1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * cs_dsp.c -- Cirrus Logic DSP firmware support
4 *
5 * Based on sound/soc/codecs/wm_adsp.c
6 *
7 * Copyright 2012 Wolfson Microelectronics plc
8 * Copyright (C) 2015-2021 Cirrus Logic, Inc. and
9 * Cirrus Logic International Semiconductor Ltd.
10 */
11
12 #include <linux/ctype.h>
13 #include <linux/debugfs.h>
14 #include <linux/delay.h>
15 #include <linux/minmax.h>
16 #include <linux/module.h>
17 #include <linux/moduleparam.h>
18 #include <linux/seq_file.h>
19 #include <linux/slab.h>
20 #include <linux/vmalloc.h>
21
22 #include <linux/firmware/cirrus/cs_dsp.h>
23 #include <linux/firmware/cirrus/wmfw.h>
24
25 #define cs_dsp_err(_dsp, fmt, ...) \
26 dev_err(_dsp->dev, "%s: " fmt, _dsp->name, ##__VA_ARGS__)
27 #define cs_dsp_warn(_dsp, fmt, ...) \
28 dev_warn(_dsp->dev, "%s: " fmt, _dsp->name, ##__VA_ARGS__)
29 #define cs_dsp_info(_dsp, fmt, ...) \
30 dev_info(_dsp->dev, "%s: " fmt, _dsp->name, ##__VA_ARGS__)
31 #define cs_dsp_dbg(_dsp, fmt, ...) \
32 dev_dbg(_dsp->dev, "%s: " fmt, _dsp->name, ##__VA_ARGS__)
33
34 #define ADSP1_CONTROL_1 0x00
35 #define ADSP1_CONTROL_2 0x02
36 #define ADSP1_CONTROL_3 0x03
37 #define ADSP1_CONTROL_4 0x04
38 #define ADSP1_CONTROL_5 0x06
39 #define ADSP1_CONTROL_6 0x07
40 #define ADSP1_CONTROL_7 0x08
41 #define ADSP1_CONTROL_8 0x09
42 #define ADSP1_CONTROL_9 0x0A
43 #define ADSP1_CONTROL_10 0x0B
44 #define ADSP1_CONTROL_11 0x0C
45 #define ADSP1_CONTROL_12 0x0D
46 #define ADSP1_CONTROL_13 0x0F
47 #define ADSP1_CONTROL_14 0x10
48 #define ADSP1_CONTROL_15 0x11
49 #define ADSP1_CONTROL_16 0x12
50 #define ADSP1_CONTROL_17 0x13
51 #define ADSP1_CONTROL_18 0x14
52 #define ADSP1_CONTROL_19 0x16
53 #define ADSP1_CONTROL_20 0x17
54 #define ADSP1_CONTROL_21 0x18
55 #define ADSP1_CONTROL_22 0x1A
56 #define ADSP1_CONTROL_23 0x1B
57 #define ADSP1_CONTROL_24 0x1C
58 #define ADSP1_CONTROL_25 0x1E
59 #define ADSP1_CONTROL_26 0x20
60 #define ADSP1_CONTROL_27 0x21
61 #define ADSP1_CONTROL_28 0x22
62 #define ADSP1_CONTROL_29 0x23
63 #define ADSP1_CONTROL_30 0x24
64 #define ADSP1_CONTROL_31 0x26
65
66 /*
67 * ADSP1 Control 19
68 */
69 #define ADSP1_WDMA_BUFFER_LENGTH_MASK 0x00FF /* DSP1_WDMA_BUFFER_LENGTH - [7:0] */
70 #define ADSP1_WDMA_BUFFER_LENGTH_SHIFT 0 /* DSP1_WDMA_BUFFER_LENGTH - [7:0] */
71 #define ADSP1_WDMA_BUFFER_LENGTH_WIDTH 8 /* DSP1_WDMA_BUFFER_LENGTH - [7:0] */
72
73 /*
74 * ADSP1 Control 30
75 */
76 #define ADSP1_DBG_CLK_ENA 0x0008 /* DSP1_DBG_CLK_ENA */
77 #define ADSP1_DBG_CLK_ENA_MASK 0x0008 /* DSP1_DBG_CLK_ENA */
78 #define ADSP1_DBG_CLK_ENA_SHIFT 3 /* DSP1_DBG_CLK_ENA */
79 #define ADSP1_DBG_CLK_ENA_WIDTH 1 /* DSP1_DBG_CLK_ENA */
80 #define ADSP1_SYS_ENA 0x0004 /* DSP1_SYS_ENA */
81 #define ADSP1_SYS_ENA_MASK 0x0004 /* DSP1_SYS_ENA */
82 #define ADSP1_SYS_ENA_SHIFT 2 /* DSP1_SYS_ENA */
83 #define ADSP1_SYS_ENA_WIDTH 1 /* DSP1_SYS_ENA */
84 #define ADSP1_CORE_ENA 0x0002 /* DSP1_CORE_ENA */
85 #define ADSP1_CORE_ENA_MASK 0x0002 /* DSP1_CORE_ENA */
86 #define ADSP1_CORE_ENA_SHIFT 1 /* DSP1_CORE_ENA */
87 #define ADSP1_CORE_ENA_WIDTH 1 /* DSP1_CORE_ENA */
88 #define ADSP1_START 0x0001 /* DSP1_START */
89 #define ADSP1_START_MASK 0x0001 /* DSP1_START */
90 #define ADSP1_START_SHIFT 0 /* DSP1_START */
91 #define ADSP1_START_WIDTH 1 /* DSP1_START */
92
93 /*
94 * ADSP1 Control 31
95 */
96 #define ADSP1_CLK_SEL_MASK 0x0007 /* CLK_SEL_ENA */
97 #define ADSP1_CLK_SEL_SHIFT 0 /* CLK_SEL_ENA */
98 #define ADSP1_CLK_SEL_WIDTH 3 /* CLK_SEL_ENA */
99
100 #define ADSP2_CONTROL 0x0
101 #define ADSP2_CLOCKING 0x1
102 #define ADSP2V2_CLOCKING 0x2
103 #define ADSP2_STATUS1 0x4
104 #define ADSP2_WDMA_CONFIG_1 0x30
105 #define ADSP2_WDMA_CONFIG_2 0x31
106 #define ADSP2V2_WDMA_CONFIG_2 0x32
107 #define ADSP2_RDMA_CONFIG_1 0x34
108
109 #define ADSP2_SCRATCH0 0x40
110 #define ADSP2_SCRATCH1 0x41
111 #define ADSP2_SCRATCH2 0x42
112 #define ADSP2_SCRATCH3 0x43
113
114 #define ADSP2V2_SCRATCH0_1 0x40
115 #define ADSP2V2_SCRATCH2_3 0x42
116
117 /*
118 * ADSP2 Control
119 */
120 #define ADSP2_MEM_ENA 0x0010 /* DSP1_MEM_ENA */
121 #define ADSP2_MEM_ENA_MASK 0x0010 /* DSP1_MEM_ENA */
122 #define ADSP2_MEM_ENA_SHIFT 4 /* DSP1_MEM_ENA */
123 #define ADSP2_MEM_ENA_WIDTH 1 /* DSP1_MEM_ENA */
124 #define ADSP2_SYS_ENA 0x0004 /* DSP1_SYS_ENA */
125 #define ADSP2_SYS_ENA_MASK 0x0004 /* DSP1_SYS_ENA */
126 #define ADSP2_SYS_ENA_SHIFT 2 /* DSP1_SYS_ENA */
127 #define ADSP2_SYS_ENA_WIDTH 1 /* DSP1_SYS_ENA */
128 #define ADSP2_CORE_ENA 0x0002 /* DSP1_CORE_ENA */
129 #define ADSP2_CORE_ENA_MASK 0x0002 /* DSP1_CORE_ENA */
130 #define ADSP2_CORE_ENA_SHIFT 1 /* DSP1_CORE_ENA */
131 #define ADSP2_CORE_ENA_WIDTH 1 /* DSP1_CORE_ENA */
132 #define ADSP2_START 0x0001 /* DSP1_START */
133 #define ADSP2_START_MASK 0x0001 /* DSP1_START */
134 #define ADSP2_START_SHIFT 0 /* DSP1_START */
135 #define ADSP2_START_WIDTH 1 /* DSP1_START */
136
137 /*
138 * ADSP2 clocking
139 */
140 #define ADSP2_CLK_SEL_MASK 0x0007 /* CLK_SEL_ENA */
141 #define ADSP2_CLK_SEL_SHIFT 0 /* CLK_SEL_ENA */
142 #define ADSP2_CLK_SEL_WIDTH 3 /* CLK_SEL_ENA */
143
144 /*
145 * ADSP2V2 clocking
146 */
147 #define ADSP2V2_CLK_SEL_MASK 0x70000 /* CLK_SEL_ENA */
148 #define ADSP2V2_CLK_SEL_SHIFT 16 /* CLK_SEL_ENA */
149 #define ADSP2V2_CLK_SEL_WIDTH 3 /* CLK_SEL_ENA */
150
151 #define ADSP2V2_RATE_MASK 0x7800 /* DSP_RATE */
152 #define ADSP2V2_RATE_SHIFT 11 /* DSP_RATE */
153 #define ADSP2V2_RATE_WIDTH 4 /* DSP_RATE */
154
155 /*
156 * ADSP2 Status 1
157 */
158 #define ADSP2_RAM_RDY 0x0001
159 #define ADSP2_RAM_RDY_MASK 0x0001
160 #define ADSP2_RAM_RDY_SHIFT 0
161 #define ADSP2_RAM_RDY_WIDTH 1
162
163 /*
164 * ADSP2 Lock support
165 */
166 #define ADSP2_LOCK_CODE_0 0x5555
167 #define ADSP2_LOCK_CODE_1 0xAAAA
168
169 #define ADSP2_WATCHDOG 0x0A
170 #define ADSP2_BUS_ERR_ADDR 0x52
171 #define ADSP2_REGION_LOCK_STATUS 0x64
172 #define ADSP2_LOCK_REGION_1_LOCK_REGION_0 0x66
173 #define ADSP2_LOCK_REGION_3_LOCK_REGION_2 0x68
174 #define ADSP2_LOCK_REGION_5_LOCK_REGION_4 0x6A
175 #define ADSP2_LOCK_REGION_7_LOCK_REGION_6 0x6C
176 #define ADSP2_LOCK_REGION_9_LOCK_REGION_8 0x6E
177 #define ADSP2_LOCK_REGION_CTRL 0x7A
178 #define ADSP2_PMEM_ERR_ADDR_XMEM_ERR_ADDR 0x7C
179
180 #define ADSP2_REGION_LOCK_ERR_MASK 0x8000
181 #define ADSP2_ADDR_ERR_MASK 0x4000
182 #define ADSP2_WDT_TIMEOUT_STS_MASK 0x2000
183 #define ADSP2_CTRL_ERR_PAUSE_ENA 0x0002
184 #define ADSP2_CTRL_ERR_EINT 0x0001
185
186 #define ADSP2_BUS_ERR_ADDR_MASK 0x00FFFFFF
187 #define ADSP2_XMEM_ERR_ADDR_MASK 0x0000FFFF
188 #define ADSP2_PMEM_ERR_ADDR_MASK 0x7FFF0000
189 #define ADSP2_PMEM_ERR_ADDR_SHIFT 16
190 #define ADSP2_WDT_ENA_MASK 0xFFFFFFFD
191
192 #define ADSP2_LOCK_REGION_SHIFT 16
193
194 /*
195 * Event control messages
196 */
197 #define CS_DSP_FW_EVENT_SHUTDOWN 0x000001
198
199 /*
200 * HALO system info
201 */
202 #define HALO_AHBM_WINDOW_DEBUG_0 0x02040
203 #define HALO_AHBM_WINDOW_DEBUG_1 0x02044
204
205 /*
206 * HALO core
207 */
208 #define HALO_SCRATCH1 0x005c0
209 #define HALO_SCRATCH2 0x005c8
210 #define HALO_SCRATCH3 0x005d0
211 #define HALO_SCRATCH4 0x005d8
212 #define HALO_CCM_CORE_CONTROL 0x41000
213 #define HALO_CORE_SOFT_RESET 0x00010
214 #define HALO_WDT_CONTROL 0x47000
215
216 /*
217 * HALO MPU banks
218 */
219 #define HALO_MPU_XMEM_ACCESS_0 0x43000
220 #define HALO_MPU_YMEM_ACCESS_0 0x43004
221 #define HALO_MPU_WINDOW_ACCESS_0 0x43008
222 #define HALO_MPU_XREG_ACCESS_0 0x4300C
223 #define HALO_MPU_YREG_ACCESS_0 0x43014
224 #define HALO_MPU_XMEM_ACCESS_1 0x43018
225 #define HALO_MPU_YMEM_ACCESS_1 0x4301C
226 #define HALO_MPU_WINDOW_ACCESS_1 0x43020
227 #define HALO_MPU_XREG_ACCESS_1 0x43024
228 #define HALO_MPU_YREG_ACCESS_1 0x4302C
229 #define HALO_MPU_XMEM_ACCESS_2 0x43030
230 #define HALO_MPU_YMEM_ACCESS_2 0x43034
231 #define HALO_MPU_WINDOW_ACCESS_2 0x43038
232 #define HALO_MPU_XREG_ACCESS_2 0x4303C
233 #define HALO_MPU_YREG_ACCESS_2 0x43044
234 #define HALO_MPU_XMEM_ACCESS_3 0x43048
235 #define HALO_MPU_YMEM_ACCESS_3 0x4304C
236 #define HALO_MPU_WINDOW_ACCESS_3 0x43050
237 #define HALO_MPU_XREG_ACCESS_3 0x43054
238 #define HALO_MPU_YREG_ACCESS_3 0x4305C
239 #define HALO_MPU_XM_VIO_ADDR 0x43100
240 #define HALO_MPU_XM_VIO_STATUS 0x43104
241 #define HALO_MPU_YM_VIO_ADDR 0x43108
242 #define HALO_MPU_YM_VIO_STATUS 0x4310C
243 #define HALO_MPU_PM_VIO_ADDR 0x43110
244 #define HALO_MPU_PM_VIO_STATUS 0x43114
245 #define HALO_MPU_LOCK_CONFIG 0x43140
246
247 /*
248 * HALO_AHBM_WINDOW_DEBUG_1
249 */
250 #define HALO_AHBM_CORE_ERR_ADDR_MASK 0x0fffff00
251 #define HALO_AHBM_CORE_ERR_ADDR_SHIFT 8
252 #define HALO_AHBM_FLAGS_ERR_MASK 0x000000ff
253
254 /*
255 * HALO_CCM_CORE_CONTROL
256 */
257 #define HALO_CORE_RESET 0x00000200
258 #define HALO_CORE_EN 0x00000001
259
260 /*
261 * HALO_CORE_SOFT_RESET
262 */
263 #define HALO_CORE_SOFT_RESET_MASK 0x00000001
264
265 /*
266 * HALO_WDT_CONTROL
267 */
268 #define HALO_WDT_EN_MASK 0x00000001
269
270 /*
271 * HALO_MPU_?M_VIO_STATUS
272 */
273 #define HALO_MPU_VIO_STS_MASK 0x007e0000
274 #define HALO_MPU_VIO_STS_SHIFT 17
275 #define HALO_MPU_VIO_ERR_WR_MASK 0x00008000
276 #define HALO_MPU_VIO_ERR_SRC_MASK 0x00007fff
277 #define HALO_MPU_VIO_ERR_SRC_SHIFT 0
278
279 /*
280 * Write Sequence
281 */
282 #define WSEQ_OP_MAX_WORDS 3
283 #define WSEQ_END_OF_SCRIPT 0xFFFFFF
284
285 struct cs_dsp_ops {
286 bool (*validate_version)(struct cs_dsp *dsp, unsigned int version);
287 unsigned int (*parse_sizes)(struct cs_dsp *dsp,
288 const char * const file,
289 unsigned int pos,
290 const struct firmware *firmware);
291 int (*setup_algs)(struct cs_dsp *dsp);
292 unsigned int (*region_to_reg)(struct cs_dsp_region const *mem,
293 unsigned int offset);
294
295 void (*show_fw_status)(struct cs_dsp *dsp);
296 void (*stop_watchdog)(struct cs_dsp *dsp);
297
298 int (*enable_memory)(struct cs_dsp *dsp);
299 void (*disable_memory)(struct cs_dsp *dsp);
300 int (*lock_memory)(struct cs_dsp *dsp, unsigned int lock_regions);
301
302 int (*enable_core)(struct cs_dsp *dsp);
303 void (*disable_core)(struct cs_dsp *dsp);
304
305 int (*start_core)(struct cs_dsp *dsp);
306 void (*stop_core)(struct cs_dsp *dsp);
307 };
308
309 static const struct cs_dsp_ops cs_dsp_adsp1_ops;
310 static const struct cs_dsp_ops cs_dsp_adsp2_ops[];
311 static const struct cs_dsp_ops cs_dsp_halo_ops;
312 static const struct cs_dsp_ops cs_dsp_halo_ao_ops;
313
314 struct cs_dsp_buf {
315 struct list_head list;
316 void *buf;
317 };
318
cs_dsp_buf_alloc(const void * src,size_t len,struct list_head * list)319 static struct cs_dsp_buf *cs_dsp_buf_alloc(const void *src, size_t len,
320 struct list_head *list)
321 {
322 struct cs_dsp_buf *buf = kzalloc(sizeof(*buf), GFP_KERNEL);
323
324 if (buf == NULL)
325 return NULL;
326
327 buf->buf = vmalloc(len);
328 if (!buf->buf) {
329 kfree(buf);
330 return NULL;
331 }
332 memcpy(buf->buf, src, len);
333
334 if (list)
335 list_add_tail(&buf->list, list);
336
337 return buf;
338 }
339
cs_dsp_buf_free(struct list_head * list)340 static void cs_dsp_buf_free(struct list_head *list)
341 {
342 while (!list_empty(list)) {
343 struct cs_dsp_buf *buf = list_first_entry(list,
344 struct cs_dsp_buf,
345 list);
346 list_del(&buf->list);
347 vfree(buf->buf);
348 kfree(buf);
349 }
350 }
351
352 /**
353 * cs_dsp_mem_region_name() - Return a name string for a memory type
354 * @type: the memory type to match
355 *
356 * Return: A const string identifying the memory region.
357 */
cs_dsp_mem_region_name(unsigned int type)358 const char *cs_dsp_mem_region_name(unsigned int type)
359 {
360 switch (type) {
361 case WMFW_ADSP1_PM:
362 return "PM";
363 case WMFW_HALO_PM_PACKED:
364 return "PM_PACKED";
365 case WMFW_ADSP1_DM:
366 return "DM";
367 case WMFW_ADSP2_XM:
368 return "XM";
369 case WMFW_HALO_XM_PACKED:
370 return "XM_PACKED";
371 case WMFW_ADSP2_YM:
372 return "YM";
373 case WMFW_HALO_YM_PACKED:
374 return "YM_PACKED";
375 case WMFW_ADSP1_ZM:
376 return "ZM";
377 default:
378 return NULL;
379 }
380 }
381 EXPORT_SYMBOL_NS_GPL(cs_dsp_mem_region_name, "FW_CS_DSP");
382
383 #ifdef CONFIG_DEBUG_FS
cs_dsp_debugfs_save_wmfwname(struct cs_dsp * dsp,const char * s)384 static void cs_dsp_debugfs_save_wmfwname(struct cs_dsp *dsp, const char *s)
385 {
386 char *tmp = kasprintf(GFP_KERNEL, "%s\n", s);
387
388 kfree(dsp->wmfw_file_name);
389 dsp->wmfw_file_name = tmp;
390 }
391
cs_dsp_debugfs_save_binname(struct cs_dsp * dsp,const char * s)392 static void cs_dsp_debugfs_save_binname(struct cs_dsp *dsp, const char *s)
393 {
394 char *tmp = kasprintf(GFP_KERNEL, "%s\n", s);
395
396 kfree(dsp->bin_file_name);
397 dsp->bin_file_name = tmp;
398 }
399
cs_dsp_debugfs_clear(struct cs_dsp * dsp)400 static void cs_dsp_debugfs_clear(struct cs_dsp *dsp)
401 {
402 kfree(dsp->wmfw_file_name);
403 kfree(dsp->bin_file_name);
404 dsp->wmfw_file_name = NULL;
405 dsp->bin_file_name = NULL;
406 }
407
cs_dsp_debugfs_wmfw_read(struct file * file,char __user * user_buf,size_t count,loff_t * ppos)408 static ssize_t cs_dsp_debugfs_wmfw_read(struct file *file,
409 char __user *user_buf,
410 size_t count, loff_t *ppos)
411 {
412 struct cs_dsp *dsp = file->private_data;
413 ssize_t ret;
414
415 mutex_lock(&dsp->pwr_lock);
416
417 if (!dsp->wmfw_file_name || !dsp->booted)
418 ret = 0;
419 else
420 ret = simple_read_from_buffer(user_buf, count, ppos,
421 dsp->wmfw_file_name,
422 strlen(dsp->wmfw_file_name));
423
424 mutex_unlock(&dsp->pwr_lock);
425 return ret;
426 }
427
cs_dsp_debugfs_bin_read(struct file * file,char __user * user_buf,size_t count,loff_t * ppos)428 static ssize_t cs_dsp_debugfs_bin_read(struct file *file,
429 char __user *user_buf,
430 size_t count, loff_t *ppos)
431 {
432 struct cs_dsp *dsp = file->private_data;
433 ssize_t ret;
434
435 mutex_lock(&dsp->pwr_lock);
436
437 if (!dsp->bin_file_name || !dsp->booted)
438 ret = 0;
439 else
440 ret = simple_read_from_buffer(user_buf, count, ppos,
441 dsp->bin_file_name,
442 strlen(dsp->bin_file_name));
443
444 mutex_unlock(&dsp->pwr_lock);
445 return ret;
446 }
447
448 static const struct {
449 const char *name;
450 const struct file_operations fops;
451 } cs_dsp_debugfs_fops[] = {
452 {
453 .name = "wmfw_file_name",
454 .fops = {
455 .open = simple_open,
456 .read = cs_dsp_debugfs_wmfw_read,
457 },
458 },
459 {
460 .name = "bin_file_name",
461 .fops = {
462 .open = simple_open,
463 .read = cs_dsp_debugfs_bin_read,
464 },
465 },
466 };
467
468 static int cs_dsp_coeff_base_reg(struct cs_dsp_coeff_ctl *ctl, unsigned int *reg,
469 unsigned int off);
470
cs_dsp_debugfs_read_controls_show(struct seq_file * s,void * ignored)471 static int cs_dsp_debugfs_read_controls_show(struct seq_file *s, void *ignored)
472 {
473 struct cs_dsp *dsp = s->private;
474 struct cs_dsp_coeff_ctl *ctl;
475 unsigned int reg;
476
477 list_for_each_entry(ctl, &dsp->ctl_list, list) {
478 cs_dsp_coeff_base_reg(ctl, ®, 0);
479 seq_printf(s, "%22.*s: %#8zx %s:%08x %#8x %s %#8x %#4x %c%c%c%c %s %s\n",
480 ctl->subname_len, ctl->subname, ctl->len,
481 cs_dsp_mem_region_name(ctl->alg_region.type),
482 ctl->offset, reg, ctl->fw_name, ctl->alg_region.alg, ctl->type,
483 ctl->flags & WMFW_CTL_FLAG_VOLATILE ? 'V' : '-',
484 ctl->flags & WMFW_CTL_FLAG_SYS ? 'S' : '-',
485 ctl->flags & WMFW_CTL_FLAG_READABLE ? 'R' : '-',
486 ctl->flags & WMFW_CTL_FLAG_WRITEABLE ? 'W' : '-',
487 ctl->enabled ? "enabled" : "disabled",
488 ctl->set ? "dirty" : "clean");
489 }
490
491 return 0;
492 }
493 DEFINE_SHOW_ATTRIBUTE(cs_dsp_debugfs_read_controls);
494
495 /**
496 * cs_dsp_init_debugfs() - Create and populate DSP representation in debugfs
497 * @dsp: pointer to DSP structure
498 * @debugfs_root: pointer to debugfs directory in which to create this DSP
499 * representation
500 */
cs_dsp_init_debugfs(struct cs_dsp * dsp,struct dentry * debugfs_root)501 void cs_dsp_init_debugfs(struct cs_dsp *dsp, struct dentry *debugfs_root)
502 {
503 struct dentry *root = NULL;
504 int i;
505
506 root = debugfs_create_dir(dsp->name, debugfs_root);
507
508 debugfs_create_bool("booted", 0444, root, &dsp->booted);
509 debugfs_create_bool("running", 0444, root, &dsp->running);
510 debugfs_create_x32("fw_id", 0444, root, &dsp->fw_id);
511 debugfs_create_x32("fw_version", 0444, root, &dsp->fw_id_version);
512
513 for (i = 0; i < ARRAY_SIZE(cs_dsp_debugfs_fops); ++i)
514 debugfs_create_file(cs_dsp_debugfs_fops[i].name, 0444, root,
515 dsp, &cs_dsp_debugfs_fops[i].fops);
516
517 debugfs_create_file("controls", 0444, root, dsp,
518 &cs_dsp_debugfs_read_controls_fops);
519
520 dsp->debugfs_root = root;
521 }
522 EXPORT_SYMBOL_NS_GPL(cs_dsp_init_debugfs, "FW_CS_DSP");
523
524 /**
525 * cs_dsp_cleanup_debugfs() - Removes DSP representation from debugfs
526 * @dsp: pointer to DSP structure
527 */
cs_dsp_cleanup_debugfs(struct cs_dsp * dsp)528 void cs_dsp_cleanup_debugfs(struct cs_dsp *dsp)
529 {
530 cs_dsp_debugfs_clear(dsp);
531 debugfs_remove_recursive(dsp->debugfs_root);
532 dsp->debugfs_root = ERR_PTR(-ENODEV);
533 }
534 EXPORT_SYMBOL_NS_GPL(cs_dsp_cleanup_debugfs, "FW_CS_DSP");
535 #else
cs_dsp_init_debugfs(struct cs_dsp * dsp,struct dentry * debugfs_root)536 void cs_dsp_init_debugfs(struct cs_dsp *dsp, struct dentry *debugfs_root)
537 {
538 }
539 EXPORT_SYMBOL_NS_GPL(cs_dsp_init_debugfs, "FW_CS_DSP");
540
cs_dsp_cleanup_debugfs(struct cs_dsp * dsp)541 void cs_dsp_cleanup_debugfs(struct cs_dsp *dsp)
542 {
543 }
544 EXPORT_SYMBOL_NS_GPL(cs_dsp_cleanup_debugfs, "FW_CS_DSP");
545
cs_dsp_debugfs_save_wmfwname(struct cs_dsp * dsp,const char * s)546 static inline void cs_dsp_debugfs_save_wmfwname(struct cs_dsp *dsp,
547 const char *s)
548 {
549 }
550
cs_dsp_debugfs_save_binname(struct cs_dsp * dsp,const char * s)551 static inline void cs_dsp_debugfs_save_binname(struct cs_dsp *dsp,
552 const char *s)
553 {
554 }
555
cs_dsp_debugfs_clear(struct cs_dsp * dsp)556 static inline void cs_dsp_debugfs_clear(struct cs_dsp *dsp)
557 {
558 }
559 #endif
560
cs_dsp_find_region(struct cs_dsp * dsp,int type)561 static const struct cs_dsp_region *cs_dsp_find_region(struct cs_dsp *dsp,
562 int type)
563 {
564 int i;
565
566 for (i = 0; i < dsp->num_mems; i++)
567 if (dsp->mem[i].type == type)
568 return &dsp->mem[i];
569
570 return NULL;
571 }
572
cs_dsp_region_to_reg(struct cs_dsp_region const * mem,unsigned int offset)573 static unsigned int cs_dsp_region_to_reg(struct cs_dsp_region const *mem,
574 unsigned int offset)
575 {
576 switch (mem->type) {
577 case WMFW_ADSP1_PM:
578 return mem->base + (offset * 3);
579 case WMFW_ADSP1_DM:
580 case WMFW_ADSP2_XM:
581 case WMFW_ADSP2_YM:
582 case WMFW_ADSP1_ZM:
583 return mem->base + (offset * 2);
584 default:
585 WARN(1, "Unknown memory region type");
586 return offset;
587 }
588 }
589
cs_dsp_halo_region_to_reg(struct cs_dsp_region const * mem,unsigned int offset)590 static unsigned int cs_dsp_halo_region_to_reg(struct cs_dsp_region const *mem,
591 unsigned int offset)
592 {
593 switch (mem->type) {
594 case WMFW_ADSP2_XM:
595 case WMFW_ADSP2_YM:
596 return mem->base + (offset * 4);
597 case WMFW_HALO_XM_PACKED:
598 case WMFW_HALO_YM_PACKED:
599 return (mem->base + (offset * 3)) & ~0x3;
600 case WMFW_HALO_PM_PACKED:
601 return mem->base + (offset * 5);
602 default:
603 WARN(1, "Unknown memory region type");
604 return offset;
605 }
606 }
607
cs_dsp_read_fw_status(struct cs_dsp * dsp,int noffs,unsigned int * offs)608 static void cs_dsp_read_fw_status(struct cs_dsp *dsp,
609 int noffs, unsigned int *offs)
610 {
611 unsigned int i;
612 int ret;
613
614 for (i = 0; i < noffs; ++i) {
615 ret = regmap_read(dsp->regmap, dsp->base + offs[i], &offs[i]);
616 if (ret) {
617 cs_dsp_err(dsp, "Failed to read SCRATCH%u: %d\n", i, ret);
618 return;
619 }
620 }
621 }
622
cs_dsp_adsp2_show_fw_status(struct cs_dsp * dsp)623 static void cs_dsp_adsp2_show_fw_status(struct cs_dsp *dsp)
624 {
625 unsigned int offs[] = {
626 ADSP2_SCRATCH0, ADSP2_SCRATCH1, ADSP2_SCRATCH2, ADSP2_SCRATCH3,
627 };
628
629 cs_dsp_read_fw_status(dsp, ARRAY_SIZE(offs), offs);
630
631 cs_dsp_dbg(dsp, "FW SCRATCH 0:0x%x 1:0x%x 2:0x%x 3:0x%x\n",
632 offs[0], offs[1], offs[2], offs[3]);
633 }
634
cs_dsp_adsp2v2_show_fw_status(struct cs_dsp * dsp)635 static void cs_dsp_adsp2v2_show_fw_status(struct cs_dsp *dsp)
636 {
637 unsigned int offs[] = { ADSP2V2_SCRATCH0_1, ADSP2V2_SCRATCH2_3 };
638
639 cs_dsp_read_fw_status(dsp, ARRAY_SIZE(offs), offs);
640
641 cs_dsp_dbg(dsp, "FW SCRATCH 0:0x%x 1:0x%x 2:0x%x 3:0x%x\n",
642 offs[0] & 0xFFFF, offs[0] >> 16,
643 offs[1] & 0xFFFF, offs[1] >> 16);
644 }
645
cs_dsp_halo_show_fw_status(struct cs_dsp * dsp)646 static void cs_dsp_halo_show_fw_status(struct cs_dsp *dsp)
647 {
648 unsigned int offs[] = {
649 HALO_SCRATCH1, HALO_SCRATCH2, HALO_SCRATCH3, HALO_SCRATCH4,
650 };
651
652 cs_dsp_read_fw_status(dsp, ARRAY_SIZE(offs), offs);
653
654 cs_dsp_dbg(dsp, "FW SCRATCH 0:0x%x 1:0x%x 2:0x%x 3:0x%x\n",
655 offs[0], offs[1], offs[2], offs[3]);
656 }
657
cs_dsp_coeff_base_reg(struct cs_dsp_coeff_ctl * ctl,unsigned int * reg,unsigned int off)658 static int cs_dsp_coeff_base_reg(struct cs_dsp_coeff_ctl *ctl, unsigned int *reg,
659 unsigned int off)
660 {
661 const struct cs_dsp_alg_region *alg_region = &ctl->alg_region;
662 struct cs_dsp *dsp = ctl->dsp;
663 const struct cs_dsp_region *mem;
664
665 mem = cs_dsp_find_region(dsp, alg_region->type);
666 if (!mem) {
667 cs_dsp_err(dsp, "No base for region %x\n",
668 alg_region->type);
669 return -EINVAL;
670 }
671
672 *reg = dsp->ops->region_to_reg(mem, ctl->alg_region.base + ctl->offset + off);
673
674 return 0;
675 }
676
677 /**
678 * cs_dsp_coeff_write_acked_control() - Sends event_id to the acked control
679 * @ctl: pointer to acked coefficient control
680 * @event_id: the value to write to the given acked control
681 *
682 * Once the value has been written to the control the function shall block
683 * until the running firmware acknowledges the write or timeout is exceeded.
684 *
685 * Must be called with pwr_lock held.
686 *
687 * Return: Zero for success, a negative number on error.
688 */
cs_dsp_coeff_write_acked_control(struct cs_dsp_coeff_ctl * ctl,unsigned int event_id)689 int cs_dsp_coeff_write_acked_control(struct cs_dsp_coeff_ctl *ctl, unsigned int event_id)
690 {
691 struct cs_dsp *dsp = ctl->dsp;
692 __be32 val = cpu_to_be32(event_id);
693 unsigned int reg;
694 int i, ret;
695
696 lockdep_assert_held(&dsp->pwr_lock);
697
698 if (!dsp->running)
699 return -EPERM;
700
701 ret = cs_dsp_coeff_base_reg(ctl, ®, 0);
702 if (ret)
703 return ret;
704
705 cs_dsp_dbg(dsp, "Sending 0x%x to acked control alg 0x%x %s:0x%x\n",
706 event_id, ctl->alg_region.alg,
707 cs_dsp_mem_region_name(ctl->alg_region.type), ctl->offset);
708
709 ret = regmap_raw_write(dsp->regmap, reg, &val, sizeof(val));
710 if (ret) {
711 cs_dsp_err(dsp, "Failed to write %x: %d\n", reg, ret);
712 return ret;
713 }
714
715 /*
716 * Poll for ack, we initially poll at ~1ms intervals for firmwares
717 * that respond quickly, then go to ~10ms polls. A firmware is unlikely
718 * to ack instantly so we do the first 1ms delay before reading the
719 * control to avoid a pointless bus transaction
720 */
721 for (i = 0; i < CS_DSP_ACKED_CTL_TIMEOUT_MS;) {
722 switch (i) {
723 case 0 ... CS_DSP_ACKED_CTL_N_QUICKPOLLS - 1:
724 usleep_range(1000, 2000);
725 i++;
726 break;
727 default:
728 usleep_range(10000, 20000);
729 i += 10;
730 break;
731 }
732
733 ret = regmap_raw_read(dsp->regmap, reg, &val, sizeof(val));
734 if (ret) {
735 cs_dsp_err(dsp, "Failed to read %x: %d\n", reg, ret);
736 return ret;
737 }
738
739 if (val == 0) {
740 cs_dsp_dbg(dsp, "Acked control ACKED at poll %u\n", i);
741 return 0;
742 }
743 }
744
745 cs_dsp_warn(dsp, "Acked control @0x%x alg:0x%x %s:0x%x timed out\n",
746 reg, ctl->alg_region.alg,
747 cs_dsp_mem_region_name(ctl->alg_region.type),
748 ctl->offset);
749
750 return -ETIMEDOUT;
751 }
752 EXPORT_SYMBOL_NS_GPL(cs_dsp_coeff_write_acked_control, "FW_CS_DSP");
753
cs_dsp_coeff_write_ctrl_raw(struct cs_dsp_coeff_ctl * ctl,unsigned int off,const void * buf,size_t len)754 static int cs_dsp_coeff_write_ctrl_raw(struct cs_dsp_coeff_ctl *ctl,
755 unsigned int off, const void *buf, size_t len)
756 {
757 struct cs_dsp *dsp = ctl->dsp;
758 void *scratch;
759 int ret;
760 unsigned int reg;
761
762 ret = cs_dsp_coeff_base_reg(ctl, ®, off);
763 if (ret)
764 return ret;
765
766 scratch = kmemdup(buf, len, GFP_KERNEL | GFP_DMA);
767 if (!scratch)
768 return -ENOMEM;
769
770 ret = regmap_raw_write(dsp->regmap, reg, scratch,
771 len);
772 if (ret) {
773 cs_dsp_err(dsp, "Failed to write %zu bytes to %x: %d\n",
774 len, reg, ret);
775 kfree(scratch);
776 return ret;
777 }
778 cs_dsp_dbg(dsp, "Wrote %zu bytes to %x\n", len, reg);
779
780 kfree(scratch);
781
782 return 0;
783 }
784
785 /**
786 * cs_dsp_coeff_write_ctrl() - Writes the given buffer to the given coefficient control
787 * @ctl: pointer to coefficient control
788 * @off: word offset at which data should be written
789 * @buf: the buffer to write to the given control
790 * @len: the length of the buffer in bytes
791 *
792 * Must be called with pwr_lock held.
793 *
794 * Return: < 0 on error, 1 when the control value changed and 0 when it has not.
795 */
cs_dsp_coeff_write_ctrl(struct cs_dsp_coeff_ctl * ctl,unsigned int off,const void * buf,size_t len)796 int cs_dsp_coeff_write_ctrl(struct cs_dsp_coeff_ctl *ctl,
797 unsigned int off, const void *buf, size_t len)
798 {
799 int ret = 0;
800
801 if (!ctl)
802 return -ENOENT;
803
804 lockdep_assert_held(&ctl->dsp->pwr_lock);
805
806 if (ctl->flags && !(ctl->flags & WMFW_CTL_FLAG_WRITEABLE))
807 return -EPERM;
808
809 if (len + off * sizeof(u32) > ctl->len)
810 return -EINVAL;
811
812 if (ctl->flags & WMFW_CTL_FLAG_VOLATILE) {
813 ret = -EPERM;
814 } else if (buf != ctl->cache) {
815 if (memcmp(ctl->cache + off * sizeof(u32), buf, len))
816 memcpy(ctl->cache + off * sizeof(u32), buf, len);
817 else
818 return 0;
819 }
820
821 ctl->set = 1;
822 if (ctl->enabled && ctl->dsp->running)
823 ret = cs_dsp_coeff_write_ctrl_raw(ctl, off, buf, len);
824
825 if (ret < 0)
826 return ret;
827
828 return 1;
829 }
830 EXPORT_SYMBOL_NS_GPL(cs_dsp_coeff_write_ctrl, "FW_CS_DSP");
831
832 /**
833 * cs_dsp_coeff_lock_and_write_ctrl() - Writes the given buffer to the given coefficient control
834 * @ctl: pointer to coefficient control
835 * @off: word offset at which data should be written
836 * @buf: the buffer to write to the given control
837 * @len: the length of the buffer in bytes
838 *
839 * Same as cs_dsp_coeff_write_ctrl() but takes pwr_lock.
840 *
841 * Return: A negative number on error, 1 when the control value changed and 0 when it has not.
842 */
cs_dsp_coeff_lock_and_write_ctrl(struct cs_dsp_coeff_ctl * ctl,unsigned int off,const void * buf,size_t len)843 int cs_dsp_coeff_lock_and_write_ctrl(struct cs_dsp_coeff_ctl *ctl,
844 unsigned int off, const void *buf, size_t len)
845 {
846 struct cs_dsp *dsp = ctl->dsp;
847 int ret;
848
849 lockdep_assert_not_held(&dsp->pwr_lock);
850
851 mutex_lock(&dsp->pwr_lock);
852 ret = cs_dsp_coeff_write_ctrl(ctl, off, buf, len);
853 mutex_unlock(&dsp->pwr_lock);
854
855 return ret;
856 }
857 EXPORT_SYMBOL_GPL(cs_dsp_coeff_lock_and_write_ctrl);
858
cs_dsp_coeff_read_ctrl_raw(struct cs_dsp_coeff_ctl * ctl,unsigned int off,void * buf,size_t len)859 static int cs_dsp_coeff_read_ctrl_raw(struct cs_dsp_coeff_ctl *ctl,
860 unsigned int off, void *buf, size_t len)
861 {
862 struct cs_dsp *dsp = ctl->dsp;
863 void *scratch;
864 int ret;
865 unsigned int reg;
866
867 ret = cs_dsp_coeff_base_reg(ctl, ®, off);
868 if (ret)
869 return ret;
870
871 scratch = kmalloc(len, GFP_KERNEL | GFP_DMA);
872 if (!scratch)
873 return -ENOMEM;
874
875 ret = regmap_raw_read(dsp->regmap, reg, scratch, len);
876 if (ret) {
877 cs_dsp_err(dsp, "Failed to read %zu bytes from %x: %d\n",
878 len, reg, ret);
879 kfree(scratch);
880 return ret;
881 }
882 cs_dsp_dbg(dsp, "Read %zu bytes from %x\n", len, reg);
883
884 memcpy(buf, scratch, len);
885 kfree(scratch);
886
887 return 0;
888 }
889
890 /**
891 * cs_dsp_coeff_read_ctrl() - Reads the given coefficient control into the given buffer
892 * @ctl: pointer to coefficient control
893 * @off: word offset at which data should be read
894 * @buf: the buffer to store to the given control
895 * @len: the length of the buffer in bytes
896 *
897 * Must be called with pwr_lock held.
898 *
899 * Return: Zero for success, a negative number on error.
900 */
cs_dsp_coeff_read_ctrl(struct cs_dsp_coeff_ctl * ctl,unsigned int off,void * buf,size_t len)901 int cs_dsp_coeff_read_ctrl(struct cs_dsp_coeff_ctl *ctl,
902 unsigned int off, void *buf, size_t len)
903 {
904 int ret = 0;
905
906 if (!ctl)
907 return -ENOENT;
908
909 lockdep_assert_held(&ctl->dsp->pwr_lock);
910
911 if (len + off * sizeof(u32) > ctl->len)
912 return -EINVAL;
913
914 if (ctl->flags & WMFW_CTL_FLAG_VOLATILE) {
915 if (ctl->enabled && ctl->dsp->running)
916 return cs_dsp_coeff_read_ctrl_raw(ctl, off, buf, len);
917 else
918 return -EPERM;
919 } else {
920 if (!ctl->flags && ctl->enabled && ctl->dsp->running)
921 ret = cs_dsp_coeff_read_ctrl_raw(ctl, 0, ctl->cache, ctl->len);
922
923 if (buf != ctl->cache)
924 memcpy(buf, ctl->cache + off * sizeof(u32), len);
925 }
926
927 return ret;
928 }
929 EXPORT_SYMBOL_NS_GPL(cs_dsp_coeff_read_ctrl, "FW_CS_DSP");
930
931 /**
932 * cs_dsp_coeff_lock_and_read_ctrl() - Reads the given coefficient control into the given buffer
933 * @ctl: pointer to coefficient control
934 * @off: word offset at which data should be read
935 * @buf: the buffer to store to the given control
936 * @len: the length of the buffer in bytes
937 *
938 * Same as cs_dsp_coeff_read_ctrl() but takes pwr_lock.
939 *
940 * Return: Zero for success, a negative number on error.
941 */
cs_dsp_coeff_lock_and_read_ctrl(struct cs_dsp_coeff_ctl * ctl,unsigned int off,void * buf,size_t len)942 int cs_dsp_coeff_lock_and_read_ctrl(struct cs_dsp_coeff_ctl *ctl,
943 unsigned int off, void *buf, size_t len)
944 {
945 struct cs_dsp *dsp = ctl->dsp;
946 int ret;
947
948 lockdep_assert_not_held(&dsp->pwr_lock);
949
950 mutex_lock(&dsp->pwr_lock);
951 ret = cs_dsp_coeff_read_ctrl(ctl, off, buf, len);
952 mutex_unlock(&dsp->pwr_lock);
953
954 return ret;
955 }
956 EXPORT_SYMBOL_GPL(cs_dsp_coeff_lock_and_read_ctrl);
957
cs_dsp_coeff_init_control_caches(struct cs_dsp * dsp)958 static int cs_dsp_coeff_init_control_caches(struct cs_dsp *dsp)
959 {
960 struct cs_dsp_coeff_ctl *ctl;
961 int ret;
962
963 list_for_each_entry(ctl, &dsp->ctl_list, list) {
964 if (!ctl->enabled || ctl->set)
965 continue;
966 if (ctl->flags & WMFW_CTL_FLAG_VOLATILE)
967 continue;
968
969 /*
970 * For readable controls populate the cache from the DSP memory.
971 * For non-readable controls the cache was zero-filled when
972 * created so we don't need to do anything.
973 */
974 if (!ctl->flags || (ctl->flags & WMFW_CTL_FLAG_READABLE)) {
975 ret = cs_dsp_coeff_read_ctrl_raw(ctl, 0, ctl->cache, ctl->len);
976 if (ret < 0)
977 return ret;
978 }
979 }
980
981 return 0;
982 }
983
cs_dsp_coeff_sync_controls(struct cs_dsp * dsp)984 static int cs_dsp_coeff_sync_controls(struct cs_dsp *dsp)
985 {
986 struct cs_dsp_coeff_ctl *ctl;
987 int ret;
988
989 list_for_each_entry(ctl, &dsp->ctl_list, list) {
990 if (!ctl->enabled)
991 continue;
992 if (ctl->set && !(ctl->flags & WMFW_CTL_FLAG_VOLATILE)) {
993 ret = cs_dsp_coeff_write_ctrl_raw(ctl, 0, ctl->cache,
994 ctl->len);
995 if (ret < 0)
996 return ret;
997 }
998 }
999
1000 return 0;
1001 }
1002
cs_dsp_signal_event_controls(struct cs_dsp * dsp,unsigned int event)1003 static void cs_dsp_signal_event_controls(struct cs_dsp *dsp,
1004 unsigned int event)
1005 {
1006 struct cs_dsp_coeff_ctl *ctl;
1007 int ret;
1008
1009 list_for_each_entry(ctl, &dsp->ctl_list, list) {
1010 if (ctl->type != WMFW_CTL_TYPE_HOSTEVENT)
1011 continue;
1012
1013 if (!ctl->enabled)
1014 continue;
1015
1016 ret = cs_dsp_coeff_write_acked_control(ctl, event);
1017 if (ret)
1018 cs_dsp_warn(dsp,
1019 "Failed to send 0x%x event to alg 0x%x (%d)\n",
1020 event, ctl->alg_region.alg, ret);
1021 }
1022 }
1023
cs_dsp_free_ctl_blk(struct cs_dsp_coeff_ctl * ctl)1024 static void cs_dsp_free_ctl_blk(struct cs_dsp_coeff_ctl *ctl)
1025 {
1026 kfree(ctl->cache);
1027 kfree(ctl->subname);
1028 kfree(ctl);
1029 }
1030
cs_dsp_create_control(struct cs_dsp * dsp,const struct cs_dsp_alg_region * alg_region,unsigned int offset,unsigned int len,const char * subname,unsigned int subname_len,unsigned int flags,unsigned int type)1031 static int cs_dsp_create_control(struct cs_dsp *dsp,
1032 const struct cs_dsp_alg_region *alg_region,
1033 unsigned int offset, unsigned int len,
1034 const char *subname, unsigned int subname_len,
1035 unsigned int flags, unsigned int type)
1036 {
1037 struct cs_dsp_coeff_ctl *ctl;
1038 int ret;
1039
1040 list_for_each_entry(ctl, &dsp->ctl_list, list) {
1041 if (ctl->fw_name == dsp->fw_name &&
1042 ctl->alg_region.alg == alg_region->alg &&
1043 ctl->alg_region.type == alg_region->type) {
1044 if ((!subname && !ctl->subname) ||
1045 (subname && (ctl->subname_len == subname_len) &&
1046 !strncmp(ctl->subname, subname, ctl->subname_len))) {
1047 if (!ctl->enabled)
1048 ctl->enabled = 1;
1049 return 0;
1050 }
1051 }
1052 }
1053
1054 ctl = kzalloc(sizeof(*ctl), GFP_KERNEL);
1055 if (!ctl)
1056 return -ENOMEM;
1057
1058 ctl->fw_name = dsp->fw_name;
1059 ctl->alg_region = *alg_region;
1060 if (subname && dsp->wmfw_ver >= 2) {
1061 ctl->subname_len = subname_len;
1062 ctl->subname = kasprintf(GFP_KERNEL, "%.*s", subname_len, subname);
1063 if (!ctl->subname) {
1064 ret = -ENOMEM;
1065 goto err_ctl;
1066 }
1067 }
1068 ctl->enabled = 1;
1069 ctl->set = 0;
1070 ctl->dsp = dsp;
1071
1072 ctl->flags = flags;
1073 ctl->type = type;
1074 ctl->offset = offset;
1075 ctl->len = len;
1076 ctl->cache = kzalloc(ctl->len, GFP_KERNEL);
1077 if (!ctl->cache) {
1078 ret = -ENOMEM;
1079 goto err_ctl_subname;
1080 }
1081
1082 list_add(&ctl->list, &dsp->ctl_list);
1083
1084 if (dsp->client_ops->control_add) {
1085 ret = dsp->client_ops->control_add(ctl);
1086 if (ret)
1087 goto err_list_del;
1088 }
1089
1090 return 0;
1091
1092 err_list_del:
1093 list_del(&ctl->list);
1094 kfree(ctl->cache);
1095 err_ctl_subname:
1096 kfree(ctl->subname);
1097 err_ctl:
1098 kfree(ctl);
1099
1100 return ret;
1101 }
1102
1103 struct cs_dsp_coeff_parsed_alg {
1104 int id;
1105 const u8 *name;
1106 int name_len;
1107 int ncoeff;
1108 };
1109
1110 struct cs_dsp_coeff_parsed_coeff {
1111 int offset;
1112 int mem_type;
1113 const u8 *name;
1114 int name_len;
1115 unsigned int ctl_type;
1116 int flags;
1117 int len;
1118 };
1119
cs_dsp_coeff_parse_string(int bytes,const u8 ** pos,unsigned int avail,const u8 ** str)1120 static int cs_dsp_coeff_parse_string(int bytes, const u8 **pos, unsigned int avail,
1121 const u8 **str)
1122 {
1123 int length, total_field_len;
1124
1125 /* String fields are at least one __le32 */
1126 if (sizeof(__le32) > avail) {
1127 *pos = NULL;
1128 return 0;
1129 }
1130
1131 switch (bytes) {
1132 case 1:
1133 length = **pos;
1134 break;
1135 case 2:
1136 length = le16_to_cpu(*((__le16 *)*pos));
1137 break;
1138 default:
1139 return 0;
1140 }
1141
1142 total_field_len = ((length + bytes) + 3) & ~0x03;
1143 if ((unsigned int)total_field_len > avail) {
1144 *pos = NULL;
1145 return 0;
1146 }
1147
1148 if (str)
1149 *str = *pos + bytes;
1150
1151 *pos += total_field_len;
1152
1153 return length;
1154 }
1155
cs_dsp_coeff_parse_int(int bytes,const u8 ** pos)1156 static int cs_dsp_coeff_parse_int(int bytes, const u8 **pos)
1157 {
1158 int val = 0;
1159
1160 switch (bytes) {
1161 case 2:
1162 val = le16_to_cpu(*((__le16 *)*pos));
1163 break;
1164 case 4:
1165 val = le32_to_cpu(*((__le32 *)*pos));
1166 break;
1167 default:
1168 break;
1169 }
1170
1171 *pos += bytes;
1172
1173 return val;
1174 }
1175
cs_dsp_coeff_parse_alg(struct cs_dsp * dsp,const struct wmfw_region * region,struct cs_dsp_coeff_parsed_alg * blk)1176 static int cs_dsp_coeff_parse_alg(struct cs_dsp *dsp,
1177 const struct wmfw_region *region,
1178 struct cs_dsp_coeff_parsed_alg *blk)
1179 {
1180 const struct wmfw_adsp_alg_data *raw;
1181 unsigned int data_len = le32_to_cpu(region->len);
1182 unsigned int pos;
1183 const u8 *tmp;
1184
1185 raw = (const struct wmfw_adsp_alg_data *)region->data;
1186
1187 switch (dsp->wmfw_ver) {
1188 case 0:
1189 case 1:
1190 if (sizeof(*raw) > data_len)
1191 return -EOVERFLOW;
1192
1193 blk->id = le32_to_cpu(raw->id);
1194 blk->name = raw->name;
1195 blk->name_len = strnlen(raw->name, ARRAY_SIZE(raw->name));
1196 blk->ncoeff = le32_to_cpu(raw->ncoeff);
1197
1198 pos = sizeof(*raw);
1199 break;
1200 default:
1201 if (sizeof(raw->id) > data_len)
1202 return -EOVERFLOW;
1203
1204 tmp = region->data;
1205 blk->id = cs_dsp_coeff_parse_int(sizeof(raw->id), &tmp);
1206 pos = tmp - region->data;
1207
1208 tmp = ®ion->data[pos];
1209 blk->name_len = cs_dsp_coeff_parse_string(sizeof(u8), &tmp, data_len - pos,
1210 &blk->name);
1211 if (!tmp)
1212 return -EOVERFLOW;
1213
1214 pos = tmp - region->data;
1215 cs_dsp_coeff_parse_string(sizeof(u16), &tmp, data_len - pos, NULL);
1216 if (!tmp)
1217 return -EOVERFLOW;
1218
1219 pos = tmp - region->data;
1220 if (sizeof(raw->ncoeff) > (data_len - pos))
1221 return -EOVERFLOW;
1222
1223 blk->ncoeff = cs_dsp_coeff_parse_int(sizeof(raw->ncoeff), &tmp);
1224 pos += sizeof(raw->ncoeff);
1225 break;
1226 }
1227
1228 if ((int)blk->ncoeff < 0)
1229 return -EOVERFLOW;
1230
1231 cs_dsp_dbg(dsp, "Algorithm ID: %#x\n", blk->id);
1232 cs_dsp_dbg(dsp, "Algorithm name: %.*s\n", blk->name_len, blk->name);
1233 cs_dsp_dbg(dsp, "# of coefficient descriptors: %#x\n", blk->ncoeff);
1234
1235 return pos;
1236 }
1237
cs_dsp_coeff_parse_coeff(struct cs_dsp * dsp,const struct wmfw_region * region,unsigned int pos,struct cs_dsp_coeff_parsed_coeff * blk)1238 static int cs_dsp_coeff_parse_coeff(struct cs_dsp *dsp,
1239 const struct wmfw_region *region,
1240 unsigned int pos,
1241 struct cs_dsp_coeff_parsed_coeff *blk)
1242 {
1243 const struct wmfw_adsp_coeff_data *raw;
1244 unsigned int data_len = le32_to_cpu(region->len);
1245 unsigned int blk_len, blk_end_pos;
1246 const u8 *tmp;
1247
1248 raw = (const struct wmfw_adsp_coeff_data *)®ion->data[pos];
1249 if (sizeof(raw->hdr) > (data_len - pos))
1250 return -EOVERFLOW;
1251
1252 blk_len = le32_to_cpu(raw->hdr.size);
1253 if (blk_len > S32_MAX)
1254 return -EOVERFLOW;
1255
1256 if (blk_len > (data_len - pos - sizeof(raw->hdr)))
1257 return -EOVERFLOW;
1258
1259 blk_end_pos = pos + sizeof(raw->hdr) + blk_len;
1260
1261 blk->offset = le16_to_cpu(raw->hdr.offset);
1262 blk->mem_type = le16_to_cpu(raw->hdr.type);
1263
1264 switch (dsp->wmfw_ver) {
1265 case 0:
1266 case 1:
1267 if (sizeof(*raw) > (data_len - pos))
1268 return -EOVERFLOW;
1269
1270 blk->name = raw->name;
1271 blk->name_len = strnlen(raw->name, ARRAY_SIZE(raw->name));
1272 blk->ctl_type = le16_to_cpu(raw->ctl_type);
1273 blk->flags = le16_to_cpu(raw->flags);
1274 blk->len = le32_to_cpu(raw->len);
1275 break;
1276 default:
1277 pos += sizeof(raw->hdr);
1278 tmp = ®ion->data[pos];
1279 blk->name_len = cs_dsp_coeff_parse_string(sizeof(u8), &tmp, data_len - pos,
1280 &blk->name);
1281 if (!tmp)
1282 return -EOVERFLOW;
1283
1284 pos = tmp - region->data;
1285 cs_dsp_coeff_parse_string(sizeof(u8), &tmp, data_len - pos, NULL);
1286 if (!tmp)
1287 return -EOVERFLOW;
1288
1289 pos = tmp - region->data;
1290 cs_dsp_coeff_parse_string(sizeof(u16), &tmp, data_len - pos, NULL);
1291 if (!tmp)
1292 return -EOVERFLOW;
1293
1294 pos = tmp - region->data;
1295 if (sizeof(raw->ctl_type) + sizeof(raw->flags) + sizeof(raw->len) >
1296 (data_len - pos))
1297 return -EOVERFLOW;
1298
1299 blk->ctl_type = cs_dsp_coeff_parse_int(sizeof(raw->ctl_type), &tmp);
1300 pos += sizeof(raw->ctl_type);
1301 blk->flags = cs_dsp_coeff_parse_int(sizeof(raw->flags), &tmp);
1302 pos += sizeof(raw->flags);
1303 blk->len = cs_dsp_coeff_parse_int(sizeof(raw->len), &tmp);
1304 break;
1305 }
1306
1307 cs_dsp_dbg(dsp, "\tCoefficient type: %#x\n", blk->mem_type);
1308 cs_dsp_dbg(dsp, "\tCoefficient offset: %#x\n", blk->offset);
1309 cs_dsp_dbg(dsp, "\tCoefficient name: %.*s\n", blk->name_len, blk->name);
1310 cs_dsp_dbg(dsp, "\tCoefficient flags: %#x\n", blk->flags);
1311 cs_dsp_dbg(dsp, "\tALSA control type: %#x\n", blk->ctl_type);
1312 cs_dsp_dbg(dsp, "\tALSA control len: %#x\n", blk->len);
1313
1314 return blk_end_pos;
1315 }
1316
cs_dsp_check_coeff_flags(struct cs_dsp * dsp,const struct cs_dsp_coeff_parsed_coeff * coeff_blk,unsigned int f_required,unsigned int f_illegal)1317 static int cs_dsp_check_coeff_flags(struct cs_dsp *dsp,
1318 const struct cs_dsp_coeff_parsed_coeff *coeff_blk,
1319 unsigned int f_required,
1320 unsigned int f_illegal)
1321 {
1322 if ((coeff_blk->flags & f_illegal) ||
1323 ((coeff_blk->flags & f_required) != f_required)) {
1324 cs_dsp_err(dsp, "Illegal flags 0x%x for control type 0x%x\n",
1325 coeff_blk->flags, coeff_blk->ctl_type);
1326 return -EINVAL;
1327 }
1328
1329 return 0;
1330 }
1331
cs_dsp_parse_coeff(struct cs_dsp * dsp,const struct wmfw_region * region)1332 static int cs_dsp_parse_coeff(struct cs_dsp *dsp,
1333 const struct wmfw_region *region)
1334 {
1335 struct cs_dsp_alg_region alg_region = {};
1336 struct cs_dsp_coeff_parsed_alg alg_blk;
1337 struct cs_dsp_coeff_parsed_coeff coeff_blk;
1338 int i, pos, ret;
1339
1340 pos = cs_dsp_coeff_parse_alg(dsp, region, &alg_blk);
1341 if (pos < 0)
1342 return pos;
1343
1344 for (i = 0; i < alg_blk.ncoeff; i++) {
1345 pos = cs_dsp_coeff_parse_coeff(dsp, region, pos, &coeff_blk);
1346 if (pos < 0)
1347 return pos;
1348
1349 switch (coeff_blk.ctl_type) {
1350 case WMFW_CTL_TYPE_BYTES:
1351 break;
1352 case WMFW_CTL_TYPE_ACKED:
1353 if (coeff_blk.flags & WMFW_CTL_FLAG_SYS)
1354 continue; /* ignore */
1355
1356 ret = cs_dsp_check_coeff_flags(dsp, &coeff_blk,
1357 WMFW_CTL_FLAG_VOLATILE |
1358 WMFW_CTL_FLAG_WRITEABLE |
1359 WMFW_CTL_FLAG_READABLE,
1360 0);
1361 if (ret)
1362 return -EINVAL;
1363 break;
1364 case WMFW_CTL_TYPE_HOSTEVENT:
1365 case WMFW_CTL_TYPE_FWEVENT:
1366 ret = cs_dsp_check_coeff_flags(dsp, &coeff_blk,
1367 WMFW_CTL_FLAG_SYS |
1368 WMFW_CTL_FLAG_VOLATILE |
1369 WMFW_CTL_FLAG_WRITEABLE |
1370 WMFW_CTL_FLAG_READABLE,
1371 0);
1372 if (ret)
1373 return -EINVAL;
1374 break;
1375 case WMFW_CTL_TYPE_HOST_BUFFER:
1376 ret = cs_dsp_check_coeff_flags(dsp, &coeff_blk,
1377 WMFW_CTL_FLAG_SYS |
1378 WMFW_CTL_FLAG_VOLATILE |
1379 WMFW_CTL_FLAG_READABLE,
1380 0);
1381 if (ret)
1382 return -EINVAL;
1383 break;
1384 default:
1385 cs_dsp_err(dsp, "Unknown control type: %d\n",
1386 coeff_blk.ctl_type);
1387 return -EINVAL;
1388 }
1389
1390 alg_region.type = coeff_blk.mem_type;
1391 alg_region.alg = alg_blk.id;
1392
1393 ret = cs_dsp_create_control(dsp, &alg_region,
1394 coeff_blk.offset,
1395 coeff_blk.len,
1396 coeff_blk.name,
1397 coeff_blk.name_len,
1398 coeff_blk.flags,
1399 coeff_blk.ctl_type);
1400 if (ret < 0)
1401 cs_dsp_err(dsp, "Failed to create control: %.*s, %d\n",
1402 coeff_blk.name_len, coeff_blk.name, ret);
1403 }
1404
1405 return 0;
1406 }
1407
cs_dsp_adsp1_parse_sizes(struct cs_dsp * dsp,const char * const file,unsigned int pos,const struct firmware * firmware)1408 static unsigned int cs_dsp_adsp1_parse_sizes(struct cs_dsp *dsp,
1409 const char * const file,
1410 unsigned int pos,
1411 const struct firmware *firmware)
1412 {
1413 const struct wmfw_adsp1_sizes *adsp1_sizes;
1414
1415 adsp1_sizes = (void *)&firmware->data[pos];
1416 if (sizeof(*adsp1_sizes) > firmware->size - pos) {
1417 cs_dsp_err(dsp, "%s: file truncated\n", file);
1418 return 0;
1419 }
1420
1421 cs_dsp_dbg(dsp, "%s: %d DM, %d PM, %d ZM\n", file,
1422 le32_to_cpu(adsp1_sizes->dm), le32_to_cpu(adsp1_sizes->pm),
1423 le32_to_cpu(adsp1_sizes->zm));
1424
1425 return pos + sizeof(*adsp1_sizes);
1426 }
1427
cs_dsp_adsp2_parse_sizes(struct cs_dsp * dsp,const char * const file,unsigned int pos,const struct firmware * firmware)1428 static unsigned int cs_dsp_adsp2_parse_sizes(struct cs_dsp *dsp,
1429 const char * const file,
1430 unsigned int pos,
1431 const struct firmware *firmware)
1432 {
1433 const struct wmfw_adsp2_sizes *adsp2_sizes;
1434
1435 adsp2_sizes = (void *)&firmware->data[pos];
1436 if (sizeof(*adsp2_sizes) > firmware->size - pos) {
1437 cs_dsp_err(dsp, "%s: file truncated\n", file);
1438 return 0;
1439 }
1440
1441 cs_dsp_dbg(dsp, "%s: %d XM, %d YM %d PM, %d ZM\n", file,
1442 le32_to_cpu(adsp2_sizes->xm), le32_to_cpu(adsp2_sizes->ym),
1443 le32_to_cpu(adsp2_sizes->pm), le32_to_cpu(adsp2_sizes->zm));
1444
1445 return pos + sizeof(*adsp2_sizes);
1446 }
1447
cs_dsp_validate_version(struct cs_dsp * dsp,unsigned int version)1448 static bool cs_dsp_validate_version(struct cs_dsp *dsp, unsigned int version)
1449 {
1450 switch (version) {
1451 case 0:
1452 cs_dsp_warn(dsp, "Deprecated file format %d\n", version);
1453 return true;
1454 case 1:
1455 case 2:
1456 return true;
1457 default:
1458 return false;
1459 }
1460 }
1461
cs_dsp_halo_validate_version(struct cs_dsp * dsp,unsigned int version)1462 static bool cs_dsp_halo_validate_version(struct cs_dsp *dsp, unsigned int version)
1463 {
1464 switch (version) {
1465 case 3:
1466 return true;
1467 default:
1468 return false;
1469 }
1470 }
1471
cs_dsp_load(struct cs_dsp * dsp,const struct firmware * firmware,const char * file)1472 static int cs_dsp_load(struct cs_dsp *dsp, const struct firmware *firmware,
1473 const char *file)
1474 {
1475 LIST_HEAD(buf_list);
1476 struct regmap *regmap = dsp->regmap;
1477 unsigned int pos = 0;
1478 const struct wmfw_header *header;
1479 const struct wmfw_footer *footer;
1480 const struct wmfw_region *region;
1481 const struct cs_dsp_region *mem;
1482 const char *region_name;
1483 struct cs_dsp_buf *buf;
1484 unsigned int reg;
1485 int regions = 0;
1486 int ret, offset, type;
1487
1488 if (!firmware)
1489 return 0;
1490
1491 ret = -EINVAL;
1492
1493 if (sizeof(*header) >= firmware->size) {
1494 ret = -EOVERFLOW;
1495 goto out_fw;
1496 }
1497
1498 header = (void *)&firmware->data[0];
1499
1500 if (memcmp(&header->magic[0], "WMFW", 4) != 0) {
1501 cs_dsp_err(dsp, "%s: invalid magic\n", file);
1502 goto out_fw;
1503 }
1504
1505 if (!dsp->ops->validate_version(dsp, header->ver)) {
1506 cs_dsp_err(dsp, "%s: unknown file format %d\n",
1507 file, header->ver);
1508 goto out_fw;
1509 }
1510
1511 dsp->wmfw_ver = header->ver;
1512
1513 if (header->core != dsp->type) {
1514 cs_dsp_err(dsp, "%s: invalid core %d != %d\n",
1515 file, header->core, dsp->type);
1516 goto out_fw;
1517 }
1518
1519 pos = sizeof(*header);
1520 pos = dsp->ops->parse_sizes(dsp, file, pos, firmware);
1521 if ((pos == 0) || (sizeof(*footer) > firmware->size - pos)) {
1522 ret = -EOVERFLOW;
1523 goto out_fw;
1524 }
1525
1526 footer = (void *)&firmware->data[pos];
1527 pos += sizeof(*footer);
1528
1529 if (le32_to_cpu(header->len) != pos) {
1530 ret = -EOVERFLOW;
1531 goto out_fw;
1532 }
1533
1534 cs_dsp_info(dsp, "%s: format %d timestamp %#llx\n", file, header->ver,
1535 le64_to_cpu(footer->timestamp));
1536
1537 while (pos < firmware->size) {
1538 /* Is there enough data for a complete block header? */
1539 if (sizeof(*region) > firmware->size - pos) {
1540 ret = -EOVERFLOW;
1541 goto out_fw;
1542 }
1543
1544 region = (void *)&(firmware->data[pos]);
1545
1546 if (le32_to_cpu(region->len) > firmware->size - pos - sizeof(*region)) {
1547 ret = -EOVERFLOW;
1548 goto out_fw;
1549 }
1550
1551 region_name = "Unknown";
1552 reg = 0;
1553 offset = le32_to_cpu(region->offset) & 0xffffff;
1554 type = be32_to_cpu(region->type) & 0xff;
1555
1556 switch (type) {
1557 case WMFW_INFO_TEXT:
1558 case WMFW_NAME_TEXT:
1559 region_name = "Info/Name";
1560 cs_dsp_info(dsp, "%s: %.*s\n", file,
1561 min(le32_to_cpu(region->len), 100), region->data);
1562 break;
1563 case WMFW_ALGORITHM_DATA:
1564 region_name = "Algorithm";
1565 ret = cs_dsp_parse_coeff(dsp, region);
1566 if (ret != 0)
1567 goto out_fw;
1568 break;
1569 case WMFW_ABSOLUTE:
1570 region_name = "Absolute";
1571 reg = offset;
1572 break;
1573 case WMFW_ADSP1_PM:
1574 case WMFW_ADSP1_DM:
1575 case WMFW_ADSP2_XM:
1576 case WMFW_ADSP2_YM:
1577 case WMFW_ADSP1_ZM:
1578 case WMFW_HALO_PM_PACKED:
1579 case WMFW_HALO_XM_PACKED:
1580 case WMFW_HALO_YM_PACKED:
1581 mem = cs_dsp_find_region(dsp, type);
1582 if (!mem) {
1583 cs_dsp_err(dsp, "No region of type: %x\n", type);
1584 ret = -EINVAL;
1585 goto out_fw;
1586 }
1587
1588 region_name = cs_dsp_mem_region_name(type);
1589 reg = dsp->ops->region_to_reg(mem, offset);
1590 break;
1591 default:
1592 cs_dsp_warn(dsp,
1593 "%s.%d: Unknown region type %x at %d(%x)\n",
1594 file, regions, type, pos, pos);
1595 break;
1596 }
1597
1598 cs_dsp_dbg(dsp, "%s.%d: %d bytes at %d in %s\n", file,
1599 regions, le32_to_cpu(region->len), offset,
1600 region_name);
1601
1602 if (reg) {
1603 buf = cs_dsp_buf_alloc(region->data,
1604 le32_to_cpu(region->len),
1605 &buf_list);
1606 if (!buf) {
1607 cs_dsp_err(dsp, "Out of memory\n");
1608 ret = -ENOMEM;
1609 goto out_fw;
1610 }
1611
1612 ret = regmap_raw_write(regmap, reg, buf->buf,
1613 le32_to_cpu(region->len));
1614 if (ret != 0) {
1615 cs_dsp_err(dsp,
1616 "%s.%d: Failed to write %d bytes at %d in %s: %d\n",
1617 file, regions,
1618 le32_to_cpu(region->len), offset,
1619 region_name, ret);
1620 goto out_fw;
1621 }
1622 }
1623
1624 pos += le32_to_cpu(region->len) + sizeof(*region);
1625 regions++;
1626 }
1627
1628 if (pos > firmware->size)
1629 cs_dsp_warn(dsp, "%s.%d: %zu bytes at end of file\n",
1630 file, regions, pos - firmware->size);
1631
1632 cs_dsp_debugfs_save_wmfwname(dsp, file);
1633
1634 out_fw:
1635 cs_dsp_buf_free(&buf_list);
1636
1637 if (ret == -EOVERFLOW)
1638 cs_dsp_err(dsp, "%s: file content overflows file data\n", file);
1639
1640 return ret;
1641 }
1642
1643 /**
1644 * cs_dsp_get_ctl() - Finds a matching coefficient control
1645 * @dsp: pointer to DSP structure
1646 * @name: pointer to string to match with a control's subname
1647 * @type: the algorithm type to match
1648 * @alg: the algorithm id to match
1649 *
1650 * Find cs_dsp_coeff_ctl with input name as its subname
1651 *
1652 * Return: pointer to the control on success, NULL if not found
1653 */
cs_dsp_get_ctl(struct cs_dsp * dsp,const char * name,int type,unsigned int alg)1654 struct cs_dsp_coeff_ctl *cs_dsp_get_ctl(struct cs_dsp *dsp, const char *name, int type,
1655 unsigned int alg)
1656 {
1657 struct cs_dsp_coeff_ctl *pos, *rslt = NULL;
1658
1659 lockdep_assert_held(&dsp->pwr_lock);
1660
1661 list_for_each_entry(pos, &dsp->ctl_list, list) {
1662 if (!pos->subname)
1663 continue;
1664 if (strncmp(pos->subname, name, pos->subname_len) == 0 &&
1665 pos->fw_name == dsp->fw_name &&
1666 pos->alg_region.alg == alg &&
1667 pos->alg_region.type == type) {
1668 rslt = pos;
1669 break;
1670 }
1671 }
1672
1673 return rslt;
1674 }
1675 EXPORT_SYMBOL_NS_GPL(cs_dsp_get_ctl, "FW_CS_DSP");
1676
cs_dsp_ctl_fixup_base(struct cs_dsp * dsp,const struct cs_dsp_alg_region * alg_region)1677 static void cs_dsp_ctl_fixup_base(struct cs_dsp *dsp,
1678 const struct cs_dsp_alg_region *alg_region)
1679 {
1680 struct cs_dsp_coeff_ctl *ctl;
1681
1682 list_for_each_entry(ctl, &dsp->ctl_list, list) {
1683 if (ctl->fw_name == dsp->fw_name &&
1684 alg_region->alg == ctl->alg_region.alg &&
1685 alg_region->type == ctl->alg_region.type) {
1686 ctl->alg_region.base = alg_region->base;
1687 }
1688 }
1689 }
1690
cs_dsp_read_algs(struct cs_dsp * dsp,size_t n_algs,const struct cs_dsp_region * mem,unsigned int pos,unsigned int len)1691 static void *cs_dsp_read_algs(struct cs_dsp *dsp, size_t n_algs,
1692 const struct cs_dsp_region *mem,
1693 unsigned int pos, unsigned int len)
1694 {
1695 void *alg;
1696 unsigned int reg;
1697 int ret;
1698 __be32 val;
1699
1700 if (n_algs == 0) {
1701 cs_dsp_err(dsp, "No algorithms\n");
1702 return ERR_PTR(-EINVAL);
1703 }
1704
1705 if (n_algs > 1024) {
1706 cs_dsp_err(dsp, "Algorithm count %zx excessive\n", n_algs);
1707 return ERR_PTR(-EINVAL);
1708 }
1709
1710 /* Read the terminator first to validate the length */
1711 reg = dsp->ops->region_to_reg(mem, pos + len);
1712
1713 ret = regmap_raw_read(dsp->regmap, reg, &val, sizeof(val));
1714 if (ret != 0) {
1715 cs_dsp_err(dsp, "Failed to read algorithm list end: %d\n",
1716 ret);
1717 return ERR_PTR(ret);
1718 }
1719
1720 if (be32_to_cpu(val) != 0xbedead)
1721 cs_dsp_warn(dsp, "Algorithm list end %x 0x%x != 0xbedead\n",
1722 reg, be32_to_cpu(val));
1723
1724 /* Convert length from DSP words to bytes */
1725 len *= sizeof(u32);
1726
1727 alg = kzalloc(len, GFP_KERNEL | GFP_DMA);
1728 if (!alg)
1729 return ERR_PTR(-ENOMEM);
1730
1731 reg = dsp->ops->region_to_reg(mem, pos);
1732
1733 ret = regmap_raw_read(dsp->regmap, reg, alg, len);
1734 if (ret != 0) {
1735 cs_dsp_err(dsp, "Failed to read algorithm list: %d\n", ret);
1736 kfree(alg);
1737 return ERR_PTR(ret);
1738 }
1739
1740 return alg;
1741 }
1742
1743 /**
1744 * cs_dsp_find_alg_region() - Finds a matching algorithm region
1745 * @dsp: pointer to DSP structure
1746 * @type: the algorithm type to match
1747 * @id: the algorithm id to match
1748 *
1749 * Return: Pointer to matching algorithm region, or NULL if not found.
1750 */
cs_dsp_find_alg_region(struct cs_dsp * dsp,int type,unsigned int id)1751 struct cs_dsp_alg_region *cs_dsp_find_alg_region(struct cs_dsp *dsp,
1752 int type, unsigned int id)
1753 {
1754 struct cs_dsp_alg_region *alg_region;
1755
1756 lockdep_assert_held(&dsp->pwr_lock);
1757
1758 list_for_each_entry(alg_region, &dsp->alg_regions, list) {
1759 if (id == alg_region->alg && type == alg_region->type)
1760 return alg_region;
1761 }
1762
1763 return NULL;
1764 }
1765 EXPORT_SYMBOL_NS_GPL(cs_dsp_find_alg_region, "FW_CS_DSP");
1766
cs_dsp_create_region(struct cs_dsp * dsp,int type,__be32 id,__be32 ver,__be32 base)1767 static struct cs_dsp_alg_region *cs_dsp_create_region(struct cs_dsp *dsp,
1768 int type, __be32 id,
1769 __be32 ver, __be32 base)
1770 {
1771 struct cs_dsp_alg_region *alg_region;
1772
1773 alg_region = kzalloc(sizeof(*alg_region), GFP_KERNEL);
1774 if (!alg_region)
1775 return ERR_PTR(-ENOMEM);
1776
1777 alg_region->type = type;
1778 alg_region->alg = be32_to_cpu(id);
1779 alg_region->ver = be32_to_cpu(ver);
1780 alg_region->base = be32_to_cpu(base);
1781
1782 list_add_tail(&alg_region->list, &dsp->alg_regions);
1783
1784 if (dsp->wmfw_ver > 0)
1785 cs_dsp_ctl_fixup_base(dsp, alg_region);
1786
1787 return alg_region;
1788 }
1789
cs_dsp_free_alg_regions(struct cs_dsp * dsp)1790 static void cs_dsp_free_alg_regions(struct cs_dsp *dsp)
1791 {
1792 struct cs_dsp_alg_region *alg_region;
1793
1794 while (!list_empty(&dsp->alg_regions)) {
1795 alg_region = list_first_entry(&dsp->alg_regions,
1796 struct cs_dsp_alg_region,
1797 list);
1798 list_del(&alg_region->list);
1799 kfree(alg_region);
1800 }
1801 }
1802
cs_dsp_parse_wmfw_id_header(struct cs_dsp * dsp,struct wmfw_id_hdr * fw,int nalgs)1803 static void cs_dsp_parse_wmfw_id_header(struct cs_dsp *dsp,
1804 struct wmfw_id_hdr *fw, int nalgs)
1805 {
1806 dsp->fw_id = be32_to_cpu(fw->id);
1807 dsp->fw_id_version = be32_to_cpu(fw->ver);
1808
1809 cs_dsp_info(dsp, "Firmware: %x v%d.%d.%d, %d algorithms\n",
1810 dsp->fw_id, (dsp->fw_id_version & 0xff0000) >> 16,
1811 (dsp->fw_id_version & 0xff00) >> 8, dsp->fw_id_version & 0xff,
1812 nalgs);
1813 }
1814
cs_dsp_parse_wmfw_v3_id_header(struct cs_dsp * dsp,struct wmfw_v3_id_hdr * fw,int nalgs)1815 static void cs_dsp_parse_wmfw_v3_id_header(struct cs_dsp *dsp,
1816 struct wmfw_v3_id_hdr *fw, int nalgs)
1817 {
1818 dsp->fw_id = be32_to_cpu(fw->id);
1819 dsp->fw_id_version = be32_to_cpu(fw->ver);
1820 dsp->fw_vendor_id = be32_to_cpu(fw->vendor_id);
1821
1822 cs_dsp_info(dsp, "Firmware: %x vendor: 0x%x v%d.%d.%d, %d algorithms\n",
1823 dsp->fw_id, dsp->fw_vendor_id,
1824 (dsp->fw_id_version & 0xff0000) >> 16,
1825 (dsp->fw_id_version & 0xff00) >> 8, dsp->fw_id_version & 0xff,
1826 nalgs);
1827 }
1828
cs_dsp_create_regions(struct cs_dsp * dsp,__be32 id,__be32 ver,int nregions,const int * type,__be32 * base)1829 static int cs_dsp_create_regions(struct cs_dsp *dsp, __be32 id, __be32 ver,
1830 int nregions, const int *type, __be32 *base)
1831 {
1832 struct cs_dsp_alg_region *alg_region;
1833 int i;
1834
1835 for (i = 0; i < nregions; i++) {
1836 alg_region = cs_dsp_create_region(dsp, type[i], id, ver, base[i]);
1837 if (IS_ERR(alg_region))
1838 return PTR_ERR(alg_region);
1839 }
1840
1841 return 0;
1842 }
1843
cs_dsp_adsp1_setup_algs(struct cs_dsp * dsp)1844 static int cs_dsp_adsp1_setup_algs(struct cs_dsp *dsp)
1845 {
1846 struct wmfw_adsp1_id_hdr adsp1_id;
1847 struct wmfw_adsp1_alg_hdr *adsp1_alg;
1848 struct cs_dsp_alg_region *alg_region;
1849 const struct cs_dsp_region *mem;
1850 unsigned int pos, len;
1851 size_t n_algs;
1852 int i, ret;
1853
1854 mem = cs_dsp_find_region(dsp, WMFW_ADSP1_DM);
1855 if (WARN_ON(!mem))
1856 return -EINVAL;
1857
1858 ret = regmap_raw_read(dsp->regmap, mem->base, &adsp1_id,
1859 sizeof(adsp1_id));
1860 if (ret != 0) {
1861 cs_dsp_err(dsp, "Failed to read algorithm info: %d\n",
1862 ret);
1863 return ret;
1864 }
1865
1866 n_algs = be32_to_cpu(adsp1_id.n_algs);
1867
1868 cs_dsp_parse_wmfw_id_header(dsp, &adsp1_id.fw, n_algs);
1869
1870 alg_region = cs_dsp_create_region(dsp, WMFW_ADSP1_ZM,
1871 adsp1_id.fw.id, adsp1_id.fw.ver,
1872 adsp1_id.zm);
1873 if (IS_ERR(alg_region))
1874 return PTR_ERR(alg_region);
1875
1876 alg_region = cs_dsp_create_region(dsp, WMFW_ADSP1_DM,
1877 adsp1_id.fw.id, adsp1_id.fw.ver,
1878 adsp1_id.dm);
1879 if (IS_ERR(alg_region))
1880 return PTR_ERR(alg_region);
1881
1882 /* Calculate offset and length in DSP words */
1883 pos = sizeof(adsp1_id) / sizeof(u32);
1884 len = (sizeof(*adsp1_alg) * n_algs) / sizeof(u32);
1885
1886 adsp1_alg = cs_dsp_read_algs(dsp, n_algs, mem, pos, len);
1887 if (IS_ERR(adsp1_alg))
1888 return PTR_ERR(adsp1_alg);
1889
1890 for (i = 0; i < n_algs; i++) {
1891 cs_dsp_info(dsp, "%d: ID %x v%d.%d.%d DM@%x ZM@%x\n",
1892 i, be32_to_cpu(adsp1_alg[i].alg.id),
1893 (be32_to_cpu(adsp1_alg[i].alg.ver) & 0xff0000) >> 16,
1894 (be32_to_cpu(adsp1_alg[i].alg.ver) & 0xff00) >> 8,
1895 be32_to_cpu(adsp1_alg[i].alg.ver) & 0xff,
1896 be32_to_cpu(adsp1_alg[i].dm),
1897 be32_to_cpu(adsp1_alg[i].zm));
1898
1899 alg_region = cs_dsp_create_region(dsp, WMFW_ADSP1_DM,
1900 adsp1_alg[i].alg.id,
1901 adsp1_alg[i].alg.ver,
1902 adsp1_alg[i].dm);
1903 if (IS_ERR(alg_region)) {
1904 ret = PTR_ERR(alg_region);
1905 goto out;
1906 }
1907 if (dsp->wmfw_ver == 0) {
1908 if (i + 1 < n_algs) {
1909 len = be32_to_cpu(adsp1_alg[i + 1].dm);
1910 len -= be32_to_cpu(adsp1_alg[i].dm);
1911 len *= 4;
1912 cs_dsp_create_control(dsp, alg_region, 0,
1913 len, NULL, 0, 0,
1914 WMFW_CTL_TYPE_BYTES);
1915 } else {
1916 cs_dsp_warn(dsp, "Missing length info for region DM with ID %x\n",
1917 be32_to_cpu(adsp1_alg[i].alg.id));
1918 }
1919 }
1920
1921 alg_region = cs_dsp_create_region(dsp, WMFW_ADSP1_ZM,
1922 adsp1_alg[i].alg.id,
1923 adsp1_alg[i].alg.ver,
1924 adsp1_alg[i].zm);
1925 if (IS_ERR(alg_region)) {
1926 ret = PTR_ERR(alg_region);
1927 goto out;
1928 }
1929 if (dsp->wmfw_ver == 0) {
1930 if (i + 1 < n_algs) {
1931 len = be32_to_cpu(adsp1_alg[i + 1].zm);
1932 len -= be32_to_cpu(adsp1_alg[i].zm);
1933 len *= 4;
1934 cs_dsp_create_control(dsp, alg_region, 0,
1935 len, NULL, 0, 0,
1936 WMFW_CTL_TYPE_BYTES);
1937 } else {
1938 cs_dsp_warn(dsp, "Missing length info for region ZM with ID %x\n",
1939 be32_to_cpu(adsp1_alg[i].alg.id));
1940 }
1941 }
1942 }
1943
1944 out:
1945 kfree(adsp1_alg);
1946 return ret;
1947 }
1948
cs_dsp_adsp2_setup_algs(struct cs_dsp * dsp)1949 static int cs_dsp_adsp2_setup_algs(struct cs_dsp *dsp)
1950 {
1951 struct wmfw_adsp2_id_hdr adsp2_id;
1952 struct wmfw_adsp2_alg_hdr *adsp2_alg;
1953 struct cs_dsp_alg_region *alg_region;
1954 const struct cs_dsp_region *mem;
1955 unsigned int pos, len;
1956 size_t n_algs;
1957 int i, ret;
1958
1959 mem = cs_dsp_find_region(dsp, WMFW_ADSP2_XM);
1960 if (WARN_ON(!mem))
1961 return -EINVAL;
1962
1963 ret = regmap_raw_read(dsp->regmap, mem->base, &adsp2_id,
1964 sizeof(adsp2_id));
1965 if (ret != 0) {
1966 cs_dsp_err(dsp, "Failed to read algorithm info: %d\n",
1967 ret);
1968 return ret;
1969 }
1970
1971 n_algs = be32_to_cpu(adsp2_id.n_algs);
1972
1973 cs_dsp_parse_wmfw_id_header(dsp, &adsp2_id.fw, n_algs);
1974
1975 alg_region = cs_dsp_create_region(dsp, WMFW_ADSP2_XM,
1976 adsp2_id.fw.id, adsp2_id.fw.ver,
1977 adsp2_id.xm);
1978 if (IS_ERR(alg_region))
1979 return PTR_ERR(alg_region);
1980
1981 alg_region = cs_dsp_create_region(dsp, WMFW_ADSP2_YM,
1982 adsp2_id.fw.id, adsp2_id.fw.ver,
1983 adsp2_id.ym);
1984 if (IS_ERR(alg_region))
1985 return PTR_ERR(alg_region);
1986
1987 alg_region = cs_dsp_create_region(dsp, WMFW_ADSP2_ZM,
1988 adsp2_id.fw.id, adsp2_id.fw.ver,
1989 adsp2_id.zm);
1990 if (IS_ERR(alg_region))
1991 return PTR_ERR(alg_region);
1992
1993 /* Calculate offset and length in DSP words */
1994 pos = sizeof(adsp2_id) / sizeof(u32);
1995 len = (sizeof(*adsp2_alg) * n_algs) / sizeof(u32);
1996
1997 adsp2_alg = cs_dsp_read_algs(dsp, n_algs, mem, pos, len);
1998 if (IS_ERR(adsp2_alg))
1999 return PTR_ERR(adsp2_alg);
2000
2001 for (i = 0; i < n_algs; i++) {
2002 cs_dsp_dbg(dsp,
2003 "%d: ID %x v%d.%d.%d XM@%x YM@%x ZM@%x\n",
2004 i, be32_to_cpu(adsp2_alg[i].alg.id),
2005 (be32_to_cpu(adsp2_alg[i].alg.ver) & 0xff0000) >> 16,
2006 (be32_to_cpu(adsp2_alg[i].alg.ver) & 0xff00) >> 8,
2007 be32_to_cpu(adsp2_alg[i].alg.ver) & 0xff,
2008 be32_to_cpu(adsp2_alg[i].xm),
2009 be32_to_cpu(adsp2_alg[i].ym),
2010 be32_to_cpu(adsp2_alg[i].zm));
2011
2012 alg_region = cs_dsp_create_region(dsp, WMFW_ADSP2_XM,
2013 adsp2_alg[i].alg.id,
2014 adsp2_alg[i].alg.ver,
2015 adsp2_alg[i].xm);
2016 if (IS_ERR(alg_region)) {
2017 ret = PTR_ERR(alg_region);
2018 goto out;
2019 }
2020 if (dsp->wmfw_ver == 0) {
2021 if (i + 1 < n_algs) {
2022 len = be32_to_cpu(adsp2_alg[i + 1].xm);
2023 len -= be32_to_cpu(adsp2_alg[i].xm);
2024 len *= 4;
2025 cs_dsp_create_control(dsp, alg_region, 0,
2026 len, NULL, 0, 0,
2027 WMFW_CTL_TYPE_BYTES);
2028 } else {
2029 cs_dsp_warn(dsp, "Missing length info for region XM with ID %x\n",
2030 be32_to_cpu(adsp2_alg[i].alg.id));
2031 }
2032 }
2033
2034 alg_region = cs_dsp_create_region(dsp, WMFW_ADSP2_YM,
2035 adsp2_alg[i].alg.id,
2036 adsp2_alg[i].alg.ver,
2037 adsp2_alg[i].ym);
2038 if (IS_ERR(alg_region)) {
2039 ret = PTR_ERR(alg_region);
2040 goto out;
2041 }
2042 if (dsp->wmfw_ver == 0) {
2043 if (i + 1 < n_algs) {
2044 len = be32_to_cpu(adsp2_alg[i + 1].ym);
2045 len -= be32_to_cpu(adsp2_alg[i].ym);
2046 len *= 4;
2047 cs_dsp_create_control(dsp, alg_region, 0,
2048 len, NULL, 0, 0,
2049 WMFW_CTL_TYPE_BYTES);
2050 } else {
2051 cs_dsp_warn(dsp, "Missing length info for region YM with ID %x\n",
2052 be32_to_cpu(adsp2_alg[i].alg.id));
2053 }
2054 }
2055
2056 alg_region = cs_dsp_create_region(dsp, WMFW_ADSP2_ZM,
2057 adsp2_alg[i].alg.id,
2058 adsp2_alg[i].alg.ver,
2059 adsp2_alg[i].zm);
2060 if (IS_ERR(alg_region)) {
2061 ret = PTR_ERR(alg_region);
2062 goto out;
2063 }
2064 if (dsp->wmfw_ver == 0) {
2065 if (i + 1 < n_algs) {
2066 len = be32_to_cpu(adsp2_alg[i + 1].zm);
2067 len -= be32_to_cpu(adsp2_alg[i].zm);
2068 len *= 4;
2069 cs_dsp_create_control(dsp, alg_region, 0,
2070 len, NULL, 0, 0,
2071 WMFW_CTL_TYPE_BYTES);
2072 } else {
2073 cs_dsp_warn(dsp, "Missing length info for region ZM with ID %x\n",
2074 be32_to_cpu(adsp2_alg[i].alg.id));
2075 }
2076 }
2077 }
2078
2079 out:
2080 kfree(adsp2_alg);
2081 return ret;
2082 }
2083
cs_dsp_halo_create_regions(struct cs_dsp * dsp,__be32 id,__be32 ver,__be32 xm_base,__be32 ym_base)2084 static int cs_dsp_halo_create_regions(struct cs_dsp *dsp, __be32 id, __be32 ver,
2085 __be32 xm_base, __be32 ym_base)
2086 {
2087 static const int types[] = {
2088 WMFW_ADSP2_XM, WMFW_HALO_XM_PACKED,
2089 WMFW_ADSP2_YM, WMFW_HALO_YM_PACKED
2090 };
2091 __be32 bases[] = { xm_base, xm_base, ym_base, ym_base };
2092
2093 return cs_dsp_create_regions(dsp, id, ver, ARRAY_SIZE(types), types, bases);
2094 }
2095
cs_dsp_halo_setup_algs(struct cs_dsp * dsp)2096 static int cs_dsp_halo_setup_algs(struct cs_dsp *dsp)
2097 {
2098 struct wmfw_halo_id_hdr halo_id;
2099 struct wmfw_halo_alg_hdr *halo_alg;
2100 const struct cs_dsp_region *mem;
2101 unsigned int pos, len;
2102 size_t n_algs;
2103 int i, ret;
2104
2105 mem = cs_dsp_find_region(dsp, WMFW_ADSP2_XM);
2106 if (WARN_ON(!mem))
2107 return -EINVAL;
2108
2109 ret = regmap_raw_read(dsp->regmap, mem->base, &halo_id,
2110 sizeof(halo_id));
2111 if (ret != 0) {
2112 cs_dsp_err(dsp, "Failed to read algorithm info: %d\n",
2113 ret);
2114 return ret;
2115 }
2116
2117 n_algs = be32_to_cpu(halo_id.n_algs);
2118
2119 cs_dsp_parse_wmfw_v3_id_header(dsp, &halo_id.fw, n_algs);
2120
2121 ret = cs_dsp_halo_create_regions(dsp, halo_id.fw.id, halo_id.fw.ver,
2122 halo_id.xm_base, halo_id.ym_base);
2123 if (ret)
2124 return ret;
2125
2126 /* Calculate offset and length in DSP words */
2127 pos = sizeof(halo_id) / sizeof(u32);
2128 len = (sizeof(*halo_alg) * n_algs) / sizeof(u32);
2129
2130 halo_alg = cs_dsp_read_algs(dsp, n_algs, mem, pos, len);
2131 if (IS_ERR(halo_alg))
2132 return PTR_ERR(halo_alg);
2133
2134 for (i = 0; i < n_algs; i++) {
2135 cs_dsp_dbg(dsp,
2136 "%d: ID %x v%d.%d.%d XM@%x YM@%x\n",
2137 i, be32_to_cpu(halo_alg[i].alg.id),
2138 (be32_to_cpu(halo_alg[i].alg.ver) & 0xff0000) >> 16,
2139 (be32_to_cpu(halo_alg[i].alg.ver) & 0xff00) >> 8,
2140 be32_to_cpu(halo_alg[i].alg.ver) & 0xff,
2141 be32_to_cpu(halo_alg[i].xm_base),
2142 be32_to_cpu(halo_alg[i].ym_base));
2143
2144 ret = cs_dsp_halo_create_regions(dsp, halo_alg[i].alg.id,
2145 halo_alg[i].alg.ver,
2146 halo_alg[i].xm_base,
2147 halo_alg[i].ym_base);
2148 if (ret)
2149 goto out;
2150 }
2151
2152 out:
2153 kfree(halo_alg);
2154 return ret;
2155 }
2156
cs_dsp_load_coeff(struct cs_dsp * dsp,const struct firmware * firmware,const char * file)2157 static int cs_dsp_load_coeff(struct cs_dsp *dsp, const struct firmware *firmware,
2158 const char *file)
2159 {
2160 LIST_HEAD(buf_list);
2161 struct regmap *regmap = dsp->regmap;
2162 struct wmfw_coeff_hdr *hdr;
2163 struct wmfw_coeff_item *blk;
2164 const struct cs_dsp_region *mem;
2165 struct cs_dsp_alg_region *alg_region;
2166 const char *region_name;
2167 int ret, pos, blocks, type, offset, reg, version;
2168 struct cs_dsp_buf *buf;
2169
2170 if (!firmware)
2171 return 0;
2172
2173 ret = -EINVAL;
2174
2175 if (sizeof(*hdr) >= firmware->size) {
2176 cs_dsp_err(dsp, "%s: coefficient file too short, %zu bytes\n",
2177 file, firmware->size);
2178 goto out_fw;
2179 }
2180
2181 hdr = (void *)&firmware->data[0];
2182 if (memcmp(hdr->magic, "WMDR", 4) != 0) {
2183 cs_dsp_err(dsp, "%s: invalid coefficient magic\n", file);
2184 goto out_fw;
2185 }
2186
2187 switch (be32_to_cpu(hdr->rev) & 0xff) {
2188 case 1:
2189 case 2:
2190 break;
2191 default:
2192 cs_dsp_err(dsp, "%s: Unsupported coefficient file format %d\n",
2193 file, be32_to_cpu(hdr->rev) & 0xff);
2194 ret = -EINVAL;
2195 goto out_fw;
2196 }
2197
2198 cs_dsp_info(dsp, "%s: v%d.%d.%d\n", file,
2199 (le32_to_cpu(hdr->ver) >> 16) & 0xff,
2200 (le32_to_cpu(hdr->ver) >> 8) & 0xff,
2201 le32_to_cpu(hdr->ver) & 0xff);
2202
2203 pos = le32_to_cpu(hdr->len);
2204
2205 blocks = 0;
2206 while (pos < firmware->size) {
2207 /* Is there enough data for a complete block header? */
2208 if (sizeof(*blk) > firmware->size - pos) {
2209 ret = -EOVERFLOW;
2210 goto out_fw;
2211 }
2212
2213 blk = (void *)(&firmware->data[pos]);
2214
2215 if (le32_to_cpu(blk->len) > firmware->size - pos - sizeof(*blk)) {
2216 ret = -EOVERFLOW;
2217 goto out_fw;
2218 }
2219
2220 type = le16_to_cpu(blk->type);
2221 offset = le16_to_cpu(blk->offset);
2222 version = le32_to_cpu(blk->ver) >> 8;
2223
2224 cs_dsp_dbg(dsp, "%s.%d: %x v%d.%d.%d\n",
2225 file, blocks, le32_to_cpu(blk->id),
2226 (le32_to_cpu(blk->ver) >> 16) & 0xff,
2227 (le32_to_cpu(blk->ver) >> 8) & 0xff,
2228 le32_to_cpu(blk->ver) & 0xff);
2229 cs_dsp_dbg(dsp, "%s.%d: %d bytes at 0x%x in %x\n",
2230 file, blocks, le32_to_cpu(blk->len), offset, type);
2231
2232 reg = 0;
2233 region_name = "Unknown";
2234 switch (type) {
2235 case (WMFW_NAME_TEXT << 8):
2236 cs_dsp_info(dsp, "%s: %.*s\n", dsp->fw_name,
2237 min(le32_to_cpu(blk->len), 100), blk->data);
2238 break;
2239 case (WMFW_INFO_TEXT << 8):
2240 case (WMFW_METADATA << 8):
2241 break;
2242 case (WMFW_ABSOLUTE << 8):
2243 /*
2244 * Old files may use this for global
2245 * coefficients.
2246 */
2247 if (le32_to_cpu(blk->id) == dsp->fw_id &&
2248 offset == 0) {
2249 region_name = "global coefficients";
2250 mem = cs_dsp_find_region(dsp, type);
2251 if (!mem) {
2252 cs_dsp_err(dsp, "No ZM\n");
2253 break;
2254 }
2255 reg = dsp->ops->region_to_reg(mem, 0);
2256
2257 } else {
2258 region_name = "register";
2259 reg = offset;
2260 }
2261 break;
2262
2263 case WMFW_ADSP1_DM:
2264 case WMFW_ADSP1_ZM:
2265 case WMFW_ADSP2_XM:
2266 case WMFW_ADSP2_YM:
2267 case WMFW_HALO_XM_PACKED:
2268 case WMFW_HALO_YM_PACKED:
2269 case WMFW_HALO_PM_PACKED:
2270 cs_dsp_dbg(dsp, "%s.%d: %d bytes in %x for %x\n",
2271 file, blocks, le32_to_cpu(blk->len),
2272 type, le32_to_cpu(blk->id));
2273
2274 region_name = cs_dsp_mem_region_name(type);
2275 mem = cs_dsp_find_region(dsp, type);
2276 if (!mem) {
2277 cs_dsp_err(dsp, "No base for region %x\n", type);
2278 break;
2279 }
2280
2281 alg_region = cs_dsp_find_alg_region(dsp, type,
2282 le32_to_cpu(blk->id));
2283 if (alg_region) {
2284 if (version != alg_region->ver)
2285 cs_dsp_warn(dsp,
2286 "Algorithm coefficient version %d.%d.%d but expected %d.%d.%d\n",
2287 (version >> 16) & 0xFF,
2288 (version >> 8) & 0xFF,
2289 version & 0xFF,
2290 (alg_region->ver >> 16) & 0xFF,
2291 (alg_region->ver >> 8) & 0xFF,
2292 alg_region->ver & 0xFF);
2293
2294 reg = alg_region->base;
2295 reg = dsp->ops->region_to_reg(mem, reg);
2296 reg += offset;
2297 } else {
2298 cs_dsp_err(dsp, "No %s for algorithm %x\n",
2299 region_name, le32_to_cpu(blk->id));
2300 }
2301 break;
2302
2303 default:
2304 cs_dsp_err(dsp, "%s.%d: Unknown region type %x at %d\n",
2305 file, blocks, type, pos);
2306 break;
2307 }
2308
2309 if (reg) {
2310 buf = cs_dsp_buf_alloc(blk->data,
2311 le32_to_cpu(blk->len),
2312 &buf_list);
2313 if (!buf) {
2314 cs_dsp_err(dsp, "Out of memory\n");
2315 ret = -ENOMEM;
2316 goto out_fw;
2317 }
2318
2319 cs_dsp_dbg(dsp, "%s.%d: Writing %d bytes at %x\n",
2320 file, blocks, le32_to_cpu(blk->len),
2321 reg);
2322 ret = regmap_raw_write(regmap, reg, buf->buf,
2323 le32_to_cpu(blk->len));
2324 if (ret != 0) {
2325 cs_dsp_err(dsp,
2326 "%s.%d: Failed to write to %x in %s: %d\n",
2327 file, blocks, reg, region_name, ret);
2328 }
2329 }
2330
2331 pos += (le32_to_cpu(blk->len) + sizeof(*blk) + 3) & ~0x03;
2332 blocks++;
2333 }
2334
2335 if (pos > firmware->size)
2336 cs_dsp_warn(dsp, "%s.%d: %zu bytes at end of file\n",
2337 file, blocks, pos - firmware->size);
2338
2339 cs_dsp_debugfs_save_binname(dsp, file);
2340
2341 out_fw:
2342 cs_dsp_buf_free(&buf_list);
2343
2344 if (ret == -EOVERFLOW)
2345 cs_dsp_err(dsp, "%s: file content overflows file data\n", file);
2346
2347 return ret;
2348 }
2349
cs_dsp_create_name(struct cs_dsp * dsp)2350 static int cs_dsp_create_name(struct cs_dsp *dsp)
2351 {
2352 if (!dsp->name) {
2353 dsp->name = devm_kasprintf(dsp->dev, GFP_KERNEL, "DSP%d",
2354 dsp->num);
2355 if (!dsp->name)
2356 return -ENOMEM;
2357 }
2358
2359 return 0;
2360 }
2361
cs_dsp_common_init(struct cs_dsp * dsp)2362 static int cs_dsp_common_init(struct cs_dsp *dsp)
2363 {
2364 int ret;
2365
2366 ret = cs_dsp_create_name(dsp);
2367 if (ret)
2368 return ret;
2369
2370 INIT_LIST_HEAD(&dsp->alg_regions);
2371 INIT_LIST_HEAD(&dsp->ctl_list);
2372
2373 mutex_init(&dsp->pwr_lock);
2374
2375 #ifdef CONFIG_DEBUG_FS
2376 /* Ensure this is invalid if client never provides a debugfs root */
2377 dsp->debugfs_root = ERR_PTR(-ENODEV);
2378 #endif
2379
2380 return 0;
2381 }
2382
2383 /**
2384 * cs_dsp_adsp1_init() - Initialise a cs_dsp structure representing a ADSP1 device
2385 * @dsp: pointer to DSP structure
2386 *
2387 * Return: Zero for success, a negative number on error.
2388 */
cs_dsp_adsp1_init(struct cs_dsp * dsp)2389 int cs_dsp_adsp1_init(struct cs_dsp *dsp)
2390 {
2391 dsp->ops = &cs_dsp_adsp1_ops;
2392
2393 return cs_dsp_common_init(dsp);
2394 }
2395 EXPORT_SYMBOL_NS_GPL(cs_dsp_adsp1_init, "FW_CS_DSP");
2396
2397 /**
2398 * cs_dsp_adsp1_power_up() - Load and start the named firmware
2399 * @dsp: pointer to DSP structure
2400 * @wmfw_firmware: the firmware to be sent
2401 * @wmfw_filename: file name of firmware to be sent
2402 * @coeff_firmware: the coefficient data to be sent
2403 * @coeff_filename: file name of coefficient to data be sent
2404 * @fw_name: the user-friendly firmware name
2405 *
2406 * Return: Zero for success, a negative number on error.
2407 */
cs_dsp_adsp1_power_up(struct cs_dsp * dsp,const struct firmware * wmfw_firmware,const char * wmfw_filename,const struct firmware * coeff_firmware,const char * coeff_filename,const char * fw_name)2408 int cs_dsp_adsp1_power_up(struct cs_dsp *dsp,
2409 const struct firmware *wmfw_firmware, const char *wmfw_filename,
2410 const struct firmware *coeff_firmware, const char *coeff_filename,
2411 const char *fw_name)
2412 {
2413 unsigned int val;
2414 int ret;
2415
2416 mutex_lock(&dsp->pwr_lock);
2417
2418 dsp->fw_name = fw_name;
2419
2420 regmap_update_bits(dsp->regmap, dsp->base + ADSP1_CONTROL_30,
2421 ADSP1_SYS_ENA, ADSP1_SYS_ENA);
2422
2423 /*
2424 * For simplicity set the DSP clock rate to be the
2425 * SYSCLK rate rather than making it configurable.
2426 */
2427 if (dsp->sysclk_reg) {
2428 ret = regmap_read(dsp->regmap, dsp->sysclk_reg, &val);
2429 if (ret != 0) {
2430 cs_dsp_err(dsp, "Failed to read SYSCLK state: %d\n", ret);
2431 goto err_mutex;
2432 }
2433
2434 val = (val & dsp->sysclk_mask) >> dsp->sysclk_shift;
2435
2436 ret = regmap_update_bits(dsp->regmap,
2437 dsp->base + ADSP1_CONTROL_31,
2438 ADSP1_CLK_SEL_MASK, val);
2439 if (ret != 0) {
2440 cs_dsp_err(dsp, "Failed to set clock rate: %d\n", ret);
2441 goto err_mutex;
2442 }
2443 }
2444
2445 ret = cs_dsp_load(dsp, wmfw_firmware, wmfw_filename);
2446 if (ret != 0)
2447 goto err_ena;
2448
2449 ret = cs_dsp_adsp1_setup_algs(dsp);
2450 if (ret != 0)
2451 goto err_ena;
2452
2453 ret = cs_dsp_load_coeff(dsp, coeff_firmware, coeff_filename);
2454 if (ret != 0)
2455 goto err_ena;
2456
2457 /* Initialize caches for enabled and unset controls */
2458 ret = cs_dsp_coeff_init_control_caches(dsp);
2459 if (ret != 0)
2460 goto err_ena;
2461
2462 /* Sync set controls */
2463 ret = cs_dsp_coeff_sync_controls(dsp);
2464 if (ret != 0)
2465 goto err_ena;
2466
2467 dsp->booted = true;
2468
2469 /* Start the core running */
2470 regmap_update_bits(dsp->regmap, dsp->base + ADSP1_CONTROL_30,
2471 ADSP1_CORE_ENA | ADSP1_START,
2472 ADSP1_CORE_ENA | ADSP1_START);
2473
2474 dsp->running = true;
2475
2476 mutex_unlock(&dsp->pwr_lock);
2477
2478 return 0;
2479
2480 err_ena:
2481 regmap_update_bits(dsp->regmap, dsp->base + ADSP1_CONTROL_30,
2482 ADSP1_SYS_ENA, 0);
2483 err_mutex:
2484 mutex_unlock(&dsp->pwr_lock);
2485 return ret;
2486 }
2487 EXPORT_SYMBOL_NS_GPL(cs_dsp_adsp1_power_up, "FW_CS_DSP");
2488
2489 /**
2490 * cs_dsp_adsp1_power_down() - Halts the DSP
2491 * @dsp: pointer to DSP structure
2492 */
cs_dsp_adsp1_power_down(struct cs_dsp * dsp)2493 void cs_dsp_adsp1_power_down(struct cs_dsp *dsp)
2494 {
2495 struct cs_dsp_coeff_ctl *ctl;
2496
2497 mutex_lock(&dsp->pwr_lock);
2498
2499 dsp->running = false;
2500 dsp->booted = false;
2501
2502 /* Halt the core */
2503 regmap_update_bits(dsp->regmap, dsp->base + ADSP1_CONTROL_30,
2504 ADSP1_CORE_ENA | ADSP1_START, 0);
2505
2506 regmap_update_bits(dsp->regmap, dsp->base + ADSP1_CONTROL_19,
2507 ADSP1_WDMA_BUFFER_LENGTH_MASK, 0);
2508
2509 regmap_update_bits(dsp->regmap, dsp->base + ADSP1_CONTROL_30,
2510 ADSP1_SYS_ENA, 0);
2511
2512 list_for_each_entry(ctl, &dsp->ctl_list, list)
2513 ctl->enabled = 0;
2514
2515 cs_dsp_free_alg_regions(dsp);
2516
2517 mutex_unlock(&dsp->pwr_lock);
2518 }
2519 EXPORT_SYMBOL_NS_GPL(cs_dsp_adsp1_power_down, "FW_CS_DSP");
2520
cs_dsp_adsp2v2_enable_core(struct cs_dsp * dsp)2521 static int cs_dsp_adsp2v2_enable_core(struct cs_dsp *dsp)
2522 {
2523 unsigned int val;
2524 int ret, count;
2525
2526 /* Wait for the RAM to start, should be near instantaneous */
2527 for (count = 0; count < 10; ++count) {
2528 ret = regmap_read(dsp->regmap, dsp->base + ADSP2_STATUS1, &val);
2529 if (ret != 0)
2530 return ret;
2531
2532 if (val & ADSP2_RAM_RDY)
2533 break;
2534
2535 usleep_range(250, 500);
2536 }
2537
2538 if (!(val & ADSP2_RAM_RDY)) {
2539 cs_dsp_err(dsp, "Failed to start DSP RAM\n");
2540 return -EBUSY;
2541 }
2542
2543 cs_dsp_dbg(dsp, "RAM ready after %d polls\n", count);
2544
2545 return 0;
2546 }
2547
cs_dsp_adsp2_enable_core(struct cs_dsp * dsp)2548 static int cs_dsp_adsp2_enable_core(struct cs_dsp *dsp)
2549 {
2550 int ret;
2551
2552 ret = regmap_update_bits(dsp->regmap, dsp->base + ADSP2_CONTROL,
2553 ADSP2_SYS_ENA, ADSP2_SYS_ENA);
2554 if (ret != 0)
2555 return ret;
2556
2557 return cs_dsp_adsp2v2_enable_core(dsp);
2558 }
2559
cs_dsp_adsp2_lock(struct cs_dsp * dsp,unsigned int lock_regions)2560 static int cs_dsp_adsp2_lock(struct cs_dsp *dsp, unsigned int lock_regions)
2561 {
2562 struct regmap *regmap = dsp->regmap;
2563 unsigned int code0, code1, lock_reg;
2564
2565 if (!(lock_regions & CS_ADSP2_REGION_ALL))
2566 return 0;
2567
2568 lock_regions &= CS_ADSP2_REGION_ALL;
2569 lock_reg = dsp->base + ADSP2_LOCK_REGION_1_LOCK_REGION_0;
2570
2571 while (lock_regions) {
2572 code0 = code1 = 0;
2573 if (lock_regions & BIT(0)) {
2574 code0 = ADSP2_LOCK_CODE_0;
2575 code1 = ADSP2_LOCK_CODE_1;
2576 }
2577 if (lock_regions & BIT(1)) {
2578 code0 |= ADSP2_LOCK_CODE_0 << ADSP2_LOCK_REGION_SHIFT;
2579 code1 |= ADSP2_LOCK_CODE_1 << ADSP2_LOCK_REGION_SHIFT;
2580 }
2581 regmap_write(regmap, lock_reg, code0);
2582 regmap_write(regmap, lock_reg, code1);
2583 lock_regions >>= 2;
2584 lock_reg += 2;
2585 }
2586
2587 return 0;
2588 }
2589
cs_dsp_adsp2_enable_memory(struct cs_dsp * dsp)2590 static int cs_dsp_adsp2_enable_memory(struct cs_dsp *dsp)
2591 {
2592 return regmap_update_bits(dsp->regmap, dsp->base + ADSP2_CONTROL,
2593 ADSP2_MEM_ENA, ADSP2_MEM_ENA);
2594 }
2595
cs_dsp_adsp2_disable_memory(struct cs_dsp * dsp)2596 static void cs_dsp_adsp2_disable_memory(struct cs_dsp *dsp)
2597 {
2598 regmap_update_bits(dsp->regmap, dsp->base + ADSP2_CONTROL,
2599 ADSP2_MEM_ENA, 0);
2600 }
2601
cs_dsp_adsp2_disable_core(struct cs_dsp * dsp)2602 static void cs_dsp_adsp2_disable_core(struct cs_dsp *dsp)
2603 {
2604 regmap_write(dsp->regmap, dsp->base + ADSP2_RDMA_CONFIG_1, 0);
2605 regmap_write(dsp->regmap, dsp->base + ADSP2_WDMA_CONFIG_1, 0);
2606 regmap_write(dsp->regmap, dsp->base + ADSP2_WDMA_CONFIG_2, 0);
2607
2608 regmap_update_bits(dsp->regmap, dsp->base + ADSP2_CONTROL,
2609 ADSP2_SYS_ENA, 0);
2610 }
2611
cs_dsp_adsp2v2_disable_core(struct cs_dsp * dsp)2612 static void cs_dsp_adsp2v2_disable_core(struct cs_dsp *dsp)
2613 {
2614 regmap_write(dsp->regmap, dsp->base + ADSP2_RDMA_CONFIG_1, 0);
2615 regmap_write(dsp->regmap, dsp->base + ADSP2_WDMA_CONFIG_1, 0);
2616 regmap_write(dsp->regmap, dsp->base + ADSP2V2_WDMA_CONFIG_2, 0);
2617 }
2618
cs_dsp_halo_configure_mpu(struct cs_dsp * dsp,unsigned int lock_regions)2619 static int cs_dsp_halo_configure_mpu(struct cs_dsp *dsp, unsigned int lock_regions)
2620 {
2621 struct reg_sequence config[] = {
2622 { dsp->base + HALO_MPU_LOCK_CONFIG, 0x5555 },
2623 { dsp->base + HALO_MPU_LOCK_CONFIG, 0xAAAA },
2624 { dsp->base + HALO_MPU_XMEM_ACCESS_0, 0xFFFFFFFF },
2625 { dsp->base + HALO_MPU_YMEM_ACCESS_0, 0xFFFFFFFF },
2626 { dsp->base + HALO_MPU_WINDOW_ACCESS_0, lock_regions },
2627 { dsp->base + HALO_MPU_XREG_ACCESS_0, lock_regions },
2628 { dsp->base + HALO_MPU_YREG_ACCESS_0, lock_regions },
2629 { dsp->base + HALO_MPU_XMEM_ACCESS_1, 0xFFFFFFFF },
2630 { dsp->base + HALO_MPU_YMEM_ACCESS_1, 0xFFFFFFFF },
2631 { dsp->base + HALO_MPU_WINDOW_ACCESS_1, lock_regions },
2632 { dsp->base + HALO_MPU_XREG_ACCESS_1, lock_regions },
2633 { dsp->base + HALO_MPU_YREG_ACCESS_1, lock_regions },
2634 { dsp->base + HALO_MPU_XMEM_ACCESS_2, 0xFFFFFFFF },
2635 { dsp->base + HALO_MPU_YMEM_ACCESS_2, 0xFFFFFFFF },
2636 { dsp->base + HALO_MPU_WINDOW_ACCESS_2, lock_regions },
2637 { dsp->base + HALO_MPU_XREG_ACCESS_2, lock_regions },
2638 { dsp->base + HALO_MPU_YREG_ACCESS_2, lock_regions },
2639 { dsp->base + HALO_MPU_XMEM_ACCESS_3, 0xFFFFFFFF },
2640 { dsp->base + HALO_MPU_YMEM_ACCESS_3, 0xFFFFFFFF },
2641 { dsp->base + HALO_MPU_WINDOW_ACCESS_3, lock_regions },
2642 { dsp->base + HALO_MPU_XREG_ACCESS_3, lock_regions },
2643 { dsp->base + HALO_MPU_YREG_ACCESS_3, lock_regions },
2644 { dsp->base + HALO_MPU_LOCK_CONFIG, 0 },
2645 };
2646
2647 return regmap_multi_reg_write(dsp->regmap, config, ARRAY_SIZE(config));
2648 }
2649
2650 /**
2651 * cs_dsp_set_dspclk() - Applies the given frequency to the given cs_dsp
2652 * @dsp: pointer to DSP structure
2653 * @freq: clock rate to set
2654 *
2655 * This is only for use on ADSP2 cores.
2656 *
2657 * Return: Zero for success, a negative number on error.
2658 */
cs_dsp_set_dspclk(struct cs_dsp * dsp,unsigned int freq)2659 int cs_dsp_set_dspclk(struct cs_dsp *dsp, unsigned int freq)
2660 {
2661 int ret;
2662
2663 ret = regmap_update_bits(dsp->regmap, dsp->base + ADSP2_CLOCKING,
2664 ADSP2_CLK_SEL_MASK,
2665 freq << ADSP2_CLK_SEL_SHIFT);
2666 if (ret)
2667 cs_dsp_err(dsp, "Failed to set clock rate: %d\n", ret);
2668
2669 return ret;
2670 }
2671 EXPORT_SYMBOL_NS_GPL(cs_dsp_set_dspclk, "FW_CS_DSP");
2672
cs_dsp_stop_watchdog(struct cs_dsp * dsp)2673 static void cs_dsp_stop_watchdog(struct cs_dsp *dsp)
2674 {
2675 regmap_update_bits(dsp->regmap, dsp->base + ADSP2_WATCHDOG,
2676 ADSP2_WDT_ENA_MASK, 0);
2677 }
2678
cs_dsp_halo_stop_watchdog(struct cs_dsp * dsp)2679 static void cs_dsp_halo_stop_watchdog(struct cs_dsp *dsp)
2680 {
2681 regmap_update_bits(dsp->regmap, dsp->base + HALO_WDT_CONTROL,
2682 HALO_WDT_EN_MASK, 0);
2683 }
2684
2685 /**
2686 * cs_dsp_power_up() - Downloads firmware to the DSP
2687 * @dsp: pointer to DSP structure
2688 * @wmfw_firmware: the firmware to be sent
2689 * @wmfw_filename: file name of firmware to be sent
2690 * @coeff_firmware: the coefficient data to be sent
2691 * @coeff_filename: file name of coefficient to data be sent
2692 * @fw_name: the user-friendly firmware name
2693 *
2694 * This function is used on ADSP2 and Halo DSP cores, it powers-up the DSP core
2695 * and downloads the firmware but does not start the firmware running. The
2696 * cs_dsp booted flag will be set once completed and if the core has a low-power
2697 * memory retention mode it will be put into this state after the firmware is
2698 * downloaded.
2699 *
2700 * Return: Zero for success, a negative number on error.
2701 */
cs_dsp_power_up(struct cs_dsp * dsp,const struct firmware * wmfw_firmware,const char * wmfw_filename,const struct firmware * coeff_firmware,const char * coeff_filename,const char * fw_name)2702 int cs_dsp_power_up(struct cs_dsp *dsp,
2703 const struct firmware *wmfw_firmware, const char *wmfw_filename,
2704 const struct firmware *coeff_firmware, const char *coeff_filename,
2705 const char *fw_name)
2706 {
2707 int ret;
2708
2709 mutex_lock(&dsp->pwr_lock);
2710
2711 dsp->fw_name = fw_name;
2712
2713 if (dsp->ops->enable_memory) {
2714 ret = dsp->ops->enable_memory(dsp);
2715 if (ret != 0)
2716 goto err_mutex;
2717 }
2718
2719 if (dsp->ops->enable_core) {
2720 ret = dsp->ops->enable_core(dsp);
2721 if (ret != 0)
2722 goto err_mem;
2723 }
2724
2725 ret = cs_dsp_load(dsp, wmfw_firmware, wmfw_filename);
2726 if (ret != 0)
2727 goto err_ena;
2728
2729 ret = dsp->ops->setup_algs(dsp);
2730 if (ret != 0)
2731 goto err_ena;
2732
2733 ret = cs_dsp_load_coeff(dsp, coeff_firmware, coeff_filename);
2734 if (ret != 0)
2735 goto err_ena;
2736
2737 /* Initialize caches for enabled and unset controls */
2738 ret = cs_dsp_coeff_init_control_caches(dsp);
2739 if (ret != 0)
2740 goto err_ena;
2741
2742 if (dsp->ops->disable_core)
2743 dsp->ops->disable_core(dsp);
2744
2745 dsp->booted = true;
2746
2747 mutex_unlock(&dsp->pwr_lock);
2748
2749 return 0;
2750 err_ena:
2751 if (dsp->ops->disable_core)
2752 dsp->ops->disable_core(dsp);
2753 err_mem:
2754 if (dsp->ops->disable_memory)
2755 dsp->ops->disable_memory(dsp);
2756 err_mutex:
2757 mutex_unlock(&dsp->pwr_lock);
2758
2759 return ret;
2760 }
2761 EXPORT_SYMBOL_NS_GPL(cs_dsp_power_up, "FW_CS_DSP");
2762
2763 /**
2764 * cs_dsp_power_down() - Powers-down the DSP
2765 * @dsp: pointer to DSP structure
2766 *
2767 * cs_dsp_stop() must have been called before this function. The core will be
2768 * fully powered down and so the memory will not be retained.
2769 */
cs_dsp_power_down(struct cs_dsp * dsp)2770 void cs_dsp_power_down(struct cs_dsp *dsp)
2771 {
2772 struct cs_dsp_coeff_ctl *ctl;
2773
2774 mutex_lock(&dsp->pwr_lock);
2775
2776 cs_dsp_debugfs_clear(dsp);
2777
2778 dsp->fw_id = 0;
2779 dsp->fw_id_version = 0;
2780
2781 dsp->booted = false;
2782
2783 if (dsp->ops->disable_memory)
2784 dsp->ops->disable_memory(dsp);
2785
2786 list_for_each_entry(ctl, &dsp->ctl_list, list)
2787 ctl->enabled = 0;
2788
2789 cs_dsp_free_alg_regions(dsp);
2790
2791 mutex_unlock(&dsp->pwr_lock);
2792
2793 cs_dsp_dbg(dsp, "Shutdown complete\n");
2794 }
2795 EXPORT_SYMBOL_NS_GPL(cs_dsp_power_down, "FW_CS_DSP");
2796
cs_dsp_adsp2_start_core(struct cs_dsp * dsp)2797 static int cs_dsp_adsp2_start_core(struct cs_dsp *dsp)
2798 {
2799 return regmap_update_bits(dsp->regmap, dsp->base + ADSP2_CONTROL,
2800 ADSP2_CORE_ENA | ADSP2_START,
2801 ADSP2_CORE_ENA | ADSP2_START);
2802 }
2803
cs_dsp_adsp2_stop_core(struct cs_dsp * dsp)2804 static void cs_dsp_adsp2_stop_core(struct cs_dsp *dsp)
2805 {
2806 regmap_update_bits(dsp->regmap, dsp->base + ADSP2_CONTROL,
2807 ADSP2_CORE_ENA | ADSP2_START, 0);
2808 }
2809
2810 /**
2811 * cs_dsp_run() - Starts the firmware running
2812 * @dsp: pointer to DSP structure
2813 *
2814 * cs_dsp_power_up() must have previously been called successfully.
2815 *
2816 * Return: Zero for success, a negative number on error.
2817 */
cs_dsp_run(struct cs_dsp * dsp)2818 int cs_dsp_run(struct cs_dsp *dsp)
2819 {
2820 int ret;
2821
2822 mutex_lock(&dsp->pwr_lock);
2823
2824 if (!dsp->booted) {
2825 ret = -EIO;
2826 goto err;
2827 }
2828
2829 if (dsp->ops->enable_core) {
2830 ret = dsp->ops->enable_core(dsp);
2831 if (ret != 0)
2832 goto err;
2833 }
2834
2835 if (dsp->client_ops->pre_run) {
2836 ret = dsp->client_ops->pre_run(dsp);
2837 if (ret)
2838 goto err;
2839 }
2840
2841 /* Sync set controls */
2842 ret = cs_dsp_coeff_sync_controls(dsp);
2843 if (ret != 0)
2844 goto err;
2845
2846 if (dsp->ops->lock_memory) {
2847 ret = dsp->ops->lock_memory(dsp, dsp->lock_regions);
2848 if (ret != 0) {
2849 cs_dsp_err(dsp, "Error configuring MPU: %d\n", ret);
2850 goto err;
2851 }
2852 }
2853
2854 if (dsp->ops->start_core) {
2855 ret = dsp->ops->start_core(dsp);
2856 if (ret != 0)
2857 goto err;
2858 }
2859
2860 dsp->running = true;
2861
2862 if (dsp->client_ops->post_run) {
2863 ret = dsp->client_ops->post_run(dsp);
2864 if (ret)
2865 goto err;
2866 }
2867
2868 mutex_unlock(&dsp->pwr_lock);
2869
2870 return 0;
2871
2872 err:
2873 if (dsp->ops->stop_core)
2874 dsp->ops->stop_core(dsp);
2875 if (dsp->ops->disable_core)
2876 dsp->ops->disable_core(dsp);
2877 mutex_unlock(&dsp->pwr_lock);
2878
2879 return ret;
2880 }
2881 EXPORT_SYMBOL_NS_GPL(cs_dsp_run, "FW_CS_DSP");
2882
2883 /**
2884 * cs_dsp_stop() - Stops the firmware
2885 * @dsp: pointer to DSP structure
2886 *
2887 * Memory will not be disabled so firmware will remain loaded.
2888 */
cs_dsp_stop(struct cs_dsp * dsp)2889 void cs_dsp_stop(struct cs_dsp *dsp)
2890 {
2891 /* Tell the firmware to cleanup */
2892 cs_dsp_signal_event_controls(dsp, CS_DSP_FW_EVENT_SHUTDOWN);
2893
2894 if (dsp->ops->stop_watchdog)
2895 dsp->ops->stop_watchdog(dsp);
2896
2897 /* Log firmware state, it can be useful for analysis */
2898 if (dsp->ops->show_fw_status)
2899 dsp->ops->show_fw_status(dsp);
2900
2901 mutex_lock(&dsp->pwr_lock);
2902
2903 if (dsp->client_ops->pre_stop)
2904 dsp->client_ops->pre_stop(dsp);
2905
2906 dsp->running = false;
2907
2908 if (dsp->ops->stop_core)
2909 dsp->ops->stop_core(dsp);
2910 if (dsp->ops->disable_core)
2911 dsp->ops->disable_core(dsp);
2912
2913 if (dsp->client_ops->post_stop)
2914 dsp->client_ops->post_stop(dsp);
2915
2916 mutex_unlock(&dsp->pwr_lock);
2917
2918 cs_dsp_dbg(dsp, "Execution stopped\n");
2919 }
2920 EXPORT_SYMBOL_NS_GPL(cs_dsp_stop, "FW_CS_DSP");
2921
cs_dsp_halo_start_core(struct cs_dsp * dsp)2922 static int cs_dsp_halo_start_core(struct cs_dsp *dsp)
2923 {
2924 int ret;
2925
2926 ret = regmap_update_bits(dsp->regmap, dsp->base + HALO_CCM_CORE_CONTROL,
2927 HALO_CORE_RESET | HALO_CORE_EN,
2928 HALO_CORE_RESET | HALO_CORE_EN);
2929 if (ret)
2930 return ret;
2931
2932 return regmap_update_bits(dsp->regmap, dsp->base + HALO_CCM_CORE_CONTROL,
2933 HALO_CORE_RESET, 0);
2934 }
2935
cs_dsp_halo_stop_core(struct cs_dsp * dsp)2936 static void cs_dsp_halo_stop_core(struct cs_dsp *dsp)
2937 {
2938 regmap_update_bits(dsp->regmap, dsp->base + HALO_CCM_CORE_CONTROL,
2939 HALO_CORE_EN, 0);
2940
2941 /* reset halo core with CORE_SOFT_RESET */
2942 regmap_update_bits(dsp->regmap, dsp->base + HALO_CORE_SOFT_RESET,
2943 HALO_CORE_SOFT_RESET_MASK, 1);
2944 }
2945
2946 /**
2947 * cs_dsp_adsp2_init() - Initialise a cs_dsp structure representing a ADSP2 core
2948 * @dsp: pointer to DSP structure
2949 *
2950 * Return: Zero for success, a negative number on error.
2951 */
cs_dsp_adsp2_init(struct cs_dsp * dsp)2952 int cs_dsp_adsp2_init(struct cs_dsp *dsp)
2953 {
2954 int ret;
2955
2956 switch (dsp->rev) {
2957 case 0:
2958 /*
2959 * Disable the DSP memory by default when in reset for a small
2960 * power saving.
2961 */
2962 ret = regmap_update_bits(dsp->regmap, dsp->base + ADSP2_CONTROL,
2963 ADSP2_MEM_ENA, 0);
2964 if (ret) {
2965 cs_dsp_err(dsp,
2966 "Failed to clear memory retention: %d\n", ret);
2967 return ret;
2968 }
2969
2970 dsp->ops = &cs_dsp_adsp2_ops[0];
2971 break;
2972 case 1:
2973 dsp->ops = &cs_dsp_adsp2_ops[1];
2974 break;
2975 default:
2976 dsp->ops = &cs_dsp_adsp2_ops[2];
2977 break;
2978 }
2979
2980 return cs_dsp_common_init(dsp);
2981 }
2982 EXPORT_SYMBOL_NS_GPL(cs_dsp_adsp2_init, "FW_CS_DSP");
2983
2984 /**
2985 * cs_dsp_halo_init() - Initialise a cs_dsp structure representing a HALO Core DSP
2986 * @dsp: pointer to DSP structure
2987 *
2988 * Return: Zero for success, a negative number on error.
2989 */
cs_dsp_halo_init(struct cs_dsp * dsp)2990 int cs_dsp_halo_init(struct cs_dsp *dsp)
2991 {
2992 if (dsp->no_core_startstop)
2993 dsp->ops = &cs_dsp_halo_ao_ops;
2994 else
2995 dsp->ops = &cs_dsp_halo_ops;
2996
2997 return cs_dsp_common_init(dsp);
2998 }
2999 EXPORT_SYMBOL_NS_GPL(cs_dsp_halo_init, "FW_CS_DSP");
3000
3001 /**
3002 * cs_dsp_remove() - Clean a cs_dsp before deletion
3003 * @dsp: pointer to DSP structure
3004 */
cs_dsp_remove(struct cs_dsp * dsp)3005 void cs_dsp_remove(struct cs_dsp *dsp)
3006 {
3007 struct cs_dsp_coeff_ctl *ctl;
3008
3009 while (!list_empty(&dsp->ctl_list)) {
3010 ctl = list_first_entry(&dsp->ctl_list, struct cs_dsp_coeff_ctl, list);
3011
3012 if (dsp->client_ops->control_remove)
3013 dsp->client_ops->control_remove(ctl);
3014
3015 list_del(&ctl->list);
3016 cs_dsp_free_ctl_blk(ctl);
3017 }
3018 }
3019 EXPORT_SYMBOL_NS_GPL(cs_dsp_remove, "FW_CS_DSP");
3020
3021 /**
3022 * cs_dsp_read_raw_data_block() - Reads a block of data from DSP memory
3023 * @dsp: pointer to DSP structure
3024 * @mem_type: the type of DSP memory containing the data to be read
3025 * @mem_addr: the address of the data within the memory region
3026 * @num_words: the length of the data to read
3027 * @data: a buffer to store the fetched data
3028 *
3029 * If this is used to read unpacked 24-bit memory, each 24-bit DSP word will
3030 * occupy 32-bits in data (MSbyte will be 0). This padding can be removed using
3031 * cs_dsp_remove_padding()
3032 *
3033 * Return: Zero for success, a negative number on error.
3034 */
cs_dsp_read_raw_data_block(struct cs_dsp * dsp,int mem_type,unsigned int mem_addr,unsigned int num_words,__be32 * data)3035 int cs_dsp_read_raw_data_block(struct cs_dsp *dsp, int mem_type, unsigned int mem_addr,
3036 unsigned int num_words, __be32 *data)
3037 {
3038 struct cs_dsp_region const *mem = cs_dsp_find_region(dsp, mem_type);
3039 unsigned int reg;
3040 int ret;
3041
3042 lockdep_assert_held(&dsp->pwr_lock);
3043
3044 if (!mem)
3045 return -EINVAL;
3046
3047 reg = dsp->ops->region_to_reg(mem, mem_addr);
3048
3049 ret = regmap_raw_read(dsp->regmap, reg, data,
3050 sizeof(*data) * num_words);
3051 if (ret < 0)
3052 return ret;
3053
3054 return 0;
3055 }
3056 EXPORT_SYMBOL_NS_GPL(cs_dsp_read_raw_data_block, "FW_CS_DSP");
3057
3058 /**
3059 * cs_dsp_read_data_word() - Reads a word from DSP memory
3060 * @dsp: pointer to DSP structure
3061 * @mem_type: the type of DSP memory containing the data to be read
3062 * @mem_addr: the address of the data within the memory region
3063 * @data: a buffer to store the fetched data
3064 *
3065 * Return: Zero for success, a negative number on error.
3066 */
cs_dsp_read_data_word(struct cs_dsp * dsp,int mem_type,unsigned int mem_addr,u32 * data)3067 int cs_dsp_read_data_word(struct cs_dsp *dsp, int mem_type, unsigned int mem_addr, u32 *data)
3068 {
3069 __be32 raw;
3070 int ret;
3071
3072 ret = cs_dsp_read_raw_data_block(dsp, mem_type, mem_addr, 1, &raw);
3073 if (ret < 0)
3074 return ret;
3075
3076 *data = be32_to_cpu(raw) & 0x00ffffffu;
3077
3078 return 0;
3079 }
3080 EXPORT_SYMBOL_NS_GPL(cs_dsp_read_data_word, "FW_CS_DSP");
3081
3082 /**
3083 * cs_dsp_write_data_word() - Writes a word to DSP memory
3084 * @dsp: pointer to DSP structure
3085 * @mem_type: the type of DSP memory containing the data to be written
3086 * @mem_addr: the address of the data within the memory region
3087 * @data: the data to be written
3088 *
3089 * Return: Zero for success, a negative number on error.
3090 */
cs_dsp_write_data_word(struct cs_dsp * dsp,int mem_type,unsigned int mem_addr,u32 data)3091 int cs_dsp_write_data_word(struct cs_dsp *dsp, int mem_type, unsigned int mem_addr, u32 data)
3092 {
3093 struct cs_dsp_region const *mem = cs_dsp_find_region(dsp, mem_type);
3094 __be32 val = cpu_to_be32(data & 0x00ffffffu);
3095 unsigned int reg;
3096
3097 lockdep_assert_held(&dsp->pwr_lock);
3098
3099 if (!mem)
3100 return -EINVAL;
3101
3102 reg = dsp->ops->region_to_reg(mem, mem_addr);
3103
3104 return regmap_raw_write(dsp->regmap, reg, &val, sizeof(val));
3105 }
3106 EXPORT_SYMBOL_NS_GPL(cs_dsp_write_data_word, "FW_CS_DSP");
3107
3108 /**
3109 * cs_dsp_remove_padding() - Convert unpacked words to packed bytes
3110 * @buf: buffer containing DSP words read from DSP memory
3111 * @nwords: number of words to convert
3112 *
3113 * DSP words from the register map have pad bytes and the data bytes
3114 * are in swapped order. This swaps to the native endian order and
3115 * strips the pad bytes.
3116 */
cs_dsp_remove_padding(u32 * buf,int nwords)3117 void cs_dsp_remove_padding(u32 *buf, int nwords)
3118 {
3119 const __be32 *pack_in = (__be32 *)buf;
3120 u8 *pack_out = (u8 *)buf;
3121 int i;
3122
3123 for (i = 0; i < nwords; i++) {
3124 u32 word = be32_to_cpu(*pack_in++);
3125 *pack_out++ = (u8)word;
3126 *pack_out++ = (u8)(word >> 8);
3127 *pack_out++ = (u8)(word >> 16);
3128 }
3129 }
3130 EXPORT_SYMBOL_NS_GPL(cs_dsp_remove_padding, "FW_CS_DSP");
3131
3132 /**
3133 * cs_dsp_adsp2_bus_error() - Handle a DSP bus error interrupt
3134 * @dsp: pointer to DSP structure
3135 *
3136 * The firmware and DSP state will be logged for future analysis.
3137 */
cs_dsp_adsp2_bus_error(struct cs_dsp * dsp)3138 void cs_dsp_adsp2_bus_error(struct cs_dsp *dsp)
3139 {
3140 unsigned int val;
3141 struct regmap *regmap = dsp->regmap;
3142 int ret = 0;
3143
3144 mutex_lock(&dsp->pwr_lock);
3145
3146 ret = regmap_read(regmap, dsp->base + ADSP2_LOCK_REGION_CTRL, &val);
3147 if (ret) {
3148 cs_dsp_err(dsp,
3149 "Failed to read Region Lock Ctrl register: %d\n", ret);
3150 goto error;
3151 }
3152
3153 if (val & ADSP2_WDT_TIMEOUT_STS_MASK) {
3154 cs_dsp_err(dsp, "watchdog timeout error\n");
3155 dsp->ops->stop_watchdog(dsp);
3156 if (dsp->client_ops->watchdog_expired)
3157 dsp->client_ops->watchdog_expired(dsp);
3158 }
3159
3160 if (val & (ADSP2_ADDR_ERR_MASK | ADSP2_REGION_LOCK_ERR_MASK)) {
3161 if (val & ADSP2_ADDR_ERR_MASK)
3162 cs_dsp_err(dsp, "bus error: address error\n");
3163 else
3164 cs_dsp_err(dsp, "bus error: region lock error\n");
3165
3166 ret = regmap_read(regmap, dsp->base + ADSP2_BUS_ERR_ADDR, &val);
3167 if (ret) {
3168 cs_dsp_err(dsp,
3169 "Failed to read Bus Err Addr register: %d\n",
3170 ret);
3171 goto error;
3172 }
3173
3174 cs_dsp_err(dsp, "bus error address = 0x%x\n",
3175 val & ADSP2_BUS_ERR_ADDR_MASK);
3176
3177 ret = regmap_read(regmap,
3178 dsp->base + ADSP2_PMEM_ERR_ADDR_XMEM_ERR_ADDR,
3179 &val);
3180 if (ret) {
3181 cs_dsp_err(dsp,
3182 "Failed to read Pmem Xmem Err Addr register: %d\n",
3183 ret);
3184 goto error;
3185 }
3186
3187 cs_dsp_err(dsp, "xmem error address = 0x%x\n",
3188 val & ADSP2_XMEM_ERR_ADDR_MASK);
3189 cs_dsp_err(dsp, "pmem error address = 0x%x\n",
3190 (val & ADSP2_PMEM_ERR_ADDR_MASK) >>
3191 ADSP2_PMEM_ERR_ADDR_SHIFT);
3192 }
3193
3194 regmap_update_bits(regmap, dsp->base + ADSP2_LOCK_REGION_CTRL,
3195 ADSP2_CTRL_ERR_EINT, ADSP2_CTRL_ERR_EINT);
3196
3197 error:
3198 mutex_unlock(&dsp->pwr_lock);
3199 }
3200 EXPORT_SYMBOL_NS_GPL(cs_dsp_adsp2_bus_error, "FW_CS_DSP");
3201
3202 /**
3203 * cs_dsp_halo_bus_error() - Handle a DSP bus error interrupt
3204 * @dsp: pointer to DSP structure
3205 *
3206 * The firmware and DSP state will be logged for future analysis.
3207 */
cs_dsp_halo_bus_error(struct cs_dsp * dsp)3208 void cs_dsp_halo_bus_error(struct cs_dsp *dsp)
3209 {
3210 struct regmap *regmap = dsp->regmap;
3211 unsigned int fault[6];
3212 struct reg_sequence clear[] = {
3213 { dsp->base + HALO_MPU_XM_VIO_STATUS, 0x0 },
3214 { dsp->base + HALO_MPU_YM_VIO_STATUS, 0x0 },
3215 { dsp->base + HALO_MPU_PM_VIO_STATUS, 0x0 },
3216 };
3217 int ret;
3218
3219 mutex_lock(&dsp->pwr_lock);
3220
3221 ret = regmap_read(regmap, dsp->base_sysinfo + HALO_AHBM_WINDOW_DEBUG_1,
3222 fault);
3223 if (ret) {
3224 cs_dsp_warn(dsp, "Failed to read AHB DEBUG_1: %d\n", ret);
3225 goto exit_unlock;
3226 }
3227
3228 cs_dsp_warn(dsp, "AHB: STATUS: 0x%x ADDR: 0x%x\n",
3229 *fault & HALO_AHBM_FLAGS_ERR_MASK,
3230 (*fault & HALO_AHBM_CORE_ERR_ADDR_MASK) >>
3231 HALO_AHBM_CORE_ERR_ADDR_SHIFT);
3232
3233 ret = regmap_read(regmap, dsp->base_sysinfo + HALO_AHBM_WINDOW_DEBUG_0,
3234 fault);
3235 if (ret) {
3236 cs_dsp_warn(dsp, "Failed to read AHB DEBUG_0: %d\n", ret);
3237 goto exit_unlock;
3238 }
3239
3240 cs_dsp_warn(dsp, "AHB: SYS_ADDR: 0x%x\n", *fault);
3241
3242 ret = regmap_bulk_read(regmap, dsp->base + HALO_MPU_XM_VIO_ADDR,
3243 fault, ARRAY_SIZE(fault));
3244 if (ret) {
3245 cs_dsp_warn(dsp, "Failed to read MPU fault info: %d\n", ret);
3246 goto exit_unlock;
3247 }
3248
3249 cs_dsp_warn(dsp, "XM: STATUS:0x%x ADDR:0x%x\n", fault[1], fault[0]);
3250 cs_dsp_warn(dsp, "YM: STATUS:0x%x ADDR:0x%x\n", fault[3], fault[2]);
3251 cs_dsp_warn(dsp, "PM: STATUS:0x%x ADDR:0x%x\n", fault[5], fault[4]);
3252
3253 ret = regmap_multi_reg_write(dsp->regmap, clear, ARRAY_SIZE(clear));
3254 if (ret)
3255 cs_dsp_warn(dsp, "Failed to clear MPU status: %d\n", ret);
3256
3257 exit_unlock:
3258 mutex_unlock(&dsp->pwr_lock);
3259 }
3260 EXPORT_SYMBOL_NS_GPL(cs_dsp_halo_bus_error, "FW_CS_DSP");
3261
3262 /**
3263 * cs_dsp_halo_wdt_expire() - Handle DSP watchdog expiry
3264 * @dsp: pointer to DSP structure
3265 *
3266 * This is logged for future analysis.
3267 */
cs_dsp_halo_wdt_expire(struct cs_dsp * dsp)3268 void cs_dsp_halo_wdt_expire(struct cs_dsp *dsp)
3269 {
3270 mutex_lock(&dsp->pwr_lock);
3271
3272 cs_dsp_warn(dsp, "WDT Expiry Fault\n");
3273
3274 dsp->ops->stop_watchdog(dsp);
3275 if (dsp->client_ops->watchdog_expired)
3276 dsp->client_ops->watchdog_expired(dsp);
3277
3278 mutex_unlock(&dsp->pwr_lock);
3279 }
3280 EXPORT_SYMBOL_NS_GPL(cs_dsp_halo_wdt_expire, "FW_CS_DSP");
3281
3282 static const struct cs_dsp_ops cs_dsp_adsp1_ops = {
3283 .validate_version = cs_dsp_validate_version,
3284 .parse_sizes = cs_dsp_adsp1_parse_sizes,
3285 .region_to_reg = cs_dsp_region_to_reg,
3286 };
3287
3288 static const struct cs_dsp_ops cs_dsp_adsp2_ops[] = {
3289 {
3290 .parse_sizes = cs_dsp_adsp2_parse_sizes,
3291 .validate_version = cs_dsp_validate_version,
3292 .setup_algs = cs_dsp_adsp2_setup_algs,
3293 .region_to_reg = cs_dsp_region_to_reg,
3294
3295 .show_fw_status = cs_dsp_adsp2_show_fw_status,
3296
3297 .enable_memory = cs_dsp_adsp2_enable_memory,
3298 .disable_memory = cs_dsp_adsp2_disable_memory,
3299
3300 .enable_core = cs_dsp_adsp2_enable_core,
3301 .disable_core = cs_dsp_adsp2_disable_core,
3302
3303 .start_core = cs_dsp_adsp2_start_core,
3304 .stop_core = cs_dsp_adsp2_stop_core,
3305
3306 },
3307 {
3308 .parse_sizes = cs_dsp_adsp2_parse_sizes,
3309 .validate_version = cs_dsp_validate_version,
3310 .setup_algs = cs_dsp_adsp2_setup_algs,
3311 .region_to_reg = cs_dsp_region_to_reg,
3312
3313 .show_fw_status = cs_dsp_adsp2v2_show_fw_status,
3314
3315 .enable_memory = cs_dsp_adsp2_enable_memory,
3316 .disable_memory = cs_dsp_adsp2_disable_memory,
3317 .lock_memory = cs_dsp_adsp2_lock,
3318
3319 .enable_core = cs_dsp_adsp2v2_enable_core,
3320 .disable_core = cs_dsp_adsp2v2_disable_core,
3321
3322 .start_core = cs_dsp_adsp2_start_core,
3323 .stop_core = cs_dsp_adsp2_stop_core,
3324 },
3325 {
3326 .parse_sizes = cs_dsp_adsp2_parse_sizes,
3327 .validate_version = cs_dsp_validate_version,
3328 .setup_algs = cs_dsp_adsp2_setup_algs,
3329 .region_to_reg = cs_dsp_region_to_reg,
3330
3331 .show_fw_status = cs_dsp_adsp2v2_show_fw_status,
3332 .stop_watchdog = cs_dsp_stop_watchdog,
3333
3334 .enable_memory = cs_dsp_adsp2_enable_memory,
3335 .disable_memory = cs_dsp_adsp2_disable_memory,
3336 .lock_memory = cs_dsp_adsp2_lock,
3337
3338 .enable_core = cs_dsp_adsp2v2_enable_core,
3339 .disable_core = cs_dsp_adsp2v2_disable_core,
3340
3341 .start_core = cs_dsp_adsp2_start_core,
3342 .stop_core = cs_dsp_adsp2_stop_core,
3343 },
3344 };
3345
3346 static const struct cs_dsp_ops cs_dsp_halo_ops = {
3347 .parse_sizes = cs_dsp_adsp2_parse_sizes,
3348 .validate_version = cs_dsp_halo_validate_version,
3349 .setup_algs = cs_dsp_halo_setup_algs,
3350 .region_to_reg = cs_dsp_halo_region_to_reg,
3351
3352 .show_fw_status = cs_dsp_halo_show_fw_status,
3353 .stop_watchdog = cs_dsp_halo_stop_watchdog,
3354
3355 .lock_memory = cs_dsp_halo_configure_mpu,
3356
3357 .start_core = cs_dsp_halo_start_core,
3358 .stop_core = cs_dsp_halo_stop_core,
3359 };
3360
3361 static const struct cs_dsp_ops cs_dsp_halo_ao_ops = {
3362 .parse_sizes = cs_dsp_adsp2_parse_sizes,
3363 .validate_version = cs_dsp_halo_validate_version,
3364 .setup_algs = cs_dsp_halo_setup_algs,
3365 .region_to_reg = cs_dsp_halo_region_to_reg,
3366 .show_fw_status = cs_dsp_halo_show_fw_status,
3367 };
3368
3369 /**
3370 * cs_dsp_chunk_write() - Format data to a DSP memory chunk
3371 * @ch: Pointer to the chunk structure
3372 * @nbits: Number of bits to write
3373 * @val: Value to write
3374 *
3375 * This function sequentially writes values into the format required for DSP
3376 * memory, it handles both inserting of the padding bytes and converting to
3377 * big endian. Note that data is only committed to the chunk when a whole DSP
3378 * words worth of data is available.
3379 *
3380 * Return: Zero for success, a negative number on error.
3381 */
cs_dsp_chunk_write(struct cs_dsp_chunk * ch,int nbits,u32 val)3382 int cs_dsp_chunk_write(struct cs_dsp_chunk *ch, int nbits, u32 val)
3383 {
3384 int nwrite, i;
3385
3386 nwrite = min(CS_DSP_DATA_WORD_BITS - ch->cachebits, nbits);
3387
3388 ch->cache <<= nwrite;
3389 ch->cache |= val >> (nbits - nwrite);
3390 ch->cachebits += nwrite;
3391 nbits -= nwrite;
3392
3393 if (ch->cachebits == CS_DSP_DATA_WORD_BITS) {
3394 if (cs_dsp_chunk_end(ch))
3395 return -ENOSPC;
3396
3397 ch->cache &= 0xFFFFFF;
3398 for (i = 0; i < sizeof(ch->cache); i++, ch->cache <<= BITS_PER_BYTE)
3399 *ch->data++ = (ch->cache & 0xFF000000) >> CS_DSP_DATA_WORD_BITS;
3400
3401 ch->bytes += sizeof(ch->cache);
3402 ch->cachebits = 0;
3403 }
3404
3405 if (nbits)
3406 return cs_dsp_chunk_write(ch, nbits, val);
3407
3408 return 0;
3409 }
3410 EXPORT_SYMBOL_NS_GPL(cs_dsp_chunk_write, "FW_CS_DSP");
3411
3412 /**
3413 * cs_dsp_chunk_flush() - Pad remaining data with zero and commit to chunk
3414 * @ch: Pointer to the chunk structure
3415 *
3416 * As cs_dsp_chunk_write only writes data when a whole DSP word is ready to
3417 * be written out it is possible that some data will remain in the cache, this
3418 * function will pad that data with zeros upto a whole DSP word and write out.
3419 *
3420 * Return: Zero for success, a negative number on error.
3421 */
cs_dsp_chunk_flush(struct cs_dsp_chunk * ch)3422 int cs_dsp_chunk_flush(struct cs_dsp_chunk *ch)
3423 {
3424 if (!ch->cachebits)
3425 return 0;
3426
3427 return cs_dsp_chunk_write(ch, CS_DSP_DATA_WORD_BITS - ch->cachebits, 0);
3428 }
3429 EXPORT_SYMBOL_NS_GPL(cs_dsp_chunk_flush, "FW_CS_DSP");
3430
3431 /**
3432 * cs_dsp_chunk_read() - Parse data from a DSP memory chunk
3433 * @ch: Pointer to the chunk structure
3434 * @nbits: Number of bits to read
3435 *
3436 * This function sequentially reads values from a DSP memory formatted buffer,
3437 * it handles both removing of the padding bytes and converting from big endian.
3438 *
3439 * Return: A negative number is returned on error, otherwise the read value.
3440 */
cs_dsp_chunk_read(struct cs_dsp_chunk * ch,int nbits)3441 int cs_dsp_chunk_read(struct cs_dsp_chunk *ch, int nbits)
3442 {
3443 int nread, i;
3444 u32 result;
3445
3446 if (!ch->cachebits) {
3447 if (cs_dsp_chunk_end(ch))
3448 return -ENOSPC;
3449
3450 ch->cache = 0;
3451 ch->cachebits = CS_DSP_DATA_WORD_BITS;
3452
3453 for (i = 0; i < sizeof(ch->cache); i++, ch->cache <<= BITS_PER_BYTE)
3454 ch->cache |= *ch->data++;
3455
3456 ch->bytes += sizeof(ch->cache);
3457 }
3458
3459 nread = min(ch->cachebits, nbits);
3460 nbits -= nread;
3461
3462 result = ch->cache >> ((sizeof(ch->cache) * BITS_PER_BYTE) - nread);
3463 ch->cache <<= nread;
3464 ch->cachebits -= nread;
3465
3466 if (nbits)
3467 result = (result << nbits) | cs_dsp_chunk_read(ch, nbits);
3468
3469 return result;
3470 }
3471 EXPORT_SYMBOL_NS_GPL(cs_dsp_chunk_read, "FW_CS_DSP");
3472
3473
3474 struct cs_dsp_wseq_op {
3475 struct list_head list;
3476 u32 address;
3477 u32 data;
3478 u16 offset;
3479 u8 operation;
3480 };
3481
cs_dsp_wseq_clear(struct cs_dsp * dsp,struct cs_dsp_wseq * wseq)3482 static void cs_dsp_wseq_clear(struct cs_dsp *dsp, struct cs_dsp_wseq *wseq)
3483 {
3484 struct cs_dsp_wseq_op *op, *op_tmp;
3485
3486 list_for_each_entry_safe(op, op_tmp, &wseq->ops, list) {
3487 list_del(&op->list);
3488 devm_kfree(dsp->dev, op);
3489 }
3490 }
3491
cs_dsp_populate_wseq(struct cs_dsp * dsp,struct cs_dsp_wseq * wseq)3492 static int cs_dsp_populate_wseq(struct cs_dsp *dsp, struct cs_dsp_wseq *wseq)
3493 {
3494 struct cs_dsp_wseq_op *op = NULL;
3495 struct cs_dsp_chunk chunk;
3496 u8 *words;
3497 int ret;
3498
3499 if (!wseq->ctl) {
3500 cs_dsp_err(dsp, "No control for write sequence\n");
3501 return -EINVAL;
3502 }
3503
3504 words = kzalloc(wseq->ctl->len, GFP_KERNEL);
3505 if (!words)
3506 return -ENOMEM;
3507
3508 ret = cs_dsp_coeff_read_ctrl(wseq->ctl, 0, words, wseq->ctl->len);
3509 if (ret) {
3510 cs_dsp_err(dsp, "Failed to read %s: %d\n", wseq->ctl->subname, ret);
3511 goto err_free;
3512 }
3513
3514 INIT_LIST_HEAD(&wseq->ops);
3515
3516 chunk = cs_dsp_chunk(words, wseq->ctl->len);
3517
3518 while (!cs_dsp_chunk_end(&chunk)) {
3519 op = devm_kzalloc(dsp->dev, sizeof(*op), GFP_KERNEL);
3520 if (!op) {
3521 ret = -ENOMEM;
3522 goto err_free;
3523 }
3524
3525 op->offset = cs_dsp_chunk_bytes(&chunk);
3526 op->operation = cs_dsp_chunk_read(&chunk, 8);
3527
3528 switch (op->operation) {
3529 case CS_DSP_WSEQ_END:
3530 op->data = WSEQ_END_OF_SCRIPT;
3531 break;
3532 case CS_DSP_WSEQ_UNLOCK:
3533 op->data = cs_dsp_chunk_read(&chunk, 16);
3534 break;
3535 case CS_DSP_WSEQ_ADDR8:
3536 op->address = cs_dsp_chunk_read(&chunk, 8);
3537 op->data = cs_dsp_chunk_read(&chunk, 32);
3538 break;
3539 case CS_DSP_WSEQ_H16:
3540 case CS_DSP_WSEQ_L16:
3541 op->address = cs_dsp_chunk_read(&chunk, 24);
3542 op->data = cs_dsp_chunk_read(&chunk, 16);
3543 break;
3544 case CS_DSP_WSEQ_FULL:
3545 op->address = cs_dsp_chunk_read(&chunk, 32);
3546 op->data = cs_dsp_chunk_read(&chunk, 32);
3547 break;
3548 default:
3549 ret = -EINVAL;
3550 cs_dsp_err(dsp, "Unsupported op: %X\n", op->operation);
3551 devm_kfree(dsp->dev, op);
3552 goto err_free;
3553 }
3554
3555 list_add_tail(&op->list, &wseq->ops);
3556
3557 if (op->operation == CS_DSP_WSEQ_END)
3558 break;
3559 }
3560
3561 if (op && op->operation != CS_DSP_WSEQ_END) {
3562 cs_dsp_err(dsp, "%s missing end terminator\n", wseq->ctl->subname);
3563 ret = -ENOENT;
3564 }
3565
3566 err_free:
3567 kfree(words);
3568
3569 return ret;
3570 }
3571
3572 /**
3573 * cs_dsp_wseq_init() - Initialize write sequences contained within the loaded DSP firmware
3574 * @dsp: Pointer to DSP structure
3575 * @wseqs: List of write sequences to initialize
3576 * @num_wseqs: Number of write sequences to initialize
3577 *
3578 * Return: Zero for success, a negative number on error.
3579 */
cs_dsp_wseq_init(struct cs_dsp * dsp,struct cs_dsp_wseq * wseqs,unsigned int num_wseqs)3580 int cs_dsp_wseq_init(struct cs_dsp *dsp, struct cs_dsp_wseq *wseqs, unsigned int num_wseqs)
3581 {
3582 int i, ret;
3583
3584 lockdep_assert_held(&dsp->pwr_lock);
3585
3586 for (i = 0; i < num_wseqs; i++) {
3587 ret = cs_dsp_populate_wseq(dsp, &wseqs[i]);
3588 if (ret) {
3589 cs_dsp_wseq_clear(dsp, &wseqs[i]);
3590 return ret;
3591 }
3592 }
3593
3594 return 0;
3595 }
3596 EXPORT_SYMBOL_NS_GPL(cs_dsp_wseq_init, "FW_CS_DSP");
3597
cs_dsp_wseq_find_op(u32 addr,u8 op_code,struct list_head * wseq_ops)3598 static struct cs_dsp_wseq_op *cs_dsp_wseq_find_op(u32 addr, u8 op_code,
3599 struct list_head *wseq_ops)
3600 {
3601 struct cs_dsp_wseq_op *op;
3602
3603 list_for_each_entry(op, wseq_ops, list) {
3604 if (op->operation == op_code && op->address == addr)
3605 return op;
3606 }
3607
3608 return NULL;
3609 }
3610
3611 /**
3612 * cs_dsp_wseq_write() - Add or update an entry in a write sequence
3613 * @dsp: Pointer to a DSP structure
3614 * @wseq: Write sequence to write to
3615 * @addr: Address of the register to be written to
3616 * @data: Data to be written
3617 * @op_code: The type of operation of the new entry
3618 * @update: If true, searches for the first entry in the write sequence with
3619 * the same address and op_code, and replaces it. If false, creates a new entry
3620 * at the tail
3621 *
3622 * This function formats register address and value pairs into the format
3623 * required for write sequence entries, and either updates or adds the
3624 * new entry into the write sequence.
3625 *
3626 * If update is set to true and no matching entry is found, it will add a new entry.
3627 *
3628 * Return: Zero for success, a negative number on error.
3629 */
cs_dsp_wseq_write(struct cs_dsp * dsp,struct cs_dsp_wseq * wseq,u32 addr,u32 data,u8 op_code,bool update)3630 int cs_dsp_wseq_write(struct cs_dsp *dsp, struct cs_dsp_wseq *wseq,
3631 u32 addr, u32 data, u8 op_code, bool update)
3632 {
3633 struct cs_dsp_wseq_op *op_end, *op_new = NULL;
3634 u32 words[WSEQ_OP_MAX_WORDS];
3635 struct cs_dsp_chunk chunk;
3636 int new_op_size, ret;
3637
3638 if (update)
3639 op_new = cs_dsp_wseq_find_op(addr, op_code, &wseq->ops);
3640
3641 /* If entry to update is not found, treat it as a new operation */
3642 if (!op_new) {
3643 op_end = cs_dsp_wseq_find_op(0, CS_DSP_WSEQ_END, &wseq->ops);
3644 if (!op_end) {
3645 cs_dsp_err(dsp, "Missing terminator for %s\n", wseq->ctl->subname);
3646 return -EINVAL;
3647 }
3648
3649 op_new = devm_kzalloc(dsp->dev, sizeof(*op_new), GFP_KERNEL);
3650 if (!op_new)
3651 return -ENOMEM;
3652
3653 op_new->operation = op_code;
3654 op_new->address = addr;
3655 op_new->offset = op_end->offset;
3656 update = false;
3657 }
3658
3659 op_new->data = data;
3660
3661 chunk = cs_dsp_chunk(words, sizeof(words));
3662 cs_dsp_chunk_write(&chunk, 8, op_new->operation);
3663
3664 switch (op_code) {
3665 case CS_DSP_WSEQ_FULL:
3666 cs_dsp_chunk_write(&chunk, 32, op_new->address);
3667 cs_dsp_chunk_write(&chunk, 32, op_new->data);
3668 break;
3669 case CS_DSP_WSEQ_L16:
3670 case CS_DSP_WSEQ_H16:
3671 cs_dsp_chunk_write(&chunk, 24, op_new->address);
3672 cs_dsp_chunk_write(&chunk, 16, op_new->data);
3673 break;
3674 default:
3675 ret = -EINVAL;
3676 cs_dsp_err(dsp, "Operation %X not supported\n", op_code);
3677 goto op_new_free;
3678 }
3679
3680 new_op_size = cs_dsp_chunk_bytes(&chunk);
3681
3682 if (!update) {
3683 if (wseq->ctl->len - op_end->offset < new_op_size) {
3684 cs_dsp_err(dsp, "Not enough memory in %s for entry\n", wseq->ctl->subname);
3685 ret = -E2BIG;
3686 goto op_new_free;
3687 }
3688
3689 op_end->offset += new_op_size;
3690
3691 ret = cs_dsp_coeff_write_ctrl(wseq->ctl, op_end->offset / sizeof(u32),
3692 &op_end->data, sizeof(u32));
3693 if (ret)
3694 goto op_new_free;
3695
3696 list_add_tail(&op_new->list, &op_end->list);
3697 }
3698
3699 ret = cs_dsp_coeff_write_ctrl(wseq->ctl, op_new->offset / sizeof(u32),
3700 words, new_op_size);
3701 if (ret)
3702 goto op_new_free;
3703
3704 return 0;
3705
3706 op_new_free:
3707 devm_kfree(dsp->dev, op_new);
3708
3709 return ret;
3710 }
3711 EXPORT_SYMBOL_NS_GPL(cs_dsp_wseq_write, "FW_CS_DSP");
3712
3713 /**
3714 * cs_dsp_wseq_multi_write() - Add or update multiple entries in a write sequence
3715 * @dsp: Pointer to a DSP structure
3716 * @wseq: Write sequence to write to
3717 * @reg_seq: List of address-data pairs
3718 * @num_regs: Number of address-data pairs
3719 * @op_code: The types of operations of the new entries
3720 * @update: If true, searches for the first entry in the write sequence with
3721 * the same address and op_code, and replaces it. If false, creates a new entry
3722 * at the tail
3723 *
3724 * This function calls cs_dsp_wseq_write() for multiple address-data pairs.
3725 *
3726 * Return: Zero for success, a negative number on error.
3727 */
cs_dsp_wseq_multi_write(struct cs_dsp * dsp,struct cs_dsp_wseq * wseq,const struct reg_sequence * reg_seq,int num_regs,u8 op_code,bool update)3728 int cs_dsp_wseq_multi_write(struct cs_dsp *dsp, struct cs_dsp_wseq *wseq,
3729 const struct reg_sequence *reg_seq, int num_regs,
3730 u8 op_code, bool update)
3731 {
3732 int i, ret;
3733
3734 for (i = 0; i < num_regs; i++) {
3735 ret = cs_dsp_wseq_write(dsp, wseq, reg_seq[i].reg,
3736 reg_seq[i].def, op_code, update);
3737 if (ret)
3738 return ret;
3739 }
3740
3741 return 0;
3742 }
3743 EXPORT_SYMBOL_NS_GPL(cs_dsp_wseq_multi_write, "FW_CS_DSP");
3744
3745 MODULE_DESCRIPTION("Cirrus Logic DSP Support");
3746 MODULE_AUTHOR("Simon Trimmer <simont@opensource.cirrus.com>");
3747 MODULE_LICENSE("GPL v2");
3748