1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Texas Instruments N-Port Ethernet Switch Address Lookup Engine
4 *
5 * Copyright (C) 2012 Texas Instruments
6 *
7 */
8 #include <linux/bitmap.h>
9 #include <linux/if_vlan.h>
10 #include <linux/kernel.h>
11 #include <linux/module.h>
12 #include <linux/platform_device.h>
13 #include <linux/regmap.h>
14 #include <linux/seq_file.h>
15 #include <linux/slab.h>
16 #include <linux/err.h>
17 #include <linux/io.h>
18 #include <linux/stat.h>
19 #include <linux/sysfs.h>
20 #include <linux/etherdevice.h>
21
22 #include "cpsw_ale.h"
23
24 #define BITMASK(bits) (BIT(bits) - 1)
25
26 #define ALE_VERSION_MAJOR(rev, mask) (((rev) >> 8) & (mask))
27 #define ALE_VERSION_MINOR(rev) (rev & 0xff)
28 #define ALE_VERSION_1R3 0x0103
29 #define ALE_VERSION_1R4 0x0104
30
31 /* ALE Registers */
32 #define ALE_IDVER 0x00
33 #define ALE_STATUS 0x04
34 #define ALE_CONTROL 0x08
35 #define ALE_PRESCALE 0x10
36 #define ALE_AGING_TIMER 0x14
37 #define ALE_UNKNOWNVLAN 0x18
38 #define ALE_TABLE_CONTROL 0x20
39 #define ALE_TABLE 0x34
40 #define ALE_PORTCTL 0x40
41
42 /* ALE NetCP NU switch specific Registers */
43 #define ALE_UNKNOWNVLAN_MEMBER 0x90
44 #define ALE_UNKNOWNVLAN_UNREG_MCAST_FLOOD 0x94
45 #define ALE_UNKNOWNVLAN_REG_MCAST_FLOOD 0x98
46 #define ALE_UNKNOWNVLAN_FORCE_UNTAG_EGRESS 0x9C
47 #define ALE_VLAN_MASK_MUX(reg) (0xc0 + (0x4 * (reg)))
48
49 #define ALE_POLICER_PORT_OUI 0x100
50 #define ALE_POLICER_DA_SA 0x104
51 #define ALE_POLICER_VLAN 0x108
52 #define ALE_POLICER_ETHERTYPE_IPSA 0x10c
53 #define ALE_POLICER_IPDA 0x110
54 #define ALE_POLICER_PIR 0x118
55 #define ALE_POLICER_CIR 0x11c
56 #define ALE_POLICER_TBL_CTL 0x120
57 #define ALE_POLICER_CTL 0x124
58 #define ALE_POLICER_TEST_CTL 0x128
59 #define ALE_POLICER_HIT_STATUS 0x12c
60 #define ALE_THREAD_DEF 0x134
61 #define ALE_THREAD_CTL 0x138
62 #define ALE_THREAD_VAL 0x13c
63
64 #define ALE_POLICER_TBL_WRITE_ENABLE BIT(31)
65 #define ALE_POLICER_TBL_INDEX_MASK GENMASK(4, 0)
66
67 #define AM65_CPSW_ALE_THREAD_DEF_REG 0x134
68
69 /* ALE_AGING_TIMER */
70 #define ALE_AGING_TIMER_MASK GENMASK(23, 0)
71
72 #define ALE_RATE_LIMIT_MIN_PPS 1000
73
74 /**
75 * struct ale_entry_fld - The ALE tbl entry field description
76 * @start_bit: field start bit
77 * @num_bits: field bit length
78 * @flags: field flags
79 */
80 struct ale_entry_fld {
81 u8 start_bit;
82 u8 num_bits;
83 u8 flags;
84 };
85
86 enum {
87 CPSW_ALE_F_STATUS_REG = BIT(0), /* Status register present */
88 CPSW_ALE_F_HW_AUTOAGING = BIT(1), /* HW auto aging */
89
90 CPSW_ALE_F_COUNT
91 };
92
93 /**
94 * struct cpsw_ale_dev_id - The ALE version/SoC specific configuration
95 * @dev_id: ALE version/SoC id
96 * @features: features supported by ALE
97 * @tbl_entries: number of ALE entries
98 * @reg_fields: pointer to array of register field configuration
99 * @num_fields: number of fields in the reg_fields array
100 * @nu_switch_ale: NU Switch ALE
101 * @vlan_entry_tbl: ALE vlan entry fields description tbl
102 */
103 struct cpsw_ale_dev_id {
104 const char *dev_id;
105 u32 features;
106 u32 tbl_entries;
107 const struct reg_field *reg_fields;
108 int num_fields;
109 bool nu_switch_ale;
110 const struct ale_entry_fld *vlan_entry_tbl;
111 };
112
113 #define ALE_TABLE_WRITE BIT(31)
114
115 #define ALE_TYPE_FREE 0
116 #define ALE_TYPE_ADDR 1
117 #define ALE_TYPE_VLAN 2
118 #define ALE_TYPE_VLAN_ADDR 3
119
120 #define ALE_UCAST_PERSISTANT 0
121 #define ALE_UCAST_UNTOUCHED 1
122 #define ALE_UCAST_OUI 2
123 #define ALE_UCAST_TOUCHED 3
124
125 #define ALE_TABLE_SIZE_MULTIPLIER 1024
126 #define ALE_POLICER_SIZE_MULTIPLIER 8
127
cpsw_ale_get_field(u32 * ale_entry,u32 start,u32 bits)128 static inline int cpsw_ale_get_field(u32 *ale_entry, u32 start, u32 bits)
129 {
130 int idx, idx2;
131 u32 hi_val = 0;
132
133 idx = start / 32;
134 idx2 = (start + bits - 1) / 32;
135 /* Check if bits to be fetched exceed a word */
136 if (idx != idx2) {
137 idx2 = 2 - idx2; /* flip */
138 hi_val = ale_entry[idx2] << ((idx2 * 32) - start);
139 }
140 start -= idx * 32;
141 idx = 2 - idx; /* flip */
142 return (hi_val + (ale_entry[idx] >> start)) & BITMASK(bits);
143 }
144
cpsw_ale_set_field(u32 * ale_entry,u32 start,u32 bits,u32 value)145 static inline void cpsw_ale_set_field(u32 *ale_entry, u32 start, u32 bits,
146 u32 value)
147 {
148 int idx, idx2;
149
150 value &= BITMASK(bits);
151 idx = start / 32;
152 idx2 = (start + bits - 1) / 32;
153 /* Check if bits to be set exceed a word */
154 if (idx != idx2) {
155 idx2 = 2 - idx2; /* flip */
156 ale_entry[idx2] &= ~(BITMASK(bits + start - (idx2 * 32)));
157 ale_entry[idx2] |= (value >> ((idx2 * 32) - start));
158 }
159 start -= idx * 32;
160 idx = 2 - idx; /* flip */
161 ale_entry[idx] &= ~(BITMASK(bits) << start);
162 ale_entry[idx] |= (value << start);
163 }
164
165 #define DEFINE_ALE_FIELD_GET(name, start, bits) \
166 static inline int cpsw_ale_get_##name(u32 *ale_entry) \
167 { \
168 return cpsw_ale_get_field(ale_entry, start, bits); \
169 }
170
171 #define DEFINE_ALE_FIELD_SET(name, start, bits) \
172 static inline void cpsw_ale_set_##name(u32 *ale_entry, u32 value) \
173 { \
174 cpsw_ale_set_field(ale_entry, start, bits, value); \
175 }
176
177 #define DEFINE_ALE_FIELD(name, start, bits) \
178 DEFINE_ALE_FIELD_GET(name, start, bits) \
179 DEFINE_ALE_FIELD_SET(name, start, bits)
180
181 #define DEFINE_ALE_FIELD1_GET(name, start) \
182 static inline int cpsw_ale_get_##name(u32 *ale_entry, u32 bits) \
183 { \
184 return cpsw_ale_get_field(ale_entry, start, bits); \
185 }
186
187 #define DEFINE_ALE_FIELD1_SET(name, start) \
188 static inline void cpsw_ale_set_##name(u32 *ale_entry, u32 value, \
189 u32 bits) \
190 { \
191 cpsw_ale_set_field(ale_entry, start, bits, value); \
192 }
193
194 #define DEFINE_ALE_FIELD1(name, start) \
195 DEFINE_ALE_FIELD1_GET(name, start) \
196 DEFINE_ALE_FIELD1_SET(name, start)
197
198 enum {
199 ALE_ENT_VID_MEMBER_LIST = 0,
200 ALE_ENT_VID_UNREG_MCAST_MSK,
201 ALE_ENT_VID_REG_MCAST_MSK,
202 ALE_ENT_VID_FORCE_UNTAGGED_MSK,
203 ALE_ENT_VID_UNREG_MCAST_IDX,
204 ALE_ENT_VID_REG_MCAST_IDX,
205 ALE_ENT_VID_LAST,
206 };
207
208 #define ALE_FLD_ALLOWED BIT(0)
209 #define ALE_FLD_SIZE_PORT_MASK_BITS BIT(1)
210 #define ALE_FLD_SIZE_PORT_NUM_BITS BIT(2)
211
212 #define ALE_ENTRY_FLD(id, start, bits) \
213 [id] = { \
214 .start_bit = start, \
215 .num_bits = bits, \
216 .flags = ALE_FLD_ALLOWED, \
217 }
218
219 #define ALE_ENTRY_FLD_DYN_MSK_SIZE(id, start) \
220 [id] = { \
221 .start_bit = start, \
222 .num_bits = 0, \
223 .flags = ALE_FLD_ALLOWED | \
224 ALE_FLD_SIZE_PORT_MASK_BITS, \
225 }
226
227 /* dm814x, am3/am4/am5, k2hk */
228 static const struct ale_entry_fld vlan_entry_cpsw[ALE_ENT_VID_LAST] = {
229 ALE_ENTRY_FLD(ALE_ENT_VID_MEMBER_LIST, 0, 3),
230 ALE_ENTRY_FLD(ALE_ENT_VID_UNREG_MCAST_MSK, 8, 3),
231 ALE_ENTRY_FLD(ALE_ENT_VID_REG_MCAST_MSK, 16, 3),
232 ALE_ENTRY_FLD(ALE_ENT_VID_FORCE_UNTAGGED_MSK, 24, 3),
233 };
234
235 /* k2e/k2l, k3 am65/j721e cpsw2g */
236 static const struct ale_entry_fld vlan_entry_nu[ALE_ENT_VID_LAST] = {
237 ALE_ENTRY_FLD_DYN_MSK_SIZE(ALE_ENT_VID_MEMBER_LIST, 0),
238 ALE_ENTRY_FLD(ALE_ENT_VID_UNREG_MCAST_IDX, 20, 3),
239 ALE_ENTRY_FLD_DYN_MSK_SIZE(ALE_ENT_VID_FORCE_UNTAGGED_MSK, 24),
240 ALE_ENTRY_FLD(ALE_ENT_VID_REG_MCAST_IDX, 44, 3),
241 };
242
243 /* K3 j721e/j7200 cpsw9g/5g, am64x cpsw3g */
244 static const struct ale_entry_fld vlan_entry_k3_cpswxg[] = {
245 ALE_ENTRY_FLD_DYN_MSK_SIZE(ALE_ENT_VID_MEMBER_LIST, 0),
246 ALE_ENTRY_FLD_DYN_MSK_SIZE(ALE_ENT_VID_UNREG_MCAST_MSK, 12),
247 ALE_ENTRY_FLD_DYN_MSK_SIZE(ALE_ENT_VID_FORCE_UNTAGGED_MSK, 24),
248 ALE_ENTRY_FLD_DYN_MSK_SIZE(ALE_ENT_VID_REG_MCAST_MSK, 36),
249 };
250
251 DEFINE_ALE_FIELD(entry_type, 60, 2)
252 DEFINE_ALE_FIELD(vlan_id, 48, 12)
253 DEFINE_ALE_FIELD_SET(mcast_state, 62, 2)
254 DEFINE_ALE_FIELD1(port_mask, 66)
255 DEFINE_ALE_FIELD(super, 65, 1)
256 DEFINE_ALE_FIELD(ucast_type, 62, 2)
257 DEFINE_ALE_FIELD1_SET(port_num, 66)
258 DEFINE_ALE_FIELD_SET(blocked, 65, 1)
259 DEFINE_ALE_FIELD_SET(secure, 64, 1)
260 DEFINE_ALE_FIELD_GET(mcast, 40, 1)
261
262 #define NU_VLAN_UNREG_MCAST_IDX 1
263
cpsw_ale_entry_get_fld(struct cpsw_ale * ale,u32 * ale_entry,const struct ale_entry_fld * entry_tbl,int fld_id)264 static int cpsw_ale_entry_get_fld(struct cpsw_ale *ale,
265 u32 *ale_entry,
266 const struct ale_entry_fld *entry_tbl,
267 int fld_id)
268 {
269 const struct ale_entry_fld *entry_fld;
270 u32 bits;
271
272 if (!ale || !ale_entry)
273 return -EINVAL;
274
275 entry_fld = &entry_tbl[fld_id];
276 if (!(entry_fld->flags & ALE_FLD_ALLOWED)) {
277 dev_err(ale->params.dev, "get: wrong ale fld id %d\n", fld_id);
278 return -ENOENT;
279 }
280
281 bits = entry_fld->num_bits;
282 if (entry_fld->flags & ALE_FLD_SIZE_PORT_MASK_BITS)
283 bits = ale->port_mask_bits;
284
285 return cpsw_ale_get_field(ale_entry, entry_fld->start_bit, bits);
286 }
287
cpsw_ale_entry_set_fld(struct cpsw_ale * ale,u32 * ale_entry,const struct ale_entry_fld * entry_tbl,int fld_id,u32 value)288 static void cpsw_ale_entry_set_fld(struct cpsw_ale *ale,
289 u32 *ale_entry,
290 const struct ale_entry_fld *entry_tbl,
291 int fld_id,
292 u32 value)
293 {
294 const struct ale_entry_fld *entry_fld;
295 u32 bits;
296
297 if (!ale || !ale_entry)
298 return;
299
300 entry_fld = &entry_tbl[fld_id];
301 if (!(entry_fld->flags & ALE_FLD_ALLOWED)) {
302 dev_err(ale->params.dev, "set: wrong ale fld id %d\n", fld_id);
303 return;
304 }
305
306 bits = entry_fld->num_bits;
307 if (entry_fld->flags & ALE_FLD_SIZE_PORT_MASK_BITS)
308 bits = ale->port_mask_bits;
309
310 cpsw_ale_set_field(ale_entry, entry_fld->start_bit, bits, value);
311 }
312
cpsw_ale_vlan_get_fld(struct cpsw_ale * ale,u32 * ale_entry,int fld_id)313 static int cpsw_ale_vlan_get_fld(struct cpsw_ale *ale,
314 u32 *ale_entry,
315 int fld_id)
316 {
317 return cpsw_ale_entry_get_fld(ale, ale_entry,
318 ale->vlan_entry_tbl, fld_id);
319 }
320
cpsw_ale_vlan_set_fld(struct cpsw_ale * ale,u32 * ale_entry,int fld_id,u32 value)321 static void cpsw_ale_vlan_set_fld(struct cpsw_ale *ale,
322 u32 *ale_entry,
323 int fld_id,
324 u32 value)
325 {
326 cpsw_ale_entry_set_fld(ale, ale_entry,
327 ale->vlan_entry_tbl, fld_id, value);
328 }
329
330 /* The MAC address field in the ALE entry cannot be macroized as above */
cpsw_ale_get_addr(u32 * ale_entry,u8 * addr)331 static inline void cpsw_ale_get_addr(u32 *ale_entry, u8 *addr)
332 {
333 int i;
334
335 for (i = 0; i < 6; i++)
336 addr[i] = cpsw_ale_get_field(ale_entry, 40 - 8*i, 8);
337 }
338
cpsw_ale_set_addr(u32 * ale_entry,const u8 * addr)339 static inline void cpsw_ale_set_addr(u32 *ale_entry, const u8 *addr)
340 {
341 int i;
342
343 for (i = 0; i < 6; i++)
344 cpsw_ale_set_field(ale_entry, 40 - 8*i, 8, addr[i]);
345 }
346
cpsw_ale_read(struct cpsw_ale * ale,int idx,u32 * ale_entry)347 static int cpsw_ale_read(struct cpsw_ale *ale, int idx, u32 *ale_entry)
348 {
349 int i;
350
351 WARN_ON(idx > ale->params.ale_entries);
352
353 writel_relaxed(idx, ale->params.ale_regs + ALE_TABLE_CONTROL);
354
355 for (i = 0; i < ALE_ENTRY_WORDS; i++)
356 ale_entry[i] = readl_relaxed(ale->params.ale_regs +
357 ALE_TABLE + 4 * i);
358
359 return idx;
360 }
361
cpsw_ale_write(struct cpsw_ale * ale,int idx,u32 * ale_entry)362 static int cpsw_ale_write(struct cpsw_ale *ale, int idx, u32 *ale_entry)
363 {
364 int i;
365
366 WARN_ON(idx > ale->params.ale_entries);
367
368 for (i = 0; i < ALE_ENTRY_WORDS; i++)
369 writel_relaxed(ale_entry[i], ale->params.ale_regs +
370 ALE_TABLE + 4 * i);
371
372 writel_relaxed(idx | ALE_TABLE_WRITE, ale->params.ale_regs +
373 ALE_TABLE_CONTROL);
374
375 return idx;
376 }
377
cpsw_ale_match_addr(struct cpsw_ale * ale,const u8 * addr,u16 vid)378 static int cpsw_ale_match_addr(struct cpsw_ale *ale, const u8 *addr, u16 vid)
379 {
380 u32 ale_entry[ALE_ENTRY_WORDS];
381 int type, idx;
382
383 for (idx = 0; idx < ale->params.ale_entries; idx++) {
384 u8 entry_addr[6];
385
386 cpsw_ale_read(ale, idx, ale_entry);
387 type = cpsw_ale_get_entry_type(ale_entry);
388 if (type != ALE_TYPE_ADDR && type != ALE_TYPE_VLAN_ADDR)
389 continue;
390 if (cpsw_ale_get_vlan_id(ale_entry) != vid)
391 continue;
392 cpsw_ale_get_addr(ale_entry, entry_addr);
393 if (ether_addr_equal(entry_addr, addr))
394 return idx;
395 }
396 return -ENOENT;
397 }
398
cpsw_ale_match_vlan(struct cpsw_ale * ale,u16 vid)399 static int cpsw_ale_match_vlan(struct cpsw_ale *ale, u16 vid)
400 {
401 u32 ale_entry[ALE_ENTRY_WORDS];
402 int type, idx;
403
404 for (idx = 0; idx < ale->params.ale_entries; idx++) {
405 cpsw_ale_read(ale, idx, ale_entry);
406 type = cpsw_ale_get_entry_type(ale_entry);
407 if (type != ALE_TYPE_VLAN)
408 continue;
409 if (cpsw_ale_get_vlan_id(ale_entry) == vid)
410 return idx;
411 }
412 return -ENOENT;
413 }
414
cpsw_ale_match_free(struct cpsw_ale * ale)415 static int cpsw_ale_match_free(struct cpsw_ale *ale)
416 {
417 u32 ale_entry[ALE_ENTRY_WORDS];
418 int type, idx;
419
420 for (idx = 0; idx < ale->params.ale_entries; idx++) {
421 cpsw_ale_read(ale, idx, ale_entry);
422 type = cpsw_ale_get_entry_type(ale_entry);
423 if (type == ALE_TYPE_FREE)
424 return idx;
425 }
426 return -ENOENT;
427 }
428
cpsw_ale_find_ageable(struct cpsw_ale * ale)429 static int cpsw_ale_find_ageable(struct cpsw_ale *ale)
430 {
431 u32 ale_entry[ALE_ENTRY_WORDS];
432 int type, idx;
433
434 for (idx = 0; idx < ale->params.ale_entries; idx++) {
435 cpsw_ale_read(ale, idx, ale_entry);
436 type = cpsw_ale_get_entry_type(ale_entry);
437 if (type != ALE_TYPE_ADDR && type != ALE_TYPE_VLAN_ADDR)
438 continue;
439 if (cpsw_ale_get_mcast(ale_entry))
440 continue;
441 type = cpsw_ale_get_ucast_type(ale_entry);
442 if (type != ALE_UCAST_PERSISTANT &&
443 type != ALE_UCAST_OUI)
444 return idx;
445 }
446 return -ENOENT;
447 }
448
cpsw_ale_flush_mcast(struct cpsw_ale * ale,u32 * ale_entry,int port_mask)449 static void cpsw_ale_flush_mcast(struct cpsw_ale *ale, u32 *ale_entry,
450 int port_mask)
451 {
452 int mask;
453
454 mask = cpsw_ale_get_port_mask(ale_entry,
455 ale->port_mask_bits);
456 if ((mask & port_mask) == 0)
457 return; /* ports dont intersect, not interested */
458 mask &= ~port_mask;
459
460 /* free if only remaining port is host port */
461 if (mask)
462 cpsw_ale_set_port_mask(ale_entry, mask,
463 ale->port_mask_bits);
464 else
465 cpsw_ale_set_entry_type(ale_entry, ALE_TYPE_FREE);
466 }
467
cpsw_ale_flush_multicast(struct cpsw_ale * ale,int port_mask,int vid)468 int cpsw_ale_flush_multicast(struct cpsw_ale *ale, int port_mask, int vid)
469 {
470 u32 ale_entry[ALE_ENTRY_WORDS];
471 int ret, idx;
472
473 for (idx = 0; idx < ale->params.ale_entries; idx++) {
474 cpsw_ale_read(ale, idx, ale_entry);
475 ret = cpsw_ale_get_entry_type(ale_entry);
476 if (ret != ALE_TYPE_ADDR && ret != ALE_TYPE_VLAN_ADDR)
477 continue;
478
479 /* if vid passed is -1 then remove all multicast entry from
480 * the table irrespective of vlan id, if a valid vlan id is
481 * passed then remove only multicast added to that vlan id.
482 * if vlan id doesn't match then move on to next entry.
483 */
484 if (vid != -1 && cpsw_ale_get_vlan_id(ale_entry) != vid)
485 continue;
486
487 if (cpsw_ale_get_mcast(ale_entry)) {
488 u8 addr[6];
489
490 if (cpsw_ale_get_super(ale_entry))
491 continue;
492
493 cpsw_ale_get_addr(ale_entry, addr);
494 if (!is_broadcast_ether_addr(addr))
495 cpsw_ale_flush_mcast(ale, ale_entry, port_mask);
496 }
497
498 cpsw_ale_write(ale, idx, ale_entry);
499 }
500 return 0;
501 }
502
cpsw_ale_set_vlan_entry_type(u32 * ale_entry,int flags,u16 vid)503 static inline void cpsw_ale_set_vlan_entry_type(u32 *ale_entry,
504 int flags, u16 vid)
505 {
506 if (flags & ALE_VLAN) {
507 cpsw_ale_set_entry_type(ale_entry, ALE_TYPE_VLAN_ADDR);
508 cpsw_ale_set_vlan_id(ale_entry, vid);
509 } else {
510 cpsw_ale_set_entry_type(ale_entry, ALE_TYPE_ADDR);
511 }
512 }
513
cpsw_ale_add_ucast(struct cpsw_ale * ale,const u8 * addr,int port,int flags,u16 vid)514 int cpsw_ale_add_ucast(struct cpsw_ale *ale, const u8 *addr, int port,
515 int flags, u16 vid)
516 {
517 u32 ale_entry[ALE_ENTRY_WORDS] = {0, 0, 0};
518 int idx;
519
520 cpsw_ale_set_vlan_entry_type(ale_entry, flags, vid);
521
522 cpsw_ale_set_addr(ale_entry, addr);
523 cpsw_ale_set_ucast_type(ale_entry, ALE_UCAST_PERSISTANT);
524 cpsw_ale_set_secure(ale_entry, (flags & ALE_SECURE) ? 1 : 0);
525 cpsw_ale_set_blocked(ale_entry, (flags & ALE_BLOCKED) ? 1 : 0);
526 cpsw_ale_set_port_num(ale_entry, port, ale->port_num_bits);
527
528 idx = cpsw_ale_match_addr(ale, addr, (flags & ALE_VLAN) ? vid : 0);
529 if (idx < 0)
530 idx = cpsw_ale_match_free(ale);
531 if (idx < 0)
532 idx = cpsw_ale_find_ageable(ale);
533 if (idx < 0)
534 return -ENOMEM;
535
536 cpsw_ale_write(ale, idx, ale_entry);
537 return 0;
538 }
539
cpsw_ale_del_ucast(struct cpsw_ale * ale,const u8 * addr,int port,int flags,u16 vid)540 int cpsw_ale_del_ucast(struct cpsw_ale *ale, const u8 *addr, int port,
541 int flags, u16 vid)
542 {
543 u32 ale_entry[ALE_ENTRY_WORDS] = {0, 0, 0};
544 int idx;
545
546 idx = cpsw_ale_match_addr(ale, addr, (flags & ALE_VLAN) ? vid : 0);
547 if (idx < 0)
548 return -ENOENT;
549
550 cpsw_ale_set_entry_type(ale_entry, ALE_TYPE_FREE);
551 cpsw_ale_write(ale, idx, ale_entry);
552 return 0;
553 }
554
cpsw_ale_add_mcast(struct cpsw_ale * ale,const u8 * addr,int port_mask,int flags,u16 vid,int mcast_state)555 int cpsw_ale_add_mcast(struct cpsw_ale *ale, const u8 *addr, int port_mask,
556 int flags, u16 vid, int mcast_state)
557 {
558 u32 ale_entry[ALE_ENTRY_WORDS] = {0, 0, 0};
559 int idx, mask;
560
561 idx = cpsw_ale_match_addr(ale, addr, (flags & ALE_VLAN) ? vid : 0);
562 if (idx >= 0)
563 cpsw_ale_read(ale, idx, ale_entry);
564
565 cpsw_ale_set_vlan_entry_type(ale_entry, flags, vid);
566
567 cpsw_ale_set_addr(ale_entry, addr);
568 cpsw_ale_set_super(ale_entry, (flags & ALE_SUPER) ? 1 : 0);
569 cpsw_ale_set_mcast_state(ale_entry, mcast_state);
570
571 mask = cpsw_ale_get_port_mask(ale_entry,
572 ale->port_mask_bits);
573 port_mask |= mask;
574 cpsw_ale_set_port_mask(ale_entry, port_mask,
575 ale->port_mask_bits);
576
577 if (idx < 0)
578 idx = cpsw_ale_match_free(ale);
579 if (idx < 0)
580 idx = cpsw_ale_find_ageable(ale);
581 if (idx < 0)
582 return -ENOMEM;
583
584 cpsw_ale_write(ale, idx, ale_entry);
585 return 0;
586 }
587
cpsw_ale_del_mcast(struct cpsw_ale * ale,const u8 * addr,int port_mask,int flags,u16 vid)588 int cpsw_ale_del_mcast(struct cpsw_ale *ale, const u8 *addr, int port_mask,
589 int flags, u16 vid)
590 {
591 u32 ale_entry[ALE_ENTRY_WORDS] = {0, 0, 0};
592 int mcast_members = 0;
593 int idx;
594
595 idx = cpsw_ale_match_addr(ale, addr, (flags & ALE_VLAN) ? vid : 0);
596 if (idx < 0)
597 return -ENOENT;
598
599 cpsw_ale_read(ale, idx, ale_entry);
600
601 if (port_mask) {
602 mcast_members = cpsw_ale_get_port_mask(ale_entry,
603 ale->port_mask_bits);
604 mcast_members &= ~port_mask;
605 }
606
607 if (mcast_members)
608 cpsw_ale_set_port_mask(ale_entry, mcast_members,
609 ale->port_mask_bits);
610 else
611 cpsw_ale_set_entry_type(ale_entry, ALE_TYPE_FREE);
612
613 cpsw_ale_write(ale, idx, ale_entry);
614 return 0;
615 }
616
617 /* ALE NetCP NU switch specific vlan functions */
cpsw_ale_set_vlan_mcast(struct cpsw_ale * ale,u32 * ale_entry,int reg_mcast,int unreg_mcast)618 static void cpsw_ale_set_vlan_mcast(struct cpsw_ale *ale, u32 *ale_entry,
619 int reg_mcast, int unreg_mcast)
620 {
621 int idx;
622
623 /* Set VLAN registered multicast flood mask */
624 idx = cpsw_ale_vlan_get_fld(ale, ale_entry,
625 ALE_ENT_VID_REG_MCAST_IDX);
626 writel(reg_mcast, ale->params.ale_regs + ALE_VLAN_MASK_MUX(idx));
627
628 /* Set VLAN unregistered multicast flood mask */
629 idx = cpsw_ale_vlan_get_fld(ale, ale_entry,
630 ALE_ENT_VID_UNREG_MCAST_IDX);
631 writel(unreg_mcast, ale->params.ale_regs + ALE_VLAN_MASK_MUX(idx));
632 }
633
cpsw_ale_set_vlan_untag(struct cpsw_ale * ale,u32 * ale_entry,u16 vid,int untag_mask)634 static void cpsw_ale_set_vlan_untag(struct cpsw_ale *ale, u32 *ale_entry,
635 u16 vid, int untag_mask)
636 {
637 cpsw_ale_vlan_set_fld(ale, ale_entry,
638 ALE_ENT_VID_FORCE_UNTAGGED_MSK,
639 untag_mask);
640 if (untag_mask & ALE_PORT_HOST)
641 bitmap_set(ale->p0_untag_vid_mask, vid, 1);
642 else
643 bitmap_clear(ale->p0_untag_vid_mask, vid, 1);
644 }
645
cpsw_ale_add_vlan(struct cpsw_ale * ale,u16 vid,int port_mask,int untag,int reg_mcast,int unreg_mcast)646 int cpsw_ale_add_vlan(struct cpsw_ale *ale, u16 vid, int port_mask, int untag,
647 int reg_mcast, int unreg_mcast)
648 {
649 u32 ale_entry[ALE_ENTRY_WORDS] = {0, 0, 0};
650 int idx;
651
652 idx = cpsw_ale_match_vlan(ale, vid);
653 if (idx >= 0)
654 cpsw_ale_read(ale, idx, ale_entry);
655
656 cpsw_ale_set_entry_type(ale_entry, ALE_TYPE_VLAN);
657 cpsw_ale_set_vlan_id(ale_entry, vid);
658 cpsw_ale_set_vlan_untag(ale, ale_entry, vid, untag);
659
660 if (!ale->params.nu_switch_ale) {
661 cpsw_ale_vlan_set_fld(ale, ale_entry,
662 ALE_ENT_VID_REG_MCAST_MSK, reg_mcast);
663 cpsw_ale_vlan_set_fld(ale, ale_entry,
664 ALE_ENT_VID_UNREG_MCAST_MSK, unreg_mcast);
665 } else {
666 cpsw_ale_vlan_set_fld(ale, ale_entry,
667 ALE_ENT_VID_UNREG_MCAST_IDX,
668 NU_VLAN_UNREG_MCAST_IDX);
669 cpsw_ale_set_vlan_mcast(ale, ale_entry, reg_mcast, unreg_mcast);
670 }
671
672 cpsw_ale_vlan_set_fld(ale, ale_entry,
673 ALE_ENT_VID_MEMBER_LIST, port_mask);
674
675 if (idx < 0)
676 idx = cpsw_ale_match_free(ale);
677 if (idx < 0)
678 idx = cpsw_ale_find_ageable(ale);
679 if (idx < 0)
680 return -ENOMEM;
681
682 cpsw_ale_write(ale, idx, ale_entry);
683 return 0;
684 }
685
cpsw_ale_vlan_del_modify_int(struct cpsw_ale * ale,u32 * ale_entry,u16 vid,int port_mask)686 static void cpsw_ale_vlan_del_modify_int(struct cpsw_ale *ale, u32 *ale_entry,
687 u16 vid, int port_mask)
688 {
689 int reg_mcast, unreg_mcast;
690 int members, untag;
691
692 members = cpsw_ale_vlan_get_fld(ale, ale_entry,
693 ALE_ENT_VID_MEMBER_LIST);
694 members &= ~port_mask;
695 if (!members) {
696 cpsw_ale_set_vlan_untag(ale, ale_entry, vid, 0);
697 cpsw_ale_set_entry_type(ale_entry, ALE_TYPE_FREE);
698 return;
699 }
700
701 untag = cpsw_ale_vlan_get_fld(ale, ale_entry,
702 ALE_ENT_VID_FORCE_UNTAGGED_MSK);
703 reg_mcast = cpsw_ale_vlan_get_fld(ale, ale_entry,
704 ALE_ENT_VID_REG_MCAST_MSK);
705 unreg_mcast = cpsw_ale_vlan_get_fld(ale, ale_entry,
706 ALE_ENT_VID_UNREG_MCAST_MSK);
707 untag &= members;
708 reg_mcast &= members;
709 unreg_mcast &= members;
710
711 cpsw_ale_set_vlan_untag(ale, ale_entry, vid, untag);
712
713 if (!ale->params.nu_switch_ale) {
714 cpsw_ale_vlan_set_fld(ale, ale_entry,
715 ALE_ENT_VID_REG_MCAST_MSK, reg_mcast);
716 cpsw_ale_vlan_set_fld(ale, ale_entry,
717 ALE_ENT_VID_UNREG_MCAST_MSK, unreg_mcast);
718 } else {
719 cpsw_ale_set_vlan_mcast(ale, ale_entry, reg_mcast,
720 unreg_mcast);
721 }
722 cpsw_ale_vlan_set_fld(ale, ale_entry,
723 ALE_ENT_VID_MEMBER_LIST, members);
724 }
725
cpsw_ale_vlan_del_modify(struct cpsw_ale * ale,u16 vid,int port_mask)726 int cpsw_ale_vlan_del_modify(struct cpsw_ale *ale, u16 vid, int port_mask)
727 {
728 u32 ale_entry[ALE_ENTRY_WORDS] = {0, 0, 0};
729 int idx;
730
731 idx = cpsw_ale_match_vlan(ale, vid);
732 if (idx < 0)
733 return -ENOENT;
734
735 cpsw_ale_read(ale, idx, ale_entry);
736
737 cpsw_ale_vlan_del_modify_int(ale, ale_entry, vid, port_mask);
738 cpsw_ale_write(ale, idx, ale_entry);
739
740 return 0;
741 }
742
cpsw_ale_del_vlan(struct cpsw_ale * ale,u16 vid,int port_mask)743 int cpsw_ale_del_vlan(struct cpsw_ale *ale, u16 vid, int port_mask)
744 {
745 u32 ale_entry[ALE_ENTRY_WORDS] = {0, 0, 0};
746 int members, idx;
747
748 idx = cpsw_ale_match_vlan(ale, vid);
749 if (idx < 0)
750 return -ENOENT;
751
752 cpsw_ale_read(ale, idx, ale_entry);
753
754 /* if !port_mask - force remove VLAN (legacy).
755 * Check if there are other VLAN members ports
756 * if no - remove VLAN.
757 * if yes it means same VLAN was added to >1 port in multi port mode, so
758 * remove port_mask ports from VLAN ALE entry excluding Host port.
759 */
760 members = cpsw_ale_vlan_get_fld(ale, ale_entry, ALE_ENT_VID_MEMBER_LIST);
761 members &= ~port_mask;
762
763 if (!port_mask || !members) {
764 /* last port or force remove - remove VLAN */
765 cpsw_ale_set_vlan_untag(ale, ale_entry, vid, 0);
766 cpsw_ale_set_entry_type(ale_entry, ALE_TYPE_FREE);
767 } else {
768 port_mask &= ~ALE_PORT_HOST;
769 cpsw_ale_vlan_del_modify_int(ale, ale_entry, vid, port_mask);
770 }
771
772 cpsw_ale_write(ale, idx, ale_entry);
773
774 return 0;
775 }
776
cpsw_ale_vlan_add_modify(struct cpsw_ale * ale,u16 vid,int port_mask,int untag_mask,int reg_mask,int unreg_mask)777 int cpsw_ale_vlan_add_modify(struct cpsw_ale *ale, u16 vid, int port_mask,
778 int untag_mask, int reg_mask, int unreg_mask)
779 {
780 u32 ale_entry[ALE_ENTRY_WORDS] = {0, 0, 0};
781 int reg_mcast_members, unreg_mcast_members;
782 int vlan_members, untag_members;
783 int idx, ret = 0;
784
785 idx = cpsw_ale_match_vlan(ale, vid);
786 if (idx >= 0)
787 cpsw_ale_read(ale, idx, ale_entry);
788
789 vlan_members = cpsw_ale_vlan_get_fld(ale, ale_entry,
790 ALE_ENT_VID_MEMBER_LIST);
791 reg_mcast_members = cpsw_ale_vlan_get_fld(ale, ale_entry,
792 ALE_ENT_VID_REG_MCAST_MSK);
793 unreg_mcast_members =
794 cpsw_ale_vlan_get_fld(ale, ale_entry,
795 ALE_ENT_VID_UNREG_MCAST_MSK);
796 untag_members = cpsw_ale_vlan_get_fld(ale, ale_entry,
797 ALE_ENT_VID_FORCE_UNTAGGED_MSK);
798
799 vlan_members |= port_mask;
800 untag_members = (untag_members & ~port_mask) | untag_mask;
801 reg_mcast_members = (reg_mcast_members & ~port_mask) | reg_mask;
802 unreg_mcast_members = (unreg_mcast_members & ~port_mask) | unreg_mask;
803
804 ret = cpsw_ale_add_vlan(ale, vid, vlan_members, untag_members,
805 reg_mcast_members, unreg_mcast_members);
806 if (ret) {
807 dev_err(ale->params.dev, "Unable to add vlan\n");
808 return ret;
809 }
810 dev_dbg(ale->params.dev, "port mask 0x%x untag 0x%x\n", vlan_members,
811 untag_mask);
812
813 return ret;
814 }
815
cpsw_ale_set_unreg_mcast(struct cpsw_ale * ale,int unreg_mcast_mask,bool add)816 void cpsw_ale_set_unreg_mcast(struct cpsw_ale *ale, int unreg_mcast_mask,
817 bool add)
818 {
819 u32 ale_entry[ALE_ENTRY_WORDS];
820 int unreg_members = 0;
821 int type, idx;
822
823 for (idx = 0; idx < ale->params.ale_entries; idx++) {
824 cpsw_ale_read(ale, idx, ale_entry);
825 type = cpsw_ale_get_entry_type(ale_entry);
826 if (type != ALE_TYPE_VLAN)
827 continue;
828
829 unreg_members =
830 cpsw_ale_vlan_get_fld(ale, ale_entry,
831 ALE_ENT_VID_UNREG_MCAST_MSK);
832 if (add)
833 unreg_members |= unreg_mcast_mask;
834 else
835 unreg_members &= ~unreg_mcast_mask;
836 cpsw_ale_vlan_set_fld(ale, ale_entry,
837 ALE_ENT_VID_UNREG_MCAST_MSK,
838 unreg_members);
839 cpsw_ale_write(ale, idx, ale_entry);
840 }
841 }
842
cpsw_ale_vlan_set_unreg_mcast(struct cpsw_ale * ale,u32 * ale_entry,int allmulti)843 static void cpsw_ale_vlan_set_unreg_mcast(struct cpsw_ale *ale, u32 *ale_entry,
844 int allmulti)
845 {
846 int unreg_mcast;
847
848 unreg_mcast = cpsw_ale_vlan_get_fld(ale, ale_entry,
849 ALE_ENT_VID_UNREG_MCAST_MSK);
850 if (allmulti)
851 unreg_mcast |= ALE_PORT_HOST;
852 else
853 unreg_mcast &= ~ALE_PORT_HOST;
854
855 cpsw_ale_vlan_set_fld(ale, ale_entry,
856 ALE_ENT_VID_UNREG_MCAST_MSK, unreg_mcast);
857 }
858
859 static void
cpsw_ale_vlan_set_unreg_mcast_idx(struct cpsw_ale * ale,u32 * ale_entry,int allmulti)860 cpsw_ale_vlan_set_unreg_mcast_idx(struct cpsw_ale *ale, u32 *ale_entry,
861 int allmulti)
862 {
863 int unreg_mcast;
864 int idx;
865
866 idx = cpsw_ale_vlan_get_fld(ale, ale_entry,
867 ALE_ENT_VID_UNREG_MCAST_IDX);
868
869 unreg_mcast = readl(ale->params.ale_regs + ALE_VLAN_MASK_MUX(idx));
870
871 if (allmulti)
872 unreg_mcast |= ALE_PORT_HOST;
873 else
874 unreg_mcast &= ~ALE_PORT_HOST;
875
876 writel(unreg_mcast, ale->params.ale_regs + ALE_VLAN_MASK_MUX(idx));
877 }
878
cpsw_ale_set_allmulti(struct cpsw_ale * ale,int allmulti,int port)879 void cpsw_ale_set_allmulti(struct cpsw_ale *ale, int allmulti, int port)
880 {
881 u32 ale_entry[ALE_ENTRY_WORDS];
882 int type, idx;
883
884 for (idx = 0; idx < ale->params.ale_entries; idx++) {
885 int vlan_members;
886
887 cpsw_ale_read(ale, idx, ale_entry);
888 type = cpsw_ale_get_entry_type(ale_entry);
889 if (type != ALE_TYPE_VLAN)
890 continue;
891
892 vlan_members = cpsw_ale_vlan_get_fld(ale, ale_entry,
893 ALE_ENT_VID_MEMBER_LIST);
894
895 if (port != -1 && !(vlan_members & BIT(port)))
896 continue;
897
898 if (!ale->params.nu_switch_ale)
899 cpsw_ale_vlan_set_unreg_mcast(ale, ale_entry, allmulti);
900 else
901 cpsw_ale_vlan_set_unreg_mcast_idx(ale, ale_entry,
902 allmulti);
903
904 cpsw_ale_write(ale, idx, ale_entry);
905 }
906 }
907
908 struct ale_control_info {
909 const char *name;
910 int offset, port_offset;
911 int shift, port_shift;
912 int bits;
913 };
914
915 static struct ale_control_info ale_controls[ALE_NUM_CONTROLS] = {
916 [ALE_ENABLE] = {
917 .name = "enable",
918 .offset = ALE_CONTROL,
919 .port_offset = 0,
920 .shift = 31,
921 .port_shift = 0,
922 .bits = 1,
923 },
924 [ALE_CLEAR] = {
925 .name = "clear",
926 .offset = ALE_CONTROL,
927 .port_offset = 0,
928 .shift = 30,
929 .port_shift = 0,
930 .bits = 1,
931 },
932 [ALE_AGEOUT] = {
933 .name = "ageout",
934 .offset = ALE_CONTROL,
935 .port_offset = 0,
936 .shift = 29,
937 .port_shift = 0,
938 .bits = 1,
939 },
940 [ALE_P0_UNI_FLOOD] = {
941 .name = "port0_unicast_flood",
942 .offset = ALE_CONTROL,
943 .port_offset = 0,
944 .shift = 8,
945 .port_shift = 0,
946 .bits = 1,
947 },
948 [ALE_VLAN_NOLEARN] = {
949 .name = "vlan_nolearn",
950 .offset = ALE_CONTROL,
951 .port_offset = 0,
952 .shift = 7,
953 .port_shift = 0,
954 .bits = 1,
955 },
956 [ALE_NO_PORT_VLAN] = {
957 .name = "no_port_vlan",
958 .offset = ALE_CONTROL,
959 .port_offset = 0,
960 .shift = 6,
961 .port_shift = 0,
962 .bits = 1,
963 },
964 [ALE_OUI_DENY] = {
965 .name = "oui_deny",
966 .offset = ALE_CONTROL,
967 .port_offset = 0,
968 .shift = 5,
969 .port_shift = 0,
970 .bits = 1,
971 },
972 [ALE_BYPASS] = {
973 .name = "bypass",
974 .offset = ALE_CONTROL,
975 .port_offset = 0,
976 .shift = 4,
977 .port_shift = 0,
978 .bits = 1,
979 },
980 [ALE_RATE_LIMIT_TX] = {
981 .name = "rate_limit_tx",
982 .offset = ALE_CONTROL,
983 .port_offset = 0,
984 .shift = 3,
985 .port_shift = 0,
986 .bits = 1,
987 },
988 [ALE_VLAN_AWARE] = {
989 .name = "vlan_aware",
990 .offset = ALE_CONTROL,
991 .port_offset = 0,
992 .shift = 2,
993 .port_shift = 0,
994 .bits = 1,
995 },
996 [ALE_AUTH_ENABLE] = {
997 .name = "auth_enable",
998 .offset = ALE_CONTROL,
999 .port_offset = 0,
1000 .shift = 1,
1001 .port_shift = 0,
1002 .bits = 1,
1003 },
1004 [ALE_RATE_LIMIT] = {
1005 .name = "rate_limit",
1006 .offset = ALE_CONTROL,
1007 .port_offset = 0,
1008 .shift = 0,
1009 .port_shift = 0,
1010 .bits = 1,
1011 },
1012 [ALE_PORT_STATE] = {
1013 .name = "port_state",
1014 .offset = ALE_PORTCTL,
1015 .port_offset = 4,
1016 .shift = 0,
1017 .port_shift = 0,
1018 .bits = 2,
1019 },
1020 [ALE_PORT_DROP_UNTAGGED] = {
1021 .name = "drop_untagged",
1022 .offset = ALE_PORTCTL,
1023 .port_offset = 4,
1024 .shift = 2,
1025 .port_shift = 0,
1026 .bits = 1,
1027 },
1028 [ALE_PORT_DROP_UNKNOWN_VLAN] = {
1029 .name = "drop_unknown",
1030 .offset = ALE_PORTCTL,
1031 .port_offset = 4,
1032 .shift = 3,
1033 .port_shift = 0,
1034 .bits = 1,
1035 },
1036 [ALE_PORT_NOLEARN] = {
1037 .name = "nolearn",
1038 .offset = ALE_PORTCTL,
1039 .port_offset = 4,
1040 .shift = 4,
1041 .port_shift = 0,
1042 .bits = 1,
1043 },
1044 [ALE_PORT_NO_SA_UPDATE] = {
1045 .name = "no_source_update",
1046 .offset = ALE_PORTCTL,
1047 .port_offset = 4,
1048 .shift = 5,
1049 .port_shift = 0,
1050 .bits = 1,
1051 },
1052 [ALE_PORT_MACONLY] = {
1053 .name = "mac_only_port_mode",
1054 .offset = ALE_PORTCTL,
1055 .port_offset = 4,
1056 .shift = 11,
1057 .port_shift = 0,
1058 .bits = 1,
1059 },
1060 [ALE_PORT_MACONLY_CAF] = {
1061 .name = "mac_only_port_caf",
1062 .offset = ALE_PORTCTL,
1063 .port_offset = 4,
1064 .shift = 13,
1065 .port_shift = 0,
1066 .bits = 1,
1067 },
1068 [ALE_PORT_MCAST_LIMIT] = {
1069 .name = "mcast_limit",
1070 .offset = ALE_PORTCTL,
1071 .port_offset = 4,
1072 .shift = 16,
1073 .port_shift = 0,
1074 .bits = 8,
1075 },
1076 [ALE_PORT_BCAST_LIMIT] = {
1077 .name = "bcast_limit",
1078 .offset = ALE_PORTCTL,
1079 .port_offset = 4,
1080 .shift = 24,
1081 .port_shift = 0,
1082 .bits = 8,
1083 },
1084 [ALE_PORT_UNKNOWN_VLAN_MEMBER] = {
1085 .name = "unknown_vlan_member",
1086 .offset = ALE_UNKNOWNVLAN,
1087 .port_offset = 0,
1088 .shift = 0,
1089 .port_shift = 0,
1090 .bits = 6,
1091 },
1092 [ALE_PORT_UNKNOWN_MCAST_FLOOD] = {
1093 .name = "unknown_mcast_flood",
1094 .offset = ALE_UNKNOWNVLAN,
1095 .port_offset = 0,
1096 .shift = 8,
1097 .port_shift = 0,
1098 .bits = 6,
1099 },
1100 [ALE_PORT_UNKNOWN_REG_MCAST_FLOOD] = {
1101 .name = "unknown_reg_flood",
1102 .offset = ALE_UNKNOWNVLAN,
1103 .port_offset = 0,
1104 .shift = 16,
1105 .port_shift = 0,
1106 .bits = 6,
1107 },
1108 [ALE_PORT_UNTAGGED_EGRESS] = {
1109 .name = "untagged_egress",
1110 .offset = ALE_UNKNOWNVLAN,
1111 .port_offset = 0,
1112 .shift = 24,
1113 .port_shift = 0,
1114 .bits = 6,
1115 },
1116 [ALE_DEFAULT_THREAD_ID] = {
1117 .name = "default_thread_id",
1118 .offset = AM65_CPSW_ALE_THREAD_DEF_REG,
1119 .port_offset = 0,
1120 .shift = 0,
1121 .port_shift = 0,
1122 .bits = 6,
1123 },
1124 [ALE_DEFAULT_THREAD_ENABLE] = {
1125 .name = "default_thread_id_enable",
1126 .offset = AM65_CPSW_ALE_THREAD_DEF_REG,
1127 .port_offset = 0,
1128 .shift = 15,
1129 .port_shift = 0,
1130 .bits = 1,
1131 },
1132 };
1133
cpsw_ale_control_set(struct cpsw_ale * ale,int port,int control,int value)1134 int cpsw_ale_control_set(struct cpsw_ale *ale, int port, int control,
1135 int value)
1136 {
1137 const struct ale_control_info *info;
1138 int offset, shift;
1139 u32 tmp, mask;
1140
1141 if (control < 0 || control >= ARRAY_SIZE(ale_controls))
1142 return -EINVAL;
1143
1144 info = &ale_controls[control];
1145 if (info->port_offset == 0 && info->port_shift == 0)
1146 port = 0; /* global, port is a dont care */
1147
1148 if (port < 0 || port >= ale->params.ale_ports)
1149 return -EINVAL;
1150
1151 mask = BITMASK(info->bits);
1152 if (value & ~mask)
1153 return -EINVAL;
1154
1155 offset = info->offset + (port * info->port_offset);
1156 shift = info->shift + (port * info->port_shift);
1157
1158 tmp = readl_relaxed(ale->params.ale_regs + offset);
1159 tmp = (tmp & ~(mask << shift)) | (value << shift);
1160 writel_relaxed(tmp, ale->params.ale_regs + offset);
1161
1162 return 0;
1163 }
1164
cpsw_ale_control_get(struct cpsw_ale * ale,int port,int control)1165 int cpsw_ale_control_get(struct cpsw_ale *ale, int port, int control)
1166 {
1167 const struct ale_control_info *info;
1168 int offset, shift;
1169 u32 tmp;
1170
1171 if (control < 0 || control >= ARRAY_SIZE(ale_controls))
1172 return -EINVAL;
1173
1174 info = &ale_controls[control];
1175 if (info->port_offset == 0 && info->port_shift == 0)
1176 port = 0; /* global, port is a dont care */
1177
1178 if (port < 0 || port >= ale->params.ale_ports)
1179 return -EINVAL;
1180
1181 offset = info->offset + (port * info->port_offset);
1182 shift = info->shift + (port * info->port_shift);
1183
1184 tmp = readl_relaxed(ale->params.ale_regs + offset) >> shift;
1185 return tmp & BITMASK(info->bits);
1186 }
1187
cpsw_ale_rx_ratelimit_mc(struct cpsw_ale * ale,int port,unsigned int ratelimit_pps)1188 int cpsw_ale_rx_ratelimit_mc(struct cpsw_ale *ale, int port, unsigned int ratelimit_pps)
1189
1190 {
1191 int val = ratelimit_pps / ALE_RATE_LIMIT_MIN_PPS;
1192 u32 remainder = ratelimit_pps % ALE_RATE_LIMIT_MIN_PPS;
1193
1194 if (ratelimit_pps && !val) {
1195 dev_err(ale->params.dev, "ALE MC port:%d ratelimit min value 1000pps\n", port);
1196 return -EINVAL;
1197 }
1198
1199 if (remainder)
1200 dev_info(ale->params.dev, "ALE port:%d MC ratelimit set to %dpps (requested %d)\n",
1201 port, ratelimit_pps - remainder, ratelimit_pps);
1202
1203 cpsw_ale_control_set(ale, port, ALE_PORT_MCAST_LIMIT, val);
1204
1205 dev_dbg(ale->params.dev, "ALE port:%d MC ratelimit set %d\n",
1206 port, val * ALE_RATE_LIMIT_MIN_PPS);
1207 return 0;
1208 }
1209
cpsw_ale_rx_ratelimit_bc(struct cpsw_ale * ale,int port,unsigned int ratelimit_pps)1210 int cpsw_ale_rx_ratelimit_bc(struct cpsw_ale *ale, int port, unsigned int ratelimit_pps)
1211
1212 {
1213 int val = ratelimit_pps / ALE_RATE_LIMIT_MIN_PPS;
1214 u32 remainder = ratelimit_pps % ALE_RATE_LIMIT_MIN_PPS;
1215
1216 if (ratelimit_pps && !val) {
1217 dev_err(ale->params.dev, "ALE port:%d BC ratelimit min value 1000pps\n", port);
1218 return -EINVAL;
1219 }
1220
1221 if (remainder)
1222 dev_info(ale->params.dev, "ALE port:%d BC ratelimit set to %dpps (requested %d)\n",
1223 port, ratelimit_pps - remainder, ratelimit_pps);
1224
1225 cpsw_ale_control_set(ale, port, ALE_PORT_BCAST_LIMIT, val);
1226
1227 dev_dbg(ale->params.dev, "ALE port:%d BC ratelimit set %d\n",
1228 port, val * ALE_RATE_LIMIT_MIN_PPS);
1229 return 0;
1230 }
1231
cpsw_ale_timer(struct timer_list * t)1232 static void cpsw_ale_timer(struct timer_list *t)
1233 {
1234 struct cpsw_ale *ale = from_timer(ale, t, timer);
1235
1236 cpsw_ale_control_set(ale, 0, ALE_AGEOUT, 1);
1237
1238 if (ale->ageout) {
1239 ale->timer.expires = jiffies + ale->ageout;
1240 add_timer(&ale->timer);
1241 }
1242 }
1243
cpsw_ale_hw_aging_timer_start(struct cpsw_ale * ale)1244 static void cpsw_ale_hw_aging_timer_start(struct cpsw_ale *ale)
1245 {
1246 u32 aging_timer;
1247
1248 aging_timer = ale->params.bus_freq / 1000000;
1249 aging_timer *= ale->params.ale_ageout;
1250
1251 if (aging_timer & ~ALE_AGING_TIMER_MASK) {
1252 aging_timer = ALE_AGING_TIMER_MASK;
1253 dev_warn(ale->params.dev,
1254 "ALE aging timer overflow, set to max\n");
1255 }
1256
1257 writel(aging_timer, ale->params.ale_regs + ALE_AGING_TIMER);
1258 }
1259
cpsw_ale_hw_aging_timer_stop(struct cpsw_ale * ale)1260 static void cpsw_ale_hw_aging_timer_stop(struct cpsw_ale *ale)
1261 {
1262 writel(0, ale->params.ale_regs + ALE_AGING_TIMER);
1263 }
1264
cpsw_ale_aging_start(struct cpsw_ale * ale)1265 static void cpsw_ale_aging_start(struct cpsw_ale *ale)
1266 {
1267 if (!ale->params.ale_ageout)
1268 return;
1269
1270 if (ale->features & CPSW_ALE_F_HW_AUTOAGING) {
1271 cpsw_ale_hw_aging_timer_start(ale);
1272 return;
1273 }
1274
1275 timer_setup(&ale->timer, cpsw_ale_timer, 0);
1276 ale->timer.expires = jiffies + ale->ageout;
1277 add_timer(&ale->timer);
1278 }
1279
cpsw_ale_aging_stop(struct cpsw_ale * ale)1280 static void cpsw_ale_aging_stop(struct cpsw_ale *ale)
1281 {
1282 if (!ale->params.ale_ageout)
1283 return;
1284
1285 if (ale->features & CPSW_ALE_F_HW_AUTOAGING) {
1286 cpsw_ale_hw_aging_timer_stop(ale);
1287 return;
1288 }
1289
1290 del_timer_sync(&ale->timer);
1291 }
1292
cpsw_ale_start(struct cpsw_ale * ale)1293 void cpsw_ale_start(struct cpsw_ale *ale)
1294 {
1295 unsigned long ale_prescale;
1296
1297 /* configure Broadcast and Multicast Rate Limit
1298 * number_of_packets = (Fclk / ALE_PRESCALE) * port.BCAST/MCAST_LIMIT
1299 * ALE_PRESCALE width is 19bit and min value 0x10
1300 * port.BCAST/MCAST_LIMIT is 8bit
1301 *
1302 * For multi port configuration support the ALE_PRESCALE is configured to 1ms interval,
1303 * which allows to configure port.BCAST/MCAST_LIMIT per port and achieve:
1304 * min number_of_packets = 1000 when port.BCAST/MCAST_LIMIT = 1
1305 * max number_of_packets = 1000 * 255 = 255000 when port.BCAST/MCAST_LIMIT = 0xFF
1306 */
1307 ale_prescale = ale->params.bus_freq / ALE_RATE_LIMIT_MIN_PPS;
1308 writel((u32)ale_prescale, ale->params.ale_regs + ALE_PRESCALE);
1309
1310 /* Allow MC/BC rate limiting globally.
1311 * The actual Rate Limit cfg enabled per-port by port.BCAST/MCAST_LIMIT
1312 */
1313 cpsw_ale_control_set(ale, 0, ALE_RATE_LIMIT, 1);
1314
1315 cpsw_ale_control_set(ale, 0, ALE_ENABLE, 1);
1316 cpsw_ale_control_set(ale, 0, ALE_CLEAR, 1);
1317
1318 cpsw_ale_aging_start(ale);
1319 }
1320
cpsw_ale_stop(struct cpsw_ale * ale)1321 void cpsw_ale_stop(struct cpsw_ale *ale)
1322 {
1323 cpsw_ale_aging_stop(ale);
1324 cpsw_ale_control_set(ale, 0, ALE_CLEAR, 1);
1325 cpsw_ale_control_set(ale, 0, ALE_ENABLE, 0);
1326 }
1327
1328 static const struct reg_field ale_fields_cpsw[] = {
1329 /* CPSW_ALE_IDVER_REG */
1330 [MINOR_VER] = REG_FIELD(ALE_IDVER, 0, 7),
1331 [MAJOR_VER] = REG_FIELD(ALE_IDVER, 8, 15),
1332 };
1333
1334 static const struct reg_field ale_fields_cpsw_nu[] = {
1335 /* CPSW_ALE_IDVER_REG */
1336 [MINOR_VER] = REG_FIELD(ALE_IDVER, 0, 7),
1337 [MAJOR_VER] = REG_FIELD(ALE_IDVER, 8, 10),
1338 /* CPSW_ALE_STATUS_REG */
1339 [ALE_ENTRIES] = REG_FIELD(ALE_STATUS, 0, 7),
1340 [ALE_POLICERS] = REG_FIELD(ALE_STATUS, 8, 15),
1341 /* CPSW_ALE_POLICER_PORT_OUI_REG */
1342 [POL_PORT_MEN] = REG_FIELD(ALE_POLICER_PORT_OUI, 31, 31),
1343 [POL_TRUNK_ID] = REG_FIELD(ALE_POLICER_PORT_OUI, 30, 30),
1344 [POL_PORT_NUM] = REG_FIELD(ALE_POLICER_PORT_OUI, 25, 25),
1345 [POL_PRI_MEN] = REG_FIELD(ALE_POLICER_PORT_OUI, 19, 19),
1346 [POL_PRI_VAL] = REG_FIELD(ALE_POLICER_PORT_OUI, 16, 18),
1347 [POL_OUI_MEN] = REG_FIELD(ALE_POLICER_PORT_OUI, 15, 15),
1348 [POL_OUI_INDEX] = REG_FIELD(ALE_POLICER_PORT_OUI, 0, 5),
1349
1350 /* CPSW_ALE_POLICER_DA_SA_REG */
1351 [POL_DST_MEN] = REG_FIELD(ALE_POLICER_DA_SA, 31, 31),
1352 [POL_DST_INDEX] = REG_FIELD(ALE_POLICER_DA_SA, 16, 21),
1353 [POL_SRC_MEN] = REG_FIELD(ALE_POLICER_DA_SA, 15, 15),
1354 [POL_SRC_INDEX] = REG_FIELD(ALE_POLICER_DA_SA, 0, 5),
1355
1356 /* CPSW_ALE_POLICER_VLAN_REG */
1357 [POL_OVLAN_MEN] = REG_FIELD(ALE_POLICER_VLAN, 31, 31),
1358 [POL_OVLAN_INDEX] = REG_FIELD(ALE_POLICER_VLAN, 16, 21),
1359 [POL_IVLAN_MEN] = REG_FIELD(ALE_POLICER_VLAN, 15, 15),
1360 [POL_IVLAN_INDEX] = REG_FIELD(ALE_POLICER_VLAN, 0, 5),
1361
1362 /* CPSW_ALE_POLICER_ETHERTYPE_IPSA_REG */
1363 [POL_ETHERTYPE_MEN] = REG_FIELD(ALE_POLICER_ETHERTYPE_IPSA, 31, 31),
1364 [POL_ETHERTYPE_INDEX] = REG_FIELD(ALE_POLICER_ETHERTYPE_IPSA, 16, 21),
1365 [POL_IPSRC_MEN] = REG_FIELD(ALE_POLICER_ETHERTYPE_IPSA, 15, 15),
1366 [POL_IPSRC_INDEX] = REG_FIELD(ALE_POLICER_ETHERTYPE_IPSA, 0, 5),
1367
1368 /* CPSW_ALE_POLICER_IPDA_REG */
1369 [POL_IPDST_MEN] = REG_FIELD(ALE_POLICER_IPDA, 31, 31),
1370 [POL_IPDST_INDEX] = REG_FIELD(ALE_POLICER_IPDA, 16, 21),
1371
1372 /* CPSW_ALE_POLICER_TBL_CTL_REG */
1373 /**
1374 * REG_FIELDS not defined for this as fields cannot be correctly
1375 * used independently
1376 */
1377
1378 /* CPSW_ALE_POLICER_CTL_REG */
1379 [POL_EN] = REG_FIELD(ALE_POLICER_CTL, 31, 31),
1380 [POL_RED_DROP_EN] = REG_FIELD(ALE_POLICER_CTL, 29, 29),
1381 [POL_YELLOW_DROP_EN] = REG_FIELD(ALE_POLICER_CTL, 28, 28),
1382 [POL_YELLOW_THRESH] = REG_FIELD(ALE_POLICER_CTL, 24, 26),
1383 [POL_POL_MATCH_MODE] = REG_FIELD(ALE_POLICER_CTL, 22, 23),
1384 [POL_PRIORITY_THREAD_EN] = REG_FIELD(ALE_POLICER_CTL, 21, 21),
1385 [POL_MAC_ONLY_DEF_DIS] = REG_FIELD(ALE_POLICER_CTL, 20, 20),
1386
1387 /* CPSW_ALE_POLICER_TEST_CTL_REG */
1388 [POL_TEST_CLR] = REG_FIELD(ALE_POLICER_TEST_CTL, 31, 31),
1389 [POL_TEST_CLR_RED] = REG_FIELD(ALE_POLICER_TEST_CTL, 30, 30),
1390 [POL_TEST_CLR_YELLOW] = REG_FIELD(ALE_POLICER_TEST_CTL, 29, 29),
1391 [POL_TEST_CLR_SELECTED] = REG_FIELD(ALE_POLICER_TEST_CTL, 28, 28),
1392 [POL_TEST_ENTRY] = REG_FIELD(ALE_POLICER_TEST_CTL, 0, 4),
1393
1394 /* CPSW_ALE_POLICER_HIT_STATUS_REG */
1395 [POL_STATUS_HIT] = REG_FIELD(ALE_POLICER_HIT_STATUS, 31, 31),
1396 [POL_STATUS_HIT_RED] = REG_FIELD(ALE_POLICER_HIT_STATUS, 30, 30),
1397 [POL_STATUS_HIT_YELLOW] = REG_FIELD(ALE_POLICER_HIT_STATUS, 29, 29),
1398
1399 /* CPSW_ALE_THREAD_DEF_REG */
1400 [ALE_DEFAULT_THREAD_EN] = REG_FIELD(ALE_THREAD_DEF, 15, 15),
1401 [ALE_DEFAULT_THREAD_VAL] = REG_FIELD(ALE_THREAD_DEF, 0, 5),
1402
1403 /* CPSW_ALE_THREAD_CTL_REG */
1404 [ALE_THREAD_CLASS_INDEX] = REG_FIELD(ALE_THREAD_CTL, 0, 4),
1405
1406 /* CPSW_ALE_THREAD_VAL_REG */
1407 [ALE_THREAD_ENABLE] = REG_FIELD(ALE_THREAD_VAL, 15, 15),
1408 [ALE_THREAD_VALUE] = REG_FIELD(ALE_THREAD_VAL, 0, 5),
1409 };
1410
1411 static const struct cpsw_ale_dev_id cpsw_ale_id_match[] = {
1412 {
1413 /* am3/4/5, dra7. dm814x, 66ak2hk-gbe */
1414 .dev_id = "cpsw",
1415 .tbl_entries = 1024,
1416 .reg_fields = ale_fields_cpsw,
1417 .num_fields = ARRAY_SIZE(ale_fields_cpsw),
1418 .vlan_entry_tbl = vlan_entry_cpsw,
1419 },
1420 {
1421 /* 66ak2h_xgbe */
1422 .dev_id = "66ak2h-xgbe",
1423 .tbl_entries = 2048,
1424 .reg_fields = ale_fields_cpsw,
1425 .num_fields = ARRAY_SIZE(ale_fields_cpsw),
1426 .vlan_entry_tbl = vlan_entry_cpsw,
1427 },
1428 {
1429 .dev_id = "66ak2el",
1430 .features = CPSW_ALE_F_STATUS_REG,
1431 .reg_fields = ale_fields_cpsw_nu,
1432 .num_fields = ARRAY_SIZE(ale_fields_cpsw_nu),
1433 .nu_switch_ale = true,
1434 .vlan_entry_tbl = vlan_entry_nu,
1435 },
1436 {
1437 .dev_id = "66ak2g",
1438 .features = CPSW_ALE_F_STATUS_REG,
1439 .tbl_entries = 64,
1440 .reg_fields = ale_fields_cpsw_nu,
1441 .num_fields = ARRAY_SIZE(ale_fields_cpsw_nu),
1442 .nu_switch_ale = true,
1443 .vlan_entry_tbl = vlan_entry_nu,
1444 },
1445 {
1446 .dev_id = "am65x-cpsw2g",
1447 .features = CPSW_ALE_F_STATUS_REG | CPSW_ALE_F_HW_AUTOAGING,
1448 .tbl_entries = 64,
1449 .reg_fields = ale_fields_cpsw_nu,
1450 .num_fields = ARRAY_SIZE(ale_fields_cpsw_nu),
1451 .nu_switch_ale = true,
1452 .vlan_entry_tbl = vlan_entry_nu,
1453 },
1454 {
1455 .dev_id = "j721e-cpswxg",
1456 .features = CPSW_ALE_F_STATUS_REG | CPSW_ALE_F_HW_AUTOAGING,
1457 .reg_fields = ale_fields_cpsw_nu,
1458 .num_fields = ARRAY_SIZE(ale_fields_cpsw_nu),
1459 .vlan_entry_tbl = vlan_entry_k3_cpswxg,
1460 },
1461 {
1462 .dev_id = "am64-cpswxg",
1463 .features = CPSW_ALE_F_STATUS_REG | CPSW_ALE_F_HW_AUTOAGING,
1464 .reg_fields = ale_fields_cpsw_nu,
1465 .num_fields = ARRAY_SIZE(ale_fields_cpsw_nu),
1466 .vlan_entry_tbl = vlan_entry_k3_cpswxg,
1467 .tbl_entries = 512,
1468 },
1469 { },
1470 };
1471
1472 static const struct
cpsw_ale_match_id(const struct cpsw_ale_dev_id * id,const char * dev_id)1473 cpsw_ale_dev_id *cpsw_ale_match_id(const struct cpsw_ale_dev_id *id,
1474 const char *dev_id)
1475 {
1476 if (!dev_id)
1477 return NULL;
1478
1479 while (id->dev_id) {
1480 if (strcmp(dev_id, id->dev_id) == 0)
1481 return id;
1482 id++;
1483 }
1484 return NULL;
1485 }
1486
1487 static const struct regmap_config ale_regmap_cfg = {
1488 .reg_bits = 32,
1489 .val_bits = 32,
1490 .reg_stride = 4,
1491 .name = "cpsw-ale",
1492 };
1493
cpsw_ale_regfield_init(struct cpsw_ale * ale)1494 static int cpsw_ale_regfield_init(struct cpsw_ale *ale)
1495 {
1496 const struct reg_field *reg_fields = ale->params.reg_fields;
1497 struct device *dev = ale->params.dev;
1498 struct regmap *regmap = ale->regmap;
1499 int i;
1500
1501 for (i = 0; i < ale->params.num_fields; i++) {
1502 ale->fields[i] = devm_regmap_field_alloc(dev, regmap,
1503 reg_fields[i]);
1504 if (IS_ERR(ale->fields[i])) {
1505 dev_err(dev, "Unable to allocate regmap field %d\n", i);
1506 return PTR_ERR(ale->fields[i]);
1507 }
1508 }
1509
1510 return 0;
1511 }
1512
cpsw_ale_create(struct cpsw_ale_params * params)1513 struct cpsw_ale *cpsw_ale_create(struct cpsw_ale_params *params)
1514 {
1515 u32 ale_entries, rev_major, rev_minor, policers;
1516 const struct cpsw_ale_dev_id *ale_dev_id;
1517 struct cpsw_ale *ale;
1518 int ret;
1519
1520 ale_dev_id = cpsw_ale_match_id(cpsw_ale_id_match, params->dev_id);
1521 if (!ale_dev_id)
1522 return ERR_PTR(-EINVAL);
1523
1524 params->ale_entries = ale_dev_id->tbl_entries;
1525 params->nu_switch_ale = ale_dev_id->nu_switch_ale;
1526 params->reg_fields = ale_dev_id->reg_fields;
1527 params->num_fields = ale_dev_id->num_fields;
1528
1529 ale = devm_kzalloc(params->dev, sizeof(*ale), GFP_KERNEL);
1530 if (!ale)
1531 return ERR_PTR(-ENOMEM);
1532 ale->regmap = devm_regmap_init_mmio(params->dev, params->ale_regs,
1533 &ale_regmap_cfg);
1534 if (IS_ERR(ale->regmap)) {
1535 dev_err(params->dev, "Couldn't create CPSW ALE regmap\n");
1536 return ERR_PTR(-ENOMEM);
1537 }
1538
1539 ale->params = *params;
1540 ret = cpsw_ale_regfield_init(ale);
1541 if (ret)
1542 return ERR_PTR(ret);
1543
1544 ale->p0_untag_vid_mask = devm_bitmap_zalloc(params->dev, VLAN_N_VID,
1545 GFP_KERNEL);
1546 if (!ale->p0_untag_vid_mask)
1547 return ERR_PTR(-ENOMEM);
1548
1549 ale->ageout = ale->params.ale_ageout * HZ;
1550 ale->features = ale_dev_id->features;
1551 ale->vlan_entry_tbl = ale_dev_id->vlan_entry_tbl;
1552
1553 regmap_field_read(ale->fields[MINOR_VER], &rev_minor);
1554 regmap_field_read(ale->fields[MAJOR_VER], &rev_major);
1555 ale->version = rev_major << 8 | rev_minor;
1556 dev_info(ale->params.dev, "initialized cpsw ale version %d.%d\n",
1557 rev_major, rev_minor);
1558
1559 if (ale->features & CPSW_ALE_F_STATUS_REG &&
1560 !ale->params.ale_entries) {
1561 regmap_field_read(ale->fields[ALE_ENTRIES], &ale_entries);
1562 /* ALE available on newer NetCP switches has introduced
1563 * a register, ALE_STATUS, to indicate the size of ALE
1564 * table which shows the size as a multiple of 1024 entries.
1565 * For these, params.ale_entries will be set to zero. So
1566 * read the register and update the value of ale_entries.
1567 * return error if ale_entries is zero in ALE_STATUS.
1568 */
1569 if (!ale_entries)
1570 return ERR_PTR(-EINVAL);
1571
1572 ale_entries *= ALE_TABLE_SIZE_MULTIPLIER;
1573 ale->params.ale_entries = ale_entries;
1574 }
1575
1576 if (ale->features & CPSW_ALE_F_STATUS_REG &&
1577 !ale->params.num_policers) {
1578 regmap_field_read(ale->fields[ALE_POLICERS], &policers);
1579 if (!policers)
1580 return ERR_PTR(-EINVAL);
1581
1582 policers *= ALE_POLICER_SIZE_MULTIPLIER;
1583 ale->params.num_policers = policers;
1584 }
1585
1586 dev_info(ale->params.dev,
1587 "ALE Table size %ld, Policers %ld\n", ale->params.ale_entries,
1588 ale->params.num_policers);
1589
1590 /* set default bits for existing h/w */
1591 ale->port_mask_bits = ale->params.ale_ports;
1592 ale->port_num_bits = order_base_2(ale->params.ale_ports);
1593 ale->vlan_field_bits = ale->params.ale_ports;
1594
1595 /* Set defaults override for ALE on NetCP NU switch and for version
1596 * 1R3
1597 */
1598 if (ale->params.nu_switch_ale) {
1599 /* Separate registers for unknown vlan configuration.
1600 * Also there are N bits, where N is number of ale
1601 * ports and shift value should be 0
1602 */
1603 ale_controls[ALE_PORT_UNKNOWN_VLAN_MEMBER].bits =
1604 ale->params.ale_ports;
1605 ale_controls[ALE_PORT_UNKNOWN_VLAN_MEMBER].offset =
1606 ALE_UNKNOWNVLAN_MEMBER;
1607 ale_controls[ALE_PORT_UNKNOWN_MCAST_FLOOD].bits =
1608 ale->params.ale_ports;
1609 ale_controls[ALE_PORT_UNKNOWN_MCAST_FLOOD].shift = 0;
1610 ale_controls[ALE_PORT_UNKNOWN_MCAST_FLOOD].offset =
1611 ALE_UNKNOWNVLAN_UNREG_MCAST_FLOOD;
1612 ale_controls[ALE_PORT_UNKNOWN_REG_MCAST_FLOOD].bits =
1613 ale->params.ale_ports;
1614 ale_controls[ALE_PORT_UNKNOWN_REG_MCAST_FLOOD].shift = 0;
1615 ale_controls[ALE_PORT_UNKNOWN_REG_MCAST_FLOOD].offset =
1616 ALE_UNKNOWNVLAN_REG_MCAST_FLOOD;
1617 ale_controls[ALE_PORT_UNTAGGED_EGRESS].bits =
1618 ale->params.ale_ports;
1619 ale_controls[ALE_PORT_UNTAGGED_EGRESS].shift = 0;
1620 ale_controls[ALE_PORT_UNTAGGED_EGRESS].offset =
1621 ALE_UNKNOWNVLAN_FORCE_UNTAG_EGRESS;
1622 }
1623
1624 cpsw_ale_control_set(ale, 0, ALE_CLEAR, 1);
1625 return ale;
1626 }
1627
cpsw_ale_dump(struct cpsw_ale * ale,u32 * data)1628 void cpsw_ale_dump(struct cpsw_ale *ale, u32 *data)
1629 {
1630 int i;
1631
1632 for (i = 0; i < ale->params.ale_entries; i++) {
1633 cpsw_ale_read(ale, i, data);
1634 data += ALE_ENTRY_WORDS;
1635 }
1636 }
1637
cpsw_ale_restore(struct cpsw_ale * ale,u32 * data)1638 void cpsw_ale_restore(struct cpsw_ale *ale, u32 *data)
1639 {
1640 int i;
1641
1642 for (i = 0; i < ale->params.ale_entries; i++) {
1643 cpsw_ale_write(ale, i, data);
1644 data += ALE_ENTRY_WORDS;
1645 }
1646 }
1647
cpsw_ale_get_num_entries(struct cpsw_ale * ale)1648 u32 cpsw_ale_get_num_entries(struct cpsw_ale *ale)
1649 {
1650 return ale ? ale->params.ale_entries : 0;
1651 }
1652
1653 /* Reads the specified policer index into ALE POLICER registers */
cpsw_ale_policer_read_idx(struct cpsw_ale * ale,u32 idx)1654 static void cpsw_ale_policer_read_idx(struct cpsw_ale *ale, u32 idx)
1655 {
1656 idx &= ALE_POLICER_TBL_INDEX_MASK;
1657 writel_relaxed(idx, ale->params.ale_regs + ALE_POLICER_TBL_CTL);
1658 }
1659
1660 /* Writes the ALE POLICER registers into the specified policer index */
cpsw_ale_policer_write_idx(struct cpsw_ale * ale,u32 idx)1661 static void cpsw_ale_policer_write_idx(struct cpsw_ale *ale, u32 idx)
1662 {
1663 idx &= ALE_POLICER_TBL_INDEX_MASK;
1664 idx |= ALE_POLICER_TBL_WRITE_ENABLE;
1665 writel_relaxed(idx, ale->params.ale_regs + ALE_POLICER_TBL_CTL);
1666 }
1667
1668 /* enables/disables the custom thread value for the specified policer index */
cpsw_ale_policer_thread_idx_enable(struct cpsw_ale * ale,u32 idx,u32 thread_id,bool enable)1669 static void cpsw_ale_policer_thread_idx_enable(struct cpsw_ale *ale, u32 idx,
1670 u32 thread_id, bool enable)
1671 {
1672 regmap_field_write(ale->fields[ALE_THREAD_CLASS_INDEX], idx);
1673 regmap_field_write(ale->fields[ALE_THREAD_VALUE], thread_id);
1674 regmap_field_write(ale->fields[ALE_THREAD_ENABLE], enable ? 1 : 0);
1675 }
1676
1677 /* Disable all policer entries and thread mappings */
cpsw_ale_policer_reset(struct cpsw_ale * ale)1678 static void cpsw_ale_policer_reset(struct cpsw_ale *ale)
1679 {
1680 int i;
1681
1682 for (i = 0; i < ale->params.num_policers ; i++) {
1683 cpsw_ale_policer_read_idx(ale, i);
1684 regmap_field_write(ale->fields[POL_PORT_MEN], 0);
1685 regmap_field_write(ale->fields[POL_PRI_MEN], 0);
1686 regmap_field_write(ale->fields[POL_OUI_MEN], 0);
1687 regmap_field_write(ale->fields[POL_DST_MEN], 0);
1688 regmap_field_write(ale->fields[POL_SRC_MEN], 0);
1689 regmap_field_write(ale->fields[POL_OVLAN_MEN], 0);
1690 regmap_field_write(ale->fields[POL_IVLAN_MEN], 0);
1691 regmap_field_write(ale->fields[POL_ETHERTYPE_MEN], 0);
1692 regmap_field_write(ale->fields[POL_IPSRC_MEN], 0);
1693 regmap_field_write(ale->fields[POL_IPDST_MEN], 0);
1694 regmap_field_write(ale->fields[POL_EN], 0);
1695 regmap_field_write(ale->fields[POL_RED_DROP_EN], 0);
1696 regmap_field_write(ale->fields[POL_YELLOW_DROP_EN], 0);
1697 regmap_field_write(ale->fields[POL_PRIORITY_THREAD_EN], 0);
1698
1699 cpsw_ale_policer_thread_idx_enable(ale, i, 0, 0);
1700 }
1701 }
1702
1703 /* Default classifier is to map 8 user priorities to N receive channels */
cpsw_ale_classifier_setup_default(struct cpsw_ale * ale,int num_rx_ch)1704 void cpsw_ale_classifier_setup_default(struct cpsw_ale *ale, int num_rx_ch)
1705 {
1706 int pri, idx;
1707
1708 /* Reference:
1709 * IEEE802.1Q-2014, Standard for Local and metropolitan area networks
1710 * Table I-2 - Traffic type acronyms
1711 * Table I-3 - Defining traffic types
1712 * Section I.4 Traffic types and priority values, states:
1713 * "0 is thus used both for default priority and for Best Effort, and
1714 * Background is associated with a priority value of 1. This means
1715 * that the value 1 effectively communicates a lower priority than 0."
1716 *
1717 * In the table below, Priority Code Point (PCP) 0 is assigned
1718 * to a higher priority thread than PCP 1 wherever possible.
1719 * The table maps which thread the PCP traffic needs to be
1720 * sent to for a given number of threads (RX channels). Upper threads
1721 * have higher priority.
1722 * e.g. if number of threads is 8 then user priority 0 will map to
1723 * pri_thread_map[8-1][0] i.e. thread 1
1724 */
1725
1726 int pri_thread_map[8][8] = { /* BK,BE,EE,CA,VI,VO,IC,NC */
1727 { 0, 0, 0, 0, 0, 0, 0, 0, },
1728 { 0, 0, 0, 0, 1, 1, 1, 1, },
1729 { 0, 0, 0, 0, 1, 1, 2, 2, },
1730 { 0, 0, 1, 1, 2, 2, 3, 3, },
1731 { 0, 0, 1, 1, 2, 2, 3, 4, },
1732 { 1, 0, 2, 2, 3, 3, 4, 5, },
1733 { 1, 0, 2, 3, 4, 4, 5, 6, },
1734 { 1, 0, 2, 3, 4, 5, 6, 7 } };
1735
1736 cpsw_ale_policer_reset(ale);
1737
1738 /* use first 8 classifiers to map 8 (DSCP/PCP) priorities to channels */
1739 for (pri = 0; pri < 8; pri++) {
1740 idx = pri;
1741
1742 /* Classifier 'idx' match on priority 'pri' */
1743 cpsw_ale_policer_read_idx(ale, idx);
1744 regmap_field_write(ale->fields[POL_PRI_VAL], pri);
1745 regmap_field_write(ale->fields[POL_PRI_MEN], 1);
1746 cpsw_ale_policer_write_idx(ale, idx);
1747
1748 /* Map Classifier 'idx' to thread provided by the map */
1749 cpsw_ale_policer_thread_idx_enable(ale, idx,
1750 pri_thread_map[num_rx_ch - 1][pri],
1751 1);
1752 }
1753 }
1754