_FORMAT_MOD_ARM_TYPE_AFRC 0x02
1310
1311 #define DRM_FORMAT_MOD_ARM_AFRC(__afrc_mode) \
1312 DRM_FORMAT_MOD_ARM_CODE(DRM_FORMAT_MOD_ARM_TYPE_AFRC, __afrc_mode)
1313
1314 /*
1315 * AFRC coding unit size modifier.
1316 *
1317 * Indicates the number of bytes used to store each compressed coding unit for
1318 * one or more planes in an AFRC encoded buffer. The coding unit size for chrominance
1319 * is the same for both Cb and Cr, which may be stored in separate planes.
1320 *
1321 * AFRC_FORMAT_MOD_CU_SIZE_P0 indicates the number of bytes used to store
1322 * each compressed coding unit in the first plane of the buffer. For RGBA buffers
1323 * this is the only plane, while for semi-planar and fully-planar YUV buffers,
1324 * this corresponds to the luma plane.
1325 *
1326 * AFRC_FORMAT_MOD_CU_SIZE_P12 indicates the number of bytes used to store
1327 * each compressed coding unit in the second and third planes in the buffer.
1328 * For semi-planar and fully-planar YUV buffers, this corresponds to the chroma plane(s).
1329 *
1330 * For single-plane buffers, AFRC_FORMAT_MOD_CU_SIZE_P0 must be specified
1331 * and AFRC_FORMAT_MOD_CU_SIZE_P12 must be zero.
1332 * For semi-planar and fully-planar buffers, both AFRC_FORMAT_MOD_CU_SIZE_P0 and
1333 * AFRC_FORMAT_MOD_CU_SIZE_P12 must be specified.
1334 */
1335 #define AFRC_FORMAT_MOD_CU_SIZE_MASK 0xf
1336 #define AFRC_FORMAT_MOD_CU_SIZE_16 (1ULL)
1337 #define AFRC_FORMAT_MOD_CU_SIZE_24 (2ULL)
1338 #define AFRC_FORMAT_MOD_CU_SIZE_32 (3ULL)
1339
1340 #define AFRC_FORMAT_MOD_CU_SIZE_P0(__afrc_cu_size) (__afrc_cu_size)
1341 #define AFRC_FORMAT_MOD_CU_SIZE_P12(__afrc_cu_size) ((__afrc_cu_size) << 4)
1342
1343 /*
1344 * AFRC scanline memory layout.
1345 *
1346 * Indicates if the buffer uses the scanline-optimised layout
1347 * for an AFRC encoded buffer, otherwise, it uses the rotation-optimised layout.
1348 * The memory layout is the same for all planes.
1349 */
1350 #define AFRC_FORMAT_MOD_LAYOUT_SCAN (1ULL << 8)
1351
1352 /*
1353 * Arm 16x16 Block U-Interleaved modifier
1354 *
1355 * This is used by Arm Mali Utgard and Midgard GPUs. It divides the image
1356 * into 16x16 pixel blocks. Blocks are stored linearly in order, but pixels
1357 * in the block are reordered.
1358 */
1359 #define DRM_FORMAT_MOD_ARM_16X16_BLOCK_U_INTERLEAVED \
1360 DRM_FORMAT_MOD_ARM_CODE(DRM_FORMAT_MOD_ARM_TYPE_MISC, 1ULL)
1361
1362 /*
1363 * Allwinner tiled modifier
1364 *
1365 * This tiling mode is implemented by the VPU found on all Allwinner platforms,
1366 * codenamed sunxi. It is associated with a YUV format that uses either 2 or 3
1367 * planes.
1368 *
1369 * With this tiling, the luminance samples are disposed in tiles representing
1370 * 32x32 pixels and the chrominance samples in tiles representing 32x64 pixels.
1371 * The pixel order in each tile is linear and the tiles are disposed linearly,
1372 * both in row-major order.
1373 */
1374 #define DRM_FORMAT_MOD_ALLWINNER_TILED fourcc_mod_code(ALLWINNER, 1)
1375
1376 /*
1377 * Amlogic Video Framebuffer Compression modifiers
1378 *
1379 * Amlogic uses a proprietary lossless image compression protocol and format
1380 * for their hardware video codec accelerators, either video decoders or
1381 * video input encoders.
1382 *
1383 * It considerably reduces memory bandwidth while writing and reading
1384 * frames in memory.
1385 *
1386 * The underlying storage is considered to be 3 components, 8bit or 10-bit
1387 * per component YCbCr 420, single plane :
1388 * - DRM_FORMAT_YUV420_8BIT
1389 * - DRM_FORMAT_YUV420_10BIT
1390 *
1391 * The first 8 bits of the mode defines the layout, then the following 8 bits
1392 * defines the options changing the layout.
1393 *
1394 * Not all combinations are valid, and different SoCs may support different
1395 * combinations of layout and options.
1396 */
1397 #define __fourcc_mod_amlogic_layout_mask 0xff
1398 #define __fourcc_mod_amlogic_options_shift 8
1399 #define __fourcc_mod_amlogic_options_mask 0xff
1400
1401 #define DRM_FORMAT_MOD_AMLOGIC_FBC(__layout, __options) \
1402 fourcc_mod_code(AMLOGIC, \
1403 ((__layout) & __fourcc_mod_amlogic_layout_mask) | \
1404 (((__options) & __fourcc_mod_amlogic_options_mask) \
1405 << __fourcc_mod_amlogic_options_shift))
1406
1407 /* Amlogic FBC Layouts */
1408
1409 /*
1410 * Amlogic FBC Basic Layout
1411 *
1412 * The basic layout is composed of:
1413 * - a body content organized in 64x32 superblocks with 4096 bytes per
1414 * superblock in default mode.
1415 * - a 32 bytes per 128x64 header block
1416 *
1417 * This layout is transferrable between Amlogic SoCs supporting this modifier.
1418 */
1419 #define AMLOGIC_FBC_LAYOUT_BASIC (1ULL)
1420
1421 /*
1422 * Amlogic FBC Scatter Memory layout
1423 *
1424 * Indicates the header contains IOMMU references to the compressed
1425 * frames content to optimize memory access and layout.
1426 *
1427 * In this mode, only the header memory address is needed, thus the
1428 * content memory organization is tied to the current producer
1429 * execution and cannot be saved/dumped neither transferrable between
1430 * Amlogic SoCs supporting this modifier.
1431 *
1432 * Due to the nature of the layout, these buffers are not expected to
1433 * be accessible by the user-space clients, but only accessible by the
1434 * hardware producers and consumers.
1435 *
1436 * The user-space clients should expect a failure while trying to mmap
1437 * the DMA-BUF handle returned by the producer.
1438 */
1439 #define AMLOGIC_FBC_LAYOUT_SCATTER (2ULL)
1440
1441 /* Amlogic FBC Layout Options Bit Mask */
1442
1443 /*
1444 * Amlogic FBC Memory Saving mode
1445 *
1446 * Indicates the storage is packed when pixel size is multiple of word
1447 * boundaries, i.e. 8bit should be stored in this mode to save allocation
1448 * memory.
1449 *
1450 * This mode reduces body layout to 3072 bytes per 64x32 superblock with
1451 * the basic layout and 3200 bytes per 64x32 superblock combined with
1452 * the scatter layout.
1453 */
1454 #define AMLOGIC_FBC_OPTION_MEM_SAVING (1ULL << 0)
1455
1456 /*
1457 * AMD modifiers
1458 *
1459 * Memory layout:
1460 *
1461 * without DCC:
1462 * - main surface
1463 *
1464 * with DCC & without DCC_RETILE:
1465 * - main surface in plane 0
1466 * - DCC surface in plane 1 (RB-aligned, pipe-aligned if DCC_PIPE_ALIGN is set)
1467 *
1468 * with DCC & DCC_RETILE:
1469 * - main surface in plane 0
1470 * - displayable DCC surface in plane 1 (not RB-aligned & not pipe-aligned)
1471 * - pipe-aligned DCC surface in plane 2 (RB-aligned & pipe-aligned)
1472 *
1473 * For multi-plane formats the above surfaces get merged into one plane for
1474 * each format plane, based on the required alignment only.
1475 *
1476 * Bits Parameter Notes
1477 * ----- ------------------------ ---------------------------------------------
1478 *
1479 * 7:0 TILE_VERSION Values are AMD_FMT_MOD_TILE_VER_*
1480 * 12:8 TILE Values are AMD_FMT_MOD_TILE_<version>_*
1481 * 13 DCC
1482 * 14 DCC_RETILE
1483 * 15 DCC_PIPE_ALIGN
1484 * 16 DCC_INDEPENDENT_64B
1485 * 17 DCC_INDEPENDENT_128B
1486 * 19:18 DCC_MAX_COMPRESSED_BLOCK Values are AMD_FMT_MOD_DCC_BLOCK_*
1487 * 20 DCC_CONSTANT_ENCODE
1488 * 23:21 PIPE_XOR_BITS Only for some chips
1489 * 26:24 BANK_XOR_BITS Only for some chips
1490 * 29:27 PACKERS Only for some chips
1491 * 32:30 RB Only for some chips
1492 * 35:33 PIPE Only for some chips
1493 * 55:36 - Reserved for future use, must be zero
1494 */
1495 #define AMD_FMT_MOD fourcc_mod_code(AMD, 0)
1496
1497 #define IS_AMD_FMT_MOD(val) (((val) >> 56) == DRM_FORMAT_MOD_VENDOR_AMD)
1498
1499 /* Reserve 0 for GFX8 and older */
1500 #define AMD_FMT_MOD_TILE_VER_GFX9 1
1501 #define AMD_FMT_MOD_TILE_VER_GFX10 2
1502 #define AMD_FMT_MOD_TILE_VER_GFX10_RBPLUS 3
1503 #define AMD_FMT_MOD_TILE_VER_GFX11 4
1504 #define AMD_FMT_MOD_TILE_VER_GFX12 5
1505
1506 /*
1507 * 64K_S is the same for GFX9/GFX10/GFX10_RBPLUS and hence has GFX9 as canonical
1508 * version.
1509 */
1510 #define AMD_FMT_MOD_TILE_GFX9_64K_S 9
1511
1512 /*
1513 * 64K_D for non-32 bpp is the same for GFX9/GFX10/GFX10_RBPLUS and hence has
1514 * GFX9 as canonical version.
1515 *
1516 * 64K_D_2D on GFX12 is identical to 64K_D on GFX11.
1517 */
1518 #define AMD_FMT_MOD_TILE_GFX9_64K_D 10
1519 #define AMD_FMT_MOD_TILE_GFX9_4K_D_X 22
1520 #define AMD_FMT_MOD_TILE_GFX9_64K_S_X 25
1521 #define AMD_FMT_MOD_TILE_GFX9_64K_D_X 26
1522 #define AMD_FMT_MOD_TILE_GFX9_64K_R_X 27
1523 #define AMD_FMT_MOD_TILE_GFX11_256K_R_X 31
1524
1525 /* Gfx12 swizzle modes:
1526 * 0 - LINEAR
1527 * 1 - 256B_2D - 2D block dimensions
1528 * 2 - 4KB_2D
1529 * 3 - 64KB_2D
1530 * 4 - 256KB_2D
1531 * 5 - 4KB_3D - 3D block dimensions
1532 * 6 - 64KB_3D
1533 * 7 - 256KB_3D
1534 */
1535 #define AMD_FMT_MOD_TILE_GFX12_256B_2D 1
1536 #define AMD_FMT_MOD_TILE_GFX12_4K_2D 2
1537 #define AMD_FMT_MOD_TILE_GFX12_64K_2D 3
1538 #define AMD_FMT_MOD_TILE_GFX12_256K_2D 4
1539
1540 #define AMD_FMT_MOD_DCC_BLOCK_64B 0
1541 #define AMD_FMT_MOD_DCC_BLOCK_128B 1
1542 #define AMD_FMT_MOD_DCC_BLOCK_256B 2
1543
1544 #define AMD_FMT_MOD_TILE_VERSION_SHIFT 0
1545 #define AMD_FMT_MOD_TILE_VERSION_MASK 0xFF
1546 #define AMD_FMT_MOD_TILE_SHIFT 8
1547 #define AMD_FMT_MOD_TILE_MASK 0x1F
1548
1549 /* Whether DCC compression is enabled. */
1550 #define AMD_FMT_MOD_DCC_SHIFT 13
1551 #define AMD_FMT_MOD_DCC_MASK 0x1
1552
1553 /*
1554 * Whether to include two DCC surfaces, one which is rb & pipe aligned, and
1555 * one which is not-aligned.
1556 */
1557 #define AMD_FMT_MOD_DCC_RETILE_SHIFT 14
1558 #define AMD_FMT_MOD_DCC_RETILE_MASK 0x1
1559
1560 /* Only set if DCC_RETILE = false */
1561 #define AMD_FMT_MOD_DCC_PIPE_ALIGN_SHIFT 15
1562 #define AMD_FMT_MOD_DCC_PIPE_ALIGN_MASK 0x1
1563
1564 #define AMD_FMT_MOD_DCC_INDEPENDENT_64B_SHIFT 16
1565 #define AMD_FMT_MOD_DCC_INDEPENDENT_64B_MASK 0x1
1566 #define AMD_FMT_MOD_DCC_INDEPENDENT_128B_SHIFT 17
1567 #define AMD_FMT_MOD_DCC_INDEPENDENT_128B_MASK 0x1
1568 #define AMD_FMT_MOD_DCC_MAX_COMPRESSED_BLOCK_SHIFT 18
1569 #define AMD_FMT_MOD_DCC_MAX_COMPRESSED_BLOCK_MASK 0x3
1570
1571 /*
1572 * DCC supports embedding some clear colors directly in the DCC surface.
1573 * However, on older GPUs the rendering HW ignores the embedded clear color
1574 * and prefers the driver provided color. This necessitates doing a fastclear
1575 * eliminate operation before a process transfers control.
1576 *
1577 * If this bit is set that means the fastclear eliminate is not needed for these
1578 * embeddable colors.
1579 */
1580 #define AMD_FMT_MOD_DCC_CONSTANT_ENCODE_SHIFT 20
1581 #define AMD_FMT_MOD_DCC_CONSTANT_ENCODE_MASK 0x1
1582
1583 /*
1584 * The below fields are for accounting for per GPU differences. These are only
1585 * relevant for GFX9 and later and if the tile field is *_X/_T.
1586 *
1587 * PIPE_XOR_BITS = always needed
1588 * BANK_XOR_BITS = only for TILE_VER_GFX9
1589 * PACKERS = only for TILE_VER_GFX10_RBPLUS
1590 * RB = only for TILE_VER_GFX9 & DCC
1591 * PIPE = only for TILE_VER_GFX9 & DCC & (DCC_RETILE | DCC_PIPE_ALIGN)
1592 */
1593 #define AMD_FMT_MOD_PIPE_XOR_BITS_SHIFT 21
1594 #define AMD_FMT_MOD_PIPE_XOR_BITS_MASK 0x7
1595 #define AMD_FMT_MOD_BANK_XOR_BITS_SHIFT 24
1596 #define AMD_FMT_MOD_BANK_XOR_BITS_MASK 0x7
1597 #define AMD_FMT_MOD_PACKERS_SHIFT 27
1598 #define AMD_FMT_MOD_PACKERS_MASK 0x7
1599 #define AMD_FMT_MOD_RB_SHIFT 30
1600 #define AMD_FMT_MOD_RB_MASK 0x7
1601 #define AMD_FMT_MOD_PIPE_SHIFT 33
1602 #define AMD_FMT_MOD_PIPE_MASK 0x7
1603
1604 #define AMD_FMT_MOD_SET(field, value) \
1605 ((__u64)(value) << AMD_FMT_MOD_##field##_SHIFT)
1606 #define AMD_FMT_MOD_GET(field, value) \
1607 (((value) >> AMD_FMT_MOD_##field##_SHIFT) & AMD_FMT_MOD_##field##_MASK)
1608 #define AMD_FMT_MOD_CLEAR(field) \
1609 (~((__u64)AMD_FMT_MOD_##field##_MASK << AMD_FMT_MOD_##field##_SHIFT))
1610
1611 #if defined(__cplusplus)
1612 }
1613 #endif
1614
1615 #endif /* DRM_FOURCC_H */
1616