xref: /linux/drivers/firmware/cirrus/cs_dsp.c (revision 177bf8620cf4ed290ee170a6c5966adc0924b336)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * cs_dsp.c  --  Cirrus Logic DSP firmware support
4  *
5  * Based on sound/soc/codecs/wm_adsp.c
6  *
7  * Copyright 2012 Wolfson Microelectronics plc
8  * Copyright (C) 2015-2021 Cirrus Logic, Inc. and
9  *                         Cirrus Logic International Semiconductor Ltd.
10  */
11 
12 #include <linux/ctype.h>
13 #include <linux/debugfs.h>
14 #include <linux/delay.h>
15 #include <linux/minmax.h>
16 #include <linux/module.h>
17 #include <linux/moduleparam.h>
18 #include <linux/seq_file.h>
19 #include <linux/slab.h>
20 #include <linux/vmalloc.h>
21 
22 #include <linux/firmware/cirrus/cs_dsp.h>
23 #include <linux/firmware/cirrus/wmfw.h>
24 
25 #define cs_dsp_err(_dsp, fmt, ...) \
26 	dev_err(_dsp->dev, "%s: " fmt, _dsp->name, ##__VA_ARGS__)
27 #define cs_dsp_warn(_dsp, fmt, ...) \
28 	dev_warn(_dsp->dev, "%s: " fmt, _dsp->name, ##__VA_ARGS__)
29 #define cs_dsp_info(_dsp, fmt, ...) \
30 	dev_info(_dsp->dev, "%s: " fmt, _dsp->name, ##__VA_ARGS__)
31 #define cs_dsp_dbg(_dsp, fmt, ...) \
32 	dev_dbg(_dsp->dev, "%s: " fmt, _dsp->name, ##__VA_ARGS__)
33 
34 #define ADSP1_CONTROL_1                   0x00
35 #define ADSP1_CONTROL_2                   0x02
36 #define ADSP1_CONTROL_3                   0x03
37 #define ADSP1_CONTROL_4                   0x04
38 #define ADSP1_CONTROL_5                   0x06
39 #define ADSP1_CONTROL_6                   0x07
40 #define ADSP1_CONTROL_7                   0x08
41 #define ADSP1_CONTROL_8                   0x09
42 #define ADSP1_CONTROL_9                   0x0A
43 #define ADSP1_CONTROL_10                  0x0B
44 #define ADSP1_CONTROL_11                  0x0C
45 #define ADSP1_CONTROL_12                  0x0D
46 #define ADSP1_CONTROL_13                  0x0F
47 #define ADSP1_CONTROL_14                  0x10
48 #define ADSP1_CONTROL_15                  0x11
49 #define ADSP1_CONTROL_16                  0x12
50 #define ADSP1_CONTROL_17                  0x13
51 #define ADSP1_CONTROL_18                  0x14
52 #define ADSP1_CONTROL_19                  0x16
53 #define ADSP1_CONTROL_20                  0x17
54 #define ADSP1_CONTROL_21                  0x18
55 #define ADSP1_CONTROL_22                  0x1A
56 #define ADSP1_CONTROL_23                  0x1B
57 #define ADSP1_CONTROL_24                  0x1C
58 #define ADSP1_CONTROL_25                  0x1E
59 #define ADSP1_CONTROL_26                  0x20
60 #define ADSP1_CONTROL_27                  0x21
61 #define ADSP1_CONTROL_28                  0x22
62 #define ADSP1_CONTROL_29                  0x23
63 #define ADSP1_CONTROL_30                  0x24
64 #define ADSP1_CONTROL_31                  0x26
65 
66 /*
67  * ADSP1 Control 19
68  */
69 #define ADSP1_WDMA_BUFFER_LENGTH_MASK     0x00FF  /* DSP1_WDMA_BUFFER_LENGTH - [7:0] */
70 #define ADSP1_WDMA_BUFFER_LENGTH_SHIFT         0  /* DSP1_WDMA_BUFFER_LENGTH - [7:0] */
71 #define ADSP1_WDMA_BUFFER_LENGTH_WIDTH         8  /* DSP1_WDMA_BUFFER_LENGTH - [7:0] */
72 
73 /*
74  * ADSP1 Control 30
75  */
76 #define ADSP1_DBG_CLK_ENA                 0x0008  /* DSP1_DBG_CLK_ENA */
77 #define ADSP1_DBG_CLK_ENA_MASK            0x0008  /* DSP1_DBG_CLK_ENA */
78 #define ADSP1_DBG_CLK_ENA_SHIFT                3  /* DSP1_DBG_CLK_ENA */
79 #define ADSP1_DBG_CLK_ENA_WIDTH                1  /* DSP1_DBG_CLK_ENA */
80 #define ADSP1_SYS_ENA                     0x0004  /* DSP1_SYS_ENA */
81 #define ADSP1_SYS_ENA_MASK                0x0004  /* DSP1_SYS_ENA */
82 #define ADSP1_SYS_ENA_SHIFT                    2  /* DSP1_SYS_ENA */
83 #define ADSP1_SYS_ENA_WIDTH                    1  /* DSP1_SYS_ENA */
84 #define ADSP1_CORE_ENA                    0x0002  /* DSP1_CORE_ENA */
85 #define ADSP1_CORE_ENA_MASK               0x0002  /* DSP1_CORE_ENA */
86 #define ADSP1_CORE_ENA_SHIFT                   1  /* DSP1_CORE_ENA */
87 #define ADSP1_CORE_ENA_WIDTH                   1  /* DSP1_CORE_ENA */
88 #define ADSP1_START                       0x0001  /* DSP1_START */
89 #define ADSP1_START_MASK                  0x0001  /* DSP1_START */
90 #define ADSP1_START_SHIFT                      0  /* DSP1_START */
91 #define ADSP1_START_WIDTH                      1  /* DSP1_START */
92 
93 /*
94  * ADSP1 Control 31
95  */
96 #define ADSP1_CLK_SEL_MASK                0x0007  /* CLK_SEL_ENA */
97 #define ADSP1_CLK_SEL_SHIFT                    0  /* CLK_SEL_ENA */
98 #define ADSP1_CLK_SEL_WIDTH                    3  /* CLK_SEL_ENA */
99 
100 #define ADSP2_CONTROL                     0x0
101 #define ADSP2_CLOCKING                    0x1
102 #define ADSP2V2_CLOCKING                  0x2
103 #define ADSP2_STATUS1                     0x4
104 #define ADSP2_WDMA_CONFIG_1               0x30
105 #define ADSP2_WDMA_CONFIG_2               0x31
106 #define ADSP2V2_WDMA_CONFIG_2             0x32
107 #define ADSP2_RDMA_CONFIG_1               0x34
108 
109 #define ADSP2_SCRATCH0                    0x40
110 #define ADSP2_SCRATCH1                    0x41
111 #define ADSP2_SCRATCH2                    0x42
112 #define ADSP2_SCRATCH3                    0x43
113 
114 #define ADSP2V2_SCRATCH0_1                0x40
115 #define ADSP2V2_SCRATCH2_3                0x42
116 
117 /*
118  * ADSP2 Control
119  */
120 #define ADSP2_MEM_ENA                     0x0010  /* DSP1_MEM_ENA */
121 #define ADSP2_MEM_ENA_MASK                0x0010  /* DSP1_MEM_ENA */
122 #define ADSP2_MEM_ENA_SHIFT                    4  /* DSP1_MEM_ENA */
123 #define ADSP2_MEM_ENA_WIDTH                    1  /* DSP1_MEM_ENA */
124 #define ADSP2_SYS_ENA                     0x0004  /* DSP1_SYS_ENA */
125 #define ADSP2_SYS_ENA_MASK                0x0004  /* DSP1_SYS_ENA */
126 #define ADSP2_SYS_ENA_SHIFT                    2  /* DSP1_SYS_ENA */
127 #define ADSP2_SYS_ENA_WIDTH                    1  /* DSP1_SYS_ENA */
128 #define ADSP2_CORE_ENA                    0x0002  /* DSP1_CORE_ENA */
129 #define ADSP2_CORE_ENA_MASK               0x0002  /* DSP1_CORE_ENA */
130 #define ADSP2_CORE_ENA_SHIFT                   1  /* DSP1_CORE_ENA */
131 #define ADSP2_CORE_ENA_WIDTH                   1  /* DSP1_CORE_ENA */
132 #define ADSP2_START                       0x0001  /* DSP1_START */
133 #define ADSP2_START_MASK                  0x0001  /* DSP1_START */
134 #define ADSP2_START_SHIFT                      0  /* DSP1_START */
135 #define ADSP2_START_WIDTH                      1  /* DSP1_START */
136 
137 /*
138  * ADSP2 clocking
139  */
140 #define ADSP2_CLK_SEL_MASK                0x0007  /* CLK_SEL_ENA */
141 #define ADSP2_CLK_SEL_SHIFT                    0  /* CLK_SEL_ENA */
142 #define ADSP2_CLK_SEL_WIDTH                    3  /* CLK_SEL_ENA */
143 
144 /*
145  * ADSP2V2 clocking
146  */
147 #define ADSP2V2_CLK_SEL_MASK             0x70000  /* CLK_SEL_ENA */
148 #define ADSP2V2_CLK_SEL_SHIFT                 16  /* CLK_SEL_ENA */
149 #define ADSP2V2_CLK_SEL_WIDTH                  3  /* CLK_SEL_ENA */
150 
151 #define ADSP2V2_RATE_MASK                 0x7800  /* DSP_RATE */
152 #define ADSP2V2_RATE_SHIFT                    11  /* DSP_RATE */
153 #define ADSP2V2_RATE_WIDTH                     4  /* DSP_RATE */
154 
155 /*
156  * ADSP2 Status 1
157  */
158 #define ADSP2_RAM_RDY                     0x0001
159 #define ADSP2_RAM_RDY_MASK                0x0001
160 #define ADSP2_RAM_RDY_SHIFT                    0
161 #define ADSP2_RAM_RDY_WIDTH                    1
162 
163 /*
164  * ADSP2 Lock support
165  */
166 #define ADSP2_LOCK_CODE_0                    0x5555
167 #define ADSP2_LOCK_CODE_1                    0xAAAA
168 
169 #define ADSP2_WATCHDOG                       0x0A
170 #define ADSP2_BUS_ERR_ADDR                   0x52
171 #define ADSP2_REGION_LOCK_STATUS             0x64
172 #define ADSP2_LOCK_REGION_1_LOCK_REGION_0    0x66
173 #define ADSP2_LOCK_REGION_3_LOCK_REGION_2    0x68
174 #define ADSP2_LOCK_REGION_5_LOCK_REGION_4    0x6A
175 #define ADSP2_LOCK_REGION_7_LOCK_REGION_6    0x6C
176 #define ADSP2_LOCK_REGION_9_LOCK_REGION_8    0x6E
177 #define ADSP2_LOCK_REGION_CTRL               0x7A
178 #define ADSP2_PMEM_ERR_ADDR_XMEM_ERR_ADDR    0x7C
179 
180 #define ADSP2_REGION_LOCK_ERR_MASK           0x8000
181 #define ADSP2_ADDR_ERR_MASK                  0x4000
182 #define ADSP2_WDT_TIMEOUT_STS_MASK           0x2000
183 #define ADSP2_CTRL_ERR_PAUSE_ENA             0x0002
184 #define ADSP2_CTRL_ERR_EINT                  0x0001
185 
186 #define ADSP2_BUS_ERR_ADDR_MASK              0x00FFFFFF
187 #define ADSP2_XMEM_ERR_ADDR_MASK             0x0000FFFF
188 #define ADSP2_PMEM_ERR_ADDR_MASK             0x7FFF0000
189 #define ADSP2_PMEM_ERR_ADDR_SHIFT            16
190 #define ADSP2_WDT_ENA_MASK                   0xFFFFFFFD
191 
192 #define ADSP2_LOCK_REGION_SHIFT              16
193 
194 /*
195  * Event control messages
196  */
197 #define CS_DSP_FW_EVENT_SHUTDOWN             0x000001
198 
199 /*
200  * HALO system info
201  */
202 #define HALO_AHBM_WINDOW_DEBUG_0             0x02040
203 #define HALO_AHBM_WINDOW_DEBUG_1             0x02044
204 
205 /*
206  * HALO core
207  */
208 #define HALO_SCRATCH1                        0x005c0
209 #define HALO_SCRATCH2                        0x005c8
210 #define HALO_SCRATCH3                        0x005d0
211 #define HALO_SCRATCH4                        0x005d8
212 #define HALO_CCM_CORE_CONTROL                0x41000
213 #define HALO_CORE_SOFT_RESET                 0x00010
214 #define HALO_WDT_CONTROL                     0x47000
215 
216 /*
217  * HALO MPU banks
218  */
219 #define HALO_MPU_XMEM_ACCESS_0               0x43000
220 #define HALO_MPU_YMEM_ACCESS_0               0x43004
221 #define HALO_MPU_WINDOW_ACCESS_0             0x43008
222 #define HALO_MPU_XREG_ACCESS_0               0x4300C
223 #define HALO_MPU_YREG_ACCESS_0               0x43014
224 #define HALO_MPU_XMEM_ACCESS_1               0x43018
225 #define HALO_MPU_YMEM_ACCESS_1               0x4301C
226 #define HALO_MPU_WINDOW_ACCESS_1             0x43020
227 #define HALO_MPU_XREG_ACCESS_1               0x43024
228 #define HALO_MPU_YREG_ACCESS_1               0x4302C
229 #define HALO_MPU_XMEM_ACCESS_2               0x43030
230 #define HALO_MPU_YMEM_ACCESS_2               0x43034
231 #define HALO_MPU_WINDOW_ACCESS_2             0x43038
232 #define HALO_MPU_XREG_ACCESS_2               0x4303C
233 #define HALO_MPU_YREG_ACCESS_2               0x43044
234 #define HALO_MPU_XMEM_ACCESS_3               0x43048
235 #define HALO_MPU_YMEM_ACCESS_3               0x4304C
236 #define HALO_MPU_WINDOW_ACCESS_3             0x43050
237 #define HALO_MPU_XREG_ACCESS_3               0x43054
238 #define HALO_MPU_YREG_ACCESS_3               0x4305C
239 #define HALO_MPU_XM_VIO_ADDR                 0x43100
240 #define HALO_MPU_XM_VIO_STATUS               0x43104
241 #define HALO_MPU_YM_VIO_ADDR                 0x43108
242 #define HALO_MPU_YM_VIO_STATUS               0x4310C
243 #define HALO_MPU_PM_VIO_ADDR                 0x43110
244 #define HALO_MPU_PM_VIO_STATUS               0x43114
245 #define HALO_MPU_LOCK_CONFIG                 0x43140
246 
247 /*
248  * HALO_AHBM_WINDOW_DEBUG_1
249  */
250 #define HALO_AHBM_CORE_ERR_ADDR_MASK         0x0fffff00
251 #define HALO_AHBM_CORE_ERR_ADDR_SHIFT                 8
252 #define HALO_AHBM_FLAGS_ERR_MASK             0x000000ff
253 
254 /*
255  * HALO_CCM_CORE_CONTROL
256  */
257 #define HALO_CORE_RESET                     0x00000200
258 #define HALO_CORE_EN                        0x00000001
259 
260 /*
261  * HALO_CORE_SOFT_RESET
262  */
263 #define HALO_CORE_SOFT_RESET_MASK           0x00000001
264 
265 /*
266  * HALO_WDT_CONTROL
267  */
268 #define HALO_WDT_EN_MASK                    0x00000001
269 
270 /*
271  * HALO_MPU_?M_VIO_STATUS
272  */
273 #define HALO_MPU_VIO_STS_MASK               0x007e0000
274 #define HALO_MPU_VIO_STS_SHIFT                      17
275 #define HALO_MPU_VIO_ERR_WR_MASK            0x00008000
276 #define HALO_MPU_VIO_ERR_SRC_MASK           0x00007fff
277 #define HALO_MPU_VIO_ERR_SRC_SHIFT                   0
278 
279 /*
280  * Write Sequence
281  */
282 #define WSEQ_OP_MAX_WORDS	3
283 #define WSEQ_END_OF_SCRIPT	0xFFFFFF
284 
285 struct cs_dsp_ops {
286 	bool (*validate_version)(struct cs_dsp *dsp, unsigned int version);
287 	unsigned int (*parse_sizes)(struct cs_dsp *dsp,
288 				    const char * const file,
289 				    unsigned int pos,
290 				    const struct firmware *firmware);
291 	int (*setup_algs)(struct cs_dsp *dsp);
292 	unsigned int (*region_to_reg)(struct cs_dsp_region const *mem,
293 				      unsigned int offset);
294 
295 	void (*show_fw_status)(struct cs_dsp *dsp);
296 	void (*stop_watchdog)(struct cs_dsp *dsp);
297 
298 	int (*enable_memory)(struct cs_dsp *dsp);
299 	void (*disable_memory)(struct cs_dsp *dsp);
300 	int (*lock_memory)(struct cs_dsp *dsp, unsigned int lock_regions);
301 
302 	int (*enable_core)(struct cs_dsp *dsp);
303 	void (*disable_core)(struct cs_dsp *dsp);
304 
305 	int (*start_core)(struct cs_dsp *dsp);
306 	void (*stop_core)(struct cs_dsp *dsp);
307 };
308 
309 static const struct cs_dsp_ops cs_dsp_adsp1_ops;
310 static const struct cs_dsp_ops cs_dsp_adsp2_ops[];
311 static const struct cs_dsp_ops cs_dsp_halo_ops;
312 static const struct cs_dsp_ops cs_dsp_halo_ao_ops;
313 
314 struct cs_dsp_alg_region_list_item {
315 	struct list_head list;
316 	struct cs_dsp_alg_region alg_region;
317 };
318 
319 struct cs_dsp_buf {
320 	struct list_head list;
321 	void *buf;
322 };
323 
cs_dsp_buf_alloc(const void * src,size_t len,struct list_head * list)324 static struct cs_dsp_buf *cs_dsp_buf_alloc(const void *src, size_t len,
325 					   struct list_head *list)
326 {
327 	struct cs_dsp_buf *buf = kzalloc(sizeof(*buf), GFP_KERNEL);
328 
329 	if (buf == NULL)
330 		return NULL;
331 
332 	buf->buf = vmalloc(len);
333 	if (!buf->buf) {
334 		kfree(buf);
335 		return NULL;
336 	}
337 	memcpy(buf->buf, src, len);
338 
339 	if (list)
340 		list_add_tail(&buf->list, list);
341 
342 	return buf;
343 }
344 
cs_dsp_buf_free(struct list_head * list)345 static void cs_dsp_buf_free(struct list_head *list)
346 {
347 	while (!list_empty(list)) {
348 		struct cs_dsp_buf *buf = list_first_entry(list,
349 							  struct cs_dsp_buf,
350 							  list);
351 		list_del(&buf->list);
352 		vfree(buf->buf);
353 		kfree(buf);
354 	}
355 }
356 
357 /**
358  * cs_dsp_mem_region_name() - Return a name string for a memory type
359  * @type: the memory type to match
360  *
361  * Return: A const string identifying the memory region.
362  */
cs_dsp_mem_region_name(unsigned int type)363 const char *cs_dsp_mem_region_name(unsigned int type)
364 {
365 	switch (type) {
366 	case WMFW_ADSP1_PM:
367 		return "PM";
368 	case WMFW_HALO_PM_PACKED:
369 		return "PM_PACKED";
370 	case WMFW_ADSP1_DM:
371 		return "DM";
372 	case WMFW_ADSP2_XM:
373 		return "XM";
374 	case WMFW_HALO_XM_PACKED:
375 		return "XM_PACKED";
376 	case WMFW_ADSP2_YM:
377 		return "YM";
378 	case WMFW_HALO_YM_PACKED:
379 		return "YM_PACKED";
380 	case WMFW_ADSP1_ZM:
381 		return "ZM";
382 	default:
383 		return NULL;
384 	}
385 }
386 EXPORT_SYMBOL_NS_GPL(cs_dsp_mem_region_name, "FW_CS_DSP");
387 
388 #ifdef CONFIG_DEBUG_FS
cs_dsp_debugfs_save_wmfwname(struct cs_dsp * dsp,const char * s)389 static void cs_dsp_debugfs_save_wmfwname(struct cs_dsp *dsp, const char *s)
390 {
391 	char *tmp = kasprintf(GFP_KERNEL, "%s\n", s);
392 
393 	kfree(dsp->wmfw_file_name);
394 	dsp->wmfw_file_name = tmp;
395 }
396 
cs_dsp_debugfs_save_binname(struct cs_dsp * dsp,const char * s)397 static void cs_dsp_debugfs_save_binname(struct cs_dsp *dsp, const char *s)
398 {
399 	char *tmp = kasprintf(GFP_KERNEL, "%s\n", s);
400 
401 	kfree(dsp->bin_file_name);
402 	dsp->bin_file_name = tmp;
403 }
404 
cs_dsp_debugfs_clear(struct cs_dsp * dsp)405 static void cs_dsp_debugfs_clear(struct cs_dsp *dsp)
406 {
407 	kfree(dsp->wmfw_file_name);
408 	kfree(dsp->bin_file_name);
409 	dsp->wmfw_file_name = NULL;
410 	dsp->bin_file_name = NULL;
411 }
412 
cs_dsp_debugfs_wmfw_read(struct file * file,char __user * user_buf,size_t count,loff_t * ppos)413 static ssize_t cs_dsp_debugfs_wmfw_read(struct file *file,
414 					char __user *user_buf,
415 					size_t count, loff_t *ppos)
416 {
417 	struct cs_dsp *dsp = file->private_data;
418 	ssize_t ret;
419 
420 	mutex_lock(&dsp->pwr_lock);
421 
422 	if (!dsp->wmfw_file_name || !dsp->booted)
423 		ret = 0;
424 	else
425 		ret = simple_read_from_buffer(user_buf, count, ppos,
426 					      dsp->wmfw_file_name,
427 					      strlen(dsp->wmfw_file_name));
428 
429 	mutex_unlock(&dsp->pwr_lock);
430 	return ret;
431 }
432 
cs_dsp_debugfs_bin_read(struct file * file,char __user * user_buf,size_t count,loff_t * ppos)433 static ssize_t cs_dsp_debugfs_bin_read(struct file *file,
434 				       char __user *user_buf,
435 				       size_t count, loff_t *ppos)
436 {
437 	struct cs_dsp *dsp = file->private_data;
438 	ssize_t ret;
439 
440 	mutex_lock(&dsp->pwr_lock);
441 
442 	if (!dsp->bin_file_name || !dsp->booted)
443 		ret = 0;
444 	else
445 		ret = simple_read_from_buffer(user_buf, count, ppos,
446 					      dsp->bin_file_name,
447 					      strlen(dsp->bin_file_name));
448 
449 	mutex_unlock(&dsp->pwr_lock);
450 	return ret;
451 }
452 
453 static const struct {
454 	const char *name;
455 	const struct file_operations fops;
456 } cs_dsp_debugfs_fops[] = {
457 	{
458 		.name = "wmfw_file_name",
459 		.fops = {
460 			.open = simple_open,
461 			.read = cs_dsp_debugfs_wmfw_read,
462 		},
463 	},
464 	{
465 		.name = "bin_file_name",
466 		.fops = {
467 			.open = simple_open,
468 			.read = cs_dsp_debugfs_bin_read,
469 		},
470 	},
471 };
472 
473 static int cs_dsp_coeff_base_reg(struct cs_dsp_coeff_ctl *ctl, unsigned int *reg,
474 				 unsigned int off);
475 
cs_dsp_debugfs_read_controls_show(struct seq_file * s,void * ignored)476 static int cs_dsp_debugfs_read_controls_show(struct seq_file *s, void *ignored)
477 {
478 	struct cs_dsp *dsp = s->private;
479 	struct cs_dsp_coeff_ctl *ctl;
480 	unsigned int reg;
481 
482 	list_for_each_entry(ctl, &dsp->ctl_list, list) {
483 		cs_dsp_coeff_base_reg(ctl, &reg, 0);
484 		seq_printf(s, "%22.*s: %#8zx %s:%08x %#8x %s %#8x %#4x %c%c%c%c %s %s\n",
485 			   ctl->subname_len, ctl->subname, ctl->len,
486 			   cs_dsp_mem_region_name(ctl->alg_region.type),
487 			   ctl->offset, reg, ctl->fw_name, ctl->alg_region.alg, ctl->type,
488 			   ctl->flags & WMFW_CTL_FLAG_VOLATILE ? 'V' : '-',
489 			   ctl->flags & WMFW_CTL_FLAG_SYS ? 'S' : '-',
490 			   ctl->flags & WMFW_CTL_FLAG_READABLE ? 'R' : '-',
491 			   ctl->flags & WMFW_CTL_FLAG_WRITEABLE ? 'W' : '-',
492 			   ctl->enabled ? "enabled" : "disabled",
493 			   ctl->set ? "dirty" : "clean");
494 	}
495 
496 	return 0;
497 }
498 DEFINE_SHOW_ATTRIBUTE(cs_dsp_debugfs_read_controls);
499 
500 /**
501  * cs_dsp_init_debugfs() - Create and populate DSP representation in debugfs
502  * @dsp: pointer to DSP structure
503  * @debugfs_root: pointer to debugfs directory in which to create this DSP
504  *                representation
505  */
cs_dsp_init_debugfs(struct cs_dsp * dsp,struct dentry * debugfs_root)506 void cs_dsp_init_debugfs(struct cs_dsp *dsp, struct dentry *debugfs_root)
507 {
508 	struct dentry *root = NULL;
509 	int i;
510 
511 	root = debugfs_create_dir(dsp->name, debugfs_root);
512 
513 	debugfs_create_bool("booted", 0444, root, &dsp->booted);
514 	debugfs_create_bool("running", 0444, root, &dsp->running);
515 	debugfs_create_x32("fw_id", 0444, root, &dsp->fw_id);
516 	debugfs_create_x32("fw_version", 0444, root, &dsp->fw_id_version);
517 
518 	for (i = 0; i < ARRAY_SIZE(cs_dsp_debugfs_fops); ++i)
519 		debugfs_create_file(cs_dsp_debugfs_fops[i].name, 0444, root,
520 				    dsp, &cs_dsp_debugfs_fops[i].fops);
521 
522 	debugfs_create_file("controls", 0444, root, dsp,
523 			    &cs_dsp_debugfs_read_controls_fops);
524 
525 	dsp->debugfs_root = root;
526 }
527 EXPORT_SYMBOL_NS_GPL(cs_dsp_init_debugfs, "FW_CS_DSP");
528 
529 /**
530  * cs_dsp_cleanup_debugfs() - Removes DSP representation from debugfs
531  * @dsp: pointer to DSP structure
532  */
cs_dsp_cleanup_debugfs(struct cs_dsp * dsp)533 void cs_dsp_cleanup_debugfs(struct cs_dsp *dsp)
534 {
535 	cs_dsp_debugfs_clear(dsp);
536 	debugfs_remove_recursive(dsp->debugfs_root);
537 	dsp->debugfs_root = ERR_PTR(-ENODEV);
538 }
539 EXPORT_SYMBOL_NS_GPL(cs_dsp_cleanup_debugfs, "FW_CS_DSP");
540 #else
cs_dsp_init_debugfs(struct cs_dsp * dsp,struct dentry * debugfs_root)541 void cs_dsp_init_debugfs(struct cs_dsp *dsp, struct dentry *debugfs_root)
542 {
543 }
544 EXPORT_SYMBOL_NS_GPL(cs_dsp_init_debugfs, "FW_CS_DSP");
545 
cs_dsp_cleanup_debugfs(struct cs_dsp * dsp)546 void cs_dsp_cleanup_debugfs(struct cs_dsp *dsp)
547 {
548 }
549 EXPORT_SYMBOL_NS_GPL(cs_dsp_cleanup_debugfs, "FW_CS_DSP");
550 
cs_dsp_debugfs_save_wmfwname(struct cs_dsp * dsp,const char * s)551 static inline void cs_dsp_debugfs_save_wmfwname(struct cs_dsp *dsp,
552 						const char *s)
553 {
554 }
555 
cs_dsp_debugfs_save_binname(struct cs_dsp * dsp,const char * s)556 static inline void cs_dsp_debugfs_save_binname(struct cs_dsp *dsp,
557 					       const char *s)
558 {
559 }
560 
cs_dsp_debugfs_clear(struct cs_dsp * dsp)561 static inline void cs_dsp_debugfs_clear(struct cs_dsp *dsp)
562 {
563 }
564 #endif
565 
cs_dsp_find_region(struct cs_dsp * dsp,int type)566 static const struct cs_dsp_region *cs_dsp_find_region(struct cs_dsp *dsp,
567 						      int type)
568 {
569 	int i;
570 
571 	for (i = 0; i < dsp->num_mems; i++)
572 		if (dsp->mem[i].type == type)
573 			return &dsp->mem[i];
574 
575 	return NULL;
576 }
577 
cs_dsp_region_to_reg(struct cs_dsp_region const * mem,unsigned int offset)578 static unsigned int cs_dsp_region_to_reg(struct cs_dsp_region const *mem,
579 					 unsigned int offset)
580 {
581 	switch (mem->type) {
582 	case WMFW_ADSP1_PM:
583 		return mem->base + (offset * 3);
584 	case WMFW_ADSP1_DM:
585 	case WMFW_ADSP2_XM:
586 	case WMFW_ADSP2_YM:
587 	case WMFW_ADSP1_ZM:
588 		return mem->base + (offset * 2);
589 	default:
590 		WARN(1, "Unknown memory region type");
591 		return offset;
592 	}
593 }
594 
cs_dsp_halo_region_to_reg(struct cs_dsp_region const * mem,unsigned int offset)595 static unsigned int cs_dsp_halo_region_to_reg(struct cs_dsp_region const *mem,
596 					      unsigned int offset)
597 {
598 	switch (mem->type) {
599 	case WMFW_ADSP2_XM:
600 	case WMFW_ADSP2_YM:
601 		return mem->base + (offset * 4);
602 	case WMFW_HALO_XM_PACKED:
603 	case WMFW_HALO_YM_PACKED:
604 		return (mem->base + (offset * 3)) & ~0x3;
605 	case WMFW_HALO_PM_PACKED:
606 		return mem->base + (offset * 5);
607 	default:
608 		WARN(1, "Unknown memory region type");
609 		return offset;
610 	}
611 }
612 
cs_dsp_read_fw_status(struct cs_dsp * dsp,int noffs,unsigned int * offs)613 static void cs_dsp_read_fw_status(struct cs_dsp *dsp,
614 				  int noffs, unsigned int *offs)
615 {
616 	unsigned int i;
617 	int ret;
618 
619 	for (i = 0; i < noffs; ++i) {
620 		ret = regmap_read(dsp->regmap, dsp->base + offs[i], &offs[i]);
621 		if (ret) {
622 			cs_dsp_err(dsp, "Failed to read SCRATCH%u: %d\n", i, ret);
623 			return;
624 		}
625 	}
626 }
627 
cs_dsp_adsp2_show_fw_status(struct cs_dsp * dsp)628 static void cs_dsp_adsp2_show_fw_status(struct cs_dsp *dsp)
629 {
630 	unsigned int offs[] = {
631 		ADSP2_SCRATCH0, ADSP2_SCRATCH1, ADSP2_SCRATCH2, ADSP2_SCRATCH3,
632 	};
633 
634 	cs_dsp_read_fw_status(dsp, ARRAY_SIZE(offs), offs);
635 
636 	cs_dsp_dbg(dsp, "FW SCRATCH 0:0x%x 1:0x%x 2:0x%x 3:0x%x\n",
637 		   offs[0], offs[1], offs[2], offs[3]);
638 }
639 
cs_dsp_adsp2v2_show_fw_status(struct cs_dsp * dsp)640 static void cs_dsp_adsp2v2_show_fw_status(struct cs_dsp *dsp)
641 {
642 	unsigned int offs[] = { ADSP2V2_SCRATCH0_1, ADSP2V2_SCRATCH2_3 };
643 
644 	cs_dsp_read_fw_status(dsp, ARRAY_SIZE(offs), offs);
645 
646 	cs_dsp_dbg(dsp, "FW SCRATCH 0:0x%x 1:0x%x 2:0x%x 3:0x%x\n",
647 		   offs[0] & 0xFFFF, offs[0] >> 16,
648 		   offs[1] & 0xFFFF, offs[1] >> 16);
649 }
650 
cs_dsp_halo_show_fw_status(struct cs_dsp * dsp)651 static void cs_dsp_halo_show_fw_status(struct cs_dsp *dsp)
652 {
653 	unsigned int offs[] = {
654 		HALO_SCRATCH1, HALO_SCRATCH2, HALO_SCRATCH3, HALO_SCRATCH4,
655 	};
656 
657 	cs_dsp_read_fw_status(dsp, ARRAY_SIZE(offs), offs);
658 
659 	cs_dsp_dbg(dsp, "FW SCRATCH 0:0x%x 1:0x%x 2:0x%x 3:0x%x\n",
660 		   offs[0], offs[1], offs[2], offs[3]);
661 }
662 
cs_dsp_coeff_base_reg(struct cs_dsp_coeff_ctl * ctl,unsigned int * reg,unsigned int off)663 static int cs_dsp_coeff_base_reg(struct cs_dsp_coeff_ctl *ctl, unsigned int *reg,
664 				 unsigned int off)
665 {
666 	const struct cs_dsp_alg_region *alg_region = &ctl->alg_region;
667 	struct cs_dsp *dsp = ctl->dsp;
668 	const struct cs_dsp_region *mem;
669 
670 	mem = cs_dsp_find_region(dsp, alg_region->type);
671 	if (!mem) {
672 		cs_dsp_err(dsp, "No base for region %x\n",
673 			   alg_region->type);
674 		return -EINVAL;
675 	}
676 
677 	*reg = dsp->ops->region_to_reg(mem, ctl->alg_region.base + ctl->offset + off);
678 
679 	return 0;
680 }
681 
682 /**
683  * cs_dsp_coeff_write_acked_control() - Sends event_id to the acked control
684  * @ctl: pointer to acked coefficient control
685  * @event_id: the value to write to the given acked control
686  *
687  * Once the value has been written to the control the function shall block
688  * until the running firmware acknowledges the write or timeout is exceeded.
689  *
690  * Must be called with pwr_lock held.
691  *
692  * Return: Zero for success, a negative number on error.
693  */
cs_dsp_coeff_write_acked_control(struct cs_dsp_coeff_ctl * ctl,unsigned int event_id)694 int cs_dsp_coeff_write_acked_control(struct cs_dsp_coeff_ctl *ctl, unsigned int event_id)
695 {
696 	struct cs_dsp *dsp = ctl->dsp;
697 	__be32 val = cpu_to_be32(event_id);
698 	unsigned int reg;
699 	int i, ret;
700 
701 	lockdep_assert_held(&dsp->pwr_lock);
702 
703 	if (!dsp->running)
704 		return -EPERM;
705 
706 	ret = cs_dsp_coeff_base_reg(ctl, &reg, 0);
707 	if (ret)
708 		return ret;
709 
710 	cs_dsp_dbg(dsp, "Sending 0x%x to acked control alg 0x%x %s:0x%x\n",
711 		   event_id, ctl->alg_region.alg,
712 		   cs_dsp_mem_region_name(ctl->alg_region.type), ctl->offset);
713 
714 	ret = regmap_raw_write(dsp->regmap, reg, &val, sizeof(val));
715 	if (ret) {
716 		cs_dsp_err(dsp, "Failed to write %x: %d\n", reg, ret);
717 		return ret;
718 	}
719 
720 	/*
721 	 * Poll for ack, we initially poll at ~1ms intervals for firmwares
722 	 * that respond quickly, then go to ~10ms polls. A firmware is unlikely
723 	 * to ack instantly so we do the first 1ms delay before reading the
724 	 * control to avoid a pointless bus transaction
725 	 */
726 	for (i = 0; i < CS_DSP_ACKED_CTL_TIMEOUT_MS;) {
727 		switch (i) {
728 		case 0 ... CS_DSP_ACKED_CTL_N_QUICKPOLLS - 1:
729 			usleep_range(1000, 2000);
730 			i++;
731 			break;
732 		default:
733 			usleep_range(10000, 20000);
734 			i += 10;
735 			break;
736 		}
737 
738 		ret = regmap_raw_read(dsp->regmap, reg, &val, sizeof(val));
739 		if (ret) {
740 			cs_dsp_err(dsp, "Failed to read %x: %d\n", reg, ret);
741 			return ret;
742 		}
743 
744 		if (val == 0) {
745 			cs_dsp_dbg(dsp, "Acked control ACKED at poll %u\n", i);
746 			return 0;
747 		}
748 	}
749 
750 	cs_dsp_warn(dsp, "Acked control @0x%x alg:0x%x %s:0x%x timed out\n",
751 		    reg, ctl->alg_region.alg,
752 		    cs_dsp_mem_region_name(ctl->alg_region.type),
753 		    ctl->offset);
754 
755 	return -ETIMEDOUT;
756 }
757 EXPORT_SYMBOL_NS_GPL(cs_dsp_coeff_write_acked_control, "FW_CS_DSP");
758 
cs_dsp_coeff_write_ctrl_raw(struct cs_dsp_coeff_ctl * ctl,unsigned int off,const void * buf,size_t len)759 static int cs_dsp_coeff_write_ctrl_raw(struct cs_dsp_coeff_ctl *ctl,
760 				       unsigned int off, const void *buf, size_t len)
761 {
762 	struct cs_dsp *dsp = ctl->dsp;
763 	void *scratch;
764 	int ret;
765 	unsigned int reg;
766 
767 	ret = cs_dsp_coeff_base_reg(ctl, &reg, off);
768 	if (ret)
769 		return ret;
770 
771 	scratch = kmemdup(buf, len, GFP_KERNEL | GFP_DMA);
772 	if (!scratch)
773 		return -ENOMEM;
774 
775 	ret = regmap_raw_write(dsp->regmap, reg, scratch,
776 			       len);
777 	if (ret) {
778 		cs_dsp_err(dsp, "Failed to write %zu bytes to %x: %d\n",
779 			   len, reg, ret);
780 		kfree(scratch);
781 		return ret;
782 	}
783 	cs_dsp_dbg(dsp, "Wrote %zu bytes to %x\n", len, reg);
784 
785 	kfree(scratch);
786 
787 	return 0;
788 }
789 
790 /**
791  * cs_dsp_coeff_write_ctrl() - Writes the given buffer to the given coefficient control
792  * @ctl: pointer to coefficient control
793  * @off: word offset at which data should be written
794  * @buf: the buffer to write to the given control
795  * @len: the length of the buffer in bytes
796  *
797  * Must be called with pwr_lock held.
798  *
799  * Return: < 0 on error, 1 when the control value changed and 0 when it has not.
800  */
cs_dsp_coeff_write_ctrl(struct cs_dsp_coeff_ctl * ctl,unsigned int off,const void * buf,size_t len)801 int cs_dsp_coeff_write_ctrl(struct cs_dsp_coeff_ctl *ctl,
802 			    unsigned int off, const void *buf, size_t len)
803 {
804 	int ret = 0;
805 
806 	if (!ctl)
807 		return -ENOENT;
808 
809 	lockdep_assert_held(&ctl->dsp->pwr_lock);
810 
811 	if (ctl->flags && !(ctl->flags & WMFW_CTL_FLAG_WRITEABLE))
812 		return -EPERM;
813 
814 	if (len + off * sizeof(u32) > ctl->len)
815 		return -EINVAL;
816 
817 	if (ctl->flags & WMFW_CTL_FLAG_VOLATILE) {
818 		ret = -EPERM;
819 	} else if (buf != ctl->cache) {
820 		if (memcmp(ctl->cache + off * sizeof(u32), buf, len))
821 			memcpy(ctl->cache + off * sizeof(u32), buf, len);
822 		else
823 			return 0;
824 	}
825 
826 	ctl->set = 1;
827 	if (ctl->enabled && ctl->dsp->running)
828 		ret = cs_dsp_coeff_write_ctrl_raw(ctl, off, buf, len);
829 
830 	if (ret < 0)
831 		return ret;
832 
833 	return 1;
834 }
835 EXPORT_SYMBOL_NS_GPL(cs_dsp_coeff_write_ctrl, "FW_CS_DSP");
836 
837 /**
838  * cs_dsp_coeff_lock_and_write_ctrl() - Writes the given buffer to the given coefficient control
839  * @ctl: pointer to coefficient control
840  * @off: word offset at which data should be written
841  * @buf: the buffer to write to the given control
842  * @len: the length of the buffer in bytes
843  *
844  * Same as cs_dsp_coeff_write_ctrl() but takes pwr_lock.
845  *
846  * Return: A negative number on error, 1 when the control value changed and 0 when it has not.
847  */
cs_dsp_coeff_lock_and_write_ctrl(struct cs_dsp_coeff_ctl * ctl,unsigned int off,const void * buf,size_t len)848 int cs_dsp_coeff_lock_and_write_ctrl(struct cs_dsp_coeff_ctl *ctl,
849 				     unsigned int off, const void *buf, size_t len)
850 {
851 	struct cs_dsp *dsp = ctl->dsp;
852 	int ret;
853 
854 	lockdep_assert_not_held(&dsp->pwr_lock);
855 
856 	mutex_lock(&dsp->pwr_lock);
857 	ret = cs_dsp_coeff_write_ctrl(ctl, off, buf, len);
858 	mutex_unlock(&dsp->pwr_lock);
859 
860 	return ret;
861 }
862 EXPORT_SYMBOL_GPL(cs_dsp_coeff_lock_and_write_ctrl);
863 
cs_dsp_coeff_read_ctrl_raw(struct cs_dsp_coeff_ctl * ctl,unsigned int off,void * buf,size_t len)864 static int cs_dsp_coeff_read_ctrl_raw(struct cs_dsp_coeff_ctl *ctl,
865 				      unsigned int off, void *buf, size_t len)
866 {
867 	struct cs_dsp *dsp = ctl->dsp;
868 	void *scratch;
869 	int ret;
870 	unsigned int reg;
871 
872 	ret = cs_dsp_coeff_base_reg(ctl, &reg, off);
873 	if (ret)
874 		return ret;
875 
876 	scratch = kmalloc(len, GFP_KERNEL | GFP_DMA);
877 	if (!scratch)
878 		return -ENOMEM;
879 
880 	ret = regmap_raw_read(dsp->regmap, reg, scratch, len);
881 	if (ret) {
882 		cs_dsp_err(dsp, "Failed to read %zu bytes from %x: %d\n",
883 			   len, reg, ret);
884 		kfree(scratch);
885 		return ret;
886 	}
887 	cs_dsp_dbg(dsp, "Read %zu bytes from %x\n", len, reg);
888 
889 	memcpy(buf, scratch, len);
890 	kfree(scratch);
891 
892 	return 0;
893 }
894 
895 /**
896  * cs_dsp_coeff_read_ctrl() - Reads the given coefficient control into the given buffer
897  * @ctl: pointer to coefficient control
898  * @off: word offset at which data should be read
899  * @buf: the buffer to store to the given control
900  * @len: the length of the buffer in bytes
901  *
902  * Must be called with pwr_lock held.
903  *
904  * Return: Zero for success, a negative number on error.
905  */
cs_dsp_coeff_read_ctrl(struct cs_dsp_coeff_ctl * ctl,unsigned int off,void * buf,size_t len)906 int cs_dsp_coeff_read_ctrl(struct cs_dsp_coeff_ctl *ctl,
907 			   unsigned int off, void *buf, size_t len)
908 {
909 	int ret = 0;
910 
911 	if (!ctl)
912 		return -ENOENT;
913 
914 	lockdep_assert_held(&ctl->dsp->pwr_lock);
915 
916 	if (len + off * sizeof(u32) > ctl->len)
917 		return -EINVAL;
918 
919 	if (ctl->flags & WMFW_CTL_FLAG_VOLATILE) {
920 		if (ctl->enabled && ctl->dsp->running)
921 			return cs_dsp_coeff_read_ctrl_raw(ctl, off, buf, len);
922 		else
923 			return -EPERM;
924 	} else {
925 		if (!ctl->flags && ctl->enabled && ctl->dsp->running)
926 			ret = cs_dsp_coeff_read_ctrl_raw(ctl, 0, ctl->cache, ctl->len);
927 
928 		if (buf != ctl->cache)
929 			memcpy(buf, ctl->cache + off * sizeof(u32), len);
930 	}
931 
932 	return ret;
933 }
934 EXPORT_SYMBOL_NS_GPL(cs_dsp_coeff_read_ctrl, "FW_CS_DSP");
935 
936 /**
937  * cs_dsp_coeff_lock_and_read_ctrl() - Reads the given coefficient control into the given buffer
938  * @ctl: pointer to coefficient control
939  * @off: word offset at which data should be read
940  * @buf: the buffer to store to the given control
941  * @len: the length of the buffer in bytes
942  *
943  * Same as cs_dsp_coeff_read_ctrl() but takes pwr_lock.
944  *
945  * Return: Zero for success, a negative number on error.
946  */
cs_dsp_coeff_lock_and_read_ctrl(struct cs_dsp_coeff_ctl * ctl,unsigned int off,void * buf,size_t len)947 int cs_dsp_coeff_lock_and_read_ctrl(struct cs_dsp_coeff_ctl *ctl,
948 				    unsigned int off, void *buf, size_t len)
949 {
950 	struct cs_dsp *dsp = ctl->dsp;
951 	int ret;
952 
953 	lockdep_assert_not_held(&dsp->pwr_lock);
954 
955 	mutex_lock(&dsp->pwr_lock);
956 	ret = cs_dsp_coeff_read_ctrl(ctl, off, buf, len);
957 	mutex_unlock(&dsp->pwr_lock);
958 
959 	return ret;
960 }
961 EXPORT_SYMBOL_GPL(cs_dsp_coeff_lock_and_read_ctrl);
962 
cs_dsp_coeff_init_control_caches(struct cs_dsp * dsp)963 static int cs_dsp_coeff_init_control_caches(struct cs_dsp *dsp)
964 {
965 	struct cs_dsp_coeff_ctl *ctl;
966 	int ret;
967 
968 	list_for_each_entry(ctl, &dsp->ctl_list, list) {
969 		if (!ctl->enabled || ctl->set)
970 			continue;
971 		if (ctl->flags & WMFW_CTL_FLAG_VOLATILE)
972 			continue;
973 
974 		/*
975 		 * For readable controls populate the cache from the DSP memory.
976 		 * For non-readable controls the cache was zero-filled when
977 		 * created so we don't need to do anything.
978 		 */
979 		if (!ctl->flags || (ctl->flags & WMFW_CTL_FLAG_READABLE)) {
980 			ret = cs_dsp_coeff_read_ctrl_raw(ctl, 0, ctl->cache, ctl->len);
981 			if (ret < 0)
982 				return ret;
983 		}
984 	}
985 
986 	return 0;
987 }
988 
cs_dsp_coeff_sync_controls(struct cs_dsp * dsp)989 static int cs_dsp_coeff_sync_controls(struct cs_dsp *dsp)
990 {
991 	struct cs_dsp_coeff_ctl *ctl;
992 	int ret;
993 
994 	list_for_each_entry(ctl, &dsp->ctl_list, list) {
995 		if (!ctl->enabled)
996 			continue;
997 		if (ctl->set && !(ctl->flags & WMFW_CTL_FLAG_VOLATILE)) {
998 			ret = cs_dsp_coeff_write_ctrl_raw(ctl, 0, ctl->cache,
999 							  ctl->len);
1000 			if (ret < 0)
1001 				return ret;
1002 		}
1003 	}
1004 
1005 	return 0;
1006 }
1007 
cs_dsp_signal_event_controls(struct cs_dsp * dsp,unsigned int event)1008 static void cs_dsp_signal_event_controls(struct cs_dsp *dsp,
1009 					 unsigned int event)
1010 {
1011 	struct cs_dsp_coeff_ctl *ctl;
1012 	int ret;
1013 
1014 	list_for_each_entry(ctl, &dsp->ctl_list, list) {
1015 		if (ctl->type != WMFW_CTL_TYPE_HOSTEVENT)
1016 			continue;
1017 
1018 		if (!ctl->enabled)
1019 			continue;
1020 
1021 		ret = cs_dsp_coeff_write_acked_control(ctl, event);
1022 		if (ret)
1023 			cs_dsp_warn(dsp,
1024 				    "Failed to send 0x%x event to alg 0x%x (%d)\n",
1025 				    event, ctl->alg_region.alg, ret);
1026 	}
1027 }
1028 
cs_dsp_free_ctl_blk(struct cs_dsp_coeff_ctl * ctl)1029 static void cs_dsp_free_ctl_blk(struct cs_dsp_coeff_ctl *ctl)
1030 {
1031 	kfree(ctl->cache);
1032 	kfree(ctl->subname);
1033 	kfree(ctl);
1034 }
1035 
cs_dsp_create_control(struct cs_dsp * dsp,const struct cs_dsp_alg_region * alg_region,unsigned int offset,unsigned int len,const char * subname,unsigned int subname_len,unsigned int flags,unsigned int type)1036 static int cs_dsp_create_control(struct cs_dsp *dsp,
1037 				 const struct cs_dsp_alg_region *alg_region,
1038 				 unsigned int offset, unsigned int len,
1039 				 const char *subname, unsigned int subname_len,
1040 				 unsigned int flags, unsigned int type)
1041 {
1042 	struct cs_dsp_coeff_ctl *ctl;
1043 	int ret;
1044 
1045 	list_for_each_entry(ctl, &dsp->ctl_list, list) {
1046 		if (ctl->fw_name == dsp->fw_name &&
1047 		    ctl->alg_region.alg == alg_region->alg &&
1048 		    ctl->alg_region.type == alg_region->type) {
1049 			if ((!subname && !ctl->subname) ||
1050 			    (subname && (ctl->subname_len == subname_len) &&
1051 			     !strncmp(ctl->subname, subname, ctl->subname_len))) {
1052 				if (!ctl->enabled)
1053 					ctl->enabled = 1;
1054 				return 0;
1055 			}
1056 		}
1057 	}
1058 
1059 	ctl = kzalloc(sizeof(*ctl), GFP_KERNEL);
1060 	if (!ctl)
1061 		return -ENOMEM;
1062 
1063 	ctl->fw_name = dsp->fw_name;
1064 	ctl->alg_region = *alg_region;
1065 	if (subname && dsp->wmfw_ver >= 2) {
1066 		ctl->subname_len = subname_len;
1067 		ctl->subname = kasprintf(GFP_KERNEL, "%.*s", subname_len, subname);
1068 		if (!ctl->subname) {
1069 			ret = -ENOMEM;
1070 			goto err_ctl;
1071 		}
1072 	}
1073 	ctl->enabled = 1;
1074 	ctl->set = 0;
1075 	ctl->dsp = dsp;
1076 
1077 	ctl->flags = flags;
1078 	ctl->type = type;
1079 	ctl->offset = offset;
1080 	ctl->len = len;
1081 	ctl->cache = kzalloc(ctl->len, GFP_KERNEL);
1082 	if (!ctl->cache) {
1083 		ret = -ENOMEM;
1084 		goto err_ctl_subname;
1085 	}
1086 
1087 	list_add(&ctl->list, &dsp->ctl_list);
1088 
1089 	if (dsp->client_ops->control_add) {
1090 		ret = dsp->client_ops->control_add(ctl);
1091 		if (ret)
1092 			goto err_list_del;
1093 	}
1094 
1095 	return 0;
1096 
1097 err_list_del:
1098 	list_del(&ctl->list);
1099 	kfree(ctl->cache);
1100 err_ctl_subname:
1101 	kfree(ctl->subname);
1102 err_ctl:
1103 	kfree(ctl);
1104 
1105 	return ret;
1106 }
1107 
1108 struct cs_dsp_coeff_parsed_alg {
1109 	int id;
1110 	const u8 *name;
1111 	int name_len;
1112 	int ncoeff;
1113 };
1114 
1115 struct cs_dsp_coeff_parsed_coeff {
1116 	int offset;
1117 	int mem_type;
1118 	const u8 *name;
1119 	int name_len;
1120 	unsigned int ctl_type;
1121 	int flags;
1122 	int len;
1123 };
1124 
cs_dsp_coeff_parse_string(int bytes,const u8 ** pos,unsigned int avail,const u8 ** str)1125 static int cs_dsp_coeff_parse_string(int bytes, const u8 **pos, unsigned int avail,
1126 				     const u8 **str)
1127 {
1128 	int length, total_field_len;
1129 
1130 	/* String fields are at least one __le32 */
1131 	if (sizeof(__le32) > avail) {
1132 		*pos = NULL;
1133 		return 0;
1134 	}
1135 
1136 	switch (bytes) {
1137 	case 1:
1138 		length = **pos;
1139 		break;
1140 	case 2:
1141 		length = le16_to_cpu(*((__le16 *)*pos));
1142 		break;
1143 	default:
1144 		return 0;
1145 	}
1146 
1147 	total_field_len = ((length + bytes) + 3) & ~0x03;
1148 	if ((unsigned int)total_field_len > avail) {
1149 		*pos = NULL;
1150 		return 0;
1151 	}
1152 
1153 	if (str)
1154 		*str = *pos + bytes;
1155 
1156 	*pos += total_field_len;
1157 
1158 	return length;
1159 }
1160 
cs_dsp_coeff_parse_int(int bytes,const u8 ** pos)1161 static int cs_dsp_coeff_parse_int(int bytes, const u8 **pos)
1162 {
1163 	int val = 0;
1164 
1165 	switch (bytes) {
1166 	case 2:
1167 		val = le16_to_cpu(*((__le16 *)*pos));
1168 		break;
1169 	case 4:
1170 		val = le32_to_cpu(*((__le32 *)*pos));
1171 		break;
1172 	default:
1173 		break;
1174 	}
1175 
1176 	*pos += bytes;
1177 
1178 	return val;
1179 }
1180 
cs_dsp_coeff_parse_alg(struct cs_dsp * dsp,const struct wmfw_region * region,struct cs_dsp_coeff_parsed_alg * blk)1181 static int cs_dsp_coeff_parse_alg(struct cs_dsp *dsp,
1182 				  const struct wmfw_region *region,
1183 				  struct cs_dsp_coeff_parsed_alg *blk)
1184 {
1185 	const struct wmfw_adsp_alg_data *raw;
1186 	unsigned int data_len = le32_to_cpu(region->len);
1187 	unsigned int pos;
1188 	const u8 *tmp;
1189 
1190 	raw = (const struct wmfw_adsp_alg_data *)region->data;
1191 
1192 	switch (dsp->wmfw_ver) {
1193 	case 0:
1194 	case 1:
1195 		if (sizeof(*raw) > data_len)
1196 			return -EOVERFLOW;
1197 
1198 		blk->id = le32_to_cpu(raw->id);
1199 		blk->name = raw->name;
1200 		blk->name_len = strnlen(raw->name, ARRAY_SIZE(raw->name));
1201 		blk->ncoeff = le32_to_cpu(raw->ncoeff);
1202 
1203 		pos = sizeof(*raw);
1204 		break;
1205 	default:
1206 		if (sizeof(raw->id) > data_len)
1207 			return -EOVERFLOW;
1208 
1209 		tmp = region->data;
1210 		blk->id = cs_dsp_coeff_parse_int(sizeof(raw->id), &tmp);
1211 		pos = tmp - region->data;
1212 
1213 		tmp = &region->data[pos];
1214 		blk->name_len = cs_dsp_coeff_parse_string(sizeof(u8), &tmp, data_len - pos,
1215 							  &blk->name);
1216 		if (!tmp)
1217 			return -EOVERFLOW;
1218 
1219 		pos = tmp - region->data;
1220 		cs_dsp_coeff_parse_string(sizeof(u16), &tmp, data_len - pos, NULL);
1221 		if (!tmp)
1222 			return -EOVERFLOW;
1223 
1224 		pos = tmp - region->data;
1225 		if (sizeof(raw->ncoeff) > (data_len - pos))
1226 			return -EOVERFLOW;
1227 
1228 		blk->ncoeff = cs_dsp_coeff_parse_int(sizeof(raw->ncoeff), &tmp);
1229 		pos += sizeof(raw->ncoeff);
1230 		break;
1231 	}
1232 
1233 	if ((int)blk->ncoeff < 0)
1234 		return -EOVERFLOW;
1235 
1236 	cs_dsp_dbg(dsp, "Algorithm ID: %#x\n", blk->id);
1237 	cs_dsp_dbg(dsp, "Algorithm name: %.*s\n", blk->name_len, blk->name);
1238 	cs_dsp_dbg(dsp, "# of coefficient descriptors: %#x\n", blk->ncoeff);
1239 
1240 	return pos;
1241 }
1242 
cs_dsp_coeff_parse_coeff(struct cs_dsp * dsp,const struct wmfw_region * region,unsigned int pos,struct cs_dsp_coeff_parsed_coeff * blk)1243 static int cs_dsp_coeff_parse_coeff(struct cs_dsp *dsp,
1244 				    const struct wmfw_region *region,
1245 				    unsigned int pos,
1246 				    struct cs_dsp_coeff_parsed_coeff *blk)
1247 {
1248 	const struct wmfw_adsp_coeff_data *raw;
1249 	unsigned int data_len = le32_to_cpu(region->len);
1250 	unsigned int blk_len, blk_end_pos;
1251 	const u8 *tmp;
1252 
1253 	raw = (const struct wmfw_adsp_coeff_data *)&region->data[pos];
1254 	if (sizeof(raw->hdr) > (data_len - pos))
1255 		return -EOVERFLOW;
1256 
1257 	blk_len = le32_to_cpu(raw->hdr.size);
1258 	if (blk_len > S32_MAX)
1259 		return -EOVERFLOW;
1260 
1261 	if (blk_len > (data_len - pos - sizeof(raw->hdr)))
1262 		return -EOVERFLOW;
1263 
1264 	blk_end_pos = pos + sizeof(raw->hdr) + blk_len;
1265 
1266 	blk->offset = le16_to_cpu(raw->hdr.offset);
1267 	blk->mem_type = le16_to_cpu(raw->hdr.type);
1268 
1269 	switch (dsp->wmfw_ver) {
1270 	case 0:
1271 	case 1:
1272 		if (sizeof(*raw) > (data_len - pos))
1273 			return -EOVERFLOW;
1274 
1275 		blk->name = raw->name;
1276 		blk->name_len = strnlen(raw->name, ARRAY_SIZE(raw->name));
1277 		blk->ctl_type = le16_to_cpu(raw->ctl_type);
1278 		blk->flags = le16_to_cpu(raw->flags);
1279 		blk->len = le32_to_cpu(raw->len);
1280 		break;
1281 	default:
1282 		pos += sizeof(raw->hdr);
1283 		tmp = &region->data[pos];
1284 		blk->name_len = cs_dsp_coeff_parse_string(sizeof(u8), &tmp, data_len - pos,
1285 							  &blk->name);
1286 		if (!tmp)
1287 			return -EOVERFLOW;
1288 
1289 		pos = tmp - region->data;
1290 		cs_dsp_coeff_parse_string(sizeof(u8), &tmp, data_len - pos, NULL);
1291 		if (!tmp)
1292 			return -EOVERFLOW;
1293 
1294 		pos = tmp - region->data;
1295 		cs_dsp_coeff_parse_string(sizeof(u16), &tmp, data_len - pos, NULL);
1296 		if (!tmp)
1297 			return -EOVERFLOW;
1298 
1299 		pos = tmp - region->data;
1300 		if (sizeof(raw->ctl_type) + sizeof(raw->flags) + sizeof(raw->len) >
1301 		    (data_len - pos))
1302 			return -EOVERFLOW;
1303 
1304 		blk->ctl_type = cs_dsp_coeff_parse_int(sizeof(raw->ctl_type), &tmp);
1305 		pos += sizeof(raw->ctl_type);
1306 		blk->flags = cs_dsp_coeff_parse_int(sizeof(raw->flags), &tmp);
1307 		pos += sizeof(raw->flags);
1308 		blk->len = cs_dsp_coeff_parse_int(sizeof(raw->len), &tmp);
1309 		break;
1310 	}
1311 
1312 	cs_dsp_dbg(dsp, "\tCoefficient type: %#x\n", blk->mem_type);
1313 	cs_dsp_dbg(dsp, "\tCoefficient offset: %#x\n", blk->offset);
1314 	cs_dsp_dbg(dsp, "\tCoefficient name: %.*s\n", blk->name_len, blk->name);
1315 	cs_dsp_dbg(dsp, "\tCoefficient flags: %#x\n", blk->flags);
1316 	cs_dsp_dbg(dsp, "\tALSA control type: %#x\n", blk->ctl_type);
1317 	cs_dsp_dbg(dsp, "\tALSA control len: %#x\n", blk->len);
1318 
1319 	return blk_end_pos;
1320 }
1321 
cs_dsp_check_coeff_flags(struct cs_dsp * dsp,const struct cs_dsp_coeff_parsed_coeff * coeff_blk,unsigned int f_required,unsigned int f_illegal)1322 static int cs_dsp_check_coeff_flags(struct cs_dsp *dsp,
1323 				    const struct cs_dsp_coeff_parsed_coeff *coeff_blk,
1324 				    unsigned int f_required,
1325 				    unsigned int f_illegal)
1326 {
1327 	if ((coeff_blk->flags & f_illegal) ||
1328 	    ((coeff_blk->flags & f_required) != f_required)) {
1329 		cs_dsp_err(dsp, "Illegal flags 0x%x for control type 0x%x\n",
1330 			   coeff_blk->flags, coeff_blk->ctl_type);
1331 		return -EINVAL;
1332 	}
1333 
1334 	return 0;
1335 }
1336 
cs_dsp_parse_coeff(struct cs_dsp * dsp,const struct wmfw_region * region)1337 static int cs_dsp_parse_coeff(struct cs_dsp *dsp,
1338 			      const struct wmfw_region *region)
1339 {
1340 	struct cs_dsp_alg_region alg_region = {};
1341 	struct cs_dsp_coeff_parsed_alg alg_blk;
1342 	struct cs_dsp_coeff_parsed_coeff coeff_blk;
1343 	int i, pos, ret;
1344 
1345 	pos = cs_dsp_coeff_parse_alg(dsp, region, &alg_blk);
1346 	if (pos < 0)
1347 		return pos;
1348 
1349 	for (i = 0; i < alg_blk.ncoeff; i++) {
1350 		pos = cs_dsp_coeff_parse_coeff(dsp, region, pos, &coeff_blk);
1351 		if (pos < 0)
1352 			return pos;
1353 
1354 		switch (coeff_blk.ctl_type) {
1355 		case WMFW_CTL_TYPE_BYTES:
1356 			break;
1357 		case WMFW_CTL_TYPE_ACKED:
1358 			if (coeff_blk.flags & WMFW_CTL_FLAG_SYS)
1359 				continue;	/* ignore */
1360 
1361 			ret = cs_dsp_check_coeff_flags(dsp, &coeff_blk,
1362 						       WMFW_CTL_FLAG_VOLATILE |
1363 						       WMFW_CTL_FLAG_WRITEABLE |
1364 						       WMFW_CTL_FLAG_READABLE,
1365 						       0);
1366 			if (ret)
1367 				return -EINVAL;
1368 			break;
1369 		case WMFW_CTL_TYPE_HOSTEVENT:
1370 		case WMFW_CTL_TYPE_FWEVENT:
1371 			ret = cs_dsp_check_coeff_flags(dsp, &coeff_blk,
1372 						       WMFW_CTL_FLAG_SYS |
1373 						       WMFW_CTL_FLAG_VOLATILE |
1374 						       WMFW_CTL_FLAG_WRITEABLE |
1375 						       WMFW_CTL_FLAG_READABLE,
1376 						       0);
1377 			if (ret)
1378 				return -EINVAL;
1379 			break;
1380 		case WMFW_CTL_TYPE_HOST_BUFFER:
1381 			ret = cs_dsp_check_coeff_flags(dsp, &coeff_blk,
1382 						       WMFW_CTL_FLAG_SYS |
1383 						       WMFW_CTL_FLAG_VOLATILE |
1384 						       WMFW_CTL_FLAG_READABLE,
1385 						       0);
1386 			if (ret)
1387 				return -EINVAL;
1388 			break;
1389 		default:
1390 			cs_dsp_err(dsp, "Unknown control type: %d\n",
1391 				   coeff_blk.ctl_type);
1392 			return -EINVAL;
1393 		}
1394 
1395 		alg_region.type = coeff_blk.mem_type;
1396 		alg_region.alg = alg_blk.id;
1397 
1398 		ret = cs_dsp_create_control(dsp, &alg_region,
1399 					    coeff_blk.offset,
1400 					    coeff_blk.len,
1401 					    coeff_blk.name,
1402 					    coeff_blk.name_len,
1403 					    coeff_blk.flags,
1404 					    coeff_blk.ctl_type);
1405 		if (ret < 0)
1406 			cs_dsp_err(dsp, "Failed to create control: %.*s, %d\n",
1407 				   coeff_blk.name_len, coeff_blk.name, ret);
1408 	}
1409 
1410 	return 0;
1411 }
1412 
cs_dsp_adsp1_parse_sizes(struct cs_dsp * dsp,const char * const file,unsigned int pos,const struct firmware * firmware)1413 static unsigned int cs_dsp_adsp1_parse_sizes(struct cs_dsp *dsp,
1414 					     const char * const file,
1415 					     unsigned int pos,
1416 					     const struct firmware *firmware)
1417 {
1418 	const struct wmfw_adsp1_sizes *adsp1_sizes;
1419 
1420 	adsp1_sizes = (void *)&firmware->data[pos];
1421 	if (sizeof(*adsp1_sizes) > firmware->size - pos) {
1422 		cs_dsp_err(dsp, "%s: file truncated\n", file);
1423 		return 0;
1424 	}
1425 
1426 	cs_dsp_dbg(dsp, "%s: %d DM, %d PM, %d ZM\n", file,
1427 		   le32_to_cpu(adsp1_sizes->dm), le32_to_cpu(adsp1_sizes->pm),
1428 		   le32_to_cpu(adsp1_sizes->zm));
1429 
1430 	return pos + sizeof(*adsp1_sizes);
1431 }
1432 
cs_dsp_adsp2_parse_sizes(struct cs_dsp * dsp,const char * const file,unsigned int pos,const struct firmware * firmware)1433 static unsigned int cs_dsp_adsp2_parse_sizes(struct cs_dsp *dsp,
1434 					     const char * const file,
1435 					     unsigned int pos,
1436 					     const struct firmware *firmware)
1437 {
1438 	const struct wmfw_adsp2_sizes *adsp2_sizes;
1439 
1440 	adsp2_sizes = (void *)&firmware->data[pos];
1441 	if (sizeof(*adsp2_sizes) > firmware->size - pos) {
1442 		cs_dsp_err(dsp, "%s: file truncated\n", file);
1443 		return 0;
1444 	}
1445 
1446 	cs_dsp_dbg(dsp, "%s: %d XM, %d YM %d PM, %d ZM\n", file,
1447 		   le32_to_cpu(adsp2_sizes->xm), le32_to_cpu(adsp2_sizes->ym),
1448 		   le32_to_cpu(adsp2_sizes->pm), le32_to_cpu(adsp2_sizes->zm));
1449 
1450 	return pos + sizeof(*adsp2_sizes);
1451 }
1452 
cs_dsp_validate_version(struct cs_dsp * dsp,unsigned int version)1453 static bool cs_dsp_validate_version(struct cs_dsp *dsp, unsigned int version)
1454 {
1455 	switch (version) {
1456 	case 0:
1457 		cs_dsp_warn(dsp, "Deprecated file format %d\n", version);
1458 		return true;
1459 	case 1:
1460 	case 2:
1461 		return true;
1462 	default:
1463 		return false;
1464 	}
1465 }
1466 
cs_dsp_halo_validate_version(struct cs_dsp * dsp,unsigned int version)1467 static bool cs_dsp_halo_validate_version(struct cs_dsp *dsp, unsigned int version)
1468 {
1469 	switch (version) {
1470 	case 3:
1471 		return true;
1472 	default:
1473 		return false;
1474 	}
1475 }
1476 
cs_dsp_load(struct cs_dsp * dsp,const struct firmware * firmware,const char * file)1477 static int cs_dsp_load(struct cs_dsp *dsp, const struct firmware *firmware,
1478 		       const char *file)
1479 {
1480 	LIST_HEAD(buf_list);
1481 	struct regmap *regmap = dsp->regmap;
1482 	unsigned int pos = 0;
1483 	const struct wmfw_header *header;
1484 	const struct wmfw_footer *footer;
1485 	const struct wmfw_region *region;
1486 	const struct cs_dsp_region *mem;
1487 	const char *region_name;
1488 	struct cs_dsp_buf *buf;
1489 	unsigned int reg;
1490 	int regions = 0;
1491 	int ret, offset, type;
1492 
1493 	if (!firmware)
1494 		return 0;
1495 
1496 	ret = -EINVAL;
1497 
1498 	if (sizeof(*header) >= firmware->size) {
1499 		ret = -EOVERFLOW;
1500 		goto out_fw;
1501 	}
1502 
1503 	header = (void *)&firmware->data[0];
1504 
1505 	if (memcmp(&header->magic[0], "WMFW", 4) != 0) {
1506 		cs_dsp_err(dsp, "%s: invalid magic\n", file);
1507 		goto out_fw;
1508 	}
1509 
1510 	if (!dsp->ops->validate_version(dsp, header->ver)) {
1511 		cs_dsp_err(dsp, "%s: unknown file format %d\n",
1512 			   file, header->ver);
1513 		goto out_fw;
1514 	}
1515 
1516 	dsp->wmfw_ver = header->ver;
1517 
1518 	if (header->core != dsp->type) {
1519 		cs_dsp_err(dsp, "%s: invalid core %d != %d\n",
1520 			   file, header->core, dsp->type);
1521 		goto out_fw;
1522 	}
1523 
1524 	pos = sizeof(*header);
1525 	pos = dsp->ops->parse_sizes(dsp, file, pos, firmware);
1526 	if ((pos == 0) || (sizeof(*footer) > firmware->size - pos)) {
1527 		ret = -EOVERFLOW;
1528 		goto out_fw;
1529 	}
1530 
1531 	footer = (void *)&firmware->data[pos];
1532 	pos += sizeof(*footer);
1533 
1534 	if (le32_to_cpu(header->len) != pos) {
1535 		ret = -EOVERFLOW;
1536 		goto out_fw;
1537 	}
1538 
1539 	cs_dsp_info(dsp, "%s: format %d timestamp %#llx\n", file, header->ver,
1540 		    le64_to_cpu(footer->timestamp));
1541 
1542 	while (pos < firmware->size) {
1543 		/* Is there enough data for a complete block header? */
1544 		if (sizeof(*region) > firmware->size - pos) {
1545 			ret = -EOVERFLOW;
1546 			goto out_fw;
1547 		}
1548 
1549 		region = (void *)&(firmware->data[pos]);
1550 
1551 		if (le32_to_cpu(region->len) > firmware->size - pos - sizeof(*region)) {
1552 			ret = -EOVERFLOW;
1553 			goto out_fw;
1554 		}
1555 
1556 		region_name = "Unknown";
1557 		reg = 0;
1558 		offset = le32_to_cpu(region->offset) & 0xffffff;
1559 		type = be32_to_cpu(region->type) & 0xff;
1560 
1561 		switch (type) {
1562 		case WMFW_INFO_TEXT:
1563 		case WMFW_NAME_TEXT:
1564 			region_name = "Info/Name";
1565 			cs_dsp_info(dsp, "%s: %.*s\n", file,
1566 				    min(le32_to_cpu(region->len), 100), region->data);
1567 			break;
1568 		case WMFW_ALGORITHM_DATA:
1569 			region_name = "Algorithm";
1570 			ret = cs_dsp_parse_coeff(dsp, region);
1571 			if (ret != 0)
1572 				goto out_fw;
1573 			break;
1574 		case WMFW_ABSOLUTE:
1575 			region_name = "Absolute";
1576 			reg = offset;
1577 			break;
1578 		case WMFW_ADSP1_PM:
1579 		case WMFW_ADSP1_DM:
1580 		case WMFW_ADSP2_XM:
1581 		case WMFW_ADSP2_YM:
1582 		case WMFW_ADSP1_ZM:
1583 		case WMFW_HALO_PM_PACKED:
1584 		case WMFW_HALO_XM_PACKED:
1585 		case WMFW_HALO_YM_PACKED:
1586 			mem = cs_dsp_find_region(dsp, type);
1587 			if (!mem) {
1588 				cs_dsp_err(dsp, "No region of type: %x\n", type);
1589 				ret = -EINVAL;
1590 				goto out_fw;
1591 			}
1592 
1593 			region_name = cs_dsp_mem_region_name(type);
1594 			reg = dsp->ops->region_to_reg(mem, offset);
1595 			break;
1596 		default:
1597 			cs_dsp_warn(dsp,
1598 				    "%s.%d: Unknown region type %x at %d(%x)\n",
1599 				    file, regions, type, pos, pos);
1600 			break;
1601 		}
1602 
1603 		cs_dsp_dbg(dsp, "%s.%d: %d bytes at %d in %s\n", file,
1604 			   regions, le32_to_cpu(region->len), offset,
1605 			   region_name);
1606 
1607 		if (reg) {
1608 			buf = cs_dsp_buf_alloc(region->data,
1609 					       le32_to_cpu(region->len),
1610 					       &buf_list);
1611 			if (!buf) {
1612 				cs_dsp_err(dsp, "Out of memory\n");
1613 				ret = -ENOMEM;
1614 				goto out_fw;
1615 			}
1616 
1617 			ret = regmap_raw_write(regmap, reg, buf->buf,
1618 					       le32_to_cpu(region->len));
1619 			if (ret != 0) {
1620 				cs_dsp_err(dsp,
1621 					   "%s.%d: Failed to write %d bytes at %d in %s: %d\n",
1622 					   file, regions,
1623 					   le32_to_cpu(region->len), offset,
1624 					   region_name, ret);
1625 				goto out_fw;
1626 			}
1627 		}
1628 
1629 		pos += le32_to_cpu(region->len) + sizeof(*region);
1630 		regions++;
1631 	}
1632 
1633 	if (pos > firmware->size)
1634 		cs_dsp_warn(dsp, "%s.%d: %zu bytes at end of file\n",
1635 			    file, regions, pos - firmware->size);
1636 
1637 	cs_dsp_debugfs_save_wmfwname(dsp, file);
1638 
1639 	ret = 0;
1640 out_fw:
1641 	cs_dsp_buf_free(&buf_list);
1642 
1643 	if (ret == -EOVERFLOW)
1644 		cs_dsp_err(dsp, "%s: file content overflows file data\n", file);
1645 
1646 	return ret;
1647 }
1648 
1649 /**
1650  * cs_dsp_get_ctl() - Finds a matching coefficient control
1651  * @dsp: pointer to DSP structure
1652  * @name: pointer to string to match with a control's subname
1653  * @type: the algorithm type to match
1654  * @alg: the algorithm id to match
1655  *
1656  * Find cs_dsp_coeff_ctl with input name as its subname
1657  *
1658  * Return: pointer to the control on success, NULL if not found
1659  */
cs_dsp_get_ctl(struct cs_dsp * dsp,const char * name,int type,unsigned int alg)1660 struct cs_dsp_coeff_ctl *cs_dsp_get_ctl(struct cs_dsp *dsp, const char *name, int type,
1661 					unsigned int alg)
1662 {
1663 	struct cs_dsp_coeff_ctl *pos, *rslt = NULL;
1664 
1665 	lockdep_assert_held(&dsp->pwr_lock);
1666 
1667 	list_for_each_entry(pos, &dsp->ctl_list, list) {
1668 		if (!pos->subname)
1669 			continue;
1670 		if (strncmp(pos->subname, name, pos->subname_len) == 0 &&
1671 		    pos->fw_name == dsp->fw_name &&
1672 		    pos->alg_region.alg == alg &&
1673 		    pos->alg_region.type == type) {
1674 			rslt = pos;
1675 			break;
1676 		}
1677 	}
1678 
1679 	return rslt;
1680 }
1681 EXPORT_SYMBOL_NS_GPL(cs_dsp_get_ctl, "FW_CS_DSP");
1682 
cs_dsp_ctl_fixup_base(struct cs_dsp * dsp,const struct cs_dsp_alg_region * alg_region)1683 static void cs_dsp_ctl_fixup_base(struct cs_dsp *dsp,
1684 				  const struct cs_dsp_alg_region *alg_region)
1685 {
1686 	struct cs_dsp_coeff_ctl *ctl;
1687 
1688 	list_for_each_entry(ctl, &dsp->ctl_list, list) {
1689 		if (ctl->fw_name == dsp->fw_name &&
1690 		    alg_region->alg == ctl->alg_region.alg &&
1691 		    alg_region->type == ctl->alg_region.type) {
1692 			ctl->alg_region.base = alg_region->base;
1693 		}
1694 	}
1695 }
1696 
cs_dsp_read_algs(struct cs_dsp * dsp,size_t n_algs,const struct cs_dsp_region * mem,unsigned int pos,unsigned int len)1697 static void *cs_dsp_read_algs(struct cs_dsp *dsp, size_t n_algs,
1698 			      const struct cs_dsp_region *mem,
1699 			      unsigned int pos, unsigned int len)
1700 {
1701 	void *alg;
1702 	unsigned int reg;
1703 	int ret;
1704 	__be32 val;
1705 
1706 	if (n_algs == 0) {
1707 		cs_dsp_err(dsp, "No algorithms\n");
1708 		return ERR_PTR(-EINVAL);
1709 	}
1710 
1711 	if (n_algs > 1024) {
1712 		cs_dsp_err(dsp, "Algorithm count %zx excessive\n", n_algs);
1713 		return ERR_PTR(-EINVAL);
1714 	}
1715 
1716 	/* Read the terminator first to validate the length */
1717 	reg = dsp->ops->region_to_reg(mem, pos + len);
1718 
1719 	ret = regmap_raw_read(dsp->regmap, reg, &val, sizeof(val));
1720 	if (ret != 0) {
1721 		cs_dsp_err(dsp, "Failed to read algorithm list end: %d\n",
1722 			   ret);
1723 		return ERR_PTR(ret);
1724 	}
1725 
1726 	if (be32_to_cpu(val) != 0xbedead)
1727 		cs_dsp_warn(dsp, "Algorithm list end %x 0x%x != 0xbedead\n",
1728 			    reg, be32_to_cpu(val));
1729 
1730 	/* Convert length from DSP words to bytes */
1731 	len *= sizeof(u32);
1732 
1733 	alg = kzalloc(len, GFP_KERNEL | GFP_DMA);
1734 	if (!alg)
1735 		return ERR_PTR(-ENOMEM);
1736 
1737 	reg = dsp->ops->region_to_reg(mem, pos);
1738 
1739 	ret = regmap_raw_read(dsp->regmap, reg, alg, len);
1740 	if (ret != 0) {
1741 		cs_dsp_err(dsp, "Failed to read algorithm list: %d\n", ret);
1742 		kfree(alg);
1743 		return ERR_PTR(ret);
1744 	}
1745 
1746 	return alg;
1747 }
1748 
1749 /**
1750  * cs_dsp_find_alg_region() - Finds a matching algorithm region
1751  * @dsp: pointer to DSP structure
1752  * @type: the algorithm type to match
1753  * @id: the algorithm id to match
1754  *
1755  * Return: Pointer to matching algorithm region, or NULL if not found.
1756  */
cs_dsp_find_alg_region(struct cs_dsp * dsp,int type,unsigned int id)1757 struct cs_dsp_alg_region *cs_dsp_find_alg_region(struct cs_dsp *dsp,
1758 						 int type, unsigned int id)
1759 {
1760 	struct cs_dsp_alg_region_list_item *item;
1761 
1762 	lockdep_assert_held(&dsp->pwr_lock);
1763 
1764 	list_for_each_entry(item, &dsp->alg_regions, list) {
1765 		if (id == item->alg_region.alg && type == item->alg_region.type)
1766 			return &item->alg_region;
1767 	}
1768 
1769 	return NULL;
1770 }
1771 EXPORT_SYMBOL_NS_GPL(cs_dsp_find_alg_region, "FW_CS_DSP");
1772 
cs_dsp_create_region(struct cs_dsp * dsp,int type,__be32 id,__be32 ver,__be32 base)1773 static struct cs_dsp_alg_region *cs_dsp_create_region(struct cs_dsp *dsp,
1774 						      int type, __be32 id,
1775 						      __be32 ver, __be32 base)
1776 {
1777 	struct cs_dsp_alg_region_list_item *item;
1778 
1779 	item = kzalloc(sizeof(*item), GFP_KERNEL);
1780 	if (!item)
1781 		return ERR_PTR(-ENOMEM);
1782 
1783 	item->alg_region.type = type;
1784 	item->alg_region.alg = be32_to_cpu(id);
1785 	item->alg_region.ver = be32_to_cpu(ver);
1786 	item->alg_region.base = be32_to_cpu(base);
1787 
1788 	list_add_tail(&item->list, &dsp->alg_regions);
1789 
1790 	if (dsp->wmfw_ver > 0)
1791 		cs_dsp_ctl_fixup_base(dsp, &item->alg_region);
1792 
1793 	return &item->alg_region;
1794 }
1795 
cs_dsp_free_alg_regions(struct cs_dsp * dsp)1796 static void cs_dsp_free_alg_regions(struct cs_dsp *dsp)
1797 {
1798 	struct cs_dsp_alg_region_list_item *item;
1799 
1800 	while (!list_empty(&dsp->alg_regions)) {
1801 		item = list_first_entry(&dsp->alg_regions,
1802 					struct cs_dsp_alg_region_list_item,
1803 					list);
1804 		list_del(&item->list);
1805 		kfree(item);
1806 	}
1807 }
1808 
cs_dsp_parse_wmfw_id_header(struct cs_dsp * dsp,struct wmfw_id_hdr * fw,int nalgs)1809 static void cs_dsp_parse_wmfw_id_header(struct cs_dsp *dsp,
1810 					struct wmfw_id_hdr *fw, int nalgs)
1811 {
1812 	dsp->fw_id = be32_to_cpu(fw->id);
1813 	dsp->fw_id_version = be32_to_cpu(fw->ver);
1814 
1815 	cs_dsp_info(dsp, "Firmware: %x v%d.%d.%d, %d algorithms\n",
1816 		    dsp->fw_id, (dsp->fw_id_version & 0xff0000) >> 16,
1817 		    (dsp->fw_id_version & 0xff00) >> 8, dsp->fw_id_version & 0xff,
1818 		    nalgs);
1819 }
1820 
cs_dsp_parse_wmfw_v3_id_header(struct cs_dsp * dsp,struct wmfw_v3_id_hdr * fw,int nalgs)1821 static void cs_dsp_parse_wmfw_v3_id_header(struct cs_dsp *dsp,
1822 					   struct wmfw_v3_id_hdr *fw, int nalgs)
1823 {
1824 	dsp->fw_id = be32_to_cpu(fw->id);
1825 	dsp->fw_id_version = be32_to_cpu(fw->ver);
1826 	dsp->fw_vendor_id = be32_to_cpu(fw->vendor_id);
1827 
1828 	cs_dsp_info(dsp, "Firmware: %x vendor: 0x%x v%d.%d.%d, %d algorithms\n",
1829 		    dsp->fw_id, dsp->fw_vendor_id,
1830 		    (dsp->fw_id_version & 0xff0000) >> 16,
1831 		    (dsp->fw_id_version & 0xff00) >> 8, dsp->fw_id_version & 0xff,
1832 		    nalgs);
1833 }
1834 
cs_dsp_create_regions(struct cs_dsp * dsp,__be32 id,__be32 ver,int nregions,const int * type,__be32 * base)1835 static int cs_dsp_create_regions(struct cs_dsp *dsp, __be32 id, __be32 ver,
1836 				 int nregions, const int *type, __be32 *base)
1837 {
1838 	struct cs_dsp_alg_region *alg_region;
1839 	int i;
1840 
1841 	for (i = 0; i < nregions; i++) {
1842 		alg_region = cs_dsp_create_region(dsp, type[i], id, ver, base[i]);
1843 		if (IS_ERR(alg_region))
1844 			return PTR_ERR(alg_region);
1845 	}
1846 
1847 	return 0;
1848 }
1849 
cs_dsp_adsp1_setup_algs(struct cs_dsp * dsp)1850 static int cs_dsp_adsp1_setup_algs(struct cs_dsp *dsp)
1851 {
1852 	struct wmfw_adsp1_id_hdr adsp1_id;
1853 	struct wmfw_adsp1_alg_hdr *adsp1_alg;
1854 	struct cs_dsp_alg_region *alg_region;
1855 	const struct cs_dsp_region *mem;
1856 	unsigned int pos, len;
1857 	size_t n_algs;
1858 	int i, ret;
1859 
1860 	mem = cs_dsp_find_region(dsp, WMFW_ADSP1_DM);
1861 	if (WARN_ON(!mem))
1862 		return -EINVAL;
1863 
1864 	ret = regmap_raw_read(dsp->regmap, mem->base, &adsp1_id,
1865 			      sizeof(adsp1_id));
1866 	if (ret != 0) {
1867 		cs_dsp_err(dsp, "Failed to read algorithm info: %d\n",
1868 			   ret);
1869 		return ret;
1870 	}
1871 
1872 	n_algs = be32_to_cpu(adsp1_id.n_algs);
1873 
1874 	cs_dsp_parse_wmfw_id_header(dsp, &adsp1_id.fw, n_algs);
1875 
1876 	alg_region = cs_dsp_create_region(dsp, WMFW_ADSP1_ZM,
1877 					  adsp1_id.fw.id, adsp1_id.fw.ver,
1878 					  adsp1_id.zm);
1879 	if (IS_ERR(alg_region))
1880 		return PTR_ERR(alg_region);
1881 
1882 	alg_region = cs_dsp_create_region(dsp, WMFW_ADSP1_DM,
1883 					  adsp1_id.fw.id, adsp1_id.fw.ver,
1884 					  adsp1_id.dm);
1885 	if (IS_ERR(alg_region))
1886 		return PTR_ERR(alg_region);
1887 
1888 	/* Calculate offset and length in DSP words */
1889 	pos = sizeof(adsp1_id) / sizeof(u32);
1890 	len = (sizeof(*adsp1_alg) * n_algs) / sizeof(u32);
1891 
1892 	adsp1_alg = cs_dsp_read_algs(dsp, n_algs, mem, pos, len);
1893 	if (IS_ERR(adsp1_alg))
1894 		return PTR_ERR(adsp1_alg);
1895 
1896 	for (i = 0; i < n_algs; i++) {
1897 		cs_dsp_info(dsp, "%d: ID %x v%d.%d.%d DM@%x ZM@%x\n",
1898 			    i, be32_to_cpu(adsp1_alg[i].alg.id),
1899 			    (be32_to_cpu(adsp1_alg[i].alg.ver) & 0xff0000) >> 16,
1900 			    (be32_to_cpu(adsp1_alg[i].alg.ver) & 0xff00) >> 8,
1901 			    be32_to_cpu(adsp1_alg[i].alg.ver) & 0xff,
1902 			    be32_to_cpu(adsp1_alg[i].dm),
1903 			    be32_to_cpu(adsp1_alg[i].zm));
1904 
1905 		alg_region = cs_dsp_create_region(dsp, WMFW_ADSP1_DM,
1906 						  adsp1_alg[i].alg.id,
1907 						  adsp1_alg[i].alg.ver,
1908 						  adsp1_alg[i].dm);
1909 		if (IS_ERR(alg_region)) {
1910 			ret = PTR_ERR(alg_region);
1911 			goto out;
1912 		}
1913 		if (dsp->wmfw_ver == 0) {
1914 			if (i + 1 < n_algs) {
1915 				len = be32_to_cpu(adsp1_alg[i + 1].dm);
1916 				len -= be32_to_cpu(adsp1_alg[i].dm);
1917 				len *= 4;
1918 				cs_dsp_create_control(dsp, alg_region, 0,
1919 						      len, NULL, 0, 0,
1920 						      WMFW_CTL_TYPE_BYTES);
1921 			} else {
1922 				cs_dsp_warn(dsp, "Missing length info for region DM with ID %x\n",
1923 					    be32_to_cpu(adsp1_alg[i].alg.id));
1924 			}
1925 		}
1926 
1927 		alg_region = cs_dsp_create_region(dsp, WMFW_ADSP1_ZM,
1928 						  adsp1_alg[i].alg.id,
1929 						  adsp1_alg[i].alg.ver,
1930 						  adsp1_alg[i].zm);
1931 		if (IS_ERR(alg_region)) {
1932 			ret = PTR_ERR(alg_region);
1933 			goto out;
1934 		}
1935 		if (dsp->wmfw_ver == 0) {
1936 			if (i + 1 < n_algs) {
1937 				len = be32_to_cpu(adsp1_alg[i + 1].zm);
1938 				len -= be32_to_cpu(adsp1_alg[i].zm);
1939 				len *= 4;
1940 				cs_dsp_create_control(dsp, alg_region, 0,
1941 						      len, NULL, 0, 0,
1942 						      WMFW_CTL_TYPE_BYTES);
1943 			} else {
1944 				cs_dsp_warn(dsp, "Missing length info for region ZM with ID %x\n",
1945 					    be32_to_cpu(adsp1_alg[i].alg.id));
1946 			}
1947 		}
1948 	}
1949 
1950 out:
1951 	kfree(adsp1_alg);
1952 	return ret;
1953 }
1954 
cs_dsp_adsp2_setup_algs(struct cs_dsp * dsp)1955 static int cs_dsp_adsp2_setup_algs(struct cs_dsp *dsp)
1956 {
1957 	struct wmfw_adsp2_id_hdr adsp2_id;
1958 	struct wmfw_adsp2_alg_hdr *adsp2_alg;
1959 	struct cs_dsp_alg_region *alg_region;
1960 	const struct cs_dsp_region *mem;
1961 	unsigned int pos, len;
1962 	size_t n_algs;
1963 	int i, ret;
1964 
1965 	mem = cs_dsp_find_region(dsp, WMFW_ADSP2_XM);
1966 	if (WARN_ON(!mem))
1967 		return -EINVAL;
1968 
1969 	ret = regmap_raw_read(dsp->regmap, mem->base, &adsp2_id,
1970 			      sizeof(adsp2_id));
1971 	if (ret != 0) {
1972 		cs_dsp_err(dsp, "Failed to read algorithm info: %d\n",
1973 			   ret);
1974 		return ret;
1975 	}
1976 
1977 	n_algs = be32_to_cpu(adsp2_id.n_algs);
1978 
1979 	cs_dsp_parse_wmfw_id_header(dsp, &adsp2_id.fw, n_algs);
1980 
1981 	alg_region = cs_dsp_create_region(dsp, WMFW_ADSP2_XM,
1982 					  adsp2_id.fw.id, adsp2_id.fw.ver,
1983 					  adsp2_id.xm);
1984 	if (IS_ERR(alg_region))
1985 		return PTR_ERR(alg_region);
1986 
1987 	alg_region = cs_dsp_create_region(dsp, WMFW_ADSP2_YM,
1988 					  adsp2_id.fw.id, adsp2_id.fw.ver,
1989 					  adsp2_id.ym);
1990 	if (IS_ERR(alg_region))
1991 		return PTR_ERR(alg_region);
1992 
1993 	alg_region = cs_dsp_create_region(dsp, WMFW_ADSP2_ZM,
1994 					  adsp2_id.fw.id, adsp2_id.fw.ver,
1995 					  adsp2_id.zm);
1996 	if (IS_ERR(alg_region))
1997 		return PTR_ERR(alg_region);
1998 
1999 	/* Calculate offset and length in DSP words */
2000 	pos = sizeof(adsp2_id) / sizeof(u32);
2001 	len = (sizeof(*adsp2_alg) * n_algs) / sizeof(u32);
2002 
2003 	adsp2_alg = cs_dsp_read_algs(dsp, n_algs, mem, pos, len);
2004 	if (IS_ERR(adsp2_alg))
2005 		return PTR_ERR(adsp2_alg);
2006 
2007 	for (i = 0; i < n_algs; i++) {
2008 		cs_dsp_dbg(dsp,
2009 			   "%d: ID %x v%d.%d.%d XM@%x YM@%x ZM@%x\n",
2010 			   i, be32_to_cpu(adsp2_alg[i].alg.id),
2011 			   (be32_to_cpu(adsp2_alg[i].alg.ver) & 0xff0000) >> 16,
2012 			   (be32_to_cpu(adsp2_alg[i].alg.ver) & 0xff00) >> 8,
2013 			   be32_to_cpu(adsp2_alg[i].alg.ver) & 0xff,
2014 			   be32_to_cpu(adsp2_alg[i].xm),
2015 			   be32_to_cpu(adsp2_alg[i].ym),
2016 			   be32_to_cpu(adsp2_alg[i].zm));
2017 
2018 		alg_region = cs_dsp_create_region(dsp, WMFW_ADSP2_XM,
2019 						  adsp2_alg[i].alg.id,
2020 						  adsp2_alg[i].alg.ver,
2021 						  adsp2_alg[i].xm);
2022 		if (IS_ERR(alg_region)) {
2023 			ret = PTR_ERR(alg_region);
2024 			goto out;
2025 		}
2026 		if (dsp->wmfw_ver == 0) {
2027 			if (i + 1 < n_algs) {
2028 				len = be32_to_cpu(adsp2_alg[i + 1].xm);
2029 				len -= be32_to_cpu(adsp2_alg[i].xm);
2030 				len *= 4;
2031 				cs_dsp_create_control(dsp, alg_region, 0,
2032 						      len, NULL, 0, 0,
2033 						      WMFW_CTL_TYPE_BYTES);
2034 			} else {
2035 				cs_dsp_warn(dsp, "Missing length info for region XM with ID %x\n",
2036 					    be32_to_cpu(adsp2_alg[i].alg.id));
2037 			}
2038 		}
2039 
2040 		alg_region = cs_dsp_create_region(dsp, WMFW_ADSP2_YM,
2041 						  adsp2_alg[i].alg.id,
2042 						  adsp2_alg[i].alg.ver,
2043 						  adsp2_alg[i].ym);
2044 		if (IS_ERR(alg_region)) {
2045 			ret = PTR_ERR(alg_region);
2046 			goto out;
2047 		}
2048 		if (dsp->wmfw_ver == 0) {
2049 			if (i + 1 < n_algs) {
2050 				len = be32_to_cpu(adsp2_alg[i + 1].ym);
2051 				len -= be32_to_cpu(adsp2_alg[i].ym);
2052 				len *= 4;
2053 				cs_dsp_create_control(dsp, alg_region, 0,
2054 						      len, NULL, 0, 0,
2055 						      WMFW_CTL_TYPE_BYTES);
2056 			} else {
2057 				cs_dsp_warn(dsp, "Missing length info for region YM with ID %x\n",
2058 					    be32_to_cpu(adsp2_alg[i].alg.id));
2059 			}
2060 		}
2061 
2062 		alg_region = cs_dsp_create_region(dsp, WMFW_ADSP2_ZM,
2063 						  adsp2_alg[i].alg.id,
2064 						  adsp2_alg[i].alg.ver,
2065 						  adsp2_alg[i].zm);
2066 		if (IS_ERR(alg_region)) {
2067 			ret = PTR_ERR(alg_region);
2068 			goto out;
2069 		}
2070 		if (dsp->wmfw_ver == 0) {
2071 			if (i + 1 < n_algs) {
2072 				len = be32_to_cpu(adsp2_alg[i + 1].zm);
2073 				len -= be32_to_cpu(adsp2_alg[i].zm);
2074 				len *= 4;
2075 				cs_dsp_create_control(dsp, alg_region, 0,
2076 						      len, NULL, 0, 0,
2077 						      WMFW_CTL_TYPE_BYTES);
2078 			} else {
2079 				cs_dsp_warn(dsp, "Missing length info for region ZM with ID %x\n",
2080 					    be32_to_cpu(adsp2_alg[i].alg.id));
2081 			}
2082 		}
2083 	}
2084 
2085 out:
2086 	kfree(adsp2_alg);
2087 	return ret;
2088 }
2089 
cs_dsp_halo_create_regions(struct cs_dsp * dsp,__be32 id,__be32 ver,__be32 xm_base,__be32 ym_base)2090 static int cs_dsp_halo_create_regions(struct cs_dsp *dsp, __be32 id, __be32 ver,
2091 				      __be32 xm_base, __be32 ym_base)
2092 {
2093 	static const int types[] = {
2094 		WMFW_ADSP2_XM, WMFW_HALO_XM_PACKED,
2095 		WMFW_ADSP2_YM, WMFW_HALO_YM_PACKED
2096 	};
2097 	__be32 bases[] = { xm_base, xm_base, ym_base, ym_base };
2098 
2099 	return cs_dsp_create_regions(dsp, id, ver, ARRAY_SIZE(types), types, bases);
2100 }
2101 
cs_dsp_halo_setup_algs(struct cs_dsp * dsp)2102 static int cs_dsp_halo_setup_algs(struct cs_dsp *dsp)
2103 {
2104 	struct wmfw_halo_id_hdr halo_id;
2105 	struct wmfw_halo_alg_hdr *halo_alg;
2106 	const struct cs_dsp_region *mem;
2107 	unsigned int pos, len;
2108 	size_t n_algs;
2109 	int i, ret;
2110 
2111 	mem = cs_dsp_find_region(dsp, WMFW_ADSP2_XM);
2112 	if (WARN_ON(!mem))
2113 		return -EINVAL;
2114 
2115 	ret = regmap_raw_read(dsp->regmap, mem->base, &halo_id,
2116 			      sizeof(halo_id));
2117 	if (ret != 0) {
2118 		cs_dsp_err(dsp, "Failed to read algorithm info: %d\n",
2119 			   ret);
2120 		return ret;
2121 	}
2122 
2123 	n_algs = be32_to_cpu(halo_id.n_algs);
2124 
2125 	cs_dsp_parse_wmfw_v3_id_header(dsp, &halo_id.fw, n_algs);
2126 
2127 	ret = cs_dsp_halo_create_regions(dsp, halo_id.fw.id, halo_id.fw.ver,
2128 					 halo_id.xm_base, halo_id.ym_base);
2129 	if (ret)
2130 		return ret;
2131 
2132 	/* Calculate offset and length in DSP words */
2133 	pos = sizeof(halo_id) / sizeof(u32);
2134 	len = (sizeof(*halo_alg) * n_algs) / sizeof(u32);
2135 
2136 	halo_alg = cs_dsp_read_algs(dsp, n_algs, mem, pos, len);
2137 	if (IS_ERR(halo_alg))
2138 		return PTR_ERR(halo_alg);
2139 
2140 	for (i = 0; i < n_algs; i++) {
2141 		cs_dsp_dbg(dsp,
2142 			   "%d: ID %x v%d.%d.%d XM@%x YM@%x\n",
2143 			   i, be32_to_cpu(halo_alg[i].alg.id),
2144 			   (be32_to_cpu(halo_alg[i].alg.ver) & 0xff0000) >> 16,
2145 			   (be32_to_cpu(halo_alg[i].alg.ver) & 0xff00) >> 8,
2146 			   be32_to_cpu(halo_alg[i].alg.ver) & 0xff,
2147 			   be32_to_cpu(halo_alg[i].xm_base),
2148 			   be32_to_cpu(halo_alg[i].ym_base));
2149 
2150 		ret = cs_dsp_halo_create_regions(dsp, halo_alg[i].alg.id,
2151 						 halo_alg[i].alg.ver,
2152 						 halo_alg[i].xm_base,
2153 						 halo_alg[i].ym_base);
2154 		if (ret)
2155 			goto out;
2156 	}
2157 
2158 out:
2159 	kfree(halo_alg);
2160 	return ret;
2161 }
2162 
cs_dsp_load_coeff(struct cs_dsp * dsp,const struct firmware * firmware,const char * file)2163 static int cs_dsp_load_coeff(struct cs_dsp *dsp, const struct firmware *firmware,
2164 			     const char *file)
2165 {
2166 	LIST_HEAD(buf_list);
2167 	struct regmap *regmap = dsp->regmap;
2168 	struct wmfw_coeff_hdr *hdr;
2169 	struct wmfw_coeff_item *blk;
2170 	const struct cs_dsp_region *mem;
2171 	struct cs_dsp_alg_region *alg_region;
2172 	const char *region_name;
2173 	int ret, pos, blocks, type, offset, reg, version;
2174 	struct cs_dsp_buf *buf;
2175 
2176 	if (!firmware)
2177 		return 0;
2178 
2179 	ret = -EINVAL;
2180 
2181 	if (sizeof(*hdr) >= firmware->size) {
2182 		cs_dsp_err(dsp, "%s: coefficient file too short, %zu bytes\n",
2183 			   file, firmware->size);
2184 		goto out_fw;
2185 	}
2186 
2187 	hdr = (void *)&firmware->data[0];
2188 	if (memcmp(hdr->magic, "WMDR", 4) != 0) {
2189 		cs_dsp_err(dsp, "%s: invalid coefficient magic\n", file);
2190 		goto out_fw;
2191 	}
2192 
2193 	switch (be32_to_cpu(hdr->rev) & 0xff) {
2194 	case 1:
2195 	case 2:
2196 		break;
2197 	default:
2198 		cs_dsp_err(dsp, "%s: Unsupported coefficient file format %d\n",
2199 			   file, be32_to_cpu(hdr->rev) & 0xff);
2200 		ret = -EINVAL;
2201 		goto out_fw;
2202 	}
2203 
2204 	cs_dsp_info(dsp, "%s: v%d.%d.%d\n", file,
2205 		    (le32_to_cpu(hdr->ver) >> 16) & 0xff,
2206 		    (le32_to_cpu(hdr->ver) >>  8) & 0xff,
2207 		    le32_to_cpu(hdr->ver) & 0xff);
2208 
2209 	pos = le32_to_cpu(hdr->len);
2210 
2211 	blocks = 0;
2212 	while (pos < firmware->size) {
2213 		/* Is there enough data for a complete block header? */
2214 		if (sizeof(*blk) > firmware->size - pos) {
2215 			ret = -EOVERFLOW;
2216 			goto out_fw;
2217 		}
2218 
2219 		blk = (void *)(&firmware->data[pos]);
2220 
2221 		if (le32_to_cpu(blk->len) > firmware->size - pos - sizeof(*blk)) {
2222 			ret = -EOVERFLOW;
2223 			goto out_fw;
2224 		}
2225 
2226 		type = le16_to_cpu(blk->type);
2227 		offset = le16_to_cpu(blk->offset);
2228 		version = le32_to_cpu(blk->ver) >> 8;
2229 
2230 		cs_dsp_dbg(dsp, "%s.%d: %x v%d.%d.%d\n",
2231 			   file, blocks, le32_to_cpu(blk->id),
2232 			   (le32_to_cpu(blk->ver) >> 16) & 0xff,
2233 			   (le32_to_cpu(blk->ver) >>  8) & 0xff,
2234 			   le32_to_cpu(blk->ver) & 0xff);
2235 		cs_dsp_dbg(dsp, "%s.%d: %d bytes at 0x%x in %x\n",
2236 			   file, blocks, le32_to_cpu(blk->len), offset, type);
2237 
2238 		reg = 0;
2239 		region_name = "Unknown";
2240 		switch (type) {
2241 		case (WMFW_NAME_TEXT << 8):
2242 			cs_dsp_info(dsp, "%s: %.*s\n", dsp->fw_name,
2243 				    min(le32_to_cpu(blk->len), 100), blk->data);
2244 			break;
2245 		case (WMFW_INFO_TEXT << 8):
2246 		case (WMFW_METADATA << 8):
2247 			break;
2248 		case (WMFW_ABSOLUTE << 8):
2249 			/*
2250 			 * Old files may use this for global
2251 			 * coefficients.
2252 			 */
2253 			if (le32_to_cpu(blk->id) == dsp->fw_id &&
2254 			    offset == 0) {
2255 				region_name = "global coefficients";
2256 				mem = cs_dsp_find_region(dsp, type);
2257 				if (!mem) {
2258 					cs_dsp_err(dsp, "No ZM\n");
2259 					break;
2260 				}
2261 				reg = dsp->ops->region_to_reg(mem, 0);
2262 
2263 			} else {
2264 				region_name = "register";
2265 				reg = offset;
2266 			}
2267 			break;
2268 
2269 		case WMFW_ADSP1_DM:
2270 		case WMFW_ADSP1_ZM:
2271 		case WMFW_ADSP2_XM:
2272 		case WMFW_ADSP2_YM:
2273 		case WMFW_HALO_XM_PACKED:
2274 		case WMFW_HALO_YM_PACKED:
2275 		case WMFW_HALO_PM_PACKED:
2276 			cs_dsp_dbg(dsp, "%s.%d: %d bytes in %x for %x\n",
2277 				   file, blocks, le32_to_cpu(blk->len),
2278 				   type, le32_to_cpu(blk->id));
2279 
2280 			region_name = cs_dsp_mem_region_name(type);
2281 			mem = cs_dsp_find_region(dsp, type);
2282 			if (!mem) {
2283 				cs_dsp_err(dsp, "No base for region %x\n", type);
2284 				break;
2285 			}
2286 
2287 			alg_region = cs_dsp_find_alg_region(dsp, type,
2288 							    le32_to_cpu(blk->id));
2289 			if (alg_region) {
2290 				if (version != alg_region->ver)
2291 					cs_dsp_warn(dsp,
2292 						    "Algorithm coefficient version %d.%d.%d but expected %d.%d.%d\n",
2293 						   (version >> 16) & 0xFF,
2294 						   (version >> 8) & 0xFF,
2295 						   version & 0xFF,
2296 						   (alg_region->ver >> 16) & 0xFF,
2297 						   (alg_region->ver >> 8) & 0xFF,
2298 						   alg_region->ver & 0xFF);
2299 
2300 				reg = alg_region->base;
2301 				reg = dsp->ops->region_to_reg(mem, reg);
2302 				reg += offset;
2303 			} else {
2304 				cs_dsp_err(dsp, "No %s for algorithm %x\n",
2305 					   region_name, le32_to_cpu(blk->id));
2306 			}
2307 			break;
2308 
2309 		default:
2310 			cs_dsp_err(dsp, "%s.%d: Unknown region type %x at %d\n",
2311 				   file, blocks, type, pos);
2312 			break;
2313 		}
2314 
2315 		if (reg) {
2316 			buf = cs_dsp_buf_alloc(blk->data,
2317 					       le32_to_cpu(blk->len),
2318 					       &buf_list);
2319 			if (!buf) {
2320 				cs_dsp_err(dsp, "Out of memory\n");
2321 				ret = -ENOMEM;
2322 				goto out_fw;
2323 			}
2324 
2325 			cs_dsp_dbg(dsp, "%s.%d: Writing %d bytes at %x\n",
2326 				   file, blocks, le32_to_cpu(blk->len),
2327 				   reg);
2328 			ret = regmap_raw_write(regmap, reg, buf->buf,
2329 					       le32_to_cpu(blk->len));
2330 			if (ret != 0) {
2331 				cs_dsp_err(dsp,
2332 					   "%s.%d: Failed to write to %x in %s: %d\n",
2333 					   file, blocks, reg, region_name, ret);
2334 			}
2335 		}
2336 
2337 		pos += (le32_to_cpu(blk->len) + sizeof(*blk) + 3) & ~0x03;
2338 		blocks++;
2339 	}
2340 
2341 	if (pos > firmware->size)
2342 		cs_dsp_warn(dsp, "%s.%d: %zu bytes at end of file\n",
2343 			    file, blocks, pos - firmware->size);
2344 
2345 	cs_dsp_debugfs_save_binname(dsp, file);
2346 
2347 	ret = 0;
2348 out_fw:
2349 	cs_dsp_buf_free(&buf_list);
2350 
2351 	if (ret == -EOVERFLOW)
2352 		cs_dsp_err(dsp, "%s: file content overflows file data\n", file);
2353 
2354 	return ret;
2355 }
2356 
cs_dsp_create_name(struct cs_dsp * dsp)2357 static int cs_dsp_create_name(struct cs_dsp *dsp)
2358 {
2359 	if (!dsp->name) {
2360 		dsp->name = devm_kasprintf(dsp->dev, GFP_KERNEL, "DSP%d",
2361 					   dsp->num);
2362 		if (!dsp->name)
2363 			return -ENOMEM;
2364 	}
2365 
2366 	return 0;
2367 }
2368 
cs_dsp_common_init(struct cs_dsp * dsp)2369 static int cs_dsp_common_init(struct cs_dsp *dsp)
2370 {
2371 	int ret;
2372 
2373 	ret = cs_dsp_create_name(dsp);
2374 	if (ret)
2375 		return ret;
2376 
2377 	INIT_LIST_HEAD(&dsp->alg_regions);
2378 	INIT_LIST_HEAD(&dsp->ctl_list);
2379 
2380 	mutex_init(&dsp->pwr_lock);
2381 
2382 #ifdef CONFIG_DEBUG_FS
2383 	/* Ensure this is invalid if client never provides a debugfs root */
2384 	dsp->debugfs_root = ERR_PTR(-ENODEV);
2385 #endif
2386 
2387 	return 0;
2388 }
2389 
2390 /**
2391  * cs_dsp_adsp1_init() - Initialise a cs_dsp structure representing a ADSP1 device
2392  * @dsp: pointer to DSP structure
2393  *
2394  * Return: Zero for success, a negative number on error.
2395  */
cs_dsp_adsp1_init(struct cs_dsp * dsp)2396 int cs_dsp_adsp1_init(struct cs_dsp *dsp)
2397 {
2398 	dsp->ops = &cs_dsp_adsp1_ops;
2399 
2400 	return cs_dsp_common_init(dsp);
2401 }
2402 EXPORT_SYMBOL_NS_GPL(cs_dsp_adsp1_init, "FW_CS_DSP");
2403 
2404 /**
2405  * cs_dsp_adsp1_power_up() - Load and start the named firmware
2406  * @dsp: pointer to DSP structure
2407  * @wmfw_firmware: the firmware to be sent
2408  * @wmfw_filename: file name of firmware to be sent
2409  * @coeff_firmware: the coefficient data to be sent
2410  * @coeff_filename: file name of coefficient to data be sent
2411  * @fw_name: the user-friendly firmware name
2412  *
2413  * Return: Zero for success, a negative number on error.
2414  */
cs_dsp_adsp1_power_up(struct cs_dsp * dsp,const struct firmware * wmfw_firmware,const char * wmfw_filename,const struct firmware * coeff_firmware,const char * coeff_filename,const char * fw_name)2415 int cs_dsp_adsp1_power_up(struct cs_dsp *dsp,
2416 			  const struct firmware *wmfw_firmware, const char *wmfw_filename,
2417 			  const struct firmware *coeff_firmware, const char *coeff_filename,
2418 			  const char *fw_name)
2419 {
2420 	unsigned int val;
2421 	int ret;
2422 
2423 	mutex_lock(&dsp->pwr_lock);
2424 
2425 	dsp->fw_name = fw_name;
2426 
2427 	regmap_update_bits(dsp->regmap, dsp->base + ADSP1_CONTROL_30,
2428 			   ADSP1_SYS_ENA, ADSP1_SYS_ENA);
2429 
2430 	/*
2431 	 * For simplicity set the DSP clock rate to be the
2432 	 * SYSCLK rate rather than making it configurable.
2433 	 */
2434 	if (dsp->sysclk_reg) {
2435 		ret = regmap_read(dsp->regmap, dsp->sysclk_reg, &val);
2436 		if (ret != 0) {
2437 			cs_dsp_err(dsp, "Failed to read SYSCLK state: %d\n", ret);
2438 			goto err_mutex;
2439 		}
2440 
2441 		val = (val & dsp->sysclk_mask) >> dsp->sysclk_shift;
2442 
2443 		ret = regmap_update_bits(dsp->regmap,
2444 					 dsp->base + ADSP1_CONTROL_31,
2445 					 ADSP1_CLK_SEL_MASK, val);
2446 		if (ret != 0) {
2447 			cs_dsp_err(dsp, "Failed to set clock rate: %d\n", ret);
2448 			goto err_mutex;
2449 		}
2450 	}
2451 
2452 	ret = cs_dsp_load(dsp, wmfw_firmware, wmfw_filename);
2453 	if (ret != 0)
2454 		goto err_ena;
2455 
2456 	ret = cs_dsp_adsp1_setup_algs(dsp);
2457 	if (ret != 0)
2458 		goto err_ena;
2459 
2460 	ret = cs_dsp_load_coeff(dsp, coeff_firmware, coeff_filename);
2461 	if (ret != 0)
2462 		goto err_ena;
2463 
2464 	/* Initialize caches for enabled and unset controls */
2465 	ret = cs_dsp_coeff_init_control_caches(dsp);
2466 	if (ret != 0)
2467 		goto err_ena;
2468 
2469 	/* Sync set controls */
2470 	ret = cs_dsp_coeff_sync_controls(dsp);
2471 	if (ret != 0)
2472 		goto err_ena;
2473 
2474 	dsp->booted = true;
2475 
2476 	/* Start the core running */
2477 	regmap_update_bits(dsp->regmap, dsp->base + ADSP1_CONTROL_30,
2478 			   ADSP1_CORE_ENA | ADSP1_START,
2479 			   ADSP1_CORE_ENA | ADSP1_START);
2480 
2481 	dsp->running = true;
2482 
2483 	mutex_unlock(&dsp->pwr_lock);
2484 
2485 	return 0;
2486 
2487 err_ena:
2488 	regmap_update_bits(dsp->regmap, dsp->base + ADSP1_CONTROL_30,
2489 			   ADSP1_SYS_ENA, 0);
2490 err_mutex:
2491 	mutex_unlock(&dsp->pwr_lock);
2492 	return ret;
2493 }
2494 EXPORT_SYMBOL_NS_GPL(cs_dsp_adsp1_power_up, "FW_CS_DSP");
2495 
2496 /**
2497  * cs_dsp_adsp1_power_down() - Halts the DSP
2498  * @dsp: pointer to DSP structure
2499  */
cs_dsp_adsp1_power_down(struct cs_dsp * dsp)2500 void cs_dsp_adsp1_power_down(struct cs_dsp *dsp)
2501 {
2502 	struct cs_dsp_coeff_ctl *ctl;
2503 
2504 	mutex_lock(&dsp->pwr_lock);
2505 
2506 	dsp->running = false;
2507 	dsp->booted = false;
2508 
2509 	/* Halt the core */
2510 	regmap_update_bits(dsp->regmap, dsp->base + ADSP1_CONTROL_30,
2511 			   ADSP1_CORE_ENA | ADSP1_START, 0);
2512 
2513 	regmap_update_bits(dsp->regmap, dsp->base + ADSP1_CONTROL_19,
2514 			   ADSP1_WDMA_BUFFER_LENGTH_MASK, 0);
2515 
2516 	regmap_update_bits(dsp->regmap, dsp->base + ADSP1_CONTROL_30,
2517 			   ADSP1_SYS_ENA, 0);
2518 
2519 	list_for_each_entry(ctl, &dsp->ctl_list, list)
2520 		ctl->enabled = 0;
2521 
2522 	cs_dsp_free_alg_regions(dsp);
2523 
2524 	mutex_unlock(&dsp->pwr_lock);
2525 }
2526 EXPORT_SYMBOL_NS_GPL(cs_dsp_adsp1_power_down, "FW_CS_DSP");
2527 
cs_dsp_adsp2v2_enable_core(struct cs_dsp * dsp)2528 static int cs_dsp_adsp2v2_enable_core(struct cs_dsp *dsp)
2529 {
2530 	unsigned int val;
2531 	int ret, count;
2532 
2533 	/* Wait for the RAM to start, should be near instantaneous */
2534 	for (count = 0; count < 10; ++count) {
2535 		ret = regmap_read(dsp->regmap, dsp->base + ADSP2_STATUS1, &val);
2536 		if (ret != 0)
2537 			return ret;
2538 
2539 		if (val & ADSP2_RAM_RDY)
2540 			break;
2541 
2542 		usleep_range(250, 500);
2543 	}
2544 
2545 	if (!(val & ADSP2_RAM_RDY)) {
2546 		cs_dsp_err(dsp, "Failed to start DSP RAM\n");
2547 		return -EBUSY;
2548 	}
2549 
2550 	cs_dsp_dbg(dsp, "RAM ready after %d polls\n", count);
2551 
2552 	return 0;
2553 }
2554 
cs_dsp_adsp2_enable_core(struct cs_dsp * dsp)2555 static int cs_dsp_adsp2_enable_core(struct cs_dsp *dsp)
2556 {
2557 	int ret;
2558 
2559 	ret = regmap_update_bits(dsp->regmap, dsp->base + ADSP2_CONTROL,
2560 				 ADSP2_SYS_ENA, ADSP2_SYS_ENA);
2561 	if (ret != 0)
2562 		return ret;
2563 
2564 	return cs_dsp_adsp2v2_enable_core(dsp);
2565 }
2566 
cs_dsp_adsp2_lock(struct cs_dsp * dsp,unsigned int lock_regions)2567 static int cs_dsp_adsp2_lock(struct cs_dsp *dsp, unsigned int lock_regions)
2568 {
2569 	struct regmap *regmap = dsp->regmap;
2570 	unsigned int code0, code1, lock_reg;
2571 
2572 	if (!(lock_regions & CS_ADSP2_REGION_ALL))
2573 		return 0;
2574 
2575 	lock_regions &= CS_ADSP2_REGION_ALL;
2576 	lock_reg = dsp->base + ADSP2_LOCK_REGION_1_LOCK_REGION_0;
2577 
2578 	while (lock_regions) {
2579 		code0 = code1 = 0;
2580 		if (lock_regions & BIT(0)) {
2581 			code0 = ADSP2_LOCK_CODE_0;
2582 			code1 = ADSP2_LOCK_CODE_1;
2583 		}
2584 		if (lock_regions & BIT(1)) {
2585 			code0 |= ADSP2_LOCK_CODE_0 << ADSP2_LOCK_REGION_SHIFT;
2586 			code1 |= ADSP2_LOCK_CODE_1 << ADSP2_LOCK_REGION_SHIFT;
2587 		}
2588 		regmap_write(regmap, lock_reg, code0);
2589 		regmap_write(regmap, lock_reg, code1);
2590 		lock_regions >>= 2;
2591 		lock_reg += 2;
2592 	}
2593 
2594 	return 0;
2595 }
2596 
cs_dsp_adsp2_enable_memory(struct cs_dsp * dsp)2597 static int cs_dsp_adsp2_enable_memory(struct cs_dsp *dsp)
2598 {
2599 	return regmap_update_bits(dsp->regmap, dsp->base + ADSP2_CONTROL,
2600 				  ADSP2_MEM_ENA, ADSP2_MEM_ENA);
2601 }
2602 
cs_dsp_adsp2_disable_memory(struct cs_dsp * dsp)2603 static void cs_dsp_adsp2_disable_memory(struct cs_dsp *dsp)
2604 {
2605 	regmap_update_bits(dsp->regmap, dsp->base + ADSP2_CONTROL,
2606 			   ADSP2_MEM_ENA, 0);
2607 }
2608 
cs_dsp_adsp2_disable_core(struct cs_dsp * dsp)2609 static void cs_dsp_adsp2_disable_core(struct cs_dsp *dsp)
2610 {
2611 	regmap_write(dsp->regmap, dsp->base + ADSP2_RDMA_CONFIG_1, 0);
2612 	regmap_write(dsp->regmap, dsp->base + ADSP2_WDMA_CONFIG_1, 0);
2613 	regmap_write(dsp->regmap, dsp->base + ADSP2_WDMA_CONFIG_2, 0);
2614 
2615 	regmap_update_bits(dsp->regmap, dsp->base + ADSP2_CONTROL,
2616 			   ADSP2_SYS_ENA, 0);
2617 }
2618 
cs_dsp_adsp2v2_disable_core(struct cs_dsp * dsp)2619 static void cs_dsp_adsp2v2_disable_core(struct cs_dsp *dsp)
2620 {
2621 	regmap_write(dsp->regmap, dsp->base + ADSP2_RDMA_CONFIG_1, 0);
2622 	regmap_write(dsp->regmap, dsp->base + ADSP2_WDMA_CONFIG_1, 0);
2623 	regmap_write(dsp->regmap, dsp->base + ADSP2V2_WDMA_CONFIG_2, 0);
2624 }
2625 
cs_dsp_halo_configure_mpu(struct cs_dsp * dsp,unsigned int lock_regions)2626 static int cs_dsp_halo_configure_mpu(struct cs_dsp *dsp, unsigned int lock_regions)
2627 {
2628 	struct reg_sequence config[] = {
2629 		{ dsp->base + HALO_MPU_LOCK_CONFIG,     0x5555 },
2630 		{ dsp->base + HALO_MPU_LOCK_CONFIG,     0xAAAA },
2631 		{ dsp->base + HALO_MPU_XMEM_ACCESS_0,   0xFFFFFFFF },
2632 		{ dsp->base + HALO_MPU_YMEM_ACCESS_0,   0xFFFFFFFF },
2633 		{ dsp->base + HALO_MPU_WINDOW_ACCESS_0, lock_regions },
2634 		{ dsp->base + HALO_MPU_XREG_ACCESS_0,   lock_regions },
2635 		{ dsp->base + HALO_MPU_YREG_ACCESS_0,   lock_regions },
2636 		{ dsp->base + HALO_MPU_XMEM_ACCESS_1,   0xFFFFFFFF },
2637 		{ dsp->base + HALO_MPU_YMEM_ACCESS_1,   0xFFFFFFFF },
2638 		{ dsp->base + HALO_MPU_WINDOW_ACCESS_1, lock_regions },
2639 		{ dsp->base + HALO_MPU_XREG_ACCESS_1,   lock_regions },
2640 		{ dsp->base + HALO_MPU_YREG_ACCESS_1,   lock_regions },
2641 		{ dsp->base + HALO_MPU_XMEM_ACCESS_2,   0xFFFFFFFF },
2642 		{ dsp->base + HALO_MPU_YMEM_ACCESS_2,   0xFFFFFFFF },
2643 		{ dsp->base + HALO_MPU_WINDOW_ACCESS_2, lock_regions },
2644 		{ dsp->base + HALO_MPU_XREG_ACCESS_2,   lock_regions },
2645 		{ dsp->base + HALO_MPU_YREG_ACCESS_2,   lock_regions },
2646 		{ dsp->base + HALO_MPU_XMEM_ACCESS_3,   0xFFFFFFFF },
2647 		{ dsp->base + HALO_MPU_YMEM_ACCESS_3,   0xFFFFFFFF },
2648 		{ dsp->base + HALO_MPU_WINDOW_ACCESS_3, lock_regions },
2649 		{ dsp->base + HALO_MPU_XREG_ACCESS_3,   lock_regions },
2650 		{ dsp->base + HALO_MPU_YREG_ACCESS_3,   lock_regions },
2651 		{ dsp->base + HALO_MPU_LOCK_CONFIG,     0 },
2652 	};
2653 
2654 	return regmap_multi_reg_write(dsp->regmap, config, ARRAY_SIZE(config));
2655 }
2656 
2657 /**
2658  * cs_dsp_set_dspclk() - Applies the given frequency to the given cs_dsp
2659  * @dsp: pointer to DSP structure
2660  * @freq: clock rate to set
2661  *
2662  * This is only for use on ADSP2 cores.
2663  *
2664  * Return: Zero for success, a negative number on error.
2665  */
cs_dsp_set_dspclk(struct cs_dsp * dsp,unsigned int freq)2666 int cs_dsp_set_dspclk(struct cs_dsp *dsp, unsigned int freq)
2667 {
2668 	int ret;
2669 
2670 	ret = regmap_update_bits(dsp->regmap, dsp->base + ADSP2_CLOCKING,
2671 				 ADSP2_CLK_SEL_MASK,
2672 				 freq << ADSP2_CLK_SEL_SHIFT);
2673 	if (ret)
2674 		cs_dsp_err(dsp, "Failed to set clock rate: %d\n", ret);
2675 
2676 	return ret;
2677 }
2678 EXPORT_SYMBOL_NS_GPL(cs_dsp_set_dspclk, "FW_CS_DSP");
2679 
cs_dsp_stop_watchdog(struct cs_dsp * dsp)2680 static void cs_dsp_stop_watchdog(struct cs_dsp *dsp)
2681 {
2682 	regmap_update_bits(dsp->regmap, dsp->base + ADSP2_WATCHDOG,
2683 			   ADSP2_WDT_ENA_MASK, 0);
2684 }
2685 
cs_dsp_halo_stop_watchdog(struct cs_dsp * dsp)2686 static void cs_dsp_halo_stop_watchdog(struct cs_dsp *dsp)
2687 {
2688 	regmap_update_bits(dsp->regmap, dsp->base + HALO_WDT_CONTROL,
2689 			   HALO_WDT_EN_MASK, 0);
2690 }
2691 
2692 /**
2693  * cs_dsp_power_up() - Downloads firmware to the DSP
2694  * @dsp: pointer to DSP structure
2695  * @wmfw_firmware: the firmware to be sent
2696  * @wmfw_filename: file name of firmware to be sent
2697  * @coeff_firmware: the coefficient data to be sent
2698  * @coeff_filename: file name of coefficient to data be sent
2699  * @fw_name: the user-friendly firmware name
2700  *
2701  * This function is used on ADSP2 and Halo DSP cores, it powers-up the DSP core
2702  * and downloads the firmware but does not start the firmware running. The
2703  * cs_dsp booted flag will be set once completed and if the core has a low-power
2704  * memory retention mode it will be put into this state after the firmware is
2705  * downloaded.
2706  *
2707  * Return: Zero for success, a negative number on error.
2708  */
cs_dsp_power_up(struct cs_dsp * dsp,const struct firmware * wmfw_firmware,const char * wmfw_filename,const struct firmware * coeff_firmware,const char * coeff_filename,const char * fw_name)2709 int cs_dsp_power_up(struct cs_dsp *dsp,
2710 		    const struct firmware *wmfw_firmware, const char *wmfw_filename,
2711 		    const struct firmware *coeff_firmware, const char *coeff_filename,
2712 		    const char *fw_name)
2713 {
2714 	int ret;
2715 
2716 	mutex_lock(&dsp->pwr_lock);
2717 
2718 	dsp->fw_name = fw_name;
2719 
2720 	if (dsp->ops->enable_memory) {
2721 		ret = dsp->ops->enable_memory(dsp);
2722 		if (ret != 0)
2723 			goto err_mutex;
2724 	}
2725 
2726 	if (dsp->ops->enable_core) {
2727 		ret = dsp->ops->enable_core(dsp);
2728 		if (ret != 0)
2729 			goto err_mem;
2730 	}
2731 
2732 	ret = cs_dsp_load(dsp, wmfw_firmware, wmfw_filename);
2733 	if (ret != 0)
2734 		goto err_ena;
2735 
2736 	ret = dsp->ops->setup_algs(dsp);
2737 	if (ret != 0)
2738 		goto err_ena;
2739 
2740 	ret = cs_dsp_load_coeff(dsp, coeff_firmware, coeff_filename);
2741 	if (ret != 0)
2742 		goto err_ena;
2743 
2744 	/* Initialize caches for enabled and unset controls */
2745 	ret = cs_dsp_coeff_init_control_caches(dsp);
2746 	if (ret != 0)
2747 		goto err_ena;
2748 
2749 	if (dsp->ops->disable_core)
2750 		dsp->ops->disable_core(dsp);
2751 
2752 	dsp->booted = true;
2753 
2754 	mutex_unlock(&dsp->pwr_lock);
2755 
2756 	return 0;
2757 err_ena:
2758 	if (dsp->ops->disable_core)
2759 		dsp->ops->disable_core(dsp);
2760 err_mem:
2761 	if (dsp->ops->disable_memory)
2762 		dsp->ops->disable_memory(dsp);
2763 err_mutex:
2764 	mutex_unlock(&dsp->pwr_lock);
2765 
2766 	return ret;
2767 }
2768 EXPORT_SYMBOL_NS_GPL(cs_dsp_power_up, "FW_CS_DSP");
2769 
2770 /**
2771  * cs_dsp_power_down() - Powers-down the DSP
2772  * @dsp: pointer to DSP structure
2773  *
2774  * cs_dsp_stop() must have been called before this function. The core will be
2775  * fully powered down and so the memory will not be retained.
2776  */
cs_dsp_power_down(struct cs_dsp * dsp)2777 void cs_dsp_power_down(struct cs_dsp *dsp)
2778 {
2779 	struct cs_dsp_coeff_ctl *ctl;
2780 
2781 	mutex_lock(&dsp->pwr_lock);
2782 
2783 	cs_dsp_debugfs_clear(dsp);
2784 
2785 	dsp->fw_id = 0;
2786 	dsp->fw_id_version = 0;
2787 
2788 	dsp->booted = false;
2789 
2790 	if (dsp->ops->disable_memory)
2791 		dsp->ops->disable_memory(dsp);
2792 
2793 	list_for_each_entry(ctl, &dsp->ctl_list, list)
2794 		ctl->enabled = 0;
2795 
2796 	cs_dsp_free_alg_regions(dsp);
2797 
2798 	mutex_unlock(&dsp->pwr_lock);
2799 
2800 	cs_dsp_dbg(dsp, "Shutdown complete\n");
2801 }
2802 EXPORT_SYMBOL_NS_GPL(cs_dsp_power_down, "FW_CS_DSP");
2803 
cs_dsp_adsp2_start_core(struct cs_dsp * dsp)2804 static int cs_dsp_adsp2_start_core(struct cs_dsp *dsp)
2805 {
2806 	return regmap_update_bits(dsp->regmap, dsp->base + ADSP2_CONTROL,
2807 				  ADSP2_CORE_ENA | ADSP2_START,
2808 				  ADSP2_CORE_ENA | ADSP2_START);
2809 }
2810 
cs_dsp_adsp2_stop_core(struct cs_dsp * dsp)2811 static void cs_dsp_adsp2_stop_core(struct cs_dsp *dsp)
2812 {
2813 	regmap_update_bits(dsp->regmap, dsp->base + ADSP2_CONTROL,
2814 			   ADSP2_CORE_ENA | ADSP2_START, 0);
2815 }
2816 
2817 /**
2818  * cs_dsp_run() - Starts the firmware running
2819  * @dsp: pointer to DSP structure
2820  *
2821  * cs_dsp_power_up() must have previously been called successfully.
2822  *
2823  * Return: Zero for success, a negative number on error.
2824  */
cs_dsp_run(struct cs_dsp * dsp)2825 int cs_dsp_run(struct cs_dsp *dsp)
2826 {
2827 	int ret;
2828 
2829 	mutex_lock(&dsp->pwr_lock);
2830 
2831 	if (!dsp->booted) {
2832 		ret = -EIO;
2833 		goto err;
2834 	}
2835 
2836 	if (dsp->ops->enable_core) {
2837 		ret = dsp->ops->enable_core(dsp);
2838 		if (ret != 0)
2839 			goto err;
2840 	}
2841 
2842 	if (dsp->client_ops->pre_run) {
2843 		ret = dsp->client_ops->pre_run(dsp);
2844 		if (ret)
2845 			goto err;
2846 	}
2847 
2848 	/* Sync set controls */
2849 	ret = cs_dsp_coeff_sync_controls(dsp);
2850 	if (ret != 0)
2851 		goto err;
2852 
2853 	if (dsp->ops->lock_memory) {
2854 		ret = dsp->ops->lock_memory(dsp, dsp->lock_regions);
2855 		if (ret != 0) {
2856 			cs_dsp_err(dsp, "Error configuring MPU: %d\n", ret);
2857 			goto err;
2858 		}
2859 	}
2860 
2861 	if (dsp->ops->start_core) {
2862 		ret = dsp->ops->start_core(dsp);
2863 		if (ret != 0)
2864 			goto err;
2865 	}
2866 
2867 	dsp->running = true;
2868 
2869 	if (dsp->client_ops->post_run) {
2870 		ret = dsp->client_ops->post_run(dsp);
2871 		if (ret)
2872 			goto err;
2873 	}
2874 
2875 	mutex_unlock(&dsp->pwr_lock);
2876 
2877 	return 0;
2878 
2879 err:
2880 	if (dsp->ops->stop_core)
2881 		dsp->ops->stop_core(dsp);
2882 	if (dsp->ops->disable_core)
2883 		dsp->ops->disable_core(dsp);
2884 	mutex_unlock(&dsp->pwr_lock);
2885 
2886 	return ret;
2887 }
2888 EXPORT_SYMBOL_NS_GPL(cs_dsp_run, "FW_CS_DSP");
2889 
2890 /**
2891  * cs_dsp_stop() - Stops the firmware
2892  * @dsp: pointer to DSP structure
2893  *
2894  * Memory will not be disabled so firmware will remain loaded.
2895  */
cs_dsp_stop(struct cs_dsp * dsp)2896 void cs_dsp_stop(struct cs_dsp *dsp)
2897 {
2898 	/* Tell the firmware to cleanup */
2899 	cs_dsp_signal_event_controls(dsp, CS_DSP_FW_EVENT_SHUTDOWN);
2900 
2901 	if (dsp->ops->stop_watchdog)
2902 		dsp->ops->stop_watchdog(dsp);
2903 
2904 	/* Log firmware state, it can be useful for analysis */
2905 	if (dsp->ops->show_fw_status)
2906 		dsp->ops->show_fw_status(dsp);
2907 
2908 	mutex_lock(&dsp->pwr_lock);
2909 
2910 	if (dsp->client_ops->pre_stop)
2911 		dsp->client_ops->pre_stop(dsp);
2912 
2913 	dsp->running = false;
2914 
2915 	if (dsp->ops->stop_core)
2916 		dsp->ops->stop_core(dsp);
2917 	if (dsp->ops->disable_core)
2918 		dsp->ops->disable_core(dsp);
2919 
2920 	if (dsp->client_ops->post_stop)
2921 		dsp->client_ops->post_stop(dsp);
2922 
2923 	mutex_unlock(&dsp->pwr_lock);
2924 
2925 	cs_dsp_dbg(dsp, "Execution stopped\n");
2926 }
2927 EXPORT_SYMBOL_NS_GPL(cs_dsp_stop, "FW_CS_DSP");
2928 
cs_dsp_halo_start_core(struct cs_dsp * dsp)2929 static int cs_dsp_halo_start_core(struct cs_dsp *dsp)
2930 {
2931 	int ret;
2932 
2933 	ret = regmap_update_bits(dsp->regmap, dsp->base + HALO_CCM_CORE_CONTROL,
2934 				 HALO_CORE_RESET | HALO_CORE_EN,
2935 				 HALO_CORE_RESET | HALO_CORE_EN);
2936 	if (ret)
2937 		return ret;
2938 
2939 	return regmap_update_bits(dsp->regmap, dsp->base + HALO_CCM_CORE_CONTROL,
2940 				  HALO_CORE_RESET, 0);
2941 }
2942 
cs_dsp_halo_stop_core(struct cs_dsp * dsp)2943 static void cs_dsp_halo_stop_core(struct cs_dsp *dsp)
2944 {
2945 	regmap_update_bits(dsp->regmap, dsp->base + HALO_CCM_CORE_CONTROL,
2946 			   HALO_CORE_EN, 0);
2947 
2948 	/* reset halo core with CORE_SOFT_RESET */
2949 	regmap_update_bits(dsp->regmap, dsp->base + HALO_CORE_SOFT_RESET,
2950 			   HALO_CORE_SOFT_RESET_MASK, 1);
2951 }
2952 
2953 /**
2954  * cs_dsp_adsp2_init() - Initialise a cs_dsp structure representing a ADSP2 core
2955  * @dsp: pointer to DSP structure
2956  *
2957  * Return: Zero for success, a negative number on error.
2958  */
cs_dsp_adsp2_init(struct cs_dsp * dsp)2959 int cs_dsp_adsp2_init(struct cs_dsp *dsp)
2960 {
2961 	int ret;
2962 
2963 	switch (dsp->rev) {
2964 	case 0:
2965 		/*
2966 		 * Disable the DSP memory by default when in reset for a small
2967 		 * power saving.
2968 		 */
2969 		ret = regmap_update_bits(dsp->regmap, dsp->base + ADSP2_CONTROL,
2970 					 ADSP2_MEM_ENA, 0);
2971 		if (ret) {
2972 			cs_dsp_err(dsp,
2973 				   "Failed to clear memory retention: %d\n", ret);
2974 			return ret;
2975 		}
2976 
2977 		dsp->ops = &cs_dsp_adsp2_ops[0];
2978 		break;
2979 	case 1:
2980 		dsp->ops = &cs_dsp_adsp2_ops[1];
2981 		break;
2982 	default:
2983 		dsp->ops = &cs_dsp_adsp2_ops[2];
2984 		break;
2985 	}
2986 
2987 	return cs_dsp_common_init(dsp);
2988 }
2989 EXPORT_SYMBOL_NS_GPL(cs_dsp_adsp2_init, "FW_CS_DSP");
2990 
2991 /**
2992  * cs_dsp_halo_init() - Initialise a cs_dsp structure representing a HALO Core DSP
2993  * @dsp: pointer to DSP structure
2994  *
2995  * Return: Zero for success, a negative number on error.
2996  */
cs_dsp_halo_init(struct cs_dsp * dsp)2997 int cs_dsp_halo_init(struct cs_dsp *dsp)
2998 {
2999 	if (dsp->no_core_startstop)
3000 		dsp->ops = &cs_dsp_halo_ao_ops;
3001 	else
3002 		dsp->ops = &cs_dsp_halo_ops;
3003 
3004 	return cs_dsp_common_init(dsp);
3005 }
3006 EXPORT_SYMBOL_NS_GPL(cs_dsp_halo_init, "FW_CS_DSP");
3007 
3008 /**
3009  * cs_dsp_remove() - Clean a cs_dsp before deletion
3010  * @dsp: pointer to DSP structure
3011  */
cs_dsp_remove(struct cs_dsp * dsp)3012 void cs_dsp_remove(struct cs_dsp *dsp)
3013 {
3014 	struct cs_dsp_coeff_ctl *ctl;
3015 
3016 	while (!list_empty(&dsp->ctl_list)) {
3017 		ctl = list_first_entry(&dsp->ctl_list, struct cs_dsp_coeff_ctl, list);
3018 
3019 		if (dsp->client_ops->control_remove)
3020 			dsp->client_ops->control_remove(ctl);
3021 
3022 		list_del(&ctl->list);
3023 		cs_dsp_free_ctl_blk(ctl);
3024 	}
3025 }
3026 EXPORT_SYMBOL_NS_GPL(cs_dsp_remove, "FW_CS_DSP");
3027 
3028 /**
3029  * cs_dsp_read_raw_data_block() - Reads a block of data from DSP memory
3030  * @dsp: pointer to DSP structure
3031  * @mem_type: the type of DSP memory containing the data to be read
3032  * @mem_addr: the address of the data within the memory region
3033  * @num_words: the length of the data to read
3034  * @data: a buffer to store the fetched data
3035  *
3036  * If this is used to read unpacked 24-bit memory, each 24-bit DSP word will
3037  * occupy 32-bits in data (MSbyte will be 0). This padding can be removed using
3038  * cs_dsp_remove_padding()
3039  *
3040  * Return: Zero for success, a negative number on error.
3041  */
cs_dsp_read_raw_data_block(struct cs_dsp * dsp,int mem_type,unsigned int mem_addr,unsigned int num_words,__be32 * data)3042 int cs_dsp_read_raw_data_block(struct cs_dsp *dsp, int mem_type, unsigned int mem_addr,
3043 			       unsigned int num_words, __be32 *data)
3044 {
3045 	struct cs_dsp_region const *mem = cs_dsp_find_region(dsp, mem_type);
3046 	unsigned int reg;
3047 	int ret;
3048 
3049 	lockdep_assert_held(&dsp->pwr_lock);
3050 
3051 	if (!mem)
3052 		return -EINVAL;
3053 
3054 	reg = dsp->ops->region_to_reg(mem, mem_addr);
3055 
3056 	ret = regmap_raw_read(dsp->regmap, reg, data,
3057 			      sizeof(*data) * num_words);
3058 	if (ret < 0)
3059 		return ret;
3060 
3061 	return 0;
3062 }
3063 EXPORT_SYMBOL_NS_GPL(cs_dsp_read_raw_data_block, "FW_CS_DSP");
3064 
3065 /**
3066  * cs_dsp_read_data_word() - Reads a word from DSP memory
3067  * @dsp: pointer to DSP structure
3068  * @mem_type: the type of DSP memory containing the data to be read
3069  * @mem_addr: the address of the data within the memory region
3070  * @data: a buffer to store the fetched data
3071  *
3072  * Return: Zero for success, a negative number on error.
3073  */
cs_dsp_read_data_word(struct cs_dsp * dsp,int mem_type,unsigned int mem_addr,u32 * data)3074 int cs_dsp_read_data_word(struct cs_dsp *dsp, int mem_type, unsigned int mem_addr, u32 *data)
3075 {
3076 	__be32 raw;
3077 	int ret;
3078 
3079 	ret = cs_dsp_read_raw_data_block(dsp, mem_type, mem_addr, 1, &raw);
3080 	if (ret < 0)
3081 		return ret;
3082 
3083 	*data = be32_to_cpu(raw) & 0x00ffffffu;
3084 
3085 	return 0;
3086 }
3087 EXPORT_SYMBOL_NS_GPL(cs_dsp_read_data_word, "FW_CS_DSP");
3088 
3089 /**
3090  * cs_dsp_write_data_word() - Writes a word to DSP memory
3091  * @dsp: pointer to DSP structure
3092  * @mem_type: the type of DSP memory containing the data to be written
3093  * @mem_addr: the address of the data within the memory region
3094  * @data: the data to be written
3095  *
3096  * Return: Zero for success, a negative number on error.
3097  */
cs_dsp_write_data_word(struct cs_dsp * dsp,int mem_type,unsigned int mem_addr,u32 data)3098 int cs_dsp_write_data_word(struct cs_dsp *dsp, int mem_type, unsigned int mem_addr, u32 data)
3099 {
3100 	struct cs_dsp_region const *mem = cs_dsp_find_region(dsp, mem_type);
3101 	__be32 val = cpu_to_be32(data & 0x00ffffffu);
3102 	unsigned int reg;
3103 
3104 	lockdep_assert_held(&dsp->pwr_lock);
3105 
3106 	if (!mem)
3107 		return -EINVAL;
3108 
3109 	reg = dsp->ops->region_to_reg(mem, mem_addr);
3110 
3111 	return regmap_raw_write(dsp->regmap, reg, &val, sizeof(val));
3112 }
3113 EXPORT_SYMBOL_NS_GPL(cs_dsp_write_data_word, "FW_CS_DSP");
3114 
3115 /**
3116  * cs_dsp_remove_padding() - Convert unpacked words to packed bytes
3117  * @buf: buffer containing DSP words read from DSP memory
3118  * @nwords: number of words to convert
3119  *
3120  * DSP words from the register map have pad bytes and the data bytes
3121  * are in swapped order. This swaps to the native endian order and
3122  * strips the pad bytes.
3123  */
cs_dsp_remove_padding(u32 * buf,int nwords)3124 void cs_dsp_remove_padding(u32 *buf, int nwords)
3125 {
3126 	const __be32 *pack_in = (__be32 *)buf;
3127 	u8 *pack_out = (u8 *)buf;
3128 	int i;
3129 
3130 	for (i = 0; i < nwords; i++) {
3131 		u32 word = be32_to_cpu(*pack_in++);
3132 		*pack_out++ = (u8)word;
3133 		*pack_out++ = (u8)(word >> 8);
3134 		*pack_out++ = (u8)(word >> 16);
3135 	}
3136 }
3137 EXPORT_SYMBOL_NS_GPL(cs_dsp_remove_padding, "FW_CS_DSP");
3138 
3139 /**
3140  * cs_dsp_adsp2_bus_error() - Handle a DSP bus error interrupt
3141  * @dsp: pointer to DSP structure
3142  *
3143  * The firmware and DSP state will be logged for future analysis.
3144  */
cs_dsp_adsp2_bus_error(struct cs_dsp * dsp)3145 void cs_dsp_adsp2_bus_error(struct cs_dsp *dsp)
3146 {
3147 	unsigned int val;
3148 	struct regmap *regmap = dsp->regmap;
3149 	int ret = 0;
3150 
3151 	mutex_lock(&dsp->pwr_lock);
3152 
3153 	ret = regmap_read(regmap, dsp->base + ADSP2_LOCK_REGION_CTRL, &val);
3154 	if (ret) {
3155 		cs_dsp_err(dsp,
3156 			   "Failed to read Region Lock Ctrl register: %d\n", ret);
3157 		goto error;
3158 	}
3159 
3160 	if (val & ADSP2_WDT_TIMEOUT_STS_MASK) {
3161 		cs_dsp_err(dsp, "watchdog timeout error\n");
3162 		dsp->ops->stop_watchdog(dsp);
3163 		if (dsp->client_ops->watchdog_expired)
3164 			dsp->client_ops->watchdog_expired(dsp);
3165 	}
3166 
3167 	if (val & (ADSP2_ADDR_ERR_MASK | ADSP2_REGION_LOCK_ERR_MASK)) {
3168 		if (val & ADSP2_ADDR_ERR_MASK)
3169 			cs_dsp_err(dsp, "bus error: address error\n");
3170 		else
3171 			cs_dsp_err(dsp, "bus error: region lock error\n");
3172 
3173 		ret = regmap_read(regmap, dsp->base + ADSP2_BUS_ERR_ADDR, &val);
3174 		if (ret) {
3175 			cs_dsp_err(dsp,
3176 				   "Failed to read Bus Err Addr register: %d\n",
3177 				   ret);
3178 			goto error;
3179 		}
3180 
3181 		cs_dsp_err(dsp, "bus error address = 0x%x\n",
3182 			   val & ADSP2_BUS_ERR_ADDR_MASK);
3183 
3184 		ret = regmap_read(regmap,
3185 				  dsp->base + ADSP2_PMEM_ERR_ADDR_XMEM_ERR_ADDR,
3186 				  &val);
3187 		if (ret) {
3188 			cs_dsp_err(dsp,
3189 				   "Failed to read Pmem Xmem Err Addr register: %d\n",
3190 				   ret);
3191 			goto error;
3192 		}
3193 
3194 		cs_dsp_err(dsp, "xmem error address = 0x%x\n",
3195 			   val & ADSP2_XMEM_ERR_ADDR_MASK);
3196 		cs_dsp_err(dsp, "pmem error address = 0x%x\n",
3197 			   (val & ADSP2_PMEM_ERR_ADDR_MASK) >>
3198 			   ADSP2_PMEM_ERR_ADDR_SHIFT);
3199 	}
3200 
3201 	regmap_update_bits(regmap, dsp->base + ADSP2_LOCK_REGION_CTRL,
3202 			   ADSP2_CTRL_ERR_EINT, ADSP2_CTRL_ERR_EINT);
3203 
3204 error:
3205 	mutex_unlock(&dsp->pwr_lock);
3206 }
3207 EXPORT_SYMBOL_NS_GPL(cs_dsp_adsp2_bus_error, "FW_CS_DSP");
3208 
3209 /**
3210  * cs_dsp_halo_bus_error() - Handle a DSP bus error interrupt
3211  * @dsp: pointer to DSP structure
3212  *
3213  * The firmware and DSP state will be logged for future analysis.
3214  */
cs_dsp_halo_bus_error(struct cs_dsp * dsp)3215 void cs_dsp_halo_bus_error(struct cs_dsp *dsp)
3216 {
3217 	struct regmap *regmap = dsp->regmap;
3218 	unsigned int fault[6];
3219 	struct reg_sequence clear[] = {
3220 		{ dsp->base + HALO_MPU_XM_VIO_STATUS,     0x0 },
3221 		{ dsp->base + HALO_MPU_YM_VIO_STATUS,     0x0 },
3222 		{ dsp->base + HALO_MPU_PM_VIO_STATUS,     0x0 },
3223 	};
3224 	int ret;
3225 
3226 	mutex_lock(&dsp->pwr_lock);
3227 
3228 	ret = regmap_read(regmap, dsp->base_sysinfo + HALO_AHBM_WINDOW_DEBUG_1,
3229 			  fault);
3230 	if (ret) {
3231 		cs_dsp_warn(dsp, "Failed to read AHB DEBUG_1: %d\n", ret);
3232 		goto exit_unlock;
3233 	}
3234 
3235 	cs_dsp_warn(dsp, "AHB: STATUS: 0x%x ADDR: 0x%x\n",
3236 		    *fault & HALO_AHBM_FLAGS_ERR_MASK,
3237 		    (*fault & HALO_AHBM_CORE_ERR_ADDR_MASK) >>
3238 		    HALO_AHBM_CORE_ERR_ADDR_SHIFT);
3239 
3240 	ret = regmap_read(regmap, dsp->base_sysinfo + HALO_AHBM_WINDOW_DEBUG_0,
3241 			  fault);
3242 	if (ret) {
3243 		cs_dsp_warn(dsp, "Failed to read AHB DEBUG_0: %d\n", ret);
3244 		goto exit_unlock;
3245 	}
3246 
3247 	cs_dsp_warn(dsp, "AHB: SYS_ADDR: 0x%x\n", *fault);
3248 
3249 	ret = regmap_bulk_read(regmap, dsp->base + HALO_MPU_XM_VIO_ADDR,
3250 			       fault, ARRAY_SIZE(fault));
3251 	if (ret) {
3252 		cs_dsp_warn(dsp, "Failed to read MPU fault info: %d\n", ret);
3253 		goto exit_unlock;
3254 	}
3255 
3256 	cs_dsp_warn(dsp, "XM: STATUS:0x%x ADDR:0x%x\n", fault[1], fault[0]);
3257 	cs_dsp_warn(dsp, "YM: STATUS:0x%x ADDR:0x%x\n", fault[3], fault[2]);
3258 	cs_dsp_warn(dsp, "PM: STATUS:0x%x ADDR:0x%x\n", fault[5], fault[4]);
3259 
3260 	ret = regmap_multi_reg_write(dsp->regmap, clear, ARRAY_SIZE(clear));
3261 	if (ret)
3262 		cs_dsp_warn(dsp, "Failed to clear MPU status: %d\n", ret);
3263 
3264 exit_unlock:
3265 	mutex_unlock(&dsp->pwr_lock);
3266 }
3267 EXPORT_SYMBOL_NS_GPL(cs_dsp_halo_bus_error, "FW_CS_DSP");
3268 
3269 /**
3270  * cs_dsp_halo_wdt_expire() - Handle DSP watchdog expiry
3271  * @dsp: pointer to DSP structure
3272  *
3273  * This is logged for future analysis.
3274  */
cs_dsp_halo_wdt_expire(struct cs_dsp * dsp)3275 void cs_dsp_halo_wdt_expire(struct cs_dsp *dsp)
3276 {
3277 	mutex_lock(&dsp->pwr_lock);
3278 
3279 	cs_dsp_warn(dsp, "WDT Expiry Fault\n");
3280 
3281 	dsp->ops->stop_watchdog(dsp);
3282 	if (dsp->client_ops->watchdog_expired)
3283 		dsp->client_ops->watchdog_expired(dsp);
3284 
3285 	mutex_unlock(&dsp->pwr_lock);
3286 }
3287 EXPORT_SYMBOL_NS_GPL(cs_dsp_halo_wdt_expire, "FW_CS_DSP");
3288 
3289 static const struct cs_dsp_ops cs_dsp_adsp1_ops = {
3290 	.validate_version = cs_dsp_validate_version,
3291 	.parse_sizes = cs_dsp_adsp1_parse_sizes,
3292 	.region_to_reg = cs_dsp_region_to_reg,
3293 };
3294 
3295 static const struct cs_dsp_ops cs_dsp_adsp2_ops[] = {
3296 	{
3297 		.parse_sizes = cs_dsp_adsp2_parse_sizes,
3298 		.validate_version = cs_dsp_validate_version,
3299 		.setup_algs = cs_dsp_adsp2_setup_algs,
3300 		.region_to_reg = cs_dsp_region_to_reg,
3301 
3302 		.show_fw_status = cs_dsp_adsp2_show_fw_status,
3303 
3304 		.enable_memory = cs_dsp_adsp2_enable_memory,
3305 		.disable_memory = cs_dsp_adsp2_disable_memory,
3306 
3307 		.enable_core = cs_dsp_adsp2_enable_core,
3308 		.disable_core = cs_dsp_adsp2_disable_core,
3309 
3310 		.start_core = cs_dsp_adsp2_start_core,
3311 		.stop_core = cs_dsp_adsp2_stop_core,
3312 
3313 	},
3314 	{
3315 		.parse_sizes = cs_dsp_adsp2_parse_sizes,
3316 		.validate_version = cs_dsp_validate_version,
3317 		.setup_algs = cs_dsp_adsp2_setup_algs,
3318 		.region_to_reg = cs_dsp_region_to_reg,
3319 
3320 		.show_fw_status = cs_dsp_adsp2v2_show_fw_status,
3321 
3322 		.enable_memory = cs_dsp_adsp2_enable_memory,
3323 		.disable_memory = cs_dsp_adsp2_disable_memory,
3324 		.lock_memory = cs_dsp_adsp2_lock,
3325 
3326 		.enable_core = cs_dsp_adsp2v2_enable_core,
3327 		.disable_core = cs_dsp_adsp2v2_disable_core,
3328 
3329 		.start_core = cs_dsp_adsp2_start_core,
3330 		.stop_core = cs_dsp_adsp2_stop_core,
3331 	},
3332 	{
3333 		.parse_sizes = cs_dsp_adsp2_parse_sizes,
3334 		.validate_version = cs_dsp_validate_version,
3335 		.setup_algs = cs_dsp_adsp2_setup_algs,
3336 		.region_to_reg = cs_dsp_region_to_reg,
3337 
3338 		.show_fw_status = cs_dsp_adsp2v2_show_fw_status,
3339 		.stop_watchdog = cs_dsp_stop_watchdog,
3340 
3341 		.enable_memory = cs_dsp_adsp2_enable_memory,
3342 		.disable_memory = cs_dsp_adsp2_disable_memory,
3343 		.lock_memory = cs_dsp_adsp2_lock,
3344 
3345 		.enable_core = cs_dsp_adsp2v2_enable_core,
3346 		.disable_core = cs_dsp_adsp2v2_disable_core,
3347 
3348 		.start_core = cs_dsp_adsp2_start_core,
3349 		.stop_core = cs_dsp_adsp2_stop_core,
3350 	},
3351 };
3352 
3353 static const struct cs_dsp_ops cs_dsp_halo_ops = {
3354 	.parse_sizes = cs_dsp_adsp2_parse_sizes,
3355 	.validate_version = cs_dsp_halo_validate_version,
3356 	.setup_algs = cs_dsp_halo_setup_algs,
3357 	.region_to_reg = cs_dsp_halo_region_to_reg,
3358 
3359 	.show_fw_status = cs_dsp_halo_show_fw_status,
3360 	.stop_watchdog = cs_dsp_halo_stop_watchdog,
3361 
3362 	.lock_memory = cs_dsp_halo_configure_mpu,
3363 
3364 	.start_core = cs_dsp_halo_start_core,
3365 	.stop_core = cs_dsp_halo_stop_core,
3366 };
3367 
3368 static const struct cs_dsp_ops cs_dsp_halo_ao_ops = {
3369 	.parse_sizes = cs_dsp_adsp2_parse_sizes,
3370 	.validate_version = cs_dsp_halo_validate_version,
3371 	.setup_algs = cs_dsp_halo_setup_algs,
3372 	.region_to_reg = cs_dsp_halo_region_to_reg,
3373 	.show_fw_status = cs_dsp_halo_show_fw_status,
3374 };
3375 
3376 /**
3377  * cs_dsp_chunk_write() - Format data to a DSP memory chunk
3378  * @ch: Pointer to the chunk structure
3379  * @nbits: Number of bits to write
3380  * @val: Value to write
3381  *
3382  * This function sequentially writes values into the format required for DSP
3383  * memory, it handles both inserting of the padding bytes and converting to
3384  * big endian. Note that data is only committed to the chunk when a whole DSP
3385  * words worth of data is available.
3386  *
3387  * Return: Zero for success, a negative number on error.
3388  */
cs_dsp_chunk_write(struct cs_dsp_chunk * ch,int nbits,u32 val)3389 int cs_dsp_chunk_write(struct cs_dsp_chunk *ch, int nbits, u32 val)
3390 {
3391 	int nwrite, i;
3392 
3393 	nwrite = min(CS_DSP_DATA_WORD_BITS - ch->cachebits, nbits);
3394 
3395 	ch->cache <<= nwrite;
3396 	ch->cache |= val >> (nbits - nwrite);
3397 	ch->cachebits += nwrite;
3398 	nbits -= nwrite;
3399 
3400 	if (ch->cachebits == CS_DSP_DATA_WORD_BITS) {
3401 		if (cs_dsp_chunk_end(ch))
3402 			return -ENOSPC;
3403 
3404 		ch->cache &= 0xFFFFFF;
3405 		for (i = 0; i < sizeof(ch->cache); i++, ch->cache <<= BITS_PER_BYTE)
3406 			*ch->data++ = (ch->cache & 0xFF000000) >> CS_DSP_DATA_WORD_BITS;
3407 
3408 		ch->bytes += sizeof(ch->cache);
3409 		ch->cachebits = 0;
3410 	}
3411 
3412 	if (nbits)
3413 		return cs_dsp_chunk_write(ch, nbits, val);
3414 
3415 	return 0;
3416 }
3417 EXPORT_SYMBOL_NS_GPL(cs_dsp_chunk_write, "FW_CS_DSP");
3418 
3419 /**
3420  * cs_dsp_chunk_flush() - Pad remaining data with zero and commit to chunk
3421  * @ch: Pointer to the chunk structure
3422  *
3423  * As cs_dsp_chunk_write only writes data when a whole DSP word is ready to
3424  * be written out it is possible that some data will remain in the cache, this
3425  * function will pad that data with zeros upto a whole DSP word and write out.
3426  *
3427  * Return: Zero for success, a negative number on error.
3428  */
cs_dsp_chunk_flush(struct cs_dsp_chunk * ch)3429 int cs_dsp_chunk_flush(struct cs_dsp_chunk *ch)
3430 {
3431 	if (!ch->cachebits)
3432 		return 0;
3433 
3434 	return cs_dsp_chunk_write(ch, CS_DSP_DATA_WORD_BITS - ch->cachebits, 0);
3435 }
3436 EXPORT_SYMBOL_NS_GPL(cs_dsp_chunk_flush, "FW_CS_DSP");
3437 
3438 /**
3439  * cs_dsp_chunk_read() - Parse data from a DSP memory chunk
3440  * @ch: Pointer to the chunk structure
3441  * @nbits: Number of bits to read
3442  *
3443  * This function sequentially reads values from a DSP memory formatted buffer,
3444  * it handles both removing of the padding bytes and converting from big endian.
3445  *
3446  * Return: A negative number is returned on error, otherwise the read value.
3447  */
cs_dsp_chunk_read(struct cs_dsp_chunk * ch,int nbits)3448 int cs_dsp_chunk_read(struct cs_dsp_chunk *ch, int nbits)
3449 {
3450 	int nread, i;
3451 	u32 result;
3452 
3453 	if (!ch->cachebits) {
3454 		if (cs_dsp_chunk_end(ch))
3455 			return -ENOSPC;
3456 
3457 		ch->cache = 0;
3458 		ch->cachebits = CS_DSP_DATA_WORD_BITS;
3459 
3460 		for (i = 0; i < sizeof(ch->cache); i++, ch->cache <<= BITS_PER_BYTE)
3461 			ch->cache |= *ch->data++;
3462 
3463 		ch->bytes += sizeof(ch->cache);
3464 	}
3465 
3466 	nread = min(ch->cachebits, nbits);
3467 	nbits -= nread;
3468 
3469 	result = ch->cache >> ((sizeof(ch->cache) * BITS_PER_BYTE) - nread);
3470 	ch->cache <<= nread;
3471 	ch->cachebits -= nread;
3472 
3473 	if (nbits)
3474 		result = (result << nbits) | cs_dsp_chunk_read(ch, nbits);
3475 
3476 	return result;
3477 }
3478 EXPORT_SYMBOL_NS_GPL(cs_dsp_chunk_read, "FW_CS_DSP");
3479 
3480 
3481 struct cs_dsp_wseq_op {
3482 	struct list_head list;
3483 	u32 address;
3484 	u32 data;
3485 	u16 offset;
3486 	u8 operation;
3487 };
3488 
cs_dsp_wseq_clear(struct cs_dsp * dsp,struct cs_dsp_wseq * wseq)3489 static void cs_dsp_wseq_clear(struct cs_dsp *dsp, struct cs_dsp_wseq *wseq)
3490 {
3491 	struct cs_dsp_wseq_op *op, *op_tmp;
3492 
3493 	list_for_each_entry_safe(op, op_tmp, &wseq->ops, list) {
3494 		list_del(&op->list);
3495 		devm_kfree(dsp->dev, op);
3496 	}
3497 }
3498 
cs_dsp_populate_wseq(struct cs_dsp * dsp,struct cs_dsp_wseq * wseq)3499 static int cs_dsp_populate_wseq(struct cs_dsp *dsp, struct cs_dsp_wseq *wseq)
3500 {
3501 	struct cs_dsp_wseq_op *op = NULL;
3502 	struct cs_dsp_chunk chunk;
3503 	u8 *words;
3504 	int ret;
3505 
3506 	if (!wseq->ctl) {
3507 		cs_dsp_err(dsp, "No control for write sequence\n");
3508 		return -EINVAL;
3509 	}
3510 
3511 	words = kzalloc(wseq->ctl->len, GFP_KERNEL);
3512 	if (!words)
3513 		return -ENOMEM;
3514 
3515 	ret = cs_dsp_coeff_read_ctrl(wseq->ctl, 0, words, wseq->ctl->len);
3516 	if (ret) {
3517 		cs_dsp_err(dsp, "Failed to read %s: %d\n", wseq->ctl->subname, ret);
3518 		goto err_free;
3519 	}
3520 
3521 	INIT_LIST_HEAD(&wseq->ops);
3522 
3523 	chunk = cs_dsp_chunk(words, wseq->ctl->len);
3524 
3525 	while (!cs_dsp_chunk_end(&chunk)) {
3526 		op = devm_kzalloc(dsp->dev, sizeof(*op), GFP_KERNEL);
3527 		if (!op) {
3528 			ret = -ENOMEM;
3529 			goto err_free;
3530 		}
3531 
3532 		op->offset = cs_dsp_chunk_bytes(&chunk);
3533 		op->operation = cs_dsp_chunk_read(&chunk, 8);
3534 
3535 		switch (op->operation) {
3536 		case CS_DSP_WSEQ_END:
3537 			op->data = WSEQ_END_OF_SCRIPT;
3538 			break;
3539 		case CS_DSP_WSEQ_UNLOCK:
3540 			op->data = cs_dsp_chunk_read(&chunk, 16);
3541 			break;
3542 		case CS_DSP_WSEQ_ADDR8:
3543 			op->address = cs_dsp_chunk_read(&chunk, 8);
3544 			op->data = cs_dsp_chunk_read(&chunk, 32);
3545 			break;
3546 		case CS_DSP_WSEQ_H16:
3547 		case CS_DSP_WSEQ_L16:
3548 			op->address = cs_dsp_chunk_read(&chunk, 24);
3549 			op->data = cs_dsp_chunk_read(&chunk, 16);
3550 			break;
3551 		case CS_DSP_WSEQ_FULL:
3552 			op->address = cs_dsp_chunk_read(&chunk, 32);
3553 			op->data = cs_dsp_chunk_read(&chunk, 32);
3554 			break;
3555 		default:
3556 			ret = -EINVAL;
3557 			cs_dsp_err(dsp, "Unsupported op: %X\n", op->operation);
3558 			devm_kfree(dsp->dev, op);
3559 			goto err_free;
3560 		}
3561 
3562 		list_add_tail(&op->list, &wseq->ops);
3563 
3564 		if (op->operation == CS_DSP_WSEQ_END)
3565 			break;
3566 	}
3567 
3568 	if (op && op->operation != CS_DSP_WSEQ_END) {
3569 		cs_dsp_err(dsp, "%s missing end terminator\n", wseq->ctl->subname);
3570 		ret = -ENOENT;
3571 	}
3572 
3573 err_free:
3574 	kfree(words);
3575 
3576 	return ret;
3577 }
3578 
3579 /**
3580  * cs_dsp_wseq_init() - Initialize write sequences contained within the loaded DSP firmware
3581  * @dsp: Pointer to DSP structure
3582  * @wseqs: List of write sequences to initialize
3583  * @num_wseqs: Number of write sequences to initialize
3584  *
3585  * Return: Zero for success, a negative number on error.
3586  */
cs_dsp_wseq_init(struct cs_dsp * dsp,struct cs_dsp_wseq * wseqs,unsigned int num_wseqs)3587 int cs_dsp_wseq_init(struct cs_dsp *dsp, struct cs_dsp_wseq *wseqs, unsigned int num_wseqs)
3588 {
3589 	int i, ret;
3590 
3591 	lockdep_assert_held(&dsp->pwr_lock);
3592 
3593 	for (i = 0; i < num_wseqs; i++) {
3594 		ret = cs_dsp_populate_wseq(dsp, &wseqs[i]);
3595 		if (ret) {
3596 			cs_dsp_wseq_clear(dsp, &wseqs[i]);
3597 			return ret;
3598 		}
3599 	}
3600 
3601 	return 0;
3602 }
3603 EXPORT_SYMBOL_NS_GPL(cs_dsp_wseq_init, "FW_CS_DSP");
3604 
cs_dsp_wseq_find_op(u32 addr,u8 op_code,struct list_head * wseq_ops)3605 static struct cs_dsp_wseq_op *cs_dsp_wseq_find_op(u32 addr, u8 op_code,
3606 						  struct list_head *wseq_ops)
3607 {
3608 	struct cs_dsp_wseq_op *op;
3609 
3610 	list_for_each_entry(op, wseq_ops, list) {
3611 		if (op->operation == op_code && op->address == addr)
3612 			return op;
3613 	}
3614 
3615 	return NULL;
3616 }
3617 
3618 /**
3619  * cs_dsp_wseq_write() - Add or update an entry in a write sequence
3620  * @dsp: Pointer to a DSP structure
3621  * @wseq: Write sequence to write to
3622  * @addr: Address of the register to be written to
3623  * @data: Data to be written
3624  * @op_code: The type of operation of the new entry
3625  * @update: If true, searches for the first entry in the write sequence with
3626  * the same address and op_code, and replaces it. If false, creates a new entry
3627  * at the tail
3628  *
3629  * This function formats register address and value pairs into the format
3630  * required for write sequence entries, and either updates or adds the
3631  * new entry into the write sequence.
3632  *
3633  * If update is set to true and no matching entry is found, it will add a new entry.
3634  *
3635  * Return: Zero for success, a negative number on error.
3636  */
cs_dsp_wseq_write(struct cs_dsp * dsp,struct cs_dsp_wseq * wseq,u32 addr,u32 data,u8 op_code,bool update)3637 int cs_dsp_wseq_write(struct cs_dsp *dsp, struct cs_dsp_wseq *wseq,
3638 		      u32 addr, u32 data, u8 op_code, bool update)
3639 {
3640 	struct cs_dsp_wseq_op *op_end, *op_new = NULL;
3641 	u32 words[WSEQ_OP_MAX_WORDS];
3642 	struct cs_dsp_chunk chunk;
3643 	int new_op_size, ret;
3644 
3645 	if (update)
3646 		op_new = cs_dsp_wseq_find_op(addr, op_code, &wseq->ops);
3647 
3648 	/* If entry to update is not found, treat it as a new operation */
3649 	if (!op_new) {
3650 		op_end = cs_dsp_wseq_find_op(0, CS_DSP_WSEQ_END, &wseq->ops);
3651 		if (!op_end) {
3652 			cs_dsp_err(dsp, "Missing terminator for %s\n", wseq->ctl->subname);
3653 			return -EINVAL;
3654 		}
3655 
3656 		op_new = devm_kzalloc(dsp->dev, sizeof(*op_new), GFP_KERNEL);
3657 		if (!op_new)
3658 			return -ENOMEM;
3659 
3660 		op_new->operation = op_code;
3661 		op_new->address = addr;
3662 		op_new->offset = op_end->offset;
3663 		update = false;
3664 	}
3665 
3666 	op_new->data = data;
3667 
3668 	chunk = cs_dsp_chunk(words, sizeof(words));
3669 	cs_dsp_chunk_write(&chunk, 8, op_new->operation);
3670 
3671 	switch (op_code) {
3672 	case CS_DSP_WSEQ_FULL:
3673 		cs_dsp_chunk_write(&chunk, 32, op_new->address);
3674 		cs_dsp_chunk_write(&chunk, 32, op_new->data);
3675 		break;
3676 	case CS_DSP_WSEQ_L16:
3677 	case CS_DSP_WSEQ_H16:
3678 		cs_dsp_chunk_write(&chunk, 24, op_new->address);
3679 		cs_dsp_chunk_write(&chunk, 16, op_new->data);
3680 		break;
3681 	default:
3682 		ret = -EINVAL;
3683 		cs_dsp_err(dsp, "Operation %X not supported\n", op_code);
3684 		goto op_new_free;
3685 	}
3686 
3687 	new_op_size = cs_dsp_chunk_bytes(&chunk);
3688 
3689 	if (!update) {
3690 		if (wseq->ctl->len - op_end->offset < new_op_size) {
3691 			cs_dsp_err(dsp, "Not enough memory in %s for entry\n", wseq->ctl->subname);
3692 			ret = -E2BIG;
3693 			goto op_new_free;
3694 		}
3695 
3696 		op_end->offset += new_op_size;
3697 
3698 		ret = cs_dsp_coeff_write_ctrl(wseq->ctl, op_end->offset / sizeof(u32),
3699 					      &op_end->data, sizeof(u32));
3700 		if (ret)
3701 			goto op_new_free;
3702 
3703 		list_add_tail(&op_new->list, &op_end->list);
3704 	}
3705 
3706 	ret = cs_dsp_coeff_write_ctrl(wseq->ctl, op_new->offset / sizeof(u32),
3707 				      words, new_op_size);
3708 	if (ret)
3709 		goto op_new_free;
3710 
3711 	return 0;
3712 
3713 op_new_free:
3714 	devm_kfree(dsp->dev, op_new);
3715 
3716 	return ret;
3717 }
3718 EXPORT_SYMBOL_NS_GPL(cs_dsp_wseq_write, "FW_CS_DSP");
3719 
3720 /**
3721  * cs_dsp_wseq_multi_write() - Add or update multiple entries in a write sequence
3722  * @dsp: Pointer to a DSP structure
3723  * @wseq: Write sequence to write to
3724  * @reg_seq: List of address-data pairs
3725  * @num_regs: Number of address-data pairs
3726  * @op_code: The types of operations of the new entries
3727  * @update: If true, searches for the first entry in the write sequence with
3728  * the same address and op_code, and replaces it. If false, creates a new entry
3729  * at the tail
3730  *
3731  * This function calls cs_dsp_wseq_write() for multiple address-data pairs.
3732  *
3733  * Return: Zero for success, a negative number on error.
3734  */
cs_dsp_wseq_multi_write(struct cs_dsp * dsp,struct cs_dsp_wseq * wseq,const struct reg_sequence * reg_seq,int num_regs,u8 op_code,bool update)3735 int cs_dsp_wseq_multi_write(struct cs_dsp *dsp, struct cs_dsp_wseq *wseq,
3736 			    const struct reg_sequence *reg_seq, int num_regs,
3737 			    u8 op_code, bool update)
3738 {
3739 	int i, ret;
3740 
3741 	for (i = 0; i < num_regs; i++) {
3742 		ret = cs_dsp_wseq_write(dsp, wseq, reg_seq[i].reg,
3743 					reg_seq[i].def, op_code, update);
3744 		if (ret)
3745 			return ret;
3746 	}
3747 
3748 	return 0;
3749 }
3750 EXPORT_SYMBOL_NS_GPL(cs_dsp_wseq_multi_write, "FW_CS_DSP");
3751 
3752 MODULE_DESCRIPTION("Cirrus Logic DSP Support");
3753 MODULE_AUTHOR("Simon Trimmer <simont@opensource.cirrus.com>");
3754 MODULE_LICENSE("GPL v2");
3755