xref: /linux/drivers/char/tpm/tpm2-sessions.c (revision d5b2ee0fe863519be5e1c277d22609b048b61a2a)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 /*
4  * Copyright (C) 2018 James.Bottomley@HansenPartnership.com
5  *
6  * Cryptographic helper routines for handling TPM2 sessions for
7  * authorization HMAC and request response encryption.
8  *
9  * The idea is to ensure that every TPM command is HMAC protected by a
10  * session, meaning in-flight tampering would be detected and in
11  * addition all sensitive inputs and responses should be encrypted.
12  *
13  * The basic way this works is to use a TPM feature called salted
14  * sessions where a random secret used in session construction is
15  * encrypted to the public part of a known TPM key.  The problem is we
16  * have no known keys, so initially a primary Elliptic Curve key is
17  * derived from the NULL seed (we use EC because most TPMs generate
18  * these keys much faster than RSA ones).  The curve used is NIST_P256
19  * because that's now mandated to be present in 'TCG TPM v2.0
20  * Provisioning Guidance'
21  *
22  * Threat problems: the initial TPM2_CreatePrimary is not (and cannot
23  * be) session protected, so a clever Man in the Middle could return a
24  * public key they control to this command and from there intercept
25  * and decode all subsequent session based transactions.  The kernel
26  * cannot mitigate this threat but, after boot, userspace can get
27  * proof this has not happened by asking the TPM to certify the NULL
28  * key.  This certification would chain back to the TPM Endorsement
29  * Certificate and prove the NULL seed primary had not been tampered
30  * with and thus all sessions must have been cryptographically secure.
31  * To assist with this, the initial NULL seed public key name is made
32  * available in a sysfs file.
33  *
34  * Use of these functions:
35  *
36  * The design is all the crypto, hash and hmac gunk is confined in this
37  * file and never needs to be seen even by the kernel internal user.  To
38  * the user there's an init function tpm2_sessions_init() that needs to
39  * be called once per TPM which generates the NULL seed primary key.
40  *
41  * These are the usage functions:
42  *
43  * tpm2_start_auth_session() which allocates the opaque auth structure
44  *	and gets a session from the TPM.  This must be called before
45  *	any of the following functions.  The session is protected by a
46  *	session_key which is derived from a random salt value
47  *	encrypted to the NULL seed.
48  * tpm2_end_auth_session() kills the session and frees the resources.
49  *	Under normal operation this function is done by
50  *	tpm_buf_check_hmac_response(), so this is only to be used on
51  *	error legs where the latter is not executed.
52  * tpm_buf_append_name() to add a handle to the buffer.  This must be
53  *	used in place of the usual tpm_buf_append_u32() for adding
54  *	handles because handles have to be processed specially when
55  *	calculating the HMAC.  In particular, for NV, volatile and
56  *	permanent objects you now need to provide the name.
57  * tpm_buf_append_hmac_session() which appends the hmac session to the
58  *	buf in the same way tpm_buf_append_auth does().
59  * tpm_buf_fill_hmac_session() This calculates the correct hash and
60  *	places it in the buffer.  It must be called after the complete
61  *	command buffer is finalized so it can fill in the correct HMAC
62  *	based on the parameters.
63  * tpm_buf_check_hmac_response() which checks the session response in
64  *	the buffer and calculates what it should be.  If there's a
65  *	mismatch it will log a warning and return an error.  If
66  *	tpm_buf_append_hmac_session() did not specify
67  *	TPM_SA_CONTINUE_SESSION then the session will be closed (if it
68  *	hasn't been consumed) and the auth structure freed.
69  */
70 
71 #include "tpm.h"
72 #include <linux/random.h>
73 #include <linux/scatterlist.h>
74 #include <linux/unaligned.h>
75 #include <crypto/kpp.h>
76 #include <crypto/ecdh.h>
77 #include <crypto/hash.h>
78 #include <crypto/hmac.h>
79 
80 /* maximum number of names the TPM must remember for authorization */
81 #define AUTH_MAX_NAMES	3
82 
83 #define AES_KEY_BYTES	AES_KEYSIZE_128
84 #define AES_KEY_BITS	(AES_KEY_BYTES*8)
85 
86 /*
87  * This is the structure that carries all the auth information (like
88  * session handle, nonces, session key and auth) from use to use it is
89  * designed to be opaque to anything outside.
90  */
91 struct tpm2_auth {
92 	u32 handle;
93 	/*
94 	 * This has two meanings: before tpm_buf_fill_hmac_session()
95 	 * it marks the offset in the buffer of the start of the
96 	 * sessions (i.e. after all the handles).  Once the buffer has
97 	 * been filled it markes the session number of our auth
98 	 * session so we can find it again in the response buffer.
99 	 *
100 	 * The two cases are distinguished because the first offset
101 	 * must always be greater than TPM_HEADER_SIZE and the second
102 	 * must be less than or equal to 5.
103 	 */
104 	u32 session;
105 	/*
106 	 * the size here is variable and set by the size of our_nonce
107 	 * which must be between 16 and the name hash length. we set
108 	 * the maximum sha256 size for the greatest protection
109 	 */
110 	u8 our_nonce[SHA256_DIGEST_SIZE];
111 	u8 tpm_nonce[SHA256_DIGEST_SIZE];
112 	/*
113 	 * the salt is only used across the session command/response
114 	 * after that it can be used as a scratch area
115 	 */
116 	union {
117 		u8 salt[EC_PT_SZ];
118 		/* scratch for key + IV */
119 		u8 scratch[AES_KEY_BYTES + AES_BLOCK_SIZE];
120 	};
121 	/*
122 	 * the session key and passphrase are the same size as the
123 	 * name digest (sha256 again).  The session key is constant
124 	 * for the use of the session and the passphrase can change
125 	 * with every invocation.
126 	 *
127 	 * Note: these fields must be adjacent and in this order
128 	 * because several HMAC/KDF schemes use the combination of the
129 	 * session_key and passphrase.
130 	 */
131 	u8 session_key[SHA256_DIGEST_SIZE];
132 	u8 passphrase[SHA256_DIGEST_SIZE];
133 	int passphrase_len;
134 	struct crypto_aes_ctx aes_ctx;
135 	/* saved session attributes: */
136 	u8 attrs;
137 	__be32 ordinal;
138 
139 	/*
140 	 * memory for three authorization handles.  We know them by
141 	 * handle, but they are part of the session by name, which
142 	 * we must compute and remember
143 	 */
144 	u32 name_h[AUTH_MAX_NAMES];
145 	u8 name[AUTH_MAX_NAMES][2 + SHA512_DIGEST_SIZE];
146 };
147 
148 #ifdef CONFIG_TCG_TPM2_HMAC
149 /*
150  * Name Size based on TPM algorithm (assumes no hash bigger than 255)
151  */
name_size(const u8 * name)152 static u8 name_size(const u8 *name)
153 {
154 	static u8 size_map[] = {
155 		[TPM_ALG_SHA1] = SHA1_DIGEST_SIZE,
156 		[TPM_ALG_SHA256] = SHA256_DIGEST_SIZE,
157 		[TPM_ALG_SHA384] = SHA384_DIGEST_SIZE,
158 		[TPM_ALG_SHA512] = SHA512_DIGEST_SIZE,
159 	};
160 	u16 alg = get_unaligned_be16(name);
161 	return size_map[alg] + 2;
162 }
163 
tpm2_parse_read_public(char * name,struct tpm_buf * buf)164 static int tpm2_parse_read_public(char *name, struct tpm_buf *buf)
165 {
166 	struct tpm_header *head = (struct tpm_header *)buf->data;
167 	off_t offset = TPM_HEADER_SIZE;
168 	u32 tot_len = be32_to_cpu(head->length);
169 	u32 val;
170 
171 	/* we're starting after the header so adjust the length */
172 	tot_len -= TPM_HEADER_SIZE;
173 
174 	/* skip public */
175 	val = tpm_buf_read_u16(buf, &offset);
176 	if (val > tot_len)
177 		return -EINVAL;
178 	offset += val;
179 	/* name */
180 	val = tpm_buf_read_u16(buf, &offset);
181 	if (val != name_size(&buf->data[offset]))
182 		return -EINVAL;
183 	memcpy(name, &buf->data[offset], val);
184 	/* forget the rest */
185 	return 0;
186 }
187 
tpm2_read_public(struct tpm_chip * chip,u32 handle,char * name)188 static int tpm2_read_public(struct tpm_chip *chip, u32 handle, char *name)
189 {
190 	struct tpm_buf buf;
191 	int rc;
192 
193 	rc = tpm_buf_init(&buf, TPM2_ST_NO_SESSIONS, TPM2_CC_READ_PUBLIC);
194 	if (rc)
195 		return rc;
196 
197 	tpm_buf_append_u32(&buf, handle);
198 	rc = tpm_transmit_cmd(chip, &buf, 0, "read public");
199 	if (rc == TPM2_RC_SUCCESS)
200 		rc = tpm2_parse_read_public(name, &buf);
201 
202 	tpm_buf_destroy(&buf);
203 
204 	return rc;
205 }
206 #endif /* CONFIG_TCG_TPM2_HMAC */
207 
208 /**
209  * tpm_buf_append_name() - add a handle area to the buffer
210  * @chip: the TPM chip structure
211  * @buf: The buffer to be appended
212  * @handle: The handle to be appended
213  * @name: The name of the handle (may be NULL)
214  *
215  * In order to compute session HMACs, we need to know the names of the
216  * objects pointed to by the handles.  For most objects, this is simply
217  * the actual 4 byte handle or an empty buf (in these cases @name
218  * should be NULL) but for volatile objects, permanent objects and NV
219  * areas, the name is defined as the hash (according to the name
220  * algorithm which should be set to sha256) of the public area to
221  * which the two byte algorithm id has been appended.  For these
222  * objects, the @name pointer should point to this.  If a name is
223  * required but @name is NULL, then TPM2_ReadPublic() will be called
224  * on the handle to obtain the name.
225  *
226  * As with most tpm_buf operations, success is assumed because failure
227  * will be caused by an incorrect programming model and indicated by a
228  * kernel message.
229  */
tpm_buf_append_name(struct tpm_chip * chip,struct tpm_buf * buf,u32 handle,u8 * name)230 void tpm_buf_append_name(struct tpm_chip *chip, struct tpm_buf *buf,
231 			 u32 handle, u8 *name)
232 {
233 #ifdef CONFIG_TCG_TPM2_HMAC
234 	enum tpm2_mso_type mso = tpm2_handle_mso(handle);
235 	struct tpm2_auth *auth;
236 	int slot;
237 #endif
238 
239 	if (!tpm2_chip_auth(chip)) {
240 		tpm_buf_append_u32(buf, handle);
241 		/* count the number of handles in the upper bits of flags */
242 		buf->handles++;
243 		return;
244 	}
245 
246 #ifdef CONFIG_TCG_TPM2_HMAC
247 	slot = (tpm_buf_length(buf) - TPM_HEADER_SIZE) / 4;
248 	if (slot >= AUTH_MAX_NAMES) {
249 		dev_err(&chip->dev, "TPM: too many handles\n");
250 		return;
251 	}
252 	auth = chip->auth;
253 	WARN(auth->session != tpm_buf_length(buf),
254 	     "name added in wrong place\n");
255 	tpm_buf_append_u32(buf, handle);
256 	auth->session += 4;
257 
258 	if (mso == TPM2_MSO_PERSISTENT ||
259 	    mso == TPM2_MSO_VOLATILE ||
260 	    mso == TPM2_MSO_NVRAM) {
261 		if (!name)
262 			tpm2_read_public(chip, handle, auth->name[slot]);
263 	} else {
264 		if (name)
265 			dev_err(&chip->dev, "TPM: Handle does not require name but one is specified\n");
266 	}
267 
268 	auth->name_h[slot] = handle;
269 	if (name)
270 		memcpy(auth->name[slot], name, name_size(name));
271 #endif
272 }
273 EXPORT_SYMBOL_GPL(tpm_buf_append_name);
274 
275 /**
276  * tpm_buf_append_hmac_session() - Append a TPM session element
277  * @chip: the TPM chip structure
278  * @buf: The buffer to be appended
279  * @attributes: The session attributes
280  * @passphrase: The session authority (NULL if none)
281  * @passphrase_len: The length of the session authority (0 if none)
282  *
283  * This fills in a session structure in the TPM command buffer, except
284  * for the HMAC which cannot be computed until the command buffer is
285  * complete.  The type of session is controlled by the @attributes,
286  * the main ones of which are TPM2_SA_CONTINUE_SESSION which means the
287  * session won't terminate after tpm_buf_check_hmac_response(),
288  * TPM2_SA_DECRYPT which means this buffers first parameter should be
289  * encrypted with a session key and TPM2_SA_ENCRYPT, which means the
290  * response buffer's first parameter needs to be decrypted (confusing,
291  * but the defines are written from the point of view of the TPM).
292  *
293  * Any session appended by this command must be finalized by calling
294  * tpm_buf_fill_hmac_session() otherwise the HMAC will be incorrect
295  * and the TPM will reject the command.
296  *
297  * As with most tpm_buf operations, success is assumed because failure
298  * will be caused by an incorrect programming model and indicated by a
299  * kernel message.
300  */
tpm_buf_append_hmac_session(struct tpm_chip * chip,struct tpm_buf * buf,u8 attributes,u8 * passphrase,int passphrase_len)301 void tpm_buf_append_hmac_session(struct tpm_chip *chip, struct tpm_buf *buf,
302 				 u8 attributes, u8 *passphrase,
303 				 int passphrase_len)
304 {
305 #ifdef CONFIG_TCG_TPM2_HMAC
306 	u8 nonce[SHA256_DIGEST_SIZE];
307 	struct tpm2_auth *auth;
308 	u32 len;
309 #endif
310 
311 	if (!tpm2_chip_auth(chip)) {
312 		/* offset tells us where the sessions area begins */
313 		int offset = buf->handles * 4 + TPM_HEADER_SIZE;
314 		u32 len = 9 + passphrase_len;
315 
316 		if (tpm_buf_length(buf) != offset) {
317 			/* not the first session so update the existing length */
318 			len += get_unaligned_be32(&buf->data[offset]);
319 			put_unaligned_be32(len, &buf->data[offset]);
320 		} else {
321 			tpm_buf_append_u32(buf, len);
322 		}
323 		/* auth handle */
324 		tpm_buf_append_u32(buf, TPM2_RS_PW);
325 		/* nonce */
326 		tpm_buf_append_u16(buf, 0);
327 		/* attributes */
328 		tpm_buf_append_u8(buf, 0);
329 		/* passphrase */
330 		tpm_buf_append_u16(buf, passphrase_len);
331 		tpm_buf_append(buf, passphrase, passphrase_len);
332 		return;
333 	}
334 
335 #ifdef CONFIG_TCG_TPM2_HMAC
336 	/* The first write to /dev/tpm{rm0} will flush the session. */
337 	attributes |= TPM2_SA_CONTINUE_SESSION;
338 
339 	/*
340 	 * The Architecture Guide requires us to strip trailing zeros
341 	 * before computing the HMAC
342 	 */
343 	while (passphrase && passphrase_len > 0 && passphrase[passphrase_len - 1] == '\0')
344 		passphrase_len--;
345 
346 	auth = chip->auth;
347 	auth->attrs = attributes;
348 	auth->passphrase_len = passphrase_len;
349 	if (passphrase_len)
350 		memcpy(auth->passphrase, passphrase, passphrase_len);
351 
352 	if (auth->session != tpm_buf_length(buf)) {
353 		/* we're not the first session */
354 		len = get_unaligned_be32(&buf->data[auth->session]);
355 		if (4 + len + auth->session != tpm_buf_length(buf)) {
356 			WARN(1, "session length mismatch, cannot append");
357 			return;
358 		}
359 
360 		/* add our new session */
361 		len += 9 + 2 * SHA256_DIGEST_SIZE;
362 		put_unaligned_be32(len, &buf->data[auth->session]);
363 	} else {
364 		tpm_buf_append_u32(buf, 9 + 2 * SHA256_DIGEST_SIZE);
365 	}
366 
367 	/* random number for our nonce */
368 	get_random_bytes(nonce, sizeof(nonce));
369 	memcpy(auth->our_nonce, nonce, sizeof(nonce));
370 	tpm_buf_append_u32(buf, auth->handle);
371 	/* our new nonce */
372 	tpm_buf_append_u16(buf, SHA256_DIGEST_SIZE);
373 	tpm_buf_append(buf, nonce, SHA256_DIGEST_SIZE);
374 	tpm_buf_append_u8(buf, auth->attrs);
375 	/* and put a placeholder for the hmac */
376 	tpm_buf_append_u16(buf, SHA256_DIGEST_SIZE);
377 	tpm_buf_append(buf, nonce, SHA256_DIGEST_SIZE);
378 #endif
379 }
380 EXPORT_SYMBOL_GPL(tpm_buf_append_hmac_session);
381 
382 #ifdef CONFIG_TCG_TPM2_HMAC
383 
384 static int tpm2_create_primary(struct tpm_chip *chip, u32 hierarchy,
385 			       u32 *handle, u8 *name);
386 
387 /*
388  * It turns out the crypto hmac(sha256) is hard for us to consume
389  * because it assumes a fixed key and the TPM seems to change the key
390  * on every operation, so we weld the hmac init and final functions in
391  * here to give it the same usage characteristics as a regular hash
392  */
tpm2_hmac_init(struct sha256_state * sctx,u8 * key,u32 key_len)393 static void tpm2_hmac_init(struct sha256_state *sctx, u8 *key, u32 key_len)
394 {
395 	u8 pad[SHA256_BLOCK_SIZE];
396 	int i;
397 
398 	sha256_init(sctx);
399 	for (i = 0; i < sizeof(pad); i++) {
400 		if (i < key_len)
401 			pad[i] = key[i];
402 		else
403 			pad[i] = 0;
404 		pad[i] ^= HMAC_IPAD_VALUE;
405 	}
406 	sha256_update(sctx, pad, sizeof(pad));
407 }
408 
tpm2_hmac_final(struct sha256_state * sctx,u8 * key,u32 key_len,u8 * out)409 static void tpm2_hmac_final(struct sha256_state *sctx, u8 *key, u32 key_len,
410 			    u8 *out)
411 {
412 	u8 pad[SHA256_BLOCK_SIZE];
413 	int i;
414 
415 	for (i = 0; i < sizeof(pad); i++) {
416 		if (i < key_len)
417 			pad[i] = key[i];
418 		else
419 			pad[i] = 0;
420 		pad[i] ^= HMAC_OPAD_VALUE;
421 	}
422 
423 	/* collect the final hash;  use out as temporary storage */
424 	sha256_final(sctx, out);
425 
426 	sha256_init(sctx);
427 	sha256_update(sctx, pad, sizeof(pad));
428 	sha256_update(sctx, out, SHA256_DIGEST_SIZE);
429 	sha256_final(sctx, out);
430 }
431 
432 /*
433  * assume hash sha256 and nonces u, v of size SHA256_DIGEST_SIZE but
434  * otherwise standard tpm2_KDFa.  Note output is in bytes not bits.
435  */
tpm2_KDFa(u8 * key,u32 key_len,const char * label,u8 * u,u8 * v,u32 bytes,u8 * out)436 static void tpm2_KDFa(u8 *key, u32 key_len, const char *label, u8 *u,
437 		      u8 *v, u32 bytes, u8 *out)
438 {
439 	u32 counter = 1;
440 	const __be32 bits = cpu_to_be32(bytes * 8);
441 
442 	while (bytes > 0) {
443 		struct sha256_state sctx;
444 		__be32 c = cpu_to_be32(counter);
445 
446 		tpm2_hmac_init(&sctx, key, key_len);
447 		sha256_update(&sctx, (u8 *)&c, sizeof(c));
448 		sha256_update(&sctx, label, strlen(label)+1);
449 		sha256_update(&sctx, u, SHA256_DIGEST_SIZE);
450 		sha256_update(&sctx, v, SHA256_DIGEST_SIZE);
451 		sha256_update(&sctx, (u8 *)&bits, sizeof(bits));
452 		tpm2_hmac_final(&sctx, key, key_len, out);
453 
454 		bytes -= SHA256_DIGEST_SIZE;
455 		counter++;
456 		out += SHA256_DIGEST_SIZE;
457 	}
458 }
459 
460 /*
461  * Somewhat of a bastardization of the real KDFe.  We're assuming
462  * we're working with known point sizes for the input parameters and
463  * the hash algorithm is fixed at sha256.  Because we know that the
464  * point size is 32 bytes like the hash size, there's no need to loop
465  * in this KDF.
466  */
tpm2_KDFe(u8 z[EC_PT_SZ],const char * str,u8 * pt_u,u8 * pt_v,u8 * out)467 static void tpm2_KDFe(u8 z[EC_PT_SZ], const char *str, u8 *pt_u, u8 *pt_v,
468 		      u8 *out)
469 {
470 	struct sha256_state sctx;
471 	/*
472 	 * this should be an iterative counter, but because we know
473 	 *  we're only taking 32 bytes for the point using a sha256
474 	 *  hash which is also 32 bytes, there's only one loop
475 	 */
476 	__be32 c = cpu_to_be32(1);
477 
478 	sha256_init(&sctx);
479 	/* counter (BE) */
480 	sha256_update(&sctx, (u8 *)&c, sizeof(c));
481 	/* secret value */
482 	sha256_update(&sctx, z, EC_PT_SZ);
483 	/* string including trailing zero */
484 	sha256_update(&sctx, str, strlen(str)+1);
485 	sha256_update(&sctx, pt_u, EC_PT_SZ);
486 	sha256_update(&sctx, pt_v, EC_PT_SZ);
487 	sha256_final(&sctx, out);
488 }
489 
tpm_buf_append_salt(struct tpm_buf * buf,struct tpm_chip * chip,struct tpm2_auth * auth)490 static void tpm_buf_append_salt(struct tpm_buf *buf, struct tpm_chip *chip,
491 				struct tpm2_auth *auth)
492 {
493 	struct crypto_kpp *kpp;
494 	struct kpp_request *req;
495 	struct scatterlist s[2], d[1];
496 	struct ecdh p = {0};
497 	u8 encoded_key[EC_PT_SZ], *x, *y;
498 	unsigned int buf_len;
499 
500 	/* secret is two sized points */
501 	tpm_buf_append_u16(buf, (EC_PT_SZ + 2)*2);
502 	/*
503 	 * we cheat here and append uninitialized data to form
504 	 * the points.  All we care about is getting the two
505 	 * co-ordinate pointers, which will be used to overwrite
506 	 * the uninitialized data
507 	 */
508 	tpm_buf_append_u16(buf, EC_PT_SZ);
509 	x = &buf->data[tpm_buf_length(buf)];
510 	tpm_buf_append(buf, encoded_key, EC_PT_SZ);
511 	tpm_buf_append_u16(buf, EC_PT_SZ);
512 	y = &buf->data[tpm_buf_length(buf)];
513 	tpm_buf_append(buf, encoded_key, EC_PT_SZ);
514 	sg_init_table(s, 2);
515 	sg_set_buf(&s[0], x, EC_PT_SZ);
516 	sg_set_buf(&s[1], y, EC_PT_SZ);
517 
518 	kpp = crypto_alloc_kpp("ecdh-nist-p256", CRYPTO_ALG_INTERNAL, 0);
519 	if (IS_ERR(kpp)) {
520 		dev_err(&chip->dev, "crypto ecdh allocation failed\n");
521 		return;
522 	}
523 
524 	buf_len = crypto_ecdh_key_len(&p);
525 	if (sizeof(encoded_key) < buf_len) {
526 		dev_err(&chip->dev, "salt buffer too small needs %d\n",
527 			buf_len);
528 		goto out;
529 	}
530 	crypto_ecdh_encode_key(encoded_key, buf_len, &p);
531 	/* this generates a random private key */
532 	crypto_kpp_set_secret(kpp, encoded_key, buf_len);
533 
534 	/* salt is now the public point of this private key */
535 	req = kpp_request_alloc(kpp, GFP_KERNEL);
536 	if (!req)
537 		goto out;
538 	kpp_request_set_input(req, NULL, 0);
539 	kpp_request_set_output(req, s, EC_PT_SZ*2);
540 	crypto_kpp_generate_public_key(req);
541 	/*
542 	 * we're not done: now we have to compute the shared secret
543 	 * which is our private key multiplied by the tpm_key public
544 	 * point, we actually only take the x point and discard the y
545 	 * point and feed it through KDFe to get the final secret salt
546 	 */
547 	sg_set_buf(&s[0], chip->null_ec_key_x, EC_PT_SZ);
548 	sg_set_buf(&s[1], chip->null_ec_key_y, EC_PT_SZ);
549 	kpp_request_set_input(req, s, EC_PT_SZ*2);
550 	sg_init_one(d, auth->salt, EC_PT_SZ);
551 	kpp_request_set_output(req, d, EC_PT_SZ);
552 	crypto_kpp_compute_shared_secret(req);
553 	kpp_request_free(req);
554 
555 	/*
556 	 * pass the shared secret through KDFe for salt. Note salt
557 	 * area is used both for input shared secret and output salt.
558 	 * This works because KDFe fully consumes the secret before it
559 	 * writes the salt
560 	 */
561 	tpm2_KDFe(auth->salt, "SECRET", x, chip->null_ec_key_x, auth->salt);
562 
563  out:
564 	crypto_free_kpp(kpp);
565 }
566 
567 /**
568  * tpm_buf_fill_hmac_session() - finalize the session HMAC
569  * @chip: the TPM chip structure
570  * @buf: The buffer to be appended
571  *
572  * This command must not be called until all of the parameters have
573  * been appended to @buf otherwise the computed HMAC will be
574  * incorrect.
575  *
576  * This function computes and fills in the session HMAC using the
577  * session key and, if TPM2_SA_DECRYPT was specified, computes the
578  * encryption key and encrypts the first parameter of the command
579  * buffer with it.
580  *
581  * As with most tpm_buf operations, success is assumed because failure
582  * will be caused by an incorrect programming model and indicated by a
583  * kernel message.
584  */
tpm_buf_fill_hmac_session(struct tpm_chip * chip,struct tpm_buf * buf)585 void tpm_buf_fill_hmac_session(struct tpm_chip *chip, struct tpm_buf *buf)
586 {
587 	u32 cc, handles, val;
588 	struct tpm2_auth *auth = chip->auth;
589 	int i;
590 	struct tpm_header *head = (struct tpm_header *)buf->data;
591 	off_t offset_s = TPM_HEADER_SIZE, offset_p;
592 	u8 *hmac = NULL;
593 	u32 attrs;
594 	u8 cphash[SHA256_DIGEST_SIZE];
595 	struct sha256_state sctx;
596 
597 	if (!auth)
598 		return;
599 
600 	/* save the command code in BE format */
601 	auth->ordinal = head->ordinal;
602 
603 	cc = be32_to_cpu(head->ordinal);
604 
605 	i = tpm2_find_cc(chip, cc);
606 	if (i < 0) {
607 		dev_err(&chip->dev, "Command 0x%x not found in TPM\n", cc);
608 		return;
609 	}
610 	attrs = chip->cc_attrs_tbl[i];
611 
612 	handles = (attrs >> TPM2_CC_ATTR_CHANDLES) & GENMASK(2, 0);
613 
614 	/*
615 	 * just check the names, it's easy to make mistakes.  This
616 	 * would happen if someone added a handle via
617 	 * tpm_buf_append_u32() instead of tpm_buf_append_name()
618 	 */
619 	for (i = 0; i < handles; i++) {
620 		u32 handle = tpm_buf_read_u32(buf, &offset_s);
621 
622 		if (auth->name_h[i] != handle) {
623 			dev_err(&chip->dev, "TPM: handle %d wrong for name\n",
624 				  i);
625 			return;
626 		}
627 	}
628 	/* point offset_s to the start of the sessions */
629 	val = tpm_buf_read_u32(buf, &offset_s);
630 	/* point offset_p to the start of the parameters */
631 	offset_p = offset_s + val;
632 	for (i = 1; offset_s < offset_p; i++) {
633 		u32 handle = tpm_buf_read_u32(buf, &offset_s);
634 		u16 len;
635 		u8 a;
636 
637 		/* nonce (already in auth) */
638 		len = tpm_buf_read_u16(buf, &offset_s);
639 		offset_s += len;
640 
641 		a = tpm_buf_read_u8(buf, &offset_s);
642 
643 		len = tpm_buf_read_u16(buf, &offset_s);
644 		if (handle == auth->handle && auth->attrs == a) {
645 			hmac = &buf->data[offset_s];
646 			/*
647 			 * save our session number so we know which
648 			 * session in the response belongs to us
649 			 */
650 			auth->session = i;
651 		}
652 
653 		offset_s += len;
654 	}
655 	if (offset_s != offset_p) {
656 		dev_err(&chip->dev, "TPM session length is incorrect\n");
657 		return;
658 	}
659 	if (!hmac) {
660 		dev_err(&chip->dev, "TPM could not find HMAC session\n");
661 		return;
662 	}
663 
664 	/* encrypt before HMAC */
665 	if (auth->attrs & TPM2_SA_DECRYPT) {
666 		u16 len;
667 
668 		/* need key and IV */
669 		tpm2_KDFa(auth->session_key, SHA256_DIGEST_SIZE
670 			  + auth->passphrase_len, "CFB", auth->our_nonce,
671 			  auth->tpm_nonce, AES_KEY_BYTES + AES_BLOCK_SIZE,
672 			  auth->scratch);
673 
674 		len = tpm_buf_read_u16(buf, &offset_p);
675 		aes_expandkey(&auth->aes_ctx, auth->scratch, AES_KEY_BYTES);
676 		aescfb_encrypt(&auth->aes_ctx, &buf->data[offset_p],
677 			       &buf->data[offset_p], len,
678 			       auth->scratch + AES_KEY_BYTES);
679 		/* reset p to beginning of parameters for HMAC */
680 		offset_p -= 2;
681 	}
682 
683 	sha256_init(&sctx);
684 	/* ordinal is already BE */
685 	sha256_update(&sctx, (u8 *)&head->ordinal, sizeof(head->ordinal));
686 	/* add the handle names */
687 	for (i = 0; i < handles; i++) {
688 		enum tpm2_mso_type mso = tpm2_handle_mso(auth->name_h[i]);
689 
690 		if (mso == TPM2_MSO_PERSISTENT ||
691 		    mso == TPM2_MSO_VOLATILE ||
692 		    mso == TPM2_MSO_NVRAM) {
693 			sha256_update(&sctx, auth->name[i],
694 				      name_size(auth->name[i]));
695 		} else {
696 			__be32 h = cpu_to_be32(auth->name_h[i]);
697 
698 			sha256_update(&sctx, (u8 *)&h, 4);
699 		}
700 	}
701 	if (offset_s != tpm_buf_length(buf))
702 		sha256_update(&sctx, &buf->data[offset_s],
703 			      tpm_buf_length(buf) - offset_s);
704 	sha256_final(&sctx, cphash);
705 
706 	/* now calculate the hmac */
707 	tpm2_hmac_init(&sctx, auth->session_key, sizeof(auth->session_key)
708 		       + auth->passphrase_len);
709 	sha256_update(&sctx, cphash, sizeof(cphash));
710 	sha256_update(&sctx, auth->our_nonce, sizeof(auth->our_nonce));
711 	sha256_update(&sctx, auth->tpm_nonce, sizeof(auth->tpm_nonce));
712 	sha256_update(&sctx, &auth->attrs, 1);
713 	tpm2_hmac_final(&sctx, auth->session_key, sizeof(auth->session_key)
714 			+ auth->passphrase_len, hmac);
715 }
716 EXPORT_SYMBOL(tpm_buf_fill_hmac_session);
717 
718 /**
719  * tpm_buf_check_hmac_response() - check the TPM return HMAC for correctness
720  * @chip: the TPM chip structure
721  * @buf: the original command buffer (which now contains the response)
722  * @rc: the return code from tpm_transmit_cmd
723  *
724  * If @rc is non zero, @buf may not contain an actual return, so @rc
725  * is passed through as the return and the session cleaned up and
726  * de-allocated if required (this is required if
727  * TPM2_SA_CONTINUE_SESSION was not specified as a session flag).
728  *
729  * If @rc is zero, the response HMAC is computed against the returned
730  * @buf and matched to the TPM one in the session area.  If there is a
731  * mismatch, an error is logged and -EINVAL returned.
732  *
733  * The reason for this is that the command issue and HMAC check
734  * sequence should look like:
735  *
736  *	rc = tpm_transmit_cmd(...);
737  *	rc = tpm_buf_check_hmac_response(&buf, auth, rc);
738  *	if (rc)
739  *		...
740  *
741  * Which is easily layered into the current contrl flow.
742  *
743  * Returns: 0 on success or an error.
744  */
tpm_buf_check_hmac_response(struct tpm_chip * chip,struct tpm_buf * buf,int rc)745 int tpm_buf_check_hmac_response(struct tpm_chip *chip, struct tpm_buf *buf,
746 				int rc)
747 {
748 	struct tpm_header *head = (struct tpm_header *)buf->data;
749 	struct tpm2_auth *auth = chip->auth;
750 	off_t offset_s, offset_p;
751 	u8 rphash[SHA256_DIGEST_SIZE];
752 	u32 attrs, cc;
753 	struct sha256_state sctx;
754 	u16 tag = be16_to_cpu(head->tag);
755 	int parm_len, len, i, handles;
756 
757 	if (!auth)
758 		return rc;
759 
760 	cc = be32_to_cpu(auth->ordinal);
761 
762 	if (auth->session >= TPM_HEADER_SIZE) {
763 		WARN(1, "tpm session not filled correctly\n");
764 		goto out;
765 	}
766 
767 	if (rc != 0)
768 		/* pass non success rc through and close the session */
769 		goto out;
770 
771 	rc = -EINVAL;
772 	if (tag != TPM2_ST_SESSIONS) {
773 		dev_err(&chip->dev, "TPM: HMAC response check has no sessions tag\n");
774 		goto out;
775 	}
776 
777 	i = tpm2_find_cc(chip, cc);
778 	if (i < 0)
779 		goto out;
780 	attrs = chip->cc_attrs_tbl[i];
781 	handles = (attrs >> TPM2_CC_ATTR_RHANDLE) & 1;
782 
783 	/* point to area beyond handles */
784 	offset_s = TPM_HEADER_SIZE + handles * 4;
785 	parm_len = tpm_buf_read_u32(buf, &offset_s);
786 	offset_p = offset_s;
787 	offset_s += parm_len;
788 	/* skip over any sessions before ours */
789 	for (i = 0; i < auth->session - 1; i++) {
790 		len = tpm_buf_read_u16(buf, &offset_s);
791 		offset_s += len + 1;
792 		len = tpm_buf_read_u16(buf, &offset_s);
793 		offset_s += len;
794 	}
795 	/* TPM nonce */
796 	len = tpm_buf_read_u16(buf, &offset_s);
797 	if (offset_s + len > tpm_buf_length(buf))
798 		goto out;
799 	if (len != SHA256_DIGEST_SIZE)
800 		goto out;
801 	memcpy(auth->tpm_nonce, &buf->data[offset_s], len);
802 	offset_s += len;
803 	attrs = tpm_buf_read_u8(buf, &offset_s);
804 	len = tpm_buf_read_u16(buf, &offset_s);
805 	if (offset_s + len != tpm_buf_length(buf))
806 		goto out;
807 	if (len != SHA256_DIGEST_SIZE)
808 		goto out;
809 	/*
810 	 * offset_s points to the HMAC. now calculate comparison, beginning
811 	 * with rphash
812 	 */
813 	sha256_init(&sctx);
814 	/* yes, I know this is now zero, but it's what the standard says */
815 	sha256_update(&sctx, (u8 *)&head->return_code,
816 		      sizeof(head->return_code));
817 	/* ordinal is already BE */
818 	sha256_update(&sctx, (u8 *)&auth->ordinal, sizeof(auth->ordinal));
819 	sha256_update(&sctx, &buf->data[offset_p], parm_len);
820 	sha256_final(&sctx, rphash);
821 
822 	/* now calculate the hmac */
823 	tpm2_hmac_init(&sctx, auth->session_key, sizeof(auth->session_key)
824 		       + auth->passphrase_len);
825 	sha256_update(&sctx, rphash, sizeof(rphash));
826 	sha256_update(&sctx, auth->tpm_nonce, sizeof(auth->tpm_nonce));
827 	sha256_update(&sctx, auth->our_nonce, sizeof(auth->our_nonce));
828 	sha256_update(&sctx, &auth->attrs, 1);
829 	/* we're done with the rphash, so put our idea of the hmac there */
830 	tpm2_hmac_final(&sctx, auth->session_key, sizeof(auth->session_key)
831 			+ auth->passphrase_len, rphash);
832 	if (memcmp(rphash, &buf->data[offset_s], SHA256_DIGEST_SIZE) == 0) {
833 		rc = 0;
834 	} else {
835 		dev_err(&chip->dev, "TPM: HMAC check failed\n");
836 		goto out;
837 	}
838 
839 	/* now do response decryption */
840 	if (auth->attrs & TPM2_SA_ENCRYPT) {
841 		/* need key and IV */
842 		tpm2_KDFa(auth->session_key, SHA256_DIGEST_SIZE
843 			  + auth->passphrase_len, "CFB", auth->tpm_nonce,
844 			  auth->our_nonce, AES_KEY_BYTES + AES_BLOCK_SIZE,
845 			  auth->scratch);
846 
847 		len = tpm_buf_read_u16(buf, &offset_p);
848 		aes_expandkey(&auth->aes_ctx, auth->scratch, AES_KEY_BYTES);
849 		aescfb_decrypt(&auth->aes_ctx, &buf->data[offset_p],
850 			       &buf->data[offset_p], len,
851 			       auth->scratch + AES_KEY_BYTES);
852 	}
853 
854  out:
855 	if ((auth->attrs & TPM2_SA_CONTINUE_SESSION) == 0) {
856 		if (rc)
857 			/* manually close the session if it wasn't consumed */
858 			tpm2_flush_context(chip, auth->handle);
859 
860 		kfree_sensitive(auth);
861 		chip->auth = NULL;
862 	} else {
863 		/* reset for next use  */
864 		auth->session = TPM_HEADER_SIZE;
865 	}
866 
867 	return rc;
868 }
869 EXPORT_SYMBOL(tpm_buf_check_hmac_response);
870 
871 /**
872  * tpm2_end_auth_session() - kill the allocated auth session
873  * @chip: the TPM chip structure
874  *
875  * ends the session started by tpm2_start_auth_session and frees all
876  * the resources.  Under normal conditions,
877  * tpm_buf_check_hmac_response() will correctly end the session if
878  * required, so this function is only for use in error legs that will
879  * bypass the normal invocation of tpm_buf_check_hmac_response().
880  */
tpm2_end_auth_session(struct tpm_chip * chip)881 void tpm2_end_auth_session(struct tpm_chip *chip)
882 {
883 	struct tpm2_auth *auth = chip->auth;
884 
885 	if (!auth)
886 		return;
887 
888 	tpm2_flush_context(chip, auth->handle);
889 	kfree_sensitive(auth);
890 	chip->auth = NULL;
891 }
892 EXPORT_SYMBOL(tpm2_end_auth_session);
893 
tpm2_parse_start_auth_session(struct tpm2_auth * auth,struct tpm_buf * buf)894 static int tpm2_parse_start_auth_session(struct tpm2_auth *auth,
895 					 struct tpm_buf *buf)
896 {
897 	struct tpm_header *head = (struct tpm_header *)buf->data;
898 	u32 tot_len = be32_to_cpu(head->length);
899 	off_t offset = TPM_HEADER_SIZE;
900 	u32 val;
901 
902 	/* we're starting after the header so adjust the length */
903 	tot_len -= TPM_HEADER_SIZE;
904 
905 	/* should have handle plus nonce */
906 	if (tot_len != 4 + 2 + sizeof(auth->tpm_nonce))
907 		return -EINVAL;
908 
909 	auth->handle = tpm_buf_read_u32(buf, &offset);
910 	val = tpm_buf_read_u16(buf, &offset);
911 	if (val != sizeof(auth->tpm_nonce))
912 		return -EINVAL;
913 	memcpy(auth->tpm_nonce, &buf->data[offset], sizeof(auth->tpm_nonce));
914 	/* now compute the session key from the nonces */
915 	tpm2_KDFa(auth->salt, sizeof(auth->salt), "ATH", auth->tpm_nonce,
916 		  auth->our_nonce, sizeof(auth->session_key),
917 		  auth->session_key);
918 
919 	return 0;
920 }
921 
tpm2_load_null(struct tpm_chip * chip,u32 * null_key)922 static int tpm2_load_null(struct tpm_chip *chip, u32 *null_key)
923 {
924 	unsigned int offset = 0; /* dummy offset for null seed context */
925 	u8 name[SHA256_DIGEST_SIZE + 2];
926 	u32 tmp_null_key;
927 	int rc;
928 
929 	rc = tpm2_load_context(chip, chip->null_key_context, &offset,
930 			       &tmp_null_key);
931 	if (rc != -EINVAL) {
932 		if (!rc)
933 			*null_key = tmp_null_key;
934 		goto err;
935 	}
936 
937 	/* Try to re-create null key, given the integrity failure: */
938 	rc = tpm2_create_primary(chip, TPM2_RH_NULL, &tmp_null_key, name);
939 	if (rc)
940 		goto err;
941 
942 	/* Return null key if the name has not been changed: */
943 	if (!memcmp(name, chip->null_key_name, sizeof(name))) {
944 		*null_key = tmp_null_key;
945 		return 0;
946 	}
947 
948 	/* Deduce from the name change TPM interference: */
949 	dev_err(&chip->dev, "null key integrity check failed\n");
950 	tpm2_flush_context(chip, tmp_null_key);
951 	chip->flags |= TPM_CHIP_FLAG_DISABLE;
952 
953 err:
954 	return rc ? -ENODEV : 0;
955 }
956 
957 /**
958  * tpm2_start_auth_session() - create a HMAC authentication session with the TPM
959  * @chip: the TPM chip structure to create the session with
960  *
961  * This function loads the NULL seed from its saved context and starts
962  * an authentication session on the null seed, fills in the
963  * @chip->auth structure to contain all the session details necessary
964  * for performing the HMAC, encrypt and decrypt operations and
965  * returns.  The NULL seed is flushed before this function returns.
966  *
967  * Return: zero on success or actual error encountered.
968  */
tpm2_start_auth_session(struct tpm_chip * chip)969 int tpm2_start_auth_session(struct tpm_chip *chip)
970 {
971 	struct tpm2_auth *auth;
972 	struct tpm_buf buf;
973 	u32 null_key;
974 	int rc;
975 
976 	if (chip->auth) {
977 		dev_warn_once(&chip->dev, "auth session is active\n");
978 		return 0;
979 	}
980 
981 	auth = kzalloc(sizeof(*auth), GFP_KERNEL);
982 	if (!auth)
983 		return -ENOMEM;
984 
985 	rc = tpm2_load_null(chip, &null_key);
986 	if (rc)
987 		goto out;
988 
989 	auth->session = TPM_HEADER_SIZE;
990 
991 	rc = tpm_buf_init(&buf, TPM2_ST_NO_SESSIONS, TPM2_CC_START_AUTH_SESS);
992 	if (rc)
993 		goto out;
994 
995 	/* salt key handle */
996 	tpm_buf_append_u32(&buf, null_key);
997 	/* bind key handle */
998 	tpm_buf_append_u32(&buf, TPM2_RH_NULL);
999 	/* nonce caller */
1000 	get_random_bytes(auth->our_nonce, sizeof(auth->our_nonce));
1001 	tpm_buf_append_u16(&buf, sizeof(auth->our_nonce));
1002 	tpm_buf_append(&buf, auth->our_nonce, sizeof(auth->our_nonce));
1003 
1004 	/* append encrypted salt and squirrel away unencrypted in auth */
1005 	tpm_buf_append_salt(&buf, chip, auth);
1006 	/* session type (HMAC, audit or policy) */
1007 	tpm_buf_append_u8(&buf, TPM2_SE_HMAC);
1008 
1009 	/* symmetric encryption parameters */
1010 	/* symmetric algorithm */
1011 	tpm_buf_append_u16(&buf, TPM_ALG_AES);
1012 	/* bits for symmetric algorithm */
1013 	tpm_buf_append_u16(&buf, AES_KEY_BITS);
1014 	/* symmetric algorithm mode (must be CFB) */
1015 	tpm_buf_append_u16(&buf, TPM_ALG_CFB);
1016 	/* hash algorithm for session */
1017 	tpm_buf_append_u16(&buf, TPM_ALG_SHA256);
1018 
1019 	rc = tpm_transmit_cmd(chip, &buf, 0, "start auth session");
1020 	tpm2_flush_context(chip, null_key);
1021 
1022 	if (rc == TPM2_RC_SUCCESS)
1023 		rc = tpm2_parse_start_auth_session(auth, &buf);
1024 
1025 	tpm_buf_destroy(&buf);
1026 
1027 	if (rc == TPM2_RC_SUCCESS) {
1028 		chip->auth = auth;
1029 		return 0;
1030 	}
1031 
1032 out:
1033 	kfree_sensitive(auth);
1034 	return rc;
1035 }
1036 EXPORT_SYMBOL(tpm2_start_auth_session);
1037 
1038 /*
1039  * A mask containing the object attributes for the kernel held null primary key
1040  * used in HMAC encryption. For more information on specific attributes look up
1041  * to "8.3 TPMA_OBJECT (Object Attributes)".
1042  */
1043 #define TPM2_OA_NULL_KEY ( \
1044 	TPM2_OA_NO_DA | \
1045 	TPM2_OA_FIXED_TPM | \
1046 	TPM2_OA_FIXED_PARENT | \
1047 	TPM2_OA_SENSITIVE_DATA_ORIGIN |	\
1048 	TPM2_OA_USER_WITH_AUTH | \
1049 	TPM2_OA_DECRYPT | \
1050 	TPM2_OA_RESTRICTED)
1051 
1052 /**
1053  * tpm2_parse_create_primary() - parse the data returned from TPM_CC_CREATE_PRIMARY
1054  *
1055  * @chip:	The TPM the primary was created under
1056  * @buf:	The response buffer from the chip
1057  * @handle:	pointer to be filled in with the return handle of the primary
1058  * @hierarchy:	The hierarchy the primary was created for
1059  * @name:	pointer to be filled in with the primary key name
1060  *
1061  * Return:
1062  * * 0		- OK
1063  * * -errno	- A system error
1064  * * TPM_RC	- A TPM error
1065  */
tpm2_parse_create_primary(struct tpm_chip * chip,struct tpm_buf * buf,u32 * handle,u32 hierarchy,u8 * name)1066 static int tpm2_parse_create_primary(struct tpm_chip *chip, struct tpm_buf *buf,
1067 				     u32 *handle, u32 hierarchy, u8 *name)
1068 {
1069 	struct tpm_header *head = (struct tpm_header *)buf->data;
1070 	off_t offset_r = TPM_HEADER_SIZE, offset_t;
1071 	u16 len = TPM_HEADER_SIZE;
1072 	u32 total_len = be32_to_cpu(head->length);
1073 	u32 val, param_len, keyhandle;
1074 
1075 	keyhandle = tpm_buf_read_u32(buf, &offset_r);
1076 	if (handle)
1077 		*handle = keyhandle;
1078 	else
1079 		tpm2_flush_context(chip, keyhandle);
1080 
1081 	param_len = tpm_buf_read_u32(buf, &offset_r);
1082 	/*
1083 	 * param_len doesn't include the header, but all the other
1084 	 * lengths and offsets do, so add it to parm len to make
1085 	 * the comparisons easier
1086 	 */
1087 	param_len += TPM_HEADER_SIZE;
1088 
1089 	if (param_len + 8 > total_len)
1090 		return -EINVAL;
1091 	len = tpm_buf_read_u16(buf, &offset_r);
1092 	offset_t = offset_r;
1093 	if (name) {
1094 		/*
1095 		 * now we have the public area, compute the name of
1096 		 * the object
1097 		 */
1098 		put_unaligned_be16(TPM_ALG_SHA256, name);
1099 		sha256(&buf->data[offset_r], len, name + 2);
1100 	}
1101 
1102 	/* validate the public key */
1103 	val = tpm_buf_read_u16(buf, &offset_t);
1104 
1105 	/* key type (must be what we asked for) */
1106 	if (val != TPM_ALG_ECC)
1107 		return -EINVAL;
1108 	val = tpm_buf_read_u16(buf, &offset_t);
1109 
1110 	/* name algorithm */
1111 	if (val != TPM_ALG_SHA256)
1112 		return -EINVAL;
1113 	val = tpm_buf_read_u32(buf, &offset_t);
1114 
1115 	/* object properties */
1116 	if (val != TPM2_OA_NULL_KEY)
1117 		return -EINVAL;
1118 
1119 	/* auth policy (empty) */
1120 	val = tpm_buf_read_u16(buf, &offset_t);
1121 	if (val != 0)
1122 		return -EINVAL;
1123 
1124 	/* symmetric key parameters */
1125 	val = tpm_buf_read_u16(buf, &offset_t);
1126 	if (val != TPM_ALG_AES)
1127 		return -EINVAL;
1128 
1129 	/* symmetric key length */
1130 	val = tpm_buf_read_u16(buf, &offset_t);
1131 	if (val != AES_KEY_BITS)
1132 		return -EINVAL;
1133 
1134 	/* symmetric encryption scheme */
1135 	val = tpm_buf_read_u16(buf, &offset_t);
1136 	if (val != TPM_ALG_CFB)
1137 		return -EINVAL;
1138 
1139 	/* signing scheme */
1140 	val = tpm_buf_read_u16(buf, &offset_t);
1141 	if (val != TPM_ALG_NULL)
1142 		return -EINVAL;
1143 
1144 	/* ECC Curve */
1145 	val = tpm_buf_read_u16(buf, &offset_t);
1146 	if (val != TPM2_ECC_NIST_P256)
1147 		return -EINVAL;
1148 
1149 	/* KDF Scheme */
1150 	val = tpm_buf_read_u16(buf, &offset_t);
1151 	if (val != TPM_ALG_NULL)
1152 		return -EINVAL;
1153 
1154 	/* extract public key (x and y points) */
1155 	val = tpm_buf_read_u16(buf, &offset_t);
1156 	if (val != EC_PT_SZ)
1157 		return -EINVAL;
1158 	memcpy(chip->null_ec_key_x, &buf->data[offset_t], val);
1159 	offset_t += val;
1160 	val = tpm_buf_read_u16(buf, &offset_t);
1161 	if (val != EC_PT_SZ)
1162 		return -EINVAL;
1163 	memcpy(chip->null_ec_key_y, &buf->data[offset_t], val);
1164 	offset_t += val;
1165 
1166 	/* original length of the whole TPM2B */
1167 	offset_r += len;
1168 
1169 	/* should have exactly consumed the TPM2B public structure */
1170 	if (offset_t != offset_r)
1171 		return -EINVAL;
1172 	if (offset_r > param_len)
1173 		return -EINVAL;
1174 
1175 	/* creation data (skip) */
1176 	len = tpm_buf_read_u16(buf, &offset_r);
1177 	offset_r += len;
1178 	if (offset_r > param_len)
1179 		return -EINVAL;
1180 
1181 	/* creation digest (must be sha256) */
1182 	len = tpm_buf_read_u16(buf, &offset_r);
1183 	offset_r += len;
1184 	if (len != SHA256_DIGEST_SIZE || offset_r > param_len)
1185 		return -EINVAL;
1186 
1187 	/* TPMT_TK_CREATION follows */
1188 	/* tag, must be TPM_ST_CREATION (0x8021) */
1189 	val = tpm_buf_read_u16(buf, &offset_r);
1190 	if (val != TPM2_ST_CREATION || offset_r > param_len)
1191 		return -EINVAL;
1192 
1193 	/* hierarchy */
1194 	val = tpm_buf_read_u32(buf, &offset_r);
1195 	if (val != hierarchy || offset_r > param_len)
1196 		return -EINVAL;
1197 
1198 	/* the ticket digest HMAC (might not be sha256) */
1199 	len = tpm_buf_read_u16(buf, &offset_r);
1200 	offset_r += len;
1201 	if (offset_r > param_len)
1202 		return -EINVAL;
1203 
1204 	/*
1205 	 * finally we have the name, which is a sha256 digest plus a 2
1206 	 * byte algorithm type
1207 	 */
1208 	len = tpm_buf_read_u16(buf, &offset_r);
1209 	if (offset_r + len != param_len + 8)
1210 		return -EINVAL;
1211 	if (len != SHA256_DIGEST_SIZE + 2)
1212 		return -EINVAL;
1213 
1214 	if (memcmp(chip->null_key_name, &buf->data[offset_r],
1215 		   SHA256_DIGEST_SIZE + 2) != 0) {
1216 		dev_err(&chip->dev, "NULL Seed name comparison failed\n");
1217 		return -EINVAL;
1218 	}
1219 
1220 	return 0;
1221 }
1222 
1223 /**
1224  * tpm2_create_primary() - create a primary key using a fixed P-256 template
1225  *
1226  * @chip:      the TPM chip to create under
1227  * @hierarchy: The hierarchy handle to create under
1228  * @handle:    The returned volatile handle on success
1229  * @name:      The name of the returned key
1230  *
1231  * For platforms that might not have a persistent primary, this can be
1232  * used to create one quickly on the fly (it uses Elliptic Curve not
1233  * RSA, so even slow TPMs can create one fast).  The template uses the
1234  * TCG mandated H one for non-endorsement ECC primaries, i.e. P-256
1235  * elliptic curve (the only current one all TPM2s are required to
1236  * have) a sha256 name hash and no policy.
1237  *
1238  * Return:
1239  * * 0		- OK
1240  * * -errno	- A system error
1241  * * TPM_RC	- A TPM error
1242  */
tpm2_create_primary(struct tpm_chip * chip,u32 hierarchy,u32 * handle,u8 * name)1243 static int tpm2_create_primary(struct tpm_chip *chip, u32 hierarchy,
1244 			       u32 *handle, u8 *name)
1245 {
1246 	int rc;
1247 	struct tpm_buf buf;
1248 	struct tpm_buf template;
1249 
1250 	rc = tpm_buf_init(&buf, TPM2_ST_SESSIONS, TPM2_CC_CREATE_PRIMARY);
1251 	if (rc)
1252 		return rc;
1253 
1254 	rc = tpm_buf_init_sized(&template);
1255 	if (rc) {
1256 		tpm_buf_destroy(&buf);
1257 		return rc;
1258 	}
1259 
1260 	/*
1261 	 * create the template.  Note: in order for userspace to
1262 	 * verify the security of the system, it will have to create
1263 	 * and certify this NULL primary, meaning all the template
1264 	 * parameters will have to be identical, so conform exactly to
1265 	 * the TCG TPM v2.0 Provisioning Guidance for the SRK ECC
1266 	 * key H template (H has zero size unique points)
1267 	 */
1268 
1269 	/* key type */
1270 	tpm_buf_append_u16(&template, TPM_ALG_ECC);
1271 
1272 	/* name algorithm */
1273 	tpm_buf_append_u16(&template, TPM_ALG_SHA256);
1274 
1275 	/* object properties */
1276 	tpm_buf_append_u32(&template, TPM2_OA_NULL_KEY);
1277 
1278 	/* sauth policy (empty) */
1279 	tpm_buf_append_u16(&template, 0);
1280 
1281 	/* BEGIN parameters: key specific; for ECC*/
1282 
1283 	/* symmetric algorithm */
1284 	tpm_buf_append_u16(&template, TPM_ALG_AES);
1285 
1286 	/* bits for symmetric algorithm */
1287 	tpm_buf_append_u16(&template, AES_KEY_BITS);
1288 
1289 	/* algorithm mode (must be CFB) */
1290 	tpm_buf_append_u16(&template, TPM_ALG_CFB);
1291 
1292 	/* scheme (NULL means any scheme) */
1293 	tpm_buf_append_u16(&template, TPM_ALG_NULL);
1294 
1295 	/* ECC Curve ID */
1296 	tpm_buf_append_u16(&template, TPM2_ECC_NIST_P256);
1297 
1298 	/* KDF Scheme */
1299 	tpm_buf_append_u16(&template, TPM_ALG_NULL);
1300 
1301 	/* unique: key specific; for ECC it is two zero size points */
1302 	tpm_buf_append_u16(&template, 0);
1303 	tpm_buf_append_u16(&template, 0);
1304 
1305 	/* END parameters */
1306 
1307 	/* primary handle */
1308 	tpm_buf_append_u32(&buf, hierarchy);
1309 	tpm_buf_append_empty_auth(&buf, TPM2_RS_PW);
1310 
1311 	/* sensitive create size is 4 for two empty buffers */
1312 	tpm_buf_append_u16(&buf, 4);
1313 
1314 	/* sensitive create auth data (empty) */
1315 	tpm_buf_append_u16(&buf, 0);
1316 
1317 	/* sensitive create sensitive data (empty) */
1318 	tpm_buf_append_u16(&buf, 0);
1319 
1320 	/* the public template */
1321 	tpm_buf_append(&buf, template.data, template.length);
1322 	tpm_buf_destroy(&template);
1323 
1324 	/* outside info (empty) */
1325 	tpm_buf_append_u16(&buf, 0);
1326 
1327 	/* creation PCR (none) */
1328 	tpm_buf_append_u32(&buf, 0);
1329 
1330 	rc = tpm_transmit_cmd(chip, &buf, 0,
1331 			      "attempting to create NULL primary");
1332 
1333 	if (rc == TPM2_RC_SUCCESS)
1334 		rc = tpm2_parse_create_primary(chip, &buf, handle, hierarchy,
1335 					       name);
1336 
1337 	tpm_buf_destroy(&buf);
1338 
1339 	return rc;
1340 }
1341 
tpm2_create_null_primary(struct tpm_chip * chip)1342 static int tpm2_create_null_primary(struct tpm_chip *chip)
1343 {
1344 	u32 null_key;
1345 	int rc;
1346 
1347 	rc = tpm2_create_primary(chip, TPM2_RH_NULL, &null_key,
1348 				 chip->null_key_name);
1349 
1350 	if (rc == TPM2_RC_SUCCESS) {
1351 		unsigned int offset = 0; /* dummy offset for null key context */
1352 
1353 		rc = tpm2_save_context(chip, null_key, chip->null_key_context,
1354 				       sizeof(chip->null_key_context), &offset);
1355 		tpm2_flush_context(chip, null_key);
1356 	}
1357 
1358 	return rc;
1359 }
1360 
1361 /**
1362  * tpm2_sessions_init() - start of day initialization for the sessions code
1363  * @chip: TPM chip
1364  *
1365  * Derive and context save the null primary and allocate memory in the
1366  * struct tpm_chip for the authorizations.
1367  *
1368  * Return:
1369  * * 0		- OK
1370  * * -errno	- A system error
1371  * * TPM_RC	- A TPM error
1372  */
tpm2_sessions_init(struct tpm_chip * chip)1373 int tpm2_sessions_init(struct tpm_chip *chip)
1374 {
1375 	int rc;
1376 
1377 	rc = tpm2_create_null_primary(chip);
1378 	if (rc) {
1379 		dev_err(&chip->dev, "null key creation failed with %d\n", rc);
1380 		return rc;
1381 	}
1382 
1383 	return rc;
1384 }
1385 EXPORT_SYMBOL(tpm2_sessions_init);
1386 #endif /* CONFIG_TCG_TPM2_HMAC */
1387