xref: /linux/drivers/acpi/ec.c (revision 9a199794fd789c783d34281ac1acde011a7affa8)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  ec.c - ACPI Embedded Controller Driver (v3)
4  *
5  *  Copyright (C) 2001-2015 Intel Corporation
6  *    Author: 2014, 2015 Lv Zheng <lv.zheng@intel.com>
7  *            2006, 2007 Alexey Starikovskiy <alexey.y.starikovskiy@intel.com>
8  *            2006       Denis Sadykov <denis.m.sadykov@intel.com>
9  *            2004       Luming Yu <luming.yu@intel.com>
10  *            2001, 2002 Andy Grover <andrew.grover@intel.com>
11  *            2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
12  *  Copyright (C) 2008      Alexey Starikovskiy <astarikovskiy@suse.de>
13  */
14 
15 /* Uncomment next line to get verbose printout */
16 /* #define DEBUG */
17 #define pr_fmt(fmt) "ACPI: EC: " fmt
18 
19 #include <linux/kernel.h>
20 #include <linux/module.h>
21 #include <linux/init.h>
22 #include <linux/types.h>
23 #include <linux/delay.h>
24 #include <linux/interrupt.h>
25 #include <linux/list.h>
26 #include <linux/platform_device.h>
27 #include <linux/printk.h>
28 #include <linux/spinlock.h>
29 #include <linux/slab.h>
30 #include <linux/string.h>
31 #include <linux/suspend.h>
32 #include <linux/acpi.h>
33 #include <linux/dmi.h>
34 #include <asm/io.h>
35 
36 #include "internal.h"
37 
38 #define ACPI_EC_CLASS			"embedded_controller"
39 #define ACPI_EC_DEVICE_NAME		"Embedded Controller"
40 
41 /* EC status register */
42 #define ACPI_EC_FLAG_OBF	0x01	/* Output buffer full */
43 #define ACPI_EC_FLAG_IBF	0x02	/* Input buffer full */
44 #define ACPI_EC_FLAG_CMD	0x08	/* Input buffer contains a command */
45 #define ACPI_EC_FLAG_BURST	0x10	/* burst mode */
46 #define ACPI_EC_FLAG_SCI	0x20	/* EC-SCI occurred */
47 
48 /*
49  * The SCI_EVT clearing timing is not defined by the ACPI specification.
50  * This leads to lots of practical timing issues for the host EC driver.
51  * The following variations are defined (from the target EC firmware's
52  * perspective):
53  * STATUS: After indicating SCI_EVT edge triggered IRQ to the host, the
54  *         target can clear SCI_EVT at any time so long as the host can see
55  *         the indication by reading the status register (EC_SC). So the
56  *         host should re-check SCI_EVT after the first time the SCI_EVT
57  *         indication is seen, which is the same time the query request
58  *         (QR_EC) is written to the command register (EC_CMD). SCI_EVT set
59  *         at any later time could indicate another event. Normally such
60  *         kind of EC firmware has implemented an event queue and will
61  *         return 0x00 to indicate "no outstanding event".
62  * QUERY: After seeing the query request (QR_EC) written to the command
63  *        register (EC_CMD) by the host and having prepared the responding
64  *        event value in the data register (EC_DATA), the target can safely
65  *        clear SCI_EVT because the target can confirm that the current
66  *        event is being handled by the host. The host then should check
67  *        SCI_EVT right after reading the event response from the data
68  *        register (EC_DATA).
69  * EVENT: After seeing the event response read from the data register
70  *        (EC_DATA) by the host, the target can clear SCI_EVT. As the
71  *        target requires time to notice the change in the data register
72  *        (EC_DATA), the host may be required to wait additional guarding
73  *        time before checking the SCI_EVT again. Such guarding may not be
74  *        necessary if the host is notified via another IRQ.
75  */
76 #define ACPI_EC_EVT_TIMING_STATUS	0x00
77 #define ACPI_EC_EVT_TIMING_QUERY	0x01
78 #define ACPI_EC_EVT_TIMING_EVENT	0x02
79 
80 /* EC commands */
81 enum ec_command {
82 	ACPI_EC_COMMAND_READ = 0x80,
83 	ACPI_EC_COMMAND_WRITE = 0x81,
84 	ACPI_EC_BURST_ENABLE = 0x82,
85 	ACPI_EC_BURST_DISABLE = 0x83,
86 	ACPI_EC_COMMAND_QUERY = 0x84,
87 };
88 
89 #define ACPI_EC_DELAY		500	/* Wait 500ms max. during EC ops */
90 #define ACPI_EC_UDELAY_GLK	1000	/* Wait 1ms max. to get global lock */
91 #define ACPI_EC_UDELAY_POLL	550	/* Wait 1ms for EC transaction polling */
92 #define ACPI_EC_CLEAR_MAX	100	/* Maximum number of events to query
93 					 * when trying to clear the EC */
94 #define ACPI_EC_MAX_QUERIES	16	/* Maximum number of parallel queries */
95 
96 enum {
97 	EC_FLAGS_QUERY_ENABLED,		/* Query is enabled */
98 	EC_FLAGS_EVENT_HANDLER_INSTALLED,	/* Event handler installed */
99 	EC_FLAGS_EC_HANDLER_INSTALLED,	/* OpReg handler installed */
100 	EC_FLAGS_EC_REG_CALLED,		/* OpReg ACPI _REG method called */
101 	EC_FLAGS_QUERY_METHODS_INSTALLED, /* _Qxx handlers installed */
102 	EC_FLAGS_STARTED,		/* Driver is started */
103 	EC_FLAGS_STOPPED,		/* Driver is stopped */
104 	EC_FLAGS_EVENTS_MASKED,		/* Events masked */
105 };
106 
107 #define ACPI_EC_COMMAND_POLL		0x01 /* Available for command byte */
108 #define ACPI_EC_COMMAND_COMPLETE	0x02 /* Completed last byte */
109 
110 /* ec.c is compiled in acpi namespace so this shows up as acpi.ec_delay param */
111 static unsigned int ec_delay __read_mostly = ACPI_EC_DELAY;
112 module_param(ec_delay, uint, 0644);
113 MODULE_PARM_DESC(ec_delay, "Timeout(ms) waited until an EC command completes");
114 
115 static unsigned int ec_max_queries __read_mostly = ACPI_EC_MAX_QUERIES;
116 module_param(ec_max_queries, uint, 0644);
117 MODULE_PARM_DESC(ec_max_queries, "Maximum parallel _Qxx evaluations");
118 
119 static bool ec_busy_polling __read_mostly;
120 module_param(ec_busy_polling, bool, 0644);
121 MODULE_PARM_DESC(ec_busy_polling, "Use busy polling to advance EC transaction");
122 
123 static unsigned int ec_polling_guard __read_mostly = ACPI_EC_UDELAY_POLL;
124 module_param(ec_polling_guard, uint, 0644);
125 MODULE_PARM_DESC(ec_polling_guard, "Guard time(us) between EC accesses in polling modes");
126 
127 static unsigned int ec_event_clearing __read_mostly = ACPI_EC_EVT_TIMING_QUERY;
128 
129 /*
130  * If the number of false interrupts per one transaction exceeds
131  * this threshold, will think there is a GPE storm happened and
132  * will disable the GPE for normal transaction.
133  */
134 static unsigned int ec_storm_threshold  __read_mostly = 8;
135 module_param(ec_storm_threshold, uint, 0644);
136 MODULE_PARM_DESC(ec_storm_threshold, "Maxim false GPE numbers not considered as GPE storm");
137 
138 static bool ec_freeze_events __read_mostly;
139 module_param(ec_freeze_events, bool, 0644);
140 MODULE_PARM_DESC(ec_freeze_events, "Disabling event handling during suspend/resume");
141 
142 static bool ec_no_wakeup __read_mostly;
143 module_param(ec_no_wakeup, bool, 0644);
144 MODULE_PARM_DESC(ec_no_wakeup, "Do not wake up from suspend-to-idle");
145 
146 struct acpi_ec_query_handler {
147 	struct list_head node;
148 	acpi_ec_query_func func;
149 	acpi_handle handle;
150 	void *data;
151 	u8 query_bit;
152 	struct kref kref;
153 };
154 
155 struct transaction {
156 	const u8 *wdata;
157 	u8 *rdata;
158 	unsigned short irq_count;
159 	u8 command;
160 	u8 wi;
161 	u8 ri;
162 	u8 wlen;
163 	u8 rlen;
164 	u8 flags;
165 };
166 
167 struct acpi_ec_query {
168 	struct transaction transaction;
169 	struct work_struct work;
170 	struct acpi_ec_query_handler *handler;
171 	struct acpi_ec *ec;
172 };
173 
174 static int acpi_ec_submit_query(struct acpi_ec *ec);
175 static void advance_transaction(struct acpi_ec *ec, bool interrupt);
176 static void acpi_ec_event_handler(struct work_struct *work);
177 
178 struct acpi_ec *first_ec;
179 EXPORT_SYMBOL(first_ec);
180 
181 static struct acpi_ec *boot_ec;
182 static bool boot_ec_is_ecdt;
183 static struct workqueue_struct *ec_wq;
184 static struct workqueue_struct *ec_query_wq;
185 
186 static int EC_FLAGS_CORRECT_ECDT; /* Needs ECDT port address correction */
187 static int EC_FLAGS_TRUST_DSDT_GPE; /* Needs DSDT GPE as correction setting */
188 static int EC_FLAGS_CLEAR_ON_RESUME; /* Needs acpi_ec_clear() on boot/resume */
189 
190 /* --------------------------------------------------------------------------
191  *                           Logging/Debugging
192  * -------------------------------------------------------------------------- */
193 
194 /*
195  * Splitters used by the developers to track the boundary of the EC
196  * handling processes.
197  */
198 #ifdef DEBUG
199 #define EC_DBG_SEP	" "
200 #define EC_DBG_DRV	"+++++"
201 #define EC_DBG_STM	"====="
202 #define EC_DBG_REQ	"*****"
203 #define EC_DBG_EVT	"#####"
204 #else
205 #define EC_DBG_SEP	""
206 #define EC_DBG_DRV
207 #define EC_DBG_STM
208 #define EC_DBG_REQ
209 #define EC_DBG_EVT
210 #endif
211 
212 #define ec_log_raw(fmt, ...) \
213 	pr_info(fmt "\n", ##__VA_ARGS__)
214 #define ec_dbg_raw(fmt, ...) \
215 	pr_debug(fmt "\n", ##__VA_ARGS__)
216 #define ec_log(filter, fmt, ...) \
217 	ec_log_raw(filter EC_DBG_SEP fmt EC_DBG_SEP filter, ##__VA_ARGS__)
218 #define ec_dbg(filter, fmt, ...) \
219 	ec_dbg_raw(filter EC_DBG_SEP fmt EC_DBG_SEP filter, ##__VA_ARGS__)
220 
221 #define ec_log_drv(fmt, ...) \
222 	ec_log(EC_DBG_DRV, fmt, ##__VA_ARGS__)
223 #define ec_dbg_drv(fmt, ...) \
224 	ec_dbg(EC_DBG_DRV, fmt, ##__VA_ARGS__)
225 #define ec_dbg_stm(fmt, ...) \
226 	ec_dbg(EC_DBG_STM, fmt, ##__VA_ARGS__)
227 #define ec_dbg_req(fmt, ...) \
228 	ec_dbg(EC_DBG_REQ, fmt, ##__VA_ARGS__)
229 #define ec_dbg_evt(fmt, ...) \
230 	ec_dbg(EC_DBG_EVT, fmt, ##__VA_ARGS__)
231 #define ec_dbg_ref(ec, fmt, ...) \
232 	ec_dbg_raw("%lu: " fmt, ec->reference_count, ## __VA_ARGS__)
233 
234 /* --------------------------------------------------------------------------
235  *                           Device Flags
236  * -------------------------------------------------------------------------- */
237 
acpi_ec_started(struct acpi_ec * ec)238 static bool acpi_ec_started(struct acpi_ec *ec)
239 {
240 	return test_bit(EC_FLAGS_STARTED, &ec->flags) &&
241 	       !test_bit(EC_FLAGS_STOPPED, &ec->flags);
242 }
243 
acpi_ec_event_enabled(struct acpi_ec * ec)244 static bool acpi_ec_event_enabled(struct acpi_ec *ec)
245 {
246 	/*
247 	 * There is an OSPM early stage logic. During the early stages
248 	 * (boot/resume), OSPMs shouldn't enable the event handling, only
249 	 * the EC transactions are allowed to be performed.
250 	 */
251 	if (!test_bit(EC_FLAGS_QUERY_ENABLED, &ec->flags))
252 		return false;
253 	/*
254 	 * However, disabling the event handling is experimental for late
255 	 * stage (suspend), and is controlled by the boot parameter of
256 	 * "ec_freeze_events":
257 	 * 1. true:  The EC event handling is disabled before entering
258 	 *           the noirq stage.
259 	 * 2. false: The EC event handling is automatically disabled as
260 	 *           soon as the EC driver is stopped.
261 	 */
262 	if (ec_freeze_events)
263 		return acpi_ec_started(ec);
264 	else
265 		return test_bit(EC_FLAGS_STARTED, &ec->flags);
266 }
267 
acpi_ec_flushed(struct acpi_ec * ec)268 static bool acpi_ec_flushed(struct acpi_ec *ec)
269 {
270 	return ec->reference_count == 1;
271 }
272 
273 /* --------------------------------------------------------------------------
274  *                           EC Registers
275  * -------------------------------------------------------------------------- */
276 
acpi_ec_read_status(struct acpi_ec * ec)277 static inline u8 acpi_ec_read_status(struct acpi_ec *ec)
278 {
279 	u8 x = inb(ec->command_addr);
280 
281 	ec_dbg_raw("EC_SC(R) = 0x%2.2x "
282 		   "SCI_EVT=%d BURST=%d CMD=%d IBF=%d OBF=%d",
283 		   x,
284 		   !!(x & ACPI_EC_FLAG_SCI),
285 		   !!(x & ACPI_EC_FLAG_BURST),
286 		   !!(x & ACPI_EC_FLAG_CMD),
287 		   !!(x & ACPI_EC_FLAG_IBF),
288 		   !!(x & ACPI_EC_FLAG_OBF));
289 	return x;
290 }
291 
acpi_ec_read_data(struct acpi_ec * ec)292 static inline u8 acpi_ec_read_data(struct acpi_ec *ec)
293 {
294 	u8 x = inb(ec->data_addr);
295 
296 	ec->timestamp = jiffies;
297 	ec_dbg_raw("EC_DATA(R) = 0x%2.2x", x);
298 	return x;
299 }
300 
acpi_ec_write_cmd(struct acpi_ec * ec,u8 command)301 static inline void acpi_ec_write_cmd(struct acpi_ec *ec, u8 command)
302 {
303 	ec_dbg_raw("EC_SC(W) = 0x%2.2x", command);
304 	outb(command, ec->command_addr);
305 	ec->timestamp = jiffies;
306 }
307 
acpi_ec_write_data(struct acpi_ec * ec,u8 data)308 static inline void acpi_ec_write_data(struct acpi_ec *ec, u8 data)
309 {
310 	ec_dbg_raw("EC_DATA(W) = 0x%2.2x", data);
311 	outb(data, ec->data_addr);
312 	ec->timestamp = jiffies;
313 }
314 
315 #if defined(DEBUG) || defined(CONFIG_DYNAMIC_DEBUG)
acpi_ec_cmd_string(u8 cmd)316 static const char *acpi_ec_cmd_string(u8 cmd)
317 {
318 	switch (cmd) {
319 	case 0x80:
320 		return "RD_EC";
321 	case 0x81:
322 		return "WR_EC";
323 	case 0x82:
324 		return "BE_EC";
325 	case 0x83:
326 		return "BD_EC";
327 	case 0x84:
328 		return "QR_EC";
329 	}
330 	return "UNKNOWN";
331 }
332 #else
333 #define acpi_ec_cmd_string(cmd)		"UNDEF"
334 #endif
335 
336 /* --------------------------------------------------------------------------
337  *                           GPE Registers
338  * -------------------------------------------------------------------------- */
339 
acpi_ec_gpe_status_set(struct acpi_ec * ec)340 static inline bool acpi_ec_gpe_status_set(struct acpi_ec *ec)
341 {
342 	acpi_event_status gpe_status = 0;
343 
344 	(void)acpi_get_gpe_status(NULL, ec->gpe, &gpe_status);
345 	return !!(gpe_status & ACPI_EVENT_FLAG_STATUS_SET);
346 }
347 
acpi_ec_enable_gpe(struct acpi_ec * ec,bool open)348 static inline void acpi_ec_enable_gpe(struct acpi_ec *ec, bool open)
349 {
350 	if (open)
351 		acpi_enable_gpe(NULL, ec->gpe);
352 	else {
353 		BUG_ON(ec->reference_count < 1);
354 		acpi_set_gpe(NULL, ec->gpe, ACPI_GPE_ENABLE);
355 	}
356 	if (acpi_ec_gpe_status_set(ec)) {
357 		/*
358 		 * On some platforms, EN=1 writes cannot trigger GPE. So
359 		 * software need to manually trigger a pseudo GPE event on
360 		 * EN=1 writes.
361 		 */
362 		ec_dbg_raw("Polling quirk");
363 		advance_transaction(ec, false);
364 	}
365 }
366 
acpi_ec_disable_gpe(struct acpi_ec * ec,bool close)367 static inline void acpi_ec_disable_gpe(struct acpi_ec *ec, bool close)
368 {
369 	if (close)
370 		acpi_disable_gpe(NULL, ec->gpe);
371 	else {
372 		BUG_ON(ec->reference_count < 1);
373 		acpi_set_gpe(NULL, ec->gpe, ACPI_GPE_DISABLE);
374 	}
375 }
376 
377 /* --------------------------------------------------------------------------
378  *                           Transaction Management
379  * -------------------------------------------------------------------------- */
380 
acpi_ec_submit_request(struct acpi_ec * ec)381 static void acpi_ec_submit_request(struct acpi_ec *ec)
382 {
383 	ec->reference_count++;
384 	if (test_bit(EC_FLAGS_EVENT_HANDLER_INSTALLED, &ec->flags) &&
385 	    ec->gpe >= 0 && ec->reference_count == 1)
386 		acpi_ec_enable_gpe(ec, true);
387 }
388 
acpi_ec_complete_request(struct acpi_ec * ec)389 static void acpi_ec_complete_request(struct acpi_ec *ec)
390 {
391 	bool flushed = false;
392 
393 	ec->reference_count--;
394 	if (test_bit(EC_FLAGS_EVENT_HANDLER_INSTALLED, &ec->flags) &&
395 	    ec->gpe >= 0 && ec->reference_count == 0)
396 		acpi_ec_disable_gpe(ec, true);
397 	flushed = acpi_ec_flushed(ec);
398 	if (flushed)
399 		wake_up(&ec->wait);
400 }
401 
acpi_ec_mask_events(struct acpi_ec * ec)402 static void acpi_ec_mask_events(struct acpi_ec *ec)
403 {
404 	if (!test_bit(EC_FLAGS_EVENTS_MASKED, &ec->flags)) {
405 		if (ec->gpe >= 0)
406 			acpi_ec_disable_gpe(ec, false);
407 		else
408 			disable_irq_nosync(ec->irq);
409 
410 		ec_dbg_drv("Polling enabled");
411 		set_bit(EC_FLAGS_EVENTS_MASKED, &ec->flags);
412 	}
413 }
414 
acpi_ec_unmask_events(struct acpi_ec * ec)415 static void acpi_ec_unmask_events(struct acpi_ec *ec)
416 {
417 	if (test_bit(EC_FLAGS_EVENTS_MASKED, &ec->flags)) {
418 		clear_bit(EC_FLAGS_EVENTS_MASKED, &ec->flags);
419 		if (ec->gpe >= 0)
420 			acpi_ec_enable_gpe(ec, false);
421 		else
422 			enable_irq(ec->irq);
423 
424 		ec_dbg_drv("Polling disabled");
425 	}
426 }
427 
428 /*
429  * acpi_ec_submit_flushable_request() - Increase the reference count unless
430  *                                      the flush operation is not in
431  *                                      progress
432  * @ec: the EC device
433  *
434  * This function must be used before taking a new action that should hold
435  * the reference count.  If this function returns false, then the action
436  * must be discarded or it will prevent the flush operation from being
437  * completed.
438  */
acpi_ec_submit_flushable_request(struct acpi_ec * ec)439 static bool acpi_ec_submit_flushable_request(struct acpi_ec *ec)
440 {
441 	if (!acpi_ec_started(ec))
442 		return false;
443 	acpi_ec_submit_request(ec);
444 	return true;
445 }
446 
acpi_ec_submit_event(struct acpi_ec * ec)447 static void acpi_ec_submit_event(struct acpi_ec *ec)
448 {
449 	/*
450 	 * It is safe to mask the events here, because acpi_ec_close_event()
451 	 * will run at least once after this.
452 	 */
453 	acpi_ec_mask_events(ec);
454 	if (!acpi_ec_event_enabled(ec))
455 		return;
456 
457 	if (ec->event_state != EC_EVENT_READY)
458 		return;
459 
460 	ec_dbg_evt("Command(%s) submitted/blocked",
461 		   acpi_ec_cmd_string(ACPI_EC_COMMAND_QUERY));
462 
463 	ec->event_state = EC_EVENT_IN_PROGRESS;
464 	/*
465 	 * If events_to_process is greater than 0 at this point, the while ()
466 	 * loop in acpi_ec_event_handler() is still running and incrementing
467 	 * events_to_process will cause it to invoke acpi_ec_submit_query() once
468 	 * more, so it is not necessary to queue up the event work to start the
469 	 * same loop again.
470 	 */
471 	if (ec->events_to_process++ > 0)
472 		return;
473 
474 	ec->events_in_progress++;
475 	queue_work(ec_wq, &ec->work);
476 }
477 
acpi_ec_complete_event(struct acpi_ec * ec)478 static void acpi_ec_complete_event(struct acpi_ec *ec)
479 {
480 	if (ec->event_state == EC_EVENT_IN_PROGRESS)
481 		ec->event_state = EC_EVENT_COMPLETE;
482 }
483 
acpi_ec_close_event(struct acpi_ec * ec)484 static void acpi_ec_close_event(struct acpi_ec *ec)
485 {
486 	if (ec->event_state != EC_EVENT_READY)
487 		ec_dbg_evt("Command(%s) unblocked",
488 			   acpi_ec_cmd_string(ACPI_EC_COMMAND_QUERY));
489 
490 	ec->event_state = EC_EVENT_READY;
491 	acpi_ec_unmask_events(ec);
492 }
493 
__acpi_ec_enable_event(struct acpi_ec * ec)494 static inline void __acpi_ec_enable_event(struct acpi_ec *ec)
495 {
496 	if (!test_and_set_bit(EC_FLAGS_QUERY_ENABLED, &ec->flags))
497 		ec_log_drv("event unblocked");
498 	/*
499 	 * Unconditionally invoke this once after enabling the event
500 	 * handling mechanism to detect the pending events.
501 	 */
502 	advance_transaction(ec, false);
503 }
504 
__acpi_ec_disable_event(struct acpi_ec * ec)505 static inline void __acpi_ec_disable_event(struct acpi_ec *ec)
506 {
507 	if (test_and_clear_bit(EC_FLAGS_QUERY_ENABLED, &ec->flags))
508 		ec_log_drv("event blocked");
509 }
510 
511 /*
512  * Process _Q events that might have accumulated in the EC.
513  * Run with locked ec mutex.
514  */
acpi_ec_clear(struct acpi_ec * ec)515 static void acpi_ec_clear(struct acpi_ec *ec)
516 {
517 	int i;
518 
519 	for (i = 0; i < ACPI_EC_CLEAR_MAX; i++) {
520 		if (acpi_ec_submit_query(ec))
521 			break;
522 	}
523 	if (unlikely(i == ACPI_EC_CLEAR_MAX))
524 		pr_warn("Warning: Maximum of %d stale EC events cleared\n", i);
525 	else
526 		pr_info("%d stale EC events cleared\n", i);
527 }
528 
acpi_ec_enable_event(struct acpi_ec * ec)529 static void acpi_ec_enable_event(struct acpi_ec *ec)
530 {
531 	unsigned long flags;
532 
533 	spin_lock_irqsave(&ec->lock, flags);
534 	if (acpi_ec_started(ec))
535 		__acpi_ec_enable_event(ec);
536 	spin_unlock_irqrestore(&ec->lock, flags);
537 
538 	/* Drain additional events if hardware requires that */
539 	if (EC_FLAGS_CLEAR_ON_RESUME)
540 		acpi_ec_clear(ec);
541 }
542 
543 #ifdef CONFIG_PM_SLEEP
__acpi_ec_flush_work(void)544 static void __acpi_ec_flush_work(void)
545 {
546 	flush_workqueue(ec_wq); /* flush ec->work */
547 	flush_workqueue(ec_query_wq); /* flush queries */
548 }
549 
acpi_ec_disable_event(struct acpi_ec * ec)550 static void acpi_ec_disable_event(struct acpi_ec *ec)
551 {
552 	unsigned long flags;
553 
554 	spin_lock_irqsave(&ec->lock, flags);
555 	__acpi_ec_disable_event(ec);
556 	spin_unlock_irqrestore(&ec->lock, flags);
557 
558 	/*
559 	 * When ec_freeze_events is true, we need to flush events in
560 	 * the proper position before entering the noirq stage.
561 	 */
562 	__acpi_ec_flush_work();
563 }
564 
acpi_ec_flush_work(void)565 void acpi_ec_flush_work(void)
566 {
567 	/* Without ec_wq there is nothing to flush. */
568 	if (!ec_wq)
569 		return;
570 
571 	__acpi_ec_flush_work();
572 }
573 #endif /* CONFIG_PM_SLEEP */
574 
acpi_ec_guard_event(struct acpi_ec * ec)575 static bool acpi_ec_guard_event(struct acpi_ec *ec)
576 {
577 	unsigned long flags;
578 	bool guarded;
579 
580 	spin_lock_irqsave(&ec->lock, flags);
581 	/*
582 	 * If firmware SCI_EVT clearing timing is "event", we actually
583 	 * don't know when the SCI_EVT will be cleared by firmware after
584 	 * evaluating _Qxx, so we need to re-check SCI_EVT after waiting an
585 	 * acceptable period.
586 	 *
587 	 * The guarding period is applicable if the event state is not
588 	 * EC_EVENT_READY, but otherwise if the current transaction is of the
589 	 * ACPI_EC_COMMAND_QUERY type, the guarding should have elapsed already
590 	 * and it should not be applied to let the transaction transition into
591 	 * the ACPI_EC_COMMAND_POLL state immediately.
592 	 */
593 	guarded = ec_event_clearing == ACPI_EC_EVT_TIMING_EVENT &&
594 		ec->event_state != EC_EVENT_READY &&
595 		(!ec->curr || ec->curr->command != ACPI_EC_COMMAND_QUERY);
596 	spin_unlock_irqrestore(&ec->lock, flags);
597 	return guarded;
598 }
599 
ec_transaction_polled(struct acpi_ec * ec)600 static int ec_transaction_polled(struct acpi_ec *ec)
601 {
602 	unsigned long flags;
603 	int ret = 0;
604 
605 	spin_lock_irqsave(&ec->lock, flags);
606 	if (ec->curr && (ec->curr->flags & ACPI_EC_COMMAND_POLL))
607 		ret = 1;
608 	spin_unlock_irqrestore(&ec->lock, flags);
609 	return ret;
610 }
611 
ec_transaction_completed(struct acpi_ec * ec)612 static int ec_transaction_completed(struct acpi_ec *ec)
613 {
614 	unsigned long flags;
615 	int ret = 0;
616 
617 	spin_lock_irqsave(&ec->lock, flags);
618 	if (ec->curr && (ec->curr->flags & ACPI_EC_COMMAND_COMPLETE))
619 		ret = 1;
620 	spin_unlock_irqrestore(&ec->lock, flags);
621 	return ret;
622 }
623 
ec_transaction_transition(struct acpi_ec * ec,unsigned long flag)624 static inline void ec_transaction_transition(struct acpi_ec *ec, unsigned long flag)
625 {
626 	ec->curr->flags |= flag;
627 
628 	if (ec->curr->command != ACPI_EC_COMMAND_QUERY)
629 		return;
630 
631 	switch (ec_event_clearing) {
632 	case ACPI_EC_EVT_TIMING_STATUS:
633 		if (flag == ACPI_EC_COMMAND_POLL)
634 			acpi_ec_close_event(ec);
635 
636 		return;
637 
638 	case ACPI_EC_EVT_TIMING_QUERY:
639 		if (flag == ACPI_EC_COMMAND_COMPLETE)
640 			acpi_ec_close_event(ec);
641 
642 		return;
643 
644 	case ACPI_EC_EVT_TIMING_EVENT:
645 		if (flag == ACPI_EC_COMMAND_COMPLETE)
646 			acpi_ec_complete_event(ec);
647 	}
648 }
649 
acpi_ec_spurious_interrupt(struct acpi_ec * ec,struct transaction * t)650 static void acpi_ec_spurious_interrupt(struct acpi_ec *ec, struct transaction *t)
651 {
652 	if (t->irq_count < ec_storm_threshold)
653 		++t->irq_count;
654 
655 	/* Trigger if the threshold is 0 too. */
656 	if (t->irq_count == ec_storm_threshold)
657 		acpi_ec_mask_events(ec);
658 }
659 
advance_transaction(struct acpi_ec * ec,bool interrupt)660 static void advance_transaction(struct acpi_ec *ec, bool interrupt)
661 {
662 	struct transaction *t = ec->curr;
663 	bool wakeup = false;
664 	u8 status;
665 
666 	ec_dbg_stm("%s (%d)", interrupt ? "IRQ" : "TASK", smp_processor_id());
667 
668 	status = acpi_ec_read_status(ec);
669 
670 	/*
671 	 * Another IRQ or a guarded polling mode advancement is detected,
672 	 * the next QR_EC submission is then allowed.
673 	 */
674 	if (!t || !(t->flags & ACPI_EC_COMMAND_POLL)) {
675 		if (ec_event_clearing == ACPI_EC_EVT_TIMING_EVENT &&
676 		    ec->event_state == EC_EVENT_COMPLETE)
677 			acpi_ec_close_event(ec);
678 
679 		if (!t)
680 			goto out;
681 	}
682 
683 	if (t->flags & ACPI_EC_COMMAND_POLL) {
684 		if (t->wlen > t->wi) {
685 			if (!(status & ACPI_EC_FLAG_IBF))
686 				acpi_ec_write_data(ec, t->wdata[t->wi++]);
687 			else if (interrupt && !(status & ACPI_EC_FLAG_SCI))
688 				acpi_ec_spurious_interrupt(ec, t);
689 		} else if (t->rlen > t->ri) {
690 			if (status & ACPI_EC_FLAG_OBF) {
691 				t->rdata[t->ri++] = acpi_ec_read_data(ec);
692 				if (t->rlen == t->ri) {
693 					ec_transaction_transition(ec, ACPI_EC_COMMAND_COMPLETE);
694 					wakeup = true;
695 					if (t->command == ACPI_EC_COMMAND_QUERY)
696 						ec_dbg_evt("Command(%s) completed by hardware",
697 							   acpi_ec_cmd_string(ACPI_EC_COMMAND_QUERY));
698 				}
699 			} else if (interrupt && !(status & ACPI_EC_FLAG_SCI)) {
700 				acpi_ec_spurious_interrupt(ec, t);
701 			}
702 		} else if (t->wlen == t->wi && !(status & ACPI_EC_FLAG_IBF)) {
703 			ec_transaction_transition(ec, ACPI_EC_COMMAND_COMPLETE);
704 			wakeup = true;
705 		}
706 	} else if (!(status & ACPI_EC_FLAG_IBF)) {
707 		acpi_ec_write_cmd(ec, t->command);
708 		ec_transaction_transition(ec, ACPI_EC_COMMAND_POLL);
709 	}
710 
711 out:
712 	if (status & ACPI_EC_FLAG_SCI)
713 		acpi_ec_submit_event(ec);
714 
715 	if (wakeup && interrupt)
716 		wake_up(&ec->wait);
717 }
718 
start_transaction(struct acpi_ec * ec)719 static void start_transaction(struct acpi_ec *ec)
720 {
721 	ec->curr->irq_count = ec->curr->wi = ec->curr->ri = 0;
722 	ec->curr->flags = 0;
723 }
724 
ec_guard(struct acpi_ec * ec)725 static int ec_guard(struct acpi_ec *ec)
726 {
727 	unsigned long guard = usecs_to_jiffies(ec->polling_guard);
728 	unsigned long timeout = ec->timestamp + guard;
729 
730 	/* Ensure guarding period before polling EC status */
731 	do {
732 		if (ec->busy_polling) {
733 			/* Perform busy polling */
734 			if (ec_transaction_completed(ec))
735 				return 0;
736 			udelay(jiffies_to_usecs(guard));
737 		} else {
738 			/*
739 			 * Perform wait polling
740 			 * 1. Wait the transaction to be completed by the
741 			 *    GPE handler after the transaction enters
742 			 *    ACPI_EC_COMMAND_POLL state.
743 			 * 2. A special guarding logic is also required
744 			 *    for event clearing mode "event" before the
745 			 *    transaction enters ACPI_EC_COMMAND_POLL
746 			 *    state.
747 			 */
748 			if (!ec_transaction_polled(ec) &&
749 			    !acpi_ec_guard_event(ec))
750 				break;
751 			if (wait_event_timeout(ec->wait,
752 					       ec_transaction_completed(ec),
753 					       guard))
754 				return 0;
755 		}
756 	} while (time_before(jiffies, timeout));
757 	return -ETIME;
758 }
759 
ec_poll(struct acpi_ec * ec)760 static int ec_poll(struct acpi_ec *ec)
761 {
762 	unsigned long flags;
763 	int repeat = 5; /* number of command restarts */
764 
765 	while (repeat--) {
766 		unsigned long delay = jiffies +
767 			msecs_to_jiffies(ec_delay);
768 		do {
769 			if (!ec_guard(ec))
770 				return 0;
771 			spin_lock_irqsave(&ec->lock, flags);
772 			advance_transaction(ec, false);
773 			spin_unlock_irqrestore(&ec->lock, flags);
774 		} while (time_before(jiffies, delay));
775 		pr_debug("controller reset, restart transaction\n");
776 		spin_lock_irqsave(&ec->lock, flags);
777 		start_transaction(ec);
778 		spin_unlock_irqrestore(&ec->lock, flags);
779 	}
780 	return -ETIME;
781 }
782 
acpi_ec_transaction_unlocked(struct acpi_ec * ec,struct transaction * t)783 static int acpi_ec_transaction_unlocked(struct acpi_ec *ec,
784 					struct transaction *t)
785 {
786 	unsigned long tmp;
787 	int ret = 0;
788 
789 	if (t->rdata)
790 		memset(t->rdata, 0, t->rlen);
791 
792 	/* start transaction */
793 	spin_lock_irqsave(&ec->lock, tmp);
794 	/* Enable GPE for command processing (IBF=0/OBF=1) */
795 	if (!acpi_ec_submit_flushable_request(ec)) {
796 		ret = -EINVAL;
797 		goto unlock;
798 	}
799 	ec_dbg_ref(ec, "Increase command");
800 	/* following two actions should be kept atomic */
801 	ec->curr = t;
802 	ec_dbg_req("Command(%s) started", acpi_ec_cmd_string(t->command));
803 	start_transaction(ec);
804 	spin_unlock_irqrestore(&ec->lock, tmp);
805 
806 	ret = ec_poll(ec);
807 
808 	spin_lock_irqsave(&ec->lock, tmp);
809 	if (t->irq_count == ec_storm_threshold)
810 		acpi_ec_unmask_events(ec);
811 	ec_dbg_req("Command(%s) stopped", acpi_ec_cmd_string(t->command));
812 	ec->curr = NULL;
813 	/* Disable GPE for command processing (IBF=0/OBF=1) */
814 	acpi_ec_complete_request(ec);
815 	ec_dbg_ref(ec, "Decrease command");
816 unlock:
817 	spin_unlock_irqrestore(&ec->lock, tmp);
818 	return ret;
819 }
820 
acpi_ec_transaction(struct acpi_ec * ec,struct transaction * t)821 static int acpi_ec_transaction(struct acpi_ec *ec, struct transaction *t)
822 {
823 	int status;
824 	u32 glk;
825 
826 	if (!ec || (!t) || (t->wlen && !t->wdata) || (t->rlen && !t->rdata))
827 		return -EINVAL;
828 
829 	mutex_lock(&ec->mutex);
830 	if (ec->global_lock) {
831 		status = acpi_acquire_global_lock(ACPI_EC_UDELAY_GLK, &glk);
832 		if (ACPI_FAILURE(status)) {
833 			status = -ENODEV;
834 			goto unlock;
835 		}
836 	}
837 
838 	status = acpi_ec_transaction_unlocked(ec, t);
839 
840 	if (ec->global_lock)
841 		acpi_release_global_lock(glk);
842 unlock:
843 	mutex_unlock(&ec->mutex);
844 	return status;
845 }
846 
acpi_ec_burst_enable(struct acpi_ec * ec)847 static int acpi_ec_burst_enable(struct acpi_ec *ec)
848 {
849 	u8 d;
850 	struct transaction t = {.command = ACPI_EC_BURST_ENABLE,
851 				.wdata = NULL, .rdata = &d,
852 				.wlen = 0, .rlen = 1};
853 
854 	return acpi_ec_transaction_unlocked(ec, &t);
855 }
856 
acpi_ec_burst_disable(struct acpi_ec * ec)857 static int acpi_ec_burst_disable(struct acpi_ec *ec)
858 {
859 	struct transaction t = {.command = ACPI_EC_BURST_DISABLE,
860 				.wdata = NULL, .rdata = NULL,
861 				.wlen = 0, .rlen = 0};
862 
863 	return (acpi_ec_read_status(ec) & ACPI_EC_FLAG_BURST) ?
864 				acpi_ec_transaction_unlocked(ec, &t) : 0;
865 }
866 
acpi_ec_read(struct acpi_ec * ec,u8 address,u8 * data)867 static int acpi_ec_read(struct acpi_ec *ec, u8 address, u8 *data)
868 {
869 	int result;
870 	u8 d;
871 	struct transaction t = {.command = ACPI_EC_COMMAND_READ,
872 				.wdata = &address, .rdata = &d,
873 				.wlen = 1, .rlen = 1};
874 
875 	result = acpi_ec_transaction(ec, &t);
876 	*data = d;
877 	return result;
878 }
879 
acpi_ec_read_unlocked(struct acpi_ec * ec,u8 address,u8 * data)880 static int acpi_ec_read_unlocked(struct acpi_ec *ec, u8 address, u8 *data)
881 {
882 	int result;
883 	u8 d;
884 	struct transaction t = {.command = ACPI_EC_COMMAND_READ,
885 				.wdata = &address, .rdata = &d,
886 				.wlen = 1, .rlen = 1};
887 
888 	result = acpi_ec_transaction_unlocked(ec, &t);
889 	*data = d;
890 	return result;
891 }
892 
acpi_ec_write(struct acpi_ec * ec,u8 address,u8 data)893 static int acpi_ec_write(struct acpi_ec *ec, u8 address, u8 data)
894 {
895 	u8 wdata[2] = { address, data };
896 	struct transaction t = {.command = ACPI_EC_COMMAND_WRITE,
897 				.wdata = wdata, .rdata = NULL,
898 				.wlen = 2, .rlen = 0};
899 
900 	return acpi_ec_transaction(ec, &t);
901 }
902 
acpi_ec_write_unlocked(struct acpi_ec * ec,u8 address,u8 data)903 static int acpi_ec_write_unlocked(struct acpi_ec *ec, u8 address, u8 data)
904 {
905 	u8 wdata[2] = { address, data };
906 	struct transaction t = {.command = ACPI_EC_COMMAND_WRITE,
907 				.wdata = wdata, .rdata = NULL,
908 				.wlen = 2, .rlen = 0};
909 
910 	return acpi_ec_transaction_unlocked(ec, &t);
911 }
912 
ec_read(u8 addr,u8 * val)913 int ec_read(u8 addr, u8 *val)
914 {
915 	int err;
916 	u8 temp_data;
917 
918 	if (!first_ec)
919 		return -ENODEV;
920 
921 	err = acpi_ec_read(first_ec, addr, &temp_data);
922 
923 	if (!err) {
924 		*val = temp_data;
925 		return 0;
926 	}
927 	return err;
928 }
929 EXPORT_SYMBOL(ec_read);
930 
ec_write(u8 addr,u8 val)931 int ec_write(u8 addr, u8 val)
932 {
933 	if (!first_ec)
934 		return -ENODEV;
935 
936 	return acpi_ec_write(first_ec, addr, val);
937 }
938 EXPORT_SYMBOL(ec_write);
939 
ec_transaction(u8 command,const u8 * wdata,unsigned wdata_len,u8 * rdata,unsigned rdata_len)940 int ec_transaction(u8 command,
941 		   const u8 *wdata, unsigned wdata_len,
942 		   u8 *rdata, unsigned rdata_len)
943 {
944 	struct transaction t = {.command = command,
945 				.wdata = wdata, .rdata = rdata,
946 				.wlen = wdata_len, .rlen = rdata_len};
947 
948 	if (!first_ec)
949 		return -ENODEV;
950 
951 	return acpi_ec_transaction(first_ec, &t);
952 }
953 EXPORT_SYMBOL(ec_transaction);
954 
955 /* Get the handle to the EC device */
ec_get_handle(void)956 acpi_handle ec_get_handle(void)
957 {
958 	if (!first_ec)
959 		return NULL;
960 	return first_ec->handle;
961 }
962 EXPORT_SYMBOL(ec_get_handle);
963 
acpi_ec_start(struct acpi_ec * ec,bool resuming)964 static void acpi_ec_start(struct acpi_ec *ec, bool resuming)
965 {
966 	unsigned long flags;
967 
968 	spin_lock_irqsave(&ec->lock, flags);
969 	if (!test_and_set_bit(EC_FLAGS_STARTED, &ec->flags)) {
970 		ec_dbg_drv("Starting EC");
971 		/* Enable GPE for event processing (SCI_EVT=1) */
972 		if (!resuming) {
973 			acpi_ec_submit_request(ec);
974 			ec_dbg_ref(ec, "Increase driver");
975 		}
976 		ec_log_drv("EC started");
977 	}
978 	spin_unlock_irqrestore(&ec->lock, flags);
979 }
980 
acpi_ec_stopped(struct acpi_ec * ec)981 static bool acpi_ec_stopped(struct acpi_ec *ec)
982 {
983 	unsigned long flags;
984 	bool flushed;
985 
986 	spin_lock_irqsave(&ec->lock, flags);
987 	flushed = acpi_ec_flushed(ec);
988 	spin_unlock_irqrestore(&ec->lock, flags);
989 	return flushed;
990 }
991 
acpi_ec_stop(struct acpi_ec * ec,bool suspending)992 static void acpi_ec_stop(struct acpi_ec *ec, bool suspending)
993 {
994 	unsigned long flags;
995 
996 	spin_lock_irqsave(&ec->lock, flags);
997 	if (acpi_ec_started(ec)) {
998 		ec_dbg_drv("Stopping EC");
999 		set_bit(EC_FLAGS_STOPPED, &ec->flags);
1000 		spin_unlock_irqrestore(&ec->lock, flags);
1001 		wait_event(ec->wait, acpi_ec_stopped(ec));
1002 		spin_lock_irqsave(&ec->lock, flags);
1003 		/* Disable GPE for event processing (SCI_EVT=1) */
1004 		if (!suspending) {
1005 			acpi_ec_complete_request(ec);
1006 			ec_dbg_ref(ec, "Decrease driver");
1007 		} else if (!ec_freeze_events)
1008 			__acpi_ec_disable_event(ec);
1009 		clear_bit(EC_FLAGS_STARTED, &ec->flags);
1010 		clear_bit(EC_FLAGS_STOPPED, &ec->flags);
1011 		ec_log_drv("EC stopped");
1012 	}
1013 	spin_unlock_irqrestore(&ec->lock, flags);
1014 }
1015 
acpi_ec_enter_noirq(struct acpi_ec * ec)1016 static void acpi_ec_enter_noirq(struct acpi_ec *ec)
1017 {
1018 	unsigned long flags;
1019 
1020 	spin_lock_irqsave(&ec->lock, flags);
1021 	ec->busy_polling = true;
1022 	ec->polling_guard = 0;
1023 	ec_log_drv("interrupt blocked");
1024 	spin_unlock_irqrestore(&ec->lock, flags);
1025 }
1026 
acpi_ec_leave_noirq(struct acpi_ec * ec)1027 static void acpi_ec_leave_noirq(struct acpi_ec *ec)
1028 {
1029 	unsigned long flags;
1030 
1031 	spin_lock_irqsave(&ec->lock, flags);
1032 	ec->busy_polling = ec_busy_polling;
1033 	ec->polling_guard = ec_polling_guard;
1034 	ec_log_drv("interrupt unblocked");
1035 	spin_unlock_irqrestore(&ec->lock, flags);
1036 }
1037 
acpi_ec_block_transactions(void)1038 void acpi_ec_block_transactions(void)
1039 {
1040 	struct acpi_ec *ec = first_ec;
1041 
1042 	if (!ec)
1043 		return;
1044 
1045 	mutex_lock(&ec->mutex);
1046 	/* Prevent transactions from being carried out */
1047 	acpi_ec_stop(ec, true);
1048 	mutex_unlock(&ec->mutex);
1049 }
1050 
acpi_ec_unblock_transactions(void)1051 void acpi_ec_unblock_transactions(void)
1052 {
1053 	/*
1054 	 * Allow transactions to happen again (this function is called from
1055 	 * atomic context during wakeup, so we don't need to acquire the mutex).
1056 	 */
1057 	if (first_ec)
1058 		acpi_ec_start(first_ec, true);
1059 }
1060 
1061 /* --------------------------------------------------------------------------
1062                                 Event Management
1063    -------------------------------------------------------------------------- */
1064 static struct acpi_ec_query_handler *
acpi_ec_get_query_handler_by_value(struct acpi_ec * ec,u8 value)1065 acpi_ec_get_query_handler_by_value(struct acpi_ec *ec, u8 value)
1066 {
1067 	struct acpi_ec_query_handler *handler;
1068 
1069 	mutex_lock(&ec->mutex);
1070 	list_for_each_entry(handler, &ec->list, node) {
1071 		if (value == handler->query_bit) {
1072 			kref_get(&handler->kref);
1073 			mutex_unlock(&ec->mutex);
1074 			return handler;
1075 		}
1076 	}
1077 	mutex_unlock(&ec->mutex);
1078 	return NULL;
1079 }
1080 
acpi_ec_query_handler_release(struct kref * kref)1081 static void acpi_ec_query_handler_release(struct kref *kref)
1082 {
1083 	struct acpi_ec_query_handler *handler =
1084 		container_of(kref, struct acpi_ec_query_handler, kref);
1085 
1086 	kfree(handler);
1087 }
1088 
acpi_ec_put_query_handler(struct acpi_ec_query_handler * handler)1089 static void acpi_ec_put_query_handler(struct acpi_ec_query_handler *handler)
1090 {
1091 	kref_put(&handler->kref, acpi_ec_query_handler_release);
1092 }
1093 
acpi_ec_add_query_handler(struct acpi_ec * ec,u8 query_bit,acpi_handle handle,acpi_ec_query_func func,void * data)1094 int acpi_ec_add_query_handler(struct acpi_ec *ec, u8 query_bit,
1095 			      acpi_handle handle, acpi_ec_query_func func,
1096 			      void *data)
1097 {
1098 	struct acpi_ec_query_handler *handler;
1099 
1100 	if (!handle && !func)
1101 		return -EINVAL;
1102 
1103 	handler = kzalloc(sizeof(*handler), GFP_KERNEL);
1104 	if (!handler)
1105 		return -ENOMEM;
1106 
1107 	handler->query_bit = query_bit;
1108 	handler->handle = handle;
1109 	handler->func = func;
1110 	handler->data = data;
1111 	mutex_lock(&ec->mutex);
1112 	kref_init(&handler->kref);
1113 	list_add(&handler->node, &ec->list);
1114 	mutex_unlock(&ec->mutex);
1115 
1116 	return 0;
1117 }
1118 EXPORT_SYMBOL_GPL(acpi_ec_add_query_handler);
1119 
acpi_ec_remove_query_handlers(struct acpi_ec * ec,bool remove_all,u8 query_bit)1120 static void acpi_ec_remove_query_handlers(struct acpi_ec *ec,
1121 					  bool remove_all, u8 query_bit)
1122 {
1123 	struct acpi_ec_query_handler *handler, *tmp;
1124 	LIST_HEAD(free_list);
1125 
1126 	mutex_lock(&ec->mutex);
1127 	list_for_each_entry_safe(handler, tmp, &ec->list, node) {
1128 		/*
1129 		 * When remove_all is false, only remove custom query handlers
1130 		 * which have handler->func set. This is done to preserve query
1131 		 * handlers discovered thru ACPI, as they should continue handling
1132 		 * EC queries.
1133 		 */
1134 		if (remove_all || (handler->func && handler->query_bit == query_bit)) {
1135 			list_del_init(&handler->node);
1136 			list_add(&handler->node, &free_list);
1137 
1138 		}
1139 	}
1140 	mutex_unlock(&ec->mutex);
1141 	list_for_each_entry_safe(handler, tmp, &free_list, node)
1142 		acpi_ec_put_query_handler(handler);
1143 }
1144 
acpi_ec_remove_query_handler(struct acpi_ec * ec,u8 query_bit)1145 void acpi_ec_remove_query_handler(struct acpi_ec *ec, u8 query_bit)
1146 {
1147 	acpi_ec_remove_query_handlers(ec, false, query_bit);
1148 	flush_workqueue(ec_query_wq);
1149 }
1150 EXPORT_SYMBOL_GPL(acpi_ec_remove_query_handler);
1151 
acpi_ec_event_processor(struct work_struct * work)1152 static void acpi_ec_event_processor(struct work_struct *work)
1153 {
1154 	struct acpi_ec_query *q = container_of(work, struct acpi_ec_query, work);
1155 	struct acpi_ec_query_handler *handler = q->handler;
1156 	struct acpi_ec *ec = q->ec;
1157 
1158 	ec_dbg_evt("Query(0x%02x) started", handler->query_bit);
1159 
1160 	if (handler->func)
1161 		handler->func(handler->data);
1162 	else if (handler->handle)
1163 		acpi_evaluate_object(handler->handle, NULL, NULL, NULL);
1164 
1165 	ec_dbg_evt("Query(0x%02x) stopped", handler->query_bit);
1166 
1167 	spin_lock_irq(&ec->lock);
1168 	ec->queries_in_progress--;
1169 	spin_unlock_irq(&ec->lock);
1170 
1171 	acpi_ec_put_query_handler(handler);
1172 	kfree(q);
1173 }
1174 
acpi_ec_create_query(struct acpi_ec * ec,u8 * pval)1175 static struct acpi_ec_query *acpi_ec_create_query(struct acpi_ec *ec, u8 *pval)
1176 {
1177 	struct acpi_ec_query *q;
1178 	struct transaction *t;
1179 
1180 	q = kzalloc(sizeof (struct acpi_ec_query), GFP_KERNEL);
1181 	if (!q)
1182 		return NULL;
1183 
1184 	INIT_WORK(&q->work, acpi_ec_event_processor);
1185 	t = &q->transaction;
1186 	t->command = ACPI_EC_COMMAND_QUERY;
1187 	t->rdata = pval;
1188 	t->rlen = 1;
1189 	q->ec = ec;
1190 	return q;
1191 }
1192 
acpi_ec_submit_query(struct acpi_ec * ec)1193 static int acpi_ec_submit_query(struct acpi_ec *ec)
1194 {
1195 	struct acpi_ec_query *q;
1196 	u8 value = 0;
1197 	int result;
1198 
1199 	q = acpi_ec_create_query(ec, &value);
1200 	if (!q)
1201 		return -ENOMEM;
1202 
1203 	/*
1204 	 * Query the EC to find out which _Qxx method we need to evaluate.
1205 	 * Note that successful completion of the query causes the ACPI_EC_SCI
1206 	 * bit to be cleared (and thus clearing the interrupt source).
1207 	 */
1208 	result = acpi_ec_transaction(ec, &q->transaction);
1209 	if (result)
1210 		goto err_exit;
1211 
1212 	if (!value) {
1213 		result = -ENODATA;
1214 		goto err_exit;
1215 	}
1216 
1217 	q->handler = acpi_ec_get_query_handler_by_value(ec, value);
1218 	if (!q->handler) {
1219 		result = -ENODATA;
1220 		goto err_exit;
1221 	}
1222 
1223 	/*
1224 	 * It is reported that _Qxx are evaluated in a parallel way on Windows:
1225 	 * https://bugzilla.kernel.org/show_bug.cgi?id=94411
1226 	 *
1227 	 * Put this log entry before queue_work() to make it appear in the log
1228 	 * before any other messages emitted during workqueue handling.
1229 	 */
1230 	ec_dbg_evt("Query(0x%02x) scheduled", value);
1231 
1232 	spin_lock_irq(&ec->lock);
1233 
1234 	ec->queries_in_progress++;
1235 	queue_work(ec_query_wq, &q->work);
1236 
1237 	spin_unlock_irq(&ec->lock);
1238 
1239 	return 0;
1240 
1241 err_exit:
1242 	kfree(q);
1243 
1244 	return result;
1245 }
1246 
acpi_ec_event_handler(struct work_struct * work)1247 static void acpi_ec_event_handler(struct work_struct *work)
1248 {
1249 	struct acpi_ec *ec = container_of(work, struct acpi_ec, work);
1250 
1251 	ec_dbg_evt("Event started");
1252 
1253 	spin_lock_irq(&ec->lock);
1254 
1255 	while (ec->events_to_process) {
1256 		spin_unlock_irq(&ec->lock);
1257 
1258 		acpi_ec_submit_query(ec);
1259 
1260 		spin_lock_irq(&ec->lock);
1261 
1262 		ec->events_to_process--;
1263 	}
1264 
1265 	/*
1266 	 * Before exit, make sure that the it will be possible to queue up the
1267 	 * event handling work again regardless of whether or not the query
1268 	 * queued up above is processed successfully.
1269 	 */
1270 	if (ec_event_clearing == ACPI_EC_EVT_TIMING_EVENT) {
1271 		bool guard_timeout;
1272 
1273 		acpi_ec_complete_event(ec);
1274 
1275 		ec_dbg_evt("Event stopped");
1276 
1277 		spin_unlock_irq(&ec->lock);
1278 
1279 		guard_timeout = !!ec_guard(ec);
1280 
1281 		spin_lock_irq(&ec->lock);
1282 
1283 		/* Take care of SCI_EVT unless someone else is doing that. */
1284 		if (guard_timeout && !ec->curr)
1285 			advance_transaction(ec, false);
1286 	} else {
1287 		acpi_ec_close_event(ec);
1288 
1289 		ec_dbg_evt("Event stopped");
1290 	}
1291 
1292 	ec->events_in_progress--;
1293 
1294 	spin_unlock_irq(&ec->lock);
1295 }
1296 
clear_gpe_and_advance_transaction(struct acpi_ec * ec,bool interrupt)1297 static void clear_gpe_and_advance_transaction(struct acpi_ec *ec, bool interrupt)
1298 {
1299 	/*
1300 	 * Clear GPE_STS upfront to allow subsequent hardware GPE_STS 0->1
1301 	 * changes to always trigger a GPE interrupt.
1302 	 *
1303 	 * GPE STS is a W1C register, which means:
1304 	 *
1305 	 * 1. Software can clear it without worrying about clearing the other
1306 	 *    GPEs' STS bits when the hardware sets them in parallel.
1307 	 *
1308 	 * 2. As long as software can ensure only clearing it when it is set,
1309 	 *    hardware won't set it in parallel.
1310 	 */
1311 	if (ec->gpe >= 0 && acpi_ec_gpe_status_set(ec))
1312 		acpi_clear_gpe(NULL, ec->gpe);
1313 
1314 	advance_transaction(ec, true);
1315 }
1316 
acpi_ec_handle_interrupt(struct acpi_ec * ec)1317 static void acpi_ec_handle_interrupt(struct acpi_ec *ec)
1318 {
1319 	unsigned long flags;
1320 
1321 	spin_lock_irqsave(&ec->lock, flags);
1322 
1323 	clear_gpe_and_advance_transaction(ec, true);
1324 
1325 	spin_unlock_irqrestore(&ec->lock, flags);
1326 }
1327 
acpi_ec_gpe_handler(acpi_handle gpe_device,u32 gpe_number,void * data)1328 static u32 acpi_ec_gpe_handler(acpi_handle gpe_device,
1329 			       u32 gpe_number, void *data)
1330 {
1331 	acpi_ec_handle_interrupt(data);
1332 	return ACPI_INTERRUPT_HANDLED;
1333 }
1334 
acpi_ec_irq_handler(int irq,void * data)1335 static irqreturn_t acpi_ec_irq_handler(int irq, void *data)
1336 {
1337 	acpi_ec_handle_interrupt(data);
1338 	return IRQ_HANDLED;
1339 }
1340 
1341 /* --------------------------------------------------------------------------
1342  *                           Address Space Management
1343  * -------------------------------------------------------------------------- */
1344 
1345 static acpi_status
acpi_ec_space_handler(u32 function,acpi_physical_address address,u32 bits,u64 * value64,void * handler_context,void * region_context)1346 acpi_ec_space_handler(u32 function, acpi_physical_address address,
1347 		      u32 bits, u64 *value64,
1348 		      void *handler_context, void *region_context)
1349 {
1350 	struct acpi_ec *ec = handler_context;
1351 	int result = 0, i, bytes = bits / 8;
1352 	u8 *value = (u8 *)value64;
1353 	u32 glk;
1354 
1355 	if ((address > 0xFF) || !value || !handler_context)
1356 		return AE_BAD_PARAMETER;
1357 
1358 	if (function != ACPI_READ && function != ACPI_WRITE)
1359 		return AE_BAD_PARAMETER;
1360 
1361 	mutex_lock(&ec->mutex);
1362 
1363 	if (ec->global_lock) {
1364 		acpi_status status;
1365 
1366 		status = acpi_acquire_global_lock(ACPI_EC_UDELAY_GLK, &glk);
1367 		if (ACPI_FAILURE(status)) {
1368 			result = -ENODEV;
1369 			goto unlock;
1370 		}
1371 	}
1372 
1373 	if (ec->busy_polling || bits > 8)
1374 		acpi_ec_burst_enable(ec);
1375 
1376 	for (i = 0; i < bytes; ++i, ++address, ++value) {
1377 		result = (function == ACPI_READ) ?
1378 			acpi_ec_read_unlocked(ec, address, value) :
1379 			acpi_ec_write_unlocked(ec, address, *value);
1380 		if (result < 0)
1381 			break;
1382 	}
1383 
1384 	if (ec->busy_polling || bits > 8)
1385 		acpi_ec_burst_disable(ec);
1386 
1387 	if (ec->global_lock)
1388 		acpi_release_global_lock(glk);
1389 
1390 unlock:
1391 	mutex_unlock(&ec->mutex);
1392 
1393 	switch (result) {
1394 	case -EINVAL:
1395 		return AE_BAD_PARAMETER;
1396 	case -ENODEV:
1397 		return AE_NOT_FOUND;
1398 	case -ETIME:
1399 		return AE_TIME;
1400 	case 0:
1401 		return AE_OK;
1402 	default:
1403 		return AE_ERROR;
1404 	}
1405 }
1406 
1407 /* --------------------------------------------------------------------------
1408  *                             Driver Interface
1409  * -------------------------------------------------------------------------- */
1410 
1411 static acpi_status
1412 ec_parse_io_ports(struct acpi_resource *resource, void *context);
1413 
acpi_ec_free(struct acpi_ec * ec)1414 static void acpi_ec_free(struct acpi_ec *ec)
1415 {
1416 	if (first_ec == ec)
1417 		first_ec = NULL;
1418 	if (boot_ec == ec)
1419 		boot_ec = NULL;
1420 	kfree(ec);
1421 }
1422 
acpi_ec_alloc(void)1423 static struct acpi_ec *acpi_ec_alloc(void)
1424 {
1425 	struct acpi_ec *ec = kzalloc(sizeof(struct acpi_ec), GFP_KERNEL);
1426 
1427 	if (!ec)
1428 		return NULL;
1429 	mutex_init(&ec->mutex);
1430 	init_waitqueue_head(&ec->wait);
1431 	INIT_LIST_HEAD(&ec->list);
1432 	spin_lock_init(&ec->lock);
1433 	INIT_WORK(&ec->work, acpi_ec_event_handler);
1434 	ec->timestamp = jiffies;
1435 	ec->busy_polling = true;
1436 	ec->polling_guard = 0;
1437 	ec->gpe = -1;
1438 	ec->irq = -1;
1439 	return ec;
1440 }
1441 
1442 static acpi_status
acpi_ec_register_query_methods(acpi_handle handle,u32 level,void * context,void ** return_value)1443 acpi_ec_register_query_methods(acpi_handle handle, u32 level,
1444 			       void *context, void **return_value)
1445 {
1446 	char node_name[5];
1447 	struct acpi_buffer buffer = { sizeof(node_name), node_name };
1448 	struct acpi_ec *ec = context;
1449 	int value = 0;
1450 	acpi_status status;
1451 
1452 	status = acpi_get_name(handle, ACPI_SINGLE_NAME, &buffer);
1453 
1454 	if (ACPI_SUCCESS(status) && sscanf(node_name, "_Q%x", &value) == 1)
1455 		acpi_ec_add_query_handler(ec, value, handle, NULL, NULL);
1456 	return AE_OK;
1457 }
1458 
1459 static acpi_status
ec_parse_device(acpi_handle handle,u32 Level,void * context,void ** retval)1460 ec_parse_device(acpi_handle handle, u32 Level, void *context, void **retval)
1461 {
1462 	acpi_status status;
1463 	unsigned long long tmp = 0;
1464 	struct acpi_ec *ec = context;
1465 
1466 	/* clear addr values, ec_parse_io_ports depend on it */
1467 	ec->command_addr = ec->data_addr = 0;
1468 
1469 	status = acpi_walk_resources(handle, METHOD_NAME__CRS,
1470 				     ec_parse_io_ports, ec);
1471 	if (ACPI_FAILURE(status))
1472 		return status;
1473 	if (ec->data_addr == 0 || ec->command_addr == 0)
1474 		return AE_OK;
1475 
1476 	/* Get GPE bit assignment (EC events). */
1477 	/* TODO: Add support for _GPE returning a package */
1478 	status = acpi_evaluate_integer(handle, "_GPE", NULL, &tmp);
1479 	if (ACPI_SUCCESS(status))
1480 		ec->gpe = tmp;
1481 	/*
1482 	 * Errors are non-fatal, allowing for ACPI Reduced Hardware
1483 	 * platforms which use GpioInt instead of GPE.
1484 	 */
1485 
1486 	/* Use the global lock for all EC transactions? */
1487 	tmp = 0;
1488 	acpi_evaluate_integer(handle, "_GLK", NULL, &tmp);
1489 	ec->global_lock = tmp;
1490 	ec->handle = handle;
1491 	return AE_CTRL_TERMINATE;
1492 }
1493 
install_gpe_event_handler(struct acpi_ec * ec)1494 static bool install_gpe_event_handler(struct acpi_ec *ec)
1495 {
1496 	acpi_status status;
1497 
1498 	status = acpi_install_gpe_raw_handler(NULL, ec->gpe,
1499 					      ACPI_GPE_EDGE_TRIGGERED,
1500 					      &acpi_ec_gpe_handler, ec);
1501 	if (ACPI_FAILURE(status))
1502 		return false;
1503 
1504 	if (test_bit(EC_FLAGS_STARTED, &ec->flags) && ec->reference_count >= 1)
1505 		acpi_ec_enable_gpe(ec, true);
1506 
1507 	return true;
1508 }
1509 
install_gpio_irq_event_handler(struct acpi_ec * ec)1510 static bool install_gpio_irq_event_handler(struct acpi_ec *ec)
1511 {
1512 	return request_threaded_irq(ec->irq, NULL, acpi_ec_irq_handler,
1513 				    IRQF_SHARED | IRQF_ONESHOT, "ACPI EC", ec) >= 0;
1514 }
1515 
1516 /**
1517  * ec_install_handlers - Install service callbacks and register query methods.
1518  * @ec: Target EC.
1519  * @device: ACPI device object corresponding to @ec.
1520  * @call_reg: If _REG should be called to notify OpRegion availability
1521  *
1522  * Install a handler for the EC address space type unless it has been installed
1523  * already.  If @device is not NULL, also look for EC query methods in the
1524  * namespace and register them, and install an event (either GPE or GPIO IRQ)
1525  * handler for the EC, if possible.
1526  *
1527  * Return:
1528  * -ENODEV if the address space handler cannot be installed, which means
1529  *  "unable to handle transactions",
1530  * -EPROBE_DEFER if GPIO IRQ acquisition needs to be deferred,
1531  * or 0 (success) otherwise.
1532  */
ec_install_handlers(struct acpi_ec * ec,struct acpi_device * device,bool call_reg)1533 static int ec_install_handlers(struct acpi_ec *ec, struct acpi_device *device,
1534 			       bool call_reg)
1535 {
1536 	acpi_status status;
1537 
1538 	acpi_ec_start(ec, false);
1539 
1540 	if (!test_bit(EC_FLAGS_EC_HANDLER_INSTALLED, &ec->flags)) {
1541 		acpi_handle scope_handle = ec == first_ec ? ACPI_ROOT_OBJECT : ec->handle;
1542 
1543 		acpi_ec_enter_noirq(ec);
1544 		status = acpi_install_address_space_handler_no_reg(scope_handle,
1545 								   ACPI_ADR_SPACE_EC,
1546 								   &acpi_ec_space_handler,
1547 								   NULL, ec);
1548 		if (ACPI_FAILURE(status)) {
1549 			acpi_ec_stop(ec, false);
1550 			return -ENODEV;
1551 		}
1552 		set_bit(EC_FLAGS_EC_HANDLER_INSTALLED, &ec->flags);
1553 	}
1554 
1555 	if (call_reg && !test_bit(EC_FLAGS_EC_REG_CALLED, &ec->flags)) {
1556 		acpi_execute_reg_methods(ec->handle, ACPI_UINT32_MAX, ACPI_ADR_SPACE_EC);
1557 		set_bit(EC_FLAGS_EC_REG_CALLED, &ec->flags);
1558 	}
1559 
1560 	if (!device)
1561 		return 0;
1562 
1563 	if (ec->gpe < 0) {
1564 		/* ACPI reduced hardware platforms use a GpioInt from _CRS. */
1565 		int irq = acpi_dev_gpio_irq_get(device, 0);
1566 		/*
1567 		 * Bail out right away for deferred probing or complete the
1568 		 * initialization regardless of any other errors.
1569 		 */
1570 		if (irq == -EPROBE_DEFER)
1571 			return -EPROBE_DEFER;
1572 		else if (irq >= 0)
1573 			ec->irq = irq;
1574 	}
1575 
1576 	if (!test_bit(EC_FLAGS_QUERY_METHODS_INSTALLED, &ec->flags)) {
1577 		/* Find and register all query methods */
1578 		acpi_walk_namespace(ACPI_TYPE_METHOD, ec->handle, 1,
1579 				    acpi_ec_register_query_methods,
1580 				    NULL, ec, NULL);
1581 		set_bit(EC_FLAGS_QUERY_METHODS_INSTALLED, &ec->flags);
1582 	}
1583 	if (!test_bit(EC_FLAGS_EVENT_HANDLER_INSTALLED, &ec->flags)) {
1584 		bool ready = false;
1585 
1586 		if (ec->gpe >= 0)
1587 			ready = install_gpe_event_handler(ec);
1588 		else if (ec->irq >= 0)
1589 			ready = install_gpio_irq_event_handler(ec);
1590 
1591 		if (ready) {
1592 			set_bit(EC_FLAGS_EVENT_HANDLER_INSTALLED, &ec->flags);
1593 			acpi_ec_leave_noirq(ec);
1594 		}
1595 		/*
1596 		 * Failures to install an event handler are not fatal, because
1597 		 * the EC can be polled for events.
1598 		 */
1599 	}
1600 	/* EC is fully operational, allow queries */
1601 	acpi_ec_enable_event(ec);
1602 
1603 	return 0;
1604 }
1605 
ec_remove_handlers(struct acpi_ec * ec)1606 static void ec_remove_handlers(struct acpi_ec *ec)
1607 {
1608 	acpi_handle scope_handle = ec == first_ec ? ACPI_ROOT_OBJECT : ec->handle;
1609 
1610 	if (test_bit(EC_FLAGS_EC_HANDLER_INSTALLED, &ec->flags)) {
1611 		if (ACPI_FAILURE(acpi_remove_address_space_handler(
1612 						scope_handle,
1613 						ACPI_ADR_SPACE_EC,
1614 						&acpi_ec_space_handler)))
1615 			pr_err("failed to remove space handler\n");
1616 		clear_bit(EC_FLAGS_EC_HANDLER_INSTALLED, &ec->flags);
1617 	}
1618 
1619 	/*
1620 	 * Stops handling the EC transactions after removing the operation
1621 	 * region handler. This is required because _REG(DISCONNECT)
1622 	 * invoked during the removal can result in new EC transactions.
1623 	 *
1624 	 * Flushes the EC requests and thus disables the GPE before
1625 	 * removing the GPE handler. This is required by the current ACPICA
1626 	 * GPE core. ACPICA GPE core will automatically disable a GPE when
1627 	 * it is indicated but there is no way to handle it. So the drivers
1628 	 * must disable the GPEs prior to removing the GPE handlers.
1629 	 */
1630 	acpi_ec_stop(ec, false);
1631 
1632 	if (test_bit(EC_FLAGS_EVENT_HANDLER_INSTALLED, &ec->flags)) {
1633 		if (ec->gpe >= 0 &&
1634 		    ACPI_FAILURE(acpi_remove_gpe_handler(NULL, ec->gpe,
1635 				 &acpi_ec_gpe_handler)))
1636 			pr_err("failed to remove gpe handler\n");
1637 
1638 		if (ec->irq >= 0)
1639 			free_irq(ec->irq, ec);
1640 
1641 		clear_bit(EC_FLAGS_EVENT_HANDLER_INSTALLED, &ec->flags);
1642 	}
1643 	if (test_bit(EC_FLAGS_QUERY_METHODS_INSTALLED, &ec->flags)) {
1644 		acpi_ec_remove_query_handlers(ec, true, 0);
1645 		clear_bit(EC_FLAGS_QUERY_METHODS_INSTALLED, &ec->flags);
1646 	}
1647 }
1648 
acpi_ec_setup(struct acpi_ec * ec,struct acpi_device * device,bool call_reg)1649 static int acpi_ec_setup(struct acpi_ec *ec, struct acpi_device *device, bool call_reg)
1650 {
1651 	int ret;
1652 
1653 	/* First EC capable of handling transactions */
1654 	if (!first_ec)
1655 		first_ec = ec;
1656 
1657 	ret = ec_install_handlers(ec, device, call_reg);
1658 	if (ret) {
1659 		if (ec == first_ec)
1660 			first_ec = NULL;
1661 
1662 		return ret;
1663 	}
1664 
1665 	pr_info("EC_CMD/EC_SC=0x%lx, EC_DATA=0x%lx\n", ec->command_addr,
1666 		ec->data_addr);
1667 
1668 	if (test_bit(EC_FLAGS_EVENT_HANDLER_INSTALLED, &ec->flags)) {
1669 		if (ec->gpe >= 0)
1670 			pr_info("GPE=0x%x\n", ec->gpe);
1671 		else
1672 			pr_info("IRQ=%d\n", ec->irq);
1673 	}
1674 
1675 	return ret;
1676 }
1677 
acpi_ec_probe(struct platform_device * pdev)1678 static int acpi_ec_probe(struct platform_device *pdev)
1679 {
1680 	struct acpi_device *device = ACPI_COMPANION(&pdev->dev);
1681 	struct acpi_ec *ec;
1682 	int ret;
1683 
1684 	strscpy(acpi_device_name(device), ACPI_EC_DEVICE_NAME);
1685 	strscpy(acpi_device_class(device), ACPI_EC_CLASS);
1686 
1687 	if (boot_ec && (boot_ec->handle == device->handle ||
1688 	    !strcmp(acpi_device_hid(device), ACPI_ECDT_HID))) {
1689 		/* Fast path: this device corresponds to the boot EC. */
1690 		ec = boot_ec;
1691 	} else {
1692 		acpi_status status;
1693 
1694 		ec = acpi_ec_alloc();
1695 		if (!ec)
1696 			return -ENOMEM;
1697 
1698 		status = ec_parse_device(device->handle, 0, ec, NULL);
1699 		if (status != AE_CTRL_TERMINATE) {
1700 			ret = -EINVAL;
1701 			goto err;
1702 		}
1703 
1704 		if (boot_ec && ec->command_addr == boot_ec->command_addr &&
1705 		    ec->data_addr == boot_ec->data_addr) {
1706 			/*
1707 			 * Trust PNP0C09 namespace location rather than ECDT ID.
1708 			 * But trust ECDT GPE rather than _GPE because of ASUS
1709 			 * quirks. So do not change boot_ec->gpe to ec->gpe,
1710 			 * except when the TRUST_DSDT_GPE quirk is set.
1711 			 */
1712 			boot_ec->handle = ec->handle;
1713 
1714 			if (EC_FLAGS_TRUST_DSDT_GPE)
1715 				boot_ec->gpe = ec->gpe;
1716 
1717 			acpi_handle_debug(ec->handle, "duplicated.\n");
1718 			acpi_ec_free(ec);
1719 			ec = boot_ec;
1720 		}
1721 	}
1722 
1723 	ret = acpi_ec_setup(ec, device, true);
1724 	if (ret)
1725 		goto err;
1726 
1727 	if (ec == boot_ec)
1728 		acpi_handle_info(boot_ec->handle,
1729 				 "Boot %s EC initialization complete\n",
1730 				 boot_ec_is_ecdt ? "ECDT" : "DSDT");
1731 
1732 	acpi_handle_info(ec->handle,
1733 			 "EC: Used to handle transactions and events\n");
1734 
1735 	platform_set_drvdata(pdev, ec);
1736 
1737 	ret = !!request_region(ec->data_addr, 1, "EC data");
1738 	WARN(!ret, "Could not request EC data io port 0x%lx", ec->data_addr);
1739 	ret = !!request_region(ec->command_addr, 1, "EC cmd");
1740 	WARN(!ret, "Could not request EC cmd io port 0x%lx", ec->command_addr);
1741 
1742 	/* Reprobe devices depending on the EC */
1743 	acpi_dev_clear_dependencies(device);
1744 
1745 	acpi_handle_debug(ec->handle, "enumerated.\n");
1746 	return 0;
1747 
1748 err:
1749 	if (ec != boot_ec)
1750 		acpi_ec_free(ec);
1751 
1752 	return ret;
1753 }
1754 
acpi_ec_remove(struct platform_device * pdev)1755 static void acpi_ec_remove(struct platform_device *pdev)
1756 {
1757 	struct acpi_ec *ec = platform_get_drvdata(pdev);
1758 
1759 	release_region(ec->data_addr, 1);
1760 	release_region(ec->command_addr, 1);
1761 	if (ec != boot_ec) {
1762 		ec_remove_handlers(ec);
1763 		acpi_ec_free(ec);
1764 	}
1765 }
1766 
acpi_ec_register_opregions(struct acpi_device * adev)1767 void acpi_ec_register_opregions(struct acpi_device *adev)
1768 {
1769 	if (first_ec && first_ec->handle != adev->handle)
1770 		acpi_execute_reg_methods(adev->handle, 1, ACPI_ADR_SPACE_EC);
1771 }
1772 
1773 static acpi_status
ec_parse_io_ports(struct acpi_resource * resource,void * context)1774 ec_parse_io_ports(struct acpi_resource *resource, void *context)
1775 {
1776 	struct acpi_ec *ec = context;
1777 
1778 	if (resource->type != ACPI_RESOURCE_TYPE_IO)
1779 		return AE_OK;
1780 
1781 	/*
1782 	 * The first address region returned is the data port, and
1783 	 * the second address region returned is the status/command
1784 	 * port.
1785 	 */
1786 	if (ec->data_addr == 0)
1787 		ec->data_addr = resource->data.io.minimum;
1788 	else if (ec->command_addr == 0)
1789 		ec->command_addr = resource->data.io.minimum;
1790 	else
1791 		return AE_CTRL_TERMINATE;
1792 
1793 	return AE_OK;
1794 }
1795 
1796 static const struct acpi_device_id ec_device_ids[] = {
1797 	{"PNP0C09", 0},
1798 	{ACPI_ECDT_HID, 0},
1799 	{"", 0},
1800 };
1801 
1802 /*
1803  * This function is not Windows-compatible as Windows never enumerates the
1804  * namespace EC before the main ACPI device enumeration process. It is
1805  * retained for historical reason and will be deprecated in the future.
1806  */
acpi_ec_dsdt_probe(void)1807 void __init acpi_ec_dsdt_probe(void)
1808 {
1809 	struct acpi_ec *ec;
1810 	acpi_status status;
1811 	int ret;
1812 
1813 	/*
1814 	 * If a platform has ECDT, there is no need to proceed as the
1815 	 * following probe is not a part of the ACPI device enumeration,
1816 	 * executing _STA is not safe, and thus this probe may risk of
1817 	 * picking up an invalid EC device.
1818 	 */
1819 	if (boot_ec)
1820 		return;
1821 
1822 	ec = acpi_ec_alloc();
1823 	if (!ec)
1824 		return;
1825 
1826 	/*
1827 	 * At this point, the namespace is initialized, so start to find
1828 	 * the namespace objects.
1829 	 */
1830 	status = acpi_get_devices(ec_device_ids[0].id, ec_parse_device, ec, NULL);
1831 	if (ACPI_FAILURE(status) || !ec->handle) {
1832 		acpi_ec_free(ec);
1833 		return;
1834 	}
1835 
1836 	/*
1837 	 * When the DSDT EC is available, always re-configure boot EC to
1838 	 * have _REG evaluated. _REG can only be evaluated after the
1839 	 * namespace initialization.
1840 	 * At this point, the GPE is not fully initialized, so do not to
1841 	 * handle the events.
1842 	 */
1843 	ret = acpi_ec_setup(ec, NULL, true);
1844 	if (ret) {
1845 		acpi_ec_free(ec);
1846 		return;
1847 	}
1848 
1849 	boot_ec = ec;
1850 
1851 	acpi_handle_info(ec->handle,
1852 			 "Boot DSDT EC used to handle transactions\n");
1853 }
1854 
1855 /*
1856  * acpi_ec_ecdt_start - Finalize the boot ECDT EC initialization.
1857  *
1858  * First, look for an ACPI handle for the boot ECDT EC if acpi_ec_add() has not
1859  * found a matching object in the namespace.
1860  *
1861  * Next, in case the DSDT EC is not functioning, it is still necessary to
1862  * provide a functional ECDT EC to handle events, so add an extra device object
1863  * to represent it (see https://bugzilla.kernel.org/show_bug.cgi?id=115021).
1864  *
1865  * This is useful on platforms with valid ECDT and invalid DSDT EC settings,
1866  * like ASUS X550ZE (see https://bugzilla.kernel.org/show_bug.cgi?id=196847).
1867  */
acpi_ec_ecdt_start(void)1868 static void __init acpi_ec_ecdt_start(void)
1869 {
1870 	struct acpi_table_ecdt *ecdt_ptr;
1871 	acpi_handle handle;
1872 	acpi_status status;
1873 
1874 	/* Bail out if a matching EC has been found in the namespace. */
1875 	if (!boot_ec || boot_ec->handle != ACPI_ROOT_OBJECT)
1876 		return;
1877 
1878 	/* Look up the object pointed to from the ECDT in the namespace. */
1879 	status = acpi_get_table(ACPI_SIG_ECDT, 1,
1880 				(struct acpi_table_header **)&ecdt_ptr);
1881 	if (ACPI_FAILURE(status))
1882 		return;
1883 
1884 	status = acpi_get_handle(NULL, ecdt_ptr->id, &handle);
1885 	if (ACPI_SUCCESS(status)) {
1886 		boot_ec->handle = handle;
1887 
1888 		/* Add a special ACPI device object to represent the boot EC. */
1889 		acpi_bus_register_early_device(ACPI_BUS_TYPE_ECDT_EC);
1890 	}
1891 
1892 	acpi_put_table((struct acpi_table_header *)ecdt_ptr);
1893 }
1894 
1895 /*
1896  * On some hardware it is necessary to clear events accumulated by the EC during
1897  * sleep. These ECs stop reporting GPEs until they are manually polled, if too
1898  * many events are accumulated. (e.g. Samsung Series 5/9 notebooks)
1899  *
1900  * https://bugzilla.kernel.org/show_bug.cgi?id=44161
1901  *
1902  * Ideally, the EC should also be instructed NOT to accumulate events during
1903  * sleep (which Windows seems to do somehow), but the interface to control this
1904  * behaviour is not known at this time.
1905  *
1906  * Models known to be affected are Samsung 530Uxx/535Uxx/540Uxx/550Pxx/900Xxx,
1907  * however it is very likely that other Samsung models are affected.
1908  *
1909  * On systems which don't accumulate _Q events during sleep, this extra check
1910  * should be harmless.
1911  */
ec_clear_on_resume(const struct dmi_system_id * id)1912 static int ec_clear_on_resume(const struct dmi_system_id *id)
1913 {
1914 	pr_debug("Detected system needing EC poll on resume.\n");
1915 	EC_FLAGS_CLEAR_ON_RESUME = 1;
1916 	ec_event_clearing = ACPI_EC_EVT_TIMING_STATUS;
1917 	return 0;
1918 }
1919 
1920 /*
1921  * Some ECDTs contain wrong register addresses.
1922  * MSI MS-171F
1923  * https://bugzilla.kernel.org/show_bug.cgi?id=12461
1924  */
ec_correct_ecdt(const struct dmi_system_id * id)1925 static int ec_correct_ecdt(const struct dmi_system_id *id)
1926 {
1927 	pr_debug("Detected system needing ECDT address correction.\n");
1928 	EC_FLAGS_CORRECT_ECDT = 1;
1929 	return 0;
1930 }
1931 
1932 /*
1933  * Some ECDTs contain wrong GPE setting, but they share the same port addresses
1934  * with DSDT EC, don't duplicate the DSDT EC with ECDT EC in this case.
1935  * https://bugzilla.kernel.org/show_bug.cgi?id=209989
1936  */
ec_honor_dsdt_gpe(const struct dmi_system_id * id)1937 static int ec_honor_dsdt_gpe(const struct dmi_system_id *id)
1938 {
1939 	pr_debug("Detected system needing DSDT GPE setting.\n");
1940 	EC_FLAGS_TRUST_DSDT_GPE = 1;
1941 	return 0;
1942 }
1943 
1944 static const struct dmi_system_id ec_dmi_table[] __initconst = {
1945 	{
1946 		/*
1947 		 * MSI MS-171F
1948 		 * https://bugzilla.kernel.org/show_bug.cgi?id=12461
1949 		 */
1950 		.callback = ec_correct_ecdt,
1951 		.matches = {
1952 			DMI_MATCH(DMI_SYS_VENDOR, "Micro-Star"),
1953 			DMI_MATCH(DMI_PRODUCT_NAME, "MS-171F"),
1954 		},
1955 	},
1956 	{
1957 		/*
1958 		 * HP Pavilion Gaming Laptop 15-cx0xxx
1959 		 * https://bugzilla.kernel.org/show_bug.cgi?id=209989
1960 		 */
1961 		.callback = ec_honor_dsdt_gpe,
1962 		.matches = {
1963 			DMI_MATCH(DMI_SYS_VENDOR, "HP"),
1964 			DMI_MATCH(DMI_PRODUCT_NAME, "HP Pavilion Gaming Laptop 15-cx0xxx"),
1965 		},
1966 	},
1967 	{
1968 		/*
1969 		 * HP Pavilion Gaming Laptop 15-cx0041ur
1970 		 */
1971 		.callback = ec_honor_dsdt_gpe,
1972 		.matches = {
1973 			DMI_MATCH(DMI_SYS_VENDOR, "HP"),
1974 			DMI_MATCH(DMI_PRODUCT_NAME, "HP 15-cx0041ur"),
1975 		},
1976 	},
1977 	{
1978 		/*
1979 		 * HP Pavilion Gaming Laptop 15-dk1xxx
1980 		 * https://github.com/systemd/systemd/issues/28942
1981 		 */
1982 		.callback = ec_honor_dsdt_gpe,
1983 		.matches = {
1984 			DMI_MATCH(DMI_SYS_VENDOR, "HP"),
1985 			DMI_MATCH(DMI_PRODUCT_NAME, "HP Pavilion Gaming Laptop 15-dk1xxx"),
1986 		},
1987 	},
1988 	{
1989 		/*
1990 		 * HP 250 G7 Notebook PC
1991 		 */
1992 		.callback = ec_honor_dsdt_gpe,
1993 		.matches = {
1994 			DMI_MATCH(DMI_SYS_VENDOR, "HP"),
1995 			DMI_MATCH(DMI_PRODUCT_NAME, "HP 250 G7 Notebook PC"),
1996 		},
1997 	},
1998 	{
1999 		/*
2000 		 * Samsung hardware
2001 		 * https://bugzilla.kernel.org/show_bug.cgi?id=44161
2002 		 */
2003 		.callback = ec_clear_on_resume,
2004 		.matches = {
2005 			DMI_MATCH(DMI_SYS_VENDOR, "SAMSUNG ELECTRONICS CO., LTD."),
2006 		},
2007 	},
2008 	{}
2009 };
2010 
acpi_ec_ecdt_probe(void)2011 void __init acpi_ec_ecdt_probe(void)
2012 {
2013 	struct acpi_table_ecdt *ecdt_ptr;
2014 	struct acpi_ec *ec;
2015 	acpi_status status;
2016 	int ret;
2017 
2018 	/* Generate a boot ec context. */
2019 	dmi_check_system(ec_dmi_table);
2020 	status = acpi_get_table(ACPI_SIG_ECDT, 1,
2021 				(struct acpi_table_header **)&ecdt_ptr);
2022 	if (ACPI_FAILURE(status))
2023 		return;
2024 
2025 	if (!ecdt_ptr->control.address || !ecdt_ptr->data.address) {
2026 		/*
2027 		 * Asus X50GL:
2028 		 * https://bugzilla.kernel.org/show_bug.cgi?id=11880
2029 		 */
2030 		goto out;
2031 	}
2032 
2033 	if (!strlen(ecdt_ptr->id)) {
2034 		/*
2035 		 * The ECDT table on some MSI notebooks contains invalid data, together
2036 		 * with an empty ID string ("").
2037 		 *
2038 		 * Section 5.2.15 of the ACPI specification requires the ID string to be
2039 		 * a "fully qualified reference to the (...) embedded controller device",
2040 		 * so this string always has to start with a backslash.
2041 		 *
2042 		 * However some ThinkBook machines have a ECDT table with a valid EC
2043 		 * description but an invalid ID string ("_SB.PC00.LPCB.EC0").
2044 		 *
2045 		 * Because of this we only check if the ID string is empty in order to
2046 		 * avoid the obvious cases.
2047 		 */
2048 		pr_err(FW_BUG "Ignoring ECDT due to empty ID string\n");
2049 		goto out;
2050 	}
2051 
2052 	ec = acpi_ec_alloc();
2053 	if (!ec)
2054 		goto out;
2055 
2056 	if (EC_FLAGS_CORRECT_ECDT) {
2057 		ec->command_addr = ecdt_ptr->data.address;
2058 		ec->data_addr = ecdt_ptr->control.address;
2059 	} else {
2060 		ec->command_addr = ecdt_ptr->control.address;
2061 		ec->data_addr = ecdt_ptr->data.address;
2062 	}
2063 
2064 	/*
2065 	 * Ignore the GPE value on Reduced Hardware platforms.
2066 	 * Some products have this set to an erroneous value.
2067 	 */
2068 	if (!acpi_gbl_reduced_hardware)
2069 		ec->gpe = ecdt_ptr->gpe;
2070 
2071 	ec->handle = ACPI_ROOT_OBJECT;
2072 
2073 	/*
2074 	 * At this point, the namespace is not initialized, so do not find
2075 	 * the namespace objects, or handle the events.
2076 	 */
2077 	ret = acpi_ec_setup(ec, NULL, false);
2078 	if (ret) {
2079 		acpi_ec_free(ec);
2080 		goto out;
2081 	}
2082 
2083 	boot_ec = ec;
2084 	boot_ec_is_ecdt = true;
2085 
2086 	pr_info("Boot ECDT EC used to handle transactions\n");
2087 
2088 out:
2089 	acpi_put_table((struct acpi_table_header *)ecdt_ptr);
2090 }
2091 
2092 #ifdef CONFIG_PM_SLEEP
acpi_ec_suspend(struct device * dev)2093 static int acpi_ec_suspend(struct device *dev)
2094 {
2095 	struct acpi_ec *ec = dev_get_drvdata(dev);
2096 
2097 	if (!pm_suspend_no_platform() && ec_freeze_events)
2098 		acpi_ec_disable_event(ec);
2099 	return 0;
2100 }
2101 
acpi_ec_suspend_noirq(struct device * dev)2102 static int acpi_ec_suspend_noirq(struct device *dev)
2103 {
2104 	struct acpi_ec *ec = dev_get_drvdata(dev);
2105 
2106 	/*
2107 	 * The SCI handler doesn't run at this point, so the GPE can be
2108 	 * masked at the low level without side effects.
2109 	 */
2110 	if (ec_no_wakeup && test_bit(EC_FLAGS_STARTED, &ec->flags) &&
2111 	    ec->gpe >= 0 && ec->reference_count >= 1)
2112 		acpi_set_gpe(NULL, ec->gpe, ACPI_GPE_DISABLE);
2113 
2114 	acpi_ec_enter_noirq(ec);
2115 
2116 	return 0;
2117 }
2118 
acpi_ec_resume_noirq(struct device * dev)2119 static int acpi_ec_resume_noirq(struct device *dev)
2120 {
2121 	struct acpi_ec *ec = dev_get_drvdata(dev);
2122 
2123 	acpi_ec_leave_noirq(ec);
2124 
2125 	if (ec_no_wakeup && test_bit(EC_FLAGS_STARTED, &ec->flags) &&
2126 	    ec->gpe >= 0 && ec->reference_count >= 1)
2127 		acpi_set_gpe(NULL, ec->gpe, ACPI_GPE_ENABLE);
2128 
2129 	return 0;
2130 }
2131 
acpi_ec_resume(struct device * dev)2132 static int acpi_ec_resume(struct device *dev)
2133 {
2134 	struct acpi_ec *ec = dev_get_drvdata(dev);
2135 
2136 	acpi_ec_enable_event(ec);
2137 	return 0;
2138 }
2139 
acpi_ec_mark_gpe_for_wake(void)2140 void acpi_ec_mark_gpe_for_wake(void)
2141 {
2142 	if (first_ec && !ec_no_wakeup)
2143 		acpi_mark_gpe_for_wake(NULL, first_ec->gpe);
2144 }
2145 EXPORT_SYMBOL_GPL(acpi_ec_mark_gpe_for_wake);
2146 
acpi_ec_set_gpe_wake_mask(u8 action)2147 void acpi_ec_set_gpe_wake_mask(u8 action)
2148 {
2149 	if (pm_suspend_no_platform() && first_ec && !ec_no_wakeup)
2150 		acpi_set_gpe_wake_mask(NULL, first_ec->gpe, action);
2151 }
2152 
acpi_ec_work_in_progress(struct acpi_ec * ec)2153 static bool acpi_ec_work_in_progress(struct acpi_ec *ec)
2154 {
2155 	return ec->events_in_progress + ec->queries_in_progress > 0;
2156 }
2157 
acpi_ec_dispatch_gpe(void)2158 bool acpi_ec_dispatch_gpe(void)
2159 {
2160 	bool work_in_progress = false;
2161 
2162 	if (!first_ec)
2163 		return acpi_any_gpe_status_set(U32_MAX);
2164 
2165 	/*
2166 	 * Report wakeup if the status bit is set for any enabled GPE other
2167 	 * than the EC one.
2168 	 */
2169 	if (acpi_any_gpe_status_set(first_ec->gpe))
2170 		return true;
2171 
2172 	/*
2173 	 * Cancel the SCI wakeup and process all pending events in case there
2174 	 * are any wakeup ones in there.
2175 	 *
2176 	 * Note that if any non-EC GPEs are active at this point, the SCI will
2177 	 * retrigger after the rearming in acpi_s2idle_wake(), so no events
2178 	 * should be missed by canceling the wakeup here.
2179 	 */
2180 	pm_system_cancel_wakeup();
2181 
2182 	/*
2183 	 * Dispatch the EC GPE in-band, but do not report wakeup in any case
2184 	 * to allow the caller to process events properly after that.
2185 	 */
2186 	spin_lock_irq(&first_ec->lock);
2187 
2188 	if (acpi_ec_gpe_status_set(first_ec)) {
2189 		pm_pr_dbg("ACPI EC GPE status set\n");
2190 
2191 		clear_gpe_and_advance_transaction(first_ec, false);
2192 		work_in_progress = acpi_ec_work_in_progress(first_ec);
2193 	}
2194 
2195 	spin_unlock_irq(&first_ec->lock);
2196 
2197 	if (!work_in_progress)
2198 		return false;
2199 
2200 	pm_pr_dbg("ACPI EC GPE dispatched\n");
2201 
2202 	/* Drain EC work. */
2203 	do {
2204 		acpi_ec_flush_work();
2205 
2206 		pm_pr_dbg("ACPI EC work flushed\n");
2207 
2208 		spin_lock_irq(&first_ec->lock);
2209 
2210 		work_in_progress = acpi_ec_work_in_progress(first_ec);
2211 
2212 		spin_unlock_irq(&first_ec->lock);
2213 	} while (work_in_progress && !pm_wakeup_pending());
2214 
2215 	return false;
2216 }
2217 #endif /* CONFIG_PM_SLEEP */
2218 
2219 static const struct dev_pm_ops acpi_ec_pm = {
2220 	SET_NOIRQ_SYSTEM_SLEEP_PM_OPS(acpi_ec_suspend_noirq, acpi_ec_resume_noirq)
2221 	SET_SYSTEM_SLEEP_PM_OPS(acpi_ec_suspend, acpi_ec_resume)
2222 };
2223 
param_set_event_clearing(const char * val,const struct kernel_param * kp)2224 static int param_set_event_clearing(const char *val,
2225 				    const struct kernel_param *kp)
2226 {
2227 	int result = 0;
2228 
2229 	if (!strncmp(val, "status", sizeof("status") - 1)) {
2230 		ec_event_clearing = ACPI_EC_EVT_TIMING_STATUS;
2231 		pr_info("Assuming SCI_EVT clearing on EC_SC accesses\n");
2232 	} else if (!strncmp(val, "query", sizeof("query") - 1)) {
2233 		ec_event_clearing = ACPI_EC_EVT_TIMING_QUERY;
2234 		pr_info("Assuming SCI_EVT clearing on QR_EC writes\n");
2235 	} else if (!strncmp(val, "event", sizeof("event") - 1)) {
2236 		ec_event_clearing = ACPI_EC_EVT_TIMING_EVENT;
2237 		pr_info("Assuming SCI_EVT clearing on event reads\n");
2238 	} else
2239 		result = -EINVAL;
2240 	return result;
2241 }
2242 
param_get_event_clearing(char * buffer,const struct kernel_param * kp)2243 static int param_get_event_clearing(char *buffer,
2244 				    const struct kernel_param *kp)
2245 {
2246 	switch (ec_event_clearing) {
2247 	case ACPI_EC_EVT_TIMING_STATUS:
2248 		return sprintf(buffer, "status\n");
2249 	case ACPI_EC_EVT_TIMING_QUERY:
2250 		return sprintf(buffer, "query\n");
2251 	case ACPI_EC_EVT_TIMING_EVENT:
2252 		return sprintf(buffer, "event\n");
2253 	default:
2254 		return sprintf(buffer, "invalid\n");
2255 	}
2256 	return 0;
2257 }
2258 
2259 module_param_call(ec_event_clearing, param_set_event_clearing, param_get_event_clearing,
2260 		  NULL, 0644);
2261 MODULE_PARM_DESC(ec_event_clearing, "Assumed SCI_EVT clearing timing");
2262 
2263 static struct platform_driver acpi_ec_driver = {
2264 	.probe = acpi_ec_probe,
2265 	.remove = acpi_ec_remove,
2266 	.driver = {
2267 		.name = "acpi-ec",
2268 		.acpi_match_table = ec_device_ids,
2269 		.pm = &acpi_ec_pm,
2270 	},
2271 };
2272 
acpi_ec_destroy_workqueues(void)2273 static void acpi_ec_destroy_workqueues(void)
2274 {
2275 	if (ec_wq) {
2276 		destroy_workqueue(ec_wq);
2277 		ec_wq = NULL;
2278 	}
2279 	if (ec_query_wq) {
2280 		destroy_workqueue(ec_query_wq);
2281 		ec_query_wq = NULL;
2282 	}
2283 }
2284 
acpi_ec_init_workqueues(void)2285 static int acpi_ec_init_workqueues(void)
2286 {
2287 	if (!ec_wq)
2288 		ec_wq = alloc_ordered_workqueue("kec", 0);
2289 
2290 	if (!ec_query_wq)
2291 		ec_query_wq = alloc_workqueue("kec_query", WQ_PERCPU,
2292 					      ec_max_queries);
2293 
2294 	if (!ec_wq || !ec_query_wq) {
2295 		acpi_ec_destroy_workqueues();
2296 		return -ENODEV;
2297 	}
2298 	return 0;
2299 }
2300 
2301 static const struct dmi_system_id acpi_ec_no_wakeup[] = {
2302 	{
2303 		.matches = {
2304 			DMI_MATCH(DMI_SYS_VENDOR, "LENOVO"),
2305 			DMI_MATCH(DMI_PRODUCT_FAMILY, "Thinkpad X1 Carbon 6th"),
2306 		},
2307 	},
2308 	{
2309 		.matches = {
2310 			DMI_MATCH(DMI_SYS_VENDOR, "LENOVO"),
2311 			DMI_MATCH(DMI_PRODUCT_FAMILY, "ThinkPad X1 Yoga 3rd"),
2312 		},
2313 	},
2314 	{
2315 		.matches = {
2316 			DMI_MATCH(DMI_SYS_VENDOR, "HP"),
2317 			DMI_MATCH(DMI_PRODUCT_FAMILY, "103C_5336AN HP ZHAN 66 Pro"),
2318 		},
2319 	},
2320 	/*
2321 	 * Lenovo Legion Go S; touchscreen blocks HW sleep when woken up from EC
2322 	 * https://gitlab.freedesktop.org/drm/amd/-/issues/3929
2323 	 */
2324 	{
2325 		.matches = {
2326 			DMI_MATCH(DMI_BOARD_VENDOR, "LENOVO"),
2327 			DMI_MATCH(DMI_PRODUCT_NAME, "83L3"),
2328 		}
2329 	},
2330 	{
2331 		.matches = {
2332 			DMI_MATCH(DMI_BOARD_VENDOR, "LENOVO"),
2333 			DMI_MATCH(DMI_PRODUCT_NAME, "83N6"),
2334 		}
2335 	},
2336 	{
2337 		.matches = {
2338 			DMI_MATCH(DMI_BOARD_VENDOR, "LENOVO"),
2339 			DMI_MATCH(DMI_PRODUCT_NAME, "83Q2"),
2340 		}
2341 	},
2342 	{
2343 		.matches = {
2344 			DMI_MATCH(DMI_BOARD_VENDOR, "LENOVO"),
2345 			DMI_MATCH(DMI_PRODUCT_NAME, "83Q3"),
2346 		}
2347 	},
2348 	{
2349 		// TUXEDO InfinityBook Pro AMD Gen9
2350 		.matches = {
2351 			DMI_MATCH(DMI_BOARD_NAME, "GXxHRXx"),
2352 		},
2353 	},
2354 	{ },
2355 };
2356 
acpi_ec_init(void)2357 void __init acpi_ec_init(void)
2358 {
2359 	int result;
2360 
2361 	result = acpi_ec_init_workqueues();
2362 	if (result)
2363 		return;
2364 
2365 	/*
2366 	 * Disable EC wakeup on following systems to prevent periodic
2367 	 * wakeup from EC GPE.
2368 	 */
2369 	if (dmi_check_system(acpi_ec_no_wakeup)) {
2370 		ec_no_wakeup = true;
2371 		pr_debug("Disabling EC wakeup on suspend-to-idle\n");
2372 	}
2373 
2374 	/* Driver must be registered after acpi_ec_init_workqueues(). */
2375 	platform_driver_register(&acpi_ec_driver);
2376 
2377 	acpi_ec_ecdt_start();
2378 }
2379