1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /* internal.h: mm/ internal definitions
3 *
4 * Copyright (C) 2004 Red Hat, Inc. All Rights Reserved.
5 * Written by David Howells (dhowells@redhat.com)
6 */
7 #ifndef __MM_INTERNAL_H
8 #define __MM_INTERNAL_H
9
10 #include <linux/fs.h>
11 #include <linux/khugepaged.h>
12 #include <linux/mm.h>
13 #include <linux/mm_inline.h>
14 #include <linux/pagemap.h>
15 #include <linux/pagewalk.h>
16 #include <linux/rmap.h>
17 #include <linux/swap.h>
18 #include <linux/swapops.h>
19 #include <linux/swap_cgroup.h>
20 #include <linux/tracepoint-defs.h>
21
22 /* Internal core VMA manipulation functions. */
23 #include "vma.h"
24
25 struct folio_batch;
26
27 /*
28 * Maintains state across a page table move. The operation assumes both source
29 * and destination VMAs already exist and are specified by the user.
30 *
31 * Partial moves are permitted, but the old and new ranges must both reside
32 * within a VMA.
33 *
34 * mmap lock must be held in write and VMA write locks must be held on any VMA
35 * that is visible.
36 *
37 * Use the PAGETABLE_MOVE() macro to initialise this struct.
38 *
39 * The old_addr and new_addr fields are updated as the page table move is
40 * executed.
41 *
42 * NOTE: The page table move is affected by reading from [old_addr, old_end),
43 * and old_addr may be updated for better page table alignment, so len_in
44 * represents the length of the range being copied as specified by the user.
45 */
46 struct pagetable_move_control {
47 struct vm_area_struct *old; /* Source VMA. */
48 struct vm_area_struct *new; /* Destination VMA. */
49 unsigned long old_addr; /* Address from which the move begins. */
50 unsigned long old_end; /* Exclusive address at which old range ends. */
51 unsigned long new_addr; /* Address to move page tables to. */
52 unsigned long len_in; /* Bytes to remap specified by user. */
53
54 bool need_rmap_locks; /* Do rmap locks need to be taken? */
55 bool for_stack; /* Is this an early temp stack being moved? */
56 };
57
58 #define PAGETABLE_MOVE(name, old_, new_, old_addr_, new_addr_, len_) \
59 struct pagetable_move_control name = { \
60 .old = old_, \
61 .new = new_, \
62 .old_addr = old_addr_, \
63 .old_end = (old_addr_) + (len_), \
64 .new_addr = new_addr_, \
65 .len_in = len_, \
66 }
67
68 /*
69 * The set of flags that only affect watermark checking and reclaim
70 * behaviour. This is used by the MM to obey the caller constraints
71 * about IO, FS and watermark checking while ignoring placement
72 * hints such as HIGHMEM usage.
73 */
74 #define GFP_RECLAIM_MASK (__GFP_RECLAIM|__GFP_HIGH|__GFP_IO|__GFP_FS|\
75 __GFP_NOWARN|__GFP_RETRY_MAYFAIL|__GFP_NOFAIL|\
76 __GFP_NORETRY|__GFP_MEMALLOC|__GFP_NOMEMALLOC|\
77 __GFP_NOLOCKDEP)
78
79 /* The GFP flags allowed during early boot */
80 #define GFP_BOOT_MASK (__GFP_BITS_MASK & ~(__GFP_RECLAIM|__GFP_IO|__GFP_FS))
81
82 /* Control allocation cpuset and node placement constraints */
83 #define GFP_CONSTRAINT_MASK (__GFP_HARDWALL|__GFP_THISNODE)
84
85 /* Do not use these with a slab allocator */
86 #define GFP_SLAB_BUG_MASK (__GFP_DMA32|__GFP_HIGHMEM|~__GFP_BITS_MASK)
87
88 /*
89 * Different from WARN_ON_ONCE(), no warning will be issued
90 * when we specify __GFP_NOWARN.
91 */
92 #define WARN_ON_ONCE_GFP(cond, gfp) ({ \
93 static bool __section(".data..once") __warned; \
94 int __ret_warn_once = !!(cond); \
95 \
96 if (unlikely(!(gfp & __GFP_NOWARN) && __ret_warn_once && !__warned)) { \
97 __warned = true; \
98 WARN_ON(1); \
99 } \
100 unlikely(__ret_warn_once); \
101 })
102
103 void page_writeback_init(void);
104
105 /*
106 * If a 16GB hugetlb folio were mapped by PTEs of all of its 4kB pages,
107 * its nr_pages_mapped would be 0x400000: choose the ENTIRELY_MAPPED bit
108 * above that range, instead of 2*(PMD_SIZE/PAGE_SIZE). Hugetlb currently
109 * leaves nr_pages_mapped at 0, but avoid surprise if it participates later.
110 */
111 #define ENTIRELY_MAPPED 0x800000
112 #define FOLIO_PAGES_MAPPED (ENTIRELY_MAPPED - 1)
113
114 /*
115 * Flags passed to __show_mem() and show_free_areas() to suppress output in
116 * various contexts.
117 */
118 #define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
119
120 /*
121 * How many individual pages have an elevated _mapcount. Excludes
122 * the folio's entire_mapcount.
123 *
124 * Don't use this function outside of debugging code.
125 */
folio_nr_pages_mapped(const struct folio * folio)126 static inline int folio_nr_pages_mapped(const struct folio *folio)
127 {
128 if (IS_ENABLED(CONFIG_NO_PAGE_MAPCOUNT))
129 return -1;
130 return atomic_read(&folio->_nr_pages_mapped) & FOLIO_PAGES_MAPPED;
131 }
132
133 /*
134 * Retrieve the first entry of a folio based on a provided entry within the
135 * folio. We cannot rely on folio->swap as there is no guarantee that it has
136 * been initialized. Used for calling arch_swap_restore()
137 */
folio_swap(swp_entry_t entry,const struct folio * folio)138 static inline swp_entry_t folio_swap(swp_entry_t entry,
139 const struct folio *folio)
140 {
141 swp_entry_t swap = {
142 .val = ALIGN_DOWN(entry.val, folio_nr_pages(folio)),
143 };
144
145 return swap;
146 }
147
folio_raw_mapping(const struct folio * folio)148 static inline void *folio_raw_mapping(const struct folio *folio)
149 {
150 unsigned long mapping = (unsigned long)folio->mapping;
151
152 return (void *)(mapping & ~PAGE_MAPPING_FLAGS);
153 }
154
155 /*
156 * This is a file-backed mapping, and is about to be memory mapped - invoke its
157 * mmap hook and safely handle error conditions. On error, VMA hooks will be
158 * mutated.
159 *
160 * @file: File which backs the mapping.
161 * @vma: VMA which we are mapping.
162 *
163 * Returns: 0 if success, error otherwise.
164 */
mmap_file(struct file * file,struct vm_area_struct * vma)165 static inline int mmap_file(struct file *file, struct vm_area_struct *vma)
166 {
167 int err = call_mmap(file, vma);
168
169 if (likely(!err))
170 return 0;
171
172 /*
173 * OK, we tried to call the file hook for mmap(), but an error
174 * arose. The mapping is in an inconsistent state and we most not invoke
175 * any further hooks on it.
176 */
177 vma->vm_ops = &vma_dummy_vm_ops;
178
179 return err;
180 }
181
182 /*
183 * If the VMA has a close hook then close it, and since closing it might leave
184 * it in an inconsistent state which makes the use of any hooks suspect, clear
185 * them down by installing dummy empty hooks.
186 */
vma_close(struct vm_area_struct * vma)187 static inline void vma_close(struct vm_area_struct *vma)
188 {
189 if (vma->vm_ops && vma->vm_ops->close) {
190 vma->vm_ops->close(vma);
191
192 /*
193 * The mapping is in an inconsistent state, and no further hooks
194 * may be invoked upon it.
195 */
196 vma->vm_ops = &vma_dummy_vm_ops;
197 }
198 }
199
200 #ifdef CONFIG_MMU
201
202 /* Flags for folio_pte_batch(). */
203 typedef int __bitwise fpb_t;
204
205 /* Compare PTEs after pte_mkclean(), ignoring the dirty bit. */
206 #define FPB_IGNORE_DIRTY ((__force fpb_t)BIT(0))
207
208 /* Compare PTEs after pte_clear_soft_dirty(), ignoring the soft-dirty bit. */
209 #define FPB_IGNORE_SOFT_DIRTY ((__force fpb_t)BIT(1))
210
__pte_batch_clear_ignored(pte_t pte,fpb_t flags)211 static inline pte_t __pte_batch_clear_ignored(pte_t pte, fpb_t flags)
212 {
213 if (flags & FPB_IGNORE_DIRTY)
214 pte = pte_mkclean(pte);
215 if (likely(flags & FPB_IGNORE_SOFT_DIRTY))
216 pte = pte_clear_soft_dirty(pte);
217 return pte_wrprotect(pte_mkold(pte));
218 }
219
220 /**
221 * folio_pte_batch - detect a PTE batch for a large folio
222 * @folio: The large folio to detect a PTE batch for.
223 * @addr: The user virtual address the first page is mapped at.
224 * @start_ptep: Page table pointer for the first entry.
225 * @pte: Page table entry for the first page.
226 * @max_nr: The maximum number of table entries to consider.
227 * @flags: Flags to modify the PTE batch semantics.
228 * @any_writable: Optional pointer to indicate whether any entry except the
229 * first one is writable.
230 * @any_young: Optional pointer to indicate whether any entry except the
231 * first one is young.
232 * @any_dirty: Optional pointer to indicate whether any entry except the
233 * first one is dirty.
234 *
235 * Detect a PTE batch: consecutive (present) PTEs that map consecutive
236 * pages of the same large folio.
237 *
238 * All PTEs inside a PTE batch have the same PTE bits set, excluding the PFN,
239 * the accessed bit, writable bit, dirty bit (with FPB_IGNORE_DIRTY) and
240 * soft-dirty bit (with FPB_IGNORE_SOFT_DIRTY).
241 *
242 * start_ptep must map any page of the folio. max_nr must be at least one and
243 * must be limited by the caller so scanning cannot exceed a single page table.
244 *
245 * Return: the number of table entries in the batch.
246 */
folio_pte_batch(struct folio * folio,unsigned long addr,pte_t * start_ptep,pte_t pte,int max_nr,fpb_t flags,bool * any_writable,bool * any_young,bool * any_dirty)247 static inline int folio_pte_batch(struct folio *folio, unsigned long addr,
248 pte_t *start_ptep, pte_t pte, int max_nr, fpb_t flags,
249 bool *any_writable, bool *any_young, bool *any_dirty)
250 {
251 unsigned long folio_end_pfn = folio_pfn(folio) + folio_nr_pages(folio);
252 const pte_t *end_ptep = start_ptep + max_nr;
253 pte_t expected_pte, *ptep;
254 bool writable, young, dirty;
255 int nr;
256
257 if (any_writable)
258 *any_writable = false;
259 if (any_young)
260 *any_young = false;
261 if (any_dirty)
262 *any_dirty = false;
263
264 VM_WARN_ON_FOLIO(!pte_present(pte), folio);
265 VM_WARN_ON_FOLIO(!folio_test_large(folio) || max_nr < 1, folio);
266 VM_WARN_ON_FOLIO(page_folio(pfn_to_page(pte_pfn(pte))) != folio, folio);
267
268 nr = pte_batch_hint(start_ptep, pte);
269 expected_pte = __pte_batch_clear_ignored(pte_advance_pfn(pte, nr), flags);
270 ptep = start_ptep + nr;
271
272 while (ptep < end_ptep) {
273 pte = ptep_get(ptep);
274 if (any_writable)
275 writable = !!pte_write(pte);
276 if (any_young)
277 young = !!pte_young(pte);
278 if (any_dirty)
279 dirty = !!pte_dirty(pte);
280 pte = __pte_batch_clear_ignored(pte, flags);
281
282 if (!pte_same(pte, expected_pte))
283 break;
284
285 /*
286 * Stop immediately once we reached the end of the folio. In
287 * corner cases the next PFN might fall into a different
288 * folio.
289 */
290 if (pte_pfn(pte) >= folio_end_pfn)
291 break;
292
293 if (any_writable)
294 *any_writable |= writable;
295 if (any_young)
296 *any_young |= young;
297 if (any_dirty)
298 *any_dirty |= dirty;
299
300 nr = pte_batch_hint(ptep, pte);
301 expected_pte = pte_advance_pfn(expected_pte, nr);
302 ptep += nr;
303 }
304
305 return min(ptep - start_ptep, max_nr);
306 }
307
308 /**
309 * pte_move_swp_offset - Move the swap entry offset field of a swap pte
310 * forward or backward by delta
311 * @pte: The initial pte state; is_swap_pte(pte) must be true and
312 * non_swap_entry() must be false.
313 * @delta: The direction and the offset we are moving; forward if delta
314 * is positive; backward if delta is negative
315 *
316 * Moves the swap offset, while maintaining all other fields, including
317 * swap type, and any swp pte bits. The resulting pte is returned.
318 */
pte_move_swp_offset(pte_t pte,long delta)319 static inline pte_t pte_move_swp_offset(pte_t pte, long delta)
320 {
321 swp_entry_t entry = pte_to_swp_entry(pte);
322 pte_t new = __swp_entry_to_pte(__swp_entry(swp_type(entry),
323 (swp_offset(entry) + delta)));
324
325 if (pte_swp_soft_dirty(pte))
326 new = pte_swp_mksoft_dirty(new);
327 if (pte_swp_exclusive(pte))
328 new = pte_swp_mkexclusive(new);
329 if (pte_swp_uffd_wp(pte))
330 new = pte_swp_mkuffd_wp(new);
331
332 return new;
333 }
334
335
336 /**
337 * pte_next_swp_offset - Increment the swap entry offset field of a swap pte.
338 * @pte: The initial pte state; is_swap_pte(pte) must be true and
339 * non_swap_entry() must be false.
340 *
341 * Increments the swap offset, while maintaining all other fields, including
342 * swap type, and any swp pte bits. The resulting pte is returned.
343 */
pte_next_swp_offset(pte_t pte)344 static inline pte_t pte_next_swp_offset(pte_t pte)
345 {
346 return pte_move_swp_offset(pte, 1);
347 }
348
349 /**
350 * swap_pte_batch - detect a PTE batch for a set of contiguous swap entries
351 * @start_ptep: Page table pointer for the first entry.
352 * @max_nr: The maximum number of table entries to consider.
353 * @pte: Page table entry for the first entry.
354 *
355 * Detect a batch of contiguous swap entries: consecutive (non-present) PTEs
356 * containing swap entries all with consecutive offsets and targeting the same
357 * swap type, all with matching swp pte bits.
358 *
359 * max_nr must be at least one and must be limited by the caller so scanning
360 * cannot exceed a single page table.
361 *
362 * Return: the number of table entries in the batch.
363 */
swap_pte_batch(pte_t * start_ptep,int max_nr,pte_t pte)364 static inline int swap_pte_batch(pte_t *start_ptep, int max_nr, pte_t pte)
365 {
366 pte_t expected_pte = pte_next_swp_offset(pte);
367 const pte_t *end_ptep = start_ptep + max_nr;
368 swp_entry_t entry = pte_to_swp_entry(pte);
369 pte_t *ptep = start_ptep + 1;
370 unsigned short cgroup_id;
371
372 VM_WARN_ON(max_nr < 1);
373 VM_WARN_ON(!is_swap_pte(pte));
374 VM_WARN_ON(non_swap_entry(entry));
375
376 cgroup_id = lookup_swap_cgroup_id(entry);
377 while (ptep < end_ptep) {
378 pte = ptep_get(ptep);
379
380 if (!pte_same(pte, expected_pte))
381 break;
382 if (lookup_swap_cgroup_id(pte_to_swp_entry(pte)) != cgroup_id)
383 break;
384 expected_pte = pte_next_swp_offset(expected_pte);
385 ptep++;
386 }
387
388 return ptep - start_ptep;
389 }
390 #endif /* CONFIG_MMU */
391
392 void __acct_reclaim_writeback(pg_data_t *pgdat, struct folio *folio,
393 int nr_throttled);
acct_reclaim_writeback(struct folio * folio)394 static inline void acct_reclaim_writeback(struct folio *folio)
395 {
396 pg_data_t *pgdat = folio_pgdat(folio);
397 int nr_throttled = atomic_read(&pgdat->nr_writeback_throttled);
398
399 if (nr_throttled)
400 __acct_reclaim_writeback(pgdat, folio, nr_throttled);
401 }
402
wake_throttle_isolated(pg_data_t * pgdat)403 static inline void wake_throttle_isolated(pg_data_t *pgdat)
404 {
405 wait_queue_head_t *wqh;
406
407 wqh = &pgdat->reclaim_wait[VMSCAN_THROTTLE_ISOLATED];
408 if (waitqueue_active(wqh))
409 wake_up(wqh);
410 }
411
412 vm_fault_t __vmf_anon_prepare(struct vm_fault *vmf);
vmf_anon_prepare(struct vm_fault * vmf)413 static inline vm_fault_t vmf_anon_prepare(struct vm_fault *vmf)
414 {
415 vm_fault_t ret = __vmf_anon_prepare(vmf);
416
417 if (unlikely(ret & VM_FAULT_RETRY))
418 vma_end_read(vmf->vma);
419 return ret;
420 }
421
422 vm_fault_t do_swap_page(struct vm_fault *vmf);
423 void folio_rotate_reclaimable(struct folio *folio);
424 bool __folio_end_writeback(struct folio *folio);
425 void deactivate_file_folio(struct folio *folio);
426 void folio_activate(struct folio *folio);
427
428 void free_pgtables(struct mmu_gather *tlb, struct ma_state *mas,
429 struct vm_area_struct *start_vma, unsigned long floor,
430 unsigned long ceiling, bool mm_wr_locked);
431 void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte);
432
433 struct zap_details;
434 void unmap_page_range(struct mmu_gather *tlb,
435 struct vm_area_struct *vma,
436 unsigned long addr, unsigned long end,
437 struct zap_details *details);
438 int folio_unmap_invalidate(struct address_space *mapping, struct folio *folio,
439 gfp_t gfp);
440
441 void page_cache_ra_order(struct readahead_control *, struct file_ra_state *,
442 unsigned int order);
443 void force_page_cache_ra(struct readahead_control *, unsigned long nr);
force_page_cache_readahead(struct address_space * mapping,struct file * file,pgoff_t index,unsigned long nr_to_read)444 static inline void force_page_cache_readahead(struct address_space *mapping,
445 struct file *file, pgoff_t index, unsigned long nr_to_read)
446 {
447 DEFINE_READAHEAD(ractl, file, &file->f_ra, mapping, index);
448 force_page_cache_ra(&ractl, nr_to_read);
449 }
450
451 unsigned find_lock_entries(struct address_space *mapping, pgoff_t *start,
452 pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices);
453 unsigned find_get_entries(struct address_space *mapping, pgoff_t *start,
454 pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices);
455 void filemap_free_folio(struct address_space *mapping, struct folio *folio);
456 int truncate_inode_folio(struct address_space *mapping, struct folio *folio);
457 bool truncate_inode_partial_folio(struct folio *folio, loff_t start,
458 loff_t end);
459 long mapping_evict_folio(struct address_space *mapping, struct folio *folio);
460 unsigned long mapping_try_invalidate(struct address_space *mapping,
461 pgoff_t start, pgoff_t end, unsigned long *nr_failed);
462
463 /**
464 * folio_evictable - Test whether a folio is evictable.
465 * @folio: The folio to test.
466 *
467 * Test whether @folio is evictable -- i.e., should be placed on
468 * active/inactive lists vs unevictable list.
469 *
470 * Reasons folio might not be evictable:
471 * 1. folio's mapping marked unevictable
472 * 2. One of the pages in the folio is part of an mlocked VMA
473 */
folio_evictable(struct folio * folio)474 static inline bool folio_evictable(struct folio *folio)
475 {
476 bool ret;
477
478 /* Prevent address_space of inode and swap cache from being freed */
479 rcu_read_lock();
480 ret = !mapping_unevictable(folio_mapping(folio)) &&
481 !folio_test_mlocked(folio);
482 rcu_read_unlock();
483 return ret;
484 }
485
486 /*
487 * Turn a non-refcounted page (->_refcount == 0) into refcounted with
488 * a count of one.
489 */
set_page_refcounted(struct page * page)490 static inline void set_page_refcounted(struct page *page)
491 {
492 VM_BUG_ON_PAGE(PageTail(page), page);
493 VM_BUG_ON_PAGE(page_ref_count(page), page);
494 set_page_count(page, 1);
495 }
496
497 /*
498 * Return true if a folio needs ->release_folio() calling upon it.
499 */
folio_needs_release(struct folio * folio)500 static inline bool folio_needs_release(struct folio *folio)
501 {
502 struct address_space *mapping = folio_mapping(folio);
503
504 return folio_has_private(folio) ||
505 (mapping && mapping_release_always(mapping));
506 }
507
508 extern unsigned long highest_memmap_pfn;
509
510 /*
511 * Maximum number of reclaim retries without progress before the OOM
512 * killer is consider the only way forward.
513 */
514 #define MAX_RECLAIM_RETRIES 16
515
516 /*
517 * in mm/vmscan.c:
518 */
519 bool folio_isolate_lru(struct folio *folio);
520 void folio_putback_lru(struct folio *folio);
521 extern void reclaim_throttle(pg_data_t *pgdat, enum vmscan_throttle_state reason);
522
523 /*
524 * in mm/rmap.c:
525 */
526 pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address);
527
528 /*
529 * in mm/page_alloc.c
530 */
531 #define K(x) ((x) << (PAGE_SHIFT-10))
532
533 extern char * const zone_names[MAX_NR_ZONES];
534
535 /* perform sanity checks on struct pages being allocated or freed */
536 DECLARE_STATIC_KEY_MAYBE(CONFIG_DEBUG_VM, check_pages_enabled);
537
538 extern int min_free_kbytes;
539 extern int defrag_mode;
540
541 void setup_per_zone_wmarks(void);
542 void calculate_min_free_kbytes(void);
543 int __meminit init_per_zone_wmark_min(void);
544 void page_alloc_sysctl_init(void);
545
546 /*
547 * Structure for holding the mostly immutable allocation parameters passed
548 * between functions involved in allocations, including the alloc_pages*
549 * family of functions.
550 *
551 * nodemask, migratetype and highest_zoneidx are initialized only once in
552 * __alloc_pages() and then never change.
553 *
554 * zonelist, preferred_zone and highest_zoneidx are set first in
555 * __alloc_pages() for the fast path, and might be later changed
556 * in __alloc_pages_slowpath(). All other functions pass the whole structure
557 * by a const pointer.
558 */
559 struct alloc_context {
560 struct zonelist *zonelist;
561 nodemask_t *nodemask;
562 struct zoneref *preferred_zoneref;
563 int migratetype;
564
565 /*
566 * highest_zoneidx represents highest usable zone index of
567 * the allocation request. Due to the nature of the zone,
568 * memory on lower zone than the highest_zoneidx will be
569 * protected by lowmem_reserve[highest_zoneidx].
570 *
571 * highest_zoneidx is also used by reclaim/compaction to limit
572 * the target zone since higher zone than this index cannot be
573 * usable for this allocation request.
574 */
575 enum zone_type highest_zoneidx;
576 bool spread_dirty_pages;
577 };
578
579 /*
580 * This function returns the order of a free page in the buddy system. In
581 * general, page_zone(page)->lock must be held by the caller to prevent the
582 * page from being allocated in parallel and returning garbage as the order.
583 * If a caller does not hold page_zone(page)->lock, it must guarantee that the
584 * page cannot be allocated or merged in parallel. Alternatively, it must
585 * handle invalid values gracefully, and use buddy_order_unsafe() below.
586 */
buddy_order(struct page * page)587 static inline unsigned int buddy_order(struct page *page)
588 {
589 /* PageBuddy() must be checked by the caller */
590 return page_private(page);
591 }
592
593 /*
594 * Like buddy_order(), but for callers who cannot afford to hold the zone lock.
595 * PageBuddy() should be checked first by the caller to minimize race window,
596 * and invalid values must be handled gracefully.
597 *
598 * READ_ONCE is used so that if the caller assigns the result into a local
599 * variable and e.g. tests it for valid range before using, the compiler cannot
600 * decide to remove the variable and inline the page_private(page) multiple
601 * times, potentially observing different values in the tests and the actual
602 * use of the result.
603 */
604 #define buddy_order_unsafe(page) READ_ONCE(page_private(page))
605
606 /*
607 * This function checks whether a page is free && is the buddy
608 * we can coalesce a page and its buddy if
609 * (a) the buddy is not in a hole (check before calling!) &&
610 * (b) the buddy is in the buddy system &&
611 * (c) a page and its buddy have the same order &&
612 * (d) a page and its buddy are in the same zone.
613 *
614 * For recording whether a page is in the buddy system, we set PageBuddy.
615 * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
616 *
617 * For recording page's order, we use page_private(page).
618 */
page_is_buddy(struct page * page,struct page * buddy,unsigned int order)619 static inline bool page_is_buddy(struct page *page, struct page *buddy,
620 unsigned int order)
621 {
622 if (!page_is_guard(buddy) && !PageBuddy(buddy))
623 return false;
624
625 if (buddy_order(buddy) != order)
626 return false;
627
628 /*
629 * zone check is done late to avoid uselessly calculating
630 * zone/node ids for pages that could never merge.
631 */
632 if (page_zone_id(page) != page_zone_id(buddy))
633 return false;
634
635 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
636
637 return true;
638 }
639
640 /*
641 * Locate the struct page for both the matching buddy in our
642 * pair (buddy1) and the combined O(n+1) page they form (page).
643 *
644 * 1) Any buddy B1 will have an order O twin B2 which satisfies
645 * the following equation:
646 * B2 = B1 ^ (1 << O)
647 * For example, if the starting buddy (buddy2) is #8 its order
648 * 1 buddy is #10:
649 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
650 *
651 * 2) Any buddy B will have an order O+1 parent P which
652 * satisfies the following equation:
653 * P = B & ~(1 << O)
654 *
655 * Assumption: *_mem_map is contiguous at least up to MAX_PAGE_ORDER
656 */
657 static inline unsigned long
__find_buddy_pfn(unsigned long page_pfn,unsigned int order)658 __find_buddy_pfn(unsigned long page_pfn, unsigned int order)
659 {
660 return page_pfn ^ (1 << order);
661 }
662
663 /*
664 * Find the buddy of @page and validate it.
665 * @page: The input page
666 * @pfn: The pfn of the page, it saves a call to page_to_pfn() when the
667 * function is used in the performance-critical __free_one_page().
668 * @order: The order of the page
669 * @buddy_pfn: The output pointer to the buddy pfn, it also saves a call to
670 * page_to_pfn().
671 *
672 * The found buddy can be a non PageBuddy, out of @page's zone, or its order is
673 * not the same as @page. The validation is necessary before use it.
674 *
675 * Return: the found buddy page or NULL if not found.
676 */
find_buddy_page_pfn(struct page * page,unsigned long pfn,unsigned int order,unsigned long * buddy_pfn)677 static inline struct page *find_buddy_page_pfn(struct page *page,
678 unsigned long pfn, unsigned int order, unsigned long *buddy_pfn)
679 {
680 unsigned long __buddy_pfn = __find_buddy_pfn(pfn, order);
681 struct page *buddy;
682
683 buddy = page + (__buddy_pfn - pfn);
684 if (buddy_pfn)
685 *buddy_pfn = __buddy_pfn;
686
687 if (page_is_buddy(page, buddy, order))
688 return buddy;
689 return NULL;
690 }
691
692 extern struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
693 unsigned long end_pfn, struct zone *zone);
694
pageblock_pfn_to_page(unsigned long start_pfn,unsigned long end_pfn,struct zone * zone)695 static inline struct page *pageblock_pfn_to_page(unsigned long start_pfn,
696 unsigned long end_pfn, struct zone *zone)
697 {
698 if (zone->contiguous)
699 return pfn_to_page(start_pfn);
700
701 return __pageblock_pfn_to_page(start_pfn, end_pfn, zone);
702 }
703
704 void set_zone_contiguous(struct zone *zone);
705 bool pfn_range_intersects_zones(int nid, unsigned long start_pfn,
706 unsigned long nr_pages);
707
clear_zone_contiguous(struct zone * zone)708 static inline void clear_zone_contiguous(struct zone *zone)
709 {
710 zone->contiguous = false;
711 }
712
713 extern int __isolate_free_page(struct page *page, unsigned int order);
714 extern void __putback_isolated_page(struct page *page, unsigned int order,
715 int mt);
716 extern void memblock_free_pages(struct page *page, unsigned long pfn,
717 unsigned int order);
718 extern void __free_pages_core(struct page *page, unsigned int order,
719 enum meminit_context context);
720
721 /*
722 * This will have no effect, other than possibly generating a warning, if the
723 * caller passes in a non-large folio.
724 */
folio_set_order(struct folio * folio,unsigned int order)725 static inline void folio_set_order(struct folio *folio, unsigned int order)
726 {
727 if (WARN_ON_ONCE(!order || !folio_test_large(folio)))
728 return;
729
730 folio->_flags_1 = (folio->_flags_1 & ~0xffUL) | order;
731 #ifdef NR_PAGES_IN_LARGE_FOLIO
732 folio->_nr_pages = 1U << order;
733 #endif
734 }
735
736 bool __folio_unqueue_deferred_split(struct folio *folio);
folio_unqueue_deferred_split(struct folio * folio)737 static inline bool folio_unqueue_deferred_split(struct folio *folio)
738 {
739 if (folio_order(folio) <= 1 || !folio_test_large_rmappable(folio))
740 return false;
741
742 /*
743 * At this point, there is no one trying to add the folio to
744 * deferred_list. If folio is not in deferred_list, it's safe
745 * to check without acquiring the split_queue_lock.
746 */
747 if (data_race(list_empty(&folio->_deferred_list)))
748 return false;
749
750 return __folio_unqueue_deferred_split(folio);
751 }
752
page_rmappable_folio(struct page * page)753 static inline struct folio *page_rmappable_folio(struct page *page)
754 {
755 struct folio *folio = (struct folio *)page;
756
757 if (folio && folio_test_large(folio))
758 folio_set_large_rmappable(folio);
759 return folio;
760 }
761
prep_compound_head(struct page * page,unsigned int order)762 static inline void prep_compound_head(struct page *page, unsigned int order)
763 {
764 struct folio *folio = (struct folio *)page;
765
766 folio_set_order(folio, order);
767 atomic_set(&folio->_large_mapcount, -1);
768 if (IS_ENABLED(CONFIG_PAGE_MAPCOUNT))
769 atomic_set(&folio->_nr_pages_mapped, 0);
770 if (IS_ENABLED(CONFIG_MM_ID)) {
771 folio->_mm_ids = 0;
772 folio->_mm_id_mapcount[0] = -1;
773 folio->_mm_id_mapcount[1] = -1;
774 }
775 if (IS_ENABLED(CONFIG_64BIT) || order > 1) {
776 atomic_set(&folio->_pincount, 0);
777 atomic_set(&folio->_entire_mapcount, -1);
778 }
779 if (order > 1)
780 INIT_LIST_HEAD(&folio->_deferred_list);
781 }
782
prep_compound_tail(struct page * head,int tail_idx)783 static inline void prep_compound_tail(struct page *head, int tail_idx)
784 {
785 struct page *p = head + tail_idx;
786
787 p->mapping = TAIL_MAPPING;
788 set_compound_head(p, head);
789 set_page_private(p, 0);
790 }
791
792 void post_alloc_hook(struct page *page, unsigned int order, gfp_t gfp_flags);
793 extern bool free_pages_prepare(struct page *page, unsigned int order);
794
795 extern int user_min_free_kbytes;
796
797 struct page *__alloc_frozen_pages_noprof(gfp_t, unsigned int order, int nid,
798 nodemask_t *);
799 #define __alloc_frozen_pages(...) \
800 alloc_hooks(__alloc_frozen_pages_noprof(__VA_ARGS__))
801 void free_frozen_pages(struct page *page, unsigned int order);
802 void free_unref_folios(struct folio_batch *fbatch);
803
804 #ifdef CONFIG_NUMA
805 struct page *alloc_frozen_pages_noprof(gfp_t, unsigned int order);
806 #else
alloc_frozen_pages_noprof(gfp_t gfp,unsigned int order)807 static inline struct page *alloc_frozen_pages_noprof(gfp_t gfp, unsigned int order)
808 {
809 return __alloc_frozen_pages_noprof(gfp, order, numa_node_id(), NULL);
810 }
811 #endif
812
813 #define alloc_frozen_pages(...) \
814 alloc_hooks(alloc_frozen_pages_noprof(__VA_ARGS__))
815
816 extern void zone_pcp_reset(struct zone *zone);
817 extern void zone_pcp_disable(struct zone *zone);
818 extern void zone_pcp_enable(struct zone *zone);
819 extern void zone_pcp_init(struct zone *zone);
820
821 extern void *memmap_alloc(phys_addr_t size, phys_addr_t align,
822 phys_addr_t min_addr,
823 int nid, bool exact_nid);
824
825 void memmap_init_range(unsigned long, int, unsigned long, unsigned long,
826 unsigned long, enum meminit_context, struct vmem_altmap *, int);
827
828 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
829
830 /*
831 * in mm/compaction.c
832 */
833 /*
834 * compact_control is used to track pages being migrated and the free pages
835 * they are being migrated to during memory compaction. The free_pfn starts
836 * at the end of a zone and migrate_pfn begins at the start. Movable pages
837 * are moved to the end of a zone during a compaction run and the run
838 * completes when free_pfn <= migrate_pfn
839 */
840 struct compact_control {
841 struct list_head freepages[NR_PAGE_ORDERS]; /* List of free pages to migrate to */
842 struct list_head migratepages; /* List of pages being migrated */
843 unsigned int nr_freepages; /* Number of isolated free pages */
844 unsigned int nr_migratepages; /* Number of pages to migrate */
845 unsigned long free_pfn; /* isolate_freepages search base */
846 /*
847 * Acts as an in/out parameter to page isolation for migration.
848 * isolate_migratepages uses it as a search base.
849 * isolate_migratepages_block will update the value to the next pfn
850 * after the last isolated one.
851 */
852 unsigned long migrate_pfn;
853 unsigned long fast_start_pfn; /* a pfn to start linear scan from */
854 struct zone *zone;
855 unsigned long total_migrate_scanned;
856 unsigned long total_free_scanned;
857 unsigned short fast_search_fail;/* failures to use free list searches */
858 short search_order; /* order to start a fast search at */
859 const gfp_t gfp_mask; /* gfp mask of a direct compactor */
860 int order; /* order a direct compactor needs */
861 int migratetype; /* migratetype of direct compactor */
862 const unsigned int alloc_flags; /* alloc flags of a direct compactor */
863 const int highest_zoneidx; /* zone index of a direct compactor */
864 enum migrate_mode mode; /* Async or sync migration mode */
865 bool ignore_skip_hint; /* Scan blocks even if marked skip */
866 bool no_set_skip_hint; /* Don't mark blocks for skipping */
867 bool ignore_block_suitable; /* Scan blocks considered unsuitable */
868 bool direct_compaction; /* False from kcompactd or /proc/... */
869 bool proactive_compaction; /* kcompactd proactive compaction */
870 bool whole_zone; /* Whole zone should/has been scanned */
871 bool contended; /* Signal lock contention */
872 bool finish_pageblock; /* Scan the remainder of a pageblock. Used
873 * when there are potentially transient
874 * isolation or migration failures to
875 * ensure forward progress.
876 */
877 bool alloc_contig; /* alloc_contig_range allocation */
878 };
879
880 /*
881 * Used in direct compaction when a page should be taken from the freelists
882 * immediately when one is created during the free path.
883 */
884 struct capture_control {
885 struct compact_control *cc;
886 struct page *page;
887 };
888
889 unsigned long
890 isolate_freepages_range(struct compact_control *cc,
891 unsigned long start_pfn, unsigned long end_pfn);
892 int
893 isolate_migratepages_range(struct compact_control *cc,
894 unsigned long low_pfn, unsigned long end_pfn);
895
896 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
897 void init_cma_reserved_pageblock(struct page *page);
898
899 #endif /* CONFIG_COMPACTION || CONFIG_CMA */
900
901 struct cma;
902
903 #ifdef CONFIG_CMA
904 void *cma_reserve_early(struct cma *cma, unsigned long size);
905 void init_cma_pageblock(struct page *page);
906 #else
cma_reserve_early(struct cma * cma,unsigned long size)907 static inline void *cma_reserve_early(struct cma *cma, unsigned long size)
908 {
909 return NULL;
910 }
init_cma_pageblock(struct page * page)911 static inline void init_cma_pageblock(struct page *page)
912 {
913 }
914 #endif
915
916
917 int find_suitable_fallback(struct free_area *area, unsigned int order,
918 int migratetype, bool claim_only, bool *claim_block);
919
free_area_empty(struct free_area * area,int migratetype)920 static inline bool free_area_empty(struct free_area *area, int migratetype)
921 {
922 return list_empty(&area->free_list[migratetype]);
923 }
924
925 /* mm/util.c */
926 struct anon_vma *folio_anon_vma(const struct folio *folio);
927
928 #ifdef CONFIG_MMU
929 void unmap_mapping_folio(struct folio *folio);
930 extern long populate_vma_page_range(struct vm_area_struct *vma,
931 unsigned long start, unsigned long end, int *locked);
932 extern long faultin_page_range(struct mm_struct *mm, unsigned long start,
933 unsigned long end, bool write, int *locked);
934 extern bool mlock_future_ok(struct mm_struct *mm, unsigned long flags,
935 unsigned long bytes);
936
937 /*
938 * NOTE: This function can't tell whether the folio is "fully mapped" in the
939 * range.
940 * "fully mapped" means all the pages of folio is associated with the page
941 * table of range while this function just check whether the folio range is
942 * within the range [start, end). Function caller needs to do page table
943 * check if it cares about the page table association.
944 *
945 * Typical usage (like mlock or madvise) is:
946 * Caller knows at least 1 page of folio is associated with page table of VMA
947 * and the range [start, end) is intersect with the VMA range. Caller wants
948 * to know whether the folio is fully associated with the range. It calls
949 * this function to check whether the folio is in the range first. Then checks
950 * the page table to know whether the folio is fully mapped to the range.
951 */
952 static inline bool
folio_within_range(struct folio * folio,struct vm_area_struct * vma,unsigned long start,unsigned long end)953 folio_within_range(struct folio *folio, struct vm_area_struct *vma,
954 unsigned long start, unsigned long end)
955 {
956 pgoff_t pgoff, addr;
957 unsigned long vma_pglen = vma_pages(vma);
958
959 VM_WARN_ON_FOLIO(folio_test_ksm(folio), folio);
960 if (start > end)
961 return false;
962
963 if (start < vma->vm_start)
964 start = vma->vm_start;
965
966 if (end > vma->vm_end)
967 end = vma->vm_end;
968
969 pgoff = folio_pgoff(folio);
970
971 /* if folio start address is not in vma range */
972 if (!in_range(pgoff, vma->vm_pgoff, vma_pglen))
973 return false;
974
975 addr = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
976
977 return !(addr < start || end - addr < folio_size(folio));
978 }
979
980 static inline bool
folio_within_vma(struct folio * folio,struct vm_area_struct * vma)981 folio_within_vma(struct folio *folio, struct vm_area_struct *vma)
982 {
983 return folio_within_range(folio, vma, vma->vm_start, vma->vm_end);
984 }
985
986 /*
987 * mlock_vma_folio() and munlock_vma_folio():
988 * should be called with vma's mmap_lock held for read or write,
989 * under page table lock for the pte/pmd being added or removed.
990 *
991 * mlock is usually called at the end of folio_add_*_rmap_*(), munlock at
992 * the end of folio_remove_rmap_*(); but new anon folios are managed by
993 * folio_add_lru_vma() calling mlock_new_folio().
994 */
995 void mlock_folio(struct folio *folio);
mlock_vma_folio(struct folio * folio,struct vm_area_struct * vma)996 static inline void mlock_vma_folio(struct folio *folio,
997 struct vm_area_struct *vma)
998 {
999 /*
1000 * The VM_SPECIAL check here serves two purposes.
1001 * 1) VM_IO check prevents migration from double-counting during mlock.
1002 * 2) Although mmap_region() and mlock_fixup() take care that VM_LOCKED
1003 * is never left set on a VM_SPECIAL vma, there is an interval while
1004 * file->f_op->mmap() is using vm_insert_page(s), when VM_LOCKED may
1005 * still be set while VM_SPECIAL bits are added: so ignore it then.
1006 */
1007 if (unlikely((vma->vm_flags & (VM_LOCKED|VM_SPECIAL)) == VM_LOCKED))
1008 mlock_folio(folio);
1009 }
1010
1011 void munlock_folio(struct folio *folio);
munlock_vma_folio(struct folio * folio,struct vm_area_struct * vma)1012 static inline void munlock_vma_folio(struct folio *folio,
1013 struct vm_area_struct *vma)
1014 {
1015 /*
1016 * munlock if the function is called. Ideally, we should only
1017 * do munlock if any page of folio is unmapped from VMA and
1018 * cause folio not fully mapped to VMA.
1019 *
1020 * But it's not easy to confirm that's the situation. So we
1021 * always munlock the folio and page reclaim will correct it
1022 * if it's wrong.
1023 */
1024 if (unlikely(vma->vm_flags & VM_LOCKED))
1025 munlock_folio(folio);
1026 }
1027
1028 void mlock_new_folio(struct folio *folio);
1029 bool need_mlock_drain(int cpu);
1030 void mlock_drain_local(void);
1031 void mlock_drain_remote(int cpu);
1032
1033 extern pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma);
1034
1035 /**
1036 * vma_address - Find the virtual address a page range is mapped at
1037 * @vma: The vma which maps this object.
1038 * @pgoff: The page offset within its object.
1039 * @nr_pages: The number of pages to consider.
1040 *
1041 * If any page in this range is mapped by this VMA, return the first address
1042 * where any of these pages appear. Otherwise, return -EFAULT.
1043 */
vma_address(const struct vm_area_struct * vma,pgoff_t pgoff,unsigned long nr_pages)1044 static inline unsigned long vma_address(const struct vm_area_struct *vma,
1045 pgoff_t pgoff, unsigned long nr_pages)
1046 {
1047 unsigned long address;
1048
1049 if (pgoff >= vma->vm_pgoff) {
1050 address = vma->vm_start +
1051 ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
1052 /* Check for address beyond vma (or wrapped through 0?) */
1053 if (address < vma->vm_start || address >= vma->vm_end)
1054 address = -EFAULT;
1055 } else if (pgoff + nr_pages - 1 >= vma->vm_pgoff) {
1056 /* Test above avoids possibility of wrap to 0 on 32-bit */
1057 address = vma->vm_start;
1058 } else {
1059 address = -EFAULT;
1060 }
1061 return address;
1062 }
1063
1064 /*
1065 * Then at what user virtual address will none of the range be found in vma?
1066 * Assumes that vma_address() already returned a good starting address.
1067 */
vma_address_end(struct page_vma_mapped_walk * pvmw)1068 static inline unsigned long vma_address_end(struct page_vma_mapped_walk *pvmw)
1069 {
1070 struct vm_area_struct *vma = pvmw->vma;
1071 pgoff_t pgoff;
1072 unsigned long address;
1073
1074 /* Common case, plus ->pgoff is invalid for KSM */
1075 if (pvmw->nr_pages == 1)
1076 return pvmw->address + PAGE_SIZE;
1077
1078 pgoff = pvmw->pgoff + pvmw->nr_pages;
1079 address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
1080 /* Check for address beyond vma (or wrapped through 0?) */
1081 if (address < vma->vm_start || address > vma->vm_end)
1082 address = vma->vm_end;
1083 return address;
1084 }
1085
maybe_unlock_mmap_for_io(struct vm_fault * vmf,struct file * fpin)1086 static inline struct file *maybe_unlock_mmap_for_io(struct vm_fault *vmf,
1087 struct file *fpin)
1088 {
1089 int flags = vmf->flags;
1090
1091 if (fpin)
1092 return fpin;
1093
1094 /*
1095 * FAULT_FLAG_RETRY_NOWAIT means we don't want to wait on page locks or
1096 * anything, so we only pin the file and drop the mmap_lock if only
1097 * FAULT_FLAG_ALLOW_RETRY is set, while this is the first attempt.
1098 */
1099 if (fault_flag_allow_retry_first(flags) &&
1100 !(flags & FAULT_FLAG_RETRY_NOWAIT)) {
1101 fpin = get_file(vmf->vma->vm_file);
1102 release_fault_lock(vmf);
1103 }
1104 return fpin;
1105 }
1106 #else /* !CONFIG_MMU */
unmap_mapping_folio(struct folio * folio)1107 static inline void unmap_mapping_folio(struct folio *folio) { }
mlock_new_folio(struct folio * folio)1108 static inline void mlock_new_folio(struct folio *folio) { }
need_mlock_drain(int cpu)1109 static inline bool need_mlock_drain(int cpu) { return false; }
mlock_drain_local(void)1110 static inline void mlock_drain_local(void) { }
mlock_drain_remote(int cpu)1111 static inline void mlock_drain_remote(int cpu) { }
vunmap_range_noflush(unsigned long start,unsigned long end)1112 static inline void vunmap_range_noflush(unsigned long start, unsigned long end)
1113 {
1114 }
1115 #endif /* !CONFIG_MMU */
1116
1117 /* Memory initialisation debug and verification */
1118 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1119 DECLARE_STATIC_KEY_TRUE(deferred_pages);
1120
1121 bool __init deferred_grow_zone(struct zone *zone, unsigned int order);
1122 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1123
1124 enum mminit_level {
1125 MMINIT_WARNING,
1126 MMINIT_VERIFY,
1127 MMINIT_TRACE
1128 };
1129
1130 #ifdef CONFIG_DEBUG_MEMORY_INIT
1131
1132 extern int mminit_loglevel;
1133
1134 #define mminit_dprintk(level, prefix, fmt, arg...) \
1135 do { \
1136 if (level < mminit_loglevel) { \
1137 if (level <= MMINIT_WARNING) \
1138 pr_warn("mminit::" prefix " " fmt, ##arg); \
1139 else \
1140 printk(KERN_DEBUG "mminit::" prefix " " fmt, ##arg); \
1141 } \
1142 } while (0)
1143
1144 extern void mminit_verify_pageflags_layout(void);
1145 extern void mminit_verify_zonelist(void);
1146 #else
1147
mminit_dprintk(enum mminit_level level,const char * prefix,const char * fmt,...)1148 static inline void mminit_dprintk(enum mminit_level level,
1149 const char *prefix, const char *fmt, ...)
1150 {
1151 }
1152
mminit_verify_pageflags_layout(void)1153 static inline void mminit_verify_pageflags_layout(void)
1154 {
1155 }
1156
mminit_verify_zonelist(void)1157 static inline void mminit_verify_zonelist(void)
1158 {
1159 }
1160 #endif /* CONFIG_DEBUG_MEMORY_INIT */
1161
1162 #define NODE_RECLAIM_NOSCAN -2
1163 #define NODE_RECLAIM_FULL -1
1164 #define NODE_RECLAIM_SOME 0
1165 #define NODE_RECLAIM_SUCCESS 1
1166
1167 #ifdef CONFIG_NUMA
1168 extern int node_reclaim_mode;
1169
1170 extern int node_reclaim(struct pglist_data *, gfp_t, unsigned int);
1171 extern int find_next_best_node(int node, nodemask_t *used_node_mask);
1172 #else
1173 #define node_reclaim_mode 0
1174
node_reclaim(struct pglist_data * pgdat,gfp_t mask,unsigned int order)1175 static inline int node_reclaim(struct pglist_data *pgdat, gfp_t mask,
1176 unsigned int order)
1177 {
1178 return NODE_RECLAIM_NOSCAN;
1179 }
find_next_best_node(int node,nodemask_t * used_node_mask)1180 static inline int find_next_best_node(int node, nodemask_t *used_node_mask)
1181 {
1182 return NUMA_NO_NODE;
1183 }
1184 #endif
1185
node_reclaim_enabled(void)1186 static inline bool node_reclaim_enabled(void)
1187 {
1188 /* Is any node_reclaim_mode bit set? */
1189 return node_reclaim_mode & (RECLAIM_ZONE|RECLAIM_WRITE|RECLAIM_UNMAP);
1190 }
1191
1192 /*
1193 * mm/memory-failure.c
1194 */
1195 #ifdef CONFIG_MEMORY_FAILURE
1196 int unmap_poisoned_folio(struct folio *folio, unsigned long pfn, bool must_kill);
1197 void shake_folio(struct folio *folio);
1198 extern int hwpoison_filter(struct page *p);
1199
1200 extern u32 hwpoison_filter_dev_major;
1201 extern u32 hwpoison_filter_dev_minor;
1202 extern u64 hwpoison_filter_flags_mask;
1203 extern u64 hwpoison_filter_flags_value;
1204 extern u64 hwpoison_filter_memcg;
1205 extern u32 hwpoison_filter_enable;
1206 #define MAGIC_HWPOISON 0x48575053U /* HWPS */
1207 void SetPageHWPoisonTakenOff(struct page *page);
1208 void ClearPageHWPoisonTakenOff(struct page *page);
1209 bool take_page_off_buddy(struct page *page);
1210 bool put_page_back_buddy(struct page *page);
1211 struct task_struct *task_early_kill(struct task_struct *tsk, int force_early);
1212 void add_to_kill_ksm(struct task_struct *tsk, const struct page *p,
1213 struct vm_area_struct *vma, struct list_head *to_kill,
1214 unsigned long ksm_addr);
1215 unsigned long page_mapped_in_vma(const struct page *page,
1216 struct vm_area_struct *vma);
1217
1218 #else
unmap_poisoned_folio(struct folio * folio,unsigned long pfn,bool must_kill)1219 static inline int unmap_poisoned_folio(struct folio *folio, unsigned long pfn, bool must_kill)
1220 {
1221 return -EBUSY;
1222 }
1223 #endif
1224
1225 extern unsigned long __must_check vm_mmap_pgoff(struct file *, unsigned long,
1226 unsigned long, unsigned long,
1227 unsigned long, unsigned long);
1228
1229 extern void set_pageblock_order(void);
1230 struct folio *alloc_migrate_folio(struct folio *src, unsigned long private);
1231 unsigned long reclaim_pages(struct list_head *folio_list);
1232 unsigned int reclaim_clean_pages_from_list(struct zone *zone,
1233 struct list_head *folio_list);
1234 /* The ALLOC_WMARK bits are used as an index to zone->watermark */
1235 #define ALLOC_WMARK_MIN WMARK_MIN
1236 #define ALLOC_WMARK_LOW WMARK_LOW
1237 #define ALLOC_WMARK_HIGH WMARK_HIGH
1238 #define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */
1239
1240 /* Mask to get the watermark bits */
1241 #define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1)
1242
1243 /*
1244 * Only MMU archs have async oom victim reclaim - aka oom_reaper so we
1245 * cannot assume a reduced access to memory reserves is sufficient for
1246 * !MMU
1247 */
1248 #ifdef CONFIG_MMU
1249 #define ALLOC_OOM 0x08
1250 #else
1251 #define ALLOC_OOM ALLOC_NO_WATERMARKS
1252 #endif
1253
1254 #define ALLOC_NON_BLOCK 0x10 /* Caller cannot block. Allow access
1255 * to 25% of the min watermark or
1256 * 62.5% if __GFP_HIGH is set.
1257 */
1258 #define ALLOC_MIN_RESERVE 0x20 /* __GFP_HIGH set. Allow access to 50%
1259 * of the min watermark.
1260 */
1261 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
1262 #define ALLOC_CMA 0x80 /* allow allocations from CMA areas */
1263 #ifdef CONFIG_ZONE_DMA32
1264 #define ALLOC_NOFRAGMENT 0x100 /* avoid mixing pageblock types */
1265 #else
1266 #define ALLOC_NOFRAGMENT 0x0
1267 #endif
1268 #define ALLOC_HIGHATOMIC 0x200 /* Allows access to MIGRATE_HIGHATOMIC */
1269 #define ALLOC_TRYLOCK 0x400 /* Only use spin_trylock in allocation path */
1270 #define ALLOC_KSWAPD 0x800 /* allow waking of kswapd, __GFP_KSWAPD_RECLAIM set */
1271
1272 /* Flags that allow allocations below the min watermark. */
1273 #define ALLOC_RESERVES (ALLOC_NON_BLOCK|ALLOC_MIN_RESERVE|ALLOC_HIGHATOMIC|ALLOC_OOM)
1274
1275 enum ttu_flags;
1276 struct tlbflush_unmap_batch;
1277
1278
1279 /*
1280 * only for MM internal work items which do not depend on
1281 * any allocations or locks which might depend on allocations
1282 */
1283 extern struct workqueue_struct *mm_percpu_wq;
1284
1285 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
1286 void try_to_unmap_flush(void);
1287 void try_to_unmap_flush_dirty(void);
1288 void flush_tlb_batched_pending(struct mm_struct *mm);
1289 #else
try_to_unmap_flush(void)1290 static inline void try_to_unmap_flush(void)
1291 {
1292 }
try_to_unmap_flush_dirty(void)1293 static inline void try_to_unmap_flush_dirty(void)
1294 {
1295 }
flush_tlb_batched_pending(struct mm_struct * mm)1296 static inline void flush_tlb_batched_pending(struct mm_struct *mm)
1297 {
1298 }
1299 #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
1300
1301 extern const struct trace_print_flags pageflag_names[];
1302 extern const struct trace_print_flags vmaflag_names[];
1303 extern const struct trace_print_flags gfpflag_names[];
1304
is_migrate_highatomic(enum migratetype migratetype)1305 static inline bool is_migrate_highatomic(enum migratetype migratetype)
1306 {
1307 return migratetype == MIGRATE_HIGHATOMIC;
1308 }
1309
1310 void setup_zone_pageset(struct zone *zone);
1311
1312 struct migration_target_control {
1313 int nid; /* preferred node id */
1314 nodemask_t *nmask;
1315 gfp_t gfp_mask;
1316 enum migrate_reason reason;
1317 };
1318
1319 /*
1320 * mm/filemap.c
1321 */
1322 size_t splice_folio_into_pipe(struct pipe_inode_info *pipe,
1323 struct folio *folio, loff_t fpos, size_t size);
1324
1325 /*
1326 * mm/vmalloc.c
1327 */
1328 #ifdef CONFIG_MMU
1329 void __init vmalloc_init(void);
1330 int __must_check vmap_pages_range_noflush(unsigned long addr, unsigned long end,
1331 pgprot_t prot, struct page **pages, unsigned int page_shift);
1332 unsigned int get_vm_area_page_order(struct vm_struct *vm);
1333 #else
vmalloc_init(void)1334 static inline void vmalloc_init(void)
1335 {
1336 }
1337
1338 static inline
vmap_pages_range_noflush(unsigned long addr,unsigned long end,pgprot_t prot,struct page ** pages,unsigned int page_shift)1339 int __must_check vmap_pages_range_noflush(unsigned long addr, unsigned long end,
1340 pgprot_t prot, struct page **pages, unsigned int page_shift)
1341 {
1342 return -EINVAL;
1343 }
1344 #endif
1345
1346 int __must_check __vmap_pages_range_noflush(unsigned long addr,
1347 unsigned long end, pgprot_t prot,
1348 struct page **pages, unsigned int page_shift);
1349
1350 void vunmap_range_noflush(unsigned long start, unsigned long end);
1351
1352 void __vunmap_range_noflush(unsigned long start, unsigned long end);
1353
1354 int numa_migrate_check(struct folio *folio, struct vm_fault *vmf,
1355 unsigned long addr, int *flags, bool writable,
1356 int *last_cpupid);
1357
1358 void free_zone_device_folio(struct folio *folio);
1359 int migrate_device_coherent_folio(struct folio *folio);
1360
1361 struct vm_struct *__get_vm_area_node(unsigned long size,
1362 unsigned long align, unsigned long shift,
1363 unsigned long flags, unsigned long start,
1364 unsigned long end, int node, gfp_t gfp_mask,
1365 const void *caller);
1366
1367 /*
1368 * mm/gup.c
1369 */
1370 int __must_check try_grab_folio(struct folio *folio, int refs,
1371 unsigned int flags);
1372
1373 /*
1374 * mm/huge_memory.c
1375 */
1376 void touch_pud(struct vm_area_struct *vma, unsigned long addr,
1377 pud_t *pud, bool write);
1378 void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
1379 pmd_t *pmd, bool write);
1380
1381 /*
1382 * Parses a string with mem suffixes into its order. Useful to parse kernel
1383 * parameters.
1384 */
get_order_from_str(const char * size_str,unsigned long valid_orders)1385 static inline int get_order_from_str(const char *size_str,
1386 unsigned long valid_orders)
1387 {
1388 unsigned long size;
1389 char *endptr;
1390 int order;
1391
1392 size = memparse(size_str, &endptr);
1393
1394 if (!is_power_of_2(size))
1395 return -EINVAL;
1396 order = get_order(size);
1397 if (BIT(order) & ~valid_orders)
1398 return -EINVAL;
1399
1400 return order;
1401 }
1402
1403 enum {
1404 /* mark page accessed */
1405 FOLL_TOUCH = 1 << 16,
1406 /* a retry, previous pass started an IO */
1407 FOLL_TRIED = 1 << 17,
1408 /* we are working on non-current tsk/mm */
1409 FOLL_REMOTE = 1 << 18,
1410 /* pages must be released via unpin_user_page */
1411 FOLL_PIN = 1 << 19,
1412 /* gup_fast: prevent fall-back to slow gup */
1413 FOLL_FAST_ONLY = 1 << 20,
1414 /* allow unlocking the mmap lock */
1415 FOLL_UNLOCKABLE = 1 << 21,
1416 /* VMA lookup+checks compatible with MADV_POPULATE_(READ|WRITE) */
1417 FOLL_MADV_POPULATE = 1 << 22,
1418 };
1419
1420 #define INTERNAL_GUP_FLAGS (FOLL_TOUCH | FOLL_TRIED | FOLL_REMOTE | FOLL_PIN | \
1421 FOLL_FAST_ONLY | FOLL_UNLOCKABLE | \
1422 FOLL_MADV_POPULATE)
1423
1424 /*
1425 * Indicates for which pages that are write-protected in the page table,
1426 * whether GUP has to trigger unsharing via FAULT_FLAG_UNSHARE such that the
1427 * GUP pin will remain consistent with the pages mapped into the page tables
1428 * of the MM.
1429 *
1430 * Temporary unmapping of PageAnonExclusive() pages or clearing of
1431 * PageAnonExclusive() has to protect against concurrent GUP:
1432 * * Ordinary GUP: Using the PT lock
1433 * * GUP-fast and fork(): mm->write_protect_seq
1434 * * GUP-fast and KSM or temporary unmapping (swap, migration): see
1435 * folio_try_share_anon_rmap_*()
1436 *
1437 * Must be called with the (sub)page that's actually referenced via the
1438 * page table entry, which might not necessarily be the head page for a
1439 * PTE-mapped THP.
1440 *
1441 * If the vma is NULL, we're coming from the GUP-fast path and might have
1442 * to fallback to the slow path just to lookup the vma.
1443 */
gup_must_unshare(struct vm_area_struct * vma,unsigned int flags,struct page * page)1444 static inline bool gup_must_unshare(struct vm_area_struct *vma,
1445 unsigned int flags, struct page *page)
1446 {
1447 /*
1448 * FOLL_WRITE is implicitly handled correctly as the page table entry
1449 * has to be writable -- and if it references (part of) an anonymous
1450 * folio, that part is required to be marked exclusive.
1451 */
1452 if ((flags & (FOLL_WRITE | FOLL_PIN)) != FOLL_PIN)
1453 return false;
1454 /*
1455 * Note: PageAnon(page) is stable until the page is actually getting
1456 * freed.
1457 */
1458 if (!PageAnon(page)) {
1459 /*
1460 * We only care about R/O long-term pining: R/O short-term
1461 * pinning does not have the semantics to observe successive
1462 * changes through the process page tables.
1463 */
1464 if (!(flags & FOLL_LONGTERM))
1465 return false;
1466
1467 /* We really need the vma ... */
1468 if (!vma)
1469 return true;
1470
1471 /*
1472 * ... because we only care about writable private ("COW")
1473 * mappings where we have to break COW early.
1474 */
1475 return is_cow_mapping(vma->vm_flags);
1476 }
1477
1478 /* Paired with a memory barrier in folio_try_share_anon_rmap_*(). */
1479 if (IS_ENABLED(CONFIG_HAVE_GUP_FAST))
1480 smp_rmb();
1481
1482 /*
1483 * Note that KSM pages cannot be exclusive, and consequently,
1484 * cannot get pinned.
1485 */
1486 return !PageAnonExclusive(page);
1487 }
1488
1489 extern bool mirrored_kernelcore;
1490 bool memblock_has_mirror(void);
1491 void memblock_free_all(void);
1492
vma_set_range(struct vm_area_struct * vma,unsigned long start,unsigned long end,pgoff_t pgoff)1493 static __always_inline void vma_set_range(struct vm_area_struct *vma,
1494 unsigned long start, unsigned long end,
1495 pgoff_t pgoff)
1496 {
1497 vma->vm_start = start;
1498 vma->vm_end = end;
1499 vma->vm_pgoff = pgoff;
1500 }
1501
vma_soft_dirty_enabled(struct vm_area_struct * vma)1502 static inline bool vma_soft_dirty_enabled(struct vm_area_struct *vma)
1503 {
1504 /*
1505 * NOTE: we must check this before VM_SOFTDIRTY on soft-dirty
1506 * enablements, because when without soft-dirty being compiled in,
1507 * VM_SOFTDIRTY is defined as 0x0, then !(vm_flags & VM_SOFTDIRTY)
1508 * will be constantly true.
1509 */
1510 if (!IS_ENABLED(CONFIG_MEM_SOFT_DIRTY))
1511 return false;
1512
1513 /*
1514 * Soft-dirty is kind of special: its tracking is enabled when the
1515 * vma flags not set.
1516 */
1517 return !(vma->vm_flags & VM_SOFTDIRTY);
1518 }
1519
pmd_needs_soft_dirty_wp(struct vm_area_struct * vma,pmd_t pmd)1520 static inline bool pmd_needs_soft_dirty_wp(struct vm_area_struct *vma, pmd_t pmd)
1521 {
1522 return vma_soft_dirty_enabled(vma) && !pmd_soft_dirty(pmd);
1523 }
1524
pte_needs_soft_dirty_wp(struct vm_area_struct * vma,pte_t pte)1525 static inline bool pte_needs_soft_dirty_wp(struct vm_area_struct *vma, pte_t pte)
1526 {
1527 return vma_soft_dirty_enabled(vma) && !pte_soft_dirty(pte);
1528 }
1529
1530 void __meminit __init_single_page(struct page *page, unsigned long pfn,
1531 unsigned long zone, int nid);
1532 void __meminit __init_page_from_nid(unsigned long pfn, int nid);
1533
1534 /* shrinker related functions */
1535 unsigned long shrink_slab(gfp_t gfp_mask, int nid, struct mem_cgroup *memcg,
1536 int priority);
1537
1538 #ifdef CONFIG_SHRINKER_DEBUG
shrinker_debugfs_name_alloc(struct shrinker * shrinker,const char * fmt,va_list ap)1539 static inline __printf(2, 0) int shrinker_debugfs_name_alloc(
1540 struct shrinker *shrinker, const char *fmt, va_list ap)
1541 {
1542 shrinker->name = kvasprintf_const(GFP_KERNEL, fmt, ap);
1543
1544 return shrinker->name ? 0 : -ENOMEM;
1545 }
1546
shrinker_debugfs_name_free(struct shrinker * shrinker)1547 static inline void shrinker_debugfs_name_free(struct shrinker *shrinker)
1548 {
1549 kfree_const(shrinker->name);
1550 shrinker->name = NULL;
1551 }
1552
1553 extern int shrinker_debugfs_add(struct shrinker *shrinker);
1554 extern struct dentry *shrinker_debugfs_detach(struct shrinker *shrinker,
1555 int *debugfs_id);
1556 extern void shrinker_debugfs_remove(struct dentry *debugfs_entry,
1557 int debugfs_id);
1558 #else /* CONFIG_SHRINKER_DEBUG */
shrinker_debugfs_add(struct shrinker * shrinker)1559 static inline int shrinker_debugfs_add(struct shrinker *shrinker)
1560 {
1561 return 0;
1562 }
shrinker_debugfs_name_alloc(struct shrinker * shrinker,const char * fmt,va_list ap)1563 static inline int shrinker_debugfs_name_alloc(struct shrinker *shrinker,
1564 const char *fmt, va_list ap)
1565 {
1566 return 0;
1567 }
shrinker_debugfs_name_free(struct shrinker * shrinker)1568 static inline void shrinker_debugfs_name_free(struct shrinker *shrinker)
1569 {
1570 }
shrinker_debugfs_detach(struct shrinker * shrinker,int * debugfs_id)1571 static inline struct dentry *shrinker_debugfs_detach(struct shrinker *shrinker,
1572 int *debugfs_id)
1573 {
1574 *debugfs_id = -1;
1575 return NULL;
1576 }
shrinker_debugfs_remove(struct dentry * debugfs_entry,int debugfs_id)1577 static inline void shrinker_debugfs_remove(struct dentry *debugfs_entry,
1578 int debugfs_id)
1579 {
1580 }
1581 #endif /* CONFIG_SHRINKER_DEBUG */
1582
1583 /* Only track the nodes of mappings with shadow entries */
1584 void workingset_update_node(struct xa_node *node);
1585 extern struct list_lru shadow_nodes;
1586 #define mapping_set_update(xas, mapping) do { \
1587 if (!dax_mapping(mapping) && !shmem_mapping(mapping)) { \
1588 xas_set_update(xas, workingset_update_node); \
1589 xas_set_lru(xas, &shadow_nodes); \
1590 } \
1591 } while (0)
1592
1593 /* mremap.c */
1594 unsigned long move_page_tables(struct pagetable_move_control *pmc);
1595
1596 #ifdef CONFIG_UNACCEPTED_MEMORY
1597 void accept_page(struct page *page);
1598 #else /* CONFIG_UNACCEPTED_MEMORY */
accept_page(struct page * page)1599 static inline void accept_page(struct page *page)
1600 {
1601 }
1602 #endif /* CONFIG_UNACCEPTED_MEMORY */
1603
1604 /* pagewalk.c */
1605 int walk_page_range_mm(struct mm_struct *mm, unsigned long start,
1606 unsigned long end, const struct mm_walk_ops *ops,
1607 void *private);
1608
1609 /* pt_reclaim.c */
1610 bool try_get_and_clear_pmd(struct mm_struct *mm, pmd_t *pmd, pmd_t *pmdval);
1611 void free_pte(struct mm_struct *mm, unsigned long addr, struct mmu_gather *tlb,
1612 pmd_t pmdval);
1613 void try_to_free_pte(struct mm_struct *mm, pmd_t *pmd, unsigned long addr,
1614 struct mmu_gather *tlb);
1615
1616 #ifdef CONFIG_PT_RECLAIM
1617 bool reclaim_pt_is_enabled(unsigned long start, unsigned long end,
1618 struct zap_details *details);
1619 #else
reclaim_pt_is_enabled(unsigned long start,unsigned long end,struct zap_details * details)1620 static inline bool reclaim_pt_is_enabled(unsigned long start, unsigned long end,
1621 struct zap_details *details)
1622 {
1623 return false;
1624 }
1625 #endif /* CONFIG_PT_RECLAIM */
1626
1627
1628 #endif /* __MM_INTERNAL_H */
1629