xref: /linux/drivers/iio/adc/ad7380.c (revision 0d5ec7919f3747193f051036b2301734a4b5e1d6)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Analog Devices AD738x Simultaneous Sampling SAR ADCs
4  *
5  * Copyright 2017 Analog Devices Inc.
6  * Copyright 2024 BayLibre, SAS
7  *
8  * Datasheets of supported parts:
9  * ad7380/1 : https://www.analog.com/media/en/technical-documentation/data-sheets/AD7380-7381.pdf
10  * ad7383/4 : https://www.analog.com/media/en/technical-documentation/data-sheets/ad7383-7384.pdf
11  * ad7386/7/8 : https://www.analog.com/media/en/technical-documentation/data-sheets/AD7386-7387-7388.pdf
12  * ad7380-4 : https://www.analog.com/media/en/technical-documentation/data-sheets/ad7380-4.pdf
13  * ad7381-4 : https://www.analog.com/media/en/technical-documentation/data-sheets/ad7381-4.pdf
14  * ad7383/4-4 : https://www.analog.com/media/en/technical-documentation/data-sheets/ad7383-4-ad7384-4.pdf
15  * ad7386/7/8-4 : https://www.analog.com/media/en/technical-documentation/data-sheets/ad7386-4-7387-4-7388-4.pdf
16  * ad7389-4 : https://www.analog.com/media/en/technical-documentation/data-sheets/ad7389-4.pdf
17  * adaq4370-4 : https://www.analog.com/media/en/technical-documentation/data-sheets/adaq4370-4.pdf
18  * adaq4380-4 : https://www.analog.com/media/en/technical-documentation/data-sheets/adaq4380-4.pdf
19  * adaq4381-4 : https://www.analog.com/media/en/technical-documentation/data-sheets/adaq4381-4.pdf
20  *
21  * HDL ad738x_fmc: https://analogdevicesinc.github.io/hdl/projects/ad738x_fmc/index.html
22  *
23  */
24 
25 #include <linux/align.h>
26 #include <linux/bitfield.h>
27 #include <linux/bitops.h>
28 #include <linux/cleanup.h>
29 #include <linux/device.h>
30 #include <linux/err.h>
31 #include <linux/kernel.h>
32 #include <linux/math.h>
33 #include <linux/module.h>
34 #include <linux/regmap.h>
35 #include <linux/regulator/consumer.h>
36 #include <linux/slab.h>
37 #include <linux/spi/offload/consumer.h>
38 #include <linux/spi/spi.h>
39 #include <linux/units.h>
40 #include <linux/util_macros.h>
41 
42 #include <linux/iio/buffer.h>
43 #include <linux/iio/buffer-dmaengine.h>
44 #include <linux/iio/events.h>
45 #include <linux/iio/iio.h>
46 #include <linux/iio/trigger_consumer.h>
47 #include <linux/iio/triggered_buffer.h>
48 
49 #define MAX_NUM_CHANNELS		8
50 /* 2.5V internal reference voltage */
51 #define AD7380_INTERNAL_REF_MV		2500
52 /* 3.3V internal reference voltage for ADAQ */
53 #define ADAQ4380_INTERNAL_REF_MV	3300
54 
55 /* reading and writing registers is more reliable at lower than max speed */
56 #define AD7380_REG_WR_SPEED_HZ		10000000
57 
58 #define AD7380_REG_WR			BIT(15)
59 #define AD7380_REG_REGADDR		GENMASK(14, 12)
60 #define AD7380_REG_DATA			GENMASK(11, 0)
61 
62 #define AD7380_REG_ADDR_NOP		0x0
63 #define AD7380_REG_ADDR_CONFIG1		0x1
64 #define AD7380_REG_ADDR_CONFIG2		0x2
65 #define AD7380_REG_ADDR_ALERT		0x3
66 #define AD7380_REG_ADDR_ALERT_LOW_TH	0x4
67 #define AD7380_REG_ADDR_ALERT_HIGH_TH	0x5
68 
69 #define AD7380_CONFIG1_CH		BIT(11)
70 #define AD7380_CONFIG1_SEQ		BIT(10)
71 #define AD7380_CONFIG1_OS_MODE		BIT(9)
72 #define AD7380_CONFIG1_OSR		GENMASK(8, 6)
73 #define AD7380_CONFIG1_CRC_W		BIT(5)
74 #define AD7380_CONFIG1_CRC_R		BIT(4)
75 #define AD7380_CONFIG1_ALERTEN		BIT(3)
76 #define AD7380_CONFIG1_RES		BIT(2)
77 #define AD7380_CONFIG1_REFSEL		BIT(1)
78 #define AD7380_CONFIG1_PMODE		BIT(0)
79 
80 #define AD7380_CONFIG2_SDO2		GENMASK(9, 8)
81 #define AD7380_CONFIG2_SDO		BIT(8)
82 #define AD7380_CONFIG2_RESET		GENMASK(7, 0)
83 
84 #define AD7380_CONFIG2_RESET_SOFT	0x3C
85 #define AD7380_CONFIG2_RESET_HARD	0xFF
86 
87 #define AD7380_ALERT_LOW_TH		GENMASK(11, 0)
88 #define AD7380_ALERT_HIGH_TH		GENMASK(11, 0)
89 
90 #define T_CONVERT_NS 190		/* conversion time */
91 #define T_CONVERT_0_NS 10		/* 1st conversion start time (oversampling) */
92 #define T_CONVERT_X_NS 500		/* xth conversion start time (oversampling) */
93 #define T_POWERUP_US 5000		/* Power up */
94 
95 /*
96  * AD738x support several SDO lines to increase throughput, but driver currently
97  * supports only 1 SDO line (standard SPI transaction)
98  */
99 #define AD7380_NUM_SDO_LINES		1
100 #define AD7380_DEFAULT_GAIN_MILLI	1000
101 
102 /*
103  * Using SPI offload, storagebits is always 32, so can't be used to compute struct
104  * spi_transfer.len. Using realbits instead.
105  */
106 #define AD7380_SPI_BYTES(scan_type)	((scan_type)->realbits > 16 ? 4 : 2)
107 
108 struct ad7380_timing_specs {
109 	const unsigned int t_csh_ns;	/* CS minimum high time */
110 };
111 
112 struct ad7380_chip_info {
113 	const char *name;
114 	const struct iio_chan_spec *channels;
115 	const struct iio_chan_spec *offload_channels;
116 	unsigned int num_channels;
117 	unsigned int num_simult_channels;
118 	bool has_hardware_gain;
119 	bool has_mux;
120 	const char * const *supplies;
121 	unsigned int num_supplies;
122 	bool external_ref_only;
123 	bool internal_ref_only;
124 	unsigned int internal_ref_mv;
125 	const char * const *vcm_supplies;
126 	unsigned int num_vcm_supplies;
127 	const unsigned long *available_scan_masks;
128 	const struct ad7380_timing_specs *timing_specs;
129 	u32 max_conversion_rate_hz;
130 };
131 
132 static const struct iio_event_spec ad7380_events[] = {
133 	{
134 		.type = IIO_EV_TYPE_THRESH,
135 		.dir = IIO_EV_DIR_RISING,
136 		.mask_shared_by_dir = BIT(IIO_EV_INFO_VALUE),
137 	},
138 	{
139 		.type = IIO_EV_TYPE_THRESH,
140 		.dir = IIO_EV_DIR_FALLING,
141 		.mask_shared_by_dir = BIT(IIO_EV_INFO_VALUE),
142 	},
143 	{
144 		.type = IIO_EV_TYPE_THRESH,
145 		.dir = IIO_EV_DIR_EITHER,
146 		.mask_shared_by_all = BIT(IIO_EV_INFO_ENABLE),
147 	},
148 };
149 
150 enum {
151 	AD7380_SCAN_TYPE_NORMAL,
152 	AD7380_SCAN_TYPE_RESOLUTION_BOOST,
153 };
154 
155 /* Extended scan types for 12-bit unsigned chips. */
156 static const struct iio_scan_type ad7380_scan_type_12_u[] = {
157 	[AD7380_SCAN_TYPE_NORMAL] = {
158 		.sign = 'u',
159 		.realbits = 12,
160 		.storagebits = 16,
161 		.endianness = IIO_CPU,
162 	},
163 	[AD7380_SCAN_TYPE_RESOLUTION_BOOST] = {
164 		.sign = 'u',
165 		.realbits = 14,
166 		.storagebits = 16,
167 		.endianness = IIO_CPU,
168 	},
169 };
170 
171 /* Extended scan types for 14-bit signed chips. */
172 static const struct iio_scan_type ad7380_scan_type_14_s[] = {
173 	[AD7380_SCAN_TYPE_NORMAL] = {
174 		.sign = 's',
175 		.realbits = 14,
176 		.storagebits = 16,
177 		.endianness = IIO_CPU,
178 	},
179 	[AD7380_SCAN_TYPE_RESOLUTION_BOOST] = {
180 		.sign = 's',
181 		.realbits = 16,
182 		.storagebits = 16,
183 		.endianness = IIO_CPU,
184 	},
185 };
186 
187 /* Extended scan types for 14-bit unsigned chips. */
188 static const struct iio_scan_type ad7380_scan_type_14_u[] = {
189 	[AD7380_SCAN_TYPE_NORMAL] = {
190 		.sign = 'u',
191 		.realbits = 14,
192 		.storagebits = 16,
193 		.endianness = IIO_CPU,
194 	},
195 	[AD7380_SCAN_TYPE_RESOLUTION_BOOST] = {
196 		.sign = 'u',
197 		.realbits = 16,
198 		.storagebits = 16,
199 		.endianness = IIO_CPU,
200 	},
201 };
202 
203 /* Extended scan types for 16-bit signed_chips. */
204 static const struct iio_scan_type ad7380_scan_type_16_s[] = {
205 	[AD7380_SCAN_TYPE_NORMAL] = {
206 		.sign = 's',
207 		.realbits = 16,
208 		.storagebits = 16,
209 		.endianness = IIO_CPU,
210 	},
211 	[AD7380_SCAN_TYPE_RESOLUTION_BOOST] = {
212 		.sign = 's',
213 		.realbits = 18,
214 		.storagebits = 32,
215 		.endianness = IIO_CPU,
216 	},
217 };
218 
219 /* Extended scan types for 16-bit unsigned chips. */
220 static const struct iio_scan_type ad7380_scan_type_16_u[] = {
221 	[AD7380_SCAN_TYPE_NORMAL] = {
222 		.sign = 'u',
223 		.realbits = 16,
224 		.storagebits = 16,
225 		.endianness = IIO_CPU,
226 	},
227 	[AD7380_SCAN_TYPE_RESOLUTION_BOOST] = {
228 		.sign = 'u',
229 		.realbits = 18,
230 		.storagebits = 32,
231 		.endianness = IIO_CPU,
232 	},
233 };
234 
235 /*
236  * Defining here scan types for offload mode, since with current available HDL
237  * only a value of 32 for storagebits is supported.
238  */
239 
240 /* Extended scan types for 12-bit unsigned chips, offload support. */
241 static const struct iio_scan_type ad7380_scan_type_12_u_offload[] = {
242 	[AD7380_SCAN_TYPE_NORMAL] = {
243 		.sign = 'u',
244 		.realbits = 12,
245 		.storagebits = 32,
246 		.endianness = IIO_CPU,
247 	},
248 	[AD7380_SCAN_TYPE_RESOLUTION_BOOST] = {
249 		.sign = 'u',
250 		.realbits = 14,
251 		.storagebits = 32,
252 		.endianness = IIO_CPU,
253 	},
254 };
255 
256 /* Extended scan types for 14-bit signed chips, offload support. */
257 static const struct iio_scan_type ad7380_scan_type_14_s_offload[] = {
258 	[AD7380_SCAN_TYPE_NORMAL] = {
259 		.sign = 's',
260 		.realbits = 14,
261 		.storagebits = 32,
262 		.endianness = IIO_CPU,
263 	},
264 	[AD7380_SCAN_TYPE_RESOLUTION_BOOST] = {
265 		.sign = 's',
266 		.realbits = 16,
267 		.storagebits = 32,
268 		.endianness = IIO_CPU,
269 	},
270 };
271 
272 /* Extended scan types for 14-bit unsigned chips, offload support. */
273 static const struct iio_scan_type ad7380_scan_type_14_u_offload[] = {
274 	[AD7380_SCAN_TYPE_NORMAL] = {
275 		.sign = 'u',
276 		.realbits = 14,
277 		.storagebits = 32,
278 		.endianness = IIO_CPU,
279 	},
280 	[AD7380_SCAN_TYPE_RESOLUTION_BOOST] = {
281 		.sign = 'u',
282 		.realbits = 16,
283 		.storagebits = 32,
284 		.endianness = IIO_CPU,
285 	},
286 };
287 
288 /* Extended scan types for 16-bit signed_chips, offload support. */
289 static const struct iio_scan_type ad7380_scan_type_16_s_offload[] = {
290 	[AD7380_SCAN_TYPE_NORMAL] = {
291 		.sign = 's',
292 		.realbits = 16,
293 		.storagebits = 32,
294 		.endianness = IIO_CPU,
295 	},
296 	[AD7380_SCAN_TYPE_RESOLUTION_BOOST] = {
297 		.sign = 's',
298 		.realbits = 18,
299 		.storagebits = 32,
300 		.endianness = IIO_CPU,
301 	},
302 };
303 
304 /* Extended scan types for 16-bit unsigned chips, offload support. */
305 static const struct iio_scan_type ad7380_scan_type_16_u_offload[] = {
306 	[AD7380_SCAN_TYPE_NORMAL] = {
307 		.sign = 'u',
308 		.realbits = 16,
309 		.storagebits = 32,
310 		.endianness = IIO_CPU,
311 	},
312 	[AD7380_SCAN_TYPE_RESOLUTION_BOOST] = {
313 		.sign = 'u',
314 		.realbits = 18,
315 		.storagebits = 32,
316 		.endianness = IIO_CPU,
317 	},
318 };
319 
320 #define _AD7380_CHANNEL(index, bits, diff, sign, gain) {			\
321 	.type = IIO_VOLTAGE,							\
322 	.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |				\
323 		((gain) ? BIT(IIO_CHAN_INFO_SCALE) : 0) |			\
324 		((diff) ? 0 : BIT(IIO_CHAN_INFO_OFFSET)),			\
325 	.info_mask_shared_by_type = ((gain) ? 0 : BIT(IIO_CHAN_INFO_SCALE)) |	\
326 		BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO),				\
327 	.info_mask_shared_by_type_available =					\
328 		BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO),				\
329 	.indexed = 1,								\
330 	.differential = (diff),							\
331 	.channel = (diff) ? (2 * (index)) : (index),				\
332 	.channel2 = (diff) ? (2 * (index) + 1) : 0,				\
333 	.scan_index = (index),							\
334 	.has_ext_scan_type = 1,							\
335 	.ext_scan_type = ad7380_scan_type_##bits##_##sign,			\
336 	.num_ext_scan_type = ARRAY_SIZE(ad7380_scan_type_##bits##_##sign),	\
337 	.event_spec = ad7380_events,						\
338 	.num_event_specs = ARRAY_SIZE(ad7380_events),				\
339 }
340 
341 #define _AD7380_OFFLOAD_CHANNEL(index, bits, diff, sign, gain) {		\
342 	.type = IIO_VOLTAGE,							\
343 	.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |                          \
344 		((gain) ? BIT(IIO_CHAN_INFO_SCALE) : 0) |			\
345 		((diff) ? 0 : BIT(IIO_CHAN_INFO_OFFSET)),			\
346 	.info_mask_shared_by_type = ((gain) ? 0 : BIT(IIO_CHAN_INFO_SCALE)) |   \
347 		BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO) |				\
348 		BIT(IIO_CHAN_INFO_SAMP_FREQ),					\
349 	.info_mask_shared_by_type_available =					\
350 		BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO) |				\
351 		BIT(IIO_CHAN_INFO_SAMP_FREQ),					\
352 	.indexed = 1,                                                           \
353 	.differential = (diff),                                                 \
354 	.channel = (diff) ? (2 * (index)) : (index),                            \
355 	.channel2 = (diff) ? (2 * (index) + 1) : 0,                             \
356 	.scan_index = (index),                                                  \
357 	.has_ext_scan_type = 1,                                                 \
358 	.ext_scan_type = ad7380_scan_type_##bits##_##sign##_offload,            \
359 	.num_ext_scan_type =                                                    \
360 		ARRAY_SIZE(ad7380_scan_type_##bits##_##sign##_offload),		\
361 	.event_spec = ad7380_events,                                            \
362 	.num_event_specs = ARRAY_SIZE(ad7380_events),                           \
363 }
364 
365 /*
366  * Notes on the offload channels:
367  * - There is no soft timestamp since everything is done in hardware.
368  * - There is a sampling frequency attribute added. This controls the SPI
369  *   offload trigger.
370  * - The storagebits value depends on the SPI offload provider. Currently there
371  *   is only one supported provider, namely the ADI PULSAR ADC HDL project,
372  *   which always uses 32-bit words for data values, even for <= 16-bit ADCs.
373  *   So the value is just hardcoded to 32 for now.
374  */
375 
376 #define AD7380_CHANNEL(index, bits, diff, sign)		\
377 	_AD7380_CHANNEL(index, bits, diff, sign, false)
378 
379 #define ADAQ4380_CHANNEL(index, bits, diff, sign)	\
380 	_AD7380_CHANNEL(index, bits, diff, sign, true)
381 
382 #define DEFINE_AD7380_2_CHANNEL(name, bits, diff, sign) \
383 static const struct iio_chan_spec name[] = {	\
384 	AD7380_CHANNEL(0, bits, diff, sign),	\
385 	AD7380_CHANNEL(1, bits, diff, sign),	\
386 	IIO_CHAN_SOFT_TIMESTAMP(2),		\
387 }
388 
389 #define DEFINE_AD7380_4_CHANNEL(name, bits, diff, sign) \
390 static const struct iio_chan_spec name[] = {	\
391 	 AD7380_CHANNEL(0, bits, diff, sign),	\
392 	 AD7380_CHANNEL(1, bits, diff, sign),	\
393 	 AD7380_CHANNEL(2, bits, diff, sign),	\
394 	 AD7380_CHANNEL(3, bits, diff, sign),	\
395 	 IIO_CHAN_SOFT_TIMESTAMP(4),		\
396 }
397 
398 #define DEFINE_ADAQ4380_4_CHANNEL(name, bits, diff, sign) \
399 static const struct iio_chan_spec name[] = {	\
400 	 ADAQ4380_CHANNEL(0, bits, diff, sign),	\
401 	 ADAQ4380_CHANNEL(1, bits, diff, sign),	\
402 	 ADAQ4380_CHANNEL(2, bits, diff, sign),	\
403 	 ADAQ4380_CHANNEL(3, bits, diff, sign),	\
404 	 IIO_CHAN_SOFT_TIMESTAMP(4),		\
405 }
406 
407 #define DEFINE_AD7380_8_CHANNEL(name, bits, diff, sign) \
408 static const struct iio_chan_spec name[] = {	\
409 	 AD7380_CHANNEL(0, bits, diff, sign),	\
410 	 AD7380_CHANNEL(1, bits, diff, sign),	\
411 	 AD7380_CHANNEL(2, bits, diff, sign),	\
412 	 AD7380_CHANNEL(3, bits, diff, sign),	\
413 	 AD7380_CHANNEL(4, bits, diff, sign),	\
414 	 AD7380_CHANNEL(5, bits, diff, sign),	\
415 	 AD7380_CHANNEL(6, bits, diff, sign),	\
416 	 AD7380_CHANNEL(7, bits, diff, sign),	\
417 	 IIO_CHAN_SOFT_TIMESTAMP(8),		\
418 }
419 
420 #define AD7380_OFFLOAD_CHANNEL(index, bits, diff, sign) \
421 _AD7380_OFFLOAD_CHANNEL(index, bits, diff, sign, false)
422 
423 #define ADAQ4380_OFFLOAD_CHANNEL(index, bits, diff, sign) \
424 _AD7380_OFFLOAD_CHANNEL(index, bits, diff, sign, true)
425 
426 #define DEFINE_AD7380_2_OFFLOAD_CHANNEL(name, bits, diff, sign) \
427 static const struct iio_chan_spec name[] = {		\
428 	AD7380_OFFLOAD_CHANNEL(0, bits, diff, sign),	\
429 	AD7380_OFFLOAD_CHANNEL(1, bits, diff, sign),	\
430 }
431 
432 #define DEFINE_AD7380_4_OFFLOAD_CHANNEL(name, bits, diff, sign) \
433 static const struct iio_chan_spec name[] = {		\
434 	AD7380_OFFLOAD_CHANNEL(0, bits, diff, sign),	\
435 	AD7380_OFFLOAD_CHANNEL(1, bits, diff, sign),	\
436 	AD7380_OFFLOAD_CHANNEL(2, bits, diff, sign),	\
437 	AD7380_OFFLOAD_CHANNEL(3, bits, diff, sign),	\
438 }
439 
440 #define DEFINE_ADAQ4380_4_OFFLOAD_CHANNEL(name, bits, diff, sign) \
441 static const struct iio_chan_spec name[] = {		\
442 	AD7380_OFFLOAD_CHANNEL(0, bits, diff, sign),	\
443 	AD7380_OFFLOAD_CHANNEL(1, bits, diff, sign),	\
444 	AD7380_OFFLOAD_CHANNEL(2, bits, diff, sign),	\
445 	AD7380_OFFLOAD_CHANNEL(3, bits, diff, sign),	\
446 }
447 
448 #define DEFINE_AD7380_8_OFFLOAD_CHANNEL(name, bits, diff, sign) \
449 static const struct iio_chan_spec name[] = {		\
450 	AD7380_OFFLOAD_CHANNEL(0, bits, diff, sign),	\
451 	AD7380_OFFLOAD_CHANNEL(1, bits, diff, sign),	\
452 	AD7380_OFFLOAD_CHANNEL(2, bits, diff, sign),	\
453 	AD7380_OFFLOAD_CHANNEL(3, bits, diff, sign),	\
454 	AD7380_OFFLOAD_CHANNEL(4, bits, diff, sign),	\
455 	AD7380_OFFLOAD_CHANNEL(5, bits, diff, sign),	\
456 	AD7380_OFFLOAD_CHANNEL(6, bits, diff, sign),	\
457 	AD7380_OFFLOAD_CHANNEL(7, bits, diff, sign),	\
458 }
459 
460 /* fully differential */
461 DEFINE_AD7380_2_CHANNEL(ad7380_channels, 16, 1, s);
462 DEFINE_AD7380_2_CHANNEL(ad7381_channels, 14, 1, s);
463 DEFINE_AD7380_4_CHANNEL(ad7380_4_channels, 16, 1, s);
464 DEFINE_AD7380_4_CHANNEL(ad7381_4_channels, 14, 1, s);
465 DEFINE_ADAQ4380_4_CHANNEL(adaq4380_4_channels, 16, 1, s);
466 DEFINE_ADAQ4380_4_CHANNEL(adaq4381_4_channels, 14, 1, s);
467 /* pseudo differential */
468 DEFINE_AD7380_2_CHANNEL(ad7383_channels, 16, 0, s);
469 DEFINE_AD7380_2_CHANNEL(ad7384_channels, 14, 0, s);
470 DEFINE_AD7380_4_CHANNEL(ad7383_4_channels, 16, 0, s);
471 DEFINE_AD7380_4_CHANNEL(ad7384_4_channels, 14, 0, s);
472 
473 /* Single ended */
474 DEFINE_AD7380_4_CHANNEL(ad7386_channels, 16, 0, u);
475 DEFINE_AD7380_4_CHANNEL(ad7387_channels, 14, 0, u);
476 DEFINE_AD7380_4_CHANNEL(ad7388_channels, 12, 0, u);
477 DEFINE_AD7380_8_CHANNEL(ad7386_4_channels, 16, 0, u);
478 DEFINE_AD7380_8_CHANNEL(ad7387_4_channels, 14, 0, u);
479 DEFINE_AD7380_8_CHANNEL(ad7388_4_channels, 12, 0, u);
480 
481 /* offload channels */
482 DEFINE_AD7380_2_OFFLOAD_CHANNEL(ad7380_offload_channels, 16, 1, s);
483 DEFINE_AD7380_2_OFFLOAD_CHANNEL(ad7381_offload_channels, 14, 1, s);
484 DEFINE_AD7380_4_OFFLOAD_CHANNEL(ad7380_4_offload_channels, 16, 1, s);
485 DEFINE_AD7380_4_OFFLOAD_CHANNEL(ad7381_4_offload_channels, 14, 1, s);
486 DEFINE_ADAQ4380_4_OFFLOAD_CHANNEL(adaq4380_4_offload_channels, 16, 1, s);
487 DEFINE_ADAQ4380_4_OFFLOAD_CHANNEL(adaq4381_4_offload_channels, 14, 1, s);
488 
489 /* pseudo differential */
490 DEFINE_AD7380_2_OFFLOAD_CHANNEL(ad7383_offload_channels, 16, 0, s);
491 DEFINE_AD7380_2_OFFLOAD_CHANNEL(ad7384_offload_channels, 14, 0, s);
492 DEFINE_AD7380_4_OFFLOAD_CHANNEL(ad7383_4_offload_channels, 16, 0, s);
493 DEFINE_AD7380_4_OFFLOAD_CHANNEL(ad7384_4_offload_channels, 14, 0, s);
494 
495 /* Single ended */
496 DEFINE_AD7380_4_OFFLOAD_CHANNEL(ad7386_offload_channels, 16, 0, u);
497 DEFINE_AD7380_4_OFFLOAD_CHANNEL(ad7387_offload_channels, 14, 0, u);
498 DEFINE_AD7380_4_OFFLOAD_CHANNEL(ad7388_offload_channels, 12, 0, u);
499 DEFINE_AD7380_8_OFFLOAD_CHANNEL(ad7386_4_offload_channels, 16, 0, u);
500 DEFINE_AD7380_8_OFFLOAD_CHANNEL(ad7387_4_offload_channels, 14, 0, u);
501 DEFINE_AD7380_8_OFFLOAD_CHANNEL(ad7388_4_offload_channels, 12, 0, u);
502 
503 static const char * const ad7380_supplies[] = {
504 	"vcc", "vlogic",
505 };
506 
507 static const char * const adaq4380_supplies[] = {
508 	"ldo", "vcc", "vlogic", "vs-p", "vs-n", "refin",
509 };
510 
511 static const char * const ad7380_2_channel_vcm_supplies[] = {
512 	"aina", "ainb",
513 };
514 
515 static const char * const ad7380_4_channel_vcm_supplies[] = {
516 	"aina", "ainb", "ainc", "aind",
517 };
518 
519 /* Since this is simultaneous sampling, we don't allow individual channels. */
520 static const unsigned long ad7380_2_channel_scan_masks[] = {
521 	GENMASK(1, 0),
522 	0
523 };
524 
525 static const unsigned long ad7380_4_channel_scan_masks[] = {
526 	GENMASK(3, 0),
527 	0
528 };
529 
530 /*
531  * Single ended parts have a 2:1 multiplexer in front of each ADC.
532  *
533  * From an IIO point of view, all inputs are exported, i.e ad7386/7/8
534  * export 4 channels and ad7386-4/7-4/8-4 export 8 channels.
535  *
536  * Inputs AinX0 of multiplexers correspond to the first half of IIO channels
537  * (i.e 0-1 or 0-3) and inputs AinX1 correspond to second half (i.e 2-3 or
538  * 4-7). Example for AD7386/7/8 (2 channels parts):
539  *
540  *           IIO   | AD7386/7/8
541  *                 |         +----------------------------
542  *                 |         |     _____        ______
543  *                 |         |    |     |      |      |
544  *        voltage0 | AinA0 --|--->|     |      |      |
545  *                 |         |    | mux |----->| ADCA |---
546  *        voltage2 | AinA1 --|--->|     |      |      |
547  *                 |         |    |_____|      |_____ |
548  *                 |         |     _____        ______
549  *                 |         |    |     |      |      |
550  *        voltage1 | AinB0 --|--->|     |      |      |
551  *                 |         |    | mux |----->| ADCB |---
552  *        voltage3 | AinB1 --|--->|     |      |      |
553  *                 |         |    |_____|      |______|
554  *                 |         |
555  *                 |         +----------------------------
556  *
557  * Since this is simultaneous sampling for AinX0 OR AinX1 we have two separate
558  * scan masks.
559  * When sequencer mode is enabled, chip automatically cycles through
560  * AinX0 and AinX1 channels. From an IIO point of view, we ca enable all
561  * channels, at the cost of an extra read, thus dividing the maximum rate by
562  * two.
563  */
564 enum {
565 	AD7380_SCAN_MASK_CH_0,
566 	AD7380_SCAN_MASK_CH_1,
567 	AD7380_SCAN_MASK_SEQ,
568 };
569 
570 static const unsigned long ad7380_2x2_channel_scan_masks[] = {
571 	[AD7380_SCAN_MASK_CH_0] = GENMASK(1, 0),
572 	[AD7380_SCAN_MASK_CH_1] = GENMASK(3, 2),
573 	[AD7380_SCAN_MASK_SEQ] = GENMASK(3, 0),
574 	0
575 };
576 
577 static const unsigned long ad7380_2x4_channel_scan_masks[] = {
578 	[AD7380_SCAN_MASK_CH_0] = GENMASK(3, 0),
579 	[AD7380_SCAN_MASK_CH_1] = GENMASK(7, 4),
580 	[AD7380_SCAN_MASK_SEQ] = GENMASK(7, 0),
581 	0
582 };
583 
584 static const struct ad7380_timing_specs ad7380_timing = {
585 	.t_csh_ns = 10,
586 };
587 
588 static const struct ad7380_timing_specs ad7380_4_timing = {
589 	.t_csh_ns = 20,
590 };
591 
592 /*
593  * Available oversampling ratios. The indices correspond with the bit value
594  * expected by the chip.  The available ratios depend on the averaging mode,
595  * only normal averaging is supported for now.
596  */
597 static const int ad7380_oversampling_ratios[] = {
598 	1, 2, 4, 8, 16, 32,
599 };
600 
601 /* Gains stored as fractions of 1000 so they can be expressed by integers. */
602 static const int ad7380_gains[] = {
603 	300, 600, 1000, 1600,
604 };
605 
606 static const struct ad7380_chip_info ad7380_chip_info = {
607 	.name = "ad7380",
608 	.channels = ad7380_channels,
609 	.offload_channels = ad7380_offload_channels,
610 	.num_channels = ARRAY_SIZE(ad7380_channels),
611 	.num_simult_channels = 2,
612 	.supplies = ad7380_supplies,
613 	.num_supplies = ARRAY_SIZE(ad7380_supplies),
614 	.internal_ref_mv = AD7380_INTERNAL_REF_MV,
615 	.available_scan_masks = ad7380_2_channel_scan_masks,
616 	.timing_specs = &ad7380_timing,
617 	.max_conversion_rate_hz = 4 * MEGA,
618 };
619 
620 static const struct ad7380_chip_info ad7381_chip_info = {
621 	.name = "ad7381",
622 	.channels = ad7381_channels,
623 	.offload_channels = ad7381_offload_channels,
624 	.num_channels = ARRAY_SIZE(ad7381_channels),
625 	.num_simult_channels = 2,
626 	.supplies = ad7380_supplies,
627 	.num_supplies = ARRAY_SIZE(ad7380_supplies),
628 	.internal_ref_mv = AD7380_INTERNAL_REF_MV,
629 	.available_scan_masks = ad7380_2_channel_scan_masks,
630 	.timing_specs = &ad7380_timing,
631 	.max_conversion_rate_hz = 4 * MEGA,
632 };
633 
634 static const struct ad7380_chip_info ad7383_chip_info = {
635 	.name = "ad7383",
636 	.channels = ad7383_channels,
637 	.offload_channels = ad7383_offload_channels,
638 	.num_channels = ARRAY_SIZE(ad7383_channels),
639 	.num_simult_channels = 2,
640 	.supplies = ad7380_supplies,
641 	.num_supplies = ARRAY_SIZE(ad7380_supplies),
642 	.vcm_supplies = ad7380_2_channel_vcm_supplies,
643 	.num_vcm_supplies = ARRAY_SIZE(ad7380_2_channel_vcm_supplies),
644 	.internal_ref_mv = AD7380_INTERNAL_REF_MV,
645 	.available_scan_masks = ad7380_2_channel_scan_masks,
646 	.timing_specs = &ad7380_timing,
647 	.max_conversion_rate_hz = 4 * MEGA,
648 };
649 
650 static const struct ad7380_chip_info ad7384_chip_info = {
651 	.name = "ad7384",
652 	.channels = ad7384_channels,
653 	.offload_channels = ad7384_offload_channels,
654 	.num_channels = ARRAY_SIZE(ad7384_channels),
655 	.num_simult_channels = 2,
656 	.supplies = ad7380_supplies,
657 	.num_supplies = ARRAY_SIZE(ad7380_supplies),
658 	.vcm_supplies = ad7380_2_channel_vcm_supplies,
659 	.num_vcm_supplies = ARRAY_SIZE(ad7380_2_channel_vcm_supplies),
660 	.internal_ref_mv = AD7380_INTERNAL_REF_MV,
661 	.available_scan_masks = ad7380_2_channel_scan_masks,
662 	.timing_specs = &ad7380_timing,
663 	.max_conversion_rate_hz = 4 * MEGA,
664 };
665 
666 static const struct ad7380_chip_info ad7386_chip_info = {
667 	.name = "ad7386",
668 	.channels = ad7386_channels,
669 	.offload_channels = ad7386_offload_channels,
670 	.num_channels = ARRAY_SIZE(ad7386_channels),
671 	.num_simult_channels = 2,
672 	.supplies = ad7380_supplies,
673 	.num_supplies = ARRAY_SIZE(ad7380_supplies),
674 	.internal_ref_mv = AD7380_INTERNAL_REF_MV,
675 	.has_mux = true,
676 	.available_scan_masks = ad7380_2x2_channel_scan_masks,
677 	.timing_specs = &ad7380_timing,
678 	.max_conversion_rate_hz = 4 * MEGA,
679 };
680 
681 static const struct ad7380_chip_info ad7387_chip_info = {
682 	.name = "ad7387",
683 	.channels = ad7387_channels,
684 	.offload_channels = ad7387_offload_channels,
685 	.num_channels = ARRAY_SIZE(ad7387_channels),
686 	.num_simult_channels = 2,
687 	.supplies = ad7380_supplies,
688 	.num_supplies = ARRAY_SIZE(ad7380_supplies),
689 	.internal_ref_mv = AD7380_INTERNAL_REF_MV,
690 	.has_mux = true,
691 	.available_scan_masks = ad7380_2x2_channel_scan_masks,
692 	.timing_specs = &ad7380_timing,
693 	.max_conversion_rate_hz = 4 * MEGA,
694 };
695 
696 static const struct ad7380_chip_info ad7388_chip_info = {
697 	.name = "ad7388",
698 	.channels = ad7388_channels,
699 	.offload_channels = ad7388_offload_channels,
700 	.num_channels = ARRAY_SIZE(ad7388_channels),
701 	.num_simult_channels = 2,
702 	.supplies = ad7380_supplies,
703 	.num_supplies = ARRAY_SIZE(ad7380_supplies),
704 	.internal_ref_mv = AD7380_INTERNAL_REF_MV,
705 	.has_mux = true,
706 	.available_scan_masks = ad7380_2x2_channel_scan_masks,
707 	.timing_specs = &ad7380_timing,
708 	.max_conversion_rate_hz = 4 * MEGA,
709 };
710 
711 static const struct ad7380_chip_info ad7380_4_chip_info = {
712 	.name = "ad7380-4",
713 	.channels = ad7380_4_channels,
714 	.offload_channels = ad7380_4_offload_channels,
715 	.num_channels = ARRAY_SIZE(ad7380_4_channels),
716 	.num_simult_channels = 4,
717 	.supplies = ad7380_supplies,
718 	.num_supplies = ARRAY_SIZE(ad7380_supplies),
719 	.external_ref_only = true,
720 	.available_scan_masks = ad7380_4_channel_scan_masks,
721 	.timing_specs = &ad7380_4_timing,
722 	.max_conversion_rate_hz = 4 * MEGA,
723 };
724 
725 static const struct ad7380_chip_info ad7381_4_chip_info = {
726 	.name = "ad7381-4",
727 	.channels = ad7381_4_channels,
728 	.offload_channels = ad7381_4_offload_channels,
729 	.num_channels = ARRAY_SIZE(ad7381_4_channels),
730 	.num_simult_channels = 4,
731 	.supplies = ad7380_supplies,
732 	.num_supplies = ARRAY_SIZE(ad7380_supplies),
733 	.internal_ref_mv = AD7380_INTERNAL_REF_MV,
734 	.available_scan_masks = ad7380_4_channel_scan_masks,
735 	.timing_specs = &ad7380_4_timing,
736 	.max_conversion_rate_hz = 4 * MEGA,
737 };
738 
739 static const struct ad7380_chip_info ad7383_4_chip_info = {
740 	.name = "ad7383-4",
741 	.channels = ad7383_4_channels,
742 	.offload_channels = ad7383_4_offload_channels,
743 	.num_channels = ARRAY_SIZE(ad7383_4_channels),
744 	.num_simult_channels = 4,
745 	.supplies = ad7380_supplies,
746 	.num_supplies = ARRAY_SIZE(ad7380_supplies),
747 	.internal_ref_mv = AD7380_INTERNAL_REF_MV,
748 	.vcm_supplies = ad7380_4_channel_vcm_supplies,
749 	.num_vcm_supplies = ARRAY_SIZE(ad7380_4_channel_vcm_supplies),
750 	.available_scan_masks = ad7380_4_channel_scan_masks,
751 	.timing_specs = &ad7380_4_timing,
752 	.max_conversion_rate_hz = 4 * MEGA,
753 };
754 
755 static const struct ad7380_chip_info ad7384_4_chip_info = {
756 	.name = "ad7384-4",
757 	.channels = ad7384_4_channels,
758 	.offload_channels = ad7384_4_offload_channels,
759 	.num_channels = ARRAY_SIZE(ad7384_4_channels),
760 	.num_simult_channels = 4,
761 	.supplies = ad7380_supplies,
762 	.num_supplies = ARRAY_SIZE(ad7380_supplies),
763 	.internal_ref_mv = AD7380_INTERNAL_REF_MV,
764 	.vcm_supplies = ad7380_4_channel_vcm_supplies,
765 	.num_vcm_supplies = ARRAY_SIZE(ad7380_4_channel_vcm_supplies),
766 	.available_scan_masks = ad7380_4_channel_scan_masks,
767 	.timing_specs = &ad7380_4_timing,
768 	.max_conversion_rate_hz = 4 * MEGA,
769 };
770 
771 static const struct ad7380_chip_info ad7386_4_chip_info = {
772 	.name = "ad7386-4",
773 	.channels = ad7386_4_channels,
774 	.offload_channels = ad7386_4_offload_channels,
775 	.num_channels = ARRAY_SIZE(ad7386_4_channels),
776 	.num_simult_channels = 4,
777 	.supplies = ad7380_supplies,
778 	.num_supplies = ARRAY_SIZE(ad7380_supplies),
779 	.internal_ref_mv = AD7380_INTERNAL_REF_MV,
780 	.has_mux = true,
781 	.available_scan_masks = ad7380_2x4_channel_scan_masks,
782 	.timing_specs = &ad7380_4_timing,
783 	.max_conversion_rate_hz = 4 * MEGA,
784 };
785 
786 static const struct ad7380_chip_info ad7387_4_chip_info = {
787 	.name = "ad7387-4",
788 	.channels = ad7387_4_channels,
789 	.offload_channels = ad7387_4_offload_channels,
790 	.num_channels = ARRAY_SIZE(ad7387_4_channels),
791 	.num_simult_channels = 4,
792 	.supplies = ad7380_supplies,
793 	.num_supplies = ARRAY_SIZE(ad7380_supplies),
794 	.internal_ref_mv = AD7380_INTERNAL_REF_MV,
795 	.has_mux = true,
796 	.available_scan_masks = ad7380_2x4_channel_scan_masks,
797 	.timing_specs = &ad7380_4_timing,
798 	.max_conversion_rate_hz = 4 * MEGA,
799 };
800 
801 static const struct ad7380_chip_info ad7388_4_chip_info = {
802 	.name = "ad7388-4",
803 	.channels = ad7388_4_channels,
804 	.offload_channels = ad7388_4_offload_channels,
805 	.num_channels = ARRAY_SIZE(ad7388_4_channels),
806 	.num_simult_channels = 4,
807 	.supplies = ad7380_supplies,
808 	.num_supplies = ARRAY_SIZE(ad7380_supplies),
809 	.internal_ref_mv = AD7380_INTERNAL_REF_MV,
810 	.has_mux = true,
811 	.available_scan_masks = ad7380_2x4_channel_scan_masks,
812 	.timing_specs = &ad7380_4_timing,
813 	.max_conversion_rate_hz = 4 * MEGA,
814 };
815 
816 static const struct ad7380_chip_info ad7389_4_chip_info = {
817 	.name = "ad7389-4",
818 	.channels = ad7380_4_channels,
819 	.offload_channels = ad7380_4_offload_channels,
820 	.num_channels = ARRAY_SIZE(ad7380_4_channels),
821 	.num_simult_channels = 4,
822 	.supplies = ad7380_supplies,
823 	.num_supplies = ARRAY_SIZE(ad7380_supplies),
824 	.internal_ref_only = true,
825 	.internal_ref_mv = AD7380_INTERNAL_REF_MV,
826 	.available_scan_masks = ad7380_4_channel_scan_masks,
827 	.timing_specs = &ad7380_4_timing,
828 	.max_conversion_rate_hz = 4 * MEGA,
829 };
830 
831 static const struct ad7380_chip_info adaq4370_4_chip_info = {
832 	.name = "adaq4370-4",
833 	.channels = adaq4380_4_channels,
834 	.offload_channels = adaq4380_4_offload_channels,
835 	.num_channels = ARRAY_SIZE(adaq4380_4_channels),
836 	.num_simult_channels = 4,
837 	.supplies = adaq4380_supplies,
838 	.num_supplies = ARRAY_SIZE(adaq4380_supplies),
839 	.internal_ref_only = true,
840 	.internal_ref_mv = ADAQ4380_INTERNAL_REF_MV,
841 	.has_hardware_gain = true,
842 	.available_scan_masks = ad7380_4_channel_scan_masks,
843 	.timing_specs = &ad7380_4_timing,
844 	.max_conversion_rate_hz = 2 * MEGA,
845 };
846 
847 static const struct ad7380_chip_info adaq4380_4_chip_info = {
848 	.name = "adaq4380-4",
849 	.channels = adaq4380_4_channels,
850 	.offload_channels = adaq4380_4_offload_channels,
851 	.num_channels = ARRAY_SIZE(adaq4380_4_channels),
852 	.num_simult_channels = 4,
853 	.supplies = adaq4380_supplies,
854 	.num_supplies = ARRAY_SIZE(adaq4380_supplies),
855 	.internal_ref_only = true,
856 	.internal_ref_mv = ADAQ4380_INTERNAL_REF_MV,
857 	.has_hardware_gain = true,
858 	.available_scan_masks = ad7380_4_channel_scan_masks,
859 	.timing_specs = &ad7380_4_timing,
860 	.max_conversion_rate_hz = 4 * MEGA,
861 };
862 
863 static const struct ad7380_chip_info adaq4381_4_chip_info = {
864 	.name = "adaq4381-4",
865 	.channels = adaq4381_4_channels,
866 	.offload_channels = adaq4381_4_offload_channels,
867 	.num_channels = ARRAY_SIZE(adaq4381_4_channels),
868 	.num_simult_channels = 4,
869 	.supplies = adaq4380_supplies,
870 	.num_supplies = ARRAY_SIZE(adaq4380_supplies),
871 	.internal_ref_only = true,
872 	.internal_ref_mv = ADAQ4380_INTERNAL_REF_MV,
873 	.has_hardware_gain = true,
874 	.available_scan_masks = ad7380_4_channel_scan_masks,
875 	.timing_specs = &ad7380_4_timing,
876 };
877 
878 static const struct spi_offload_config ad7380_offload_config = {
879 	.capability_flags = SPI_OFFLOAD_CAP_TRIGGER |
880 			    SPI_OFFLOAD_CAP_RX_STREAM_DMA,
881 };
882 
883 struct ad7380_state {
884 	const struct ad7380_chip_info *chip_info;
885 	struct spi_device *spi;
886 	struct regmap *regmap;
887 	bool resolution_boost_enabled;
888 	unsigned int ch;
889 	bool seq;
890 	unsigned int vref_mv;
891 	unsigned int vcm_mv[MAX_NUM_CHANNELS];
892 	unsigned int gain_milli[MAX_NUM_CHANNELS];
893 	/* xfers, message an buffer for reading sample data */
894 	struct spi_transfer normal_xfer[2];
895 	struct spi_message normal_msg;
896 	struct spi_transfer seq_xfer[4];
897 	struct spi_message seq_msg;
898 	struct spi_transfer offload_xfer;
899 	struct spi_message offload_msg;
900 	struct spi_offload *offload;
901 	struct spi_offload_trigger *offload_trigger;
902 	unsigned long offload_trigger_hz;
903 
904 	int sample_freq_range[3];
905 	/*
906 	 * DMA (thus cache coherency maintenance) requires the transfer buffers
907 	 * to live in their own cache lines.
908 	 *
909 	 * Make the buffer large enough for MAX_NUM_CHANNELS 32-bit samples and
910 	 * one 64-bit aligned 64-bit timestamp.
911 	 */
912 	IIO_DECLARE_DMA_BUFFER_WITH_TS(u8, scan_data, MAX_NUM_CHANNELS * sizeof(u32));
913 	/* buffers for reading/writing registers */
914 	u16 tx;
915 	u16 rx;
916 };
917 
ad7380_regmap_reg_write(void * context,unsigned int reg,unsigned int val)918 static int ad7380_regmap_reg_write(void *context, unsigned int reg,
919 				   unsigned int val)
920 {
921 	struct ad7380_state *st = context;
922 	struct spi_transfer xfer = {
923 		.speed_hz = AD7380_REG_WR_SPEED_HZ,
924 		.bits_per_word = 16,
925 		.len = 2,
926 		.tx_buf = &st->tx,
927 	};
928 
929 	st->tx = FIELD_PREP(AD7380_REG_WR, 1) |
930 		 FIELD_PREP(AD7380_REG_REGADDR, reg) |
931 		 FIELD_PREP(AD7380_REG_DATA, val);
932 
933 	return spi_sync_transfer(st->spi, &xfer, 1);
934 }
935 
ad7380_regmap_reg_read(void * context,unsigned int reg,unsigned int * val)936 static int ad7380_regmap_reg_read(void *context, unsigned int reg,
937 				  unsigned int *val)
938 {
939 	struct ad7380_state *st = context;
940 	struct spi_transfer xfers[] = {
941 		{
942 			.speed_hz = AD7380_REG_WR_SPEED_HZ,
943 			.bits_per_word = 16,
944 			.len = 2,
945 			.tx_buf = &st->tx,
946 			.cs_change = 1,
947 			.cs_change_delay = {
948 				.value = st->chip_info->timing_specs->t_csh_ns,
949 				.unit = SPI_DELAY_UNIT_NSECS,
950 			},
951 		}, {
952 			.speed_hz = AD7380_REG_WR_SPEED_HZ,
953 			.bits_per_word = 16,
954 			.len = 2,
955 			.rx_buf = &st->rx,
956 		},
957 	};
958 	int ret;
959 
960 	st->tx = FIELD_PREP(AD7380_REG_WR, 0) |
961 		 FIELD_PREP(AD7380_REG_REGADDR, reg) |
962 		 FIELD_PREP(AD7380_REG_DATA, 0);
963 
964 	ret = spi_sync_transfer(st->spi, xfers, ARRAY_SIZE(xfers));
965 	if (ret < 0)
966 		return ret;
967 
968 	*val = FIELD_GET(AD7380_REG_DATA, st->rx);
969 
970 	return 0;
971 }
972 
973 static const struct reg_default ad7380_reg_defaults[] = {
974 	{ AD7380_REG_ADDR_ALERT_LOW_TH, 0x800 },
975 	{ AD7380_REG_ADDR_ALERT_HIGH_TH, 0x7FF },
976 };
977 
978 static const struct regmap_range ad7380_volatile_reg_ranges[] = {
979 	regmap_reg_range(AD7380_REG_ADDR_CONFIG2, AD7380_REG_ADDR_ALERT),
980 };
981 
982 static const struct regmap_access_table ad7380_volatile_regs = {
983 	.yes_ranges = ad7380_volatile_reg_ranges,
984 	.n_yes_ranges = ARRAY_SIZE(ad7380_volatile_reg_ranges),
985 };
986 
987 static const struct regmap_config ad7380_regmap_config = {
988 	.reg_bits = 3,
989 	.val_bits = 12,
990 	.reg_read = ad7380_regmap_reg_read,
991 	.reg_write = ad7380_regmap_reg_write,
992 	.max_register = AD7380_REG_ADDR_ALERT_HIGH_TH,
993 	.can_sleep = true,
994 	.reg_defaults = ad7380_reg_defaults,
995 	.num_reg_defaults = ARRAY_SIZE(ad7380_reg_defaults),
996 	.volatile_table = &ad7380_volatile_regs,
997 	.cache_type = REGCACHE_MAPLE,
998 };
999 
ad7380_debugfs_reg_access(struct iio_dev * indio_dev,u32 reg,u32 writeval,u32 * readval)1000 static int ad7380_debugfs_reg_access(struct iio_dev *indio_dev, u32 reg,
1001 				     u32 writeval, u32 *readval)
1002 {
1003 	struct ad7380_state *st = iio_priv(indio_dev);
1004 	int ret;
1005 
1006 	if (!iio_device_claim_direct(indio_dev))
1007 		return -EBUSY;
1008 
1009 	if (readval)
1010 		ret = regmap_read(st->regmap, reg, readval);
1011 	else
1012 		ret = regmap_write(st->regmap, reg, writeval);
1013 
1014 	iio_device_release_direct(indio_dev);
1015 
1016 	return ret;
1017 }
1018 
1019 /**
1020  * ad7380_regval_to_osr - convert OSR register value to ratio
1021  * @regval: register value to check
1022  *
1023  * Returns: the ratio corresponding to the OSR register. If regval is not in
1024  * bound, return 1 (oversampling disabled)
1025  *
1026  */
ad7380_regval_to_osr(unsigned int regval)1027 static int ad7380_regval_to_osr(unsigned int regval)
1028 {
1029 	if (regval >= ARRAY_SIZE(ad7380_oversampling_ratios))
1030 		return 1;
1031 
1032 	return ad7380_oversampling_ratios[regval];
1033 }
1034 
ad7380_get_osr(struct ad7380_state * st,int * val)1035 static int ad7380_get_osr(struct ad7380_state *st, int *val)
1036 {
1037 	u32 tmp;
1038 	int ret;
1039 
1040 	ret = regmap_read(st->regmap, AD7380_REG_ADDR_CONFIG1, &tmp);
1041 	if (ret)
1042 		return ret;
1043 
1044 	*val = ad7380_regval_to_osr(FIELD_GET(AD7380_CONFIG1_OSR, tmp));
1045 
1046 	return 0;
1047 }
1048 
1049 /*
1050  * When switching channel, the ADC require an additional settling time.
1051  * According to the datasheet, data is value on the third CS low. We already
1052  * have an extra toggle before each read (either direct reads or buffered reads)
1053  * to sample correct data, so we just add a single CS toggle at the end of the
1054  * register write.
1055  */
ad7380_set_ch(struct ad7380_state * st,unsigned int ch)1056 static int ad7380_set_ch(struct ad7380_state *st, unsigned int ch)
1057 {
1058 	struct spi_transfer xfer = {
1059 		.delay = {
1060 			.value = T_CONVERT_NS,
1061 			.unit = SPI_DELAY_UNIT_NSECS,
1062 		}
1063 	};
1064 	int oversampling_ratio, ret;
1065 
1066 	if (st->ch == ch)
1067 		return 0;
1068 
1069 	ret = ad7380_get_osr(st, &oversampling_ratio);
1070 	if (ret)
1071 		return ret;
1072 
1073 	ret = regmap_update_bits(st->regmap,
1074 				 AD7380_REG_ADDR_CONFIG1,
1075 				 AD7380_CONFIG1_CH,
1076 				 FIELD_PREP(AD7380_CONFIG1_CH, ch));
1077 
1078 	if (ret)
1079 		return ret;
1080 
1081 	st->ch = ch;
1082 
1083 	if (oversampling_ratio > 1)
1084 		xfer.delay.value = T_CONVERT_0_NS +
1085 			T_CONVERT_X_NS * (oversampling_ratio - 1) *
1086 			st->chip_info->num_simult_channels / AD7380_NUM_SDO_LINES;
1087 
1088 	return spi_sync_transfer(st->spi, &xfer, 1);
1089 }
1090 
1091 /**
1092  * ad7380_update_xfers - update the SPI transfers base on the current scan type
1093  * @st:		device instance specific state
1094  * @scan_type:	current scan type
1095  */
ad7380_update_xfers(struct ad7380_state * st,const struct iio_scan_type * scan_type)1096 static int ad7380_update_xfers(struct ad7380_state *st,
1097 				const struct iio_scan_type *scan_type)
1098 {
1099 	struct spi_transfer *xfer = st->seq ? st->seq_xfer : st->normal_xfer;
1100 	unsigned int t_convert = T_CONVERT_NS;
1101 	int oversampling_ratio, ret;
1102 
1103 	/*
1104 	 * In the case of oversampling, conversion time is higher than in normal
1105 	 * mode. Technically T_CONVERT_X_NS is lower for some chips, but we use
1106 	 * the maximum value for simplicity for now.
1107 	 */
1108 	ret = ad7380_get_osr(st, &oversampling_ratio);
1109 	if (ret)
1110 		return ret;
1111 
1112 	if (oversampling_ratio > 1)
1113 		t_convert = T_CONVERT_0_NS + T_CONVERT_X_NS *
1114 			(oversampling_ratio - 1) *
1115 			st->chip_info->num_simult_channels / AD7380_NUM_SDO_LINES;
1116 
1117 	if (st->seq) {
1118 		xfer[0].delay.value = xfer[1].delay.value = t_convert;
1119 		xfer[0].delay.unit = xfer[1].delay.unit = SPI_DELAY_UNIT_NSECS;
1120 		xfer[2].bits_per_word = xfer[3].bits_per_word =
1121 			scan_type->realbits;
1122 		xfer[2].len = xfer[3].len =
1123 			AD7380_SPI_BYTES(scan_type) *
1124 			st->chip_info->num_simult_channels;
1125 		xfer[3].rx_buf = xfer[2].rx_buf + xfer[2].len;
1126 		/* Additional delay required here when oversampling is enabled */
1127 		if (oversampling_ratio > 1)
1128 			xfer[2].delay.value = t_convert;
1129 		else
1130 			xfer[2].delay.value = 0;
1131 		xfer[2].delay.unit = SPI_DELAY_UNIT_NSECS;
1132 	} else {
1133 		xfer[0].delay.value = t_convert;
1134 		xfer[0].delay.unit = SPI_DELAY_UNIT_NSECS;
1135 		xfer[1].bits_per_word = scan_type->realbits;
1136 		xfer[1].len = AD7380_SPI_BYTES(scan_type) *
1137 			st->chip_info->num_simult_channels;
1138 	}
1139 
1140 	return 0;
1141 }
1142 
ad7380_set_sample_freq(struct ad7380_state * st,int val)1143 static int ad7380_set_sample_freq(struct ad7380_state *st, int val)
1144 {
1145 	struct spi_offload_trigger_config config = {
1146 		.type = SPI_OFFLOAD_TRIGGER_PERIODIC,
1147 		.periodic = {
1148 			.frequency_hz = val,
1149 		},
1150 	};
1151 	int ret;
1152 
1153 	ret = spi_offload_trigger_validate(st->offload_trigger, &config);
1154 	if (ret)
1155 		return ret;
1156 
1157 	st->offload_trigger_hz = config.periodic.frequency_hz;
1158 
1159 	return 0;
1160 }
1161 
ad7380_init_offload_msg(struct ad7380_state * st,struct iio_dev * indio_dev)1162 static int ad7380_init_offload_msg(struct ad7380_state *st,
1163 				   struct iio_dev *indio_dev)
1164 {
1165 	struct spi_transfer *xfer = &st->offload_xfer;
1166 	struct device *dev = &st->spi->dev;
1167 	const struct iio_scan_type *scan_type;
1168 	int ret;
1169 
1170 	scan_type = iio_get_current_scan_type(indio_dev,
1171 					      &indio_dev->channels[0]);
1172 	if (IS_ERR(scan_type))
1173 		return PTR_ERR(scan_type);
1174 
1175 	if (st->chip_info->has_mux) {
1176 		int index;
1177 
1178 		ret = iio_active_scan_mask_index(indio_dev);
1179 		if (ret < 0)
1180 			return ret;
1181 
1182 		index = ret;
1183 		if (index == AD7380_SCAN_MASK_SEQ) {
1184 			ret = regmap_set_bits(st->regmap, AD7380_REG_ADDR_CONFIG1,
1185 					      AD7380_CONFIG1_SEQ);
1186 			if (ret)
1187 				return ret;
1188 
1189 			st->seq = true;
1190 		} else {
1191 			ret = ad7380_set_ch(st, index);
1192 			if (ret)
1193 				return ret;
1194 		}
1195 	}
1196 
1197 	xfer->bits_per_word = scan_type->realbits;
1198 	xfer->offload_flags = SPI_OFFLOAD_XFER_RX_STREAM;
1199 	xfer->len = AD7380_SPI_BYTES(scan_type) * st->chip_info->num_simult_channels;
1200 
1201 	spi_message_init_with_transfers(&st->offload_msg, xfer, 1);
1202 	st->offload_msg.offload = st->offload;
1203 
1204 	ret = spi_optimize_message(st->spi, &st->offload_msg);
1205 	if (ret) {
1206 		dev_err(dev, "failed to prepare offload msg, err: %d\n",
1207 			ret);
1208 		return ret;
1209 	}
1210 
1211 	return 0;
1212 }
1213 
ad7380_offload_buffer_postenable(struct iio_dev * indio_dev)1214 static int ad7380_offload_buffer_postenable(struct iio_dev *indio_dev)
1215 {
1216 	struct ad7380_state *st = iio_priv(indio_dev);
1217 	struct spi_offload_trigger_config config = {
1218 		.type = SPI_OFFLOAD_TRIGGER_PERIODIC,
1219 		.periodic = {
1220 			.frequency_hz = st->offload_trigger_hz,
1221 		},
1222 	};
1223 	int ret;
1224 
1225 	ret = ad7380_init_offload_msg(st, indio_dev);
1226 	if (ret)
1227 		return ret;
1228 
1229 	ret = spi_offload_trigger_enable(st->offload, st->offload_trigger, &config);
1230 	if (ret)
1231 		spi_unoptimize_message(&st->offload_msg);
1232 
1233 	return ret;
1234 }
1235 
ad7380_offload_buffer_predisable(struct iio_dev * indio_dev)1236 static int ad7380_offload_buffer_predisable(struct iio_dev *indio_dev)
1237 {
1238 	struct ad7380_state *st = iio_priv(indio_dev);
1239 	int ret;
1240 
1241 	spi_offload_trigger_disable(st->offload, st->offload_trigger);
1242 	spi_unoptimize_message(&st->offload_msg);
1243 
1244 	if (st->seq) {
1245 		ret = regmap_update_bits(st->regmap,
1246 					 AD7380_REG_ADDR_CONFIG1,
1247 					 AD7380_CONFIG1_SEQ,
1248 					 FIELD_PREP(AD7380_CONFIG1_SEQ, 0));
1249 		if (ret)
1250 			return ret;
1251 
1252 		st->seq = false;
1253 	}
1254 
1255 	return 0;
1256 }
1257 
1258 static const struct iio_buffer_setup_ops ad7380_offload_buffer_setup_ops = {
1259 	.postenable = ad7380_offload_buffer_postenable,
1260 	.predisable = ad7380_offload_buffer_predisable,
1261 };
1262 
ad7380_triggered_buffer_preenable(struct iio_dev * indio_dev)1263 static int ad7380_triggered_buffer_preenable(struct iio_dev *indio_dev)
1264 {
1265 	struct ad7380_state *st = iio_priv(indio_dev);
1266 	const struct iio_scan_type *scan_type;
1267 	struct spi_message *msg = &st->normal_msg;
1268 	int ret;
1269 
1270 	/*
1271 	 * Currently, we always read all channels at the same time. The scan_type
1272 	 * is the same for all channels, so we just pass the first channel.
1273 	 */
1274 	scan_type = iio_get_current_scan_type(indio_dev, &indio_dev->channels[0]);
1275 	if (IS_ERR(scan_type))
1276 		return PTR_ERR(scan_type);
1277 
1278 	if (st->chip_info->has_mux) {
1279 		unsigned int index;
1280 
1281 		/*
1282 		 * Depending on the requested scan_mask and current state,
1283 		 * we need to either change CH bit, or enable sequencer mode
1284 		 * to sample correct data.
1285 		 * Sequencer mode is enabled if active mask corresponds to all
1286 		 * IIO channels enabled. Otherwise, CH bit is set.
1287 		 */
1288 		ret = iio_active_scan_mask_index(indio_dev);
1289 		if (ret < 0)
1290 			return ret;
1291 
1292 		index = ret;
1293 		if (index == AD7380_SCAN_MASK_SEQ) {
1294 			ret = regmap_update_bits(st->regmap,
1295 						 AD7380_REG_ADDR_CONFIG1,
1296 						 AD7380_CONFIG1_SEQ,
1297 						 FIELD_PREP(AD7380_CONFIG1_SEQ, 1));
1298 			if (ret)
1299 				return ret;
1300 			msg = &st->seq_msg;
1301 			st->seq = true;
1302 		} else {
1303 			ret = ad7380_set_ch(st, index);
1304 			if (ret)
1305 				return ret;
1306 		}
1307 
1308 	}
1309 
1310 	ret = ad7380_update_xfers(st, scan_type);
1311 	if (ret)
1312 		return ret;
1313 
1314 	return spi_optimize_message(st->spi, msg);
1315 }
1316 
ad7380_triggered_buffer_postdisable(struct iio_dev * indio_dev)1317 static int ad7380_triggered_buffer_postdisable(struct iio_dev *indio_dev)
1318 {
1319 	struct ad7380_state *st = iio_priv(indio_dev);
1320 	struct spi_message *msg = &st->normal_msg;
1321 	int ret;
1322 
1323 	if (st->seq) {
1324 		ret = regmap_update_bits(st->regmap,
1325 					 AD7380_REG_ADDR_CONFIG1,
1326 					 AD7380_CONFIG1_SEQ,
1327 					 FIELD_PREP(AD7380_CONFIG1_SEQ, 0));
1328 		if (ret)
1329 			return ret;
1330 
1331 		msg = &st->seq_msg;
1332 		st->seq = false;
1333 	}
1334 
1335 	spi_unoptimize_message(msg);
1336 
1337 	return 0;
1338 }
1339 
1340 static const struct iio_buffer_setup_ops ad7380_buffer_setup_ops = {
1341 	.preenable = ad7380_triggered_buffer_preenable,
1342 	.postdisable = ad7380_triggered_buffer_postdisable,
1343 };
1344 
ad7380_trigger_handler(int irq,void * p)1345 static irqreturn_t ad7380_trigger_handler(int irq, void *p)
1346 {
1347 	struct iio_poll_func *pf = p;
1348 	struct iio_dev *indio_dev = pf->indio_dev;
1349 	struct ad7380_state *st = iio_priv(indio_dev);
1350 	struct spi_message *msg = st->seq ? &st->seq_msg : &st->normal_msg;
1351 	int ret;
1352 
1353 	ret = spi_sync(st->spi, msg);
1354 	if (ret)
1355 		goto out;
1356 
1357 	iio_push_to_buffers_with_ts(indio_dev, &st->scan_data, sizeof(st->scan_data),
1358 				    pf->timestamp);
1359 
1360 out:
1361 	iio_trigger_notify_done(indio_dev->trig);
1362 
1363 	return IRQ_HANDLED;
1364 }
1365 
ad7380_read_direct(struct ad7380_state * st,unsigned int scan_index,const struct iio_scan_type * scan_type,int * val)1366 static int ad7380_read_direct(struct ad7380_state *st, unsigned int scan_index,
1367 			      const struct iio_scan_type *scan_type, int *val)
1368 {
1369 	unsigned int index = scan_index;
1370 	int ret;
1371 
1372 	if (st->chip_info->has_mux) {
1373 		unsigned int ch = 0;
1374 
1375 		if (index >= st->chip_info->num_simult_channels) {
1376 			index -= st->chip_info->num_simult_channels;
1377 			ch = 1;
1378 		}
1379 
1380 		ret = ad7380_set_ch(st, ch);
1381 		if (ret)
1382 			return ret;
1383 	}
1384 
1385 	ret = ad7380_update_xfers(st, scan_type);
1386 	if (ret)
1387 		return ret;
1388 
1389 	ret = spi_sync(st->spi, &st->normal_msg);
1390 	if (ret < 0)
1391 		return ret;
1392 
1393 	if (scan_type->realbits > 16) {
1394 		if (scan_type->sign == 's')
1395 			*val = sign_extend32(*(u32 *)(st->scan_data + 4 * index),
1396 					     scan_type->realbits - 1);
1397 		else
1398 			*val = *(u32 *)(st->scan_data + 4 * index) &
1399 				GENMASK(scan_type->realbits - 1, 0);
1400 	} else {
1401 		if (scan_type->sign == 's')
1402 			*val = sign_extend32(*(u16 *)(st->scan_data + 2 * index),
1403 					     scan_type->realbits - 1);
1404 		else
1405 			*val = *(u16 *)(st->scan_data + 2 * index) &
1406 				GENMASK(scan_type->realbits - 1, 0);
1407 	}
1408 
1409 	return IIO_VAL_INT;
1410 }
1411 
ad7380_read_raw(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,int * val,int * val2,long info)1412 static int ad7380_read_raw(struct iio_dev *indio_dev,
1413 			   struct iio_chan_spec const *chan,
1414 			   int *val, int *val2, long info)
1415 {
1416 	struct ad7380_state *st = iio_priv(indio_dev);
1417 	const struct iio_scan_type *scan_type;
1418 	int ret;
1419 
1420 	scan_type = iio_get_current_scan_type(indio_dev, chan);
1421 
1422 	if (IS_ERR(scan_type))
1423 		return PTR_ERR(scan_type);
1424 
1425 	switch (info) {
1426 	case IIO_CHAN_INFO_RAW:
1427 		if (!iio_device_claim_direct(indio_dev))
1428 			return -EBUSY;
1429 
1430 		ret = ad7380_read_direct(st, chan->scan_index,
1431 					 scan_type, val);
1432 
1433 		iio_device_release_direct(indio_dev);
1434 
1435 		return ret;
1436 	case IIO_CHAN_INFO_SCALE:
1437 		/*
1438 		 * According to the datasheet, the LSB size is:
1439 		 *    * (2 × VREF) / 2^N, for differential chips
1440 		 *    * VREF / 2^N, for pseudo-differential chips
1441 		 * where N is the ADC resolution (i.e realbits)
1442 		 *
1443 		 * The gain is stored as a fraction of 1000 and, as we need to
1444 		 * divide vref_mv by the gain, we invert the gain/1000 fraction.
1445 		 */
1446 		if (st->chip_info->has_hardware_gain)
1447 			*val = mult_frac(st->vref_mv, MILLI,
1448 					 st->gain_milli[chan->scan_index]);
1449 		else
1450 			*val = st->vref_mv;
1451 		*val2 = scan_type->realbits - chan->differential;
1452 
1453 		return IIO_VAL_FRACTIONAL_LOG2;
1454 	case IIO_CHAN_INFO_OFFSET:
1455 		/*
1456 		 * According to IIO ABI, offset is applied before scale,
1457 		 * so offset is: vcm_mv / scale
1458 		 */
1459 		*val = st->vcm_mv[chan->channel] * (1 << scan_type->realbits)
1460 			/ st->vref_mv;
1461 
1462 		return IIO_VAL_INT;
1463 	case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
1464 		if (!iio_device_claim_direct(indio_dev))
1465 			return -EBUSY;
1466 
1467 		ret = ad7380_get_osr(st, val);
1468 
1469 		iio_device_release_direct(indio_dev);
1470 
1471 		if (ret)
1472 			return ret;
1473 
1474 		return IIO_VAL_INT;
1475 	case IIO_CHAN_INFO_SAMP_FREQ:
1476 		*val = st->offload_trigger_hz;
1477 		return IIO_VAL_INT;
1478 	default:
1479 		return -EINVAL;
1480 	}
1481 }
1482 
ad7380_read_avail(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,const int ** vals,int * type,int * length,long mask)1483 static int ad7380_read_avail(struct iio_dev *indio_dev,
1484 			     struct iio_chan_spec const *chan,
1485 			     const int **vals, int *type, int *length,
1486 			     long mask)
1487 {
1488 	struct ad7380_state *st = iio_priv(indio_dev);
1489 
1490 	switch (mask) {
1491 	case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
1492 		*vals = ad7380_oversampling_ratios;
1493 		*length = ARRAY_SIZE(ad7380_oversampling_ratios);
1494 		*type = IIO_VAL_INT;
1495 
1496 		return IIO_AVAIL_LIST;
1497 	case IIO_CHAN_INFO_SAMP_FREQ:
1498 		*vals = st->sample_freq_range;
1499 		*type = IIO_VAL_INT;
1500 		return IIO_AVAIL_RANGE;
1501 	default:
1502 		return -EINVAL;
1503 	}
1504 }
1505 
1506 /**
1507  * ad7380_osr_to_regval - convert ratio to OSR register value
1508  * @ratio: ratio to check
1509  *
1510  * Check if ratio is present in the list of available ratios and return the
1511  * corresponding value that needs to be written to the register to select that
1512  * ratio.
1513  *
1514  * Returns: register value (0 to 7) or -EINVAL if there is not an exact match
1515  */
ad7380_osr_to_regval(int ratio)1516 static int ad7380_osr_to_regval(int ratio)
1517 {
1518 	int i;
1519 
1520 	for (i = 0; i < ARRAY_SIZE(ad7380_oversampling_ratios); i++) {
1521 		if (ratio == ad7380_oversampling_ratios[i])
1522 			return i;
1523 	}
1524 
1525 	return -EINVAL;
1526 }
1527 
ad7380_set_oversampling_ratio(struct ad7380_state * st,int val)1528 static int ad7380_set_oversampling_ratio(struct ad7380_state *st, int val)
1529 {
1530 	int ret, osr, boost;
1531 
1532 	osr = ad7380_osr_to_regval(val);
1533 	if (osr < 0)
1534 		return osr;
1535 
1536 	/* always enable resolution boost when oversampling is enabled */
1537 	boost = osr > 0 ? 1 : 0;
1538 
1539 	ret = regmap_update_bits(st->regmap,
1540 				 AD7380_REG_ADDR_CONFIG1,
1541 				 AD7380_CONFIG1_OSR | AD7380_CONFIG1_RES,
1542 				 FIELD_PREP(AD7380_CONFIG1_OSR, osr) |
1543 				 FIELD_PREP(AD7380_CONFIG1_RES, boost));
1544 
1545 	if (ret)
1546 		return ret;
1547 
1548 	st->resolution_boost_enabled = boost;
1549 
1550 	/*
1551 	 * Perform a soft reset. This will flush the oversampling
1552 	 * block and FIFO but will maintain the content of the
1553 	 * configurable registers.
1554 	 */
1555 	ret = regmap_update_bits(st->regmap,
1556 				 AD7380_REG_ADDR_CONFIG2,
1557 				 AD7380_CONFIG2_RESET,
1558 				 FIELD_PREP(AD7380_CONFIG2_RESET,
1559 					    AD7380_CONFIG2_RESET_SOFT));
1560 	return ret;
1561 }
ad7380_write_raw(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,int val,int val2,long mask)1562 static int ad7380_write_raw(struct iio_dev *indio_dev,
1563 			    struct iio_chan_spec const *chan, int val,
1564 			    int val2, long mask)
1565 {
1566 	struct ad7380_state *st = iio_priv(indio_dev);
1567 	int ret;
1568 
1569 	switch (mask) {
1570 	case IIO_CHAN_INFO_SAMP_FREQ:
1571 		if (val < 1)
1572 			return -EINVAL;
1573 		return ad7380_set_sample_freq(st, val);
1574 	case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
1575 		if (!iio_device_claim_direct(indio_dev))
1576 			return -EBUSY;
1577 
1578 		ret = ad7380_set_oversampling_ratio(st, val);
1579 
1580 		iio_device_release_direct(indio_dev);
1581 
1582 		return ret;
1583 	default:
1584 		return -EINVAL;
1585 	}
1586 }
1587 
ad7380_get_current_scan_type(const struct iio_dev * indio_dev,const struct iio_chan_spec * chan)1588 static int ad7380_get_current_scan_type(const struct iio_dev *indio_dev,
1589 					const struct iio_chan_spec *chan)
1590 {
1591 	struct ad7380_state *st = iio_priv(indio_dev);
1592 
1593 	return st->resolution_boost_enabled ? AD7380_SCAN_TYPE_RESOLUTION_BOOST
1594 					    : AD7380_SCAN_TYPE_NORMAL;
1595 }
1596 
ad7380_read_event_config(struct iio_dev * indio_dev,const struct iio_chan_spec * chan,enum iio_event_type type,enum iio_event_direction dir)1597 static int ad7380_read_event_config(struct iio_dev *indio_dev,
1598 				    const struct iio_chan_spec *chan,
1599 				    enum iio_event_type type,
1600 				    enum iio_event_direction dir)
1601 {
1602 	struct ad7380_state *st = iio_priv(indio_dev);
1603 	int tmp, ret;
1604 
1605 	if (!iio_device_claim_direct(indio_dev))
1606 		return -EBUSY;
1607 
1608 	ret = regmap_read(st->regmap, AD7380_REG_ADDR_CONFIG1, &tmp);
1609 
1610 	iio_device_release_direct(indio_dev);
1611 
1612 	if (ret)
1613 		return ret;
1614 
1615 	return FIELD_GET(AD7380_CONFIG1_ALERTEN, tmp);
1616 }
1617 
ad7380_write_event_config(struct iio_dev * indio_dev,const struct iio_chan_spec * chan,enum iio_event_type type,enum iio_event_direction dir,bool state)1618 static int ad7380_write_event_config(struct iio_dev *indio_dev,
1619 				     const struct iio_chan_spec *chan,
1620 				     enum iio_event_type type,
1621 				     enum iio_event_direction dir,
1622 				     bool state)
1623 {
1624 	struct ad7380_state *st = iio_priv(indio_dev);
1625 	int ret;
1626 
1627 	if (!iio_device_claim_direct(indio_dev))
1628 		return -EBUSY;
1629 
1630 	ret = regmap_update_bits(st->regmap,
1631 				 AD7380_REG_ADDR_CONFIG1,
1632 				 AD7380_CONFIG1_ALERTEN,
1633 				 FIELD_PREP(AD7380_CONFIG1_ALERTEN, state));
1634 
1635 	iio_device_release_direct(indio_dev);
1636 
1637 	return ret;
1638 }
1639 
ad7380_get_alert_th(struct iio_dev * indio_dev,const struct iio_chan_spec * chan,enum iio_event_direction dir,int * val)1640 static int ad7380_get_alert_th(struct iio_dev *indio_dev,
1641 			       const struct iio_chan_spec *chan,
1642 			       enum iio_event_direction dir,
1643 			       int *val)
1644 {
1645 	struct ad7380_state *st = iio_priv(indio_dev);
1646 	const struct iio_scan_type *scan_type;
1647 	int ret, tmp, shift;
1648 
1649 	scan_type = iio_get_current_scan_type(indio_dev, chan);
1650 	if (IS_ERR(scan_type))
1651 		return PTR_ERR(scan_type);
1652 
1653 	/*
1654 	 * The register value is 12-bits and is compared to the most significant
1655 	 * bits of raw value, therefore a shift is required to convert this to
1656 	 * the same scale as the raw value.
1657 	 */
1658 	shift = scan_type->realbits - 12;
1659 
1660 	switch (dir) {
1661 	case IIO_EV_DIR_RISING:
1662 		ret = regmap_read(st->regmap,
1663 				  AD7380_REG_ADDR_ALERT_HIGH_TH,
1664 				  &tmp);
1665 		if (ret)
1666 			return ret;
1667 
1668 		*val = FIELD_GET(AD7380_ALERT_HIGH_TH, tmp) << shift;
1669 		return IIO_VAL_INT;
1670 	case IIO_EV_DIR_FALLING:
1671 		ret = regmap_read(st->regmap,
1672 				  AD7380_REG_ADDR_ALERT_LOW_TH,
1673 				  &tmp);
1674 		if (ret)
1675 			return ret;
1676 
1677 		*val = FIELD_GET(AD7380_ALERT_LOW_TH, tmp) << shift;
1678 		return IIO_VAL_INT;
1679 	default:
1680 		return -EINVAL;
1681 	}
1682 }
1683 
ad7380_read_event_value(struct iio_dev * indio_dev,const struct iio_chan_spec * chan,enum iio_event_type type,enum iio_event_direction dir,enum iio_event_info info,int * val,int * val2)1684 static int ad7380_read_event_value(struct iio_dev *indio_dev,
1685 				   const struct iio_chan_spec *chan,
1686 				   enum iio_event_type type,
1687 				   enum iio_event_direction dir,
1688 				   enum iio_event_info info,
1689 				   int *val, int *val2)
1690 {
1691 	int ret;
1692 
1693 	switch (info) {
1694 	case IIO_EV_INFO_VALUE:
1695 		if (!iio_device_claim_direct(indio_dev))
1696 			return -EBUSY;
1697 
1698 		ret = ad7380_get_alert_th(indio_dev, chan, dir, val);
1699 
1700 		iio_device_release_direct(indio_dev);
1701 		return ret;
1702 	default:
1703 		return -EINVAL;
1704 	}
1705 }
1706 
ad7380_set_alert_th(struct iio_dev * indio_dev,const struct iio_chan_spec * chan,enum iio_event_direction dir,int val)1707 static int ad7380_set_alert_th(struct iio_dev *indio_dev,
1708 			       const struct iio_chan_spec *chan,
1709 			       enum iio_event_direction dir,
1710 			       int val)
1711 {
1712 	struct ad7380_state *st = iio_priv(indio_dev);
1713 	const struct iio_scan_type *scan_type;
1714 	u16 th;
1715 
1716 	/*
1717 	 * According to the datasheet,
1718 	 * AD7380_REG_ADDR_ALERT_HIGH_TH[11:0] are the 12 MSB of the
1719 	 * 16-bits internal alert high register. LSB are set to 0xf.
1720 	 * AD7380_REG_ADDR_ALERT_LOW_TH[11:0] are the 12 MSB of the
1721 	 * 16 bits internal alert low register. LSB are set to 0x0.
1722 	 *
1723 	 * When alert is enabled the conversion from the adc is compared
1724 	 * immediately to the alert high/low thresholds, before any
1725 	 * oversampling. This means that the thresholds are the same for
1726 	 * normal mode and oversampling mode.
1727 	 */
1728 
1729 	/* Extract the 12 MSB of val */
1730 	scan_type = iio_get_current_scan_type(indio_dev, chan);
1731 	if (IS_ERR(scan_type))
1732 		return PTR_ERR(scan_type);
1733 
1734 	th = val >> (scan_type->realbits - 12);
1735 
1736 	switch (dir) {
1737 	case IIO_EV_DIR_RISING:
1738 		return regmap_write(st->regmap,
1739 				    AD7380_REG_ADDR_ALERT_HIGH_TH,
1740 				    th);
1741 	case IIO_EV_DIR_FALLING:
1742 		return regmap_write(st->regmap,
1743 				    AD7380_REG_ADDR_ALERT_LOW_TH,
1744 				    th);
1745 	default:
1746 		return -EINVAL;
1747 	}
1748 }
1749 
ad7380_write_event_value(struct iio_dev * indio_dev,const struct iio_chan_spec * chan,enum iio_event_type type,enum iio_event_direction dir,enum iio_event_info info,int val,int val2)1750 static int ad7380_write_event_value(struct iio_dev *indio_dev,
1751 				    const struct iio_chan_spec *chan,
1752 				    enum iio_event_type type,
1753 				    enum iio_event_direction dir,
1754 				    enum iio_event_info info,
1755 				    int val, int val2)
1756 {
1757 	int ret;
1758 
1759 	switch (info) {
1760 	case IIO_EV_INFO_VALUE:
1761 		if (!iio_device_claim_direct(indio_dev))
1762 			return -EBUSY;
1763 
1764 		ret = ad7380_set_alert_th(indio_dev, chan, dir, val);
1765 
1766 		iio_device_release_direct(indio_dev);
1767 		return ret;
1768 	default:
1769 		return -EINVAL;
1770 	}
1771 }
1772 
1773 static const struct iio_info ad7380_info = {
1774 	.read_raw = &ad7380_read_raw,
1775 	.read_avail = &ad7380_read_avail,
1776 	.write_raw = &ad7380_write_raw,
1777 	.get_current_scan_type = &ad7380_get_current_scan_type,
1778 	.debugfs_reg_access = &ad7380_debugfs_reg_access,
1779 	.read_event_config = &ad7380_read_event_config,
1780 	.write_event_config = &ad7380_write_event_config,
1781 	.read_event_value = &ad7380_read_event_value,
1782 	.write_event_value = &ad7380_write_event_value,
1783 };
1784 
ad7380_init(struct ad7380_state * st,bool external_ref_en)1785 static int ad7380_init(struct ad7380_state *st, bool external_ref_en)
1786 {
1787 	int ret;
1788 
1789 	/* perform hard reset */
1790 	ret = regmap_update_bits(st->regmap, AD7380_REG_ADDR_CONFIG2,
1791 				 AD7380_CONFIG2_RESET,
1792 				 FIELD_PREP(AD7380_CONFIG2_RESET,
1793 					    AD7380_CONFIG2_RESET_HARD));
1794 	if (ret < 0)
1795 		return ret;
1796 
1797 	if (external_ref_en) {
1798 		/* select external reference voltage */
1799 		ret = regmap_set_bits(st->regmap, AD7380_REG_ADDR_CONFIG1,
1800 				      AD7380_CONFIG1_REFSEL);
1801 		if (ret < 0)
1802 			return ret;
1803 	}
1804 
1805 	/* This is the default value after reset. */
1806 	st->ch = 0;
1807 	st->seq = false;
1808 
1809 	/* SPI 1-wire mode */
1810 	return regmap_update_bits(st->regmap, AD7380_REG_ADDR_CONFIG2,
1811 				  AD7380_CONFIG2_SDO,
1812 				  FIELD_PREP(AD7380_CONFIG2_SDO,
1813 					     AD7380_NUM_SDO_LINES));
1814 }
1815 
ad7380_probe_spi_offload(struct iio_dev * indio_dev,struct ad7380_state * st)1816 static int ad7380_probe_spi_offload(struct iio_dev *indio_dev,
1817 				    struct ad7380_state *st)
1818 {
1819 	struct spi_device *spi = st->spi;
1820 	struct device *dev = &spi->dev;
1821 	struct dma_chan *rx_dma;
1822 	int sample_rate, ret;
1823 
1824 	indio_dev->setup_ops = &ad7380_offload_buffer_setup_ops;
1825 	indio_dev->channels = st->chip_info->offload_channels;
1826 	/* Just removing the timestamp channel. */
1827 	indio_dev->num_channels--;
1828 
1829 	st->offload_trigger = devm_spi_offload_trigger_get(dev, st->offload,
1830 		SPI_OFFLOAD_TRIGGER_PERIODIC);
1831 	if (IS_ERR(st->offload_trigger))
1832 		return dev_err_probe(dev, PTR_ERR(st->offload_trigger),
1833 				     "failed to get offload trigger\n");
1834 
1835 	sample_rate = st->chip_info->max_conversion_rate_hz *
1836 		      AD7380_NUM_SDO_LINES / st->chip_info->num_simult_channels;
1837 
1838 	st->sample_freq_range[0] = 1; /* min */
1839 	st->sample_freq_range[1] = 1; /* step */
1840 	st->sample_freq_range[2] = sample_rate; /* max */
1841 
1842 	/*
1843 	 * Starting with a quite low frequency, to allow oversampling x32,
1844 	 * user is then reponsible to adjust the frequency for the specific case.
1845 	 */
1846 	ret = ad7380_set_sample_freq(st, sample_rate / 32);
1847 	if (ret)
1848 		return ret;
1849 
1850 	rx_dma = devm_spi_offload_rx_stream_request_dma_chan(dev, st->offload);
1851 	if (IS_ERR(rx_dma))
1852 		return dev_err_probe(dev, PTR_ERR(rx_dma),
1853 				     "failed to get offload RX DMA\n");
1854 
1855 	ret = devm_iio_dmaengine_buffer_setup_with_handle(dev, indio_dev,
1856 		rx_dma, IIO_BUFFER_DIRECTION_IN);
1857 	if (ret)
1858 		return dev_err_probe(dev, ret, "cannot setup dma buffer\n");
1859 
1860 	return 0;
1861 }
1862 
ad7380_probe(struct spi_device * spi)1863 static int ad7380_probe(struct spi_device *spi)
1864 {
1865 	struct device *dev = &spi->dev;
1866 	struct iio_dev *indio_dev;
1867 	struct ad7380_state *st;
1868 	bool external_ref_en;
1869 	int ret, i;
1870 
1871 	indio_dev = devm_iio_device_alloc(dev, sizeof(*st));
1872 	if (!indio_dev)
1873 		return -ENOMEM;
1874 
1875 	st = iio_priv(indio_dev);
1876 	st->spi = spi;
1877 	st->chip_info = spi_get_device_match_data(spi);
1878 	if (!st->chip_info)
1879 		return dev_err_probe(dev, -EINVAL, "missing match data\n");
1880 
1881 	ret = devm_regulator_bulk_get_enable(dev, st->chip_info->num_supplies,
1882 					     st->chip_info->supplies);
1883 
1884 	if (ret)
1885 		return dev_err_probe(dev, ret,
1886 				     "Failed to enable power supplies\n");
1887 	fsleep(T_POWERUP_US);
1888 
1889 	if (st->chip_info->internal_ref_only) {
1890 		/*
1891 		 * ADAQ chips use fixed internal reference but still
1892 		 * require a specific reference supply to power it.
1893 		 * "refin" is already enabled with other power supplies
1894 		 * in bulk_get_enable().
1895 		 */
1896 
1897 		st->vref_mv = st->chip_info->internal_ref_mv;
1898 
1899 		/* these chips don't have a register bit for this */
1900 		external_ref_en = false;
1901 	} else if (st->chip_info->external_ref_only) {
1902 		ret = devm_regulator_get_enable_read_voltage(dev, "refin");
1903 		if (ret < 0)
1904 			return dev_err_probe(dev, ret,
1905 					     "Failed to get refin regulator\n");
1906 
1907 		st->vref_mv = ret / 1000;
1908 
1909 		/* these chips don't have a register bit for this */
1910 		external_ref_en = false;
1911 	} else {
1912 		/*
1913 		 * If there is no REFIO supply, then it means that we are using
1914 		 * the internal reference, otherwise REFIO is reference voltage.
1915 		 */
1916 		ret = devm_regulator_get_enable_read_voltage(dev, "refio");
1917 		if (ret < 0 && ret != -ENODEV)
1918 			return dev_err_probe(dev, ret,
1919 					     "Failed to get refio regulator\n");
1920 
1921 		external_ref_en = ret != -ENODEV;
1922 		st->vref_mv = external_ref_en ? ret / 1000
1923 					      : st->chip_info->internal_ref_mv;
1924 	}
1925 
1926 	if (st->chip_info->num_vcm_supplies > ARRAY_SIZE(st->vcm_mv))
1927 		return dev_err_probe(dev, -EINVAL,
1928 				     "invalid number of VCM supplies\n");
1929 
1930 	/*
1931 	 * pseudo-differential chips have common mode supplies for the negative
1932 	 * input pin.
1933 	 */
1934 	for (i = 0; i < st->chip_info->num_vcm_supplies; i++) {
1935 		const char *vcm = st->chip_info->vcm_supplies[i];
1936 
1937 		ret = devm_regulator_get_enable_read_voltage(dev, vcm);
1938 		if (ret < 0)
1939 			return dev_err_probe(dev, ret,
1940 					     "Failed to get %s regulator\n",
1941 					     vcm);
1942 
1943 		st->vcm_mv[i] = ret / 1000;
1944 	}
1945 
1946 	for (i = 0; i < MAX_NUM_CHANNELS; i++)
1947 		st->gain_milli[i] = AD7380_DEFAULT_GAIN_MILLI;
1948 
1949 	if (st->chip_info->has_hardware_gain) {
1950 		device_for_each_child_node_scoped(dev, node) {
1951 			unsigned int channel;
1952 			int gain_idx;
1953 			u16 gain;
1954 
1955 			ret = fwnode_property_read_u32(node, "reg", &channel);
1956 			if (ret)
1957 				return dev_err_probe(dev, ret,
1958 						     "Failed to read reg property\n");
1959 
1960 			if (channel >= st->chip_info->num_channels - 1)
1961 				return dev_err_probe(dev, -EINVAL,
1962 						     "Invalid channel number %i\n",
1963 						     channel);
1964 
1965 			ret = fwnode_property_read_u16(node, "adi,gain-milli",
1966 						       &gain);
1967 			if (ret && ret != -EINVAL)
1968 				return dev_err_probe(dev, ret,
1969 						     "Failed to read gain for channel %i\n",
1970 						     channel);
1971 			if (ret != -EINVAL) {
1972 				/*
1973 				 * Match gain value from dt to one of supported
1974 				 * gains
1975 				 */
1976 				gain_idx = find_closest(gain, ad7380_gains,
1977 							ARRAY_SIZE(ad7380_gains));
1978 				st->gain_milli[channel] = ad7380_gains[gain_idx];
1979 			}
1980 		}
1981 	}
1982 
1983 	st->regmap = devm_regmap_init(dev, NULL, st, &ad7380_regmap_config);
1984 	if (IS_ERR(st->regmap))
1985 		return dev_err_probe(dev, PTR_ERR(st->regmap),
1986 				     "failed to allocate register map\n");
1987 
1988 	/*
1989 	 * Setting up xfer structures for both normal and sequence mode. These
1990 	 * struct are used for both direct read and triggered buffer. Additional
1991 	 * fields will be set up in ad7380_update_xfers() based on the current
1992 	 * state of the driver at the time of the read.
1993 	 */
1994 
1995 	/*
1996 	 * In normal mode a read is composed of two steps:
1997 	 *   - first, toggle CS (no data xfer) to trigger a conversion
1998 	 *   - then, read data
1999 	 */
2000 	st->normal_xfer[0].cs_change = 1;
2001 	st->normal_xfer[0].cs_change_delay.value = st->chip_info->timing_specs->t_csh_ns;
2002 	st->normal_xfer[0].cs_change_delay.unit = SPI_DELAY_UNIT_NSECS;
2003 	st->normal_xfer[1].rx_buf = st->scan_data;
2004 
2005 	spi_message_init_with_transfers(&st->normal_msg, st->normal_xfer,
2006 					ARRAY_SIZE(st->normal_xfer));
2007 	/*
2008 	 * In sequencer mode a read is composed of four steps:
2009 	 *   - CS toggle (no data xfer) to get the right point in the sequence
2010 	 *   - CS toggle (no data xfer) to trigger a conversion of AinX0 and
2011 	 *   acquisition of AinX1
2012 	 *   - 2 data reads, to read AinX0 and AinX1
2013 	 */
2014 	st->seq_xfer[0].cs_change = 1;
2015 	st->seq_xfer[0].cs_change_delay.value = st->chip_info->timing_specs->t_csh_ns;
2016 	st->seq_xfer[0].cs_change_delay.unit = SPI_DELAY_UNIT_NSECS;
2017 	st->seq_xfer[1].cs_change = 1;
2018 	st->seq_xfer[1].cs_change_delay.value = st->chip_info->timing_specs->t_csh_ns;
2019 	st->seq_xfer[1].cs_change_delay.unit = SPI_DELAY_UNIT_NSECS;
2020 
2021 	st->seq_xfer[2].rx_buf = st->scan_data;
2022 	st->seq_xfer[2].cs_change = 1;
2023 	st->seq_xfer[2].cs_change_delay.value = st->chip_info->timing_specs->t_csh_ns;
2024 	st->seq_xfer[2].cs_change_delay.unit = SPI_DELAY_UNIT_NSECS;
2025 
2026 	spi_message_init_with_transfers(&st->seq_msg, st->seq_xfer,
2027 					ARRAY_SIZE(st->seq_xfer));
2028 
2029 	indio_dev->channels = st->chip_info->channels;
2030 	indio_dev->num_channels = st->chip_info->num_channels;
2031 	indio_dev->name = st->chip_info->name;
2032 	indio_dev->info = &ad7380_info;
2033 	indio_dev->modes = INDIO_DIRECT_MODE;
2034 	indio_dev->available_scan_masks = st->chip_info->available_scan_masks;
2035 
2036 	st->offload = devm_spi_offload_get(dev, spi, &ad7380_offload_config);
2037 	ret = PTR_ERR_OR_ZERO(st->offload);
2038 	if (ret && ret != -ENODEV)
2039 		return dev_err_probe(dev, ret, "failed to get offload\n");
2040 
2041 	/* If no SPI offload, fall back to low speed usage. */
2042 	if (ret == -ENODEV) {
2043 		ret = devm_iio_triggered_buffer_setup(dev, indio_dev,
2044 						      iio_pollfunc_store_time,
2045 						      ad7380_trigger_handler,
2046 						      &ad7380_buffer_setup_ops);
2047 		if (ret)
2048 			return ret;
2049 	} else {
2050 		ret = ad7380_probe_spi_offload(indio_dev, st);
2051 		if (ret)
2052 			return ret;
2053 	}
2054 
2055 	ret = ad7380_init(st, external_ref_en);
2056 	if (ret)
2057 		return ret;
2058 
2059 	return devm_iio_device_register(dev, indio_dev);
2060 }
2061 
2062 static const struct of_device_id ad7380_of_match_table[] = {
2063 	{ .compatible = "adi,ad7380", .data = &ad7380_chip_info },
2064 	{ .compatible = "adi,ad7381", .data = &ad7381_chip_info },
2065 	{ .compatible = "adi,ad7383", .data = &ad7383_chip_info },
2066 	{ .compatible = "adi,ad7384", .data = &ad7384_chip_info },
2067 	{ .compatible = "adi,ad7386", .data = &ad7386_chip_info },
2068 	{ .compatible = "adi,ad7387", .data = &ad7387_chip_info },
2069 	{ .compatible = "adi,ad7388", .data = &ad7388_chip_info },
2070 	{ .compatible = "adi,ad7380-4", .data = &ad7380_4_chip_info },
2071 	{ .compatible = "adi,ad7381-4", .data = &ad7381_4_chip_info },
2072 	{ .compatible = "adi,ad7383-4", .data = &ad7383_4_chip_info },
2073 	{ .compatible = "adi,ad7384-4", .data = &ad7384_4_chip_info },
2074 	{ .compatible = "adi,ad7386-4", .data = &ad7386_4_chip_info },
2075 	{ .compatible = "adi,ad7387-4", .data = &ad7387_4_chip_info },
2076 	{ .compatible = "adi,ad7388-4", .data = &ad7388_4_chip_info },
2077 	{ .compatible = "adi,ad7389-4", .data = &ad7389_4_chip_info },
2078 	{ .compatible = "adi,adaq4370-4", .data = &adaq4370_4_chip_info },
2079 	{ .compatible = "adi,adaq4380-4", .data = &adaq4380_4_chip_info },
2080 	{ .compatible = "adi,adaq4381-4", .data = &adaq4381_4_chip_info },
2081 	{ }
2082 };
2083 
2084 static const struct spi_device_id ad7380_id_table[] = {
2085 	{ "ad7380", (kernel_ulong_t)&ad7380_chip_info },
2086 	{ "ad7381", (kernel_ulong_t)&ad7381_chip_info },
2087 	{ "ad7383", (kernel_ulong_t)&ad7383_chip_info },
2088 	{ "ad7384", (kernel_ulong_t)&ad7384_chip_info },
2089 	{ "ad7386", (kernel_ulong_t)&ad7386_chip_info },
2090 	{ "ad7387", (kernel_ulong_t)&ad7387_chip_info },
2091 	{ "ad7388", (kernel_ulong_t)&ad7388_chip_info },
2092 	{ "ad7380-4", (kernel_ulong_t)&ad7380_4_chip_info },
2093 	{ "ad7381-4", (kernel_ulong_t)&ad7381_4_chip_info },
2094 	{ "ad7383-4", (kernel_ulong_t)&ad7383_4_chip_info },
2095 	{ "ad7384-4", (kernel_ulong_t)&ad7384_4_chip_info },
2096 	{ "ad7386-4", (kernel_ulong_t)&ad7386_4_chip_info },
2097 	{ "ad7387-4", (kernel_ulong_t)&ad7387_4_chip_info },
2098 	{ "ad7388-4", (kernel_ulong_t)&ad7388_4_chip_info },
2099 	{ "ad7389-4", (kernel_ulong_t)&ad7389_4_chip_info },
2100 	{ "adaq4370-4", (kernel_ulong_t)&adaq4370_4_chip_info },
2101 	{ "adaq4380-4", (kernel_ulong_t)&adaq4380_4_chip_info },
2102 	{ "adaq4381-4", (kernel_ulong_t)&adaq4381_4_chip_info },
2103 	{ }
2104 };
2105 MODULE_DEVICE_TABLE(spi, ad7380_id_table);
2106 
2107 static struct spi_driver ad7380_driver = {
2108 	.driver = {
2109 		.name = "ad7380",
2110 		.of_match_table = ad7380_of_match_table,
2111 	},
2112 	.probe = ad7380_probe,
2113 	.id_table = ad7380_id_table,
2114 };
2115 module_spi_driver(ad7380_driver);
2116 
2117 MODULE_AUTHOR("Stefan Popa <stefan.popa@analog.com>");
2118 MODULE_DESCRIPTION("Analog Devices AD738x ADC driver");
2119 MODULE_LICENSE("GPL");
2120 MODULE_IMPORT_NS("IIO_DMAENGINE_BUFFER");
2121