1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * NVM Express device driver
4 * Copyright (c) 2011-2014, Intel Corporation.
5 */
6
7 #include <linux/async.h>
8 #include <linux/blkdev.h>
9 #include <linux/blk-mq.h>
10 #include <linux/blk-integrity.h>
11 #include <linux/compat.h>
12 #include <linux/delay.h>
13 #include <linux/errno.h>
14 #include <linux/hdreg.h>
15 #include <linux/kernel.h>
16 #include <linux/module.h>
17 #include <linux/backing-dev.h>
18 #include <linux/slab.h>
19 #include <linux/types.h>
20 #include <linux/pr.h>
21 #include <linux/ptrace.h>
22 #include <linux/nvme_ioctl.h>
23 #include <linux/pm_qos.h>
24 #include <linux/ratelimit.h>
25 #include <linux/unaligned.h>
26
27 #include "nvme.h"
28 #include "fabrics.h"
29 #include <linux/nvme-auth.h>
30
31 #define CREATE_TRACE_POINTS
32 #include "trace.h"
33
34 #define NVME_MINORS (1U << MINORBITS)
35
36 struct nvme_ns_info {
37 struct nvme_ns_ids ids;
38 u32 nsid;
39 __le32 anagrpid;
40 u8 pi_offset;
41 u16 endgid;
42 u64 runs;
43 bool is_shared;
44 bool is_readonly;
45 bool is_ready;
46 bool is_removed;
47 bool is_rotational;
48 bool no_vwc;
49 };
50
51 unsigned int admin_timeout = 60;
52 module_param(admin_timeout, uint, 0644);
53 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
54 EXPORT_SYMBOL_GPL(admin_timeout);
55
56 unsigned int nvme_io_timeout = 30;
57 module_param_named(io_timeout, nvme_io_timeout, uint, 0644);
58 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
59 EXPORT_SYMBOL_GPL(nvme_io_timeout);
60
61 static unsigned char shutdown_timeout = 5;
62 module_param(shutdown_timeout, byte, 0644);
63 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
64
65 static u8 nvme_max_retries = 5;
66 module_param_named(max_retries, nvme_max_retries, byte, 0644);
67 MODULE_PARM_DESC(max_retries, "max number of retries a command may have");
68
69 static unsigned long default_ps_max_latency_us = 100000;
70 module_param(default_ps_max_latency_us, ulong, 0644);
71 MODULE_PARM_DESC(default_ps_max_latency_us,
72 "max power saving latency for new devices; use PM QOS to change per device");
73
74 static bool force_apst;
75 module_param(force_apst, bool, 0644);
76 MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off");
77
78 static unsigned long apst_primary_timeout_ms = 100;
79 module_param(apst_primary_timeout_ms, ulong, 0644);
80 MODULE_PARM_DESC(apst_primary_timeout_ms,
81 "primary APST timeout in ms");
82
83 static unsigned long apst_secondary_timeout_ms = 2000;
84 module_param(apst_secondary_timeout_ms, ulong, 0644);
85 MODULE_PARM_DESC(apst_secondary_timeout_ms,
86 "secondary APST timeout in ms");
87
88 static unsigned long apst_primary_latency_tol_us = 15000;
89 module_param(apst_primary_latency_tol_us, ulong, 0644);
90 MODULE_PARM_DESC(apst_primary_latency_tol_us,
91 "primary APST latency tolerance in us");
92
93 static unsigned long apst_secondary_latency_tol_us = 100000;
94 module_param(apst_secondary_latency_tol_us, ulong, 0644);
95 MODULE_PARM_DESC(apst_secondary_latency_tol_us,
96 "secondary APST latency tolerance in us");
97
98 /*
99 * Older kernels didn't enable protection information if it was at an offset.
100 * Newer kernels do, so it breaks reads on the upgrade if such formats were
101 * used in prior kernels since the metadata written did not contain a valid
102 * checksum.
103 */
104 static bool disable_pi_offsets = false;
105 module_param(disable_pi_offsets, bool, 0444);
106 MODULE_PARM_DESC(disable_pi_offsets,
107 "disable protection information if it has an offset");
108
109 /*
110 * nvme_wq - hosts nvme related works that are not reset or delete
111 * nvme_reset_wq - hosts nvme reset works
112 * nvme_delete_wq - hosts nvme delete works
113 *
114 * nvme_wq will host works such as scan, aen handling, fw activation,
115 * keep-alive, periodic reconnects etc. nvme_reset_wq
116 * runs reset works which also flush works hosted on nvme_wq for
117 * serialization purposes. nvme_delete_wq host controller deletion
118 * works which flush reset works for serialization.
119 */
120 struct workqueue_struct *nvme_wq;
121 EXPORT_SYMBOL_GPL(nvme_wq);
122
123 struct workqueue_struct *nvme_reset_wq;
124 EXPORT_SYMBOL_GPL(nvme_reset_wq);
125
126 struct workqueue_struct *nvme_delete_wq;
127 EXPORT_SYMBOL_GPL(nvme_delete_wq);
128
129 static LIST_HEAD(nvme_subsystems);
130 DEFINE_MUTEX(nvme_subsystems_lock);
131
132 static DEFINE_IDA(nvme_instance_ida);
133 static dev_t nvme_ctrl_base_chr_devt;
134 static int nvme_class_uevent(const struct device *dev, struct kobj_uevent_env *env);
135 static const struct class nvme_class = {
136 .name = "nvme",
137 .dev_uevent = nvme_class_uevent,
138 };
139
140 static const struct class nvme_subsys_class = {
141 .name = "nvme-subsystem",
142 };
143
144 static DEFINE_IDA(nvme_ns_chr_minor_ida);
145 static dev_t nvme_ns_chr_devt;
146 static const struct class nvme_ns_chr_class = {
147 .name = "nvme-generic",
148 };
149
150 static void nvme_put_subsystem(struct nvme_subsystem *subsys);
151 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
152 unsigned nsid);
153 static void nvme_update_keep_alive(struct nvme_ctrl *ctrl,
154 struct nvme_command *cmd);
155 static int nvme_get_log_lsi(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page,
156 u8 lsp, u8 csi, void *log, size_t size, u64 offset, u16 lsi);
157
nvme_queue_scan(struct nvme_ctrl * ctrl)158 void nvme_queue_scan(struct nvme_ctrl *ctrl)
159 {
160 /*
161 * Only new queue scan work when admin and IO queues are both alive
162 */
163 if (nvme_ctrl_state(ctrl) == NVME_CTRL_LIVE && ctrl->tagset)
164 queue_work(nvme_wq, &ctrl->scan_work);
165 }
166
167 /*
168 * Use this function to proceed with scheduling reset_work for a controller
169 * that had previously been set to the resetting state. This is intended for
170 * code paths that can't be interrupted by other reset attempts. A hot removal
171 * may prevent this from succeeding.
172 */
nvme_try_sched_reset(struct nvme_ctrl * ctrl)173 int nvme_try_sched_reset(struct nvme_ctrl *ctrl)
174 {
175 if (nvme_ctrl_state(ctrl) != NVME_CTRL_RESETTING)
176 return -EBUSY;
177 if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
178 return -EBUSY;
179 return 0;
180 }
181 EXPORT_SYMBOL_GPL(nvme_try_sched_reset);
182
nvme_failfast_work(struct work_struct * work)183 static void nvme_failfast_work(struct work_struct *work)
184 {
185 struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
186 struct nvme_ctrl, failfast_work);
187
188 if (nvme_ctrl_state(ctrl) != NVME_CTRL_CONNECTING)
189 return;
190
191 set_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
192 dev_info(ctrl->device, "failfast expired\n");
193 nvme_kick_requeue_lists(ctrl);
194 }
195
nvme_start_failfast_work(struct nvme_ctrl * ctrl)196 static inline void nvme_start_failfast_work(struct nvme_ctrl *ctrl)
197 {
198 if (!ctrl->opts || ctrl->opts->fast_io_fail_tmo == -1)
199 return;
200
201 schedule_delayed_work(&ctrl->failfast_work,
202 ctrl->opts->fast_io_fail_tmo * HZ);
203 }
204
nvme_stop_failfast_work(struct nvme_ctrl * ctrl)205 static inline void nvme_stop_failfast_work(struct nvme_ctrl *ctrl)
206 {
207 if (!ctrl->opts)
208 return;
209
210 cancel_delayed_work_sync(&ctrl->failfast_work);
211 clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
212 }
213
214
nvme_reset_ctrl(struct nvme_ctrl * ctrl)215 int nvme_reset_ctrl(struct nvme_ctrl *ctrl)
216 {
217 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
218 return -EBUSY;
219 if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
220 return -EBUSY;
221 return 0;
222 }
223 EXPORT_SYMBOL_GPL(nvme_reset_ctrl);
224
nvme_reset_ctrl_sync(struct nvme_ctrl * ctrl)225 int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl)
226 {
227 int ret;
228
229 ret = nvme_reset_ctrl(ctrl);
230 if (!ret) {
231 flush_work(&ctrl->reset_work);
232 if (nvme_ctrl_state(ctrl) != NVME_CTRL_LIVE)
233 ret = -ENETRESET;
234 }
235
236 return ret;
237 }
238
nvme_do_delete_ctrl(struct nvme_ctrl * ctrl)239 static void nvme_do_delete_ctrl(struct nvme_ctrl *ctrl)
240 {
241 dev_info(ctrl->device,
242 "Removing ctrl: NQN \"%s\"\n", nvmf_ctrl_subsysnqn(ctrl));
243
244 flush_work(&ctrl->reset_work);
245 nvme_stop_ctrl(ctrl);
246 nvme_remove_namespaces(ctrl);
247 ctrl->ops->delete_ctrl(ctrl);
248 nvme_uninit_ctrl(ctrl);
249 }
250
nvme_delete_ctrl_work(struct work_struct * work)251 static void nvme_delete_ctrl_work(struct work_struct *work)
252 {
253 struct nvme_ctrl *ctrl =
254 container_of(work, struct nvme_ctrl, delete_work);
255
256 nvme_do_delete_ctrl(ctrl);
257 }
258
nvme_delete_ctrl(struct nvme_ctrl * ctrl)259 int nvme_delete_ctrl(struct nvme_ctrl *ctrl)
260 {
261 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
262 return -EBUSY;
263 if (!queue_work(nvme_delete_wq, &ctrl->delete_work))
264 return -EBUSY;
265 return 0;
266 }
267 EXPORT_SYMBOL_GPL(nvme_delete_ctrl);
268
nvme_delete_ctrl_sync(struct nvme_ctrl * ctrl)269 void nvme_delete_ctrl_sync(struct nvme_ctrl *ctrl)
270 {
271 /*
272 * Keep a reference until nvme_do_delete_ctrl() complete,
273 * since ->delete_ctrl can free the controller.
274 */
275 nvme_get_ctrl(ctrl);
276 if (nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
277 nvme_do_delete_ctrl(ctrl);
278 nvme_put_ctrl(ctrl);
279 }
280
nvme_error_status(u16 status)281 static blk_status_t nvme_error_status(u16 status)
282 {
283 switch (status & NVME_SCT_SC_MASK) {
284 case NVME_SC_SUCCESS:
285 return BLK_STS_OK;
286 case NVME_SC_CAP_EXCEEDED:
287 return BLK_STS_NOSPC;
288 case NVME_SC_LBA_RANGE:
289 case NVME_SC_CMD_INTERRUPTED:
290 case NVME_SC_NS_NOT_READY:
291 return BLK_STS_TARGET;
292 case NVME_SC_BAD_ATTRIBUTES:
293 case NVME_SC_INVALID_OPCODE:
294 case NVME_SC_INVALID_FIELD:
295 case NVME_SC_INVALID_NS:
296 return BLK_STS_NOTSUPP;
297 case NVME_SC_WRITE_FAULT:
298 case NVME_SC_READ_ERROR:
299 case NVME_SC_UNWRITTEN_BLOCK:
300 case NVME_SC_ACCESS_DENIED:
301 case NVME_SC_READ_ONLY:
302 case NVME_SC_COMPARE_FAILED:
303 return BLK_STS_MEDIUM;
304 case NVME_SC_GUARD_CHECK:
305 case NVME_SC_APPTAG_CHECK:
306 case NVME_SC_REFTAG_CHECK:
307 case NVME_SC_INVALID_PI:
308 return BLK_STS_PROTECTION;
309 case NVME_SC_RESERVATION_CONFLICT:
310 return BLK_STS_RESV_CONFLICT;
311 case NVME_SC_HOST_PATH_ERROR:
312 return BLK_STS_TRANSPORT;
313 case NVME_SC_ZONE_TOO_MANY_ACTIVE:
314 return BLK_STS_ZONE_ACTIVE_RESOURCE;
315 case NVME_SC_ZONE_TOO_MANY_OPEN:
316 return BLK_STS_ZONE_OPEN_RESOURCE;
317 default:
318 return BLK_STS_IOERR;
319 }
320 }
321
nvme_retry_req(struct request * req)322 static void nvme_retry_req(struct request *req)
323 {
324 unsigned long delay = 0;
325 u16 crd;
326
327 /* The mask and shift result must be <= 3 */
328 crd = (nvme_req(req)->status & NVME_STATUS_CRD) >> 11;
329 if (crd)
330 delay = nvme_req(req)->ctrl->crdt[crd - 1] * 100;
331
332 nvme_req(req)->retries++;
333 blk_mq_requeue_request(req, false);
334 blk_mq_delay_kick_requeue_list(req->q, delay);
335 }
336
nvme_log_error(struct request * req)337 static void nvme_log_error(struct request *req)
338 {
339 struct nvme_ns *ns = req->q->queuedata;
340 struct nvme_request *nr = nvme_req(req);
341
342 if (ns) {
343 pr_err_ratelimited("%s: %s(0x%x) @ LBA %llu, %u blocks, %s (sct 0x%x / sc 0x%x) %s%s\n",
344 ns->disk ? ns->disk->disk_name : "?",
345 nvme_get_opcode_str(nr->cmd->common.opcode),
346 nr->cmd->common.opcode,
347 nvme_sect_to_lba(ns->head, blk_rq_pos(req)),
348 blk_rq_bytes(req) >> ns->head->lba_shift,
349 nvme_get_error_status_str(nr->status),
350 NVME_SCT(nr->status), /* Status Code Type */
351 nr->status & NVME_SC_MASK, /* Status Code */
352 nr->status & NVME_STATUS_MORE ? "MORE " : "",
353 nr->status & NVME_STATUS_DNR ? "DNR " : "");
354 return;
355 }
356
357 pr_err_ratelimited("%s: %s(0x%x), %s (sct 0x%x / sc 0x%x) %s%s\n",
358 dev_name(nr->ctrl->device),
359 nvme_get_admin_opcode_str(nr->cmd->common.opcode),
360 nr->cmd->common.opcode,
361 nvme_get_error_status_str(nr->status),
362 NVME_SCT(nr->status), /* Status Code Type */
363 nr->status & NVME_SC_MASK, /* Status Code */
364 nr->status & NVME_STATUS_MORE ? "MORE " : "",
365 nr->status & NVME_STATUS_DNR ? "DNR " : "");
366 }
367
nvme_log_err_passthru(struct request * req)368 static void nvme_log_err_passthru(struct request *req)
369 {
370 struct nvme_ns *ns = req->q->queuedata;
371 struct nvme_request *nr = nvme_req(req);
372
373 pr_err_ratelimited("%s: %s(0x%x), %s (sct 0x%x / sc 0x%x) %s%s"
374 "cdw10=0x%x cdw11=0x%x cdw12=0x%x cdw13=0x%x cdw14=0x%x cdw15=0x%x\n",
375 ns ? ns->disk->disk_name : dev_name(nr->ctrl->device),
376 ns ? nvme_get_opcode_str(nr->cmd->common.opcode) :
377 nvme_get_admin_opcode_str(nr->cmd->common.opcode),
378 nr->cmd->common.opcode,
379 nvme_get_error_status_str(nr->status),
380 NVME_SCT(nr->status), /* Status Code Type */
381 nr->status & NVME_SC_MASK, /* Status Code */
382 nr->status & NVME_STATUS_MORE ? "MORE " : "",
383 nr->status & NVME_STATUS_DNR ? "DNR " : "",
384 le32_to_cpu(nr->cmd->common.cdw10),
385 le32_to_cpu(nr->cmd->common.cdw11),
386 le32_to_cpu(nr->cmd->common.cdw12),
387 le32_to_cpu(nr->cmd->common.cdw13),
388 le32_to_cpu(nr->cmd->common.cdw14),
389 le32_to_cpu(nr->cmd->common.cdw15));
390 }
391
392 enum nvme_disposition {
393 COMPLETE,
394 RETRY,
395 FAILOVER,
396 AUTHENTICATE,
397 };
398
nvme_decide_disposition(struct request * req)399 static inline enum nvme_disposition nvme_decide_disposition(struct request *req)
400 {
401 if (likely(nvme_req(req)->status == 0))
402 return COMPLETE;
403
404 if (blk_noretry_request(req) ||
405 (nvme_req(req)->status & NVME_STATUS_DNR) ||
406 nvme_req(req)->retries >= nvme_max_retries)
407 return COMPLETE;
408
409 if ((nvme_req(req)->status & NVME_SCT_SC_MASK) == NVME_SC_AUTH_REQUIRED)
410 return AUTHENTICATE;
411
412 if (req->cmd_flags & REQ_NVME_MPATH) {
413 if (nvme_is_path_error(nvme_req(req)->status) ||
414 blk_queue_dying(req->q))
415 return FAILOVER;
416 } else {
417 if (blk_queue_dying(req->q))
418 return COMPLETE;
419 }
420
421 return RETRY;
422 }
423
nvme_end_req_zoned(struct request * req)424 static inline void nvme_end_req_zoned(struct request *req)
425 {
426 if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) &&
427 req_op(req) == REQ_OP_ZONE_APPEND) {
428 struct nvme_ns *ns = req->q->queuedata;
429
430 req->__sector = nvme_lba_to_sect(ns->head,
431 le64_to_cpu(nvme_req(req)->result.u64));
432 }
433 }
434
__nvme_end_req(struct request * req)435 static inline void __nvme_end_req(struct request *req)
436 {
437 if (unlikely(nvme_req(req)->status && !(req->rq_flags & RQF_QUIET))) {
438 if (blk_rq_is_passthrough(req))
439 nvme_log_err_passthru(req);
440 else
441 nvme_log_error(req);
442 }
443 nvme_end_req_zoned(req);
444 nvme_trace_bio_complete(req);
445 if (req->cmd_flags & REQ_NVME_MPATH)
446 nvme_mpath_end_request(req);
447 }
448
nvme_end_req(struct request * req)449 void nvme_end_req(struct request *req)
450 {
451 blk_status_t status = nvme_error_status(nvme_req(req)->status);
452
453 __nvme_end_req(req);
454 blk_mq_end_request(req, status);
455 }
456
nvme_complete_rq(struct request * req)457 void nvme_complete_rq(struct request *req)
458 {
459 struct nvme_ctrl *ctrl = nvme_req(req)->ctrl;
460
461 trace_nvme_complete_rq(req);
462 nvme_cleanup_cmd(req);
463
464 /*
465 * Completions of long-running commands should not be able to
466 * defer sending of periodic keep alives, since the controller
467 * may have completed processing such commands a long time ago
468 * (arbitrarily close to command submission time).
469 * req->deadline - req->timeout is the command submission time
470 * in jiffies.
471 */
472 if (ctrl->kas &&
473 req->deadline - req->timeout >= ctrl->ka_last_check_time)
474 ctrl->comp_seen = true;
475
476 switch (nvme_decide_disposition(req)) {
477 case COMPLETE:
478 nvme_end_req(req);
479 return;
480 case RETRY:
481 nvme_retry_req(req);
482 return;
483 case FAILOVER:
484 nvme_failover_req(req);
485 return;
486 case AUTHENTICATE:
487 #ifdef CONFIG_NVME_HOST_AUTH
488 queue_work(nvme_wq, &ctrl->dhchap_auth_work);
489 nvme_retry_req(req);
490 #else
491 nvme_end_req(req);
492 #endif
493 return;
494 }
495 }
496 EXPORT_SYMBOL_GPL(nvme_complete_rq);
497
nvme_complete_batch_req(struct request * req)498 void nvme_complete_batch_req(struct request *req)
499 {
500 trace_nvme_complete_rq(req);
501 nvme_cleanup_cmd(req);
502 __nvme_end_req(req);
503 }
504 EXPORT_SYMBOL_GPL(nvme_complete_batch_req);
505
506 /*
507 * Called to unwind from ->queue_rq on a failed command submission so that the
508 * multipathing code gets called to potentially failover to another path.
509 * The caller needs to unwind all transport specific resource allocations and
510 * must return propagate the return value.
511 */
nvme_host_path_error(struct request * req)512 blk_status_t nvme_host_path_error(struct request *req)
513 {
514 nvme_req(req)->status = NVME_SC_HOST_PATH_ERROR;
515 blk_mq_set_request_complete(req);
516 nvme_complete_rq(req);
517 return BLK_STS_OK;
518 }
519 EXPORT_SYMBOL_GPL(nvme_host_path_error);
520
nvme_cancel_request(struct request * req,void * data)521 bool nvme_cancel_request(struct request *req, void *data)
522 {
523 dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device,
524 "Cancelling I/O %d", req->tag);
525
526 /* don't abort one completed or idle request */
527 if (blk_mq_rq_state(req) != MQ_RQ_IN_FLIGHT)
528 return true;
529
530 nvme_req(req)->status = NVME_SC_HOST_ABORTED_CMD;
531 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
532 blk_mq_complete_request(req);
533 return true;
534 }
535 EXPORT_SYMBOL_GPL(nvme_cancel_request);
536
nvme_cancel_tagset(struct nvme_ctrl * ctrl)537 void nvme_cancel_tagset(struct nvme_ctrl *ctrl)
538 {
539 if (ctrl->tagset) {
540 blk_mq_tagset_busy_iter(ctrl->tagset,
541 nvme_cancel_request, ctrl);
542 blk_mq_tagset_wait_completed_request(ctrl->tagset);
543 }
544 }
545 EXPORT_SYMBOL_GPL(nvme_cancel_tagset);
546
nvme_cancel_admin_tagset(struct nvme_ctrl * ctrl)547 void nvme_cancel_admin_tagset(struct nvme_ctrl *ctrl)
548 {
549 if (ctrl->admin_tagset) {
550 blk_mq_tagset_busy_iter(ctrl->admin_tagset,
551 nvme_cancel_request, ctrl);
552 blk_mq_tagset_wait_completed_request(ctrl->admin_tagset);
553 }
554 }
555 EXPORT_SYMBOL_GPL(nvme_cancel_admin_tagset);
556
nvme_change_ctrl_state(struct nvme_ctrl * ctrl,enum nvme_ctrl_state new_state)557 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl,
558 enum nvme_ctrl_state new_state)
559 {
560 enum nvme_ctrl_state old_state;
561 unsigned long flags;
562 bool changed = false;
563
564 spin_lock_irqsave(&ctrl->lock, flags);
565
566 old_state = nvme_ctrl_state(ctrl);
567 switch (new_state) {
568 case NVME_CTRL_LIVE:
569 switch (old_state) {
570 case NVME_CTRL_CONNECTING:
571 changed = true;
572 fallthrough;
573 default:
574 break;
575 }
576 break;
577 case NVME_CTRL_RESETTING:
578 switch (old_state) {
579 case NVME_CTRL_NEW:
580 case NVME_CTRL_LIVE:
581 changed = true;
582 fallthrough;
583 default:
584 break;
585 }
586 break;
587 case NVME_CTRL_CONNECTING:
588 switch (old_state) {
589 case NVME_CTRL_NEW:
590 case NVME_CTRL_RESETTING:
591 changed = true;
592 fallthrough;
593 default:
594 break;
595 }
596 break;
597 case NVME_CTRL_DELETING:
598 switch (old_state) {
599 case NVME_CTRL_LIVE:
600 case NVME_CTRL_RESETTING:
601 case NVME_CTRL_CONNECTING:
602 changed = true;
603 fallthrough;
604 default:
605 break;
606 }
607 break;
608 case NVME_CTRL_DELETING_NOIO:
609 switch (old_state) {
610 case NVME_CTRL_DELETING:
611 case NVME_CTRL_DEAD:
612 changed = true;
613 fallthrough;
614 default:
615 break;
616 }
617 break;
618 case NVME_CTRL_DEAD:
619 switch (old_state) {
620 case NVME_CTRL_DELETING:
621 changed = true;
622 fallthrough;
623 default:
624 break;
625 }
626 break;
627 default:
628 break;
629 }
630
631 if (changed) {
632 WRITE_ONCE(ctrl->state, new_state);
633 wake_up_all(&ctrl->state_wq);
634 }
635
636 spin_unlock_irqrestore(&ctrl->lock, flags);
637 if (!changed)
638 return false;
639
640 if (new_state == NVME_CTRL_LIVE) {
641 if (old_state == NVME_CTRL_CONNECTING)
642 nvme_stop_failfast_work(ctrl);
643 nvme_kick_requeue_lists(ctrl);
644 } else if (new_state == NVME_CTRL_CONNECTING &&
645 old_state == NVME_CTRL_RESETTING) {
646 nvme_start_failfast_work(ctrl);
647 }
648 return changed;
649 }
650 EXPORT_SYMBOL_GPL(nvme_change_ctrl_state);
651
652 /*
653 * Waits for the controller state to be resetting, or returns false if it is
654 * not possible to ever transition to that state.
655 */
nvme_wait_reset(struct nvme_ctrl * ctrl)656 bool nvme_wait_reset(struct nvme_ctrl *ctrl)
657 {
658 wait_event(ctrl->state_wq,
659 nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING) ||
660 nvme_state_terminal(ctrl));
661 return nvme_ctrl_state(ctrl) == NVME_CTRL_RESETTING;
662 }
663 EXPORT_SYMBOL_GPL(nvme_wait_reset);
664
nvme_free_ns_head(struct kref * ref)665 static void nvme_free_ns_head(struct kref *ref)
666 {
667 struct nvme_ns_head *head =
668 container_of(ref, struct nvme_ns_head, ref);
669
670 nvme_mpath_put_disk(head);
671 ida_free(&head->subsys->ns_ida, head->instance);
672 cleanup_srcu_struct(&head->srcu);
673 nvme_put_subsystem(head->subsys);
674 kfree(head->plids);
675 kfree(head);
676 }
677
nvme_tryget_ns_head(struct nvme_ns_head * head)678 bool nvme_tryget_ns_head(struct nvme_ns_head *head)
679 {
680 return kref_get_unless_zero(&head->ref);
681 }
682
nvme_put_ns_head(struct nvme_ns_head * head)683 void nvme_put_ns_head(struct nvme_ns_head *head)
684 {
685 kref_put(&head->ref, nvme_free_ns_head);
686 }
687
nvme_free_ns(struct kref * kref)688 static void nvme_free_ns(struct kref *kref)
689 {
690 struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);
691
692 put_disk(ns->disk);
693 nvme_put_ns_head(ns->head);
694 nvme_put_ctrl(ns->ctrl);
695 kfree(ns);
696 }
697
nvme_get_ns(struct nvme_ns * ns)698 bool nvme_get_ns(struct nvme_ns *ns)
699 {
700 return kref_get_unless_zero(&ns->kref);
701 }
702
nvme_put_ns(struct nvme_ns * ns)703 void nvme_put_ns(struct nvme_ns *ns)
704 {
705 kref_put(&ns->kref, nvme_free_ns);
706 }
707 EXPORT_SYMBOL_NS_GPL(nvme_put_ns, "NVME_TARGET_PASSTHRU");
708
nvme_clear_nvme_request(struct request * req)709 static inline void nvme_clear_nvme_request(struct request *req)
710 {
711 nvme_req(req)->status = 0;
712 nvme_req(req)->retries = 0;
713 nvme_req(req)->flags = 0;
714 req->rq_flags |= RQF_DONTPREP;
715 }
716
717 /* initialize a passthrough request */
nvme_init_request(struct request * req,struct nvme_command * cmd)718 void nvme_init_request(struct request *req, struct nvme_command *cmd)
719 {
720 struct nvme_request *nr = nvme_req(req);
721 bool logging_enabled;
722
723 if (req->q->queuedata) {
724 struct nvme_ns *ns = req->q->disk->private_data;
725
726 logging_enabled = ns->head->passthru_err_log_enabled;
727 req->timeout = NVME_IO_TIMEOUT;
728 } else { /* no queuedata implies admin queue */
729 logging_enabled = nr->ctrl->passthru_err_log_enabled;
730 req->timeout = NVME_ADMIN_TIMEOUT;
731 }
732
733 if (!logging_enabled)
734 req->rq_flags |= RQF_QUIET;
735
736 /* passthru commands should let the driver set the SGL flags */
737 cmd->common.flags &= ~NVME_CMD_SGL_ALL;
738
739 req->cmd_flags |= REQ_FAILFAST_DRIVER;
740 if (req->mq_hctx->type == HCTX_TYPE_POLL)
741 req->cmd_flags |= REQ_POLLED;
742 nvme_clear_nvme_request(req);
743 memcpy(nr->cmd, cmd, sizeof(*cmd));
744 }
745 EXPORT_SYMBOL_GPL(nvme_init_request);
746
747 /*
748 * For something we're not in a state to send to the device the default action
749 * is to busy it and retry it after the controller state is recovered. However,
750 * if the controller is deleting or if anything is marked for failfast or
751 * nvme multipath it is immediately failed.
752 *
753 * Note: commands used to initialize the controller will be marked for failfast.
754 * Note: nvme cli/ioctl commands are marked for failfast.
755 */
nvme_fail_nonready_command(struct nvme_ctrl * ctrl,struct request * rq)756 blk_status_t nvme_fail_nonready_command(struct nvme_ctrl *ctrl,
757 struct request *rq)
758 {
759 enum nvme_ctrl_state state = nvme_ctrl_state(ctrl);
760
761 if (state != NVME_CTRL_DELETING_NOIO &&
762 state != NVME_CTRL_DELETING &&
763 state != NVME_CTRL_DEAD &&
764 !test_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags) &&
765 !blk_noretry_request(rq) && !(rq->cmd_flags & REQ_NVME_MPATH))
766 return BLK_STS_RESOURCE;
767
768 if (!(rq->rq_flags & RQF_DONTPREP))
769 nvme_clear_nvme_request(rq);
770
771 return nvme_host_path_error(rq);
772 }
773 EXPORT_SYMBOL_GPL(nvme_fail_nonready_command);
774
__nvme_check_ready(struct nvme_ctrl * ctrl,struct request * rq,bool queue_live,enum nvme_ctrl_state state)775 bool __nvme_check_ready(struct nvme_ctrl *ctrl, struct request *rq,
776 bool queue_live, enum nvme_ctrl_state state)
777 {
778 struct nvme_request *req = nvme_req(rq);
779
780 /*
781 * currently we have a problem sending passthru commands
782 * on the admin_q if the controller is not LIVE because we can't
783 * make sure that they are going out after the admin connect,
784 * controller enable and/or other commands in the initialization
785 * sequence. until the controller will be LIVE, fail with
786 * BLK_STS_RESOURCE so that they will be rescheduled.
787 */
788 if (rq->q == ctrl->admin_q && (req->flags & NVME_REQ_USERCMD))
789 return false;
790
791 if (ctrl->ops->flags & NVME_F_FABRICS) {
792 /*
793 * Only allow commands on a live queue, except for the connect
794 * command, which is require to set the queue live in the
795 * appropinquate states.
796 */
797 switch (state) {
798 case NVME_CTRL_CONNECTING:
799 if (blk_rq_is_passthrough(rq) && nvme_is_fabrics(req->cmd) &&
800 (req->cmd->fabrics.fctype == nvme_fabrics_type_connect ||
801 req->cmd->fabrics.fctype == nvme_fabrics_type_auth_send ||
802 req->cmd->fabrics.fctype == nvme_fabrics_type_auth_receive))
803 return true;
804 break;
805 default:
806 break;
807 case NVME_CTRL_DEAD:
808 return false;
809 }
810 }
811
812 return queue_live;
813 }
814 EXPORT_SYMBOL_GPL(__nvme_check_ready);
815
nvme_setup_flush(struct nvme_ns * ns,struct nvme_command * cmnd)816 static inline void nvme_setup_flush(struct nvme_ns *ns,
817 struct nvme_command *cmnd)
818 {
819 memset(cmnd, 0, sizeof(*cmnd));
820 cmnd->common.opcode = nvme_cmd_flush;
821 cmnd->common.nsid = cpu_to_le32(ns->head->ns_id);
822 }
823
nvme_setup_discard(struct nvme_ns * ns,struct request * req,struct nvme_command * cmnd)824 static blk_status_t nvme_setup_discard(struct nvme_ns *ns, struct request *req,
825 struct nvme_command *cmnd)
826 {
827 unsigned short segments = blk_rq_nr_discard_segments(req), n = 0;
828 struct nvme_dsm_range *range;
829 struct bio *bio;
830
831 /*
832 * Some devices do not consider the DSM 'Number of Ranges' field when
833 * determining how much data to DMA. Always allocate memory for maximum
834 * number of segments to prevent device reading beyond end of buffer.
835 */
836 static const size_t alloc_size = sizeof(*range) * NVME_DSM_MAX_RANGES;
837
838 range = kzalloc(alloc_size, GFP_ATOMIC | __GFP_NOWARN);
839 if (!range) {
840 /*
841 * If we fail allocation our range, fallback to the controller
842 * discard page. If that's also busy, it's safe to return
843 * busy, as we know we can make progress once that's freed.
844 */
845 if (test_and_set_bit_lock(0, &ns->ctrl->discard_page_busy))
846 return BLK_STS_RESOURCE;
847
848 range = page_address(ns->ctrl->discard_page);
849 }
850
851 if (queue_max_discard_segments(req->q) == 1) {
852 u64 slba = nvme_sect_to_lba(ns->head, blk_rq_pos(req));
853 u32 nlb = blk_rq_sectors(req) >> (ns->head->lba_shift - 9);
854
855 range[0].cattr = cpu_to_le32(0);
856 range[0].nlb = cpu_to_le32(nlb);
857 range[0].slba = cpu_to_le64(slba);
858 n = 1;
859 } else {
860 __rq_for_each_bio(bio, req) {
861 u64 slba = nvme_sect_to_lba(ns->head,
862 bio->bi_iter.bi_sector);
863 u32 nlb = bio->bi_iter.bi_size >> ns->head->lba_shift;
864
865 if (n < segments) {
866 range[n].cattr = cpu_to_le32(0);
867 range[n].nlb = cpu_to_le32(nlb);
868 range[n].slba = cpu_to_le64(slba);
869 }
870 n++;
871 }
872 }
873
874 if (WARN_ON_ONCE(n != segments)) {
875 if (virt_to_page(range) == ns->ctrl->discard_page)
876 clear_bit_unlock(0, &ns->ctrl->discard_page_busy);
877 else
878 kfree(range);
879 return BLK_STS_IOERR;
880 }
881
882 memset(cmnd, 0, sizeof(*cmnd));
883 cmnd->dsm.opcode = nvme_cmd_dsm;
884 cmnd->dsm.nsid = cpu_to_le32(ns->head->ns_id);
885 cmnd->dsm.nr = cpu_to_le32(segments - 1);
886 cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
887
888 bvec_set_virt(&req->special_vec, range, alloc_size);
889 req->rq_flags |= RQF_SPECIAL_PAYLOAD;
890
891 return BLK_STS_OK;
892 }
893
nvme_set_app_tag(struct request * req,struct nvme_command * cmnd)894 static void nvme_set_app_tag(struct request *req, struct nvme_command *cmnd)
895 {
896 cmnd->rw.lbat = cpu_to_le16(bio_integrity(req->bio)->app_tag);
897 cmnd->rw.lbatm = cpu_to_le16(0xffff);
898 }
899
nvme_set_ref_tag(struct nvme_ns * ns,struct nvme_command * cmnd,struct request * req)900 static void nvme_set_ref_tag(struct nvme_ns *ns, struct nvme_command *cmnd,
901 struct request *req)
902 {
903 u32 upper, lower;
904 u64 ref48;
905
906 /* only type1 and type 2 PI formats have a reftag */
907 switch (ns->head->pi_type) {
908 case NVME_NS_DPS_PI_TYPE1:
909 case NVME_NS_DPS_PI_TYPE2:
910 break;
911 default:
912 return;
913 }
914
915 /* both rw and write zeroes share the same reftag format */
916 switch (ns->head->guard_type) {
917 case NVME_NVM_NS_16B_GUARD:
918 cmnd->rw.reftag = cpu_to_le32(t10_pi_ref_tag(req));
919 break;
920 case NVME_NVM_NS_64B_GUARD:
921 ref48 = ext_pi_ref_tag(req);
922 lower = lower_32_bits(ref48);
923 upper = upper_32_bits(ref48);
924
925 cmnd->rw.reftag = cpu_to_le32(lower);
926 cmnd->rw.cdw3 = cpu_to_le32(upper);
927 break;
928 default:
929 break;
930 }
931 }
932
nvme_setup_write_zeroes(struct nvme_ns * ns,struct request * req,struct nvme_command * cmnd)933 static inline blk_status_t nvme_setup_write_zeroes(struct nvme_ns *ns,
934 struct request *req, struct nvme_command *cmnd)
935 {
936 memset(cmnd, 0, sizeof(*cmnd));
937
938 if (ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
939 return nvme_setup_discard(ns, req, cmnd);
940
941 cmnd->write_zeroes.opcode = nvme_cmd_write_zeroes;
942 cmnd->write_zeroes.nsid = cpu_to_le32(ns->head->ns_id);
943 cmnd->write_zeroes.slba =
944 cpu_to_le64(nvme_sect_to_lba(ns->head, blk_rq_pos(req)));
945 cmnd->write_zeroes.length =
946 cpu_to_le16((blk_rq_bytes(req) >> ns->head->lba_shift) - 1);
947
948 if (!(req->cmd_flags & REQ_NOUNMAP) &&
949 (ns->head->features & NVME_NS_DEAC))
950 cmnd->write_zeroes.control |= cpu_to_le16(NVME_WZ_DEAC);
951
952 if (nvme_ns_has_pi(ns->head)) {
953 cmnd->write_zeroes.control |= cpu_to_le16(NVME_RW_PRINFO_PRACT);
954 nvme_set_ref_tag(ns, cmnd, req);
955 }
956
957 return BLK_STS_OK;
958 }
959
960 /*
961 * NVMe does not support a dedicated command to issue an atomic write. A write
962 * which does adhere to the device atomic limits will silently be executed
963 * non-atomically. The request issuer should ensure that the write is within
964 * the queue atomic writes limits, but just validate this in case it is not.
965 */
nvme_valid_atomic_write(struct request * req)966 static bool nvme_valid_atomic_write(struct request *req)
967 {
968 struct request_queue *q = req->q;
969 u32 boundary_bytes = queue_atomic_write_boundary_bytes(q);
970
971 if (blk_rq_bytes(req) > queue_atomic_write_unit_max_bytes(q))
972 return false;
973
974 if (boundary_bytes) {
975 u64 mask = boundary_bytes - 1, imask = ~mask;
976 u64 start = blk_rq_pos(req) << SECTOR_SHIFT;
977 u64 end = start + blk_rq_bytes(req) - 1;
978
979 /* If greater then must be crossing a boundary */
980 if (blk_rq_bytes(req) > boundary_bytes)
981 return false;
982
983 if ((start & imask) != (end & imask))
984 return false;
985 }
986
987 return true;
988 }
989
nvme_setup_rw(struct nvme_ns * ns,struct request * req,struct nvme_command * cmnd,enum nvme_opcode op)990 static inline blk_status_t nvme_setup_rw(struct nvme_ns *ns,
991 struct request *req, struct nvme_command *cmnd,
992 enum nvme_opcode op)
993 {
994 u16 control = 0;
995 u32 dsmgmt = 0;
996
997 if (req->cmd_flags & REQ_FUA)
998 control |= NVME_RW_FUA;
999 if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
1000 control |= NVME_RW_LR;
1001
1002 if (req->cmd_flags & REQ_RAHEAD)
1003 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
1004
1005 if (op == nvme_cmd_write && ns->head->nr_plids) {
1006 u16 write_stream = req->bio->bi_write_stream;
1007
1008 if (WARN_ON_ONCE(write_stream > ns->head->nr_plids))
1009 return BLK_STS_INVAL;
1010
1011 if (write_stream) {
1012 dsmgmt |= ns->head->plids[write_stream - 1] << 16;
1013 control |= NVME_RW_DTYPE_DPLCMT;
1014 }
1015 }
1016
1017 if (req->cmd_flags & REQ_ATOMIC && !nvme_valid_atomic_write(req))
1018 return BLK_STS_INVAL;
1019
1020 cmnd->rw.opcode = op;
1021 cmnd->rw.flags = 0;
1022 cmnd->rw.nsid = cpu_to_le32(ns->head->ns_id);
1023 cmnd->rw.cdw2 = 0;
1024 cmnd->rw.cdw3 = 0;
1025 cmnd->rw.metadata = 0;
1026 cmnd->rw.slba =
1027 cpu_to_le64(nvme_sect_to_lba(ns->head, blk_rq_pos(req)));
1028 cmnd->rw.length =
1029 cpu_to_le16((blk_rq_bytes(req) >> ns->head->lba_shift) - 1);
1030 cmnd->rw.reftag = 0;
1031 cmnd->rw.lbat = 0;
1032 cmnd->rw.lbatm = 0;
1033
1034 if (ns->head->ms) {
1035 /*
1036 * If formatted with metadata, the block layer always provides a
1037 * metadata buffer if CONFIG_BLK_DEV_INTEGRITY is enabled. Else
1038 * we enable the PRACT bit for protection information or set the
1039 * namespace capacity to zero to prevent any I/O.
1040 */
1041 if (!blk_integrity_rq(req)) {
1042 if (WARN_ON_ONCE(!nvme_ns_has_pi(ns->head)))
1043 return BLK_STS_NOTSUPP;
1044 control |= NVME_RW_PRINFO_PRACT;
1045 nvme_set_ref_tag(ns, cmnd, req);
1046 }
1047
1048 if (bio_integrity_flagged(req->bio, BIP_CHECK_GUARD))
1049 control |= NVME_RW_PRINFO_PRCHK_GUARD;
1050 if (bio_integrity_flagged(req->bio, BIP_CHECK_REFTAG)) {
1051 control |= NVME_RW_PRINFO_PRCHK_REF;
1052 if (op == nvme_cmd_zone_append)
1053 control |= NVME_RW_APPEND_PIREMAP;
1054 nvme_set_ref_tag(ns, cmnd, req);
1055 }
1056 if (bio_integrity_flagged(req->bio, BIP_CHECK_APPTAG)) {
1057 control |= NVME_RW_PRINFO_PRCHK_APP;
1058 nvme_set_app_tag(req, cmnd);
1059 }
1060 }
1061
1062 cmnd->rw.control = cpu_to_le16(control);
1063 cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
1064 return 0;
1065 }
1066
nvme_cleanup_cmd(struct request * req)1067 void nvme_cleanup_cmd(struct request *req)
1068 {
1069 if (req->rq_flags & RQF_SPECIAL_PAYLOAD) {
1070 struct nvme_ctrl *ctrl = nvme_req(req)->ctrl;
1071
1072 if (req->special_vec.bv_page == ctrl->discard_page)
1073 clear_bit_unlock(0, &ctrl->discard_page_busy);
1074 else
1075 kfree(bvec_virt(&req->special_vec));
1076 req->rq_flags &= ~RQF_SPECIAL_PAYLOAD;
1077 }
1078 }
1079 EXPORT_SYMBOL_GPL(nvme_cleanup_cmd);
1080
nvme_setup_cmd(struct nvme_ns * ns,struct request * req)1081 blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req)
1082 {
1083 struct nvme_command *cmd = nvme_req(req)->cmd;
1084 blk_status_t ret = BLK_STS_OK;
1085
1086 if (!(req->rq_flags & RQF_DONTPREP))
1087 nvme_clear_nvme_request(req);
1088
1089 switch (req_op(req)) {
1090 case REQ_OP_DRV_IN:
1091 case REQ_OP_DRV_OUT:
1092 /* these are setup prior to execution in nvme_init_request() */
1093 break;
1094 case REQ_OP_FLUSH:
1095 nvme_setup_flush(ns, cmd);
1096 break;
1097 case REQ_OP_ZONE_RESET_ALL:
1098 case REQ_OP_ZONE_RESET:
1099 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_RESET);
1100 break;
1101 case REQ_OP_ZONE_OPEN:
1102 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_OPEN);
1103 break;
1104 case REQ_OP_ZONE_CLOSE:
1105 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_CLOSE);
1106 break;
1107 case REQ_OP_ZONE_FINISH:
1108 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_FINISH);
1109 break;
1110 case REQ_OP_WRITE_ZEROES:
1111 ret = nvme_setup_write_zeroes(ns, req, cmd);
1112 break;
1113 case REQ_OP_DISCARD:
1114 ret = nvme_setup_discard(ns, req, cmd);
1115 break;
1116 case REQ_OP_READ:
1117 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_read);
1118 break;
1119 case REQ_OP_WRITE:
1120 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_write);
1121 break;
1122 case REQ_OP_ZONE_APPEND:
1123 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_zone_append);
1124 break;
1125 default:
1126 WARN_ON_ONCE(1);
1127 return BLK_STS_IOERR;
1128 }
1129
1130 cmd->common.command_id = nvme_cid(req);
1131 trace_nvme_setup_cmd(req, cmd);
1132 return ret;
1133 }
1134 EXPORT_SYMBOL_GPL(nvme_setup_cmd);
1135
1136 /*
1137 * Return values:
1138 * 0: success
1139 * >0: nvme controller's cqe status response
1140 * <0: kernel error in lieu of controller response
1141 */
nvme_execute_rq(struct request * rq,bool at_head)1142 int nvme_execute_rq(struct request *rq, bool at_head)
1143 {
1144 blk_status_t status;
1145
1146 status = blk_execute_rq(rq, at_head);
1147 if (nvme_req(rq)->flags & NVME_REQ_CANCELLED)
1148 return -EINTR;
1149 if (nvme_req(rq)->status)
1150 return nvme_req(rq)->status;
1151 return blk_status_to_errno(status);
1152 }
1153 EXPORT_SYMBOL_NS_GPL(nvme_execute_rq, "NVME_TARGET_PASSTHRU");
1154
1155 /*
1156 * Returns 0 on success. If the result is negative, it's a Linux error code;
1157 * if the result is positive, it's an NVM Express status code
1158 */
__nvme_submit_sync_cmd(struct request_queue * q,struct nvme_command * cmd,union nvme_result * result,void * buffer,unsigned bufflen,int qid,nvme_submit_flags_t flags)1159 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
1160 union nvme_result *result, void *buffer, unsigned bufflen,
1161 int qid, nvme_submit_flags_t flags)
1162 {
1163 struct request *req;
1164 int ret;
1165 blk_mq_req_flags_t blk_flags = 0;
1166
1167 if (flags & NVME_SUBMIT_NOWAIT)
1168 blk_flags |= BLK_MQ_REQ_NOWAIT;
1169 if (flags & NVME_SUBMIT_RESERVED)
1170 blk_flags |= BLK_MQ_REQ_RESERVED;
1171 if (qid == NVME_QID_ANY)
1172 req = blk_mq_alloc_request(q, nvme_req_op(cmd), blk_flags);
1173 else
1174 req = blk_mq_alloc_request_hctx(q, nvme_req_op(cmd), blk_flags,
1175 qid - 1);
1176
1177 if (IS_ERR(req))
1178 return PTR_ERR(req);
1179 nvme_init_request(req, cmd);
1180 if (flags & NVME_SUBMIT_RETRY)
1181 req->cmd_flags &= ~REQ_FAILFAST_DRIVER;
1182
1183 if (buffer && bufflen) {
1184 ret = blk_rq_map_kern(req, buffer, bufflen, GFP_KERNEL);
1185 if (ret)
1186 goto out;
1187 }
1188
1189 ret = nvme_execute_rq(req, flags & NVME_SUBMIT_AT_HEAD);
1190 if (result && ret >= 0)
1191 *result = nvme_req(req)->result;
1192 out:
1193 blk_mq_free_request(req);
1194 return ret;
1195 }
1196 EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd);
1197
nvme_submit_sync_cmd(struct request_queue * q,struct nvme_command * cmd,void * buffer,unsigned bufflen)1198 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
1199 void *buffer, unsigned bufflen)
1200 {
1201 return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen,
1202 NVME_QID_ANY, 0);
1203 }
1204 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd);
1205
nvme_command_effects(struct nvme_ctrl * ctrl,struct nvme_ns * ns,u8 opcode)1206 u32 nvme_command_effects(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u8 opcode)
1207 {
1208 u32 effects = 0;
1209
1210 if (ns) {
1211 effects = le32_to_cpu(ns->head->effects->iocs[opcode]);
1212 if (effects & ~(NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC))
1213 dev_warn_once(ctrl->device,
1214 "IO command:%02x has unusual effects:%08x\n",
1215 opcode, effects);
1216
1217 /*
1218 * NVME_CMD_EFFECTS_CSE_MASK causes a freeze all I/O queues,
1219 * which would deadlock when done on an I/O command. Note that
1220 * We already warn about an unusual effect above.
1221 */
1222 effects &= ~NVME_CMD_EFFECTS_CSE_MASK;
1223 } else {
1224 effects = le32_to_cpu(ctrl->effects->acs[opcode]);
1225
1226 /* Ignore execution restrictions if any relaxation bits are set */
1227 if (effects & NVME_CMD_EFFECTS_CSER_MASK)
1228 effects &= ~NVME_CMD_EFFECTS_CSE_MASK;
1229 }
1230
1231 return effects;
1232 }
1233 EXPORT_SYMBOL_NS_GPL(nvme_command_effects, "NVME_TARGET_PASSTHRU");
1234
nvme_passthru_start(struct nvme_ctrl * ctrl,struct nvme_ns * ns,u8 opcode)1235 u32 nvme_passthru_start(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u8 opcode)
1236 {
1237 u32 effects = nvme_command_effects(ctrl, ns, opcode);
1238
1239 /*
1240 * For simplicity, IO to all namespaces is quiesced even if the command
1241 * effects say only one namespace is affected.
1242 */
1243 if (effects & NVME_CMD_EFFECTS_CSE_MASK) {
1244 mutex_lock(&ctrl->scan_lock);
1245 mutex_lock(&ctrl->subsys->lock);
1246 nvme_mpath_start_freeze(ctrl->subsys);
1247 nvme_mpath_wait_freeze(ctrl->subsys);
1248 nvme_start_freeze(ctrl);
1249 nvme_wait_freeze(ctrl);
1250 }
1251 return effects;
1252 }
1253 EXPORT_SYMBOL_NS_GPL(nvme_passthru_start, "NVME_TARGET_PASSTHRU");
1254
nvme_passthru_end(struct nvme_ctrl * ctrl,struct nvme_ns * ns,u32 effects,struct nvme_command * cmd,int status)1255 void nvme_passthru_end(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u32 effects,
1256 struct nvme_command *cmd, int status)
1257 {
1258 if (effects & NVME_CMD_EFFECTS_CSE_MASK) {
1259 nvme_unfreeze(ctrl);
1260 nvme_mpath_unfreeze(ctrl->subsys);
1261 mutex_unlock(&ctrl->subsys->lock);
1262 mutex_unlock(&ctrl->scan_lock);
1263 }
1264 if (effects & NVME_CMD_EFFECTS_CCC) {
1265 if (!test_and_set_bit(NVME_CTRL_DIRTY_CAPABILITY,
1266 &ctrl->flags)) {
1267 dev_info(ctrl->device,
1268 "controller capabilities changed, reset may be required to take effect.\n");
1269 }
1270 }
1271 if (effects & (NVME_CMD_EFFECTS_NIC | NVME_CMD_EFFECTS_NCC)) {
1272 nvme_queue_scan(ctrl);
1273 flush_work(&ctrl->scan_work);
1274 }
1275 if (ns)
1276 return;
1277
1278 switch (cmd->common.opcode) {
1279 case nvme_admin_set_features:
1280 switch (le32_to_cpu(cmd->common.cdw10) & 0xFF) {
1281 case NVME_FEAT_KATO:
1282 /*
1283 * Keep alive commands interval on the host should be
1284 * updated when KATO is modified by Set Features
1285 * commands.
1286 */
1287 if (!status)
1288 nvme_update_keep_alive(ctrl, cmd);
1289 break;
1290 default:
1291 break;
1292 }
1293 break;
1294 default:
1295 break;
1296 }
1297 }
1298 EXPORT_SYMBOL_NS_GPL(nvme_passthru_end, "NVME_TARGET_PASSTHRU");
1299
1300 /*
1301 * Recommended frequency for KATO commands per NVMe 1.4 section 7.12.1:
1302 *
1303 * The host should send Keep Alive commands at half of the Keep Alive Timeout
1304 * accounting for transport roundtrip times [..].
1305 */
nvme_keep_alive_work_period(struct nvme_ctrl * ctrl)1306 static unsigned long nvme_keep_alive_work_period(struct nvme_ctrl *ctrl)
1307 {
1308 unsigned long delay = ctrl->kato * HZ / 2;
1309
1310 /*
1311 * When using Traffic Based Keep Alive, we need to run
1312 * nvme_keep_alive_work at twice the normal frequency, as one
1313 * command completion can postpone sending a keep alive command
1314 * by up to twice the delay between runs.
1315 */
1316 if (ctrl->ctratt & NVME_CTRL_ATTR_TBKAS)
1317 delay /= 2;
1318 return delay;
1319 }
1320
nvme_queue_keep_alive_work(struct nvme_ctrl * ctrl)1321 static void nvme_queue_keep_alive_work(struct nvme_ctrl *ctrl)
1322 {
1323 unsigned long now = jiffies;
1324 unsigned long delay = nvme_keep_alive_work_period(ctrl);
1325 unsigned long ka_next_check_tm = ctrl->ka_last_check_time + delay;
1326
1327 if (time_after(now, ka_next_check_tm))
1328 delay = 0;
1329 else
1330 delay = ka_next_check_tm - now;
1331
1332 queue_delayed_work(nvme_wq, &ctrl->ka_work, delay);
1333 }
1334
nvme_keep_alive_end_io(struct request * rq,blk_status_t status)1335 static enum rq_end_io_ret nvme_keep_alive_end_io(struct request *rq,
1336 blk_status_t status)
1337 {
1338 struct nvme_ctrl *ctrl = rq->end_io_data;
1339 unsigned long rtt = jiffies - (rq->deadline - rq->timeout);
1340 unsigned long delay = nvme_keep_alive_work_period(ctrl);
1341 enum nvme_ctrl_state state = nvme_ctrl_state(ctrl);
1342
1343 /*
1344 * Subtract off the keepalive RTT so nvme_keep_alive_work runs
1345 * at the desired frequency.
1346 */
1347 if (rtt <= delay) {
1348 delay -= rtt;
1349 } else {
1350 dev_warn(ctrl->device, "long keepalive RTT (%u ms)\n",
1351 jiffies_to_msecs(rtt));
1352 delay = 0;
1353 }
1354
1355 blk_mq_free_request(rq);
1356
1357 if (status) {
1358 dev_err(ctrl->device,
1359 "failed nvme_keep_alive_end_io error=%d\n",
1360 status);
1361 return RQ_END_IO_NONE;
1362 }
1363
1364 ctrl->ka_last_check_time = jiffies;
1365 ctrl->comp_seen = false;
1366 if (state == NVME_CTRL_LIVE || state == NVME_CTRL_CONNECTING)
1367 queue_delayed_work(nvme_wq, &ctrl->ka_work, delay);
1368 return RQ_END_IO_NONE;
1369 }
1370
nvme_keep_alive_work(struct work_struct * work)1371 static void nvme_keep_alive_work(struct work_struct *work)
1372 {
1373 struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
1374 struct nvme_ctrl, ka_work);
1375 bool comp_seen = ctrl->comp_seen;
1376 struct request *rq;
1377
1378 ctrl->ka_last_check_time = jiffies;
1379
1380 if ((ctrl->ctratt & NVME_CTRL_ATTR_TBKAS) && comp_seen) {
1381 dev_dbg(ctrl->device,
1382 "reschedule traffic based keep-alive timer\n");
1383 ctrl->comp_seen = false;
1384 nvme_queue_keep_alive_work(ctrl);
1385 return;
1386 }
1387
1388 rq = blk_mq_alloc_request(ctrl->admin_q, nvme_req_op(&ctrl->ka_cmd),
1389 BLK_MQ_REQ_RESERVED | BLK_MQ_REQ_NOWAIT);
1390 if (IS_ERR(rq)) {
1391 /* allocation failure, reset the controller */
1392 dev_err(ctrl->device, "keep-alive failed: %ld\n", PTR_ERR(rq));
1393 nvme_reset_ctrl(ctrl);
1394 return;
1395 }
1396 nvme_init_request(rq, &ctrl->ka_cmd);
1397
1398 rq->timeout = ctrl->kato * HZ;
1399 rq->end_io = nvme_keep_alive_end_io;
1400 rq->end_io_data = ctrl;
1401 blk_execute_rq_nowait(rq, false);
1402 }
1403
nvme_start_keep_alive(struct nvme_ctrl * ctrl)1404 static void nvme_start_keep_alive(struct nvme_ctrl *ctrl)
1405 {
1406 if (unlikely(ctrl->kato == 0))
1407 return;
1408
1409 nvme_queue_keep_alive_work(ctrl);
1410 }
1411
nvme_stop_keep_alive(struct nvme_ctrl * ctrl)1412 void nvme_stop_keep_alive(struct nvme_ctrl *ctrl)
1413 {
1414 if (unlikely(ctrl->kato == 0))
1415 return;
1416
1417 cancel_delayed_work_sync(&ctrl->ka_work);
1418 }
1419 EXPORT_SYMBOL_GPL(nvme_stop_keep_alive);
1420
nvme_update_keep_alive(struct nvme_ctrl * ctrl,struct nvme_command * cmd)1421 static void nvme_update_keep_alive(struct nvme_ctrl *ctrl,
1422 struct nvme_command *cmd)
1423 {
1424 unsigned int new_kato =
1425 DIV_ROUND_UP(le32_to_cpu(cmd->common.cdw11), 1000);
1426
1427 dev_info(ctrl->device,
1428 "keep alive interval updated from %u ms to %u ms\n",
1429 ctrl->kato * 1000 / 2, new_kato * 1000 / 2);
1430
1431 nvme_stop_keep_alive(ctrl);
1432 ctrl->kato = new_kato;
1433 nvme_start_keep_alive(ctrl);
1434 }
1435
nvme_id_cns_ok(struct nvme_ctrl * ctrl,u8 cns)1436 static bool nvme_id_cns_ok(struct nvme_ctrl *ctrl, u8 cns)
1437 {
1438 /*
1439 * The CNS field occupies a full byte starting with NVMe 1.2
1440 */
1441 if (ctrl->vs >= NVME_VS(1, 2, 0))
1442 return true;
1443
1444 /*
1445 * NVMe 1.1 expanded the CNS value to two bits, which means values
1446 * larger than that could get truncated and treated as an incorrect
1447 * value.
1448 *
1449 * Qemu implemented 1.0 behavior for controllers claiming 1.1
1450 * compliance, so they need to be quirked here.
1451 */
1452 if (ctrl->vs >= NVME_VS(1, 1, 0) &&
1453 !(ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS))
1454 return cns <= 3;
1455
1456 /*
1457 * NVMe 1.0 used a single bit for the CNS value.
1458 */
1459 return cns <= 1;
1460 }
1461
nvme_identify_ctrl(struct nvme_ctrl * dev,struct nvme_id_ctrl ** id)1462 static int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id)
1463 {
1464 struct nvme_command c = { };
1465 int error;
1466
1467 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1468 c.identify.opcode = nvme_admin_identify;
1469 c.identify.cns = NVME_ID_CNS_CTRL;
1470
1471 *id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
1472 if (!*id)
1473 return -ENOMEM;
1474
1475 error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
1476 sizeof(struct nvme_id_ctrl));
1477 if (error) {
1478 kfree(*id);
1479 *id = NULL;
1480 }
1481 return error;
1482 }
1483
nvme_process_ns_desc(struct nvme_ctrl * ctrl,struct nvme_ns_ids * ids,struct nvme_ns_id_desc * cur,bool * csi_seen)1484 static int nvme_process_ns_desc(struct nvme_ctrl *ctrl, struct nvme_ns_ids *ids,
1485 struct nvme_ns_id_desc *cur, bool *csi_seen)
1486 {
1487 const char *warn_str = "ctrl returned bogus length:";
1488 void *data = cur;
1489
1490 switch (cur->nidt) {
1491 case NVME_NIDT_EUI64:
1492 if (cur->nidl != NVME_NIDT_EUI64_LEN) {
1493 dev_warn(ctrl->device, "%s %d for NVME_NIDT_EUI64\n",
1494 warn_str, cur->nidl);
1495 return -1;
1496 }
1497 if (ctrl->quirks & NVME_QUIRK_BOGUS_NID)
1498 return NVME_NIDT_EUI64_LEN;
1499 memcpy(ids->eui64, data + sizeof(*cur), NVME_NIDT_EUI64_LEN);
1500 return NVME_NIDT_EUI64_LEN;
1501 case NVME_NIDT_NGUID:
1502 if (cur->nidl != NVME_NIDT_NGUID_LEN) {
1503 dev_warn(ctrl->device, "%s %d for NVME_NIDT_NGUID\n",
1504 warn_str, cur->nidl);
1505 return -1;
1506 }
1507 if (ctrl->quirks & NVME_QUIRK_BOGUS_NID)
1508 return NVME_NIDT_NGUID_LEN;
1509 memcpy(ids->nguid, data + sizeof(*cur), NVME_NIDT_NGUID_LEN);
1510 return NVME_NIDT_NGUID_LEN;
1511 case NVME_NIDT_UUID:
1512 if (cur->nidl != NVME_NIDT_UUID_LEN) {
1513 dev_warn(ctrl->device, "%s %d for NVME_NIDT_UUID\n",
1514 warn_str, cur->nidl);
1515 return -1;
1516 }
1517 if (ctrl->quirks & NVME_QUIRK_BOGUS_NID)
1518 return NVME_NIDT_UUID_LEN;
1519 uuid_copy(&ids->uuid, data + sizeof(*cur));
1520 return NVME_NIDT_UUID_LEN;
1521 case NVME_NIDT_CSI:
1522 if (cur->nidl != NVME_NIDT_CSI_LEN) {
1523 dev_warn(ctrl->device, "%s %d for NVME_NIDT_CSI\n",
1524 warn_str, cur->nidl);
1525 return -1;
1526 }
1527 memcpy(&ids->csi, data + sizeof(*cur), NVME_NIDT_CSI_LEN);
1528 *csi_seen = true;
1529 return NVME_NIDT_CSI_LEN;
1530 default:
1531 /* Skip unknown types */
1532 return cur->nidl;
1533 }
1534 }
1535
nvme_identify_ns_descs(struct nvme_ctrl * ctrl,struct nvme_ns_info * info)1536 static int nvme_identify_ns_descs(struct nvme_ctrl *ctrl,
1537 struct nvme_ns_info *info)
1538 {
1539 struct nvme_command c = { };
1540 bool csi_seen = false;
1541 int status, pos, len;
1542 void *data;
1543
1544 if (ctrl->vs < NVME_VS(1, 3, 0) && !nvme_multi_css(ctrl))
1545 return 0;
1546 if (ctrl->quirks & NVME_QUIRK_NO_NS_DESC_LIST)
1547 return 0;
1548
1549 c.identify.opcode = nvme_admin_identify;
1550 c.identify.nsid = cpu_to_le32(info->nsid);
1551 c.identify.cns = NVME_ID_CNS_NS_DESC_LIST;
1552
1553 data = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
1554 if (!data)
1555 return -ENOMEM;
1556
1557 status = nvme_submit_sync_cmd(ctrl->admin_q, &c, data,
1558 NVME_IDENTIFY_DATA_SIZE);
1559 if (status) {
1560 dev_warn(ctrl->device,
1561 "Identify Descriptors failed (nsid=%u, status=0x%x)\n",
1562 info->nsid, status);
1563 goto free_data;
1564 }
1565
1566 for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) {
1567 struct nvme_ns_id_desc *cur = data + pos;
1568
1569 if (cur->nidl == 0)
1570 break;
1571
1572 len = nvme_process_ns_desc(ctrl, &info->ids, cur, &csi_seen);
1573 if (len < 0)
1574 break;
1575
1576 len += sizeof(*cur);
1577 }
1578
1579 if (nvme_multi_css(ctrl) && !csi_seen) {
1580 dev_warn(ctrl->device, "Command set not reported for nsid:%d\n",
1581 info->nsid);
1582 status = -EINVAL;
1583 }
1584
1585 free_data:
1586 kfree(data);
1587 return status;
1588 }
1589
nvme_identify_ns(struct nvme_ctrl * ctrl,unsigned nsid,struct nvme_id_ns ** id)1590 int nvme_identify_ns(struct nvme_ctrl *ctrl, unsigned nsid,
1591 struct nvme_id_ns **id)
1592 {
1593 struct nvme_command c = { };
1594 int error;
1595
1596 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1597 c.identify.opcode = nvme_admin_identify;
1598 c.identify.nsid = cpu_to_le32(nsid);
1599 c.identify.cns = NVME_ID_CNS_NS;
1600
1601 *id = kmalloc(sizeof(**id), GFP_KERNEL);
1602 if (!*id)
1603 return -ENOMEM;
1604
1605 error = nvme_submit_sync_cmd(ctrl->admin_q, &c, *id, sizeof(**id));
1606 if (error) {
1607 dev_warn(ctrl->device, "Identify namespace failed (%d)\n", error);
1608 kfree(*id);
1609 *id = NULL;
1610 }
1611 return error;
1612 }
1613
nvme_ns_info_from_identify(struct nvme_ctrl * ctrl,struct nvme_ns_info * info)1614 static int nvme_ns_info_from_identify(struct nvme_ctrl *ctrl,
1615 struct nvme_ns_info *info)
1616 {
1617 struct nvme_ns_ids *ids = &info->ids;
1618 struct nvme_id_ns *id;
1619 int ret;
1620
1621 ret = nvme_identify_ns(ctrl, info->nsid, &id);
1622 if (ret)
1623 return ret;
1624
1625 if (id->ncap == 0) {
1626 /* namespace not allocated or attached */
1627 info->is_removed = true;
1628 ret = -ENODEV;
1629 goto error;
1630 }
1631
1632 info->anagrpid = id->anagrpid;
1633 info->is_shared = id->nmic & NVME_NS_NMIC_SHARED;
1634 info->is_readonly = id->nsattr & NVME_NS_ATTR_RO;
1635 info->is_ready = true;
1636 info->endgid = le16_to_cpu(id->endgid);
1637 if (ctrl->quirks & NVME_QUIRK_BOGUS_NID) {
1638 dev_info(ctrl->device,
1639 "Ignoring bogus Namespace Identifiers\n");
1640 } else {
1641 if (ctrl->vs >= NVME_VS(1, 1, 0) &&
1642 !memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
1643 memcpy(ids->eui64, id->eui64, sizeof(ids->eui64));
1644 if (ctrl->vs >= NVME_VS(1, 2, 0) &&
1645 !memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
1646 memcpy(ids->nguid, id->nguid, sizeof(ids->nguid));
1647 }
1648
1649 error:
1650 kfree(id);
1651 return ret;
1652 }
1653
nvme_ns_info_from_id_cs_indep(struct nvme_ctrl * ctrl,struct nvme_ns_info * info)1654 static int nvme_ns_info_from_id_cs_indep(struct nvme_ctrl *ctrl,
1655 struct nvme_ns_info *info)
1656 {
1657 struct nvme_id_ns_cs_indep *id;
1658 struct nvme_command c = {
1659 .identify.opcode = nvme_admin_identify,
1660 .identify.nsid = cpu_to_le32(info->nsid),
1661 .identify.cns = NVME_ID_CNS_NS_CS_INDEP,
1662 };
1663 int ret;
1664
1665 id = kmalloc(sizeof(*id), GFP_KERNEL);
1666 if (!id)
1667 return -ENOMEM;
1668
1669 ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id));
1670 if (!ret) {
1671 info->anagrpid = id->anagrpid;
1672 info->is_shared = id->nmic & NVME_NS_NMIC_SHARED;
1673 info->is_readonly = id->nsattr & NVME_NS_ATTR_RO;
1674 info->is_ready = id->nstat & NVME_NSTAT_NRDY;
1675 info->is_rotational = id->nsfeat & NVME_NS_ROTATIONAL;
1676 info->no_vwc = id->nsfeat & NVME_NS_VWC_NOT_PRESENT;
1677 info->endgid = le16_to_cpu(id->endgid);
1678 }
1679 kfree(id);
1680 return ret;
1681 }
1682
nvme_features(struct nvme_ctrl * dev,u8 op,unsigned int fid,unsigned int dword11,void * buffer,size_t buflen,u32 * result)1683 static int nvme_features(struct nvme_ctrl *dev, u8 op, unsigned int fid,
1684 unsigned int dword11, void *buffer, size_t buflen, u32 *result)
1685 {
1686 union nvme_result res = { 0 };
1687 struct nvme_command c = { };
1688 int ret;
1689
1690 c.features.opcode = op;
1691 c.features.fid = cpu_to_le32(fid);
1692 c.features.dword11 = cpu_to_le32(dword11);
1693
1694 ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res,
1695 buffer, buflen, NVME_QID_ANY, 0);
1696 if (ret >= 0 && result)
1697 *result = le32_to_cpu(res.u32);
1698 return ret;
1699 }
1700
nvme_set_features(struct nvme_ctrl * dev,unsigned int fid,unsigned int dword11,void * buffer,size_t buflen,void * result)1701 int nvme_set_features(struct nvme_ctrl *dev, unsigned int fid,
1702 unsigned int dword11, void *buffer, size_t buflen,
1703 void *result)
1704 {
1705 return nvme_features(dev, nvme_admin_set_features, fid, dword11, buffer,
1706 buflen, result);
1707 }
1708 EXPORT_SYMBOL_GPL(nvme_set_features);
1709
nvme_get_features(struct nvme_ctrl * dev,unsigned int fid,unsigned int dword11,void * buffer,size_t buflen,void * result)1710 int nvme_get_features(struct nvme_ctrl *dev, unsigned int fid,
1711 unsigned int dword11, void *buffer, size_t buflen,
1712 void *result)
1713 {
1714 return nvme_features(dev, nvme_admin_get_features, fid, dword11, buffer,
1715 buflen, result);
1716 }
1717 EXPORT_SYMBOL_GPL(nvme_get_features);
1718
nvme_set_queue_count(struct nvme_ctrl * ctrl,int * count)1719 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count)
1720 {
1721 u32 q_count = (*count - 1) | ((*count - 1) << 16);
1722 u32 result;
1723 int status, nr_io_queues;
1724
1725 status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0,
1726 &result);
1727
1728 /*
1729 * It's either a kernel error or the host observed a connection
1730 * lost. In either case it's not possible communicate with the
1731 * controller and thus enter the error code path.
1732 */
1733 if (status < 0 || status == NVME_SC_HOST_PATH_ERROR)
1734 return status;
1735
1736 /*
1737 * Degraded controllers might return an error when setting the queue
1738 * count. We still want to be able to bring them online and offer
1739 * access to the admin queue, as that might be only way to fix them up.
1740 */
1741 if (status > 0) {
1742 dev_err(ctrl->device, "Could not set queue count (%d)\n", status);
1743 *count = 0;
1744 } else {
1745 nr_io_queues = min(result & 0xffff, result >> 16) + 1;
1746 *count = min(*count, nr_io_queues);
1747 }
1748
1749 return 0;
1750 }
1751 EXPORT_SYMBOL_GPL(nvme_set_queue_count);
1752
1753 #define NVME_AEN_SUPPORTED \
1754 (NVME_AEN_CFG_NS_ATTR | NVME_AEN_CFG_FW_ACT | \
1755 NVME_AEN_CFG_ANA_CHANGE | NVME_AEN_CFG_DISC_CHANGE)
1756
nvme_enable_aen(struct nvme_ctrl * ctrl)1757 static void nvme_enable_aen(struct nvme_ctrl *ctrl)
1758 {
1759 u32 result, supported_aens = ctrl->oaes & NVME_AEN_SUPPORTED;
1760 int status;
1761
1762 if (!supported_aens)
1763 return;
1764
1765 status = nvme_set_features(ctrl, NVME_FEAT_ASYNC_EVENT, supported_aens,
1766 NULL, 0, &result);
1767 if (status)
1768 dev_warn(ctrl->device, "Failed to configure AEN (cfg %x)\n",
1769 supported_aens);
1770
1771 queue_work(nvme_wq, &ctrl->async_event_work);
1772 }
1773
nvme_ns_open(struct nvme_ns * ns)1774 static int nvme_ns_open(struct nvme_ns *ns)
1775 {
1776
1777 /* should never be called due to GENHD_FL_HIDDEN */
1778 if (WARN_ON_ONCE(nvme_ns_head_multipath(ns->head)))
1779 goto fail;
1780 if (!nvme_get_ns(ns))
1781 goto fail;
1782 if (!try_module_get(ns->ctrl->ops->module))
1783 goto fail_put_ns;
1784
1785 return 0;
1786
1787 fail_put_ns:
1788 nvme_put_ns(ns);
1789 fail:
1790 return -ENXIO;
1791 }
1792
nvme_ns_release(struct nvme_ns * ns)1793 static void nvme_ns_release(struct nvme_ns *ns)
1794 {
1795
1796 module_put(ns->ctrl->ops->module);
1797 nvme_put_ns(ns);
1798 }
1799
nvme_open(struct gendisk * disk,blk_mode_t mode)1800 static int nvme_open(struct gendisk *disk, blk_mode_t mode)
1801 {
1802 return nvme_ns_open(disk->private_data);
1803 }
1804
nvme_release(struct gendisk * disk)1805 static void nvme_release(struct gendisk *disk)
1806 {
1807 nvme_ns_release(disk->private_data);
1808 }
1809
nvme_getgeo(struct block_device * bdev,struct hd_geometry * geo)1810 int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1811 {
1812 /* some standard values */
1813 geo->heads = 1 << 6;
1814 geo->sectors = 1 << 5;
1815 geo->cylinders = get_capacity(bdev->bd_disk) >> 11;
1816 return 0;
1817 }
1818
nvme_init_integrity(struct nvme_ns_head * head,struct queue_limits * lim,struct nvme_ns_info * info)1819 static bool nvme_init_integrity(struct nvme_ns_head *head,
1820 struct queue_limits *lim, struct nvme_ns_info *info)
1821 {
1822 struct blk_integrity *bi = &lim->integrity;
1823
1824 memset(bi, 0, sizeof(*bi));
1825
1826 if (!head->ms)
1827 return true;
1828
1829 /*
1830 * PI can always be supported as we can ask the controller to simply
1831 * insert/strip it, which is not possible for other kinds of metadata.
1832 */
1833 if (!IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY) ||
1834 !(head->features & NVME_NS_METADATA_SUPPORTED))
1835 return nvme_ns_has_pi(head);
1836
1837 switch (head->pi_type) {
1838 case NVME_NS_DPS_PI_TYPE3:
1839 switch (head->guard_type) {
1840 case NVME_NVM_NS_16B_GUARD:
1841 bi->csum_type = BLK_INTEGRITY_CSUM_CRC;
1842 bi->tag_size = sizeof(u16) + sizeof(u32);
1843 bi->flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1844 break;
1845 case NVME_NVM_NS_64B_GUARD:
1846 bi->csum_type = BLK_INTEGRITY_CSUM_CRC64;
1847 bi->tag_size = sizeof(u16) + 6;
1848 bi->flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1849 break;
1850 default:
1851 break;
1852 }
1853 break;
1854 case NVME_NS_DPS_PI_TYPE1:
1855 case NVME_NS_DPS_PI_TYPE2:
1856 switch (head->guard_type) {
1857 case NVME_NVM_NS_16B_GUARD:
1858 bi->csum_type = BLK_INTEGRITY_CSUM_CRC;
1859 bi->tag_size = sizeof(u16);
1860 bi->flags |= BLK_INTEGRITY_DEVICE_CAPABLE |
1861 BLK_INTEGRITY_REF_TAG;
1862 break;
1863 case NVME_NVM_NS_64B_GUARD:
1864 bi->csum_type = BLK_INTEGRITY_CSUM_CRC64;
1865 bi->tag_size = sizeof(u16);
1866 bi->flags |= BLK_INTEGRITY_DEVICE_CAPABLE |
1867 BLK_INTEGRITY_REF_TAG;
1868 break;
1869 default:
1870 break;
1871 }
1872 break;
1873 default:
1874 break;
1875 }
1876
1877 bi->metadata_size = head->ms;
1878 if (bi->csum_type) {
1879 bi->pi_tuple_size = head->pi_size;
1880 bi->pi_offset = info->pi_offset;
1881 }
1882 return true;
1883 }
1884
nvme_config_discard(struct nvme_ns * ns,struct queue_limits * lim)1885 static void nvme_config_discard(struct nvme_ns *ns, struct queue_limits *lim)
1886 {
1887 struct nvme_ctrl *ctrl = ns->ctrl;
1888
1889 if (ctrl->dmrsl && ctrl->dmrsl <= nvme_sect_to_lba(ns->head, UINT_MAX))
1890 lim->max_hw_discard_sectors =
1891 nvme_lba_to_sect(ns->head, ctrl->dmrsl);
1892 else if (ctrl->oncs & NVME_CTRL_ONCS_DSM)
1893 lim->max_hw_discard_sectors = UINT_MAX;
1894 else
1895 lim->max_hw_discard_sectors = 0;
1896
1897 lim->discard_granularity = lim->logical_block_size;
1898
1899 if (ctrl->dmrl)
1900 lim->max_discard_segments = ctrl->dmrl;
1901 else
1902 lim->max_discard_segments = NVME_DSM_MAX_RANGES;
1903 }
1904
nvme_ns_ids_equal(struct nvme_ns_ids * a,struct nvme_ns_ids * b)1905 static bool nvme_ns_ids_equal(struct nvme_ns_ids *a, struct nvme_ns_ids *b)
1906 {
1907 return uuid_equal(&a->uuid, &b->uuid) &&
1908 memcmp(&a->nguid, &b->nguid, sizeof(a->nguid)) == 0 &&
1909 memcmp(&a->eui64, &b->eui64, sizeof(a->eui64)) == 0 &&
1910 a->csi == b->csi;
1911 }
1912
nvme_identify_ns_nvm(struct nvme_ctrl * ctrl,unsigned int nsid,struct nvme_id_ns_nvm ** nvmp)1913 static int nvme_identify_ns_nvm(struct nvme_ctrl *ctrl, unsigned int nsid,
1914 struct nvme_id_ns_nvm **nvmp)
1915 {
1916 struct nvme_command c = {
1917 .identify.opcode = nvme_admin_identify,
1918 .identify.nsid = cpu_to_le32(nsid),
1919 .identify.cns = NVME_ID_CNS_CS_NS,
1920 .identify.csi = NVME_CSI_NVM,
1921 };
1922 struct nvme_id_ns_nvm *nvm;
1923 int ret;
1924
1925 nvm = kzalloc(sizeof(*nvm), GFP_KERNEL);
1926 if (!nvm)
1927 return -ENOMEM;
1928
1929 ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, nvm, sizeof(*nvm));
1930 if (ret)
1931 kfree(nvm);
1932 else
1933 *nvmp = nvm;
1934 return ret;
1935 }
1936
nvme_configure_pi_elbas(struct nvme_ns_head * head,struct nvme_id_ns * id,struct nvme_id_ns_nvm * nvm)1937 static void nvme_configure_pi_elbas(struct nvme_ns_head *head,
1938 struct nvme_id_ns *id, struct nvme_id_ns_nvm *nvm)
1939 {
1940 u32 elbaf = le32_to_cpu(nvm->elbaf[nvme_lbaf_index(id->flbas)]);
1941 u8 guard_type;
1942
1943 /* no support for storage tag formats right now */
1944 if (nvme_elbaf_sts(elbaf))
1945 return;
1946
1947 guard_type = nvme_elbaf_guard_type(elbaf);
1948 if ((nvm->pic & NVME_ID_NS_NVM_QPIFS) &&
1949 guard_type == NVME_NVM_NS_QTYPE_GUARD)
1950 guard_type = nvme_elbaf_qualified_guard_type(elbaf);
1951
1952 head->guard_type = guard_type;
1953 switch (head->guard_type) {
1954 case NVME_NVM_NS_64B_GUARD:
1955 head->pi_size = sizeof(struct crc64_pi_tuple);
1956 break;
1957 case NVME_NVM_NS_16B_GUARD:
1958 head->pi_size = sizeof(struct t10_pi_tuple);
1959 break;
1960 default:
1961 break;
1962 }
1963 }
1964
nvme_configure_metadata(struct nvme_ctrl * ctrl,struct nvme_ns_head * head,struct nvme_id_ns * id,struct nvme_id_ns_nvm * nvm,struct nvme_ns_info * info)1965 static void nvme_configure_metadata(struct nvme_ctrl *ctrl,
1966 struct nvme_ns_head *head, struct nvme_id_ns *id,
1967 struct nvme_id_ns_nvm *nvm, struct nvme_ns_info *info)
1968 {
1969 head->features &= ~(NVME_NS_METADATA_SUPPORTED | NVME_NS_EXT_LBAS);
1970 head->pi_type = 0;
1971 head->pi_size = 0;
1972 head->ms = le16_to_cpu(id->lbaf[nvme_lbaf_index(id->flbas)].ms);
1973 if (!head->ms || !(ctrl->ops->flags & NVME_F_METADATA_SUPPORTED))
1974 return;
1975
1976 if (nvm && (ctrl->ctratt & NVME_CTRL_ATTR_ELBAS)) {
1977 nvme_configure_pi_elbas(head, id, nvm);
1978 } else {
1979 head->pi_size = sizeof(struct t10_pi_tuple);
1980 head->guard_type = NVME_NVM_NS_16B_GUARD;
1981 }
1982
1983 if (head->pi_size && head->ms >= head->pi_size)
1984 head->pi_type = id->dps & NVME_NS_DPS_PI_MASK;
1985 if (!(id->dps & NVME_NS_DPS_PI_FIRST)) {
1986 if (disable_pi_offsets)
1987 head->pi_type = 0;
1988 else
1989 info->pi_offset = head->ms - head->pi_size;
1990 }
1991
1992 if (ctrl->ops->flags & NVME_F_FABRICS) {
1993 /*
1994 * The NVMe over Fabrics specification only supports metadata as
1995 * part of the extended data LBA. We rely on HCA/HBA support to
1996 * remap the separate metadata buffer from the block layer.
1997 */
1998 if (WARN_ON_ONCE(!(id->flbas & NVME_NS_FLBAS_META_EXT)))
1999 return;
2000
2001 head->features |= NVME_NS_EXT_LBAS;
2002
2003 /*
2004 * The current fabrics transport drivers support namespace
2005 * metadata formats only if nvme_ns_has_pi() returns true.
2006 * Suppress support for all other formats so the namespace will
2007 * have a 0 capacity and not be usable through the block stack.
2008 *
2009 * Note, this check will need to be modified if any drivers
2010 * gain the ability to use other metadata formats.
2011 */
2012 if (ctrl->max_integrity_segments && nvme_ns_has_pi(head))
2013 head->features |= NVME_NS_METADATA_SUPPORTED;
2014 } else {
2015 /*
2016 * For PCIe controllers, we can't easily remap the separate
2017 * metadata buffer from the block layer and thus require a
2018 * separate metadata buffer for block layer metadata/PI support.
2019 * We allow extended LBAs for the passthrough interface, though.
2020 */
2021 if (id->flbas & NVME_NS_FLBAS_META_EXT)
2022 head->features |= NVME_NS_EXT_LBAS;
2023 else
2024 head->features |= NVME_NS_METADATA_SUPPORTED;
2025 }
2026 }
2027
2028
nvme_configure_atomic_write(struct nvme_ns * ns,struct nvme_id_ns * id,struct queue_limits * lim,u32 bs)2029 static u32 nvme_configure_atomic_write(struct nvme_ns *ns,
2030 struct nvme_id_ns *id, struct queue_limits *lim, u32 bs)
2031 {
2032 u32 atomic_bs, boundary = 0;
2033
2034 /*
2035 * We do not support an offset for the atomic boundaries.
2036 */
2037 if (id->nabo)
2038 return bs;
2039
2040 if ((id->nsfeat & NVME_NS_FEAT_ATOMICS) && id->nawupf) {
2041 /*
2042 * Use the per-namespace atomic write unit when available.
2043 */
2044 atomic_bs = (1 + le16_to_cpu(id->nawupf)) * bs;
2045 if (id->nabspf)
2046 boundary = (le16_to_cpu(id->nabspf) + 1) * bs;
2047 } else {
2048 /*
2049 * Use the controller wide atomic write unit. This sucks
2050 * because the limit is defined in terms of logical blocks while
2051 * namespaces can have different formats, and because there is
2052 * no clear language in the specification prohibiting different
2053 * values for different controllers in the subsystem.
2054 */
2055 atomic_bs = (1 + ns->ctrl->subsys->awupf) * bs;
2056 }
2057
2058 lim->atomic_write_hw_max = atomic_bs;
2059 lim->atomic_write_hw_boundary = boundary;
2060 lim->atomic_write_hw_unit_min = bs;
2061 lim->atomic_write_hw_unit_max = rounddown_pow_of_two(atomic_bs);
2062 lim->features |= BLK_FEAT_ATOMIC_WRITES;
2063 return atomic_bs;
2064 }
2065
nvme_max_drv_segments(struct nvme_ctrl * ctrl)2066 static u32 nvme_max_drv_segments(struct nvme_ctrl *ctrl)
2067 {
2068 return ctrl->max_hw_sectors / (NVME_CTRL_PAGE_SIZE >> SECTOR_SHIFT) + 1;
2069 }
2070
nvme_set_ctrl_limits(struct nvme_ctrl * ctrl,struct queue_limits * lim)2071 static void nvme_set_ctrl_limits(struct nvme_ctrl *ctrl,
2072 struct queue_limits *lim)
2073 {
2074 lim->max_hw_sectors = ctrl->max_hw_sectors;
2075 lim->max_segments = min_t(u32, USHRT_MAX,
2076 min_not_zero(nvme_max_drv_segments(ctrl), ctrl->max_segments));
2077 lim->max_integrity_segments = ctrl->max_integrity_segments;
2078 lim->virt_boundary_mask = NVME_CTRL_PAGE_SIZE - 1;
2079 lim->max_segment_size = UINT_MAX;
2080 lim->dma_alignment = 3;
2081 }
2082
nvme_update_disk_info(struct nvme_ns * ns,struct nvme_id_ns * id,struct queue_limits * lim)2083 static bool nvme_update_disk_info(struct nvme_ns *ns, struct nvme_id_ns *id,
2084 struct queue_limits *lim)
2085 {
2086 struct nvme_ns_head *head = ns->head;
2087 u32 bs = 1U << head->lba_shift;
2088 u32 atomic_bs, phys_bs, io_opt = 0;
2089 bool valid = true;
2090
2091 /*
2092 * The block layer can't support LBA sizes larger than the page size
2093 * or smaller than a sector size yet, so catch this early and don't
2094 * allow block I/O.
2095 */
2096 if (blk_validate_block_size(bs)) {
2097 bs = (1 << 9);
2098 valid = false;
2099 }
2100
2101 phys_bs = bs;
2102 atomic_bs = nvme_configure_atomic_write(ns, id, lim, bs);
2103
2104 if (id->nsfeat & NVME_NS_FEAT_IO_OPT) {
2105 /* NPWG = Namespace Preferred Write Granularity */
2106 phys_bs = bs * (1 + le16_to_cpu(id->npwg));
2107 /* NOWS = Namespace Optimal Write Size */
2108 if (id->nows)
2109 io_opt = bs * (1 + le16_to_cpu(id->nows));
2110 }
2111
2112 /*
2113 * Linux filesystems assume writing a single physical block is
2114 * an atomic operation. Hence limit the physical block size to the
2115 * value of the Atomic Write Unit Power Fail parameter.
2116 */
2117 lim->logical_block_size = bs;
2118 lim->physical_block_size = min(phys_bs, atomic_bs);
2119 lim->io_min = phys_bs;
2120 lim->io_opt = io_opt;
2121 if ((ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES) &&
2122 (ns->ctrl->oncs & NVME_CTRL_ONCS_DSM))
2123 lim->max_write_zeroes_sectors = UINT_MAX;
2124 else
2125 lim->max_write_zeroes_sectors = ns->ctrl->max_zeroes_sectors;
2126 return valid;
2127 }
2128
nvme_ns_is_readonly(struct nvme_ns * ns,struct nvme_ns_info * info)2129 static bool nvme_ns_is_readonly(struct nvme_ns *ns, struct nvme_ns_info *info)
2130 {
2131 return info->is_readonly || test_bit(NVME_NS_FORCE_RO, &ns->flags);
2132 }
2133
nvme_first_scan(struct gendisk * disk)2134 static inline bool nvme_first_scan(struct gendisk *disk)
2135 {
2136 /* nvme_alloc_ns() scans the disk prior to adding it */
2137 return !disk_live(disk);
2138 }
2139
nvme_set_chunk_sectors(struct nvme_ns * ns,struct nvme_id_ns * id,struct queue_limits * lim)2140 static void nvme_set_chunk_sectors(struct nvme_ns *ns, struct nvme_id_ns *id,
2141 struct queue_limits *lim)
2142 {
2143 struct nvme_ctrl *ctrl = ns->ctrl;
2144 u32 iob;
2145
2146 if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) &&
2147 is_power_of_2(ctrl->max_hw_sectors))
2148 iob = ctrl->max_hw_sectors;
2149 else
2150 iob = nvme_lba_to_sect(ns->head, le16_to_cpu(id->noiob));
2151
2152 if (!iob)
2153 return;
2154
2155 if (!is_power_of_2(iob)) {
2156 if (nvme_first_scan(ns->disk))
2157 pr_warn("%s: ignoring unaligned IO boundary:%u\n",
2158 ns->disk->disk_name, iob);
2159 return;
2160 }
2161
2162 if (blk_queue_is_zoned(ns->disk->queue)) {
2163 if (nvme_first_scan(ns->disk))
2164 pr_warn("%s: ignoring zoned namespace IO boundary\n",
2165 ns->disk->disk_name);
2166 return;
2167 }
2168
2169 lim->chunk_sectors = iob;
2170 }
2171
nvme_update_ns_info_generic(struct nvme_ns * ns,struct nvme_ns_info * info)2172 static int nvme_update_ns_info_generic(struct nvme_ns *ns,
2173 struct nvme_ns_info *info)
2174 {
2175 struct queue_limits lim;
2176 unsigned int memflags;
2177 int ret;
2178
2179 lim = queue_limits_start_update(ns->disk->queue);
2180 nvme_set_ctrl_limits(ns->ctrl, &lim);
2181
2182 memflags = blk_mq_freeze_queue(ns->disk->queue);
2183 ret = queue_limits_commit_update(ns->disk->queue, &lim);
2184 set_disk_ro(ns->disk, nvme_ns_is_readonly(ns, info));
2185 blk_mq_unfreeze_queue(ns->disk->queue, memflags);
2186
2187 /* Hide the block-interface for these devices */
2188 if (!ret)
2189 ret = -ENODEV;
2190 return ret;
2191 }
2192
nvme_query_fdp_granularity(struct nvme_ctrl * ctrl,struct nvme_ns_info * info,u8 fdp_idx)2193 static int nvme_query_fdp_granularity(struct nvme_ctrl *ctrl,
2194 struct nvme_ns_info *info, u8 fdp_idx)
2195 {
2196 struct nvme_fdp_config_log hdr, *h;
2197 struct nvme_fdp_config_desc *desc;
2198 size_t size = sizeof(hdr);
2199 void *log, *end;
2200 int i, n, ret;
2201
2202 ret = nvme_get_log_lsi(ctrl, 0, NVME_LOG_FDP_CONFIGS, 0,
2203 NVME_CSI_NVM, &hdr, size, 0, info->endgid);
2204 if (ret) {
2205 dev_warn(ctrl->device,
2206 "FDP configs log header status:0x%x endgid:%d\n", ret,
2207 info->endgid);
2208 return ret;
2209 }
2210
2211 size = le32_to_cpu(hdr.sze);
2212 if (size > PAGE_SIZE * MAX_ORDER_NR_PAGES) {
2213 dev_warn(ctrl->device, "FDP config size too large:%zu\n",
2214 size);
2215 return 0;
2216 }
2217
2218 h = kvmalloc(size, GFP_KERNEL);
2219 if (!h)
2220 return -ENOMEM;
2221
2222 ret = nvme_get_log_lsi(ctrl, 0, NVME_LOG_FDP_CONFIGS, 0,
2223 NVME_CSI_NVM, h, size, 0, info->endgid);
2224 if (ret) {
2225 dev_warn(ctrl->device,
2226 "FDP configs log status:0x%x endgid:%d\n", ret,
2227 info->endgid);
2228 goto out;
2229 }
2230
2231 n = le16_to_cpu(h->numfdpc) + 1;
2232 if (fdp_idx > n) {
2233 dev_warn(ctrl->device, "FDP index:%d out of range:%d\n",
2234 fdp_idx, n);
2235 /* Proceed without registering FDP streams */
2236 ret = 0;
2237 goto out;
2238 }
2239
2240 log = h + 1;
2241 desc = log;
2242 end = log + size - sizeof(*h);
2243 for (i = 0; i < fdp_idx; i++) {
2244 log += le16_to_cpu(desc->dsze);
2245 desc = log;
2246 if (log >= end) {
2247 dev_warn(ctrl->device,
2248 "FDP invalid config descriptor list\n");
2249 ret = 0;
2250 goto out;
2251 }
2252 }
2253
2254 if (le32_to_cpu(desc->nrg) > 1) {
2255 dev_warn(ctrl->device, "FDP NRG > 1 not supported\n");
2256 ret = 0;
2257 goto out;
2258 }
2259
2260 info->runs = le64_to_cpu(desc->runs);
2261 out:
2262 kvfree(h);
2263 return ret;
2264 }
2265
nvme_query_fdp_info(struct nvme_ns * ns,struct nvme_ns_info * info)2266 static int nvme_query_fdp_info(struct nvme_ns *ns, struct nvme_ns_info *info)
2267 {
2268 struct nvme_ns_head *head = ns->head;
2269 struct nvme_ctrl *ctrl = ns->ctrl;
2270 struct nvme_fdp_ruh_status *ruhs;
2271 struct nvme_fdp_config fdp;
2272 struct nvme_command c = {};
2273 size_t size;
2274 int i, ret;
2275
2276 /*
2277 * The FDP configuration is static for the lifetime of the namespace,
2278 * so return immediately if we've already registered this namespace's
2279 * streams.
2280 */
2281 if (head->nr_plids)
2282 return 0;
2283
2284 ret = nvme_get_features(ctrl, NVME_FEAT_FDP, info->endgid, NULL, 0,
2285 &fdp);
2286 if (ret) {
2287 dev_warn(ctrl->device, "FDP get feature status:0x%x\n", ret);
2288 return ret;
2289 }
2290
2291 if (!(fdp.flags & FDPCFG_FDPE))
2292 return 0;
2293
2294 ret = nvme_query_fdp_granularity(ctrl, info, fdp.fdpcidx);
2295 if (!info->runs)
2296 return ret;
2297
2298 size = struct_size(ruhs, ruhsd, S8_MAX - 1);
2299 ruhs = kzalloc(size, GFP_KERNEL);
2300 if (!ruhs)
2301 return -ENOMEM;
2302
2303 c.imr.opcode = nvme_cmd_io_mgmt_recv;
2304 c.imr.nsid = cpu_to_le32(head->ns_id);
2305 c.imr.mo = NVME_IO_MGMT_RECV_MO_RUHS;
2306 c.imr.numd = cpu_to_le32(nvme_bytes_to_numd(size));
2307 ret = nvme_submit_sync_cmd(ns->queue, &c, ruhs, size);
2308 if (ret) {
2309 dev_warn(ctrl->device, "FDP io-mgmt status:0x%x\n", ret);
2310 goto free;
2311 }
2312
2313 head->nr_plids = le16_to_cpu(ruhs->nruhsd);
2314 if (!head->nr_plids)
2315 goto free;
2316
2317 head->plids = kcalloc(head->nr_plids, sizeof(*head->plids),
2318 GFP_KERNEL);
2319 if (!head->plids) {
2320 dev_warn(ctrl->device,
2321 "failed to allocate %u FDP placement IDs\n",
2322 head->nr_plids);
2323 head->nr_plids = 0;
2324 ret = -ENOMEM;
2325 goto free;
2326 }
2327
2328 for (i = 0; i < head->nr_plids; i++)
2329 head->plids[i] = le16_to_cpu(ruhs->ruhsd[i].pid);
2330 free:
2331 kfree(ruhs);
2332 return ret;
2333 }
2334
nvme_update_ns_info_block(struct nvme_ns * ns,struct nvme_ns_info * info)2335 static int nvme_update_ns_info_block(struct nvme_ns *ns,
2336 struct nvme_ns_info *info)
2337 {
2338 struct queue_limits lim;
2339 struct nvme_id_ns_nvm *nvm = NULL;
2340 struct nvme_zone_info zi = {};
2341 struct nvme_id_ns *id;
2342 unsigned int memflags;
2343 sector_t capacity;
2344 unsigned lbaf;
2345 int ret;
2346
2347 ret = nvme_identify_ns(ns->ctrl, info->nsid, &id);
2348 if (ret)
2349 return ret;
2350
2351 if (id->ncap == 0) {
2352 /* namespace not allocated or attached */
2353 info->is_removed = true;
2354 ret = -ENXIO;
2355 goto out;
2356 }
2357 lbaf = nvme_lbaf_index(id->flbas);
2358
2359 if (ns->ctrl->ctratt & NVME_CTRL_ATTR_ELBAS) {
2360 ret = nvme_identify_ns_nvm(ns->ctrl, info->nsid, &nvm);
2361 if (ret < 0)
2362 goto out;
2363 }
2364
2365 if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) &&
2366 ns->head->ids.csi == NVME_CSI_ZNS) {
2367 ret = nvme_query_zone_info(ns, lbaf, &zi);
2368 if (ret < 0)
2369 goto out;
2370 }
2371
2372 if (ns->ctrl->ctratt & NVME_CTRL_ATTR_FDPS) {
2373 ret = nvme_query_fdp_info(ns, info);
2374 if (ret < 0)
2375 goto out;
2376 }
2377
2378 lim = queue_limits_start_update(ns->disk->queue);
2379
2380 memflags = blk_mq_freeze_queue(ns->disk->queue);
2381 ns->head->lba_shift = id->lbaf[lbaf].ds;
2382 ns->head->nuse = le64_to_cpu(id->nuse);
2383 capacity = nvme_lba_to_sect(ns->head, le64_to_cpu(id->nsze));
2384 nvme_set_ctrl_limits(ns->ctrl, &lim);
2385 nvme_configure_metadata(ns->ctrl, ns->head, id, nvm, info);
2386 nvme_set_chunk_sectors(ns, id, &lim);
2387 if (!nvme_update_disk_info(ns, id, &lim))
2388 capacity = 0;
2389
2390 nvme_config_discard(ns, &lim);
2391 if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) &&
2392 ns->head->ids.csi == NVME_CSI_ZNS)
2393 nvme_update_zone_info(ns, &lim, &zi);
2394
2395 if ((ns->ctrl->vwc & NVME_CTRL_VWC_PRESENT) && !info->no_vwc)
2396 lim.features |= BLK_FEAT_WRITE_CACHE | BLK_FEAT_FUA;
2397 else
2398 lim.features &= ~(BLK_FEAT_WRITE_CACHE | BLK_FEAT_FUA);
2399
2400 if (info->is_rotational)
2401 lim.features |= BLK_FEAT_ROTATIONAL;
2402
2403 /*
2404 * Register a metadata profile for PI, or the plain non-integrity NVMe
2405 * metadata masquerading as Type 0 if supported, otherwise reject block
2406 * I/O to namespaces with metadata except when the namespace supports
2407 * PI, as it can strip/insert in that case.
2408 */
2409 if (!nvme_init_integrity(ns->head, &lim, info))
2410 capacity = 0;
2411
2412 lim.max_write_streams = ns->head->nr_plids;
2413 if (lim.max_write_streams)
2414 lim.write_stream_granularity = min(info->runs, U32_MAX);
2415 else
2416 lim.write_stream_granularity = 0;
2417
2418 /*
2419 * Only set the DEAC bit if the device guarantees that reads from
2420 * deallocated data return zeroes. While the DEAC bit does not
2421 * require that, it must be a no-op if reads from deallocated data
2422 * do not return zeroes.
2423 */
2424 if ((id->dlfeat & 0x7) == 0x1 && (id->dlfeat & (1 << 3))) {
2425 ns->head->features |= NVME_NS_DEAC;
2426 lim.max_hw_wzeroes_unmap_sectors = lim.max_write_zeroes_sectors;
2427 }
2428
2429 ret = queue_limits_commit_update(ns->disk->queue, &lim);
2430 if (ret) {
2431 blk_mq_unfreeze_queue(ns->disk->queue, memflags);
2432 goto out;
2433 }
2434
2435 set_capacity_and_notify(ns->disk, capacity);
2436 set_disk_ro(ns->disk, nvme_ns_is_readonly(ns, info));
2437 set_bit(NVME_NS_READY, &ns->flags);
2438 blk_mq_unfreeze_queue(ns->disk->queue, memflags);
2439
2440 if (blk_queue_is_zoned(ns->queue)) {
2441 ret = blk_revalidate_disk_zones(ns->disk);
2442 if (ret && !nvme_first_scan(ns->disk))
2443 goto out;
2444 }
2445
2446 ret = 0;
2447 out:
2448 kfree(nvm);
2449 kfree(id);
2450 return ret;
2451 }
2452
nvme_update_ns_info(struct nvme_ns * ns,struct nvme_ns_info * info)2453 static int nvme_update_ns_info(struct nvme_ns *ns, struct nvme_ns_info *info)
2454 {
2455 bool unsupported = false;
2456 int ret;
2457
2458 switch (info->ids.csi) {
2459 case NVME_CSI_ZNS:
2460 if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED)) {
2461 dev_info(ns->ctrl->device,
2462 "block device for nsid %u not supported without CONFIG_BLK_DEV_ZONED\n",
2463 info->nsid);
2464 ret = nvme_update_ns_info_generic(ns, info);
2465 break;
2466 }
2467 ret = nvme_update_ns_info_block(ns, info);
2468 break;
2469 case NVME_CSI_NVM:
2470 ret = nvme_update_ns_info_block(ns, info);
2471 break;
2472 default:
2473 dev_info(ns->ctrl->device,
2474 "block device for nsid %u not supported (csi %u)\n",
2475 info->nsid, info->ids.csi);
2476 ret = nvme_update_ns_info_generic(ns, info);
2477 break;
2478 }
2479
2480 /*
2481 * If probing fails due an unsupported feature, hide the block device,
2482 * but still allow other access.
2483 */
2484 if (ret == -ENODEV) {
2485 ns->disk->flags |= GENHD_FL_HIDDEN;
2486 set_bit(NVME_NS_READY, &ns->flags);
2487 unsupported = true;
2488 ret = 0;
2489 }
2490
2491 if (!ret && nvme_ns_head_multipath(ns->head)) {
2492 struct queue_limits *ns_lim = &ns->disk->queue->limits;
2493 struct queue_limits lim;
2494 unsigned int memflags;
2495
2496 lim = queue_limits_start_update(ns->head->disk->queue);
2497 memflags = blk_mq_freeze_queue(ns->head->disk->queue);
2498 /*
2499 * queue_limits mixes values that are the hardware limitations
2500 * for bio splitting with what is the device configuration.
2501 *
2502 * For NVMe the device configuration can change after e.g. a
2503 * Format command, and we really want to pick up the new format
2504 * value here. But we must still stack the queue limits to the
2505 * least common denominator for multipathing to split the bios
2506 * properly.
2507 *
2508 * To work around this, we explicitly set the device
2509 * configuration to those that we just queried, but only stack
2510 * the splitting limits in to make sure we still obey possibly
2511 * lower limitations of other controllers.
2512 */
2513 lim.logical_block_size = ns_lim->logical_block_size;
2514 lim.physical_block_size = ns_lim->physical_block_size;
2515 lim.io_min = ns_lim->io_min;
2516 lim.io_opt = ns_lim->io_opt;
2517 queue_limits_stack_bdev(&lim, ns->disk->part0, 0,
2518 ns->head->disk->disk_name);
2519 if (unsupported)
2520 ns->head->disk->flags |= GENHD_FL_HIDDEN;
2521 else
2522 nvme_init_integrity(ns->head, &lim, info);
2523 lim.max_write_streams = ns_lim->max_write_streams;
2524 lim.write_stream_granularity = ns_lim->write_stream_granularity;
2525 ret = queue_limits_commit_update(ns->head->disk->queue, &lim);
2526
2527 set_capacity_and_notify(ns->head->disk, get_capacity(ns->disk));
2528 set_disk_ro(ns->head->disk, nvme_ns_is_readonly(ns, info));
2529 nvme_mpath_revalidate_paths(ns);
2530
2531 blk_mq_unfreeze_queue(ns->head->disk->queue, memflags);
2532 }
2533
2534 return ret;
2535 }
2536
nvme_ns_get_unique_id(struct nvme_ns * ns,u8 id[16],enum blk_unique_id type)2537 int nvme_ns_get_unique_id(struct nvme_ns *ns, u8 id[16],
2538 enum blk_unique_id type)
2539 {
2540 struct nvme_ns_ids *ids = &ns->head->ids;
2541
2542 if (type != BLK_UID_EUI64)
2543 return -EINVAL;
2544
2545 if (memchr_inv(ids->nguid, 0, sizeof(ids->nguid))) {
2546 memcpy(id, &ids->nguid, sizeof(ids->nguid));
2547 return sizeof(ids->nguid);
2548 }
2549 if (memchr_inv(ids->eui64, 0, sizeof(ids->eui64))) {
2550 memcpy(id, &ids->eui64, sizeof(ids->eui64));
2551 return sizeof(ids->eui64);
2552 }
2553
2554 return -EINVAL;
2555 }
2556
nvme_get_unique_id(struct gendisk * disk,u8 id[16],enum blk_unique_id type)2557 static int nvme_get_unique_id(struct gendisk *disk, u8 id[16],
2558 enum blk_unique_id type)
2559 {
2560 return nvme_ns_get_unique_id(disk->private_data, id, type);
2561 }
2562
2563 #ifdef CONFIG_BLK_SED_OPAL
nvme_sec_submit(void * data,u16 spsp,u8 secp,void * buffer,size_t len,bool send)2564 static int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len,
2565 bool send)
2566 {
2567 struct nvme_ctrl *ctrl = data;
2568 struct nvme_command cmd = { };
2569
2570 if (send)
2571 cmd.common.opcode = nvme_admin_security_send;
2572 else
2573 cmd.common.opcode = nvme_admin_security_recv;
2574 cmd.common.nsid = 0;
2575 cmd.common.cdw10 = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8);
2576 cmd.common.cdw11 = cpu_to_le32(len);
2577
2578 return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len,
2579 NVME_QID_ANY, NVME_SUBMIT_AT_HEAD);
2580 }
2581
nvme_configure_opal(struct nvme_ctrl * ctrl,bool was_suspended)2582 static void nvme_configure_opal(struct nvme_ctrl *ctrl, bool was_suspended)
2583 {
2584 if (ctrl->oacs & NVME_CTRL_OACS_SEC_SUPP) {
2585 if (!ctrl->opal_dev)
2586 ctrl->opal_dev = init_opal_dev(ctrl, &nvme_sec_submit);
2587 else if (was_suspended)
2588 opal_unlock_from_suspend(ctrl->opal_dev);
2589 } else {
2590 free_opal_dev(ctrl->opal_dev);
2591 ctrl->opal_dev = NULL;
2592 }
2593 }
2594 #else
nvme_configure_opal(struct nvme_ctrl * ctrl,bool was_suspended)2595 static void nvme_configure_opal(struct nvme_ctrl *ctrl, bool was_suspended)
2596 {
2597 }
2598 #endif /* CONFIG_BLK_SED_OPAL */
2599
2600 #ifdef CONFIG_BLK_DEV_ZONED
nvme_report_zones(struct gendisk * disk,sector_t sector,unsigned int nr_zones,report_zones_cb cb,void * data)2601 static int nvme_report_zones(struct gendisk *disk, sector_t sector,
2602 unsigned int nr_zones, report_zones_cb cb, void *data)
2603 {
2604 return nvme_ns_report_zones(disk->private_data, sector, nr_zones, cb,
2605 data);
2606 }
2607 #else
2608 #define nvme_report_zones NULL
2609 #endif /* CONFIG_BLK_DEV_ZONED */
2610
2611 const struct block_device_operations nvme_bdev_ops = {
2612 .owner = THIS_MODULE,
2613 .ioctl = nvme_ioctl,
2614 .compat_ioctl = blkdev_compat_ptr_ioctl,
2615 .open = nvme_open,
2616 .release = nvme_release,
2617 .getgeo = nvme_getgeo,
2618 .get_unique_id = nvme_get_unique_id,
2619 .report_zones = nvme_report_zones,
2620 .pr_ops = &nvme_pr_ops,
2621 };
2622
nvme_wait_ready(struct nvme_ctrl * ctrl,u32 mask,u32 val,u32 timeout,const char * op)2623 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u32 mask, u32 val,
2624 u32 timeout, const char *op)
2625 {
2626 unsigned long timeout_jiffies = jiffies + timeout * HZ;
2627 u32 csts;
2628 int ret;
2629
2630 while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
2631 if (csts == ~0)
2632 return -ENODEV;
2633 if ((csts & mask) == val)
2634 break;
2635
2636 usleep_range(1000, 2000);
2637 if (fatal_signal_pending(current))
2638 return -EINTR;
2639 if (time_after(jiffies, timeout_jiffies)) {
2640 dev_err(ctrl->device,
2641 "Device not ready; aborting %s, CSTS=0x%x\n",
2642 op, csts);
2643 return -ENODEV;
2644 }
2645 }
2646
2647 return ret;
2648 }
2649
nvme_disable_ctrl(struct nvme_ctrl * ctrl,bool shutdown)2650 int nvme_disable_ctrl(struct nvme_ctrl *ctrl, bool shutdown)
2651 {
2652 int ret;
2653
2654 ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
2655 if (shutdown)
2656 ctrl->ctrl_config |= NVME_CC_SHN_NORMAL;
2657 else
2658 ctrl->ctrl_config &= ~NVME_CC_ENABLE;
2659
2660 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2661 if (ret)
2662 return ret;
2663
2664 if (shutdown) {
2665 return nvme_wait_ready(ctrl, NVME_CSTS_SHST_MASK,
2666 NVME_CSTS_SHST_CMPLT,
2667 ctrl->shutdown_timeout, "shutdown");
2668 }
2669 if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY)
2670 msleep(NVME_QUIRK_DELAY_AMOUNT);
2671 return nvme_wait_ready(ctrl, NVME_CSTS_RDY, 0,
2672 (NVME_CAP_TIMEOUT(ctrl->cap) + 1) / 2, "reset");
2673 }
2674 EXPORT_SYMBOL_GPL(nvme_disable_ctrl);
2675
nvme_enable_ctrl(struct nvme_ctrl * ctrl)2676 int nvme_enable_ctrl(struct nvme_ctrl *ctrl)
2677 {
2678 unsigned dev_page_min;
2679 u32 timeout;
2680 int ret;
2681
2682 ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap);
2683 if (ret) {
2684 dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret);
2685 return ret;
2686 }
2687 dev_page_min = NVME_CAP_MPSMIN(ctrl->cap) + 12;
2688
2689 if (NVME_CTRL_PAGE_SHIFT < dev_page_min) {
2690 dev_err(ctrl->device,
2691 "Minimum device page size %u too large for host (%u)\n",
2692 1 << dev_page_min, 1 << NVME_CTRL_PAGE_SHIFT);
2693 return -ENODEV;
2694 }
2695
2696 if (NVME_CAP_CSS(ctrl->cap) & NVME_CAP_CSS_CSI)
2697 ctrl->ctrl_config = NVME_CC_CSS_CSI;
2698 else
2699 ctrl->ctrl_config = NVME_CC_CSS_NVM;
2700
2701 /*
2702 * Setting CRIME results in CSTS.RDY before the media is ready. This
2703 * makes it possible for media related commands to return the error
2704 * NVME_SC_ADMIN_COMMAND_MEDIA_NOT_READY. Until the driver is
2705 * restructured to handle retries, disable CC.CRIME.
2706 */
2707 ctrl->ctrl_config &= ~NVME_CC_CRIME;
2708
2709 ctrl->ctrl_config |= (NVME_CTRL_PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT;
2710 ctrl->ctrl_config |= NVME_CC_AMS_RR | NVME_CC_SHN_NONE;
2711 ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
2712 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2713 if (ret)
2714 return ret;
2715
2716 /* CAP value may change after initial CC write */
2717 ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap);
2718 if (ret)
2719 return ret;
2720
2721 timeout = NVME_CAP_TIMEOUT(ctrl->cap);
2722 if (ctrl->cap & NVME_CAP_CRMS_CRWMS) {
2723 u32 crto, ready_timeout;
2724
2725 ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CRTO, &crto);
2726 if (ret) {
2727 dev_err(ctrl->device, "Reading CRTO failed (%d)\n",
2728 ret);
2729 return ret;
2730 }
2731
2732 /*
2733 * CRTO should always be greater or equal to CAP.TO, but some
2734 * devices are known to get this wrong. Use the larger of the
2735 * two values.
2736 */
2737 ready_timeout = NVME_CRTO_CRWMT(crto);
2738
2739 if (ready_timeout < timeout)
2740 dev_warn_once(ctrl->device, "bad crto:%x cap:%llx\n",
2741 crto, ctrl->cap);
2742 else
2743 timeout = ready_timeout;
2744 }
2745
2746 ctrl->ctrl_config |= NVME_CC_ENABLE;
2747 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2748 if (ret)
2749 return ret;
2750 return nvme_wait_ready(ctrl, NVME_CSTS_RDY, NVME_CSTS_RDY,
2751 (timeout + 1) / 2, "initialisation");
2752 }
2753 EXPORT_SYMBOL_GPL(nvme_enable_ctrl);
2754
nvme_configure_timestamp(struct nvme_ctrl * ctrl)2755 static int nvme_configure_timestamp(struct nvme_ctrl *ctrl)
2756 {
2757 __le64 ts;
2758 int ret;
2759
2760 if (!(ctrl->oncs & NVME_CTRL_ONCS_TIMESTAMP))
2761 return 0;
2762
2763 ts = cpu_to_le64(ktime_to_ms(ktime_get_real()));
2764 ret = nvme_set_features(ctrl, NVME_FEAT_TIMESTAMP, 0, &ts, sizeof(ts),
2765 NULL);
2766 if (ret)
2767 dev_warn_once(ctrl->device,
2768 "could not set timestamp (%d)\n", ret);
2769 return ret;
2770 }
2771
nvme_configure_host_options(struct nvme_ctrl * ctrl)2772 static int nvme_configure_host_options(struct nvme_ctrl *ctrl)
2773 {
2774 struct nvme_feat_host_behavior *host;
2775 u8 acre = 0, lbafee = 0;
2776 int ret;
2777
2778 /* Don't bother enabling the feature if retry delay is not reported */
2779 if (ctrl->crdt[0])
2780 acre = NVME_ENABLE_ACRE;
2781 if (ctrl->ctratt & NVME_CTRL_ATTR_ELBAS)
2782 lbafee = NVME_ENABLE_LBAFEE;
2783
2784 if (!acre && !lbafee)
2785 return 0;
2786
2787 host = kzalloc(sizeof(*host), GFP_KERNEL);
2788 if (!host)
2789 return 0;
2790
2791 host->acre = acre;
2792 host->lbafee = lbafee;
2793 ret = nvme_set_features(ctrl, NVME_FEAT_HOST_BEHAVIOR, 0,
2794 host, sizeof(*host), NULL);
2795 kfree(host);
2796 return ret;
2797 }
2798
2799 /*
2800 * The function checks whether the given total (exlat + enlat) latency of
2801 * a power state allows the latter to be used as an APST transition target.
2802 * It does so by comparing the latency to the primary and secondary latency
2803 * tolerances defined by module params. If there's a match, the corresponding
2804 * timeout value is returned and the matching tolerance index (1 or 2) is
2805 * reported.
2806 */
nvme_apst_get_transition_time(u64 total_latency,u64 * transition_time,unsigned * last_index)2807 static bool nvme_apst_get_transition_time(u64 total_latency,
2808 u64 *transition_time, unsigned *last_index)
2809 {
2810 if (total_latency <= apst_primary_latency_tol_us) {
2811 if (*last_index == 1)
2812 return false;
2813 *last_index = 1;
2814 *transition_time = apst_primary_timeout_ms;
2815 return true;
2816 }
2817 if (apst_secondary_timeout_ms &&
2818 total_latency <= apst_secondary_latency_tol_us) {
2819 if (*last_index <= 2)
2820 return false;
2821 *last_index = 2;
2822 *transition_time = apst_secondary_timeout_ms;
2823 return true;
2824 }
2825 return false;
2826 }
2827
2828 /*
2829 * APST (Autonomous Power State Transition) lets us program a table of power
2830 * state transitions that the controller will perform automatically.
2831 *
2832 * Depending on module params, one of the two supported techniques will be used:
2833 *
2834 * - If the parameters provide explicit timeouts and tolerances, they will be
2835 * used to build a table with up to 2 non-operational states to transition to.
2836 * The default parameter values were selected based on the values used by
2837 * Microsoft's and Intel's NVMe drivers. Yet, since we don't implement dynamic
2838 * regeneration of the APST table in the event of switching between external
2839 * and battery power, the timeouts and tolerances reflect a compromise
2840 * between values used by Microsoft for AC and battery scenarios.
2841 * - If not, we'll configure the table with a simple heuristic: we are willing
2842 * to spend at most 2% of the time transitioning between power states.
2843 * Therefore, when running in any given state, we will enter the next
2844 * lower-power non-operational state after waiting 50 * (enlat + exlat)
2845 * microseconds, as long as that state's exit latency is under the requested
2846 * maximum latency.
2847 *
2848 * We will not autonomously enter any non-operational state for which the total
2849 * latency exceeds ps_max_latency_us.
2850 *
2851 * Users can set ps_max_latency_us to zero to turn off APST.
2852 */
nvme_configure_apst(struct nvme_ctrl * ctrl)2853 static int nvme_configure_apst(struct nvme_ctrl *ctrl)
2854 {
2855 struct nvme_feat_auto_pst *table;
2856 unsigned apste = 0;
2857 u64 max_lat_us = 0;
2858 __le64 target = 0;
2859 int max_ps = -1;
2860 int state;
2861 int ret;
2862 unsigned last_lt_index = UINT_MAX;
2863
2864 /*
2865 * If APST isn't supported or if we haven't been initialized yet,
2866 * then don't do anything.
2867 */
2868 if (!ctrl->apsta)
2869 return 0;
2870
2871 if (ctrl->npss > 31) {
2872 dev_warn(ctrl->device, "NPSS is invalid; not using APST\n");
2873 return 0;
2874 }
2875
2876 table = kzalloc(sizeof(*table), GFP_KERNEL);
2877 if (!table)
2878 return 0;
2879
2880 if (!ctrl->apst_enabled || ctrl->ps_max_latency_us == 0) {
2881 /* Turn off APST. */
2882 dev_dbg(ctrl->device, "APST disabled\n");
2883 goto done;
2884 }
2885
2886 /*
2887 * Walk through all states from lowest- to highest-power.
2888 * According to the spec, lower-numbered states use more power. NPSS,
2889 * despite the name, is the index of the lowest-power state, not the
2890 * number of states.
2891 */
2892 for (state = (int)ctrl->npss; state >= 0; state--) {
2893 u64 total_latency_us, exit_latency_us, transition_ms;
2894
2895 if (target)
2896 table->entries[state] = target;
2897
2898 /*
2899 * Don't allow transitions to the deepest state if it's quirked
2900 * off.
2901 */
2902 if (state == ctrl->npss &&
2903 (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS))
2904 continue;
2905
2906 /*
2907 * Is this state a useful non-operational state for higher-power
2908 * states to autonomously transition to?
2909 */
2910 if (!(ctrl->psd[state].flags & NVME_PS_FLAGS_NON_OP_STATE))
2911 continue;
2912
2913 exit_latency_us = (u64)le32_to_cpu(ctrl->psd[state].exit_lat);
2914 if (exit_latency_us > ctrl->ps_max_latency_us)
2915 continue;
2916
2917 total_latency_us = exit_latency_us +
2918 le32_to_cpu(ctrl->psd[state].entry_lat);
2919
2920 /*
2921 * This state is good. It can be used as the APST idle target
2922 * for higher power states.
2923 */
2924 if (apst_primary_timeout_ms && apst_primary_latency_tol_us) {
2925 if (!nvme_apst_get_transition_time(total_latency_us,
2926 &transition_ms, &last_lt_index))
2927 continue;
2928 } else {
2929 transition_ms = total_latency_us + 19;
2930 do_div(transition_ms, 20);
2931 if (transition_ms > (1 << 24) - 1)
2932 transition_ms = (1 << 24) - 1;
2933 }
2934
2935 target = cpu_to_le64((state << 3) | (transition_ms << 8));
2936 if (max_ps == -1)
2937 max_ps = state;
2938 if (total_latency_us > max_lat_us)
2939 max_lat_us = total_latency_us;
2940 }
2941
2942 if (max_ps == -1)
2943 dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n");
2944 else
2945 dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n",
2946 max_ps, max_lat_us, (int)sizeof(*table), table);
2947 apste = 1;
2948
2949 done:
2950 ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste,
2951 table, sizeof(*table), NULL);
2952 if (ret)
2953 dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret);
2954 kfree(table);
2955 return ret;
2956 }
2957
nvme_set_latency_tolerance(struct device * dev,s32 val)2958 static void nvme_set_latency_tolerance(struct device *dev, s32 val)
2959 {
2960 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2961 u64 latency;
2962
2963 switch (val) {
2964 case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT:
2965 case PM_QOS_LATENCY_ANY:
2966 latency = U64_MAX;
2967 break;
2968
2969 default:
2970 latency = val;
2971 }
2972
2973 if (ctrl->ps_max_latency_us != latency) {
2974 ctrl->ps_max_latency_us = latency;
2975 if (nvme_ctrl_state(ctrl) == NVME_CTRL_LIVE)
2976 nvme_configure_apst(ctrl);
2977 }
2978 }
2979
2980 struct nvme_core_quirk_entry {
2981 /*
2982 * NVMe model and firmware strings are padded with spaces. For
2983 * simplicity, strings in the quirk table are padded with NULLs
2984 * instead.
2985 */
2986 u16 vid;
2987 const char *mn;
2988 const char *fr;
2989 unsigned long quirks;
2990 };
2991
2992 static const struct nvme_core_quirk_entry core_quirks[] = {
2993 {
2994 /*
2995 * This Toshiba device seems to die using any APST states. See:
2996 * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11
2997 */
2998 .vid = 0x1179,
2999 .mn = "THNSF5256GPUK TOSHIBA",
3000 .quirks = NVME_QUIRK_NO_APST,
3001 },
3002 {
3003 /*
3004 * This LiteON CL1-3D*-Q11 firmware version has a race
3005 * condition associated with actions related to suspend to idle
3006 * LiteON has resolved the problem in future firmware
3007 */
3008 .vid = 0x14a4,
3009 .fr = "22301111",
3010 .quirks = NVME_QUIRK_SIMPLE_SUSPEND,
3011 },
3012 {
3013 /*
3014 * This Kioxia CD6-V Series / HPE PE8030 device times out and
3015 * aborts I/O during any load, but more easily reproducible
3016 * with discards (fstrim).
3017 *
3018 * The device is left in a state where it is also not possible
3019 * to use "nvme set-feature" to disable APST, but booting with
3020 * nvme_core.default_ps_max_latency=0 works.
3021 */
3022 .vid = 0x1e0f,
3023 .mn = "KCD6XVUL6T40",
3024 .quirks = NVME_QUIRK_NO_APST,
3025 },
3026 {
3027 /*
3028 * The external Samsung X5 SSD fails initialization without a
3029 * delay before checking if it is ready and has a whole set of
3030 * other problems. To make this even more interesting, it
3031 * shares the PCI ID with internal Samsung 970 Evo Plus that
3032 * does not need or want these quirks.
3033 */
3034 .vid = 0x144d,
3035 .mn = "Samsung Portable SSD X5",
3036 .quirks = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
3037 NVME_QUIRK_NO_DEEPEST_PS |
3038 NVME_QUIRK_IGNORE_DEV_SUBNQN,
3039 }
3040 };
3041
3042 /* match is null-terminated but idstr is space-padded. */
string_matches(const char * idstr,const char * match,size_t len)3043 static bool string_matches(const char *idstr, const char *match, size_t len)
3044 {
3045 size_t matchlen;
3046
3047 if (!match)
3048 return true;
3049
3050 matchlen = strlen(match);
3051 WARN_ON_ONCE(matchlen > len);
3052
3053 if (memcmp(idstr, match, matchlen))
3054 return false;
3055
3056 for (; matchlen < len; matchlen++)
3057 if (idstr[matchlen] != ' ')
3058 return false;
3059
3060 return true;
3061 }
3062
quirk_matches(const struct nvme_id_ctrl * id,const struct nvme_core_quirk_entry * q)3063 static bool quirk_matches(const struct nvme_id_ctrl *id,
3064 const struct nvme_core_quirk_entry *q)
3065 {
3066 return q->vid == le16_to_cpu(id->vid) &&
3067 string_matches(id->mn, q->mn, sizeof(id->mn)) &&
3068 string_matches(id->fr, q->fr, sizeof(id->fr));
3069 }
3070
nvme_init_subnqn(struct nvme_subsystem * subsys,struct nvme_ctrl * ctrl,struct nvme_id_ctrl * id)3071 static void nvme_init_subnqn(struct nvme_subsystem *subsys, struct nvme_ctrl *ctrl,
3072 struct nvme_id_ctrl *id)
3073 {
3074 size_t nqnlen;
3075 int off;
3076
3077 if(!(ctrl->quirks & NVME_QUIRK_IGNORE_DEV_SUBNQN)) {
3078 nqnlen = strnlen(id->subnqn, NVMF_NQN_SIZE);
3079 if (nqnlen > 0 && nqnlen < NVMF_NQN_SIZE) {
3080 strscpy(subsys->subnqn, id->subnqn, NVMF_NQN_SIZE);
3081 return;
3082 }
3083
3084 if (ctrl->vs >= NVME_VS(1, 2, 1))
3085 dev_warn(ctrl->device, "missing or invalid SUBNQN field.\n");
3086 }
3087
3088 /*
3089 * Generate a "fake" NQN similar to the one in Section 4.5 of the NVMe
3090 * Base Specification 2.0. It is slightly different from the format
3091 * specified there due to historic reasons, and we can't change it now.
3092 */
3093 off = snprintf(subsys->subnqn, NVMF_NQN_SIZE,
3094 "nqn.2014.08.org.nvmexpress:%04x%04x",
3095 le16_to_cpu(id->vid), le16_to_cpu(id->ssvid));
3096 memcpy(subsys->subnqn + off, id->sn, sizeof(id->sn));
3097 off += sizeof(id->sn);
3098 memcpy(subsys->subnqn + off, id->mn, sizeof(id->mn));
3099 off += sizeof(id->mn);
3100 memset(subsys->subnqn + off, 0, sizeof(subsys->subnqn) - off);
3101 }
3102
nvme_release_subsystem(struct device * dev)3103 static void nvme_release_subsystem(struct device *dev)
3104 {
3105 struct nvme_subsystem *subsys =
3106 container_of(dev, struct nvme_subsystem, dev);
3107
3108 if (subsys->instance >= 0)
3109 ida_free(&nvme_instance_ida, subsys->instance);
3110 kfree(subsys);
3111 }
3112
nvme_destroy_subsystem(struct kref * ref)3113 static void nvme_destroy_subsystem(struct kref *ref)
3114 {
3115 struct nvme_subsystem *subsys =
3116 container_of(ref, struct nvme_subsystem, ref);
3117
3118 mutex_lock(&nvme_subsystems_lock);
3119 list_del(&subsys->entry);
3120 mutex_unlock(&nvme_subsystems_lock);
3121
3122 ida_destroy(&subsys->ns_ida);
3123 device_del(&subsys->dev);
3124 put_device(&subsys->dev);
3125 }
3126
nvme_put_subsystem(struct nvme_subsystem * subsys)3127 static void nvme_put_subsystem(struct nvme_subsystem *subsys)
3128 {
3129 kref_put(&subsys->ref, nvme_destroy_subsystem);
3130 }
3131
__nvme_find_get_subsystem(const char * subsysnqn)3132 static struct nvme_subsystem *__nvme_find_get_subsystem(const char *subsysnqn)
3133 {
3134 struct nvme_subsystem *subsys;
3135
3136 lockdep_assert_held(&nvme_subsystems_lock);
3137
3138 /*
3139 * Fail matches for discovery subsystems. This results
3140 * in each discovery controller bound to a unique subsystem.
3141 * This avoids issues with validating controller values
3142 * that can only be true when there is a single unique subsystem.
3143 * There may be multiple and completely independent entities
3144 * that provide discovery controllers.
3145 */
3146 if (!strcmp(subsysnqn, NVME_DISC_SUBSYS_NAME))
3147 return NULL;
3148
3149 list_for_each_entry(subsys, &nvme_subsystems, entry) {
3150 if (strcmp(subsys->subnqn, subsysnqn))
3151 continue;
3152 if (!kref_get_unless_zero(&subsys->ref))
3153 continue;
3154 return subsys;
3155 }
3156
3157 return NULL;
3158 }
3159
nvme_discovery_ctrl(struct nvme_ctrl * ctrl)3160 static inline bool nvme_discovery_ctrl(struct nvme_ctrl *ctrl)
3161 {
3162 return ctrl->opts && ctrl->opts->discovery_nqn;
3163 }
3164
nvme_admin_ctrl(struct nvme_ctrl * ctrl)3165 static inline bool nvme_admin_ctrl(struct nvme_ctrl *ctrl)
3166 {
3167 return ctrl->cntrltype == NVME_CTRL_ADMIN;
3168 }
3169
nvme_validate_cntlid(struct nvme_subsystem * subsys,struct nvme_ctrl * ctrl,struct nvme_id_ctrl * id)3170 static bool nvme_validate_cntlid(struct nvme_subsystem *subsys,
3171 struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
3172 {
3173 struct nvme_ctrl *tmp;
3174
3175 lockdep_assert_held(&nvme_subsystems_lock);
3176
3177 list_for_each_entry(tmp, &subsys->ctrls, subsys_entry) {
3178 if (nvme_state_terminal(tmp))
3179 continue;
3180
3181 if (tmp->cntlid == ctrl->cntlid) {
3182 dev_err(ctrl->device,
3183 "Duplicate cntlid %u with %s, subsys %s, rejecting\n",
3184 ctrl->cntlid, dev_name(tmp->device),
3185 subsys->subnqn);
3186 return false;
3187 }
3188
3189 if ((id->cmic & NVME_CTRL_CMIC_MULTI_CTRL) ||
3190 nvme_discovery_ctrl(ctrl))
3191 continue;
3192
3193 dev_err(ctrl->device,
3194 "Subsystem does not support multiple controllers\n");
3195 return false;
3196 }
3197
3198 return true;
3199 }
3200
nvme_init_subsystem(struct nvme_ctrl * ctrl,struct nvme_id_ctrl * id)3201 static int nvme_init_subsystem(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
3202 {
3203 struct nvme_subsystem *subsys, *found;
3204 int ret;
3205
3206 subsys = kzalloc(sizeof(*subsys), GFP_KERNEL);
3207 if (!subsys)
3208 return -ENOMEM;
3209
3210 subsys->instance = -1;
3211 mutex_init(&subsys->lock);
3212 kref_init(&subsys->ref);
3213 INIT_LIST_HEAD(&subsys->ctrls);
3214 INIT_LIST_HEAD(&subsys->nsheads);
3215 nvme_init_subnqn(subsys, ctrl, id);
3216 memcpy(subsys->serial, id->sn, sizeof(subsys->serial));
3217 memcpy(subsys->model, id->mn, sizeof(subsys->model));
3218 subsys->vendor_id = le16_to_cpu(id->vid);
3219 subsys->cmic = id->cmic;
3220 subsys->awupf = le16_to_cpu(id->awupf);
3221
3222 /* Versions prior to 1.4 don't necessarily report a valid type */
3223 if (id->cntrltype == NVME_CTRL_DISC ||
3224 !strcmp(subsys->subnqn, NVME_DISC_SUBSYS_NAME))
3225 subsys->subtype = NVME_NQN_DISC;
3226 else
3227 subsys->subtype = NVME_NQN_NVME;
3228
3229 if (nvme_discovery_ctrl(ctrl) && subsys->subtype != NVME_NQN_DISC) {
3230 dev_err(ctrl->device,
3231 "Subsystem %s is not a discovery controller",
3232 subsys->subnqn);
3233 kfree(subsys);
3234 return -EINVAL;
3235 }
3236 nvme_mpath_default_iopolicy(subsys);
3237
3238 subsys->dev.class = &nvme_subsys_class;
3239 subsys->dev.release = nvme_release_subsystem;
3240 subsys->dev.groups = nvme_subsys_attrs_groups;
3241 dev_set_name(&subsys->dev, "nvme-subsys%d", ctrl->instance);
3242 device_initialize(&subsys->dev);
3243
3244 mutex_lock(&nvme_subsystems_lock);
3245 found = __nvme_find_get_subsystem(subsys->subnqn);
3246 if (found) {
3247 put_device(&subsys->dev);
3248 subsys = found;
3249
3250 if (!nvme_validate_cntlid(subsys, ctrl, id)) {
3251 ret = -EINVAL;
3252 goto out_put_subsystem;
3253 }
3254 } else {
3255 ret = device_add(&subsys->dev);
3256 if (ret) {
3257 dev_err(ctrl->device,
3258 "failed to register subsystem device.\n");
3259 put_device(&subsys->dev);
3260 goto out_unlock;
3261 }
3262 ida_init(&subsys->ns_ida);
3263 list_add_tail(&subsys->entry, &nvme_subsystems);
3264 }
3265
3266 ret = sysfs_create_link(&subsys->dev.kobj, &ctrl->device->kobj,
3267 dev_name(ctrl->device));
3268 if (ret) {
3269 dev_err(ctrl->device,
3270 "failed to create sysfs link from subsystem.\n");
3271 goto out_put_subsystem;
3272 }
3273
3274 if (!found)
3275 subsys->instance = ctrl->instance;
3276 ctrl->subsys = subsys;
3277 list_add_tail(&ctrl->subsys_entry, &subsys->ctrls);
3278 mutex_unlock(&nvme_subsystems_lock);
3279 return 0;
3280
3281 out_put_subsystem:
3282 nvme_put_subsystem(subsys);
3283 out_unlock:
3284 mutex_unlock(&nvme_subsystems_lock);
3285 return ret;
3286 }
3287
nvme_get_log_lsi(struct nvme_ctrl * ctrl,u32 nsid,u8 log_page,u8 lsp,u8 csi,void * log,size_t size,u64 offset,u16 lsi)3288 static int nvme_get_log_lsi(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page,
3289 u8 lsp, u8 csi, void *log, size_t size, u64 offset, u16 lsi)
3290 {
3291 struct nvme_command c = { };
3292 u32 dwlen = nvme_bytes_to_numd(size);
3293
3294 c.get_log_page.opcode = nvme_admin_get_log_page;
3295 c.get_log_page.nsid = cpu_to_le32(nsid);
3296 c.get_log_page.lid = log_page;
3297 c.get_log_page.lsp = lsp;
3298 c.get_log_page.numdl = cpu_to_le16(dwlen & ((1 << 16) - 1));
3299 c.get_log_page.numdu = cpu_to_le16(dwlen >> 16);
3300 c.get_log_page.lpol = cpu_to_le32(lower_32_bits(offset));
3301 c.get_log_page.lpou = cpu_to_le32(upper_32_bits(offset));
3302 c.get_log_page.csi = csi;
3303 c.get_log_page.lsi = cpu_to_le16(lsi);
3304
3305 return nvme_submit_sync_cmd(ctrl->admin_q, &c, log, size);
3306 }
3307
nvme_get_log(struct nvme_ctrl * ctrl,u32 nsid,u8 log_page,u8 lsp,u8 csi,void * log,size_t size,u64 offset)3308 int nvme_get_log(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page, u8 lsp, u8 csi,
3309 void *log, size_t size, u64 offset)
3310 {
3311 return nvme_get_log_lsi(ctrl, nsid, log_page, lsp, csi, log, size,
3312 offset, 0);
3313 }
3314
nvme_get_effects_log(struct nvme_ctrl * ctrl,u8 csi,struct nvme_effects_log ** log)3315 static int nvme_get_effects_log(struct nvme_ctrl *ctrl, u8 csi,
3316 struct nvme_effects_log **log)
3317 {
3318 struct nvme_effects_log *old, *cel = xa_load(&ctrl->cels, csi);
3319 int ret;
3320
3321 if (cel)
3322 goto out;
3323
3324 cel = kzalloc(sizeof(*cel), GFP_KERNEL);
3325 if (!cel)
3326 return -ENOMEM;
3327
3328 ret = nvme_get_log(ctrl, 0x00, NVME_LOG_CMD_EFFECTS, 0, csi,
3329 cel, sizeof(*cel), 0);
3330 if (ret) {
3331 kfree(cel);
3332 return ret;
3333 }
3334
3335 old = xa_store(&ctrl->cels, csi, cel, GFP_KERNEL);
3336 if (xa_is_err(old)) {
3337 kfree(cel);
3338 return xa_err(old);
3339 }
3340 out:
3341 *log = cel;
3342 return 0;
3343 }
3344
nvme_mps_to_sectors(struct nvme_ctrl * ctrl,u32 units)3345 static inline u32 nvme_mps_to_sectors(struct nvme_ctrl *ctrl, u32 units)
3346 {
3347 u32 page_shift = NVME_CAP_MPSMIN(ctrl->cap) + 12, val;
3348
3349 if (check_shl_overflow(1U, units + page_shift - 9, &val))
3350 return UINT_MAX;
3351 return val;
3352 }
3353
nvme_init_non_mdts_limits(struct nvme_ctrl * ctrl)3354 static int nvme_init_non_mdts_limits(struct nvme_ctrl *ctrl)
3355 {
3356 struct nvme_command c = { };
3357 struct nvme_id_ctrl_nvm *id;
3358 int ret;
3359
3360 /*
3361 * Even though NVMe spec explicitly states that MDTS is not applicable
3362 * to the write-zeroes, we are cautious and limit the size to the
3363 * controllers max_hw_sectors value, which is based on the MDTS field
3364 * and possibly other limiting factors.
3365 */
3366 if ((ctrl->oncs & NVME_CTRL_ONCS_WRITE_ZEROES) &&
3367 !(ctrl->quirks & NVME_QUIRK_DISABLE_WRITE_ZEROES))
3368 ctrl->max_zeroes_sectors = ctrl->max_hw_sectors;
3369 else
3370 ctrl->max_zeroes_sectors = 0;
3371
3372 if (ctrl->subsys->subtype != NVME_NQN_NVME ||
3373 !nvme_id_cns_ok(ctrl, NVME_ID_CNS_CS_CTRL) ||
3374 test_bit(NVME_CTRL_SKIP_ID_CNS_CS, &ctrl->flags))
3375 return 0;
3376
3377 id = kzalloc(sizeof(*id), GFP_KERNEL);
3378 if (!id)
3379 return -ENOMEM;
3380
3381 c.identify.opcode = nvme_admin_identify;
3382 c.identify.cns = NVME_ID_CNS_CS_CTRL;
3383 c.identify.csi = NVME_CSI_NVM;
3384
3385 ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id));
3386 if (ret)
3387 goto free_data;
3388
3389 ctrl->dmrl = id->dmrl;
3390 ctrl->dmrsl = le32_to_cpu(id->dmrsl);
3391 if (id->wzsl)
3392 ctrl->max_zeroes_sectors = nvme_mps_to_sectors(ctrl, id->wzsl);
3393
3394 free_data:
3395 if (ret > 0)
3396 set_bit(NVME_CTRL_SKIP_ID_CNS_CS, &ctrl->flags);
3397 kfree(id);
3398 return ret;
3399 }
3400
nvme_init_effects_log(struct nvme_ctrl * ctrl,u8 csi,struct nvme_effects_log ** log)3401 static int nvme_init_effects_log(struct nvme_ctrl *ctrl,
3402 u8 csi, struct nvme_effects_log **log)
3403 {
3404 struct nvme_effects_log *effects, *old;
3405
3406 effects = kzalloc(sizeof(*effects), GFP_KERNEL);
3407 if (!effects)
3408 return -ENOMEM;
3409
3410 old = xa_store(&ctrl->cels, csi, effects, GFP_KERNEL);
3411 if (xa_is_err(old)) {
3412 kfree(effects);
3413 return xa_err(old);
3414 }
3415
3416 *log = effects;
3417 return 0;
3418 }
3419
nvme_init_known_nvm_effects(struct nvme_ctrl * ctrl)3420 static void nvme_init_known_nvm_effects(struct nvme_ctrl *ctrl)
3421 {
3422 struct nvme_effects_log *log = ctrl->effects;
3423
3424 log->acs[nvme_admin_format_nvm] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC |
3425 NVME_CMD_EFFECTS_NCC |
3426 NVME_CMD_EFFECTS_CSE_MASK);
3427 log->acs[nvme_admin_sanitize_nvm] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC |
3428 NVME_CMD_EFFECTS_CSE_MASK);
3429
3430 /*
3431 * The spec says the result of a security receive command depends on
3432 * the previous security send command. As such, many vendors log this
3433 * command as one to submitted only when no other commands to the same
3434 * namespace are outstanding. The intention is to tell the host to
3435 * prevent mixing security send and receive.
3436 *
3437 * This driver can only enforce such exclusive access against IO
3438 * queues, though. We are not readily able to enforce such a rule for
3439 * two commands to the admin queue, which is the only queue that
3440 * matters for this command.
3441 *
3442 * Rather than blindly freezing the IO queues for this effect that
3443 * doesn't even apply to IO, mask it off.
3444 */
3445 log->acs[nvme_admin_security_recv] &= cpu_to_le32(~NVME_CMD_EFFECTS_CSE_MASK);
3446
3447 log->iocs[nvme_cmd_write] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC);
3448 log->iocs[nvme_cmd_write_zeroes] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC);
3449 log->iocs[nvme_cmd_write_uncor] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC);
3450 }
3451
nvme_init_effects(struct nvme_ctrl * ctrl,struct nvme_id_ctrl * id)3452 static int nvme_init_effects(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
3453 {
3454 int ret = 0;
3455
3456 if (ctrl->effects)
3457 return 0;
3458
3459 if (id->lpa & NVME_CTRL_LPA_CMD_EFFECTS_LOG) {
3460 ret = nvme_get_effects_log(ctrl, NVME_CSI_NVM, &ctrl->effects);
3461 if (ret < 0)
3462 return ret;
3463 }
3464
3465 if (!ctrl->effects) {
3466 ret = nvme_init_effects_log(ctrl, NVME_CSI_NVM, &ctrl->effects);
3467 if (ret < 0)
3468 return ret;
3469 }
3470
3471 nvme_init_known_nvm_effects(ctrl);
3472 return 0;
3473 }
3474
nvme_check_ctrl_fabric_info(struct nvme_ctrl * ctrl,struct nvme_id_ctrl * id)3475 static int nvme_check_ctrl_fabric_info(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
3476 {
3477 /*
3478 * In fabrics we need to verify the cntlid matches the
3479 * admin connect
3480 */
3481 if (ctrl->cntlid != le16_to_cpu(id->cntlid)) {
3482 dev_err(ctrl->device,
3483 "Mismatching cntlid: Connect %u vs Identify %u, rejecting\n",
3484 ctrl->cntlid, le16_to_cpu(id->cntlid));
3485 return -EINVAL;
3486 }
3487
3488 if (!nvme_discovery_ctrl(ctrl) && !ctrl->kas) {
3489 dev_err(ctrl->device,
3490 "keep-alive support is mandatory for fabrics\n");
3491 return -EINVAL;
3492 }
3493
3494 if (!nvme_discovery_ctrl(ctrl) && ctrl->ioccsz < 4) {
3495 dev_err(ctrl->device,
3496 "I/O queue command capsule supported size %d < 4\n",
3497 ctrl->ioccsz);
3498 return -EINVAL;
3499 }
3500
3501 if (!nvme_discovery_ctrl(ctrl) && ctrl->iorcsz < 1) {
3502 dev_err(ctrl->device,
3503 "I/O queue response capsule supported size %d < 1\n",
3504 ctrl->iorcsz);
3505 return -EINVAL;
3506 }
3507
3508 if (!ctrl->maxcmd) {
3509 dev_warn(ctrl->device,
3510 "Firmware bug: maximum outstanding commands is 0\n");
3511 ctrl->maxcmd = ctrl->sqsize + 1;
3512 }
3513
3514 return 0;
3515 }
3516
nvme_init_identify(struct nvme_ctrl * ctrl)3517 static int nvme_init_identify(struct nvme_ctrl *ctrl)
3518 {
3519 struct queue_limits lim;
3520 struct nvme_id_ctrl *id;
3521 u32 max_hw_sectors;
3522 bool prev_apst_enabled;
3523 int ret;
3524
3525 ret = nvme_identify_ctrl(ctrl, &id);
3526 if (ret) {
3527 dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret);
3528 return -EIO;
3529 }
3530
3531 if (!(ctrl->ops->flags & NVME_F_FABRICS))
3532 ctrl->cntlid = le16_to_cpu(id->cntlid);
3533
3534 if (!ctrl->identified) {
3535 unsigned int i;
3536
3537 /*
3538 * Check for quirks. Quirk can depend on firmware version,
3539 * so, in principle, the set of quirks present can change
3540 * across a reset. As a possible future enhancement, we
3541 * could re-scan for quirks every time we reinitialize
3542 * the device, but we'd have to make sure that the driver
3543 * behaves intelligently if the quirks change.
3544 */
3545 for (i = 0; i < ARRAY_SIZE(core_quirks); i++) {
3546 if (quirk_matches(id, &core_quirks[i]))
3547 ctrl->quirks |= core_quirks[i].quirks;
3548 }
3549
3550 ret = nvme_init_subsystem(ctrl, id);
3551 if (ret)
3552 goto out_free;
3553
3554 ret = nvme_init_effects(ctrl, id);
3555 if (ret)
3556 goto out_free;
3557 }
3558 memcpy(ctrl->subsys->firmware_rev, id->fr,
3559 sizeof(ctrl->subsys->firmware_rev));
3560
3561 if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) {
3562 dev_warn(ctrl->device, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n");
3563 ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS;
3564 }
3565
3566 ctrl->crdt[0] = le16_to_cpu(id->crdt1);
3567 ctrl->crdt[1] = le16_to_cpu(id->crdt2);
3568 ctrl->crdt[2] = le16_to_cpu(id->crdt3);
3569
3570 ctrl->oacs = le16_to_cpu(id->oacs);
3571 ctrl->oncs = le16_to_cpu(id->oncs);
3572 ctrl->mtfa = le16_to_cpu(id->mtfa);
3573 ctrl->oaes = le32_to_cpu(id->oaes);
3574 ctrl->wctemp = le16_to_cpu(id->wctemp);
3575 ctrl->cctemp = le16_to_cpu(id->cctemp);
3576
3577 atomic_set(&ctrl->abort_limit, id->acl + 1);
3578 ctrl->vwc = id->vwc;
3579 if (id->mdts)
3580 max_hw_sectors = nvme_mps_to_sectors(ctrl, id->mdts);
3581 else
3582 max_hw_sectors = UINT_MAX;
3583 ctrl->max_hw_sectors =
3584 min_not_zero(ctrl->max_hw_sectors, max_hw_sectors);
3585
3586 lim = queue_limits_start_update(ctrl->admin_q);
3587 nvme_set_ctrl_limits(ctrl, &lim);
3588 ret = queue_limits_commit_update(ctrl->admin_q, &lim);
3589 if (ret)
3590 goto out_free;
3591
3592 ctrl->sgls = le32_to_cpu(id->sgls);
3593 ctrl->kas = le16_to_cpu(id->kas);
3594 ctrl->max_namespaces = le32_to_cpu(id->mnan);
3595 ctrl->ctratt = le32_to_cpu(id->ctratt);
3596
3597 ctrl->cntrltype = id->cntrltype;
3598 ctrl->dctype = id->dctype;
3599
3600 if (id->rtd3e) {
3601 /* us -> s */
3602 u32 transition_time = le32_to_cpu(id->rtd3e) / USEC_PER_SEC;
3603
3604 ctrl->shutdown_timeout = clamp_t(unsigned int, transition_time,
3605 shutdown_timeout, 60);
3606
3607 if (ctrl->shutdown_timeout != shutdown_timeout)
3608 dev_info(ctrl->device,
3609 "D3 entry latency set to %u seconds\n",
3610 ctrl->shutdown_timeout);
3611 } else
3612 ctrl->shutdown_timeout = shutdown_timeout;
3613
3614 ctrl->npss = id->npss;
3615 ctrl->apsta = id->apsta;
3616 prev_apst_enabled = ctrl->apst_enabled;
3617 if (ctrl->quirks & NVME_QUIRK_NO_APST) {
3618 if (force_apst && id->apsta) {
3619 dev_warn(ctrl->device, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n");
3620 ctrl->apst_enabled = true;
3621 } else {
3622 ctrl->apst_enabled = false;
3623 }
3624 } else {
3625 ctrl->apst_enabled = id->apsta;
3626 }
3627 memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd));
3628
3629 if (ctrl->ops->flags & NVME_F_FABRICS) {
3630 ctrl->icdoff = le16_to_cpu(id->icdoff);
3631 ctrl->ioccsz = le32_to_cpu(id->ioccsz);
3632 ctrl->iorcsz = le32_to_cpu(id->iorcsz);
3633 ctrl->maxcmd = le16_to_cpu(id->maxcmd);
3634
3635 ret = nvme_check_ctrl_fabric_info(ctrl, id);
3636 if (ret)
3637 goto out_free;
3638 } else {
3639 ctrl->hmpre = le32_to_cpu(id->hmpre);
3640 ctrl->hmmin = le32_to_cpu(id->hmmin);
3641 ctrl->hmminds = le32_to_cpu(id->hmminds);
3642 ctrl->hmmaxd = le16_to_cpu(id->hmmaxd);
3643 }
3644
3645 ret = nvme_mpath_init_identify(ctrl, id);
3646 if (ret < 0)
3647 goto out_free;
3648
3649 if (ctrl->apst_enabled && !prev_apst_enabled)
3650 dev_pm_qos_expose_latency_tolerance(ctrl->device);
3651 else if (!ctrl->apst_enabled && prev_apst_enabled)
3652 dev_pm_qos_hide_latency_tolerance(ctrl->device);
3653 out_free:
3654 kfree(id);
3655 return ret;
3656 }
3657
3658 /*
3659 * Initialize the cached copies of the Identify data and various controller
3660 * register in our nvme_ctrl structure. This should be called as soon as
3661 * the admin queue is fully up and running.
3662 */
nvme_init_ctrl_finish(struct nvme_ctrl * ctrl,bool was_suspended)3663 int nvme_init_ctrl_finish(struct nvme_ctrl *ctrl, bool was_suspended)
3664 {
3665 int ret;
3666
3667 ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs);
3668 if (ret) {
3669 dev_err(ctrl->device, "Reading VS failed (%d)\n", ret);
3670 return ret;
3671 }
3672
3673 ctrl->sqsize = min_t(u16, NVME_CAP_MQES(ctrl->cap), ctrl->sqsize);
3674
3675 if (ctrl->vs >= NVME_VS(1, 1, 0))
3676 ctrl->subsystem = NVME_CAP_NSSRC(ctrl->cap);
3677
3678 ret = nvme_init_identify(ctrl);
3679 if (ret)
3680 return ret;
3681
3682 if (nvme_admin_ctrl(ctrl)) {
3683 /*
3684 * An admin controller has one admin queue, but no I/O queues.
3685 * Override queue_count so it only creates an admin queue.
3686 */
3687 dev_dbg(ctrl->device,
3688 "Subsystem %s is an administrative controller",
3689 ctrl->subsys->subnqn);
3690 ctrl->queue_count = 1;
3691 }
3692
3693 ret = nvme_configure_apst(ctrl);
3694 if (ret < 0)
3695 return ret;
3696
3697 ret = nvme_configure_timestamp(ctrl);
3698 if (ret < 0)
3699 return ret;
3700
3701 ret = nvme_configure_host_options(ctrl);
3702 if (ret < 0)
3703 return ret;
3704
3705 nvme_configure_opal(ctrl, was_suspended);
3706
3707 if (!ctrl->identified && !nvme_discovery_ctrl(ctrl)) {
3708 /*
3709 * Do not return errors unless we are in a controller reset,
3710 * the controller works perfectly fine without hwmon.
3711 */
3712 ret = nvme_hwmon_init(ctrl);
3713 if (ret == -EINTR)
3714 return ret;
3715 }
3716
3717 clear_bit(NVME_CTRL_DIRTY_CAPABILITY, &ctrl->flags);
3718 ctrl->identified = true;
3719
3720 nvme_start_keep_alive(ctrl);
3721
3722 return 0;
3723 }
3724 EXPORT_SYMBOL_GPL(nvme_init_ctrl_finish);
3725
nvme_dev_open(struct inode * inode,struct file * file)3726 static int nvme_dev_open(struct inode *inode, struct file *file)
3727 {
3728 struct nvme_ctrl *ctrl =
3729 container_of(inode->i_cdev, struct nvme_ctrl, cdev);
3730
3731 switch (nvme_ctrl_state(ctrl)) {
3732 case NVME_CTRL_LIVE:
3733 break;
3734 default:
3735 return -EWOULDBLOCK;
3736 }
3737
3738 nvme_get_ctrl(ctrl);
3739 if (!try_module_get(ctrl->ops->module)) {
3740 nvme_put_ctrl(ctrl);
3741 return -EINVAL;
3742 }
3743
3744 file->private_data = ctrl;
3745 return 0;
3746 }
3747
nvme_dev_release(struct inode * inode,struct file * file)3748 static int nvme_dev_release(struct inode *inode, struct file *file)
3749 {
3750 struct nvme_ctrl *ctrl =
3751 container_of(inode->i_cdev, struct nvme_ctrl, cdev);
3752
3753 module_put(ctrl->ops->module);
3754 nvme_put_ctrl(ctrl);
3755 return 0;
3756 }
3757
3758 static const struct file_operations nvme_dev_fops = {
3759 .owner = THIS_MODULE,
3760 .open = nvme_dev_open,
3761 .release = nvme_dev_release,
3762 .unlocked_ioctl = nvme_dev_ioctl,
3763 .compat_ioctl = compat_ptr_ioctl,
3764 .uring_cmd = nvme_dev_uring_cmd,
3765 };
3766
nvme_find_ns_head(struct nvme_ctrl * ctrl,unsigned nsid)3767 static struct nvme_ns_head *nvme_find_ns_head(struct nvme_ctrl *ctrl,
3768 unsigned nsid)
3769 {
3770 struct nvme_ns_head *h;
3771
3772 lockdep_assert_held(&ctrl->subsys->lock);
3773
3774 list_for_each_entry(h, &ctrl->subsys->nsheads, entry) {
3775 /*
3776 * Private namespaces can share NSIDs under some conditions.
3777 * In that case we can't use the same ns_head for namespaces
3778 * with the same NSID.
3779 */
3780 if (h->ns_id != nsid || !nvme_is_unique_nsid(ctrl, h))
3781 continue;
3782 if (nvme_tryget_ns_head(h))
3783 return h;
3784 }
3785
3786 return NULL;
3787 }
3788
nvme_subsys_check_duplicate_ids(struct nvme_subsystem * subsys,struct nvme_ns_ids * ids)3789 static int nvme_subsys_check_duplicate_ids(struct nvme_subsystem *subsys,
3790 struct nvme_ns_ids *ids)
3791 {
3792 bool has_uuid = !uuid_is_null(&ids->uuid);
3793 bool has_nguid = memchr_inv(ids->nguid, 0, sizeof(ids->nguid));
3794 bool has_eui64 = memchr_inv(ids->eui64, 0, sizeof(ids->eui64));
3795 struct nvme_ns_head *h;
3796
3797 lockdep_assert_held(&subsys->lock);
3798
3799 list_for_each_entry(h, &subsys->nsheads, entry) {
3800 if (has_uuid && uuid_equal(&ids->uuid, &h->ids.uuid))
3801 return -EINVAL;
3802 if (has_nguid &&
3803 memcmp(&ids->nguid, &h->ids.nguid, sizeof(ids->nguid)) == 0)
3804 return -EINVAL;
3805 if (has_eui64 &&
3806 memcmp(&ids->eui64, &h->ids.eui64, sizeof(ids->eui64)) == 0)
3807 return -EINVAL;
3808 }
3809
3810 return 0;
3811 }
3812
nvme_cdev_rel(struct device * dev)3813 static void nvme_cdev_rel(struct device *dev)
3814 {
3815 ida_free(&nvme_ns_chr_minor_ida, MINOR(dev->devt));
3816 }
3817
nvme_cdev_del(struct cdev * cdev,struct device * cdev_device)3818 void nvme_cdev_del(struct cdev *cdev, struct device *cdev_device)
3819 {
3820 cdev_device_del(cdev, cdev_device);
3821 put_device(cdev_device);
3822 }
3823
nvme_cdev_add(struct cdev * cdev,struct device * cdev_device,const struct file_operations * fops,struct module * owner)3824 int nvme_cdev_add(struct cdev *cdev, struct device *cdev_device,
3825 const struct file_operations *fops, struct module *owner)
3826 {
3827 int minor, ret;
3828
3829 minor = ida_alloc(&nvme_ns_chr_minor_ida, GFP_KERNEL);
3830 if (minor < 0)
3831 return minor;
3832 cdev_device->devt = MKDEV(MAJOR(nvme_ns_chr_devt), minor);
3833 cdev_device->class = &nvme_ns_chr_class;
3834 cdev_device->release = nvme_cdev_rel;
3835 device_initialize(cdev_device);
3836 cdev_init(cdev, fops);
3837 cdev->owner = owner;
3838 ret = cdev_device_add(cdev, cdev_device);
3839 if (ret)
3840 put_device(cdev_device);
3841
3842 return ret;
3843 }
3844
nvme_ns_chr_open(struct inode * inode,struct file * file)3845 static int nvme_ns_chr_open(struct inode *inode, struct file *file)
3846 {
3847 return nvme_ns_open(container_of(inode->i_cdev, struct nvme_ns, cdev));
3848 }
3849
nvme_ns_chr_release(struct inode * inode,struct file * file)3850 static int nvme_ns_chr_release(struct inode *inode, struct file *file)
3851 {
3852 nvme_ns_release(container_of(inode->i_cdev, struct nvme_ns, cdev));
3853 return 0;
3854 }
3855
3856 static const struct file_operations nvme_ns_chr_fops = {
3857 .owner = THIS_MODULE,
3858 .open = nvme_ns_chr_open,
3859 .release = nvme_ns_chr_release,
3860 .unlocked_ioctl = nvme_ns_chr_ioctl,
3861 .compat_ioctl = compat_ptr_ioctl,
3862 .uring_cmd = nvme_ns_chr_uring_cmd,
3863 .uring_cmd_iopoll = nvme_ns_chr_uring_cmd_iopoll,
3864 };
3865
nvme_add_ns_cdev(struct nvme_ns * ns)3866 static int nvme_add_ns_cdev(struct nvme_ns *ns)
3867 {
3868 int ret;
3869
3870 ns->cdev_device.parent = ns->ctrl->device;
3871 ret = dev_set_name(&ns->cdev_device, "ng%dn%d",
3872 ns->ctrl->instance, ns->head->instance);
3873 if (ret)
3874 return ret;
3875
3876 return nvme_cdev_add(&ns->cdev, &ns->cdev_device, &nvme_ns_chr_fops,
3877 ns->ctrl->ops->module);
3878 }
3879
nvme_alloc_ns_head(struct nvme_ctrl * ctrl,struct nvme_ns_info * info)3880 static struct nvme_ns_head *nvme_alloc_ns_head(struct nvme_ctrl *ctrl,
3881 struct nvme_ns_info *info)
3882 {
3883 struct nvme_ns_head *head;
3884 size_t size = sizeof(*head);
3885 int ret = -ENOMEM;
3886
3887 #ifdef CONFIG_NVME_MULTIPATH
3888 size += num_possible_nodes() * sizeof(struct nvme_ns *);
3889 #endif
3890
3891 head = kzalloc(size, GFP_KERNEL);
3892 if (!head)
3893 goto out;
3894 ret = ida_alloc_min(&ctrl->subsys->ns_ida, 1, GFP_KERNEL);
3895 if (ret < 0)
3896 goto out_free_head;
3897 head->instance = ret;
3898 INIT_LIST_HEAD(&head->list);
3899 ret = init_srcu_struct(&head->srcu);
3900 if (ret)
3901 goto out_ida_remove;
3902 head->subsys = ctrl->subsys;
3903 head->ns_id = info->nsid;
3904 head->ids = info->ids;
3905 head->shared = info->is_shared;
3906 head->rotational = info->is_rotational;
3907 ratelimit_state_init(&head->rs_nuse, 5 * HZ, 1);
3908 ratelimit_set_flags(&head->rs_nuse, RATELIMIT_MSG_ON_RELEASE);
3909 kref_init(&head->ref);
3910
3911 if (head->ids.csi) {
3912 ret = nvme_get_effects_log(ctrl, head->ids.csi, &head->effects);
3913 if (ret)
3914 goto out_cleanup_srcu;
3915 } else
3916 head->effects = ctrl->effects;
3917
3918 ret = nvme_mpath_alloc_disk(ctrl, head);
3919 if (ret)
3920 goto out_cleanup_srcu;
3921
3922 list_add_tail(&head->entry, &ctrl->subsys->nsheads);
3923
3924 kref_get(&ctrl->subsys->ref);
3925
3926 return head;
3927 out_cleanup_srcu:
3928 cleanup_srcu_struct(&head->srcu);
3929 out_ida_remove:
3930 ida_free(&ctrl->subsys->ns_ida, head->instance);
3931 out_free_head:
3932 kfree(head);
3933 out:
3934 if (ret > 0)
3935 ret = blk_status_to_errno(nvme_error_status(ret));
3936 return ERR_PTR(ret);
3937 }
3938
nvme_global_check_duplicate_ids(struct nvme_subsystem * this,struct nvme_ns_ids * ids)3939 static int nvme_global_check_duplicate_ids(struct nvme_subsystem *this,
3940 struct nvme_ns_ids *ids)
3941 {
3942 struct nvme_subsystem *s;
3943 int ret = 0;
3944
3945 /*
3946 * Note that this check is racy as we try to avoid holding the global
3947 * lock over the whole ns_head creation. But it is only intended as
3948 * a sanity check anyway.
3949 */
3950 mutex_lock(&nvme_subsystems_lock);
3951 list_for_each_entry(s, &nvme_subsystems, entry) {
3952 if (s == this)
3953 continue;
3954 mutex_lock(&s->lock);
3955 ret = nvme_subsys_check_duplicate_ids(s, ids);
3956 mutex_unlock(&s->lock);
3957 if (ret)
3958 break;
3959 }
3960 mutex_unlock(&nvme_subsystems_lock);
3961
3962 return ret;
3963 }
3964
nvme_init_ns_head(struct nvme_ns * ns,struct nvme_ns_info * info)3965 static int nvme_init_ns_head(struct nvme_ns *ns, struct nvme_ns_info *info)
3966 {
3967 struct nvme_ctrl *ctrl = ns->ctrl;
3968 struct nvme_ns_head *head = NULL;
3969 int ret;
3970
3971 ret = nvme_global_check_duplicate_ids(ctrl->subsys, &info->ids);
3972 if (ret) {
3973 /*
3974 * We've found two different namespaces on two different
3975 * subsystems that report the same ID. This is pretty nasty
3976 * for anything that actually requires unique device
3977 * identification. In the kernel we need this for multipathing,
3978 * and in user space the /dev/disk/by-id/ links rely on it.
3979 *
3980 * If the device also claims to be multi-path capable back off
3981 * here now and refuse the probe the second device as this is a
3982 * recipe for data corruption. If not this is probably a
3983 * cheap consumer device if on the PCIe bus, so let the user
3984 * proceed and use the shiny toy, but warn that with changing
3985 * probing order (which due to our async probing could just be
3986 * device taking longer to startup) the other device could show
3987 * up at any time.
3988 */
3989 nvme_print_device_info(ctrl);
3990 if ((ns->ctrl->ops->flags & NVME_F_FABRICS) || /* !PCIe */
3991 ((ns->ctrl->subsys->cmic & NVME_CTRL_CMIC_MULTI_CTRL) &&
3992 info->is_shared)) {
3993 dev_err(ctrl->device,
3994 "ignoring nsid %d because of duplicate IDs\n",
3995 info->nsid);
3996 return ret;
3997 }
3998
3999 dev_err(ctrl->device,
4000 "clearing duplicate IDs for nsid %d\n", info->nsid);
4001 dev_err(ctrl->device,
4002 "use of /dev/disk/by-id/ may cause data corruption\n");
4003 memset(&info->ids.nguid, 0, sizeof(info->ids.nguid));
4004 memset(&info->ids.uuid, 0, sizeof(info->ids.uuid));
4005 memset(&info->ids.eui64, 0, sizeof(info->ids.eui64));
4006 ctrl->quirks |= NVME_QUIRK_BOGUS_NID;
4007 }
4008
4009 mutex_lock(&ctrl->subsys->lock);
4010 head = nvme_find_ns_head(ctrl, info->nsid);
4011 if (!head) {
4012 ret = nvme_subsys_check_duplicate_ids(ctrl->subsys, &info->ids);
4013 if (ret) {
4014 dev_err(ctrl->device,
4015 "duplicate IDs in subsystem for nsid %d\n",
4016 info->nsid);
4017 goto out_unlock;
4018 }
4019 head = nvme_alloc_ns_head(ctrl, info);
4020 if (IS_ERR(head)) {
4021 ret = PTR_ERR(head);
4022 goto out_unlock;
4023 }
4024 } else {
4025 ret = -EINVAL;
4026 if ((!info->is_shared || !head->shared) &&
4027 !list_empty(&head->list)) {
4028 dev_err(ctrl->device,
4029 "Duplicate unshared namespace %d\n",
4030 info->nsid);
4031 goto out_put_ns_head;
4032 }
4033 if (!nvme_ns_ids_equal(&head->ids, &info->ids)) {
4034 dev_err(ctrl->device,
4035 "IDs don't match for shared namespace %d\n",
4036 info->nsid);
4037 goto out_put_ns_head;
4038 }
4039
4040 if (!multipath) {
4041 dev_warn(ctrl->device,
4042 "Found shared namespace %d, but multipathing not supported.\n",
4043 info->nsid);
4044 dev_warn_once(ctrl->device,
4045 "Shared namespace support requires core_nvme.multipath=Y.\n");
4046 }
4047 }
4048
4049 list_add_tail_rcu(&ns->siblings, &head->list);
4050 ns->head = head;
4051 mutex_unlock(&ctrl->subsys->lock);
4052
4053 #ifdef CONFIG_NVME_MULTIPATH
4054 cancel_delayed_work(&head->remove_work);
4055 #endif
4056 return 0;
4057
4058 out_put_ns_head:
4059 nvme_put_ns_head(head);
4060 out_unlock:
4061 mutex_unlock(&ctrl->subsys->lock);
4062 return ret;
4063 }
4064
nvme_find_get_ns(struct nvme_ctrl * ctrl,unsigned nsid)4065 struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid)
4066 {
4067 struct nvme_ns *ns, *ret = NULL;
4068 int srcu_idx;
4069
4070 srcu_idx = srcu_read_lock(&ctrl->srcu);
4071 list_for_each_entry_srcu(ns, &ctrl->namespaces, list,
4072 srcu_read_lock_held(&ctrl->srcu)) {
4073 if (ns->head->ns_id == nsid) {
4074 if (!nvme_get_ns(ns))
4075 continue;
4076 ret = ns;
4077 break;
4078 }
4079 if (ns->head->ns_id > nsid)
4080 break;
4081 }
4082 srcu_read_unlock(&ctrl->srcu, srcu_idx);
4083 return ret;
4084 }
4085 EXPORT_SYMBOL_NS_GPL(nvme_find_get_ns, "NVME_TARGET_PASSTHRU");
4086
4087 /*
4088 * Add the namespace to the controller list while keeping the list ordered.
4089 */
nvme_ns_add_to_ctrl_list(struct nvme_ns * ns)4090 static void nvme_ns_add_to_ctrl_list(struct nvme_ns *ns)
4091 {
4092 struct nvme_ns *tmp;
4093
4094 list_for_each_entry_reverse(tmp, &ns->ctrl->namespaces, list) {
4095 if (tmp->head->ns_id < ns->head->ns_id) {
4096 list_add_rcu(&ns->list, &tmp->list);
4097 return;
4098 }
4099 }
4100 list_add_rcu(&ns->list, &ns->ctrl->namespaces);
4101 }
4102
nvme_alloc_ns(struct nvme_ctrl * ctrl,struct nvme_ns_info * info)4103 static void nvme_alloc_ns(struct nvme_ctrl *ctrl, struct nvme_ns_info *info)
4104 {
4105 struct queue_limits lim = { };
4106 struct nvme_ns *ns;
4107 struct gendisk *disk;
4108 int node = ctrl->numa_node;
4109 bool last_path = false;
4110
4111 ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
4112 if (!ns)
4113 return;
4114
4115 if (ctrl->opts && ctrl->opts->data_digest)
4116 lim.features |= BLK_FEAT_STABLE_WRITES;
4117 if (ctrl->ops->supports_pci_p2pdma &&
4118 ctrl->ops->supports_pci_p2pdma(ctrl))
4119 lim.features |= BLK_FEAT_PCI_P2PDMA;
4120
4121 disk = blk_mq_alloc_disk(ctrl->tagset, &lim, ns);
4122 if (IS_ERR(disk))
4123 goto out_free_ns;
4124 disk->fops = &nvme_bdev_ops;
4125 disk->private_data = ns;
4126
4127 ns->disk = disk;
4128 ns->queue = disk->queue;
4129 ns->ctrl = ctrl;
4130 kref_init(&ns->kref);
4131
4132 if (nvme_init_ns_head(ns, info))
4133 goto out_cleanup_disk;
4134
4135 /*
4136 * If multipathing is enabled, the device name for all disks and not
4137 * just those that represent shared namespaces needs to be based on the
4138 * subsystem instance. Using the controller instance for private
4139 * namespaces could lead to naming collisions between shared and private
4140 * namespaces if they don't use a common numbering scheme.
4141 *
4142 * If multipathing is not enabled, disk names must use the controller
4143 * instance as shared namespaces will show up as multiple block
4144 * devices.
4145 */
4146 if (nvme_ns_head_multipath(ns->head)) {
4147 sprintf(disk->disk_name, "nvme%dc%dn%d", ctrl->subsys->instance,
4148 ctrl->instance, ns->head->instance);
4149 disk->flags |= GENHD_FL_HIDDEN;
4150 } else if (multipath) {
4151 sprintf(disk->disk_name, "nvme%dn%d", ctrl->subsys->instance,
4152 ns->head->instance);
4153 } else {
4154 sprintf(disk->disk_name, "nvme%dn%d", ctrl->instance,
4155 ns->head->instance);
4156 }
4157
4158 if (nvme_update_ns_info(ns, info))
4159 goto out_unlink_ns;
4160
4161 mutex_lock(&ctrl->namespaces_lock);
4162 /*
4163 * Ensure that no namespaces are added to the ctrl list after the queues
4164 * are frozen, thereby avoiding a deadlock between scan and reset.
4165 */
4166 if (test_bit(NVME_CTRL_FROZEN, &ctrl->flags)) {
4167 mutex_unlock(&ctrl->namespaces_lock);
4168 goto out_unlink_ns;
4169 }
4170 nvme_ns_add_to_ctrl_list(ns);
4171 mutex_unlock(&ctrl->namespaces_lock);
4172 synchronize_srcu(&ctrl->srcu);
4173 nvme_get_ctrl(ctrl);
4174
4175 if (device_add_disk(ctrl->device, ns->disk, nvme_ns_attr_groups))
4176 goto out_cleanup_ns_from_list;
4177
4178 if (!nvme_ns_head_multipath(ns->head))
4179 nvme_add_ns_cdev(ns);
4180
4181 nvme_mpath_add_disk(ns, info->anagrpid);
4182 nvme_fault_inject_init(&ns->fault_inject, ns->disk->disk_name);
4183
4184 /*
4185 * Set ns->disk->device->driver_data to ns so we can access
4186 * ns->head->passthru_err_log_enabled in
4187 * nvme_io_passthru_err_log_enabled_[store | show]().
4188 */
4189 dev_set_drvdata(disk_to_dev(ns->disk), ns);
4190
4191 return;
4192
4193 out_cleanup_ns_from_list:
4194 nvme_put_ctrl(ctrl);
4195 mutex_lock(&ctrl->namespaces_lock);
4196 list_del_rcu(&ns->list);
4197 mutex_unlock(&ctrl->namespaces_lock);
4198 synchronize_srcu(&ctrl->srcu);
4199 out_unlink_ns:
4200 mutex_lock(&ctrl->subsys->lock);
4201 list_del_rcu(&ns->siblings);
4202 if (list_empty(&ns->head->list)) {
4203 list_del_init(&ns->head->entry);
4204 /*
4205 * If multipath is not configured, we still create a namespace
4206 * head (nshead), but head->disk is not initialized in that
4207 * case. As a result, only a single reference to nshead is held
4208 * (via kref_init()) when it is created. Therefore, ensure that
4209 * we do not release the reference to nshead twice if head->disk
4210 * is not present.
4211 */
4212 if (ns->head->disk)
4213 last_path = true;
4214 }
4215 mutex_unlock(&ctrl->subsys->lock);
4216 if (last_path)
4217 nvme_put_ns_head(ns->head);
4218 nvme_put_ns_head(ns->head);
4219 out_cleanup_disk:
4220 put_disk(disk);
4221 out_free_ns:
4222 kfree(ns);
4223 }
4224
nvme_ns_remove(struct nvme_ns * ns)4225 static void nvme_ns_remove(struct nvme_ns *ns)
4226 {
4227 bool last_path = false;
4228
4229 if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags))
4230 return;
4231
4232 clear_bit(NVME_NS_READY, &ns->flags);
4233 set_capacity(ns->disk, 0);
4234 nvme_fault_inject_fini(&ns->fault_inject);
4235
4236 /*
4237 * Ensure that !NVME_NS_READY is seen by other threads to prevent
4238 * this ns going back into current_path.
4239 */
4240 synchronize_srcu(&ns->head->srcu);
4241
4242 /* wait for concurrent submissions */
4243 if (nvme_mpath_clear_current_path(ns))
4244 synchronize_srcu(&ns->head->srcu);
4245
4246 mutex_lock(&ns->ctrl->subsys->lock);
4247 list_del_rcu(&ns->siblings);
4248 if (list_empty(&ns->head->list)) {
4249 if (!nvme_mpath_queue_if_no_path(ns->head))
4250 list_del_init(&ns->head->entry);
4251 last_path = true;
4252 }
4253 mutex_unlock(&ns->ctrl->subsys->lock);
4254
4255 /* guarantee not available in head->list */
4256 synchronize_srcu(&ns->head->srcu);
4257
4258 if (!nvme_ns_head_multipath(ns->head))
4259 nvme_cdev_del(&ns->cdev, &ns->cdev_device);
4260
4261 nvme_mpath_remove_sysfs_link(ns);
4262
4263 del_gendisk(ns->disk);
4264
4265 mutex_lock(&ns->ctrl->namespaces_lock);
4266 list_del_rcu(&ns->list);
4267 mutex_unlock(&ns->ctrl->namespaces_lock);
4268 synchronize_srcu(&ns->ctrl->srcu);
4269
4270 if (last_path)
4271 nvme_mpath_remove_disk(ns->head);
4272 nvme_put_ns(ns);
4273 }
4274
nvme_ns_remove_by_nsid(struct nvme_ctrl * ctrl,u32 nsid)4275 static void nvme_ns_remove_by_nsid(struct nvme_ctrl *ctrl, u32 nsid)
4276 {
4277 struct nvme_ns *ns = nvme_find_get_ns(ctrl, nsid);
4278
4279 if (ns) {
4280 nvme_ns_remove(ns);
4281 nvme_put_ns(ns);
4282 }
4283 }
4284
nvme_validate_ns(struct nvme_ns * ns,struct nvme_ns_info * info)4285 static void nvme_validate_ns(struct nvme_ns *ns, struct nvme_ns_info *info)
4286 {
4287 int ret = NVME_SC_INVALID_NS | NVME_STATUS_DNR;
4288
4289 if (!nvme_ns_ids_equal(&ns->head->ids, &info->ids)) {
4290 dev_err(ns->ctrl->device,
4291 "identifiers changed for nsid %d\n", ns->head->ns_id);
4292 goto out;
4293 }
4294
4295 ret = nvme_update_ns_info(ns, info);
4296 out:
4297 /*
4298 * Only remove the namespace if we got a fatal error back from the
4299 * device, otherwise ignore the error and just move on.
4300 *
4301 * TODO: we should probably schedule a delayed retry here.
4302 */
4303 if (ret > 0 && (ret & NVME_STATUS_DNR))
4304 nvme_ns_remove(ns);
4305 }
4306
nvme_scan_ns(struct nvme_ctrl * ctrl,unsigned nsid)4307 static void nvme_scan_ns(struct nvme_ctrl *ctrl, unsigned nsid)
4308 {
4309 struct nvme_ns_info info = { .nsid = nsid };
4310 struct nvme_ns *ns;
4311 int ret = 1;
4312
4313 if (nvme_identify_ns_descs(ctrl, &info))
4314 return;
4315
4316 if (info.ids.csi != NVME_CSI_NVM && !nvme_multi_css(ctrl)) {
4317 dev_warn(ctrl->device,
4318 "command set not reported for nsid: %d\n", nsid);
4319 return;
4320 }
4321
4322 /*
4323 * If available try to use the Command Set Independent Identify Namespace
4324 * data structure to find all the generic information that is needed to
4325 * set up a namespace. If not fall back to the legacy version.
4326 */
4327 if ((ctrl->cap & NVME_CAP_CRMS_CRIMS) ||
4328 (info.ids.csi != NVME_CSI_NVM && info.ids.csi != NVME_CSI_ZNS) ||
4329 ctrl->vs >= NVME_VS(2, 0, 0))
4330 ret = nvme_ns_info_from_id_cs_indep(ctrl, &info);
4331 if (ret > 0)
4332 ret = nvme_ns_info_from_identify(ctrl, &info);
4333
4334 if (info.is_removed)
4335 nvme_ns_remove_by_nsid(ctrl, nsid);
4336
4337 /*
4338 * Ignore the namespace if it is not ready. We will get an AEN once it
4339 * becomes ready and restart the scan.
4340 */
4341 if (ret || !info.is_ready)
4342 return;
4343
4344 ns = nvme_find_get_ns(ctrl, nsid);
4345 if (ns) {
4346 nvme_validate_ns(ns, &info);
4347 nvme_put_ns(ns);
4348 } else {
4349 nvme_alloc_ns(ctrl, &info);
4350 }
4351 }
4352
4353 /**
4354 * struct async_scan_info - keeps track of controller & NSIDs to scan
4355 * @ctrl: Controller on which namespaces are being scanned
4356 * @next_nsid: Index of next NSID to scan in ns_list
4357 * @ns_list: Pointer to list of NSIDs to scan
4358 *
4359 * Note: There is a single async_scan_info structure shared by all instances
4360 * of nvme_scan_ns_async() scanning a given controller, so the atomic
4361 * operations on next_nsid are critical to ensure each instance scans a unique
4362 * NSID.
4363 */
4364 struct async_scan_info {
4365 struct nvme_ctrl *ctrl;
4366 atomic_t next_nsid;
4367 __le32 *ns_list;
4368 };
4369
nvme_scan_ns_async(void * data,async_cookie_t cookie)4370 static void nvme_scan_ns_async(void *data, async_cookie_t cookie)
4371 {
4372 struct async_scan_info *scan_info = data;
4373 int idx;
4374 u32 nsid;
4375
4376 idx = (u32)atomic_fetch_inc(&scan_info->next_nsid);
4377 nsid = le32_to_cpu(scan_info->ns_list[idx]);
4378
4379 nvme_scan_ns(scan_info->ctrl, nsid);
4380 }
4381
nvme_remove_invalid_namespaces(struct nvme_ctrl * ctrl,unsigned nsid)4382 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
4383 unsigned nsid)
4384 {
4385 struct nvme_ns *ns, *next;
4386 LIST_HEAD(rm_list);
4387
4388 mutex_lock(&ctrl->namespaces_lock);
4389 list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) {
4390 if (ns->head->ns_id > nsid) {
4391 list_del_rcu(&ns->list);
4392 synchronize_srcu(&ctrl->srcu);
4393 list_add_tail_rcu(&ns->list, &rm_list);
4394 }
4395 }
4396 mutex_unlock(&ctrl->namespaces_lock);
4397
4398 list_for_each_entry_safe(ns, next, &rm_list, list)
4399 nvme_ns_remove(ns);
4400 }
4401
nvme_scan_ns_list(struct nvme_ctrl * ctrl)4402 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl)
4403 {
4404 const int nr_entries = NVME_IDENTIFY_DATA_SIZE / sizeof(__le32);
4405 __le32 *ns_list;
4406 u32 prev = 0;
4407 int ret = 0, i;
4408 ASYNC_DOMAIN(domain);
4409 struct async_scan_info scan_info;
4410
4411 ns_list = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
4412 if (!ns_list)
4413 return -ENOMEM;
4414
4415 scan_info.ctrl = ctrl;
4416 scan_info.ns_list = ns_list;
4417 for (;;) {
4418 struct nvme_command cmd = {
4419 .identify.opcode = nvme_admin_identify,
4420 .identify.cns = NVME_ID_CNS_NS_ACTIVE_LIST,
4421 .identify.nsid = cpu_to_le32(prev),
4422 };
4423
4424 ret = nvme_submit_sync_cmd(ctrl->admin_q, &cmd, ns_list,
4425 NVME_IDENTIFY_DATA_SIZE);
4426 if (ret) {
4427 dev_warn(ctrl->device,
4428 "Identify NS List failed (status=0x%x)\n", ret);
4429 goto free;
4430 }
4431
4432 atomic_set(&scan_info.next_nsid, 0);
4433 for (i = 0; i < nr_entries; i++) {
4434 u32 nsid = le32_to_cpu(ns_list[i]);
4435
4436 if (!nsid) /* end of the list? */
4437 goto out;
4438 async_schedule_domain(nvme_scan_ns_async, &scan_info,
4439 &domain);
4440 while (++prev < nsid)
4441 nvme_ns_remove_by_nsid(ctrl, prev);
4442 }
4443 async_synchronize_full_domain(&domain);
4444 }
4445 out:
4446 nvme_remove_invalid_namespaces(ctrl, prev);
4447 free:
4448 async_synchronize_full_domain(&domain);
4449 kfree(ns_list);
4450 return ret;
4451 }
4452
nvme_scan_ns_sequential(struct nvme_ctrl * ctrl)4453 static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl)
4454 {
4455 struct nvme_id_ctrl *id;
4456 u32 nn, i;
4457
4458 if (nvme_identify_ctrl(ctrl, &id))
4459 return;
4460 nn = le32_to_cpu(id->nn);
4461 kfree(id);
4462
4463 for (i = 1; i <= nn; i++)
4464 nvme_scan_ns(ctrl, i);
4465
4466 nvme_remove_invalid_namespaces(ctrl, nn);
4467 }
4468
nvme_clear_changed_ns_log(struct nvme_ctrl * ctrl)4469 static void nvme_clear_changed_ns_log(struct nvme_ctrl *ctrl)
4470 {
4471 size_t log_size = NVME_MAX_CHANGED_NAMESPACES * sizeof(__le32);
4472 __le32 *log;
4473 int error;
4474
4475 log = kzalloc(log_size, GFP_KERNEL);
4476 if (!log)
4477 return;
4478
4479 /*
4480 * We need to read the log to clear the AEN, but we don't want to rely
4481 * on it for the changed namespace information as userspace could have
4482 * raced with us in reading the log page, which could cause us to miss
4483 * updates.
4484 */
4485 error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CHANGED_NS, 0,
4486 NVME_CSI_NVM, log, log_size, 0);
4487 if (error)
4488 dev_warn(ctrl->device,
4489 "reading changed ns log failed: %d\n", error);
4490
4491 kfree(log);
4492 }
4493
nvme_scan_work(struct work_struct * work)4494 static void nvme_scan_work(struct work_struct *work)
4495 {
4496 struct nvme_ctrl *ctrl =
4497 container_of(work, struct nvme_ctrl, scan_work);
4498 int ret;
4499
4500 /* No tagset on a live ctrl means IO queues could not created */
4501 if (nvme_ctrl_state(ctrl) != NVME_CTRL_LIVE || !ctrl->tagset)
4502 return;
4503
4504 /*
4505 * Identify controller limits can change at controller reset due to
4506 * new firmware download, even though it is not common we cannot ignore
4507 * such scenario. Controller's non-mdts limits are reported in the unit
4508 * of logical blocks that is dependent on the format of attached
4509 * namespace. Hence re-read the limits at the time of ns allocation.
4510 */
4511 ret = nvme_init_non_mdts_limits(ctrl);
4512 if (ret < 0) {
4513 dev_warn(ctrl->device,
4514 "reading non-mdts-limits failed: %d\n", ret);
4515 return;
4516 }
4517
4518 if (test_and_clear_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events)) {
4519 dev_info(ctrl->device, "rescanning namespaces.\n");
4520 nvme_clear_changed_ns_log(ctrl);
4521 }
4522
4523 mutex_lock(&ctrl->scan_lock);
4524 if (!nvme_id_cns_ok(ctrl, NVME_ID_CNS_NS_ACTIVE_LIST)) {
4525 nvme_scan_ns_sequential(ctrl);
4526 } else {
4527 /*
4528 * Fall back to sequential scan if DNR is set to handle broken
4529 * devices which should support Identify NS List (as per the VS
4530 * they report) but don't actually support it.
4531 */
4532 ret = nvme_scan_ns_list(ctrl);
4533 if (ret > 0 && ret & NVME_STATUS_DNR)
4534 nvme_scan_ns_sequential(ctrl);
4535 }
4536 mutex_unlock(&ctrl->scan_lock);
4537
4538 /* Requeue if we have missed AENs */
4539 if (test_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events))
4540 nvme_queue_scan(ctrl);
4541 #ifdef CONFIG_NVME_MULTIPATH
4542 else if (ctrl->ana_log_buf)
4543 /* Re-read the ANA log page to not miss updates */
4544 queue_work(nvme_wq, &ctrl->ana_work);
4545 #endif
4546 }
4547
4548 /*
4549 * This function iterates the namespace list unlocked to allow recovery from
4550 * controller failure. It is up to the caller to ensure the namespace list is
4551 * not modified by scan work while this function is executing.
4552 */
nvme_remove_namespaces(struct nvme_ctrl * ctrl)4553 void nvme_remove_namespaces(struct nvme_ctrl *ctrl)
4554 {
4555 struct nvme_ns *ns, *next;
4556 LIST_HEAD(ns_list);
4557
4558 /*
4559 * make sure to requeue I/O to all namespaces as these
4560 * might result from the scan itself and must complete
4561 * for the scan_work to make progress
4562 */
4563 nvme_mpath_clear_ctrl_paths(ctrl);
4564
4565 /*
4566 * Unquiesce io queues so any pending IO won't hang, especially
4567 * those submitted from scan work
4568 */
4569 nvme_unquiesce_io_queues(ctrl);
4570
4571 /* prevent racing with ns scanning */
4572 flush_work(&ctrl->scan_work);
4573
4574 /*
4575 * The dead states indicates the controller was not gracefully
4576 * disconnected. In that case, we won't be able to flush any data while
4577 * removing the namespaces' disks; fail all the queues now to avoid
4578 * potentially having to clean up the failed sync later.
4579 */
4580 if (nvme_ctrl_state(ctrl) == NVME_CTRL_DEAD)
4581 nvme_mark_namespaces_dead(ctrl);
4582
4583 /* this is a no-op when called from the controller reset handler */
4584 nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING_NOIO);
4585
4586 mutex_lock(&ctrl->namespaces_lock);
4587 list_splice_init_rcu(&ctrl->namespaces, &ns_list, synchronize_rcu);
4588 mutex_unlock(&ctrl->namespaces_lock);
4589 synchronize_srcu(&ctrl->srcu);
4590
4591 list_for_each_entry_safe(ns, next, &ns_list, list)
4592 nvme_ns_remove(ns);
4593 }
4594 EXPORT_SYMBOL_GPL(nvme_remove_namespaces);
4595
nvme_class_uevent(const struct device * dev,struct kobj_uevent_env * env)4596 static int nvme_class_uevent(const struct device *dev, struct kobj_uevent_env *env)
4597 {
4598 const struct nvme_ctrl *ctrl =
4599 container_of(dev, struct nvme_ctrl, ctrl_device);
4600 struct nvmf_ctrl_options *opts = ctrl->opts;
4601 int ret;
4602
4603 ret = add_uevent_var(env, "NVME_TRTYPE=%s", ctrl->ops->name);
4604 if (ret)
4605 return ret;
4606
4607 if (opts) {
4608 ret = add_uevent_var(env, "NVME_TRADDR=%s", opts->traddr);
4609 if (ret)
4610 return ret;
4611
4612 ret = add_uevent_var(env, "NVME_TRSVCID=%s",
4613 opts->trsvcid ?: "none");
4614 if (ret)
4615 return ret;
4616
4617 ret = add_uevent_var(env, "NVME_HOST_TRADDR=%s",
4618 opts->host_traddr ?: "none");
4619 if (ret)
4620 return ret;
4621
4622 ret = add_uevent_var(env, "NVME_HOST_IFACE=%s",
4623 opts->host_iface ?: "none");
4624 }
4625 return ret;
4626 }
4627
nvme_change_uevent(struct nvme_ctrl * ctrl,char * envdata)4628 static void nvme_change_uevent(struct nvme_ctrl *ctrl, char *envdata)
4629 {
4630 char *envp[2] = { envdata, NULL };
4631
4632 kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp);
4633 }
4634
nvme_aen_uevent(struct nvme_ctrl * ctrl)4635 static void nvme_aen_uevent(struct nvme_ctrl *ctrl)
4636 {
4637 char *envp[2] = { NULL, NULL };
4638 u32 aen_result = ctrl->aen_result;
4639
4640 ctrl->aen_result = 0;
4641 if (!aen_result)
4642 return;
4643
4644 envp[0] = kasprintf(GFP_KERNEL, "NVME_AEN=%#08x", aen_result);
4645 if (!envp[0])
4646 return;
4647 kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp);
4648 kfree(envp[0]);
4649 }
4650
nvme_async_event_work(struct work_struct * work)4651 static void nvme_async_event_work(struct work_struct *work)
4652 {
4653 struct nvme_ctrl *ctrl =
4654 container_of(work, struct nvme_ctrl, async_event_work);
4655
4656 nvme_aen_uevent(ctrl);
4657
4658 /*
4659 * The transport drivers must guarantee AER submission here is safe by
4660 * flushing ctrl async_event_work after changing the controller state
4661 * from LIVE and before freeing the admin queue.
4662 */
4663 if (nvme_ctrl_state(ctrl) == NVME_CTRL_LIVE)
4664 ctrl->ops->submit_async_event(ctrl);
4665 }
4666
nvme_ctrl_pp_status(struct nvme_ctrl * ctrl)4667 static bool nvme_ctrl_pp_status(struct nvme_ctrl *ctrl)
4668 {
4669
4670 u32 csts;
4671
4672 if (ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts))
4673 return false;
4674
4675 if (csts == ~0)
4676 return false;
4677
4678 return ((ctrl->ctrl_config & NVME_CC_ENABLE) && (csts & NVME_CSTS_PP));
4679 }
4680
nvme_get_fw_slot_info(struct nvme_ctrl * ctrl)4681 static void nvme_get_fw_slot_info(struct nvme_ctrl *ctrl)
4682 {
4683 struct nvme_fw_slot_info_log *log;
4684 u8 next_fw_slot, cur_fw_slot;
4685
4686 log = kmalloc(sizeof(*log), GFP_KERNEL);
4687 if (!log)
4688 return;
4689
4690 if (nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_FW_SLOT, 0, NVME_CSI_NVM,
4691 log, sizeof(*log), 0)) {
4692 dev_warn(ctrl->device, "Get FW SLOT INFO log error\n");
4693 goto out_free_log;
4694 }
4695
4696 cur_fw_slot = log->afi & 0x7;
4697 next_fw_slot = (log->afi & 0x70) >> 4;
4698 if (!cur_fw_slot || (next_fw_slot && (cur_fw_slot != next_fw_slot))) {
4699 dev_info(ctrl->device,
4700 "Firmware is activated after next Controller Level Reset\n");
4701 goto out_free_log;
4702 }
4703
4704 memcpy(ctrl->subsys->firmware_rev, &log->frs[cur_fw_slot - 1],
4705 sizeof(ctrl->subsys->firmware_rev));
4706
4707 out_free_log:
4708 kfree(log);
4709 }
4710
nvme_fw_act_work(struct work_struct * work)4711 static void nvme_fw_act_work(struct work_struct *work)
4712 {
4713 struct nvme_ctrl *ctrl = container_of(work,
4714 struct nvme_ctrl, fw_act_work);
4715 unsigned long fw_act_timeout;
4716
4717 nvme_auth_stop(ctrl);
4718
4719 if (ctrl->mtfa)
4720 fw_act_timeout = jiffies + msecs_to_jiffies(ctrl->mtfa * 100);
4721 else
4722 fw_act_timeout = jiffies + secs_to_jiffies(admin_timeout);
4723
4724 nvme_quiesce_io_queues(ctrl);
4725 while (nvme_ctrl_pp_status(ctrl)) {
4726 if (time_after(jiffies, fw_act_timeout)) {
4727 dev_warn(ctrl->device,
4728 "Fw activation timeout, reset controller\n");
4729 nvme_try_sched_reset(ctrl);
4730 return;
4731 }
4732 msleep(100);
4733 }
4734
4735 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_CONNECTING) ||
4736 !nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE))
4737 return;
4738
4739 nvme_unquiesce_io_queues(ctrl);
4740 /* read FW slot information to clear the AER */
4741 nvme_get_fw_slot_info(ctrl);
4742
4743 queue_work(nvme_wq, &ctrl->async_event_work);
4744 }
4745
nvme_aer_type(u32 result)4746 static u32 nvme_aer_type(u32 result)
4747 {
4748 return result & 0x7;
4749 }
4750
nvme_aer_subtype(u32 result)4751 static u32 nvme_aer_subtype(u32 result)
4752 {
4753 return (result & 0xff00) >> 8;
4754 }
4755
nvme_handle_aen_notice(struct nvme_ctrl * ctrl,u32 result)4756 static bool nvme_handle_aen_notice(struct nvme_ctrl *ctrl, u32 result)
4757 {
4758 u32 aer_notice_type = nvme_aer_subtype(result);
4759 bool requeue = true;
4760
4761 switch (aer_notice_type) {
4762 case NVME_AER_NOTICE_NS_CHANGED:
4763 set_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events);
4764 nvme_queue_scan(ctrl);
4765 break;
4766 case NVME_AER_NOTICE_FW_ACT_STARTING:
4767 /*
4768 * We are (ab)using the RESETTING state to prevent subsequent
4769 * recovery actions from interfering with the controller's
4770 * firmware activation.
4771 */
4772 if (nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING)) {
4773 requeue = false;
4774 queue_work(nvme_wq, &ctrl->fw_act_work);
4775 }
4776 break;
4777 #ifdef CONFIG_NVME_MULTIPATH
4778 case NVME_AER_NOTICE_ANA:
4779 if (!ctrl->ana_log_buf)
4780 break;
4781 queue_work(nvme_wq, &ctrl->ana_work);
4782 break;
4783 #endif
4784 case NVME_AER_NOTICE_DISC_CHANGED:
4785 ctrl->aen_result = result;
4786 break;
4787 default:
4788 dev_warn(ctrl->device, "async event result %08x\n", result);
4789 }
4790 return requeue;
4791 }
4792
nvme_handle_aer_persistent_error(struct nvme_ctrl * ctrl)4793 static void nvme_handle_aer_persistent_error(struct nvme_ctrl *ctrl)
4794 {
4795 dev_warn(ctrl->device,
4796 "resetting controller due to persistent internal error\n");
4797 nvme_reset_ctrl(ctrl);
4798 }
4799
nvme_complete_async_event(struct nvme_ctrl * ctrl,__le16 status,volatile union nvme_result * res)4800 void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status,
4801 volatile union nvme_result *res)
4802 {
4803 u32 result = le32_to_cpu(res->u32);
4804 u32 aer_type = nvme_aer_type(result);
4805 u32 aer_subtype = nvme_aer_subtype(result);
4806 bool requeue = true;
4807
4808 if (le16_to_cpu(status) >> 1 != NVME_SC_SUCCESS)
4809 return;
4810
4811 trace_nvme_async_event(ctrl, result);
4812 switch (aer_type) {
4813 case NVME_AER_NOTICE:
4814 requeue = nvme_handle_aen_notice(ctrl, result);
4815 break;
4816 case NVME_AER_ERROR:
4817 /*
4818 * For a persistent internal error, don't run async_event_work
4819 * to submit a new AER. The controller reset will do it.
4820 */
4821 if (aer_subtype == NVME_AER_ERROR_PERSIST_INT_ERR) {
4822 nvme_handle_aer_persistent_error(ctrl);
4823 return;
4824 }
4825 fallthrough;
4826 case NVME_AER_SMART:
4827 case NVME_AER_CSS:
4828 case NVME_AER_VS:
4829 ctrl->aen_result = result;
4830 break;
4831 default:
4832 break;
4833 }
4834
4835 if (requeue)
4836 queue_work(nvme_wq, &ctrl->async_event_work);
4837 }
4838 EXPORT_SYMBOL_GPL(nvme_complete_async_event);
4839
nvme_alloc_admin_tag_set(struct nvme_ctrl * ctrl,struct blk_mq_tag_set * set,const struct blk_mq_ops * ops,unsigned int cmd_size)4840 int nvme_alloc_admin_tag_set(struct nvme_ctrl *ctrl, struct blk_mq_tag_set *set,
4841 const struct blk_mq_ops *ops, unsigned int cmd_size)
4842 {
4843 struct queue_limits lim = {};
4844 int ret;
4845
4846 memset(set, 0, sizeof(*set));
4847 set->ops = ops;
4848 set->queue_depth = NVME_AQ_MQ_TAG_DEPTH;
4849 if (ctrl->ops->flags & NVME_F_FABRICS)
4850 /* Reserved for fabric connect and keep alive */
4851 set->reserved_tags = 2;
4852 set->numa_node = ctrl->numa_node;
4853 if (ctrl->ops->flags & NVME_F_BLOCKING)
4854 set->flags |= BLK_MQ_F_BLOCKING;
4855 set->cmd_size = cmd_size;
4856 set->driver_data = ctrl;
4857 set->nr_hw_queues = 1;
4858 set->timeout = NVME_ADMIN_TIMEOUT;
4859 ret = blk_mq_alloc_tag_set(set);
4860 if (ret)
4861 return ret;
4862
4863 ctrl->admin_q = blk_mq_alloc_queue(set, &lim, NULL);
4864 if (IS_ERR(ctrl->admin_q)) {
4865 ret = PTR_ERR(ctrl->admin_q);
4866 goto out_free_tagset;
4867 }
4868
4869 if (ctrl->ops->flags & NVME_F_FABRICS) {
4870 ctrl->fabrics_q = blk_mq_alloc_queue(set, NULL, NULL);
4871 if (IS_ERR(ctrl->fabrics_q)) {
4872 ret = PTR_ERR(ctrl->fabrics_q);
4873 goto out_cleanup_admin_q;
4874 }
4875 }
4876
4877 ctrl->admin_tagset = set;
4878 return 0;
4879
4880 out_cleanup_admin_q:
4881 blk_mq_destroy_queue(ctrl->admin_q);
4882 blk_put_queue(ctrl->admin_q);
4883 out_free_tagset:
4884 blk_mq_free_tag_set(set);
4885 ctrl->admin_q = NULL;
4886 ctrl->fabrics_q = NULL;
4887 return ret;
4888 }
4889 EXPORT_SYMBOL_GPL(nvme_alloc_admin_tag_set);
4890
nvme_remove_admin_tag_set(struct nvme_ctrl * ctrl)4891 void nvme_remove_admin_tag_set(struct nvme_ctrl *ctrl)
4892 {
4893 /*
4894 * As we're about to destroy the queue and free tagset
4895 * we can not have keep-alive work running.
4896 */
4897 nvme_stop_keep_alive(ctrl);
4898 blk_mq_destroy_queue(ctrl->admin_q);
4899 blk_put_queue(ctrl->admin_q);
4900 if (ctrl->ops->flags & NVME_F_FABRICS) {
4901 blk_mq_destroy_queue(ctrl->fabrics_q);
4902 blk_put_queue(ctrl->fabrics_q);
4903 }
4904 blk_mq_free_tag_set(ctrl->admin_tagset);
4905 }
4906 EXPORT_SYMBOL_GPL(nvme_remove_admin_tag_set);
4907
nvme_alloc_io_tag_set(struct nvme_ctrl * ctrl,struct blk_mq_tag_set * set,const struct blk_mq_ops * ops,unsigned int nr_maps,unsigned int cmd_size)4908 int nvme_alloc_io_tag_set(struct nvme_ctrl *ctrl, struct blk_mq_tag_set *set,
4909 const struct blk_mq_ops *ops, unsigned int nr_maps,
4910 unsigned int cmd_size)
4911 {
4912 int ret;
4913
4914 memset(set, 0, sizeof(*set));
4915 set->ops = ops;
4916 set->queue_depth = min_t(unsigned, ctrl->sqsize, BLK_MQ_MAX_DEPTH - 1);
4917 /*
4918 * Some Apple controllers requires tags to be unique across admin and
4919 * the (only) I/O queue, so reserve the first 32 tags of the I/O queue.
4920 */
4921 if (ctrl->quirks & NVME_QUIRK_SHARED_TAGS)
4922 set->reserved_tags = NVME_AQ_DEPTH;
4923 else if (ctrl->ops->flags & NVME_F_FABRICS)
4924 /* Reserved for fabric connect */
4925 set->reserved_tags = 1;
4926 set->numa_node = ctrl->numa_node;
4927 if (ctrl->ops->flags & NVME_F_BLOCKING)
4928 set->flags |= BLK_MQ_F_BLOCKING;
4929 set->cmd_size = cmd_size;
4930 set->driver_data = ctrl;
4931 set->nr_hw_queues = ctrl->queue_count - 1;
4932 set->timeout = NVME_IO_TIMEOUT;
4933 set->nr_maps = nr_maps;
4934 ret = blk_mq_alloc_tag_set(set);
4935 if (ret)
4936 return ret;
4937
4938 if (ctrl->ops->flags & NVME_F_FABRICS) {
4939 struct queue_limits lim = {
4940 .features = BLK_FEAT_SKIP_TAGSET_QUIESCE,
4941 };
4942
4943 ctrl->connect_q = blk_mq_alloc_queue(set, &lim, NULL);
4944 if (IS_ERR(ctrl->connect_q)) {
4945 ret = PTR_ERR(ctrl->connect_q);
4946 goto out_free_tag_set;
4947 }
4948 }
4949
4950 ctrl->tagset = set;
4951 return 0;
4952
4953 out_free_tag_set:
4954 blk_mq_free_tag_set(set);
4955 ctrl->connect_q = NULL;
4956 return ret;
4957 }
4958 EXPORT_SYMBOL_GPL(nvme_alloc_io_tag_set);
4959
nvme_remove_io_tag_set(struct nvme_ctrl * ctrl)4960 void nvme_remove_io_tag_set(struct nvme_ctrl *ctrl)
4961 {
4962 if (ctrl->ops->flags & NVME_F_FABRICS) {
4963 blk_mq_destroy_queue(ctrl->connect_q);
4964 blk_put_queue(ctrl->connect_q);
4965 }
4966 blk_mq_free_tag_set(ctrl->tagset);
4967 }
4968 EXPORT_SYMBOL_GPL(nvme_remove_io_tag_set);
4969
nvme_stop_ctrl(struct nvme_ctrl * ctrl)4970 void nvme_stop_ctrl(struct nvme_ctrl *ctrl)
4971 {
4972 nvme_mpath_stop(ctrl);
4973 nvme_auth_stop(ctrl);
4974 nvme_stop_failfast_work(ctrl);
4975 flush_work(&ctrl->async_event_work);
4976 cancel_work_sync(&ctrl->fw_act_work);
4977 if (ctrl->ops->stop_ctrl)
4978 ctrl->ops->stop_ctrl(ctrl);
4979 }
4980 EXPORT_SYMBOL_GPL(nvme_stop_ctrl);
4981
nvme_start_ctrl(struct nvme_ctrl * ctrl)4982 void nvme_start_ctrl(struct nvme_ctrl *ctrl)
4983 {
4984 nvme_enable_aen(ctrl);
4985
4986 /*
4987 * persistent discovery controllers need to send indication to userspace
4988 * to re-read the discovery log page to learn about possible changes
4989 * that were missed. We identify persistent discovery controllers by
4990 * checking that they started once before, hence are reconnecting back.
4991 */
4992 if (test_bit(NVME_CTRL_STARTED_ONCE, &ctrl->flags) &&
4993 nvme_discovery_ctrl(ctrl))
4994 nvme_change_uevent(ctrl, "NVME_EVENT=rediscover");
4995
4996 if (ctrl->queue_count > 1) {
4997 nvme_queue_scan(ctrl);
4998 nvme_unquiesce_io_queues(ctrl);
4999 nvme_mpath_update(ctrl);
5000 }
5001
5002 nvme_change_uevent(ctrl, "NVME_EVENT=connected");
5003 set_bit(NVME_CTRL_STARTED_ONCE, &ctrl->flags);
5004 }
5005 EXPORT_SYMBOL_GPL(nvme_start_ctrl);
5006
nvme_uninit_ctrl(struct nvme_ctrl * ctrl)5007 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl)
5008 {
5009 nvme_stop_keep_alive(ctrl);
5010 nvme_hwmon_exit(ctrl);
5011 nvme_fault_inject_fini(&ctrl->fault_inject);
5012 dev_pm_qos_hide_latency_tolerance(ctrl->device);
5013 cdev_device_del(&ctrl->cdev, ctrl->device);
5014 nvme_put_ctrl(ctrl);
5015 }
5016 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl);
5017
nvme_free_cels(struct nvme_ctrl * ctrl)5018 static void nvme_free_cels(struct nvme_ctrl *ctrl)
5019 {
5020 struct nvme_effects_log *cel;
5021 unsigned long i;
5022
5023 xa_for_each(&ctrl->cels, i, cel) {
5024 xa_erase(&ctrl->cels, i);
5025 kfree(cel);
5026 }
5027
5028 xa_destroy(&ctrl->cels);
5029 }
5030
nvme_free_ctrl(struct device * dev)5031 static void nvme_free_ctrl(struct device *dev)
5032 {
5033 struct nvme_ctrl *ctrl =
5034 container_of(dev, struct nvme_ctrl, ctrl_device);
5035 struct nvme_subsystem *subsys = ctrl->subsys;
5036
5037 if (!subsys || ctrl->instance != subsys->instance)
5038 ida_free(&nvme_instance_ida, ctrl->instance);
5039 nvme_free_cels(ctrl);
5040 nvme_mpath_uninit(ctrl);
5041 cleanup_srcu_struct(&ctrl->srcu);
5042 nvme_auth_stop(ctrl);
5043 nvme_auth_free(ctrl);
5044 __free_page(ctrl->discard_page);
5045 free_opal_dev(ctrl->opal_dev);
5046
5047 if (subsys) {
5048 mutex_lock(&nvme_subsystems_lock);
5049 list_del(&ctrl->subsys_entry);
5050 sysfs_remove_link(&subsys->dev.kobj, dev_name(ctrl->device));
5051 mutex_unlock(&nvme_subsystems_lock);
5052 }
5053
5054 ctrl->ops->free_ctrl(ctrl);
5055
5056 if (subsys)
5057 nvme_put_subsystem(subsys);
5058 }
5059
5060 /*
5061 * Initialize a NVMe controller structures. This needs to be called during
5062 * earliest initialization so that we have the initialized structured around
5063 * during probing.
5064 *
5065 * On success, the caller must use the nvme_put_ctrl() to release this when
5066 * needed, which also invokes the ops->free_ctrl() callback.
5067 */
nvme_init_ctrl(struct nvme_ctrl * ctrl,struct device * dev,const struct nvme_ctrl_ops * ops,unsigned long quirks)5068 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev,
5069 const struct nvme_ctrl_ops *ops, unsigned long quirks)
5070 {
5071 int ret;
5072
5073 WRITE_ONCE(ctrl->state, NVME_CTRL_NEW);
5074 ctrl->passthru_err_log_enabled = false;
5075 clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
5076 spin_lock_init(&ctrl->lock);
5077 mutex_init(&ctrl->namespaces_lock);
5078
5079 ret = init_srcu_struct(&ctrl->srcu);
5080 if (ret)
5081 return ret;
5082
5083 mutex_init(&ctrl->scan_lock);
5084 INIT_LIST_HEAD(&ctrl->namespaces);
5085 xa_init(&ctrl->cels);
5086 ctrl->dev = dev;
5087 ctrl->ops = ops;
5088 ctrl->quirks = quirks;
5089 ctrl->numa_node = NUMA_NO_NODE;
5090 INIT_WORK(&ctrl->scan_work, nvme_scan_work);
5091 INIT_WORK(&ctrl->async_event_work, nvme_async_event_work);
5092 INIT_WORK(&ctrl->fw_act_work, nvme_fw_act_work);
5093 INIT_WORK(&ctrl->delete_work, nvme_delete_ctrl_work);
5094 init_waitqueue_head(&ctrl->state_wq);
5095
5096 INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work);
5097 INIT_DELAYED_WORK(&ctrl->failfast_work, nvme_failfast_work);
5098 memset(&ctrl->ka_cmd, 0, sizeof(ctrl->ka_cmd));
5099 ctrl->ka_cmd.common.opcode = nvme_admin_keep_alive;
5100 ctrl->ka_last_check_time = jiffies;
5101
5102 BUILD_BUG_ON(NVME_DSM_MAX_RANGES * sizeof(struct nvme_dsm_range) >
5103 PAGE_SIZE);
5104 ctrl->discard_page = alloc_page(GFP_KERNEL);
5105 if (!ctrl->discard_page) {
5106 ret = -ENOMEM;
5107 goto out;
5108 }
5109
5110 ret = ida_alloc(&nvme_instance_ida, GFP_KERNEL);
5111 if (ret < 0)
5112 goto out;
5113 ctrl->instance = ret;
5114
5115 ret = nvme_auth_init_ctrl(ctrl);
5116 if (ret)
5117 goto out_release_instance;
5118
5119 nvme_mpath_init_ctrl(ctrl);
5120
5121 device_initialize(&ctrl->ctrl_device);
5122 ctrl->device = &ctrl->ctrl_device;
5123 ctrl->device->devt = MKDEV(MAJOR(nvme_ctrl_base_chr_devt),
5124 ctrl->instance);
5125 ctrl->device->class = &nvme_class;
5126 ctrl->device->parent = ctrl->dev;
5127 if (ops->dev_attr_groups)
5128 ctrl->device->groups = ops->dev_attr_groups;
5129 else
5130 ctrl->device->groups = nvme_dev_attr_groups;
5131 ctrl->device->release = nvme_free_ctrl;
5132 dev_set_drvdata(ctrl->device, ctrl);
5133
5134 return ret;
5135
5136 out_release_instance:
5137 ida_free(&nvme_instance_ida, ctrl->instance);
5138 out:
5139 if (ctrl->discard_page)
5140 __free_page(ctrl->discard_page);
5141 cleanup_srcu_struct(&ctrl->srcu);
5142 return ret;
5143 }
5144 EXPORT_SYMBOL_GPL(nvme_init_ctrl);
5145
5146 /*
5147 * On success, returns with an elevated controller reference and caller must
5148 * use nvme_uninit_ctrl() to properly free resources associated with the ctrl.
5149 */
nvme_add_ctrl(struct nvme_ctrl * ctrl)5150 int nvme_add_ctrl(struct nvme_ctrl *ctrl)
5151 {
5152 int ret;
5153
5154 ret = dev_set_name(ctrl->device, "nvme%d", ctrl->instance);
5155 if (ret)
5156 return ret;
5157
5158 cdev_init(&ctrl->cdev, &nvme_dev_fops);
5159 ctrl->cdev.owner = ctrl->ops->module;
5160 ret = cdev_device_add(&ctrl->cdev, ctrl->device);
5161 if (ret)
5162 return ret;
5163
5164 /*
5165 * Initialize latency tolerance controls. The sysfs files won't
5166 * be visible to userspace unless the device actually supports APST.
5167 */
5168 ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance;
5169 dev_pm_qos_update_user_latency_tolerance(ctrl->device,
5170 min(default_ps_max_latency_us, (unsigned long)S32_MAX));
5171
5172 nvme_fault_inject_init(&ctrl->fault_inject, dev_name(ctrl->device));
5173 nvme_get_ctrl(ctrl);
5174
5175 return 0;
5176 }
5177 EXPORT_SYMBOL_GPL(nvme_add_ctrl);
5178
5179 /* let I/O to all namespaces fail in preparation for surprise removal */
nvme_mark_namespaces_dead(struct nvme_ctrl * ctrl)5180 void nvme_mark_namespaces_dead(struct nvme_ctrl *ctrl)
5181 {
5182 struct nvme_ns *ns;
5183 int srcu_idx;
5184
5185 srcu_idx = srcu_read_lock(&ctrl->srcu);
5186 list_for_each_entry_srcu(ns, &ctrl->namespaces, list,
5187 srcu_read_lock_held(&ctrl->srcu))
5188 blk_mark_disk_dead(ns->disk);
5189 srcu_read_unlock(&ctrl->srcu, srcu_idx);
5190 }
5191 EXPORT_SYMBOL_GPL(nvme_mark_namespaces_dead);
5192
nvme_unfreeze(struct nvme_ctrl * ctrl)5193 void nvme_unfreeze(struct nvme_ctrl *ctrl)
5194 {
5195 struct nvme_ns *ns;
5196 int srcu_idx;
5197
5198 srcu_idx = srcu_read_lock(&ctrl->srcu);
5199 list_for_each_entry_srcu(ns, &ctrl->namespaces, list,
5200 srcu_read_lock_held(&ctrl->srcu))
5201 blk_mq_unfreeze_queue_non_owner(ns->queue);
5202 srcu_read_unlock(&ctrl->srcu, srcu_idx);
5203 clear_bit(NVME_CTRL_FROZEN, &ctrl->flags);
5204 }
5205 EXPORT_SYMBOL_GPL(nvme_unfreeze);
5206
nvme_wait_freeze_timeout(struct nvme_ctrl * ctrl,long timeout)5207 int nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout)
5208 {
5209 struct nvme_ns *ns;
5210 int srcu_idx;
5211
5212 srcu_idx = srcu_read_lock(&ctrl->srcu);
5213 list_for_each_entry_srcu(ns, &ctrl->namespaces, list,
5214 srcu_read_lock_held(&ctrl->srcu)) {
5215 timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout);
5216 if (timeout <= 0)
5217 break;
5218 }
5219 srcu_read_unlock(&ctrl->srcu, srcu_idx);
5220 return timeout;
5221 }
5222 EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout);
5223
nvme_wait_freeze(struct nvme_ctrl * ctrl)5224 void nvme_wait_freeze(struct nvme_ctrl *ctrl)
5225 {
5226 struct nvme_ns *ns;
5227 int srcu_idx;
5228
5229 srcu_idx = srcu_read_lock(&ctrl->srcu);
5230 list_for_each_entry_srcu(ns, &ctrl->namespaces, list,
5231 srcu_read_lock_held(&ctrl->srcu))
5232 blk_mq_freeze_queue_wait(ns->queue);
5233 srcu_read_unlock(&ctrl->srcu, srcu_idx);
5234 }
5235 EXPORT_SYMBOL_GPL(nvme_wait_freeze);
5236
nvme_start_freeze(struct nvme_ctrl * ctrl)5237 void nvme_start_freeze(struct nvme_ctrl *ctrl)
5238 {
5239 struct nvme_ns *ns;
5240 int srcu_idx;
5241
5242 set_bit(NVME_CTRL_FROZEN, &ctrl->flags);
5243 srcu_idx = srcu_read_lock(&ctrl->srcu);
5244 list_for_each_entry_srcu(ns, &ctrl->namespaces, list,
5245 srcu_read_lock_held(&ctrl->srcu))
5246 /*
5247 * Typical non_owner use case is from pci driver, in which
5248 * start_freeze is called from timeout work function, but
5249 * unfreeze is done in reset work context
5250 */
5251 blk_freeze_queue_start_non_owner(ns->queue);
5252 srcu_read_unlock(&ctrl->srcu, srcu_idx);
5253 }
5254 EXPORT_SYMBOL_GPL(nvme_start_freeze);
5255
nvme_quiesce_io_queues(struct nvme_ctrl * ctrl)5256 void nvme_quiesce_io_queues(struct nvme_ctrl *ctrl)
5257 {
5258 if (!ctrl->tagset)
5259 return;
5260 if (!test_and_set_bit(NVME_CTRL_STOPPED, &ctrl->flags))
5261 blk_mq_quiesce_tagset(ctrl->tagset);
5262 else
5263 blk_mq_wait_quiesce_done(ctrl->tagset);
5264 }
5265 EXPORT_SYMBOL_GPL(nvme_quiesce_io_queues);
5266
nvme_unquiesce_io_queues(struct nvme_ctrl * ctrl)5267 void nvme_unquiesce_io_queues(struct nvme_ctrl *ctrl)
5268 {
5269 if (!ctrl->tagset)
5270 return;
5271 if (test_and_clear_bit(NVME_CTRL_STOPPED, &ctrl->flags))
5272 blk_mq_unquiesce_tagset(ctrl->tagset);
5273 }
5274 EXPORT_SYMBOL_GPL(nvme_unquiesce_io_queues);
5275
nvme_quiesce_admin_queue(struct nvme_ctrl * ctrl)5276 void nvme_quiesce_admin_queue(struct nvme_ctrl *ctrl)
5277 {
5278 if (!test_and_set_bit(NVME_CTRL_ADMIN_Q_STOPPED, &ctrl->flags))
5279 blk_mq_quiesce_queue(ctrl->admin_q);
5280 else
5281 blk_mq_wait_quiesce_done(ctrl->admin_q->tag_set);
5282 }
5283 EXPORT_SYMBOL_GPL(nvme_quiesce_admin_queue);
5284
nvme_unquiesce_admin_queue(struct nvme_ctrl * ctrl)5285 void nvme_unquiesce_admin_queue(struct nvme_ctrl *ctrl)
5286 {
5287 if (test_and_clear_bit(NVME_CTRL_ADMIN_Q_STOPPED, &ctrl->flags))
5288 blk_mq_unquiesce_queue(ctrl->admin_q);
5289 }
5290 EXPORT_SYMBOL_GPL(nvme_unquiesce_admin_queue);
5291
nvme_sync_io_queues(struct nvme_ctrl * ctrl)5292 void nvme_sync_io_queues(struct nvme_ctrl *ctrl)
5293 {
5294 struct nvme_ns *ns;
5295 int srcu_idx;
5296
5297 srcu_idx = srcu_read_lock(&ctrl->srcu);
5298 list_for_each_entry_srcu(ns, &ctrl->namespaces, list,
5299 srcu_read_lock_held(&ctrl->srcu))
5300 blk_sync_queue(ns->queue);
5301 srcu_read_unlock(&ctrl->srcu, srcu_idx);
5302 }
5303 EXPORT_SYMBOL_GPL(nvme_sync_io_queues);
5304
nvme_sync_queues(struct nvme_ctrl * ctrl)5305 void nvme_sync_queues(struct nvme_ctrl *ctrl)
5306 {
5307 nvme_sync_io_queues(ctrl);
5308 if (ctrl->admin_q)
5309 blk_sync_queue(ctrl->admin_q);
5310 }
5311 EXPORT_SYMBOL_GPL(nvme_sync_queues);
5312
nvme_ctrl_from_file(struct file * file)5313 struct nvme_ctrl *nvme_ctrl_from_file(struct file *file)
5314 {
5315 if (file->f_op != &nvme_dev_fops)
5316 return NULL;
5317 return file->private_data;
5318 }
5319 EXPORT_SYMBOL_NS_GPL(nvme_ctrl_from_file, "NVME_TARGET_PASSTHRU");
5320
5321 /*
5322 * Check we didn't inadvertently grow the command structure sizes:
5323 */
_nvme_check_size(void)5324 static inline void _nvme_check_size(void)
5325 {
5326 BUILD_BUG_ON(sizeof(struct nvme_common_command) != 64);
5327 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
5328 BUILD_BUG_ON(sizeof(struct nvme_identify) != 64);
5329 BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
5330 BUILD_BUG_ON(sizeof(struct nvme_download_firmware) != 64);
5331 BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
5332 BUILD_BUG_ON(sizeof(struct nvme_dsm_cmd) != 64);
5333 BUILD_BUG_ON(sizeof(struct nvme_write_zeroes_cmd) != 64);
5334 BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
5335 BUILD_BUG_ON(sizeof(struct nvme_get_log_page_command) != 64);
5336 BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
5337 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE);
5338 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE);
5339 BUILD_BUG_ON(sizeof(struct nvme_id_ns_cs_indep) !=
5340 NVME_IDENTIFY_DATA_SIZE);
5341 BUILD_BUG_ON(sizeof(struct nvme_id_ns_zns) != NVME_IDENTIFY_DATA_SIZE);
5342 BUILD_BUG_ON(sizeof(struct nvme_id_ns_nvm) != NVME_IDENTIFY_DATA_SIZE);
5343 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_zns) != NVME_IDENTIFY_DATA_SIZE);
5344 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_nvm) != NVME_IDENTIFY_DATA_SIZE);
5345 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
5346 BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
5347 BUILD_BUG_ON(sizeof(struct nvme_endurance_group_log) != 512);
5348 BUILD_BUG_ON(sizeof(struct nvme_rotational_media_log) != 512);
5349 BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64);
5350 BUILD_BUG_ON(sizeof(struct nvme_directive_cmd) != 64);
5351 BUILD_BUG_ON(sizeof(struct nvme_feat_host_behavior) != 512);
5352 }
5353
5354
nvme_core_init(void)5355 static int __init nvme_core_init(void)
5356 {
5357 unsigned int wq_flags = WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS;
5358 int result = -ENOMEM;
5359
5360 _nvme_check_size();
5361
5362 nvme_wq = alloc_workqueue("nvme-wq", wq_flags, 0);
5363 if (!nvme_wq)
5364 goto out;
5365
5366 nvme_reset_wq = alloc_workqueue("nvme-reset-wq", wq_flags, 0);
5367 if (!nvme_reset_wq)
5368 goto destroy_wq;
5369
5370 nvme_delete_wq = alloc_workqueue("nvme-delete-wq", wq_flags, 0);
5371 if (!nvme_delete_wq)
5372 goto destroy_reset_wq;
5373
5374 result = alloc_chrdev_region(&nvme_ctrl_base_chr_devt, 0,
5375 NVME_MINORS, "nvme");
5376 if (result < 0)
5377 goto destroy_delete_wq;
5378
5379 result = class_register(&nvme_class);
5380 if (result)
5381 goto unregister_chrdev;
5382
5383 result = class_register(&nvme_subsys_class);
5384 if (result)
5385 goto destroy_class;
5386
5387 result = alloc_chrdev_region(&nvme_ns_chr_devt, 0, NVME_MINORS,
5388 "nvme-generic");
5389 if (result < 0)
5390 goto destroy_subsys_class;
5391
5392 result = class_register(&nvme_ns_chr_class);
5393 if (result)
5394 goto unregister_generic_ns;
5395
5396 result = nvme_init_auth();
5397 if (result)
5398 goto destroy_ns_chr;
5399 return 0;
5400
5401 destroy_ns_chr:
5402 class_unregister(&nvme_ns_chr_class);
5403 unregister_generic_ns:
5404 unregister_chrdev_region(nvme_ns_chr_devt, NVME_MINORS);
5405 destroy_subsys_class:
5406 class_unregister(&nvme_subsys_class);
5407 destroy_class:
5408 class_unregister(&nvme_class);
5409 unregister_chrdev:
5410 unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS);
5411 destroy_delete_wq:
5412 destroy_workqueue(nvme_delete_wq);
5413 destroy_reset_wq:
5414 destroy_workqueue(nvme_reset_wq);
5415 destroy_wq:
5416 destroy_workqueue(nvme_wq);
5417 out:
5418 return result;
5419 }
5420
nvme_core_exit(void)5421 static void __exit nvme_core_exit(void)
5422 {
5423 nvme_exit_auth();
5424 class_unregister(&nvme_ns_chr_class);
5425 class_unregister(&nvme_subsys_class);
5426 class_unregister(&nvme_class);
5427 unregister_chrdev_region(nvme_ns_chr_devt, NVME_MINORS);
5428 unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS);
5429 destroy_workqueue(nvme_delete_wq);
5430 destroy_workqueue(nvme_reset_wq);
5431 destroy_workqueue(nvme_wq);
5432 ida_destroy(&nvme_ns_chr_minor_ida);
5433 ida_destroy(&nvme_instance_ida);
5434 }
5435
5436 MODULE_LICENSE("GPL");
5437 MODULE_VERSION("1.0");
5438 MODULE_DESCRIPTION("NVMe host core framework");
5439 module_init(nvme_core_init);
5440 module_exit(nvme_core_exit);
5441