xref: /linux/fs/ext4/super.c (revision 3fd6c59042dbba50391e30862beac979491145fe)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/ext4/super.c
4  *
5  * Copyright (C) 1992, 1993, 1994, 1995
6  * Remy Card (card@masi.ibp.fr)
7  * Laboratoire MASI - Institut Blaise Pascal
8  * Universite Pierre et Marie Curie (Paris VI)
9  *
10  *  from
11  *
12  *  linux/fs/minix/inode.c
13  *
14  *  Copyright (C) 1991, 1992  Linus Torvalds
15  *
16  *  Big-endian to little-endian byte-swapping/bitmaps by
17  *        David S. Miller (davem@caip.rutgers.edu), 1995
18  */
19 
20 #include <linux/module.h>
21 #include <linux/string.h>
22 #include <linux/fs.h>
23 #include <linux/time.h>
24 #include <linux/vmalloc.h>
25 #include <linux/slab.h>
26 #include <linux/init.h>
27 #include <linux/blkdev.h>
28 #include <linux/backing-dev.h>
29 #include <linux/parser.h>
30 #include <linux/buffer_head.h>
31 #include <linux/exportfs.h>
32 #include <linux/vfs.h>
33 #include <linux/random.h>
34 #include <linux/mount.h>
35 #include <linux/namei.h>
36 #include <linux/quotaops.h>
37 #include <linux/seq_file.h>
38 #include <linux/ctype.h>
39 #include <linux/log2.h>
40 #include <linux/crc16.h>
41 #include <linux/dax.h>
42 #include <linux/uaccess.h>
43 #include <linux/iversion.h>
44 #include <linux/unicode.h>
45 #include <linux/part_stat.h>
46 #include <linux/kthread.h>
47 #include <linux/freezer.h>
48 #include <linux/fsnotify.h>
49 #include <linux/fs_context.h>
50 #include <linux/fs_parser.h>
51 
52 #include "ext4.h"
53 #include "ext4_extents.h"	/* Needed for trace points definition */
54 #include "ext4_jbd2.h"
55 #include "xattr.h"
56 #include "acl.h"
57 #include "mballoc.h"
58 #include "fsmap.h"
59 
60 #define CREATE_TRACE_POINTS
61 #include <trace/events/ext4.h>
62 
63 static struct ext4_lazy_init *ext4_li_info;
64 static DEFINE_MUTEX(ext4_li_mtx);
65 static struct ratelimit_state ext4_mount_msg_ratelimit;
66 
67 static int ext4_load_journal(struct super_block *, struct ext4_super_block *,
68 			     unsigned long journal_devnum);
69 static int ext4_show_options(struct seq_file *seq, struct dentry *root);
70 static void ext4_update_super(struct super_block *sb);
71 static int ext4_commit_super(struct super_block *sb);
72 static int ext4_mark_recovery_complete(struct super_block *sb,
73 					struct ext4_super_block *es);
74 static int ext4_clear_journal_err(struct super_block *sb,
75 				  struct ext4_super_block *es);
76 static int ext4_sync_fs(struct super_block *sb, int wait);
77 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf);
78 static int ext4_unfreeze(struct super_block *sb);
79 static int ext4_freeze(struct super_block *sb);
80 static inline int ext2_feature_set_ok(struct super_block *sb);
81 static inline int ext3_feature_set_ok(struct super_block *sb);
82 static void ext4_destroy_lazyinit_thread(void);
83 static void ext4_unregister_li_request(struct super_block *sb);
84 static void ext4_clear_request_list(void);
85 static struct inode *ext4_get_journal_inode(struct super_block *sb,
86 					    unsigned int journal_inum);
87 static int ext4_validate_options(struct fs_context *fc);
88 static int ext4_check_opt_consistency(struct fs_context *fc,
89 				      struct super_block *sb);
90 static void ext4_apply_options(struct fs_context *fc, struct super_block *sb);
91 static int ext4_parse_param(struct fs_context *fc, struct fs_parameter *param);
92 static int ext4_get_tree(struct fs_context *fc);
93 static int ext4_reconfigure(struct fs_context *fc);
94 static void ext4_fc_free(struct fs_context *fc);
95 static int ext4_init_fs_context(struct fs_context *fc);
96 static void ext4_kill_sb(struct super_block *sb);
97 static const struct fs_parameter_spec ext4_param_specs[];
98 
99 /*
100  * Lock ordering
101  *
102  * page fault path:
103  * mmap_lock -> sb_start_pagefault -> invalidate_lock (r) -> transaction start
104  *   -> page lock -> i_data_sem (rw)
105  *
106  * buffered write path:
107  * sb_start_write -> i_mutex -> mmap_lock
108  * sb_start_write -> i_mutex -> transaction start -> page lock ->
109  *   i_data_sem (rw)
110  *
111  * truncate:
112  * sb_start_write -> i_mutex -> invalidate_lock (w) -> i_mmap_rwsem (w) ->
113  *   page lock
114  * sb_start_write -> i_mutex -> invalidate_lock (w) -> transaction start ->
115  *   i_data_sem (rw)
116  *
117  * direct IO:
118  * sb_start_write -> i_mutex -> mmap_lock
119  * sb_start_write -> i_mutex -> transaction start -> i_data_sem (rw)
120  *
121  * writepages:
122  * transaction start -> page lock(s) -> i_data_sem (rw)
123  */
124 
125 static const struct fs_context_operations ext4_context_ops = {
126 	.parse_param	= ext4_parse_param,
127 	.get_tree	= ext4_get_tree,
128 	.reconfigure	= ext4_reconfigure,
129 	.free		= ext4_fc_free,
130 };
131 
132 
133 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
134 static struct file_system_type ext2_fs_type = {
135 	.owner			= THIS_MODULE,
136 	.name			= "ext2",
137 	.init_fs_context	= ext4_init_fs_context,
138 	.parameters		= ext4_param_specs,
139 	.kill_sb		= ext4_kill_sb,
140 	.fs_flags		= FS_REQUIRES_DEV,
141 };
142 MODULE_ALIAS_FS("ext2");
143 MODULE_ALIAS("ext2");
144 #define IS_EXT2_SB(sb) ((sb)->s_type == &ext2_fs_type)
145 #else
146 #define IS_EXT2_SB(sb) (0)
147 #endif
148 
149 
150 static struct file_system_type ext3_fs_type = {
151 	.owner			= THIS_MODULE,
152 	.name			= "ext3",
153 	.init_fs_context	= ext4_init_fs_context,
154 	.parameters		= ext4_param_specs,
155 	.kill_sb		= ext4_kill_sb,
156 	.fs_flags		= FS_REQUIRES_DEV,
157 };
158 MODULE_ALIAS_FS("ext3");
159 MODULE_ALIAS("ext3");
160 #define IS_EXT3_SB(sb) ((sb)->s_type == &ext3_fs_type)
161 
162 
__ext4_read_bh(struct buffer_head * bh,blk_opf_t op_flags,bh_end_io_t * end_io,bool simu_fail)163 static inline void __ext4_read_bh(struct buffer_head *bh, blk_opf_t op_flags,
164 				  bh_end_io_t *end_io, bool simu_fail)
165 {
166 	if (simu_fail) {
167 		clear_buffer_uptodate(bh);
168 		unlock_buffer(bh);
169 		return;
170 	}
171 
172 	/*
173 	 * buffer's verified bit is no longer valid after reading from
174 	 * disk again due to write out error, clear it to make sure we
175 	 * recheck the buffer contents.
176 	 */
177 	clear_buffer_verified(bh);
178 
179 	bh->b_end_io = end_io ? end_io : end_buffer_read_sync;
180 	get_bh(bh);
181 	submit_bh(REQ_OP_READ | op_flags, bh);
182 }
183 
ext4_read_bh_nowait(struct buffer_head * bh,blk_opf_t op_flags,bh_end_io_t * end_io,bool simu_fail)184 void ext4_read_bh_nowait(struct buffer_head *bh, blk_opf_t op_flags,
185 			 bh_end_io_t *end_io, bool simu_fail)
186 {
187 	BUG_ON(!buffer_locked(bh));
188 
189 	if (ext4_buffer_uptodate(bh)) {
190 		unlock_buffer(bh);
191 		return;
192 	}
193 	__ext4_read_bh(bh, op_flags, end_io, simu_fail);
194 }
195 
ext4_read_bh(struct buffer_head * bh,blk_opf_t op_flags,bh_end_io_t * end_io,bool simu_fail)196 int ext4_read_bh(struct buffer_head *bh, blk_opf_t op_flags,
197 		 bh_end_io_t *end_io, bool simu_fail)
198 {
199 	BUG_ON(!buffer_locked(bh));
200 
201 	if (ext4_buffer_uptodate(bh)) {
202 		unlock_buffer(bh);
203 		return 0;
204 	}
205 
206 	__ext4_read_bh(bh, op_flags, end_io, simu_fail);
207 
208 	wait_on_buffer(bh);
209 	if (buffer_uptodate(bh))
210 		return 0;
211 	return -EIO;
212 }
213 
ext4_read_bh_lock(struct buffer_head * bh,blk_opf_t op_flags,bool wait)214 int ext4_read_bh_lock(struct buffer_head *bh, blk_opf_t op_flags, bool wait)
215 {
216 	lock_buffer(bh);
217 	if (!wait) {
218 		ext4_read_bh_nowait(bh, op_flags, NULL, false);
219 		return 0;
220 	}
221 	return ext4_read_bh(bh, op_flags, NULL, false);
222 }
223 
224 /*
225  * This works like __bread_gfp() except it uses ERR_PTR for error
226  * returns.  Currently with sb_bread it's impossible to distinguish
227  * between ENOMEM and EIO situations (since both result in a NULL
228  * return.
229  */
__ext4_sb_bread_gfp(struct super_block * sb,sector_t block,blk_opf_t op_flags,gfp_t gfp)230 static struct buffer_head *__ext4_sb_bread_gfp(struct super_block *sb,
231 					       sector_t block,
232 					       blk_opf_t op_flags, gfp_t gfp)
233 {
234 	struct buffer_head *bh;
235 	int ret;
236 
237 	bh = sb_getblk_gfp(sb, block, gfp);
238 	if (bh == NULL)
239 		return ERR_PTR(-ENOMEM);
240 	if (ext4_buffer_uptodate(bh))
241 		return bh;
242 
243 	ret = ext4_read_bh_lock(bh, REQ_META | op_flags, true);
244 	if (ret) {
245 		put_bh(bh);
246 		return ERR_PTR(ret);
247 	}
248 	return bh;
249 }
250 
ext4_sb_bread(struct super_block * sb,sector_t block,blk_opf_t op_flags)251 struct buffer_head *ext4_sb_bread(struct super_block *sb, sector_t block,
252 				   blk_opf_t op_flags)
253 {
254 	gfp_t gfp = mapping_gfp_constraint(sb->s_bdev->bd_mapping,
255 			~__GFP_FS) | __GFP_MOVABLE;
256 
257 	return __ext4_sb_bread_gfp(sb, block, op_flags, gfp);
258 }
259 
ext4_sb_bread_unmovable(struct super_block * sb,sector_t block)260 struct buffer_head *ext4_sb_bread_unmovable(struct super_block *sb,
261 					    sector_t block)
262 {
263 	gfp_t gfp = mapping_gfp_constraint(sb->s_bdev->bd_mapping,
264 			~__GFP_FS);
265 
266 	return __ext4_sb_bread_gfp(sb, block, 0, gfp);
267 }
268 
ext4_sb_breadahead_unmovable(struct super_block * sb,sector_t block)269 void ext4_sb_breadahead_unmovable(struct super_block *sb, sector_t block)
270 {
271 	struct buffer_head *bh = bdev_getblk(sb->s_bdev, block,
272 			sb->s_blocksize, GFP_NOWAIT | __GFP_NOWARN);
273 
274 	if (likely(bh)) {
275 		if (trylock_buffer(bh))
276 			ext4_read_bh_nowait(bh, REQ_RAHEAD, NULL, false);
277 		brelse(bh);
278 	}
279 }
280 
ext4_verify_csum_type(struct super_block * sb,struct ext4_super_block * es)281 static int ext4_verify_csum_type(struct super_block *sb,
282 				 struct ext4_super_block *es)
283 {
284 	if (!ext4_has_feature_metadata_csum(sb))
285 		return 1;
286 
287 	return es->s_checksum_type == EXT4_CRC32C_CHKSUM;
288 }
289 
ext4_superblock_csum(struct super_block * sb,struct ext4_super_block * es)290 __le32 ext4_superblock_csum(struct super_block *sb,
291 			    struct ext4_super_block *es)
292 {
293 	struct ext4_sb_info *sbi = EXT4_SB(sb);
294 	int offset = offsetof(struct ext4_super_block, s_checksum);
295 	__u32 csum;
296 
297 	csum = ext4_chksum(sbi, ~0, (char *)es, offset);
298 
299 	return cpu_to_le32(csum);
300 }
301 
ext4_superblock_csum_verify(struct super_block * sb,struct ext4_super_block * es)302 static int ext4_superblock_csum_verify(struct super_block *sb,
303 				       struct ext4_super_block *es)
304 {
305 	if (!ext4_has_metadata_csum(sb))
306 		return 1;
307 
308 	return es->s_checksum == ext4_superblock_csum(sb, es);
309 }
310 
ext4_superblock_csum_set(struct super_block * sb)311 void ext4_superblock_csum_set(struct super_block *sb)
312 {
313 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
314 
315 	if (!ext4_has_metadata_csum(sb))
316 		return;
317 
318 	es->s_checksum = ext4_superblock_csum(sb, es);
319 }
320 
ext4_block_bitmap(struct super_block * sb,struct ext4_group_desc * bg)321 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb,
322 			       struct ext4_group_desc *bg)
323 {
324 	return le32_to_cpu(bg->bg_block_bitmap_lo) |
325 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
326 		 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0);
327 }
328 
ext4_inode_bitmap(struct super_block * sb,struct ext4_group_desc * bg)329 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb,
330 			       struct ext4_group_desc *bg)
331 {
332 	return le32_to_cpu(bg->bg_inode_bitmap_lo) |
333 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
334 		 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0);
335 }
336 
ext4_inode_table(struct super_block * sb,struct ext4_group_desc * bg)337 ext4_fsblk_t ext4_inode_table(struct super_block *sb,
338 			      struct ext4_group_desc *bg)
339 {
340 	return le32_to_cpu(bg->bg_inode_table_lo) |
341 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
342 		 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0);
343 }
344 
ext4_free_group_clusters(struct super_block * sb,struct ext4_group_desc * bg)345 __u32 ext4_free_group_clusters(struct super_block *sb,
346 			       struct ext4_group_desc *bg)
347 {
348 	return le16_to_cpu(bg->bg_free_blocks_count_lo) |
349 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
350 		 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0);
351 }
352 
ext4_free_inodes_count(struct super_block * sb,struct ext4_group_desc * bg)353 __u32 ext4_free_inodes_count(struct super_block *sb,
354 			      struct ext4_group_desc *bg)
355 {
356 	return le16_to_cpu(READ_ONCE(bg->bg_free_inodes_count_lo)) |
357 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
358 		 (__u32)le16_to_cpu(READ_ONCE(bg->bg_free_inodes_count_hi)) << 16 : 0);
359 }
360 
ext4_used_dirs_count(struct super_block * sb,struct ext4_group_desc * bg)361 __u32 ext4_used_dirs_count(struct super_block *sb,
362 			      struct ext4_group_desc *bg)
363 {
364 	return le16_to_cpu(bg->bg_used_dirs_count_lo) |
365 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
366 		 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0);
367 }
368 
ext4_itable_unused_count(struct super_block * sb,struct ext4_group_desc * bg)369 __u32 ext4_itable_unused_count(struct super_block *sb,
370 			      struct ext4_group_desc *bg)
371 {
372 	return le16_to_cpu(bg->bg_itable_unused_lo) |
373 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
374 		 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0);
375 }
376 
ext4_block_bitmap_set(struct super_block * sb,struct ext4_group_desc * bg,ext4_fsblk_t blk)377 void ext4_block_bitmap_set(struct super_block *sb,
378 			   struct ext4_group_desc *bg, ext4_fsblk_t blk)
379 {
380 	bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk);
381 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
382 		bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32);
383 }
384 
ext4_inode_bitmap_set(struct super_block * sb,struct ext4_group_desc * bg,ext4_fsblk_t blk)385 void ext4_inode_bitmap_set(struct super_block *sb,
386 			   struct ext4_group_desc *bg, ext4_fsblk_t blk)
387 {
388 	bg->bg_inode_bitmap_lo  = cpu_to_le32((u32)blk);
389 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
390 		bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32);
391 }
392 
ext4_inode_table_set(struct super_block * sb,struct ext4_group_desc * bg,ext4_fsblk_t blk)393 void ext4_inode_table_set(struct super_block *sb,
394 			  struct ext4_group_desc *bg, ext4_fsblk_t blk)
395 {
396 	bg->bg_inode_table_lo = cpu_to_le32((u32)blk);
397 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
398 		bg->bg_inode_table_hi = cpu_to_le32(blk >> 32);
399 }
400 
ext4_free_group_clusters_set(struct super_block * sb,struct ext4_group_desc * bg,__u32 count)401 void ext4_free_group_clusters_set(struct super_block *sb,
402 				  struct ext4_group_desc *bg, __u32 count)
403 {
404 	bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count);
405 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
406 		bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16);
407 }
408 
ext4_free_inodes_set(struct super_block * sb,struct ext4_group_desc * bg,__u32 count)409 void ext4_free_inodes_set(struct super_block *sb,
410 			  struct ext4_group_desc *bg, __u32 count)
411 {
412 	WRITE_ONCE(bg->bg_free_inodes_count_lo, cpu_to_le16((__u16)count));
413 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
414 		WRITE_ONCE(bg->bg_free_inodes_count_hi, cpu_to_le16(count >> 16));
415 }
416 
ext4_used_dirs_set(struct super_block * sb,struct ext4_group_desc * bg,__u32 count)417 void ext4_used_dirs_set(struct super_block *sb,
418 			  struct ext4_group_desc *bg, __u32 count)
419 {
420 	bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count);
421 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
422 		bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16);
423 }
424 
ext4_itable_unused_set(struct super_block * sb,struct ext4_group_desc * bg,__u32 count)425 void ext4_itable_unused_set(struct super_block *sb,
426 			  struct ext4_group_desc *bg, __u32 count)
427 {
428 	bg->bg_itable_unused_lo = cpu_to_le16((__u16)count);
429 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
430 		bg->bg_itable_unused_hi = cpu_to_le16(count >> 16);
431 }
432 
__ext4_update_tstamp(__le32 * lo,__u8 * hi,time64_t now)433 static void __ext4_update_tstamp(__le32 *lo, __u8 *hi, time64_t now)
434 {
435 	now = clamp_val(now, 0, (1ull << 40) - 1);
436 
437 	*lo = cpu_to_le32(lower_32_bits(now));
438 	*hi = upper_32_bits(now);
439 }
440 
__ext4_get_tstamp(__le32 * lo,__u8 * hi)441 static time64_t __ext4_get_tstamp(__le32 *lo, __u8 *hi)
442 {
443 	return ((time64_t)(*hi) << 32) + le32_to_cpu(*lo);
444 }
445 #define ext4_update_tstamp(es, tstamp) \
446 	__ext4_update_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi, \
447 			     ktime_get_real_seconds())
448 #define ext4_get_tstamp(es, tstamp) \
449 	__ext4_get_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi)
450 
451 #define EXT4_SB_REFRESH_INTERVAL_SEC (3600) /* seconds (1 hour) */
452 #define EXT4_SB_REFRESH_INTERVAL_KB (16384) /* kilobytes (16MB) */
453 
454 /*
455  * The ext4_maybe_update_superblock() function checks and updates the
456  * superblock if needed.
457  *
458  * This function is designed to update the on-disk superblock only under
459  * certain conditions to prevent excessive disk writes and unnecessary
460  * waking of the disk from sleep. The superblock will be updated if:
461  * 1. More than an hour has passed since the last superblock update, and
462  * 2. More than 16MB have been written since the last superblock update.
463  *
464  * @sb: The superblock
465  */
ext4_maybe_update_superblock(struct super_block * sb)466 static void ext4_maybe_update_superblock(struct super_block *sb)
467 {
468 	struct ext4_sb_info *sbi = EXT4_SB(sb);
469 	struct ext4_super_block *es = sbi->s_es;
470 	journal_t *journal = sbi->s_journal;
471 	time64_t now;
472 	__u64 last_update;
473 	__u64 lifetime_write_kbytes;
474 	__u64 diff_size;
475 
476 	if (sb_rdonly(sb) || !(sb->s_flags & SB_ACTIVE) ||
477 	    !journal || (journal->j_flags & JBD2_UNMOUNT))
478 		return;
479 
480 	now = ktime_get_real_seconds();
481 	last_update = ext4_get_tstamp(es, s_wtime);
482 
483 	if (likely(now - last_update < EXT4_SB_REFRESH_INTERVAL_SEC))
484 		return;
485 
486 	lifetime_write_kbytes = sbi->s_kbytes_written +
487 		((part_stat_read(sb->s_bdev, sectors[STAT_WRITE]) -
488 		  sbi->s_sectors_written_start) >> 1);
489 
490 	/* Get the number of kilobytes not written to disk to account
491 	 * for statistics and compare with a multiple of 16 MB. This
492 	 * is used to determine when the next superblock commit should
493 	 * occur (i.e. not more often than once per 16MB if there was
494 	 * less written in an hour).
495 	 */
496 	diff_size = lifetime_write_kbytes - le64_to_cpu(es->s_kbytes_written);
497 
498 	if (diff_size > EXT4_SB_REFRESH_INTERVAL_KB)
499 		schedule_work(&EXT4_SB(sb)->s_sb_upd_work);
500 }
501 
ext4_journal_commit_callback(journal_t * journal,transaction_t * txn)502 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn)
503 {
504 	struct super_block		*sb = journal->j_private;
505 	struct ext4_sb_info		*sbi = EXT4_SB(sb);
506 	int				error = is_journal_aborted(journal);
507 	struct ext4_journal_cb_entry	*jce;
508 
509 	BUG_ON(txn->t_state == T_FINISHED);
510 
511 	ext4_process_freed_data(sb, txn->t_tid);
512 	ext4_maybe_update_superblock(sb);
513 
514 	spin_lock(&sbi->s_md_lock);
515 	while (!list_empty(&txn->t_private_list)) {
516 		jce = list_entry(txn->t_private_list.next,
517 				 struct ext4_journal_cb_entry, jce_list);
518 		list_del_init(&jce->jce_list);
519 		spin_unlock(&sbi->s_md_lock);
520 		jce->jce_func(sb, jce, error);
521 		spin_lock(&sbi->s_md_lock);
522 	}
523 	spin_unlock(&sbi->s_md_lock);
524 }
525 
526 /*
527  * This writepage callback for write_cache_pages()
528  * takes care of a few cases after page cleaning.
529  *
530  * write_cache_pages() already checks for dirty pages
531  * and calls clear_page_dirty_for_io(), which we want,
532  * to write protect the pages.
533  *
534  * However, we may have to redirty a page (see below.)
535  */
ext4_journalled_writepage_callback(struct folio * folio,struct writeback_control * wbc,void * data)536 static int ext4_journalled_writepage_callback(struct folio *folio,
537 					      struct writeback_control *wbc,
538 					      void *data)
539 {
540 	transaction_t *transaction = (transaction_t *) data;
541 	struct buffer_head *bh, *head;
542 	struct journal_head *jh;
543 
544 	bh = head = folio_buffers(folio);
545 	do {
546 		/*
547 		 * We have to redirty a page in these cases:
548 		 * 1) If buffer is dirty, it means the page was dirty because it
549 		 * contains a buffer that needs checkpointing. So the dirty bit
550 		 * needs to be preserved so that checkpointing writes the buffer
551 		 * properly.
552 		 * 2) If buffer is not part of the committing transaction
553 		 * (we may have just accidentally come across this buffer because
554 		 * inode range tracking is not exact) or if the currently running
555 		 * transaction already contains this buffer as well, dirty bit
556 		 * needs to be preserved so that the buffer gets writeprotected
557 		 * properly on running transaction's commit.
558 		 */
559 		jh = bh2jh(bh);
560 		if (buffer_dirty(bh) ||
561 		    (jh && (jh->b_transaction != transaction ||
562 			    jh->b_next_transaction))) {
563 			folio_redirty_for_writepage(wbc, folio);
564 			goto out;
565 		}
566 	} while ((bh = bh->b_this_page) != head);
567 
568 out:
569 	return AOP_WRITEPAGE_ACTIVATE;
570 }
571 
ext4_journalled_submit_inode_data_buffers(struct jbd2_inode * jinode)572 static int ext4_journalled_submit_inode_data_buffers(struct jbd2_inode *jinode)
573 {
574 	struct address_space *mapping = jinode->i_vfs_inode->i_mapping;
575 	struct writeback_control wbc = {
576 		.sync_mode =  WB_SYNC_ALL,
577 		.nr_to_write = LONG_MAX,
578 		.range_start = jinode->i_dirty_start,
579 		.range_end = jinode->i_dirty_end,
580         };
581 
582 	return write_cache_pages(mapping, &wbc,
583 				 ext4_journalled_writepage_callback,
584 				 jinode->i_transaction);
585 }
586 
ext4_journal_submit_inode_data_buffers(struct jbd2_inode * jinode)587 static int ext4_journal_submit_inode_data_buffers(struct jbd2_inode *jinode)
588 {
589 	int ret;
590 
591 	if (ext4_should_journal_data(jinode->i_vfs_inode))
592 		ret = ext4_journalled_submit_inode_data_buffers(jinode);
593 	else
594 		ret = ext4_normal_submit_inode_data_buffers(jinode);
595 	return ret;
596 }
597 
ext4_journal_finish_inode_data_buffers(struct jbd2_inode * jinode)598 static int ext4_journal_finish_inode_data_buffers(struct jbd2_inode *jinode)
599 {
600 	int ret = 0;
601 
602 	if (!ext4_should_journal_data(jinode->i_vfs_inode))
603 		ret = jbd2_journal_finish_inode_data_buffers(jinode);
604 
605 	return ret;
606 }
607 
system_going_down(void)608 static bool system_going_down(void)
609 {
610 	return system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF
611 		|| system_state == SYSTEM_RESTART;
612 }
613 
614 struct ext4_err_translation {
615 	int code;
616 	int errno;
617 };
618 
619 #define EXT4_ERR_TRANSLATE(err) { .code = EXT4_ERR_##err, .errno = err }
620 
621 static struct ext4_err_translation err_translation[] = {
622 	EXT4_ERR_TRANSLATE(EIO),
623 	EXT4_ERR_TRANSLATE(ENOMEM),
624 	EXT4_ERR_TRANSLATE(EFSBADCRC),
625 	EXT4_ERR_TRANSLATE(EFSCORRUPTED),
626 	EXT4_ERR_TRANSLATE(ENOSPC),
627 	EXT4_ERR_TRANSLATE(ENOKEY),
628 	EXT4_ERR_TRANSLATE(EROFS),
629 	EXT4_ERR_TRANSLATE(EFBIG),
630 	EXT4_ERR_TRANSLATE(EEXIST),
631 	EXT4_ERR_TRANSLATE(ERANGE),
632 	EXT4_ERR_TRANSLATE(EOVERFLOW),
633 	EXT4_ERR_TRANSLATE(EBUSY),
634 	EXT4_ERR_TRANSLATE(ENOTDIR),
635 	EXT4_ERR_TRANSLATE(ENOTEMPTY),
636 	EXT4_ERR_TRANSLATE(ESHUTDOWN),
637 	EXT4_ERR_TRANSLATE(EFAULT),
638 };
639 
ext4_errno_to_code(int errno)640 static int ext4_errno_to_code(int errno)
641 {
642 	int i;
643 
644 	for (i = 0; i < ARRAY_SIZE(err_translation); i++)
645 		if (err_translation[i].errno == errno)
646 			return err_translation[i].code;
647 	return EXT4_ERR_UNKNOWN;
648 }
649 
save_error_info(struct super_block * sb,int error,__u32 ino,__u64 block,const char * func,unsigned int line)650 static void save_error_info(struct super_block *sb, int error,
651 			    __u32 ino, __u64 block,
652 			    const char *func, unsigned int line)
653 {
654 	struct ext4_sb_info *sbi = EXT4_SB(sb);
655 
656 	/* We default to EFSCORRUPTED error... */
657 	if (error == 0)
658 		error = EFSCORRUPTED;
659 
660 	spin_lock(&sbi->s_error_lock);
661 	sbi->s_add_error_count++;
662 	sbi->s_last_error_code = error;
663 	sbi->s_last_error_line = line;
664 	sbi->s_last_error_ino = ino;
665 	sbi->s_last_error_block = block;
666 	sbi->s_last_error_func = func;
667 	sbi->s_last_error_time = ktime_get_real_seconds();
668 	if (!sbi->s_first_error_time) {
669 		sbi->s_first_error_code = error;
670 		sbi->s_first_error_line = line;
671 		sbi->s_first_error_ino = ino;
672 		sbi->s_first_error_block = block;
673 		sbi->s_first_error_func = func;
674 		sbi->s_first_error_time = sbi->s_last_error_time;
675 	}
676 	spin_unlock(&sbi->s_error_lock);
677 }
678 
679 /* Deal with the reporting of failure conditions on a filesystem such as
680  * inconsistencies detected or read IO failures.
681  *
682  * On ext2, we can store the error state of the filesystem in the
683  * superblock.  That is not possible on ext4, because we may have other
684  * write ordering constraints on the superblock which prevent us from
685  * writing it out straight away; and given that the journal is about to
686  * be aborted, we can't rely on the current, or future, transactions to
687  * write out the superblock safely.
688  *
689  * We'll just use the jbd2_journal_abort() error code to record an error in
690  * the journal instead.  On recovery, the journal will complain about
691  * that error until we've noted it down and cleared it.
692  *
693  * If force_ro is set, we unconditionally force the filesystem into an
694  * ABORT|READONLY state, unless the error response on the fs has been set to
695  * panic in which case we take the easy way out and panic immediately. This is
696  * used to deal with unrecoverable failures such as journal IO errors or ENOMEM
697  * at a critical moment in log management.
698  */
ext4_handle_error(struct super_block * sb,bool force_ro,int error,__u32 ino,__u64 block,const char * func,unsigned int line)699 static void ext4_handle_error(struct super_block *sb, bool force_ro, int error,
700 			      __u32 ino, __u64 block,
701 			      const char *func, unsigned int line)
702 {
703 	journal_t *journal = EXT4_SB(sb)->s_journal;
704 	bool continue_fs = !force_ro && test_opt(sb, ERRORS_CONT);
705 
706 	EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
707 	if (test_opt(sb, WARN_ON_ERROR))
708 		WARN_ON_ONCE(1);
709 
710 	if (!continue_fs && !sb_rdonly(sb)) {
711 		set_bit(EXT4_FLAGS_SHUTDOWN, &EXT4_SB(sb)->s_ext4_flags);
712 		if (journal)
713 			jbd2_journal_abort(journal, -EIO);
714 	}
715 
716 	if (!bdev_read_only(sb->s_bdev)) {
717 		save_error_info(sb, error, ino, block, func, line);
718 		/*
719 		 * In case the fs should keep running, we need to writeout
720 		 * superblock through the journal. Due to lock ordering
721 		 * constraints, it may not be safe to do it right here so we
722 		 * defer superblock flushing to a workqueue.
723 		 */
724 		if (continue_fs && journal)
725 			schedule_work(&EXT4_SB(sb)->s_sb_upd_work);
726 		else
727 			ext4_commit_super(sb);
728 	}
729 
730 	/*
731 	 * We force ERRORS_RO behavior when system is rebooting. Otherwise we
732 	 * could panic during 'reboot -f' as the underlying device got already
733 	 * disabled.
734 	 */
735 	if (test_opt(sb, ERRORS_PANIC) && !system_going_down()) {
736 		panic("EXT4-fs (device %s): panic forced after error\n",
737 			sb->s_id);
738 	}
739 
740 	if (sb_rdonly(sb) || continue_fs)
741 		return;
742 
743 	ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
744 	/*
745 	 * EXT4_FLAGS_SHUTDOWN was set which stops all filesystem
746 	 * modifications. We don't set SB_RDONLY because that requires
747 	 * sb->s_umount semaphore and setting it without proper remount
748 	 * procedure is confusing code such as freeze_super() leading to
749 	 * deadlocks and other problems.
750 	 */
751 }
752 
update_super_work(struct work_struct * work)753 static void update_super_work(struct work_struct *work)
754 {
755 	struct ext4_sb_info *sbi = container_of(work, struct ext4_sb_info,
756 						s_sb_upd_work);
757 	journal_t *journal = sbi->s_journal;
758 	handle_t *handle;
759 
760 	/*
761 	 * If the journal is still running, we have to write out superblock
762 	 * through the journal to avoid collisions of other journalled sb
763 	 * updates.
764 	 *
765 	 * We use directly jbd2 functions here to avoid recursing back into
766 	 * ext4 error handling code during handling of previous errors.
767 	 */
768 	if (!sb_rdonly(sbi->s_sb) && journal) {
769 		struct buffer_head *sbh = sbi->s_sbh;
770 		bool call_notify_err = false;
771 
772 		handle = jbd2_journal_start(journal, 1);
773 		if (IS_ERR(handle))
774 			goto write_directly;
775 		if (jbd2_journal_get_write_access(handle, sbh)) {
776 			jbd2_journal_stop(handle);
777 			goto write_directly;
778 		}
779 
780 		if (sbi->s_add_error_count > 0)
781 			call_notify_err = true;
782 
783 		ext4_update_super(sbi->s_sb);
784 		if (buffer_write_io_error(sbh) || !buffer_uptodate(sbh)) {
785 			ext4_msg(sbi->s_sb, KERN_ERR, "previous I/O error to "
786 				 "superblock detected");
787 			clear_buffer_write_io_error(sbh);
788 			set_buffer_uptodate(sbh);
789 		}
790 
791 		if (jbd2_journal_dirty_metadata(handle, sbh)) {
792 			jbd2_journal_stop(handle);
793 			goto write_directly;
794 		}
795 		jbd2_journal_stop(handle);
796 
797 		if (call_notify_err)
798 			ext4_notify_error_sysfs(sbi);
799 
800 		return;
801 	}
802 write_directly:
803 	/*
804 	 * Write through journal failed. Write sb directly to get error info
805 	 * out and hope for the best.
806 	 */
807 	ext4_commit_super(sbi->s_sb);
808 	ext4_notify_error_sysfs(sbi);
809 }
810 
811 #define ext4_error_ratelimit(sb)					\
812 		___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state),	\
813 			     "EXT4-fs error")
814 
__ext4_error(struct super_block * sb,const char * function,unsigned int line,bool force_ro,int error,__u64 block,const char * fmt,...)815 void __ext4_error(struct super_block *sb, const char *function,
816 		  unsigned int line, bool force_ro, int error, __u64 block,
817 		  const char *fmt, ...)
818 {
819 	struct va_format vaf;
820 	va_list args;
821 
822 	if (unlikely(ext4_forced_shutdown(sb)))
823 		return;
824 
825 	trace_ext4_error(sb, function, line);
826 	if (ext4_error_ratelimit(sb)) {
827 		va_start(args, fmt);
828 		vaf.fmt = fmt;
829 		vaf.va = &args;
830 		printk(KERN_CRIT
831 		       "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n",
832 		       sb->s_id, function, line, current->comm, &vaf);
833 		va_end(args);
834 	}
835 	fsnotify_sb_error(sb, NULL, error ? error : EFSCORRUPTED);
836 
837 	ext4_handle_error(sb, force_ro, error, 0, block, function, line);
838 }
839 
__ext4_error_inode(struct inode * inode,const char * function,unsigned int line,ext4_fsblk_t block,int error,const char * fmt,...)840 void __ext4_error_inode(struct inode *inode, const char *function,
841 			unsigned int line, ext4_fsblk_t block, int error,
842 			const char *fmt, ...)
843 {
844 	va_list args;
845 	struct va_format vaf;
846 
847 	if (unlikely(ext4_forced_shutdown(inode->i_sb)))
848 		return;
849 
850 	trace_ext4_error(inode->i_sb, function, line);
851 	if (ext4_error_ratelimit(inode->i_sb)) {
852 		va_start(args, fmt);
853 		vaf.fmt = fmt;
854 		vaf.va = &args;
855 		if (block)
856 			printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
857 			       "inode #%lu: block %llu: comm %s: %pV\n",
858 			       inode->i_sb->s_id, function, line, inode->i_ino,
859 			       block, current->comm, &vaf);
860 		else
861 			printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
862 			       "inode #%lu: comm %s: %pV\n",
863 			       inode->i_sb->s_id, function, line, inode->i_ino,
864 			       current->comm, &vaf);
865 		va_end(args);
866 	}
867 	fsnotify_sb_error(inode->i_sb, inode, error ? error : EFSCORRUPTED);
868 
869 	ext4_handle_error(inode->i_sb, false, error, inode->i_ino, block,
870 			  function, line);
871 }
872 
__ext4_error_file(struct file * file,const char * function,unsigned int line,ext4_fsblk_t block,const char * fmt,...)873 void __ext4_error_file(struct file *file, const char *function,
874 		       unsigned int line, ext4_fsblk_t block,
875 		       const char *fmt, ...)
876 {
877 	va_list args;
878 	struct va_format vaf;
879 	struct inode *inode = file_inode(file);
880 	char pathname[80], *path;
881 
882 	if (unlikely(ext4_forced_shutdown(inode->i_sb)))
883 		return;
884 
885 	trace_ext4_error(inode->i_sb, function, line);
886 	if (ext4_error_ratelimit(inode->i_sb)) {
887 		path = file_path(file, pathname, sizeof(pathname));
888 		if (IS_ERR(path))
889 			path = "(unknown)";
890 		va_start(args, fmt);
891 		vaf.fmt = fmt;
892 		vaf.va = &args;
893 		if (block)
894 			printk(KERN_CRIT
895 			       "EXT4-fs error (device %s): %s:%d: inode #%lu: "
896 			       "block %llu: comm %s: path %s: %pV\n",
897 			       inode->i_sb->s_id, function, line, inode->i_ino,
898 			       block, current->comm, path, &vaf);
899 		else
900 			printk(KERN_CRIT
901 			       "EXT4-fs error (device %s): %s:%d: inode #%lu: "
902 			       "comm %s: path %s: %pV\n",
903 			       inode->i_sb->s_id, function, line, inode->i_ino,
904 			       current->comm, path, &vaf);
905 		va_end(args);
906 	}
907 	fsnotify_sb_error(inode->i_sb, inode, EFSCORRUPTED);
908 
909 	ext4_handle_error(inode->i_sb, false, EFSCORRUPTED, inode->i_ino, block,
910 			  function, line);
911 }
912 
ext4_decode_error(struct super_block * sb,int errno,char nbuf[16])913 const char *ext4_decode_error(struct super_block *sb, int errno,
914 			      char nbuf[16])
915 {
916 	char *errstr = NULL;
917 
918 	switch (errno) {
919 	case -EFSCORRUPTED:
920 		errstr = "Corrupt filesystem";
921 		break;
922 	case -EFSBADCRC:
923 		errstr = "Filesystem failed CRC";
924 		break;
925 	case -EIO:
926 		errstr = "IO failure";
927 		break;
928 	case -ENOMEM:
929 		errstr = "Out of memory";
930 		break;
931 	case -EROFS:
932 		if (!sb || (EXT4_SB(sb)->s_journal &&
933 			    EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT))
934 			errstr = "Journal has aborted";
935 		else
936 			errstr = "Readonly filesystem";
937 		break;
938 	default:
939 		/* If the caller passed in an extra buffer for unknown
940 		 * errors, textualise them now.  Else we just return
941 		 * NULL. */
942 		if (nbuf) {
943 			/* Check for truncated error codes... */
944 			if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
945 				errstr = nbuf;
946 		}
947 		break;
948 	}
949 
950 	return errstr;
951 }
952 
953 /* __ext4_std_error decodes expected errors from journaling functions
954  * automatically and invokes the appropriate error response.  */
955 
__ext4_std_error(struct super_block * sb,const char * function,unsigned int line,int errno)956 void __ext4_std_error(struct super_block *sb, const char *function,
957 		      unsigned int line, int errno)
958 {
959 	char nbuf[16];
960 	const char *errstr;
961 
962 	if (unlikely(ext4_forced_shutdown(sb)))
963 		return;
964 
965 	/* Special case: if the error is EROFS, and we're not already
966 	 * inside a transaction, then there's really no point in logging
967 	 * an error. */
968 	if (errno == -EROFS && journal_current_handle() == NULL && sb_rdonly(sb))
969 		return;
970 
971 	if (ext4_error_ratelimit(sb)) {
972 		errstr = ext4_decode_error(sb, errno, nbuf);
973 		printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n",
974 		       sb->s_id, function, line, errstr);
975 	}
976 	fsnotify_sb_error(sb, NULL, errno ? errno : EFSCORRUPTED);
977 
978 	ext4_handle_error(sb, false, -errno, 0, 0, function, line);
979 }
980 
__ext4_msg(struct super_block * sb,const char * prefix,const char * fmt,...)981 void __ext4_msg(struct super_block *sb,
982 		const char *prefix, const char *fmt, ...)
983 {
984 	struct va_format vaf;
985 	va_list args;
986 
987 	if (sb) {
988 		atomic_inc(&EXT4_SB(sb)->s_msg_count);
989 		if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state),
990 				  "EXT4-fs"))
991 			return;
992 	}
993 
994 	va_start(args, fmt);
995 	vaf.fmt = fmt;
996 	vaf.va = &args;
997 	if (sb)
998 		printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf);
999 	else
1000 		printk("%sEXT4-fs: %pV\n", prefix, &vaf);
1001 	va_end(args);
1002 }
1003 
ext4_warning_ratelimit(struct super_block * sb)1004 static int ext4_warning_ratelimit(struct super_block *sb)
1005 {
1006 	atomic_inc(&EXT4_SB(sb)->s_warning_count);
1007 	return ___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state),
1008 			    "EXT4-fs warning");
1009 }
1010 
__ext4_warning(struct super_block * sb,const char * function,unsigned int line,const char * fmt,...)1011 void __ext4_warning(struct super_block *sb, const char *function,
1012 		    unsigned int line, const char *fmt, ...)
1013 {
1014 	struct va_format vaf;
1015 	va_list args;
1016 
1017 	if (!ext4_warning_ratelimit(sb))
1018 		return;
1019 
1020 	va_start(args, fmt);
1021 	vaf.fmt = fmt;
1022 	vaf.va = &args;
1023 	printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n",
1024 	       sb->s_id, function, line, &vaf);
1025 	va_end(args);
1026 }
1027 
__ext4_warning_inode(const struct inode * inode,const char * function,unsigned int line,const char * fmt,...)1028 void __ext4_warning_inode(const struct inode *inode, const char *function,
1029 			  unsigned int line, const char *fmt, ...)
1030 {
1031 	struct va_format vaf;
1032 	va_list args;
1033 
1034 	if (!ext4_warning_ratelimit(inode->i_sb))
1035 		return;
1036 
1037 	va_start(args, fmt);
1038 	vaf.fmt = fmt;
1039 	vaf.va = &args;
1040 	printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: "
1041 	       "inode #%lu: comm %s: %pV\n", inode->i_sb->s_id,
1042 	       function, line, inode->i_ino, current->comm, &vaf);
1043 	va_end(args);
1044 }
1045 
__ext4_grp_locked_error(const char * function,unsigned int line,struct super_block * sb,ext4_group_t grp,unsigned long ino,ext4_fsblk_t block,const char * fmt,...)1046 void __ext4_grp_locked_error(const char *function, unsigned int line,
1047 			     struct super_block *sb, ext4_group_t grp,
1048 			     unsigned long ino, ext4_fsblk_t block,
1049 			     const char *fmt, ...)
1050 __releases(bitlock)
1051 __acquires(bitlock)
1052 {
1053 	struct va_format vaf;
1054 	va_list args;
1055 
1056 	if (unlikely(ext4_forced_shutdown(sb)))
1057 		return;
1058 
1059 	trace_ext4_error(sb, function, line);
1060 	if (ext4_error_ratelimit(sb)) {
1061 		va_start(args, fmt);
1062 		vaf.fmt = fmt;
1063 		vaf.va = &args;
1064 		printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ",
1065 		       sb->s_id, function, line, grp);
1066 		if (ino)
1067 			printk(KERN_CONT "inode %lu: ", ino);
1068 		if (block)
1069 			printk(KERN_CONT "block %llu:",
1070 			       (unsigned long long) block);
1071 		printk(KERN_CONT "%pV\n", &vaf);
1072 		va_end(args);
1073 	}
1074 
1075 	if (test_opt(sb, ERRORS_CONT)) {
1076 		if (test_opt(sb, WARN_ON_ERROR))
1077 			WARN_ON_ONCE(1);
1078 		EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
1079 		if (!bdev_read_only(sb->s_bdev)) {
1080 			save_error_info(sb, EFSCORRUPTED, ino, block, function,
1081 					line);
1082 			schedule_work(&EXT4_SB(sb)->s_sb_upd_work);
1083 		}
1084 		return;
1085 	}
1086 	ext4_unlock_group(sb, grp);
1087 	ext4_handle_error(sb, false, EFSCORRUPTED, ino, block, function, line);
1088 	/*
1089 	 * We only get here in the ERRORS_RO case; relocking the group
1090 	 * may be dangerous, but nothing bad will happen since the
1091 	 * filesystem will have already been marked read/only and the
1092 	 * journal has been aborted.  We return 1 as a hint to callers
1093 	 * who might what to use the return value from
1094 	 * ext4_grp_locked_error() to distinguish between the
1095 	 * ERRORS_CONT and ERRORS_RO case, and perhaps return more
1096 	 * aggressively from the ext4 function in question, with a
1097 	 * more appropriate error code.
1098 	 */
1099 	ext4_lock_group(sb, grp);
1100 	return;
1101 }
1102 
ext4_mark_group_bitmap_corrupted(struct super_block * sb,ext4_group_t group,unsigned int flags)1103 void ext4_mark_group_bitmap_corrupted(struct super_block *sb,
1104 				     ext4_group_t group,
1105 				     unsigned int flags)
1106 {
1107 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1108 	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
1109 	struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group, NULL);
1110 	int ret;
1111 
1112 	if (!grp || !gdp)
1113 		return;
1114 	if (flags & EXT4_GROUP_INFO_BBITMAP_CORRUPT) {
1115 		ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT,
1116 					    &grp->bb_state);
1117 		if (!ret)
1118 			percpu_counter_sub(&sbi->s_freeclusters_counter,
1119 					   grp->bb_free);
1120 	}
1121 
1122 	if (flags & EXT4_GROUP_INFO_IBITMAP_CORRUPT) {
1123 		ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT,
1124 					    &grp->bb_state);
1125 		if (!ret && gdp) {
1126 			int count;
1127 
1128 			count = ext4_free_inodes_count(sb, gdp);
1129 			percpu_counter_sub(&sbi->s_freeinodes_counter,
1130 					   count);
1131 		}
1132 	}
1133 }
1134 
ext4_update_dynamic_rev(struct super_block * sb)1135 void ext4_update_dynamic_rev(struct super_block *sb)
1136 {
1137 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
1138 
1139 	if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV)
1140 		return;
1141 
1142 	ext4_warning(sb,
1143 		     "updating to rev %d because of new feature flag, "
1144 		     "running e2fsck is recommended",
1145 		     EXT4_DYNAMIC_REV);
1146 
1147 	es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO);
1148 	es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE);
1149 	es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV);
1150 	/* leave es->s_feature_*compat flags alone */
1151 	/* es->s_uuid will be set by e2fsck if empty */
1152 
1153 	/*
1154 	 * The rest of the superblock fields should be zero, and if not it
1155 	 * means they are likely already in use, so leave them alone.  We
1156 	 * can leave it up to e2fsck to clean up any inconsistencies there.
1157 	 */
1158 }
1159 
orphan_list_entry(struct list_head * l)1160 static inline struct inode *orphan_list_entry(struct list_head *l)
1161 {
1162 	return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode;
1163 }
1164 
dump_orphan_list(struct super_block * sb,struct ext4_sb_info * sbi)1165 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi)
1166 {
1167 	struct list_head *l;
1168 
1169 	ext4_msg(sb, KERN_ERR, "sb orphan head is %d",
1170 		 le32_to_cpu(sbi->s_es->s_last_orphan));
1171 
1172 	printk(KERN_ERR "sb_info orphan list:\n");
1173 	list_for_each(l, &sbi->s_orphan) {
1174 		struct inode *inode = orphan_list_entry(l);
1175 		printk(KERN_ERR "  "
1176 		       "inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
1177 		       inode->i_sb->s_id, inode->i_ino, inode,
1178 		       inode->i_mode, inode->i_nlink,
1179 		       NEXT_ORPHAN(inode));
1180 	}
1181 }
1182 
1183 #ifdef CONFIG_QUOTA
1184 static int ext4_quota_off(struct super_block *sb, int type);
1185 
ext4_quotas_off(struct super_block * sb,int type)1186 static inline void ext4_quotas_off(struct super_block *sb, int type)
1187 {
1188 	BUG_ON(type > EXT4_MAXQUOTAS);
1189 
1190 	/* Use our quota_off function to clear inode flags etc. */
1191 	for (type--; type >= 0; type--)
1192 		ext4_quota_off(sb, type);
1193 }
1194 
1195 /*
1196  * This is a helper function which is used in the mount/remount
1197  * codepaths (which holds s_umount) to fetch the quota file name.
1198  */
get_qf_name(struct super_block * sb,struct ext4_sb_info * sbi,int type)1199 static inline char *get_qf_name(struct super_block *sb,
1200 				struct ext4_sb_info *sbi,
1201 				int type)
1202 {
1203 	return rcu_dereference_protected(sbi->s_qf_names[type],
1204 					 lockdep_is_held(&sb->s_umount));
1205 }
1206 #else
ext4_quotas_off(struct super_block * sb,int type)1207 static inline void ext4_quotas_off(struct super_block *sb, int type)
1208 {
1209 }
1210 #endif
1211 
ext4_percpu_param_init(struct ext4_sb_info * sbi)1212 static int ext4_percpu_param_init(struct ext4_sb_info *sbi)
1213 {
1214 	ext4_fsblk_t block;
1215 	int err;
1216 
1217 	block = ext4_count_free_clusters(sbi->s_sb);
1218 	ext4_free_blocks_count_set(sbi->s_es, EXT4_C2B(sbi, block));
1219 	err = percpu_counter_init(&sbi->s_freeclusters_counter, block,
1220 				  GFP_KERNEL);
1221 	if (!err) {
1222 		unsigned long freei = ext4_count_free_inodes(sbi->s_sb);
1223 		sbi->s_es->s_free_inodes_count = cpu_to_le32(freei);
1224 		err = percpu_counter_init(&sbi->s_freeinodes_counter, freei,
1225 					  GFP_KERNEL);
1226 	}
1227 	if (!err)
1228 		err = percpu_counter_init(&sbi->s_dirs_counter,
1229 					  ext4_count_dirs(sbi->s_sb), GFP_KERNEL);
1230 	if (!err)
1231 		err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0,
1232 					  GFP_KERNEL);
1233 	if (!err)
1234 		err = percpu_counter_init(&sbi->s_sra_exceeded_retry_limit, 0,
1235 					  GFP_KERNEL);
1236 	if (!err)
1237 		err = percpu_init_rwsem(&sbi->s_writepages_rwsem);
1238 
1239 	if (err)
1240 		ext4_msg(sbi->s_sb, KERN_ERR, "insufficient memory");
1241 
1242 	return err;
1243 }
1244 
ext4_percpu_param_destroy(struct ext4_sb_info * sbi)1245 static void ext4_percpu_param_destroy(struct ext4_sb_info *sbi)
1246 {
1247 	percpu_counter_destroy(&sbi->s_freeclusters_counter);
1248 	percpu_counter_destroy(&sbi->s_freeinodes_counter);
1249 	percpu_counter_destroy(&sbi->s_dirs_counter);
1250 	percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
1251 	percpu_counter_destroy(&sbi->s_sra_exceeded_retry_limit);
1252 	percpu_free_rwsem(&sbi->s_writepages_rwsem);
1253 }
1254 
ext4_group_desc_free(struct ext4_sb_info * sbi)1255 static void ext4_group_desc_free(struct ext4_sb_info *sbi)
1256 {
1257 	struct buffer_head **group_desc;
1258 	int i;
1259 
1260 	rcu_read_lock();
1261 	group_desc = rcu_dereference(sbi->s_group_desc);
1262 	for (i = 0; i < sbi->s_gdb_count; i++)
1263 		brelse(group_desc[i]);
1264 	kvfree(group_desc);
1265 	rcu_read_unlock();
1266 }
1267 
ext4_flex_groups_free(struct ext4_sb_info * sbi)1268 static void ext4_flex_groups_free(struct ext4_sb_info *sbi)
1269 {
1270 	struct flex_groups **flex_groups;
1271 	int i;
1272 
1273 	rcu_read_lock();
1274 	flex_groups = rcu_dereference(sbi->s_flex_groups);
1275 	if (flex_groups) {
1276 		for (i = 0; i < sbi->s_flex_groups_allocated; i++)
1277 			kvfree(flex_groups[i]);
1278 		kvfree(flex_groups);
1279 	}
1280 	rcu_read_unlock();
1281 }
1282 
ext4_put_super(struct super_block * sb)1283 static void ext4_put_super(struct super_block *sb)
1284 {
1285 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1286 	struct ext4_super_block *es = sbi->s_es;
1287 	int aborted = 0;
1288 	int err;
1289 
1290 	/*
1291 	 * Unregister sysfs before destroying jbd2 journal.
1292 	 * Since we could still access attr_journal_task attribute via sysfs
1293 	 * path which could have sbi->s_journal->j_task as NULL
1294 	 * Unregister sysfs before flush sbi->s_sb_upd_work.
1295 	 * Since user may read /proc/fs/ext4/xx/mb_groups during umount, If
1296 	 * read metadata verify failed then will queue error work.
1297 	 * update_super_work will call start_this_handle may trigger
1298 	 * BUG_ON.
1299 	 */
1300 	ext4_unregister_sysfs(sb);
1301 
1302 	if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs unmount"))
1303 		ext4_msg(sb, KERN_INFO, "unmounting filesystem %pU.",
1304 			 &sb->s_uuid);
1305 
1306 	ext4_unregister_li_request(sb);
1307 	ext4_quotas_off(sb, EXT4_MAXQUOTAS);
1308 
1309 	flush_work(&sbi->s_sb_upd_work);
1310 	destroy_workqueue(sbi->rsv_conversion_wq);
1311 	ext4_release_orphan_info(sb);
1312 
1313 	if (sbi->s_journal) {
1314 		aborted = is_journal_aborted(sbi->s_journal);
1315 		err = jbd2_journal_destroy(sbi->s_journal);
1316 		sbi->s_journal = NULL;
1317 		if ((err < 0) && !aborted) {
1318 			ext4_abort(sb, -err, "Couldn't clean up the journal");
1319 		}
1320 	}
1321 
1322 	ext4_es_unregister_shrinker(sbi);
1323 	timer_shutdown_sync(&sbi->s_err_report);
1324 	ext4_release_system_zone(sb);
1325 	ext4_mb_release(sb);
1326 	ext4_ext_release(sb);
1327 
1328 	if (!sb_rdonly(sb) && !aborted) {
1329 		ext4_clear_feature_journal_needs_recovery(sb);
1330 		ext4_clear_feature_orphan_present(sb);
1331 		es->s_state = cpu_to_le16(sbi->s_mount_state);
1332 	}
1333 	if (!sb_rdonly(sb))
1334 		ext4_commit_super(sb);
1335 
1336 	ext4_group_desc_free(sbi);
1337 	ext4_flex_groups_free(sbi);
1338 
1339 	WARN_ON_ONCE(!(sbi->s_mount_state & EXT4_ERROR_FS) &&
1340 		     percpu_counter_sum(&sbi->s_dirtyclusters_counter));
1341 	ext4_percpu_param_destroy(sbi);
1342 #ifdef CONFIG_QUOTA
1343 	for (int i = 0; i < EXT4_MAXQUOTAS; i++)
1344 		kfree(get_qf_name(sb, sbi, i));
1345 #endif
1346 
1347 	/* Debugging code just in case the in-memory inode orphan list
1348 	 * isn't empty.  The on-disk one can be non-empty if we've
1349 	 * detected an error and taken the fs readonly, but the
1350 	 * in-memory list had better be clean by this point. */
1351 	if (!list_empty(&sbi->s_orphan))
1352 		dump_orphan_list(sb, sbi);
1353 	ASSERT(list_empty(&sbi->s_orphan));
1354 
1355 	sync_blockdev(sb->s_bdev);
1356 	invalidate_bdev(sb->s_bdev);
1357 	if (sbi->s_journal_bdev_file) {
1358 		/*
1359 		 * Invalidate the journal device's buffers.  We don't want them
1360 		 * floating about in memory - the physical journal device may
1361 		 * hotswapped, and it breaks the `ro-after' testing code.
1362 		 */
1363 		sync_blockdev(file_bdev(sbi->s_journal_bdev_file));
1364 		invalidate_bdev(file_bdev(sbi->s_journal_bdev_file));
1365 	}
1366 
1367 	ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
1368 	sbi->s_ea_inode_cache = NULL;
1369 
1370 	ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
1371 	sbi->s_ea_block_cache = NULL;
1372 
1373 	ext4_stop_mmpd(sbi);
1374 
1375 	brelse(sbi->s_sbh);
1376 	sb->s_fs_info = NULL;
1377 	/*
1378 	 * Now that we are completely done shutting down the
1379 	 * superblock, we need to actually destroy the kobject.
1380 	 */
1381 	kobject_put(&sbi->s_kobj);
1382 	wait_for_completion(&sbi->s_kobj_unregister);
1383 	if (sbi->s_chksum_driver)
1384 		crypto_free_shash(sbi->s_chksum_driver);
1385 	kfree(sbi->s_blockgroup_lock);
1386 	fs_put_dax(sbi->s_daxdev, NULL);
1387 	fscrypt_free_dummy_policy(&sbi->s_dummy_enc_policy);
1388 #if IS_ENABLED(CONFIG_UNICODE)
1389 	utf8_unload(sb->s_encoding);
1390 #endif
1391 	kfree(sbi);
1392 }
1393 
1394 static struct kmem_cache *ext4_inode_cachep;
1395 
1396 /*
1397  * Called inside transaction, so use GFP_NOFS
1398  */
ext4_alloc_inode(struct super_block * sb)1399 static struct inode *ext4_alloc_inode(struct super_block *sb)
1400 {
1401 	struct ext4_inode_info *ei;
1402 
1403 	ei = alloc_inode_sb(sb, ext4_inode_cachep, GFP_NOFS);
1404 	if (!ei)
1405 		return NULL;
1406 
1407 	inode_set_iversion(&ei->vfs_inode, 1);
1408 	ei->i_flags = 0;
1409 	spin_lock_init(&ei->i_raw_lock);
1410 	ei->i_prealloc_node = RB_ROOT;
1411 	atomic_set(&ei->i_prealloc_active, 0);
1412 	rwlock_init(&ei->i_prealloc_lock);
1413 	ext4_es_init_tree(&ei->i_es_tree);
1414 	rwlock_init(&ei->i_es_lock);
1415 	INIT_LIST_HEAD(&ei->i_es_list);
1416 	ei->i_es_all_nr = 0;
1417 	ei->i_es_shk_nr = 0;
1418 	ei->i_es_shrink_lblk = 0;
1419 	ei->i_reserved_data_blocks = 0;
1420 	spin_lock_init(&(ei->i_block_reservation_lock));
1421 	ext4_init_pending_tree(&ei->i_pending_tree);
1422 #ifdef CONFIG_QUOTA
1423 	ei->i_reserved_quota = 0;
1424 	memset(&ei->i_dquot, 0, sizeof(ei->i_dquot));
1425 #endif
1426 	ei->jinode = NULL;
1427 	INIT_LIST_HEAD(&ei->i_rsv_conversion_list);
1428 	spin_lock_init(&ei->i_completed_io_lock);
1429 	ei->i_sync_tid = 0;
1430 	ei->i_datasync_tid = 0;
1431 	atomic_set(&ei->i_unwritten, 0);
1432 	INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work);
1433 	ext4_fc_init_inode(&ei->vfs_inode);
1434 	mutex_init(&ei->i_fc_lock);
1435 	return &ei->vfs_inode;
1436 }
1437 
ext4_drop_inode(struct inode * inode)1438 static int ext4_drop_inode(struct inode *inode)
1439 {
1440 	int drop = generic_drop_inode(inode);
1441 
1442 	if (!drop)
1443 		drop = fscrypt_drop_inode(inode);
1444 
1445 	trace_ext4_drop_inode(inode, drop);
1446 	return drop;
1447 }
1448 
ext4_free_in_core_inode(struct inode * inode)1449 static void ext4_free_in_core_inode(struct inode *inode)
1450 {
1451 	fscrypt_free_inode(inode);
1452 	if (!list_empty(&(EXT4_I(inode)->i_fc_list))) {
1453 		pr_warn("%s: inode %ld still in fc list",
1454 			__func__, inode->i_ino);
1455 	}
1456 	kmem_cache_free(ext4_inode_cachep, EXT4_I(inode));
1457 }
1458 
ext4_destroy_inode(struct inode * inode)1459 static void ext4_destroy_inode(struct inode *inode)
1460 {
1461 	if (!list_empty(&(EXT4_I(inode)->i_orphan))) {
1462 		ext4_msg(inode->i_sb, KERN_ERR,
1463 			 "Inode %lu (%p): orphan list check failed!",
1464 			 inode->i_ino, EXT4_I(inode));
1465 		print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4,
1466 				EXT4_I(inode), sizeof(struct ext4_inode_info),
1467 				true);
1468 		dump_stack();
1469 	}
1470 
1471 	if (!(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ERROR_FS) &&
1472 	    WARN_ON_ONCE(EXT4_I(inode)->i_reserved_data_blocks))
1473 		ext4_msg(inode->i_sb, KERN_ERR,
1474 			 "Inode %lu (%p): i_reserved_data_blocks (%u) not cleared!",
1475 			 inode->i_ino, EXT4_I(inode),
1476 			 EXT4_I(inode)->i_reserved_data_blocks);
1477 }
1478 
ext4_shutdown(struct super_block * sb)1479 static void ext4_shutdown(struct super_block *sb)
1480 {
1481        ext4_force_shutdown(sb, EXT4_GOING_FLAGS_NOLOGFLUSH);
1482 }
1483 
init_once(void * foo)1484 static void init_once(void *foo)
1485 {
1486 	struct ext4_inode_info *ei = foo;
1487 
1488 	INIT_LIST_HEAD(&ei->i_orphan);
1489 	init_rwsem(&ei->xattr_sem);
1490 	init_rwsem(&ei->i_data_sem);
1491 	inode_init_once(&ei->vfs_inode);
1492 	ext4_fc_init_inode(&ei->vfs_inode);
1493 }
1494 
init_inodecache(void)1495 static int __init init_inodecache(void)
1496 {
1497 	ext4_inode_cachep = kmem_cache_create_usercopy("ext4_inode_cache",
1498 				sizeof(struct ext4_inode_info), 0,
1499 				SLAB_RECLAIM_ACCOUNT | SLAB_ACCOUNT,
1500 				offsetof(struct ext4_inode_info, i_data),
1501 				sizeof_field(struct ext4_inode_info, i_data),
1502 				init_once);
1503 	if (ext4_inode_cachep == NULL)
1504 		return -ENOMEM;
1505 	return 0;
1506 }
1507 
destroy_inodecache(void)1508 static void destroy_inodecache(void)
1509 {
1510 	/*
1511 	 * Make sure all delayed rcu free inodes are flushed before we
1512 	 * destroy cache.
1513 	 */
1514 	rcu_barrier();
1515 	kmem_cache_destroy(ext4_inode_cachep);
1516 }
1517 
ext4_clear_inode(struct inode * inode)1518 void ext4_clear_inode(struct inode *inode)
1519 {
1520 	ext4_fc_del(inode);
1521 	invalidate_inode_buffers(inode);
1522 	clear_inode(inode);
1523 	ext4_discard_preallocations(inode);
1524 	ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS);
1525 	dquot_drop(inode);
1526 	if (EXT4_I(inode)->jinode) {
1527 		jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode),
1528 					       EXT4_I(inode)->jinode);
1529 		jbd2_free_inode(EXT4_I(inode)->jinode);
1530 		EXT4_I(inode)->jinode = NULL;
1531 	}
1532 	fscrypt_put_encryption_info(inode);
1533 	fsverity_cleanup_inode(inode);
1534 }
1535 
ext4_nfs_get_inode(struct super_block * sb,u64 ino,u32 generation)1536 static struct inode *ext4_nfs_get_inode(struct super_block *sb,
1537 					u64 ino, u32 generation)
1538 {
1539 	struct inode *inode;
1540 
1541 	/*
1542 	 * Currently we don't know the generation for parent directory, so
1543 	 * a generation of 0 means "accept any"
1544 	 */
1545 	inode = ext4_iget(sb, ino, EXT4_IGET_HANDLE);
1546 	if (IS_ERR(inode))
1547 		return ERR_CAST(inode);
1548 	if (generation && inode->i_generation != generation) {
1549 		iput(inode);
1550 		return ERR_PTR(-ESTALE);
1551 	}
1552 
1553 	return inode;
1554 }
1555 
ext4_fh_to_dentry(struct super_block * sb,struct fid * fid,int fh_len,int fh_type)1556 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid,
1557 					int fh_len, int fh_type)
1558 {
1559 	return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1560 				    ext4_nfs_get_inode);
1561 }
1562 
ext4_fh_to_parent(struct super_block * sb,struct fid * fid,int fh_len,int fh_type)1563 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid,
1564 					int fh_len, int fh_type)
1565 {
1566 	return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1567 				    ext4_nfs_get_inode);
1568 }
1569 
ext4_nfs_commit_metadata(struct inode * inode)1570 static int ext4_nfs_commit_metadata(struct inode *inode)
1571 {
1572 	struct writeback_control wbc = {
1573 		.sync_mode = WB_SYNC_ALL
1574 	};
1575 
1576 	trace_ext4_nfs_commit_metadata(inode);
1577 	return ext4_write_inode(inode, &wbc);
1578 }
1579 
1580 #ifdef CONFIG_QUOTA
1581 static const char * const quotatypes[] = INITQFNAMES;
1582 #define QTYPE2NAME(t) (quotatypes[t])
1583 
1584 static int ext4_write_dquot(struct dquot *dquot);
1585 static int ext4_acquire_dquot(struct dquot *dquot);
1586 static int ext4_release_dquot(struct dquot *dquot);
1587 static int ext4_mark_dquot_dirty(struct dquot *dquot);
1588 static int ext4_write_info(struct super_block *sb, int type);
1589 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
1590 			 const struct path *path);
1591 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
1592 			       size_t len, loff_t off);
1593 static ssize_t ext4_quota_write(struct super_block *sb, int type,
1594 				const char *data, size_t len, loff_t off);
1595 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
1596 			     unsigned int flags);
1597 
ext4_get_dquots(struct inode * inode)1598 static struct dquot __rcu **ext4_get_dquots(struct inode *inode)
1599 {
1600 	return EXT4_I(inode)->i_dquot;
1601 }
1602 
1603 static const struct dquot_operations ext4_quota_operations = {
1604 	.get_reserved_space	= ext4_get_reserved_space,
1605 	.write_dquot		= ext4_write_dquot,
1606 	.acquire_dquot		= ext4_acquire_dquot,
1607 	.release_dquot		= ext4_release_dquot,
1608 	.mark_dirty		= ext4_mark_dquot_dirty,
1609 	.write_info		= ext4_write_info,
1610 	.alloc_dquot		= dquot_alloc,
1611 	.destroy_dquot		= dquot_destroy,
1612 	.get_projid		= ext4_get_projid,
1613 	.get_inode_usage	= ext4_get_inode_usage,
1614 	.get_next_id		= dquot_get_next_id,
1615 };
1616 
1617 static const struct quotactl_ops ext4_qctl_operations = {
1618 	.quota_on	= ext4_quota_on,
1619 	.quota_off	= ext4_quota_off,
1620 	.quota_sync	= dquot_quota_sync,
1621 	.get_state	= dquot_get_state,
1622 	.set_info	= dquot_set_dqinfo,
1623 	.get_dqblk	= dquot_get_dqblk,
1624 	.set_dqblk	= dquot_set_dqblk,
1625 	.get_nextdqblk	= dquot_get_next_dqblk,
1626 };
1627 #endif
1628 
1629 static const struct super_operations ext4_sops = {
1630 	.alloc_inode	= ext4_alloc_inode,
1631 	.free_inode	= ext4_free_in_core_inode,
1632 	.destroy_inode	= ext4_destroy_inode,
1633 	.write_inode	= ext4_write_inode,
1634 	.dirty_inode	= ext4_dirty_inode,
1635 	.drop_inode	= ext4_drop_inode,
1636 	.evict_inode	= ext4_evict_inode,
1637 	.put_super	= ext4_put_super,
1638 	.sync_fs	= ext4_sync_fs,
1639 	.freeze_fs	= ext4_freeze,
1640 	.unfreeze_fs	= ext4_unfreeze,
1641 	.statfs		= ext4_statfs,
1642 	.show_options	= ext4_show_options,
1643 	.shutdown	= ext4_shutdown,
1644 #ifdef CONFIG_QUOTA
1645 	.quota_read	= ext4_quota_read,
1646 	.quota_write	= ext4_quota_write,
1647 	.get_dquots	= ext4_get_dquots,
1648 #endif
1649 };
1650 
1651 static const struct export_operations ext4_export_ops = {
1652 	.encode_fh = generic_encode_ino32_fh,
1653 	.fh_to_dentry = ext4_fh_to_dentry,
1654 	.fh_to_parent = ext4_fh_to_parent,
1655 	.get_parent = ext4_get_parent,
1656 	.commit_metadata = ext4_nfs_commit_metadata,
1657 };
1658 
1659 enum {
1660 	Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid,
1661 	Opt_resgid, Opt_resuid, Opt_sb,
1662 	Opt_nouid32, Opt_debug, Opt_removed,
1663 	Opt_user_xattr, Opt_acl,
1664 	Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload,
1665 	Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev,
1666 	Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit,
1667 	Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback,
1668 	Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption,
1669 	Opt_inlinecrypt,
1670 	Opt_usrjquota, Opt_grpjquota, Opt_quota,
1671 	Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err,
1672 	Opt_usrquota, Opt_grpquota, Opt_prjquota,
1673 	Opt_dax, Opt_dax_always, Opt_dax_inode, Opt_dax_never,
1674 	Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_warn_on_error,
1675 	Opt_nowarn_on_error, Opt_mblk_io_submit, Opt_debug_want_extra_isize,
1676 	Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity,
1677 	Opt_inode_readahead_blks, Opt_journal_ioprio,
1678 	Opt_dioread_nolock, Opt_dioread_lock,
1679 	Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable,
1680 	Opt_max_dir_size_kb, Opt_nojournal_checksum, Opt_nombcache,
1681 	Opt_no_prefetch_block_bitmaps, Opt_mb_optimize_scan,
1682 	Opt_errors, Opt_data, Opt_data_err, Opt_jqfmt, Opt_dax_type,
1683 #ifdef CONFIG_EXT4_DEBUG
1684 	Opt_fc_debug_max_replay, Opt_fc_debug_force
1685 #endif
1686 };
1687 
1688 static const struct constant_table ext4_param_errors[] = {
1689 	{"continue",	EXT4_MOUNT_ERRORS_CONT},
1690 	{"panic",	EXT4_MOUNT_ERRORS_PANIC},
1691 	{"remount-ro",	EXT4_MOUNT_ERRORS_RO},
1692 	{}
1693 };
1694 
1695 static const struct constant_table ext4_param_data[] = {
1696 	{"journal",	EXT4_MOUNT_JOURNAL_DATA},
1697 	{"ordered",	EXT4_MOUNT_ORDERED_DATA},
1698 	{"writeback",	EXT4_MOUNT_WRITEBACK_DATA},
1699 	{}
1700 };
1701 
1702 static const struct constant_table ext4_param_data_err[] = {
1703 	{"abort",	Opt_data_err_abort},
1704 	{"ignore",	Opt_data_err_ignore},
1705 	{}
1706 };
1707 
1708 static const struct constant_table ext4_param_jqfmt[] = {
1709 	{"vfsold",	QFMT_VFS_OLD},
1710 	{"vfsv0",	QFMT_VFS_V0},
1711 	{"vfsv1",	QFMT_VFS_V1},
1712 	{}
1713 };
1714 
1715 static const struct constant_table ext4_param_dax[] = {
1716 	{"always",	Opt_dax_always},
1717 	{"inode",	Opt_dax_inode},
1718 	{"never",	Opt_dax_never},
1719 	{}
1720 };
1721 
1722 /*
1723  * Mount option specification
1724  * We don't use fsparam_flag_no because of the way we set the
1725  * options and the way we show them in _ext4_show_options(). To
1726  * keep the changes to a minimum, let's keep the negative options
1727  * separate for now.
1728  */
1729 static const struct fs_parameter_spec ext4_param_specs[] = {
1730 	fsparam_flag	("bsddf",		Opt_bsd_df),
1731 	fsparam_flag	("minixdf",		Opt_minix_df),
1732 	fsparam_flag	("grpid",		Opt_grpid),
1733 	fsparam_flag	("bsdgroups",		Opt_grpid),
1734 	fsparam_flag	("nogrpid",		Opt_nogrpid),
1735 	fsparam_flag	("sysvgroups",		Opt_nogrpid),
1736 	fsparam_gid	("resgid",		Opt_resgid),
1737 	fsparam_uid	("resuid",		Opt_resuid),
1738 	fsparam_u32	("sb",			Opt_sb),
1739 	fsparam_enum	("errors",		Opt_errors, ext4_param_errors),
1740 	fsparam_flag	("nouid32",		Opt_nouid32),
1741 	fsparam_flag	("debug",		Opt_debug),
1742 	fsparam_flag	("oldalloc",		Opt_removed),
1743 	fsparam_flag	("orlov",		Opt_removed),
1744 	fsparam_flag	("user_xattr",		Opt_user_xattr),
1745 	fsparam_flag	("acl",			Opt_acl),
1746 	fsparam_flag	("norecovery",		Opt_noload),
1747 	fsparam_flag	("noload",		Opt_noload),
1748 	fsparam_flag	("bh",			Opt_removed),
1749 	fsparam_flag	("nobh",		Opt_removed),
1750 	fsparam_u32	("commit",		Opt_commit),
1751 	fsparam_u32	("min_batch_time",	Opt_min_batch_time),
1752 	fsparam_u32	("max_batch_time",	Opt_max_batch_time),
1753 	fsparam_u32	("journal_dev",		Opt_journal_dev),
1754 	fsparam_bdev	("journal_path",	Opt_journal_path),
1755 	fsparam_flag	("journal_checksum",	Opt_journal_checksum),
1756 	fsparam_flag	("nojournal_checksum",	Opt_nojournal_checksum),
1757 	fsparam_flag	("journal_async_commit",Opt_journal_async_commit),
1758 	fsparam_flag	("abort",		Opt_abort),
1759 	fsparam_enum	("data",		Opt_data, ext4_param_data),
1760 	fsparam_enum	("data_err",		Opt_data_err,
1761 						ext4_param_data_err),
1762 	fsparam_string_empty
1763 			("usrjquota",		Opt_usrjquota),
1764 	fsparam_string_empty
1765 			("grpjquota",		Opt_grpjquota),
1766 	fsparam_enum	("jqfmt",		Opt_jqfmt, ext4_param_jqfmt),
1767 	fsparam_flag	("grpquota",		Opt_grpquota),
1768 	fsparam_flag	("quota",		Opt_quota),
1769 	fsparam_flag	("noquota",		Opt_noquota),
1770 	fsparam_flag	("usrquota",		Opt_usrquota),
1771 	fsparam_flag	("prjquota",		Opt_prjquota),
1772 	fsparam_flag	("barrier",		Opt_barrier),
1773 	fsparam_u32	("barrier",		Opt_barrier),
1774 	fsparam_flag	("nobarrier",		Opt_nobarrier),
1775 	fsparam_flag	("i_version",		Opt_removed),
1776 	fsparam_flag	("dax",			Opt_dax),
1777 	fsparam_enum	("dax",			Opt_dax_type, ext4_param_dax),
1778 	fsparam_u32	("stripe",		Opt_stripe),
1779 	fsparam_flag	("delalloc",		Opt_delalloc),
1780 	fsparam_flag	("nodelalloc",		Opt_nodelalloc),
1781 	fsparam_flag	("warn_on_error",	Opt_warn_on_error),
1782 	fsparam_flag	("nowarn_on_error",	Opt_nowarn_on_error),
1783 	fsparam_u32	("debug_want_extra_isize",
1784 						Opt_debug_want_extra_isize),
1785 	fsparam_flag	("mblk_io_submit",	Opt_removed),
1786 	fsparam_flag	("nomblk_io_submit",	Opt_removed),
1787 	fsparam_flag	("block_validity",	Opt_block_validity),
1788 	fsparam_flag	("noblock_validity",	Opt_noblock_validity),
1789 	fsparam_u32	("inode_readahead_blks",
1790 						Opt_inode_readahead_blks),
1791 	fsparam_u32	("journal_ioprio",	Opt_journal_ioprio),
1792 	fsparam_u32	("auto_da_alloc",	Opt_auto_da_alloc),
1793 	fsparam_flag	("auto_da_alloc",	Opt_auto_da_alloc),
1794 	fsparam_flag	("noauto_da_alloc",	Opt_noauto_da_alloc),
1795 	fsparam_flag	("dioread_nolock",	Opt_dioread_nolock),
1796 	fsparam_flag	("nodioread_nolock",	Opt_dioread_lock),
1797 	fsparam_flag	("dioread_lock",	Opt_dioread_lock),
1798 	fsparam_flag	("discard",		Opt_discard),
1799 	fsparam_flag	("nodiscard",		Opt_nodiscard),
1800 	fsparam_u32	("init_itable",		Opt_init_itable),
1801 	fsparam_flag	("init_itable",		Opt_init_itable),
1802 	fsparam_flag	("noinit_itable",	Opt_noinit_itable),
1803 #ifdef CONFIG_EXT4_DEBUG
1804 	fsparam_flag	("fc_debug_force",	Opt_fc_debug_force),
1805 	fsparam_u32	("fc_debug_max_replay",	Opt_fc_debug_max_replay),
1806 #endif
1807 	fsparam_u32	("max_dir_size_kb",	Opt_max_dir_size_kb),
1808 	fsparam_flag	("test_dummy_encryption",
1809 						Opt_test_dummy_encryption),
1810 	fsparam_string	("test_dummy_encryption",
1811 						Opt_test_dummy_encryption),
1812 	fsparam_flag	("inlinecrypt",		Opt_inlinecrypt),
1813 	fsparam_flag	("nombcache",		Opt_nombcache),
1814 	fsparam_flag	("no_mbcache",		Opt_nombcache),	/* for backward compatibility */
1815 	fsparam_flag	("prefetch_block_bitmaps",
1816 						Opt_removed),
1817 	fsparam_flag	("no_prefetch_block_bitmaps",
1818 						Opt_no_prefetch_block_bitmaps),
1819 	fsparam_s32	("mb_optimize_scan",	Opt_mb_optimize_scan),
1820 	fsparam_string	("check",		Opt_removed),	/* mount option from ext2/3 */
1821 	fsparam_flag	("nocheck",		Opt_removed),	/* mount option from ext2/3 */
1822 	fsparam_flag	("reservation",		Opt_removed),	/* mount option from ext2/3 */
1823 	fsparam_flag	("noreservation",	Opt_removed),	/* mount option from ext2/3 */
1824 	fsparam_u32	("journal",		Opt_removed),	/* mount option from ext2/3 */
1825 	{}
1826 };
1827 
1828 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
1829 
1830 #define MOPT_SET	0x0001
1831 #define MOPT_CLEAR	0x0002
1832 #define MOPT_NOSUPPORT	0x0004
1833 #define MOPT_EXPLICIT	0x0008
1834 #ifdef CONFIG_QUOTA
1835 #define MOPT_Q		0
1836 #define MOPT_QFMT	0x0010
1837 #else
1838 #define MOPT_Q		MOPT_NOSUPPORT
1839 #define MOPT_QFMT	MOPT_NOSUPPORT
1840 #endif
1841 #define MOPT_NO_EXT2	0x0020
1842 #define MOPT_NO_EXT3	0x0040
1843 #define MOPT_EXT4_ONLY	(MOPT_NO_EXT2 | MOPT_NO_EXT3)
1844 #define MOPT_SKIP	0x0080
1845 #define	MOPT_2		0x0100
1846 
1847 static const struct mount_opts {
1848 	int	token;
1849 	int	mount_opt;
1850 	int	flags;
1851 } ext4_mount_opts[] = {
1852 	{Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET},
1853 	{Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR},
1854 	{Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET},
1855 	{Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR},
1856 	{Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET},
1857 	{Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR},
1858 	{Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK,
1859 	 MOPT_EXT4_ONLY | MOPT_SET},
1860 	{Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK,
1861 	 MOPT_EXT4_ONLY | MOPT_CLEAR},
1862 	{Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET},
1863 	{Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR},
1864 	{Opt_delalloc, EXT4_MOUNT_DELALLOC,
1865 	 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1866 	{Opt_nodelalloc, EXT4_MOUNT_DELALLOC,
1867 	 MOPT_EXT4_ONLY | MOPT_CLEAR},
1868 	{Opt_warn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_SET},
1869 	{Opt_nowarn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_CLEAR},
1870 	{Opt_commit, 0, MOPT_NO_EXT2},
1871 	{Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1872 	 MOPT_EXT4_ONLY | MOPT_CLEAR},
1873 	{Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1874 	 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1875 	{Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT |
1876 				    EXT4_MOUNT_JOURNAL_CHECKSUM),
1877 	 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1878 	{Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET},
1879 	{Opt_data_err, EXT4_MOUNT_DATA_ERR_ABORT, MOPT_NO_EXT2},
1880 	{Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET},
1881 	{Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR},
1882 	{Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET},
1883 	{Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR},
1884 	{Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR},
1885 	{Opt_dax_type, 0, MOPT_EXT4_ONLY},
1886 	{Opt_journal_dev, 0, MOPT_NO_EXT2},
1887 	{Opt_journal_path, 0, MOPT_NO_EXT2},
1888 	{Opt_journal_ioprio, 0, MOPT_NO_EXT2},
1889 	{Opt_data, 0, MOPT_NO_EXT2},
1890 	{Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET},
1891 #ifdef CONFIG_EXT4_FS_POSIX_ACL
1892 	{Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET},
1893 #else
1894 	{Opt_acl, 0, MOPT_NOSUPPORT},
1895 #endif
1896 	{Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET},
1897 	{Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET},
1898 	{Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q},
1899 	{Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA,
1900 							MOPT_SET | MOPT_Q},
1901 	{Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA,
1902 							MOPT_SET | MOPT_Q},
1903 	{Opt_prjquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_PRJQUOTA,
1904 							MOPT_SET | MOPT_Q},
1905 	{Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
1906 		       EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA),
1907 							MOPT_CLEAR | MOPT_Q},
1908 	{Opt_usrjquota, 0, MOPT_Q},
1909 	{Opt_grpjquota, 0, MOPT_Q},
1910 	{Opt_jqfmt, 0, MOPT_QFMT},
1911 	{Opt_nombcache, EXT4_MOUNT_NO_MBCACHE, MOPT_SET},
1912 	{Opt_no_prefetch_block_bitmaps, EXT4_MOUNT_NO_PREFETCH_BLOCK_BITMAPS,
1913 	 MOPT_SET},
1914 #ifdef CONFIG_EXT4_DEBUG
1915 	{Opt_fc_debug_force, EXT4_MOUNT2_JOURNAL_FAST_COMMIT,
1916 	 MOPT_SET | MOPT_2 | MOPT_EXT4_ONLY},
1917 #endif
1918 	{Opt_abort, EXT4_MOUNT2_ABORT, MOPT_SET | MOPT_2},
1919 	{Opt_err, 0, 0}
1920 };
1921 
1922 #if IS_ENABLED(CONFIG_UNICODE)
1923 static const struct ext4_sb_encodings {
1924 	__u16 magic;
1925 	char *name;
1926 	unsigned int version;
1927 } ext4_sb_encoding_map[] = {
1928 	{EXT4_ENC_UTF8_12_1, "utf8", UNICODE_AGE(12, 1, 0)},
1929 };
1930 
1931 static const struct ext4_sb_encodings *
ext4_sb_read_encoding(const struct ext4_super_block * es)1932 ext4_sb_read_encoding(const struct ext4_super_block *es)
1933 {
1934 	__u16 magic = le16_to_cpu(es->s_encoding);
1935 	int i;
1936 
1937 	for (i = 0; i < ARRAY_SIZE(ext4_sb_encoding_map); i++)
1938 		if (magic == ext4_sb_encoding_map[i].magic)
1939 			return &ext4_sb_encoding_map[i];
1940 
1941 	return NULL;
1942 }
1943 #endif
1944 
1945 #define EXT4_SPEC_JQUOTA			(1 <<  0)
1946 #define EXT4_SPEC_JQFMT				(1 <<  1)
1947 #define EXT4_SPEC_DATAJ				(1 <<  2)
1948 #define EXT4_SPEC_SB_BLOCK			(1 <<  3)
1949 #define EXT4_SPEC_JOURNAL_DEV			(1 <<  4)
1950 #define EXT4_SPEC_JOURNAL_IOPRIO		(1 <<  5)
1951 #define EXT4_SPEC_s_want_extra_isize		(1 <<  7)
1952 #define EXT4_SPEC_s_max_batch_time		(1 <<  8)
1953 #define EXT4_SPEC_s_min_batch_time		(1 <<  9)
1954 #define EXT4_SPEC_s_inode_readahead_blks	(1 << 10)
1955 #define EXT4_SPEC_s_li_wait_mult		(1 << 11)
1956 #define EXT4_SPEC_s_max_dir_size_kb		(1 << 12)
1957 #define EXT4_SPEC_s_stripe			(1 << 13)
1958 #define EXT4_SPEC_s_resuid			(1 << 14)
1959 #define EXT4_SPEC_s_resgid			(1 << 15)
1960 #define EXT4_SPEC_s_commit_interval		(1 << 16)
1961 #define EXT4_SPEC_s_fc_debug_max_replay		(1 << 17)
1962 #define EXT4_SPEC_s_sb_block			(1 << 18)
1963 #define EXT4_SPEC_mb_optimize_scan		(1 << 19)
1964 
1965 struct ext4_fs_context {
1966 	char		*s_qf_names[EXT4_MAXQUOTAS];
1967 	struct fscrypt_dummy_policy dummy_enc_policy;
1968 	int		s_jquota_fmt;	/* Format of quota to use */
1969 #ifdef CONFIG_EXT4_DEBUG
1970 	int s_fc_debug_max_replay;
1971 #endif
1972 	unsigned short	qname_spec;
1973 	unsigned long	vals_s_flags;	/* Bits to set in s_flags */
1974 	unsigned long	mask_s_flags;	/* Bits changed in s_flags */
1975 	unsigned long	journal_devnum;
1976 	unsigned long	s_commit_interval;
1977 	unsigned long	s_stripe;
1978 	unsigned int	s_inode_readahead_blks;
1979 	unsigned int	s_want_extra_isize;
1980 	unsigned int	s_li_wait_mult;
1981 	unsigned int	s_max_dir_size_kb;
1982 	unsigned int	journal_ioprio;
1983 	unsigned int	vals_s_mount_opt;
1984 	unsigned int	mask_s_mount_opt;
1985 	unsigned int	vals_s_mount_opt2;
1986 	unsigned int	mask_s_mount_opt2;
1987 	unsigned int	opt_flags;	/* MOPT flags */
1988 	unsigned int	spec;
1989 	u32		s_max_batch_time;
1990 	u32		s_min_batch_time;
1991 	kuid_t		s_resuid;
1992 	kgid_t		s_resgid;
1993 	ext4_fsblk_t	s_sb_block;
1994 };
1995 
ext4_fc_free(struct fs_context * fc)1996 static void ext4_fc_free(struct fs_context *fc)
1997 {
1998 	struct ext4_fs_context *ctx = fc->fs_private;
1999 	int i;
2000 
2001 	if (!ctx)
2002 		return;
2003 
2004 	for (i = 0; i < EXT4_MAXQUOTAS; i++)
2005 		kfree(ctx->s_qf_names[i]);
2006 
2007 	fscrypt_free_dummy_policy(&ctx->dummy_enc_policy);
2008 	kfree(ctx);
2009 }
2010 
ext4_init_fs_context(struct fs_context * fc)2011 int ext4_init_fs_context(struct fs_context *fc)
2012 {
2013 	struct ext4_fs_context *ctx;
2014 
2015 	ctx = kzalloc(sizeof(struct ext4_fs_context), GFP_KERNEL);
2016 	if (!ctx)
2017 		return -ENOMEM;
2018 
2019 	fc->fs_private = ctx;
2020 	fc->ops = &ext4_context_ops;
2021 
2022 	return 0;
2023 }
2024 
2025 #ifdef CONFIG_QUOTA
2026 /*
2027  * Note the name of the specified quota file.
2028  */
note_qf_name(struct fs_context * fc,int qtype,struct fs_parameter * param)2029 static int note_qf_name(struct fs_context *fc, int qtype,
2030 		       struct fs_parameter *param)
2031 {
2032 	struct ext4_fs_context *ctx = fc->fs_private;
2033 	char *qname;
2034 
2035 	if (param->size < 1) {
2036 		ext4_msg(NULL, KERN_ERR, "Missing quota name");
2037 		return -EINVAL;
2038 	}
2039 	if (strchr(param->string, '/')) {
2040 		ext4_msg(NULL, KERN_ERR,
2041 			 "quotafile must be on filesystem root");
2042 		return -EINVAL;
2043 	}
2044 	if (ctx->s_qf_names[qtype]) {
2045 		if (strcmp(ctx->s_qf_names[qtype], param->string) != 0) {
2046 			ext4_msg(NULL, KERN_ERR,
2047 				 "%s quota file already specified",
2048 				 QTYPE2NAME(qtype));
2049 			return -EINVAL;
2050 		}
2051 		return 0;
2052 	}
2053 
2054 	qname = kmemdup_nul(param->string, param->size, GFP_KERNEL);
2055 	if (!qname) {
2056 		ext4_msg(NULL, KERN_ERR,
2057 			 "Not enough memory for storing quotafile name");
2058 		return -ENOMEM;
2059 	}
2060 	ctx->s_qf_names[qtype] = qname;
2061 	ctx->qname_spec |= 1 << qtype;
2062 	ctx->spec |= EXT4_SPEC_JQUOTA;
2063 	return 0;
2064 }
2065 
2066 /*
2067  * Clear the name of the specified quota file.
2068  */
unnote_qf_name(struct fs_context * fc,int qtype)2069 static int unnote_qf_name(struct fs_context *fc, int qtype)
2070 {
2071 	struct ext4_fs_context *ctx = fc->fs_private;
2072 
2073 	kfree(ctx->s_qf_names[qtype]);
2074 
2075 	ctx->s_qf_names[qtype] = NULL;
2076 	ctx->qname_spec |= 1 << qtype;
2077 	ctx->spec |= EXT4_SPEC_JQUOTA;
2078 	return 0;
2079 }
2080 #endif
2081 
ext4_parse_test_dummy_encryption(const struct fs_parameter * param,struct ext4_fs_context * ctx)2082 static int ext4_parse_test_dummy_encryption(const struct fs_parameter *param,
2083 					    struct ext4_fs_context *ctx)
2084 {
2085 	int err;
2086 
2087 	if (!IS_ENABLED(CONFIG_FS_ENCRYPTION)) {
2088 		ext4_msg(NULL, KERN_WARNING,
2089 			 "test_dummy_encryption option not supported");
2090 		return -EINVAL;
2091 	}
2092 	err = fscrypt_parse_test_dummy_encryption(param,
2093 						  &ctx->dummy_enc_policy);
2094 	if (err == -EINVAL) {
2095 		ext4_msg(NULL, KERN_WARNING,
2096 			 "Value of option \"%s\" is unrecognized", param->key);
2097 	} else if (err == -EEXIST) {
2098 		ext4_msg(NULL, KERN_WARNING,
2099 			 "Conflicting test_dummy_encryption options");
2100 		return -EINVAL;
2101 	}
2102 	return err;
2103 }
2104 
2105 #define EXT4_SET_CTX(name)						\
2106 static inline __maybe_unused						\
2107 void ctx_set_##name(struct ext4_fs_context *ctx, unsigned long flag)	\
2108 {									\
2109 	ctx->mask_s_##name |= flag;					\
2110 	ctx->vals_s_##name |= flag;					\
2111 }
2112 
2113 #define EXT4_CLEAR_CTX(name)						\
2114 static inline __maybe_unused						\
2115 void ctx_clear_##name(struct ext4_fs_context *ctx, unsigned long flag)	\
2116 {									\
2117 	ctx->mask_s_##name |= flag;					\
2118 	ctx->vals_s_##name &= ~flag;					\
2119 }
2120 
2121 #define EXT4_TEST_CTX(name)						\
2122 static inline unsigned long						\
2123 ctx_test_##name(struct ext4_fs_context *ctx, unsigned long flag)	\
2124 {									\
2125 	return (ctx->vals_s_##name & flag);				\
2126 }
2127 
2128 EXT4_SET_CTX(flags); /* set only */
2129 EXT4_SET_CTX(mount_opt);
2130 EXT4_CLEAR_CTX(mount_opt);
2131 EXT4_TEST_CTX(mount_opt);
2132 EXT4_SET_CTX(mount_opt2);
2133 EXT4_CLEAR_CTX(mount_opt2);
2134 EXT4_TEST_CTX(mount_opt2);
2135 
ext4_parse_param(struct fs_context * fc,struct fs_parameter * param)2136 static int ext4_parse_param(struct fs_context *fc, struct fs_parameter *param)
2137 {
2138 	struct ext4_fs_context *ctx = fc->fs_private;
2139 	struct fs_parse_result result;
2140 	const struct mount_opts *m;
2141 	int is_remount;
2142 	int token;
2143 
2144 	token = fs_parse(fc, ext4_param_specs, param, &result);
2145 	if (token < 0)
2146 		return token;
2147 	is_remount = fc->purpose == FS_CONTEXT_FOR_RECONFIGURE;
2148 
2149 	for (m = ext4_mount_opts; m->token != Opt_err; m++)
2150 		if (token == m->token)
2151 			break;
2152 
2153 	ctx->opt_flags |= m->flags;
2154 
2155 	if (m->flags & MOPT_EXPLICIT) {
2156 		if (m->mount_opt & EXT4_MOUNT_DELALLOC) {
2157 			ctx_set_mount_opt2(ctx, EXT4_MOUNT2_EXPLICIT_DELALLOC);
2158 		} else if (m->mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) {
2159 			ctx_set_mount_opt2(ctx,
2160 				       EXT4_MOUNT2_EXPLICIT_JOURNAL_CHECKSUM);
2161 		} else
2162 			return -EINVAL;
2163 	}
2164 
2165 	if (m->flags & MOPT_NOSUPPORT) {
2166 		ext4_msg(NULL, KERN_ERR, "%s option not supported",
2167 			 param->key);
2168 		return 0;
2169 	}
2170 
2171 	switch (token) {
2172 #ifdef CONFIG_QUOTA
2173 	case Opt_usrjquota:
2174 		if (!*param->string)
2175 			return unnote_qf_name(fc, USRQUOTA);
2176 		else
2177 			return note_qf_name(fc, USRQUOTA, param);
2178 	case Opt_grpjquota:
2179 		if (!*param->string)
2180 			return unnote_qf_name(fc, GRPQUOTA);
2181 		else
2182 			return note_qf_name(fc, GRPQUOTA, param);
2183 #endif
2184 	case Opt_sb:
2185 		if (fc->purpose == FS_CONTEXT_FOR_RECONFIGURE) {
2186 			ext4_msg(NULL, KERN_WARNING,
2187 				 "Ignoring %s option on remount", param->key);
2188 		} else {
2189 			ctx->s_sb_block = result.uint_32;
2190 			ctx->spec |= EXT4_SPEC_s_sb_block;
2191 		}
2192 		return 0;
2193 	case Opt_removed:
2194 		ext4_msg(NULL, KERN_WARNING, "Ignoring removed %s option",
2195 			 param->key);
2196 		return 0;
2197 	case Opt_inlinecrypt:
2198 #ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT
2199 		ctx_set_flags(ctx, SB_INLINECRYPT);
2200 #else
2201 		ext4_msg(NULL, KERN_ERR, "inline encryption not supported");
2202 #endif
2203 		return 0;
2204 	case Opt_errors:
2205 		ctx_clear_mount_opt(ctx, EXT4_MOUNT_ERRORS_MASK);
2206 		ctx_set_mount_opt(ctx, result.uint_32);
2207 		return 0;
2208 #ifdef CONFIG_QUOTA
2209 	case Opt_jqfmt:
2210 		ctx->s_jquota_fmt = result.uint_32;
2211 		ctx->spec |= EXT4_SPEC_JQFMT;
2212 		return 0;
2213 #endif
2214 	case Opt_data:
2215 		ctx_clear_mount_opt(ctx, EXT4_MOUNT_DATA_FLAGS);
2216 		ctx_set_mount_opt(ctx, result.uint_32);
2217 		ctx->spec |= EXT4_SPEC_DATAJ;
2218 		return 0;
2219 	case Opt_commit:
2220 		if (result.uint_32 == 0)
2221 			result.uint_32 = JBD2_DEFAULT_MAX_COMMIT_AGE;
2222 		else if (result.uint_32 > INT_MAX / HZ) {
2223 			ext4_msg(NULL, KERN_ERR,
2224 				 "Invalid commit interval %d, "
2225 				 "must be smaller than %d",
2226 				 result.uint_32, INT_MAX / HZ);
2227 			return -EINVAL;
2228 		}
2229 		ctx->s_commit_interval = HZ * result.uint_32;
2230 		ctx->spec |= EXT4_SPEC_s_commit_interval;
2231 		return 0;
2232 	case Opt_debug_want_extra_isize:
2233 		if ((result.uint_32 & 1) || (result.uint_32 < 4)) {
2234 			ext4_msg(NULL, KERN_ERR,
2235 				 "Invalid want_extra_isize %d", result.uint_32);
2236 			return -EINVAL;
2237 		}
2238 		ctx->s_want_extra_isize = result.uint_32;
2239 		ctx->spec |= EXT4_SPEC_s_want_extra_isize;
2240 		return 0;
2241 	case Opt_max_batch_time:
2242 		ctx->s_max_batch_time = result.uint_32;
2243 		ctx->spec |= EXT4_SPEC_s_max_batch_time;
2244 		return 0;
2245 	case Opt_min_batch_time:
2246 		ctx->s_min_batch_time = result.uint_32;
2247 		ctx->spec |= EXT4_SPEC_s_min_batch_time;
2248 		return 0;
2249 	case Opt_inode_readahead_blks:
2250 		if (result.uint_32 &&
2251 		    (result.uint_32 > (1 << 30) ||
2252 		     !is_power_of_2(result.uint_32))) {
2253 			ext4_msg(NULL, KERN_ERR,
2254 				 "EXT4-fs: inode_readahead_blks must be "
2255 				 "0 or a power of 2 smaller than 2^31");
2256 			return -EINVAL;
2257 		}
2258 		ctx->s_inode_readahead_blks = result.uint_32;
2259 		ctx->spec |= EXT4_SPEC_s_inode_readahead_blks;
2260 		return 0;
2261 	case Opt_init_itable:
2262 		ctx_set_mount_opt(ctx, EXT4_MOUNT_INIT_INODE_TABLE);
2263 		ctx->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
2264 		if (param->type == fs_value_is_string)
2265 			ctx->s_li_wait_mult = result.uint_32;
2266 		ctx->spec |= EXT4_SPEC_s_li_wait_mult;
2267 		return 0;
2268 	case Opt_max_dir_size_kb:
2269 		ctx->s_max_dir_size_kb = result.uint_32;
2270 		ctx->spec |= EXT4_SPEC_s_max_dir_size_kb;
2271 		return 0;
2272 #ifdef CONFIG_EXT4_DEBUG
2273 	case Opt_fc_debug_max_replay:
2274 		ctx->s_fc_debug_max_replay = result.uint_32;
2275 		ctx->spec |= EXT4_SPEC_s_fc_debug_max_replay;
2276 		return 0;
2277 #endif
2278 	case Opt_stripe:
2279 		ctx->s_stripe = result.uint_32;
2280 		ctx->spec |= EXT4_SPEC_s_stripe;
2281 		return 0;
2282 	case Opt_resuid:
2283 		ctx->s_resuid = result.uid;
2284 		ctx->spec |= EXT4_SPEC_s_resuid;
2285 		return 0;
2286 	case Opt_resgid:
2287 		ctx->s_resgid = result.gid;
2288 		ctx->spec |= EXT4_SPEC_s_resgid;
2289 		return 0;
2290 	case Opt_journal_dev:
2291 		if (is_remount) {
2292 			ext4_msg(NULL, KERN_ERR,
2293 				 "Cannot specify journal on remount");
2294 			return -EINVAL;
2295 		}
2296 		ctx->journal_devnum = result.uint_32;
2297 		ctx->spec |= EXT4_SPEC_JOURNAL_DEV;
2298 		return 0;
2299 	case Opt_journal_path:
2300 	{
2301 		struct inode *journal_inode;
2302 		struct path path;
2303 		int error;
2304 
2305 		if (is_remount) {
2306 			ext4_msg(NULL, KERN_ERR,
2307 				 "Cannot specify journal on remount");
2308 			return -EINVAL;
2309 		}
2310 
2311 		error = fs_lookup_param(fc, param, 1, LOOKUP_FOLLOW, &path);
2312 		if (error) {
2313 			ext4_msg(NULL, KERN_ERR, "error: could not find "
2314 				 "journal device path");
2315 			return -EINVAL;
2316 		}
2317 
2318 		journal_inode = d_inode(path.dentry);
2319 		ctx->journal_devnum = new_encode_dev(journal_inode->i_rdev);
2320 		ctx->spec |= EXT4_SPEC_JOURNAL_DEV;
2321 		path_put(&path);
2322 		return 0;
2323 	}
2324 	case Opt_journal_ioprio:
2325 		if (result.uint_32 > 7) {
2326 			ext4_msg(NULL, KERN_ERR, "Invalid journal IO priority"
2327 				 " (must be 0-7)");
2328 			return -EINVAL;
2329 		}
2330 		ctx->journal_ioprio =
2331 			IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, result.uint_32);
2332 		ctx->spec |= EXT4_SPEC_JOURNAL_IOPRIO;
2333 		return 0;
2334 	case Opt_test_dummy_encryption:
2335 		return ext4_parse_test_dummy_encryption(param, ctx);
2336 	case Opt_dax:
2337 	case Opt_dax_type:
2338 #ifdef CONFIG_FS_DAX
2339 	{
2340 		int type = (token == Opt_dax) ?
2341 			   Opt_dax : result.uint_32;
2342 
2343 		switch (type) {
2344 		case Opt_dax:
2345 		case Opt_dax_always:
2346 			ctx_set_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS);
2347 			ctx_clear_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER);
2348 			break;
2349 		case Opt_dax_never:
2350 			ctx_set_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER);
2351 			ctx_clear_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS);
2352 			break;
2353 		case Opt_dax_inode:
2354 			ctx_clear_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS);
2355 			ctx_clear_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER);
2356 			/* Strictly for printing options */
2357 			ctx_set_mount_opt2(ctx, EXT4_MOUNT2_DAX_INODE);
2358 			break;
2359 		}
2360 		return 0;
2361 	}
2362 #else
2363 		ext4_msg(NULL, KERN_INFO, "dax option not supported");
2364 		return -EINVAL;
2365 #endif
2366 	case Opt_data_err:
2367 		if (result.uint_32 == Opt_data_err_abort)
2368 			ctx_set_mount_opt(ctx, m->mount_opt);
2369 		else if (result.uint_32 == Opt_data_err_ignore)
2370 			ctx_clear_mount_opt(ctx, m->mount_opt);
2371 		return 0;
2372 	case Opt_mb_optimize_scan:
2373 		if (result.int_32 == 1) {
2374 			ctx_set_mount_opt2(ctx, EXT4_MOUNT2_MB_OPTIMIZE_SCAN);
2375 			ctx->spec |= EXT4_SPEC_mb_optimize_scan;
2376 		} else if (result.int_32 == 0) {
2377 			ctx_clear_mount_opt2(ctx, EXT4_MOUNT2_MB_OPTIMIZE_SCAN);
2378 			ctx->spec |= EXT4_SPEC_mb_optimize_scan;
2379 		} else {
2380 			ext4_msg(NULL, KERN_WARNING,
2381 				 "mb_optimize_scan should be set to 0 or 1.");
2382 			return -EINVAL;
2383 		}
2384 		return 0;
2385 	}
2386 
2387 	/*
2388 	 * At this point we should only be getting options requiring MOPT_SET,
2389 	 * or MOPT_CLEAR. Anything else is a bug
2390 	 */
2391 	if (m->token == Opt_err) {
2392 		ext4_msg(NULL, KERN_WARNING, "buggy handling of option %s",
2393 			 param->key);
2394 		WARN_ON(1);
2395 		return -EINVAL;
2396 	}
2397 
2398 	else {
2399 		unsigned int set = 0;
2400 
2401 		if ((param->type == fs_value_is_flag) ||
2402 		    result.uint_32 > 0)
2403 			set = 1;
2404 
2405 		if (m->flags & MOPT_CLEAR)
2406 			set = !set;
2407 		else if (unlikely(!(m->flags & MOPT_SET))) {
2408 			ext4_msg(NULL, KERN_WARNING,
2409 				 "buggy handling of option %s",
2410 				 param->key);
2411 			WARN_ON(1);
2412 			return -EINVAL;
2413 		}
2414 		if (m->flags & MOPT_2) {
2415 			if (set != 0)
2416 				ctx_set_mount_opt2(ctx, m->mount_opt);
2417 			else
2418 				ctx_clear_mount_opt2(ctx, m->mount_opt);
2419 		} else {
2420 			if (set != 0)
2421 				ctx_set_mount_opt(ctx, m->mount_opt);
2422 			else
2423 				ctx_clear_mount_opt(ctx, m->mount_opt);
2424 		}
2425 	}
2426 
2427 	return 0;
2428 }
2429 
parse_options(struct fs_context * fc,char * options)2430 static int parse_options(struct fs_context *fc, char *options)
2431 {
2432 	struct fs_parameter param;
2433 	int ret;
2434 	char *key;
2435 
2436 	if (!options)
2437 		return 0;
2438 
2439 	while ((key = strsep(&options, ",")) != NULL) {
2440 		if (*key) {
2441 			size_t v_len = 0;
2442 			char *value = strchr(key, '=');
2443 
2444 			param.type = fs_value_is_flag;
2445 			param.string = NULL;
2446 
2447 			if (value) {
2448 				if (value == key)
2449 					continue;
2450 
2451 				*value++ = 0;
2452 				v_len = strlen(value);
2453 				param.string = kmemdup_nul(value, v_len,
2454 							   GFP_KERNEL);
2455 				if (!param.string)
2456 					return -ENOMEM;
2457 				param.type = fs_value_is_string;
2458 			}
2459 
2460 			param.key = key;
2461 			param.size = v_len;
2462 
2463 			ret = ext4_parse_param(fc, &param);
2464 			kfree(param.string);
2465 			if (ret < 0)
2466 				return ret;
2467 		}
2468 	}
2469 
2470 	ret = ext4_validate_options(fc);
2471 	if (ret < 0)
2472 		return ret;
2473 
2474 	return 0;
2475 }
2476 
parse_apply_sb_mount_options(struct super_block * sb,struct ext4_fs_context * m_ctx)2477 static int parse_apply_sb_mount_options(struct super_block *sb,
2478 					struct ext4_fs_context *m_ctx)
2479 {
2480 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2481 	char *s_mount_opts = NULL;
2482 	struct ext4_fs_context *s_ctx = NULL;
2483 	struct fs_context *fc = NULL;
2484 	int ret = -ENOMEM;
2485 
2486 	if (!sbi->s_es->s_mount_opts[0])
2487 		return 0;
2488 
2489 	s_mount_opts = kstrndup(sbi->s_es->s_mount_opts,
2490 				sizeof(sbi->s_es->s_mount_opts),
2491 				GFP_KERNEL);
2492 	if (!s_mount_opts)
2493 		return ret;
2494 
2495 	fc = kzalloc(sizeof(struct fs_context), GFP_KERNEL);
2496 	if (!fc)
2497 		goto out_free;
2498 
2499 	s_ctx = kzalloc(sizeof(struct ext4_fs_context), GFP_KERNEL);
2500 	if (!s_ctx)
2501 		goto out_free;
2502 
2503 	fc->fs_private = s_ctx;
2504 	fc->s_fs_info = sbi;
2505 
2506 	ret = parse_options(fc, s_mount_opts);
2507 	if (ret < 0)
2508 		goto parse_failed;
2509 
2510 	ret = ext4_check_opt_consistency(fc, sb);
2511 	if (ret < 0) {
2512 parse_failed:
2513 		ext4_msg(sb, KERN_WARNING,
2514 			 "failed to parse options in superblock: %s",
2515 			 s_mount_opts);
2516 		ret = 0;
2517 		goto out_free;
2518 	}
2519 
2520 	if (s_ctx->spec & EXT4_SPEC_JOURNAL_DEV)
2521 		m_ctx->journal_devnum = s_ctx->journal_devnum;
2522 	if (s_ctx->spec & EXT4_SPEC_JOURNAL_IOPRIO)
2523 		m_ctx->journal_ioprio = s_ctx->journal_ioprio;
2524 
2525 	ext4_apply_options(fc, sb);
2526 	ret = 0;
2527 
2528 out_free:
2529 	if (fc) {
2530 		ext4_fc_free(fc);
2531 		kfree(fc);
2532 	}
2533 	kfree(s_mount_opts);
2534 	return ret;
2535 }
2536 
ext4_apply_quota_options(struct fs_context * fc,struct super_block * sb)2537 static void ext4_apply_quota_options(struct fs_context *fc,
2538 				     struct super_block *sb)
2539 {
2540 #ifdef CONFIG_QUOTA
2541 	bool quota_feature = ext4_has_feature_quota(sb);
2542 	struct ext4_fs_context *ctx = fc->fs_private;
2543 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2544 	char *qname;
2545 	int i;
2546 
2547 	if (quota_feature)
2548 		return;
2549 
2550 	if (ctx->spec & EXT4_SPEC_JQUOTA) {
2551 		for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2552 			if (!(ctx->qname_spec & (1 << i)))
2553 				continue;
2554 
2555 			qname = ctx->s_qf_names[i]; /* May be NULL */
2556 			if (qname)
2557 				set_opt(sb, QUOTA);
2558 			ctx->s_qf_names[i] = NULL;
2559 			qname = rcu_replace_pointer(sbi->s_qf_names[i], qname,
2560 						lockdep_is_held(&sb->s_umount));
2561 			if (qname)
2562 				kfree_rcu_mightsleep(qname);
2563 		}
2564 	}
2565 
2566 	if (ctx->spec & EXT4_SPEC_JQFMT)
2567 		sbi->s_jquota_fmt = ctx->s_jquota_fmt;
2568 #endif
2569 }
2570 
2571 /*
2572  * Check quota settings consistency.
2573  */
ext4_check_quota_consistency(struct fs_context * fc,struct super_block * sb)2574 static int ext4_check_quota_consistency(struct fs_context *fc,
2575 					struct super_block *sb)
2576 {
2577 #ifdef CONFIG_QUOTA
2578 	struct ext4_fs_context *ctx = fc->fs_private;
2579 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2580 	bool quota_feature = ext4_has_feature_quota(sb);
2581 	bool quota_loaded = sb_any_quota_loaded(sb);
2582 	bool usr_qf_name, grp_qf_name, usrquota, grpquota;
2583 	int quota_flags, i;
2584 
2585 	/*
2586 	 * We do the test below only for project quotas. 'usrquota' and
2587 	 * 'grpquota' mount options are allowed even without quota feature
2588 	 * to support legacy quotas in quota files.
2589 	 */
2590 	if (ctx_test_mount_opt(ctx, EXT4_MOUNT_PRJQUOTA) &&
2591 	    !ext4_has_feature_project(sb)) {
2592 		ext4_msg(NULL, KERN_ERR, "Project quota feature not enabled. "
2593 			 "Cannot enable project quota enforcement.");
2594 		return -EINVAL;
2595 	}
2596 
2597 	quota_flags = EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
2598 		      EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA;
2599 	if (quota_loaded &&
2600 	    ctx->mask_s_mount_opt & quota_flags &&
2601 	    !ctx_test_mount_opt(ctx, quota_flags))
2602 		goto err_quota_change;
2603 
2604 	if (ctx->spec & EXT4_SPEC_JQUOTA) {
2605 
2606 		for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2607 			if (!(ctx->qname_spec & (1 << i)))
2608 				continue;
2609 
2610 			if (quota_loaded &&
2611 			    !!sbi->s_qf_names[i] != !!ctx->s_qf_names[i])
2612 				goto err_jquota_change;
2613 
2614 			if (sbi->s_qf_names[i] && ctx->s_qf_names[i] &&
2615 			    strcmp(get_qf_name(sb, sbi, i),
2616 				   ctx->s_qf_names[i]) != 0)
2617 				goto err_jquota_specified;
2618 		}
2619 
2620 		if (quota_feature) {
2621 			ext4_msg(NULL, KERN_INFO,
2622 				 "Journaled quota options ignored when "
2623 				 "QUOTA feature is enabled");
2624 			return 0;
2625 		}
2626 	}
2627 
2628 	if (ctx->spec & EXT4_SPEC_JQFMT) {
2629 		if (sbi->s_jquota_fmt != ctx->s_jquota_fmt && quota_loaded)
2630 			goto err_jquota_change;
2631 		if (quota_feature) {
2632 			ext4_msg(NULL, KERN_INFO, "Quota format mount options "
2633 				 "ignored when QUOTA feature is enabled");
2634 			return 0;
2635 		}
2636 	}
2637 
2638 	/* Make sure we don't mix old and new quota format */
2639 	usr_qf_name = (get_qf_name(sb, sbi, USRQUOTA) ||
2640 		       ctx->s_qf_names[USRQUOTA]);
2641 	grp_qf_name = (get_qf_name(sb, sbi, GRPQUOTA) ||
2642 		       ctx->s_qf_names[GRPQUOTA]);
2643 
2644 	usrquota = (ctx_test_mount_opt(ctx, EXT4_MOUNT_USRQUOTA) ||
2645 		    test_opt(sb, USRQUOTA));
2646 
2647 	grpquota = (ctx_test_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA) ||
2648 		    test_opt(sb, GRPQUOTA));
2649 
2650 	if (usr_qf_name) {
2651 		ctx_clear_mount_opt(ctx, EXT4_MOUNT_USRQUOTA);
2652 		usrquota = false;
2653 	}
2654 	if (grp_qf_name) {
2655 		ctx_clear_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA);
2656 		grpquota = false;
2657 	}
2658 
2659 	if (usr_qf_name || grp_qf_name) {
2660 		if (usrquota || grpquota) {
2661 			ext4_msg(NULL, KERN_ERR, "old and new quota "
2662 				 "format mixing");
2663 			return -EINVAL;
2664 		}
2665 
2666 		if (!(ctx->spec & EXT4_SPEC_JQFMT || sbi->s_jquota_fmt)) {
2667 			ext4_msg(NULL, KERN_ERR, "journaled quota format "
2668 				 "not specified");
2669 			return -EINVAL;
2670 		}
2671 	}
2672 
2673 	return 0;
2674 
2675 err_quota_change:
2676 	ext4_msg(NULL, KERN_ERR,
2677 		 "Cannot change quota options when quota turned on");
2678 	return -EINVAL;
2679 err_jquota_change:
2680 	ext4_msg(NULL, KERN_ERR, "Cannot change journaled quota "
2681 		 "options when quota turned on");
2682 	return -EINVAL;
2683 err_jquota_specified:
2684 	ext4_msg(NULL, KERN_ERR, "%s quota file already specified",
2685 		 QTYPE2NAME(i));
2686 	return -EINVAL;
2687 #else
2688 	return 0;
2689 #endif
2690 }
2691 
ext4_check_test_dummy_encryption(const struct fs_context * fc,struct super_block * sb)2692 static int ext4_check_test_dummy_encryption(const struct fs_context *fc,
2693 					    struct super_block *sb)
2694 {
2695 	const struct ext4_fs_context *ctx = fc->fs_private;
2696 	const struct ext4_sb_info *sbi = EXT4_SB(sb);
2697 
2698 	if (!fscrypt_is_dummy_policy_set(&ctx->dummy_enc_policy))
2699 		return 0;
2700 
2701 	if (!ext4_has_feature_encrypt(sb)) {
2702 		ext4_msg(NULL, KERN_WARNING,
2703 			 "test_dummy_encryption requires encrypt feature");
2704 		return -EINVAL;
2705 	}
2706 	/*
2707 	 * This mount option is just for testing, and it's not worthwhile to
2708 	 * implement the extra complexity (e.g. RCU protection) that would be
2709 	 * needed to allow it to be set or changed during remount.  We do allow
2710 	 * it to be specified during remount, but only if there is no change.
2711 	 */
2712 	if (fc->purpose == FS_CONTEXT_FOR_RECONFIGURE) {
2713 		if (fscrypt_dummy_policies_equal(&sbi->s_dummy_enc_policy,
2714 						 &ctx->dummy_enc_policy))
2715 			return 0;
2716 		ext4_msg(NULL, KERN_WARNING,
2717 			 "Can't set or change test_dummy_encryption on remount");
2718 		return -EINVAL;
2719 	}
2720 	/* Also make sure s_mount_opts didn't contain a conflicting value. */
2721 	if (fscrypt_is_dummy_policy_set(&sbi->s_dummy_enc_policy)) {
2722 		if (fscrypt_dummy_policies_equal(&sbi->s_dummy_enc_policy,
2723 						 &ctx->dummy_enc_policy))
2724 			return 0;
2725 		ext4_msg(NULL, KERN_WARNING,
2726 			 "Conflicting test_dummy_encryption options");
2727 		return -EINVAL;
2728 	}
2729 	return 0;
2730 }
2731 
ext4_apply_test_dummy_encryption(struct ext4_fs_context * ctx,struct super_block * sb)2732 static void ext4_apply_test_dummy_encryption(struct ext4_fs_context *ctx,
2733 					     struct super_block *sb)
2734 {
2735 	if (!fscrypt_is_dummy_policy_set(&ctx->dummy_enc_policy) ||
2736 	    /* if already set, it was already verified to be the same */
2737 	    fscrypt_is_dummy_policy_set(&EXT4_SB(sb)->s_dummy_enc_policy))
2738 		return;
2739 	EXT4_SB(sb)->s_dummy_enc_policy = ctx->dummy_enc_policy;
2740 	memset(&ctx->dummy_enc_policy, 0, sizeof(ctx->dummy_enc_policy));
2741 	ext4_msg(sb, KERN_WARNING, "Test dummy encryption mode enabled");
2742 }
2743 
ext4_check_opt_consistency(struct fs_context * fc,struct super_block * sb)2744 static int ext4_check_opt_consistency(struct fs_context *fc,
2745 				      struct super_block *sb)
2746 {
2747 	struct ext4_fs_context *ctx = fc->fs_private;
2748 	struct ext4_sb_info *sbi = fc->s_fs_info;
2749 	int is_remount = fc->purpose == FS_CONTEXT_FOR_RECONFIGURE;
2750 	int err;
2751 
2752 	if ((ctx->opt_flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) {
2753 		ext4_msg(NULL, KERN_ERR,
2754 			 "Mount option(s) incompatible with ext2");
2755 		return -EINVAL;
2756 	}
2757 	if ((ctx->opt_flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) {
2758 		ext4_msg(NULL, KERN_ERR,
2759 			 "Mount option(s) incompatible with ext3");
2760 		return -EINVAL;
2761 	}
2762 
2763 	if (ctx->s_want_extra_isize >
2764 	    (sbi->s_inode_size - EXT4_GOOD_OLD_INODE_SIZE)) {
2765 		ext4_msg(NULL, KERN_ERR,
2766 			 "Invalid want_extra_isize %d",
2767 			 ctx->s_want_extra_isize);
2768 		return -EINVAL;
2769 	}
2770 
2771 	err = ext4_check_test_dummy_encryption(fc, sb);
2772 	if (err)
2773 		return err;
2774 
2775 	if ((ctx->spec & EXT4_SPEC_DATAJ) && is_remount) {
2776 		if (!sbi->s_journal) {
2777 			ext4_msg(NULL, KERN_WARNING,
2778 				 "Remounting file system with no journal "
2779 				 "so ignoring journalled data option");
2780 			ctx_clear_mount_opt(ctx, EXT4_MOUNT_DATA_FLAGS);
2781 		} else if (ctx_test_mount_opt(ctx, EXT4_MOUNT_DATA_FLAGS) !=
2782 			   test_opt(sb, DATA_FLAGS)) {
2783 			ext4_msg(NULL, KERN_ERR, "Cannot change data mode "
2784 				 "on remount");
2785 			return -EINVAL;
2786 		}
2787 	}
2788 
2789 	if (is_remount) {
2790 		if (ctx_test_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS) &&
2791 		    (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)) {
2792 			ext4_msg(NULL, KERN_ERR, "can't mount with "
2793 				 "both data=journal and dax");
2794 			return -EINVAL;
2795 		}
2796 
2797 		if (ctx_test_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS) &&
2798 		    (!(sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) ||
2799 		     (sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER))) {
2800 fail_dax_change_remount:
2801 			ext4_msg(NULL, KERN_ERR, "can't change "
2802 				 "dax mount option while remounting");
2803 			return -EINVAL;
2804 		} else if (ctx_test_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER) &&
2805 			 (!(sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER) ||
2806 			  (sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS))) {
2807 			goto fail_dax_change_remount;
2808 		} else if (ctx_test_mount_opt2(ctx, EXT4_MOUNT2_DAX_INODE) &&
2809 			   ((sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) ||
2810 			    (sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER) ||
2811 			    !(sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_INODE))) {
2812 			goto fail_dax_change_remount;
2813 		}
2814 	}
2815 
2816 	return ext4_check_quota_consistency(fc, sb);
2817 }
2818 
ext4_apply_options(struct fs_context * fc,struct super_block * sb)2819 static void ext4_apply_options(struct fs_context *fc, struct super_block *sb)
2820 {
2821 	struct ext4_fs_context *ctx = fc->fs_private;
2822 	struct ext4_sb_info *sbi = fc->s_fs_info;
2823 
2824 	sbi->s_mount_opt &= ~ctx->mask_s_mount_opt;
2825 	sbi->s_mount_opt |= ctx->vals_s_mount_opt;
2826 	sbi->s_mount_opt2 &= ~ctx->mask_s_mount_opt2;
2827 	sbi->s_mount_opt2 |= ctx->vals_s_mount_opt2;
2828 	sb->s_flags &= ~ctx->mask_s_flags;
2829 	sb->s_flags |= ctx->vals_s_flags;
2830 
2831 #define APPLY(X) ({ if (ctx->spec & EXT4_SPEC_##X) sbi->X = ctx->X; })
2832 	APPLY(s_commit_interval);
2833 	APPLY(s_stripe);
2834 	APPLY(s_max_batch_time);
2835 	APPLY(s_min_batch_time);
2836 	APPLY(s_want_extra_isize);
2837 	APPLY(s_inode_readahead_blks);
2838 	APPLY(s_max_dir_size_kb);
2839 	APPLY(s_li_wait_mult);
2840 	APPLY(s_resgid);
2841 	APPLY(s_resuid);
2842 
2843 #ifdef CONFIG_EXT4_DEBUG
2844 	APPLY(s_fc_debug_max_replay);
2845 #endif
2846 
2847 	ext4_apply_quota_options(fc, sb);
2848 	ext4_apply_test_dummy_encryption(ctx, sb);
2849 }
2850 
2851 
ext4_validate_options(struct fs_context * fc)2852 static int ext4_validate_options(struct fs_context *fc)
2853 {
2854 #ifdef CONFIG_QUOTA
2855 	struct ext4_fs_context *ctx = fc->fs_private;
2856 	char *usr_qf_name, *grp_qf_name;
2857 
2858 	usr_qf_name = ctx->s_qf_names[USRQUOTA];
2859 	grp_qf_name = ctx->s_qf_names[GRPQUOTA];
2860 
2861 	if (usr_qf_name || grp_qf_name) {
2862 		if (ctx_test_mount_opt(ctx, EXT4_MOUNT_USRQUOTA) && usr_qf_name)
2863 			ctx_clear_mount_opt(ctx, EXT4_MOUNT_USRQUOTA);
2864 
2865 		if (ctx_test_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA) && grp_qf_name)
2866 			ctx_clear_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA);
2867 
2868 		if (ctx_test_mount_opt(ctx, EXT4_MOUNT_USRQUOTA) ||
2869 		    ctx_test_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA)) {
2870 			ext4_msg(NULL, KERN_ERR, "old and new quota "
2871 				 "format mixing");
2872 			return -EINVAL;
2873 		}
2874 	}
2875 #endif
2876 	return 1;
2877 }
2878 
ext4_show_quota_options(struct seq_file * seq,struct super_block * sb)2879 static inline void ext4_show_quota_options(struct seq_file *seq,
2880 					   struct super_block *sb)
2881 {
2882 #if defined(CONFIG_QUOTA)
2883 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2884 	char *usr_qf_name, *grp_qf_name;
2885 
2886 	if (sbi->s_jquota_fmt) {
2887 		char *fmtname = "";
2888 
2889 		switch (sbi->s_jquota_fmt) {
2890 		case QFMT_VFS_OLD:
2891 			fmtname = "vfsold";
2892 			break;
2893 		case QFMT_VFS_V0:
2894 			fmtname = "vfsv0";
2895 			break;
2896 		case QFMT_VFS_V1:
2897 			fmtname = "vfsv1";
2898 			break;
2899 		}
2900 		seq_printf(seq, ",jqfmt=%s", fmtname);
2901 	}
2902 
2903 	rcu_read_lock();
2904 	usr_qf_name = rcu_dereference(sbi->s_qf_names[USRQUOTA]);
2905 	grp_qf_name = rcu_dereference(sbi->s_qf_names[GRPQUOTA]);
2906 	if (usr_qf_name)
2907 		seq_show_option(seq, "usrjquota", usr_qf_name);
2908 	if (grp_qf_name)
2909 		seq_show_option(seq, "grpjquota", grp_qf_name);
2910 	rcu_read_unlock();
2911 #endif
2912 }
2913 
token2str(int token)2914 static const char *token2str(int token)
2915 {
2916 	const struct fs_parameter_spec *spec;
2917 
2918 	for (spec = ext4_param_specs; spec->name != NULL; spec++)
2919 		if (spec->opt == token && !spec->type)
2920 			break;
2921 	return spec->name;
2922 }
2923 
2924 /*
2925  * Show an option if
2926  *  - it's set to a non-default value OR
2927  *  - if the per-sb default is different from the global default
2928  */
_ext4_show_options(struct seq_file * seq,struct super_block * sb,int nodefs)2929 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb,
2930 			      int nodefs)
2931 {
2932 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2933 	struct ext4_super_block *es = sbi->s_es;
2934 	int def_errors;
2935 	const struct mount_opts *m;
2936 	char sep = nodefs ? '\n' : ',';
2937 
2938 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep)
2939 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg)
2940 
2941 	if (sbi->s_sb_block != 1)
2942 		SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block);
2943 
2944 	for (m = ext4_mount_opts; m->token != Opt_err; m++) {
2945 		int want_set = m->flags & MOPT_SET;
2946 		int opt_2 = m->flags & MOPT_2;
2947 		unsigned int mount_opt, def_mount_opt;
2948 
2949 		if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) ||
2950 		    m->flags & MOPT_SKIP)
2951 			continue;
2952 
2953 		if (opt_2) {
2954 			mount_opt = sbi->s_mount_opt2;
2955 			def_mount_opt = sbi->s_def_mount_opt2;
2956 		} else {
2957 			mount_opt = sbi->s_mount_opt;
2958 			def_mount_opt = sbi->s_def_mount_opt;
2959 		}
2960 		/* skip if same as the default */
2961 		if (!nodefs && !(m->mount_opt & (mount_opt ^ def_mount_opt)))
2962 			continue;
2963 		/* select Opt_noFoo vs Opt_Foo */
2964 		if ((want_set &&
2965 		     (mount_opt & m->mount_opt) != m->mount_opt) ||
2966 		    (!want_set && (mount_opt & m->mount_opt)))
2967 			continue;
2968 		SEQ_OPTS_PRINT("%s", token2str(m->token));
2969 	}
2970 
2971 	if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) ||
2972 	    le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID)
2973 		SEQ_OPTS_PRINT("resuid=%u",
2974 				from_kuid_munged(&init_user_ns, sbi->s_resuid));
2975 	if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) ||
2976 	    le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID)
2977 		SEQ_OPTS_PRINT("resgid=%u",
2978 				from_kgid_munged(&init_user_ns, sbi->s_resgid));
2979 	def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors);
2980 	if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO)
2981 		SEQ_OPTS_PUTS("errors=remount-ro");
2982 	if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE)
2983 		SEQ_OPTS_PUTS("errors=continue");
2984 	if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC)
2985 		SEQ_OPTS_PUTS("errors=panic");
2986 	if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ)
2987 		SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ);
2988 	if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME)
2989 		SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time);
2990 	if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME)
2991 		SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time);
2992 	if (nodefs || sbi->s_stripe)
2993 		SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe);
2994 	if (nodefs || EXT4_MOUNT_DATA_FLAGS &
2995 			(sbi->s_mount_opt ^ sbi->s_def_mount_opt)) {
2996 		if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
2997 			SEQ_OPTS_PUTS("data=journal");
2998 		else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
2999 			SEQ_OPTS_PUTS("data=ordered");
3000 		else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)
3001 			SEQ_OPTS_PUTS("data=writeback");
3002 	}
3003 	if (nodefs ||
3004 	    sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS)
3005 		SEQ_OPTS_PRINT("inode_readahead_blks=%u",
3006 			       sbi->s_inode_readahead_blks);
3007 
3008 	if (test_opt(sb, INIT_INODE_TABLE) && (nodefs ||
3009 		       (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT)))
3010 		SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult);
3011 	if (nodefs || sbi->s_max_dir_size_kb)
3012 		SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb);
3013 	if (test_opt(sb, DATA_ERR_ABORT))
3014 		SEQ_OPTS_PUTS("data_err=abort");
3015 
3016 	fscrypt_show_test_dummy_encryption(seq, sep, sb);
3017 
3018 	if (sb->s_flags & SB_INLINECRYPT)
3019 		SEQ_OPTS_PUTS("inlinecrypt");
3020 
3021 	if (test_opt(sb, DAX_ALWAYS)) {
3022 		if (IS_EXT2_SB(sb))
3023 			SEQ_OPTS_PUTS("dax");
3024 		else
3025 			SEQ_OPTS_PUTS("dax=always");
3026 	} else if (test_opt2(sb, DAX_NEVER)) {
3027 		SEQ_OPTS_PUTS("dax=never");
3028 	} else if (test_opt2(sb, DAX_INODE)) {
3029 		SEQ_OPTS_PUTS("dax=inode");
3030 	}
3031 
3032 	if (sbi->s_groups_count >= MB_DEFAULT_LINEAR_SCAN_THRESHOLD &&
3033 			!test_opt2(sb, MB_OPTIMIZE_SCAN)) {
3034 		SEQ_OPTS_PUTS("mb_optimize_scan=0");
3035 	} else if (sbi->s_groups_count < MB_DEFAULT_LINEAR_SCAN_THRESHOLD &&
3036 			test_opt2(sb, MB_OPTIMIZE_SCAN)) {
3037 		SEQ_OPTS_PUTS("mb_optimize_scan=1");
3038 	}
3039 
3040 	if (nodefs && !test_opt(sb, NO_PREFETCH_BLOCK_BITMAPS))
3041 		SEQ_OPTS_PUTS("prefetch_block_bitmaps");
3042 
3043 	ext4_show_quota_options(seq, sb);
3044 	return 0;
3045 }
3046 
ext4_show_options(struct seq_file * seq,struct dentry * root)3047 static int ext4_show_options(struct seq_file *seq, struct dentry *root)
3048 {
3049 	return _ext4_show_options(seq, root->d_sb, 0);
3050 }
3051 
ext4_seq_options_show(struct seq_file * seq,void * offset)3052 int ext4_seq_options_show(struct seq_file *seq, void *offset)
3053 {
3054 	struct super_block *sb = seq->private;
3055 	int rc;
3056 
3057 	seq_puts(seq, sb_rdonly(sb) ? "ro" : "rw");
3058 	rc = _ext4_show_options(seq, sb, 1);
3059 	seq_putc(seq, '\n');
3060 	return rc;
3061 }
3062 
ext4_setup_super(struct super_block * sb,struct ext4_super_block * es,int read_only)3063 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es,
3064 			    int read_only)
3065 {
3066 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3067 	int err = 0;
3068 
3069 	if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) {
3070 		ext4_msg(sb, KERN_ERR, "revision level too high, "
3071 			 "forcing read-only mode");
3072 		err = -EROFS;
3073 		goto done;
3074 	}
3075 	if (read_only)
3076 		goto done;
3077 	if (!(sbi->s_mount_state & EXT4_VALID_FS))
3078 		ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, "
3079 			 "running e2fsck is recommended");
3080 	else if (sbi->s_mount_state & EXT4_ERROR_FS)
3081 		ext4_msg(sb, KERN_WARNING,
3082 			 "warning: mounting fs with errors, "
3083 			 "running e2fsck is recommended");
3084 	else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 &&
3085 		 le16_to_cpu(es->s_mnt_count) >=
3086 		 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count))
3087 		ext4_msg(sb, KERN_WARNING,
3088 			 "warning: maximal mount count reached, "
3089 			 "running e2fsck is recommended");
3090 	else if (le32_to_cpu(es->s_checkinterval) &&
3091 		 (ext4_get_tstamp(es, s_lastcheck) +
3092 		  le32_to_cpu(es->s_checkinterval) <= ktime_get_real_seconds()))
3093 		ext4_msg(sb, KERN_WARNING,
3094 			 "warning: checktime reached, "
3095 			 "running e2fsck is recommended");
3096 	if (!sbi->s_journal)
3097 		es->s_state &= cpu_to_le16(~EXT4_VALID_FS);
3098 	if (!(__s16) le16_to_cpu(es->s_max_mnt_count))
3099 		es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT);
3100 	le16_add_cpu(&es->s_mnt_count, 1);
3101 	ext4_update_tstamp(es, s_mtime);
3102 	if (sbi->s_journal) {
3103 		ext4_set_feature_journal_needs_recovery(sb);
3104 		if (ext4_has_feature_orphan_file(sb))
3105 			ext4_set_feature_orphan_present(sb);
3106 	}
3107 
3108 	err = ext4_commit_super(sb);
3109 done:
3110 	if (test_opt(sb, DEBUG))
3111 		printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, "
3112 				"bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n",
3113 			sb->s_blocksize,
3114 			sbi->s_groups_count,
3115 			EXT4_BLOCKS_PER_GROUP(sb),
3116 			EXT4_INODES_PER_GROUP(sb),
3117 			sbi->s_mount_opt, sbi->s_mount_opt2);
3118 	return err;
3119 }
3120 
ext4_alloc_flex_bg_array(struct super_block * sb,ext4_group_t ngroup)3121 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup)
3122 {
3123 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3124 	struct flex_groups **old_groups, **new_groups;
3125 	int size, i, j;
3126 
3127 	if (!sbi->s_log_groups_per_flex)
3128 		return 0;
3129 
3130 	size = ext4_flex_group(sbi, ngroup - 1) + 1;
3131 	if (size <= sbi->s_flex_groups_allocated)
3132 		return 0;
3133 
3134 	new_groups = kvzalloc(roundup_pow_of_two(size *
3135 			      sizeof(*sbi->s_flex_groups)), GFP_KERNEL);
3136 	if (!new_groups) {
3137 		ext4_msg(sb, KERN_ERR,
3138 			 "not enough memory for %d flex group pointers", size);
3139 		return -ENOMEM;
3140 	}
3141 	for (i = sbi->s_flex_groups_allocated; i < size; i++) {
3142 		new_groups[i] = kvzalloc(roundup_pow_of_two(
3143 					 sizeof(struct flex_groups)),
3144 					 GFP_KERNEL);
3145 		if (!new_groups[i]) {
3146 			for (j = sbi->s_flex_groups_allocated; j < i; j++)
3147 				kvfree(new_groups[j]);
3148 			kvfree(new_groups);
3149 			ext4_msg(sb, KERN_ERR,
3150 				 "not enough memory for %d flex groups", size);
3151 			return -ENOMEM;
3152 		}
3153 	}
3154 	rcu_read_lock();
3155 	old_groups = rcu_dereference(sbi->s_flex_groups);
3156 	if (old_groups)
3157 		memcpy(new_groups, old_groups,
3158 		       (sbi->s_flex_groups_allocated *
3159 			sizeof(struct flex_groups *)));
3160 	rcu_read_unlock();
3161 	rcu_assign_pointer(sbi->s_flex_groups, new_groups);
3162 	sbi->s_flex_groups_allocated = size;
3163 	if (old_groups)
3164 		ext4_kvfree_array_rcu(old_groups);
3165 	return 0;
3166 }
3167 
ext4_fill_flex_info(struct super_block * sb)3168 static int ext4_fill_flex_info(struct super_block *sb)
3169 {
3170 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3171 	struct ext4_group_desc *gdp = NULL;
3172 	struct flex_groups *fg;
3173 	ext4_group_t flex_group;
3174 	int i, err;
3175 
3176 	sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex;
3177 	if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) {
3178 		sbi->s_log_groups_per_flex = 0;
3179 		return 1;
3180 	}
3181 
3182 	err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count);
3183 	if (err)
3184 		goto failed;
3185 
3186 	for (i = 0; i < sbi->s_groups_count; i++) {
3187 		gdp = ext4_get_group_desc(sb, i, NULL);
3188 
3189 		flex_group = ext4_flex_group(sbi, i);
3190 		fg = sbi_array_rcu_deref(sbi, s_flex_groups, flex_group);
3191 		atomic_add(ext4_free_inodes_count(sb, gdp), &fg->free_inodes);
3192 		atomic64_add(ext4_free_group_clusters(sb, gdp),
3193 			     &fg->free_clusters);
3194 		atomic_add(ext4_used_dirs_count(sb, gdp), &fg->used_dirs);
3195 	}
3196 
3197 	return 1;
3198 failed:
3199 	return 0;
3200 }
3201 
ext4_group_desc_csum(struct super_block * sb,__u32 block_group,struct ext4_group_desc * gdp)3202 static __le16 ext4_group_desc_csum(struct super_block *sb, __u32 block_group,
3203 				   struct ext4_group_desc *gdp)
3204 {
3205 	int offset = offsetof(struct ext4_group_desc, bg_checksum);
3206 	__u16 crc = 0;
3207 	__le32 le_group = cpu_to_le32(block_group);
3208 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3209 
3210 	if (ext4_has_metadata_csum(sbi->s_sb)) {
3211 		/* Use new metadata_csum algorithm */
3212 		__u32 csum32;
3213 		__u16 dummy_csum = 0;
3214 
3215 		csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group,
3216 				     sizeof(le_group));
3217 		csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp, offset);
3218 		csum32 = ext4_chksum(sbi, csum32, (__u8 *)&dummy_csum,
3219 				     sizeof(dummy_csum));
3220 		offset += sizeof(dummy_csum);
3221 		if (offset < sbi->s_desc_size)
3222 			csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp + offset,
3223 					     sbi->s_desc_size - offset);
3224 
3225 		crc = csum32 & 0xFFFF;
3226 		goto out;
3227 	}
3228 
3229 	/* old crc16 code */
3230 	if (!ext4_has_feature_gdt_csum(sb))
3231 		return 0;
3232 
3233 	crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid));
3234 	crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group));
3235 	crc = crc16(crc, (__u8 *)gdp, offset);
3236 	offset += sizeof(gdp->bg_checksum); /* skip checksum */
3237 	/* for checksum of struct ext4_group_desc do the rest...*/
3238 	if (ext4_has_feature_64bit(sb) && offset < sbi->s_desc_size)
3239 		crc = crc16(crc, (__u8 *)gdp + offset,
3240 			    sbi->s_desc_size - offset);
3241 
3242 out:
3243 	return cpu_to_le16(crc);
3244 }
3245 
ext4_group_desc_csum_verify(struct super_block * sb,__u32 block_group,struct ext4_group_desc * gdp)3246 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group,
3247 				struct ext4_group_desc *gdp)
3248 {
3249 	if (ext4_has_group_desc_csum(sb) &&
3250 	    (gdp->bg_checksum != ext4_group_desc_csum(sb, block_group, gdp)))
3251 		return 0;
3252 
3253 	return 1;
3254 }
3255 
ext4_group_desc_csum_set(struct super_block * sb,__u32 block_group,struct ext4_group_desc * gdp)3256 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group,
3257 			      struct ext4_group_desc *gdp)
3258 {
3259 	if (!ext4_has_group_desc_csum(sb))
3260 		return;
3261 	gdp->bg_checksum = ext4_group_desc_csum(sb, block_group, gdp);
3262 }
3263 
3264 /* Called at mount-time, super-block is locked */
ext4_check_descriptors(struct super_block * sb,ext4_fsblk_t sb_block,ext4_group_t * first_not_zeroed)3265 static int ext4_check_descriptors(struct super_block *sb,
3266 				  ext4_fsblk_t sb_block,
3267 				  ext4_group_t *first_not_zeroed)
3268 {
3269 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3270 	ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block);
3271 	ext4_fsblk_t last_block;
3272 	ext4_fsblk_t last_bg_block = sb_block + ext4_bg_num_gdb(sb, 0);
3273 	ext4_fsblk_t block_bitmap;
3274 	ext4_fsblk_t inode_bitmap;
3275 	ext4_fsblk_t inode_table;
3276 	int flexbg_flag = 0;
3277 	ext4_group_t i, grp = sbi->s_groups_count;
3278 
3279 	if (ext4_has_feature_flex_bg(sb))
3280 		flexbg_flag = 1;
3281 
3282 	ext4_debug("Checking group descriptors");
3283 
3284 	for (i = 0; i < sbi->s_groups_count; i++) {
3285 		struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
3286 
3287 		if (i == sbi->s_groups_count - 1 || flexbg_flag)
3288 			last_block = ext4_blocks_count(sbi->s_es) - 1;
3289 		else
3290 			last_block = first_block +
3291 				(EXT4_BLOCKS_PER_GROUP(sb) - 1);
3292 
3293 		if ((grp == sbi->s_groups_count) &&
3294 		   !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3295 			grp = i;
3296 
3297 		block_bitmap = ext4_block_bitmap(sb, gdp);
3298 		if (block_bitmap == sb_block) {
3299 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3300 				 "Block bitmap for group %u overlaps "
3301 				 "superblock", i);
3302 			if (!sb_rdonly(sb))
3303 				return 0;
3304 		}
3305 		if (block_bitmap >= sb_block + 1 &&
3306 		    block_bitmap <= last_bg_block) {
3307 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3308 				 "Block bitmap for group %u overlaps "
3309 				 "block group descriptors", i);
3310 			if (!sb_rdonly(sb))
3311 				return 0;
3312 		}
3313 		if (block_bitmap < first_block || block_bitmap > last_block) {
3314 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3315 			       "Block bitmap for group %u not in group "
3316 			       "(block %llu)!", i, block_bitmap);
3317 			return 0;
3318 		}
3319 		inode_bitmap = ext4_inode_bitmap(sb, gdp);
3320 		if (inode_bitmap == sb_block) {
3321 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3322 				 "Inode bitmap for group %u overlaps "
3323 				 "superblock", i);
3324 			if (!sb_rdonly(sb))
3325 				return 0;
3326 		}
3327 		if (inode_bitmap >= sb_block + 1 &&
3328 		    inode_bitmap <= last_bg_block) {
3329 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3330 				 "Inode bitmap for group %u overlaps "
3331 				 "block group descriptors", i);
3332 			if (!sb_rdonly(sb))
3333 				return 0;
3334 		}
3335 		if (inode_bitmap < first_block || inode_bitmap > last_block) {
3336 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3337 			       "Inode bitmap for group %u not in group "
3338 			       "(block %llu)!", i, inode_bitmap);
3339 			return 0;
3340 		}
3341 		inode_table = ext4_inode_table(sb, gdp);
3342 		if (inode_table == sb_block) {
3343 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3344 				 "Inode table for group %u overlaps "
3345 				 "superblock", i);
3346 			if (!sb_rdonly(sb))
3347 				return 0;
3348 		}
3349 		if (inode_table >= sb_block + 1 &&
3350 		    inode_table <= last_bg_block) {
3351 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3352 				 "Inode table for group %u overlaps "
3353 				 "block group descriptors", i);
3354 			if (!sb_rdonly(sb))
3355 				return 0;
3356 		}
3357 		if (inode_table < first_block ||
3358 		    inode_table + sbi->s_itb_per_group - 1 > last_block) {
3359 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3360 			       "Inode table for group %u not in group "
3361 			       "(block %llu)!", i, inode_table);
3362 			return 0;
3363 		}
3364 		ext4_lock_group(sb, i);
3365 		if (!ext4_group_desc_csum_verify(sb, i, gdp)) {
3366 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3367 				 "Checksum for group %u failed (%u!=%u)",
3368 				 i, le16_to_cpu(ext4_group_desc_csum(sb, i,
3369 				     gdp)), le16_to_cpu(gdp->bg_checksum));
3370 			if (!sb_rdonly(sb)) {
3371 				ext4_unlock_group(sb, i);
3372 				return 0;
3373 			}
3374 		}
3375 		ext4_unlock_group(sb, i);
3376 		if (!flexbg_flag)
3377 			first_block += EXT4_BLOCKS_PER_GROUP(sb);
3378 	}
3379 	if (NULL != first_not_zeroed)
3380 		*first_not_zeroed = grp;
3381 	return 1;
3382 }
3383 
3384 /*
3385  * Maximal extent format file size.
3386  * Resulting logical blkno at s_maxbytes must fit in our on-disk
3387  * extent format containers, within a sector_t, and within i_blocks
3388  * in the vfs.  ext4 inode has 48 bits of i_block in fsblock units,
3389  * so that won't be a limiting factor.
3390  *
3391  * However there is other limiting factor. We do store extents in the form
3392  * of starting block and length, hence the resulting length of the extent
3393  * covering maximum file size must fit into on-disk format containers as
3394  * well. Given that length is always by 1 unit bigger than max unit (because
3395  * we count 0 as well) we have to lower the s_maxbytes by one fs block.
3396  *
3397  * Note, this does *not* consider any metadata overhead for vfs i_blocks.
3398  */
ext4_max_size(int blkbits,int has_huge_files)3399 static loff_t ext4_max_size(int blkbits, int has_huge_files)
3400 {
3401 	loff_t res;
3402 	loff_t upper_limit = MAX_LFS_FILESIZE;
3403 
3404 	BUILD_BUG_ON(sizeof(blkcnt_t) < sizeof(u64));
3405 
3406 	if (!has_huge_files) {
3407 		upper_limit = (1LL << 32) - 1;
3408 
3409 		/* total blocks in file system block size */
3410 		upper_limit >>= (blkbits - 9);
3411 		upper_limit <<= blkbits;
3412 	}
3413 
3414 	/*
3415 	 * 32-bit extent-start container, ee_block. We lower the maxbytes
3416 	 * by one fs block, so ee_len can cover the extent of maximum file
3417 	 * size
3418 	 */
3419 	res = (1LL << 32) - 1;
3420 	res <<= blkbits;
3421 
3422 	/* Sanity check against vm- & vfs- imposed limits */
3423 	if (res > upper_limit)
3424 		res = upper_limit;
3425 
3426 	return res;
3427 }
3428 
3429 /*
3430  * Maximal bitmap file size.  There is a direct, and {,double-,triple-}indirect
3431  * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks.
3432  * We need to be 1 filesystem block less than the 2^48 sector limit.
3433  */
ext4_max_bitmap_size(int bits,int has_huge_files)3434 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files)
3435 {
3436 	loff_t upper_limit, res = EXT4_NDIR_BLOCKS;
3437 	int meta_blocks;
3438 	unsigned int ppb = 1 << (bits - 2);
3439 
3440 	/*
3441 	 * This is calculated to be the largest file size for a dense, block
3442 	 * mapped file such that the file's total number of 512-byte sectors,
3443 	 * including data and all indirect blocks, does not exceed (2^48 - 1).
3444 	 *
3445 	 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total
3446 	 * number of 512-byte sectors of the file.
3447 	 */
3448 	if (!has_huge_files) {
3449 		/*
3450 		 * !has_huge_files or implies that the inode i_block field
3451 		 * represents total file blocks in 2^32 512-byte sectors ==
3452 		 * size of vfs inode i_blocks * 8
3453 		 */
3454 		upper_limit = (1LL << 32) - 1;
3455 
3456 		/* total blocks in file system block size */
3457 		upper_limit >>= (bits - 9);
3458 
3459 	} else {
3460 		/*
3461 		 * We use 48 bit ext4_inode i_blocks
3462 		 * With EXT4_HUGE_FILE_FL set the i_blocks
3463 		 * represent total number of blocks in
3464 		 * file system block size
3465 		 */
3466 		upper_limit = (1LL << 48) - 1;
3467 
3468 	}
3469 
3470 	/* Compute how many blocks we can address by block tree */
3471 	res += ppb;
3472 	res += ppb * ppb;
3473 	res += ((loff_t)ppb) * ppb * ppb;
3474 	/* Compute how many metadata blocks are needed */
3475 	meta_blocks = 1;
3476 	meta_blocks += 1 + ppb;
3477 	meta_blocks += 1 + ppb + ppb * ppb;
3478 	/* Does block tree limit file size? */
3479 	if (res + meta_blocks <= upper_limit)
3480 		goto check_lfs;
3481 
3482 	res = upper_limit;
3483 	/* How many metadata blocks are needed for addressing upper_limit? */
3484 	upper_limit -= EXT4_NDIR_BLOCKS;
3485 	/* indirect blocks */
3486 	meta_blocks = 1;
3487 	upper_limit -= ppb;
3488 	/* double indirect blocks */
3489 	if (upper_limit < ppb * ppb) {
3490 		meta_blocks += 1 + DIV_ROUND_UP_ULL(upper_limit, ppb);
3491 		res -= meta_blocks;
3492 		goto check_lfs;
3493 	}
3494 	meta_blocks += 1 + ppb;
3495 	upper_limit -= ppb * ppb;
3496 	/* tripple indirect blocks for the rest */
3497 	meta_blocks += 1 + DIV_ROUND_UP_ULL(upper_limit, ppb) +
3498 		DIV_ROUND_UP_ULL(upper_limit, ppb*ppb);
3499 	res -= meta_blocks;
3500 check_lfs:
3501 	res <<= bits;
3502 	if (res > MAX_LFS_FILESIZE)
3503 		res = MAX_LFS_FILESIZE;
3504 
3505 	return res;
3506 }
3507 
descriptor_loc(struct super_block * sb,ext4_fsblk_t logical_sb_block,int nr)3508 static ext4_fsblk_t descriptor_loc(struct super_block *sb,
3509 				   ext4_fsblk_t logical_sb_block, int nr)
3510 {
3511 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3512 	ext4_group_t bg, first_meta_bg;
3513 	int has_super = 0;
3514 
3515 	first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
3516 
3517 	if (!ext4_has_feature_meta_bg(sb) || nr < first_meta_bg)
3518 		return logical_sb_block + nr + 1;
3519 	bg = sbi->s_desc_per_block * nr;
3520 	if (ext4_bg_has_super(sb, bg))
3521 		has_super = 1;
3522 
3523 	/*
3524 	 * If we have a meta_bg fs with 1k blocks, group 0's GDT is at
3525 	 * block 2, not 1.  If s_first_data_block == 0 (bigalloc is enabled
3526 	 * on modern mke2fs or blksize > 1k on older mke2fs) then we must
3527 	 * compensate.
3528 	 */
3529 	if (sb->s_blocksize == 1024 && nr == 0 &&
3530 	    le32_to_cpu(sbi->s_es->s_first_data_block) == 0)
3531 		has_super++;
3532 
3533 	return (has_super + ext4_group_first_block_no(sb, bg));
3534 }
3535 
3536 /**
3537  * ext4_get_stripe_size: Get the stripe size.
3538  * @sbi: In memory super block info
3539  *
3540  * If we have specified it via mount option, then
3541  * use the mount option value. If the value specified at mount time is
3542  * greater than the blocks per group use the super block value.
3543  * If the super block value is greater than blocks per group return 0.
3544  * Allocator needs it be less than blocks per group.
3545  *
3546  */
ext4_get_stripe_size(struct ext4_sb_info * sbi)3547 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi)
3548 {
3549 	unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride);
3550 	unsigned long stripe_width =
3551 			le32_to_cpu(sbi->s_es->s_raid_stripe_width);
3552 	int ret;
3553 
3554 	if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group)
3555 		ret = sbi->s_stripe;
3556 	else if (stripe_width && stripe_width <= sbi->s_blocks_per_group)
3557 		ret = stripe_width;
3558 	else if (stride && stride <= sbi->s_blocks_per_group)
3559 		ret = stride;
3560 	else
3561 		ret = 0;
3562 
3563 	/*
3564 	 * If the stripe width is 1, this makes no sense and
3565 	 * we set it to 0 to turn off stripe handling code.
3566 	 */
3567 	if (ret <= 1)
3568 		ret = 0;
3569 
3570 	return ret;
3571 }
3572 
3573 /*
3574  * Check whether this filesystem can be mounted based on
3575  * the features present and the RDONLY/RDWR mount requested.
3576  * Returns 1 if this filesystem can be mounted as requested,
3577  * 0 if it cannot be.
3578  */
ext4_feature_set_ok(struct super_block * sb,int readonly)3579 int ext4_feature_set_ok(struct super_block *sb, int readonly)
3580 {
3581 	if (ext4_has_unknown_ext4_incompat_features(sb)) {
3582 		ext4_msg(sb, KERN_ERR,
3583 			"Couldn't mount because of "
3584 			"unsupported optional features (%x)",
3585 			(le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) &
3586 			~EXT4_FEATURE_INCOMPAT_SUPP));
3587 		return 0;
3588 	}
3589 
3590 	if (!IS_ENABLED(CONFIG_UNICODE) && ext4_has_feature_casefold(sb)) {
3591 		ext4_msg(sb, KERN_ERR,
3592 			 "Filesystem with casefold feature cannot be "
3593 			 "mounted without CONFIG_UNICODE");
3594 		return 0;
3595 	}
3596 
3597 	if (readonly)
3598 		return 1;
3599 
3600 	if (ext4_has_feature_readonly(sb)) {
3601 		ext4_msg(sb, KERN_INFO, "filesystem is read-only");
3602 		sb->s_flags |= SB_RDONLY;
3603 		return 1;
3604 	}
3605 
3606 	/* Check that feature set is OK for a read-write mount */
3607 	if (ext4_has_unknown_ext4_ro_compat_features(sb)) {
3608 		ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of "
3609 			 "unsupported optional features (%x)",
3610 			 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) &
3611 				~EXT4_FEATURE_RO_COMPAT_SUPP));
3612 		return 0;
3613 	}
3614 	if (ext4_has_feature_bigalloc(sb) && !ext4_has_feature_extents(sb)) {
3615 		ext4_msg(sb, KERN_ERR,
3616 			 "Can't support bigalloc feature without "
3617 			 "extents feature\n");
3618 		return 0;
3619 	}
3620 
3621 #if !IS_ENABLED(CONFIG_QUOTA) || !IS_ENABLED(CONFIG_QFMT_V2)
3622 	if (!readonly && (ext4_has_feature_quota(sb) ||
3623 			  ext4_has_feature_project(sb))) {
3624 		ext4_msg(sb, KERN_ERR,
3625 			 "The kernel was not built with CONFIG_QUOTA and CONFIG_QFMT_V2");
3626 		return 0;
3627 	}
3628 #endif  /* CONFIG_QUOTA */
3629 	return 1;
3630 }
3631 
3632 /*
3633  * This function is called once a day if we have errors logged
3634  * on the file system
3635  */
print_daily_error_info(struct timer_list * t)3636 static void print_daily_error_info(struct timer_list *t)
3637 {
3638 	struct ext4_sb_info *sbi = from_timer(sbi, t, s_err_report);
3639 	struct super_block *sb = sbi->s_sb;
3640 	struct ext4_super_block *es = sbi->s_es;
3641 
3642 	if (es->s_error_count)
3643 		/* fsck newer than v1.41.13 is needed to clean this condition. */
3644 		ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u",
3645 			 le32_to_cpu(es->s_error_count));
3646 	if (es->s_first_error_time) {
3647 		printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %llu: %.*s:%d",
3648 		       sb->s_id,
3649 		       ext4_get_tstamp(es, s_first_error_time),
3650 		       (int) sizeof(es->s_first_error_func),
3651 		       es->s_first_error_func,
3652 		       le32_to_cpu(es->s_first_error_line));
3653 		if (es->s_first_error_ino)
3654 			printk(KERN_CONT ": inode %u",
3655 			       le32_to_cpu(es->s_first_error_ino));
3656 		if (es->s_first_error_block)
3657 			printk(KERN_CONT ": block %llu", (unsigned long long)
3658 			       le64_to_cpu(es->s_first_error_block));
3659 		printk(KERN_CONT "\n");
3660 	}
3661 	if (es->s_last_error_time) {
3662 		printk(KERN_NOTICE "EXT4-fs (%s): last error at time %llu: %.*s:%d",
3663 		       sb->s_id,
3664 		       ext4_get_tstamp(es, s_last_error_time),
3665 		       (int) sizeof(es->s_last_error_func),
3666 		       es->s_last_error_func,
3667 		       le32_to_cpu(es->s_last_error_line));
3668 		if (es->s_last_error_ino)
3669 			printk(KERN_CONT ": inode %u",
3670 			       le32_to_cpu(es->s_last_error_ino));
3671 		if (es->s_last_error_block)
3672 			printk(KERN_CONT ": block %llu", (unsigned long long)
3673 			       le64_to_cpu(es->s_last_error_block));
3674 		printk(KERN_CONT "\n");
3675 	}
3676 	mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ);  /* Once a day */
3677 }
3678 
3679 /* Find next suitable group and run ext4_init_inode_table */
ext4_run_li_request(struct ext4_li_request * elr)3680 static int ext4_run_li_request(struct ext4_li_request *elr)
3681 {
3682 	struct ext4_group_desc *gdp = NULL;
3683 	struct super_block *sb = elr->lr_super;
3684 	ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count;
3685 	ext4_group_t group = elr->lr_next_group;
3686 	unsigned int prefetch_ios = 0;
3687 	int ret = 0;
3688 	int nr = EXT4_SB(sb)->s_mb_prefetch;
3689 	u64 start_time;
3690 
3691 	if (elr->lr_mode == EXT4_LI_MODE_PREFETCH_BBITMAP) {
3692 		elr->lr_next_group = ext4_mb_prefetch(sb, group, nr, &prefetch_ios);
3693 		ext4_mb_prefetch_fini(sb, elr->lr_next_group, nr);
3694 		trace_ext4_prefetch_bitmaps(sb, group, elr->lr_next_group, nr);
3695 		if (group >= elr->lr_next_group) {
3696 			ret = 1;
3697 			if (elr->lr_first_not_zeroed != ngroups &&
3698 			    !sb_rdonly(sb) && test_opt(sb, INIT_INODE_TABLE)) {
3699 				elr->lr_next_group = elr->lr_first_not_zeroed;
3700 				elr->lr_mode = EXT4_LI_MODE_ITABLE;
3701 				ret = 0;
3702 			}
3703 		}
3704 		return ret;
3705 	}
3706 
3707 	for (; group < ngroups; group++) {
3708 		gdp = ext4_get_group_desc(sb, group, NULL);
3709 		if (!gdp) {
3710 			ret = 1;
3711 			break;
3712 		}
3713 
3714 		if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3715 			break;
3716 	}
3717 
3718 	if (group >= ngroups)
3719 		ret = 1;
3720 
3721 	if (!ret) {
3722 		start_time = ktime_get_ns();
3723 		ret = ext4_init_inode_table(sb, group,
3724 					    elr->lr_timeout ? 0 : 1);
3725 		trace_ext4_lazy_itable_init(sb, group);
3726 		if (elr->lr_timeout == 0) {
3727 			elr->lr_timeout = nsecs_to_jiffies((ktime_get_ns() - start_time) *
3728 				EXT4_SB(elr->lr_super)->s_li_wait_mult);
3729 		}
3730 		elr->lr_next_sched = jiffies + elr->lr_timeout;
3731 		elr->lr_next_group = group + 1;
3732 	}
3733 	return ret;
3734 }
3735 
3736 /*
3737  * Remove lr_request from the list_request and free the
3738  * request structure. Should be called with li_list_mtx held
3739  */
ext4_remove_li_request(struct ext4_li_request * elr)3740 static void ext4_remove_li_request(struct ext4_li_request *elr)
3741 {
3742 	if (!elr)
3743 		return;
3744 
3745 	list_del(&elr->lr_request);
3746 	EXT4_SB(elr->lr_super)->s_li_request = NULL;
3747 	kfree(elr);
3748 }
3749 
ext4_unregister_li_request(struct super_block * sb)3750 static void ext4_unregister_li_request(struct super_block *sb)
3751 {
3752 	mutex_lock(&ext4_li_mtx);
3753 	if (!ext4_li_info) {
3754 		mutex_unlock(&ext4_li_mtx);
3755 		return;
3756 	}
3757 
3758 	mutex_lock(&ext4_li_info->li_list_mtx);
3759 	ext4_remove_li_request(EXT4_SB(sb)->s_li_request);
3760 	mutex_unlock(&ext4_li_info->li_list_mtx);
3761 	mutex_unlock(&ext4_li_mtx);
3762 }
3763 
3764 static struct task_struct *ext4_lazyinit_task;
3765 
3766 /*
3767  * This is the function where ext4lazyinit thread lives. It walks
3768  * through the request list searching for next scheduled filesystem.
3769  * When such a fs is found, run the lazy initialization request
3770  * (ext4_rn_li_request) and keep track of the time spend in this
3771  * function. Based on that time we compute next schedule time of
3772  * the request. When walking through the list is complete, compute
3773  * next waking time and put itself into sleep.
3774  */
ext4_lazyinit_thread(void * arg)3775 static int ext4_lazyinit_thread(void *arg)
3776 {
3777 	struct ext4_lazy_init *eli = arg;
3778 	struct list_head *pos, *n;
3779 	struct ext4_li_request *elr;
3780 	unsigned long next_wakeup, cur;
3781 
3782 	BUG_ON(NULL == eli);
3783 	set_freezable();
3784 
3785 cont_thread:
3786 	while (true) {
3787 		bool next_wakeup_initialized = false;
3788 
3789 		next_wakeup = 0;
3790 		mutex_lock(&eli->li_list_mtx);
3791 		if (list_empty(&eli->li_request_list)) {
3792 			mutex_unlock(&eli->li_list_mtx);
3793 			goto exit_thread;
3794 		}
3795 		list_for_each_safe(pos, n, &eli->li_request_list) {
3796 			int err = 0;
3797 			int progress = 0;
3798 			elr = list_entry(pos, struct ext4_li_request,
3799 					 lr_request);
3800 
3801 			if (time_before(jiffies, elr->lr_next_sched)) {
3802 				if (!next_wakeup_initialized ||
3803 				    time_before(elr->lr_next_sched, next_wakeup)) {
3804 					next_wakeup = elr->lr_next_sched;
3805 					next_wakeup_initialized = true;
3806 				}
3807 				continue;
3808 			}
3809 			if (down_read_trylock(&elr->lr_super->s_umount)) {
3810 				if (sb_start_write_trylock(elr->lr_super)) {
3811 					progress = 1;
3812 					/*
3813 					 * We hold sb->s_umount, sb can not
3814 					 * be removed from the list, it is
3815 					 * now safe to drop li_list_mtx
3816 					 */
3817 					mutex_unlock(&eli->li_list_mtx);
3818 					err = ext4_run_li_request(elr);
3819 					sb_end_write(elr->lr_super);
3820 					mutex_lock(&eli->li_list_mtx);
3821 					n = pos->next;
3822 				}
3823 				up_read((&elr->lr_super->s_umount));
3824 			}
3825 			/* error, remove the lazy_init job */
3826 			if (err) {
3827 				ext4_remove_li_request(elr);
3828 				continue;
3829 			}
3830 			if (!progress) {
3831 				elr->lr_next_sched = jiffies +
3832 					get_random_u32_below(EXT4_DEF_LI_MAX_START_DELAY * HZ);
3833 			}
3834 			if (!next_wakeup_initialized ||
3835 			    time_before(elr->lr_next_sched, next_wakeup)) {
3836 				next_wakeup = elr->lr_next_sched;
3837 				next_wakeup_initialized = true;
3838 			}
3839 		}
3840 		mutex_unlock(&eli->li_list_mtx);
3841 
3842 		try_to_freeze();
3843 
3844 		cur = jiffies;
3845 		if (!next_wakeup_initialized || time_after_eq(cur, next_wakeup)) {
3846 			cond_resched();
3847 			continue;
3848 		}
3849 
3850 		schedule_timeout_interruptible(next_wakeup - cur);
3851 
3852 		if (kthread_should_stop()) {
3853 			ext4_clear_request_list();
3854 			goto exit_thread;
3855 		}
3856 	}
3857 
3858 exit_thread:
3859 	/*
3860 	 * It looks like the request list is empty, but we need
3861 	 * to check it under the li_list_mtx lock, to prevent any
3862 	 * additions into it, and of course we should lock ext4_li_mtx
3863 	 * to atomically free the list and ext4_li_info, because at
3864 	 * this point another ext4 filesystem could be registering
3865 	 * new one.
3866 	 */
3867 	mutex_lock(&ext4_li_mtx);
3868 	mutex_lock(&eli->li_list_mtx);
3869 	if (!list_empty(&eli->li_request_list)) {
3870 		mutex_unlock(&eli->li_list_mtx);
3871 		mutex_unlock(&ext4_li_mtx);
3872 		goto cont_thread;
3873 	}
3874 	mutex_unlock(&eli->li_list_mtx);
3875 	kfree(ext4_li_info);
3876 	ext4_li_info = NULL;
3877 	mutex_unlock(&ext4_li_mtx);
3878 
3879 	return 0;
3880 }
3881 
ext4_clear_request_list(void)3882 static void ext4_clear_request_list(void)
3883 {
3884 	struct list_head *pos, *n;
3885 	struct ext4_li_request *elr;
3886 
3887 	mutex_lock(&ext4_li_info->li_list_mtx);
3888 	list_for_each_safe(pos, n, &ext4_li_info->li_request_list) {
3889 		elr = list_entry(pos, struct ext4_li_request,
3890 				 lr_request);
3891 		ext4_remove_li_request(elr);
3892 	}
3893 	mutex_unlock(&ext4_li_info->li_list_mtx);
3894 }
3895 
ext4_run_lazyinit_thread(void)3896 static int ext4_run_lazyinit_thread(void)
3897 {
3898 	ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread,
3899 					 ext4_li_info, "ext4lazyinit");
3900 	if (IS_ERR(ext4_lazyinit_task)) {
3901 		int err = PTR_ERR(ext4_lazyinit_task);
3902 		ext4_clear_request_list();
3903 		kfree(ext4_li_info);
3904 		ext4_li_info = NULL;
3905 		printk(KERN_CRIT "EXT4-fs: error %d creating inode table "
3906 				 "initialization thread\n",
3907 				 err);
3908 		return err;
3909 	}
3910 	ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING;
3911 	return 0;
3912 }
3913 
3914 /*
3915  * Check whether it make sense to run itable init. thread or not.
3916  * If there is at least one uninitialized inode table, return
3917  * corresponding group number, else the loop goes through all
3918  * groups and return total number of groups.
3919  */
ext4_has_uninit_itable(struct super_block * sb)3920 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb)
3921 {
3922 	ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count;
3923 	struct ext4_group_desc *gdp = NULL;
3924 
3925 	if (!ext4_has_group_desc_csum(sb))
3926 		return ngroups;
3927 
3928 	for (group = 0; group < ngroups; group++) {
3929 		gdp = ext4_get_group_desc(sb, group, NULL);
3930 		if (!gdp)
3931 			continue;
3932 
3933 		if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3934 			break;
3935 	}
3936 
3937 	return group;
3938 }
3939 
ext4_li_info_new(void)3940 static int ext4_li_info_new(void)
3941 {
3942 	struct ext4_lazy_init *eli = NULL;
3943 
3944 	eli = kzalloc(sizeof(*eli), GFP_KERNEL);
3945 	if (!eli)
3946 		return -ENOMEM;
3947 
3948 	INIT_LIST_HEAD(&eli->li_request_list);
3949 	mutex_init(&eli->li_list_mtx);
3950 
3951 	eli->li_state |= EXT4_LAZYINIT_QUIT;
3952 
3953 	ext4_li_info = eli;
3954 
3955 	return 0;
3956 }
3957 
ext4_li_request_new(struct super_block * sb,ext4_group_t start)3958 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb,
3959 					    ext4_group_t start)
3960 {
3961 	struct ext4_li_request *elr;
3962 
3963 	elr = kzalloc(sizeof(*elr), GFP_KERNEL);
3964 	if (!elr)
3965 		return NULL;
3966 
3967 	elr->lr_super = sb;
3968 	elr->lr_first_not_zeroed = start;
3969 	if (test_opt(sb, NO_PREFETCH_BLOCK_BITMAPS)) {
3970 		elr->lr_mode = EXT4_LI_MODE_ITABLE;
3971 		elr->lr_next_group = start;
3972 	} else {
3973 		elr->lr_mode = EXT4_LI_MODE_PREFETCH_BBITMAP;
3974 	}
3975 
3976 	/*
3977 	 * Randomize first schedule time of the request to
3978 	 * spread the inode table initialization requests
3979 	 * better.
3980 	 */
3981 	elr->lr_next_sched = jiffies + get_random_u32_below(EXT4_DEF_LI_MAX_START_DELAY * HZ);
3982 	return elr;
3983 }
3984 
ext4_register_li_request(struct super_block * sb,ext4_group_t first_not_zeroed)3985 int ext4_register_li_request(struct super_block *sb,
3986 			     ext4_group_t first_not_zeroed)
3987 {
3988 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3989 	struct ext4_li_request *elr = NULL;
3990 	ext4_group_t ngroups = sbi->s_groups_count;
3991 	int ret = 0;
3992 
3993 	mutex_lock(&ext4_li_mtx);
3994 	if (sbi->s_li_request != NULL) {
3995 		/*
3996 		 * Reset timeout so it can be computed again, because
3997 		 * s_li_wait_mult might have changed.
3998 		 */
3999 		sbi->s_li_request->lr_timeout = 0;
4000 		goto out;
4001 	}
4002 
4003 	if (sb_rdonly(sb) ||
4004 	    (test_opt(sb, NO_PREFETCH_BLOCK_BITMAPS) &&
4005 	     (first_not_zeroed == ngroups || !test_opt(sb, INIT_INODE_TABLE))))
4006 		goto out;
4007 
4008 	elr = ext4_li_request_new(sb, first_not_zeroed);
4009 	if (!elr) {
4010 		ret = -ENOMEM;
4011 		goto out;
4012 	}
4013 
4014 	if (NULL == ext4_li_info) {
4015 		ret = ext4_li_info_new();
4016 		if (ret)
4017 			goto out;
4018 	}
4019 
4020 	mutex_lock(&ext4_li_info->li_list_mtx);
4021 	list_add(&elr->lr_request, &ext4_li_info->li_request_list);
4022 	mutex_unlock(&ext4_li_info->li_list_mtx);
4023 
4024 	sbi->s_li_request = elr;
4025 	/*
4026 	 * set elr to NULL here since it has been inserted to
4027 	 * the request_list and the removal and free of it is
4028 	 * handled by ext4_clear_request_list from now on.
4029 	 */
4030 	elr = NULL;
4031 
4032 	if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) {
4033 		ret = ext4_run_lazyinit_thread();
4034 		if (ret)
4035 			goto out;
4036 	}
4037 out:
4038 	mutex_unlock(&ext4_li_mtx);
4039 	if (ret)
4040 		kfree(elr);
4041 	return ret;
4042 }
4043 
4044 /*
4045  * We do not need to lock anything since this is called on
4046  * module unload.
4047  */
ext4_destroy_lazyinit_thread(void)4048 static void ext4_destroy_lazyinit_thread(void)
4049 {
4050 	/*
4051 	 * If thread exited earlier
4052 	 * there's nothing to be done.
4053 	 */
4054 	if (!ext4_li_info || !ext4_lazyinit_task)
4055 		return;
4056 
4057 	kthread_stop(ext4_lazyinit_task);
4058 }
4059 
set_journal_csum_feature_set(struct super_block * sb)4060 static int set_journal_csum_feature_set(struct super_block *sb)
4061 {
4062 	int ret = 1;
4063 	int compat, incompat;
4064 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4065 
4066 	if (ext4_has_metadata_csum(sb)) {
4067 		/* journal checksum v3 */
4068 		compat = 0;
4069 		incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3;
4070 	} else {
4071 		/* journal checksum v1 */
4072 		compat = JBD2_FEATURE_COMPAT_CHECKSUM;
4073 		incompat = 0;
4074 	}
4075 
4076 	jbd2_journal_clear_features(sbi->s_journal,
4077 			JBD2_FEATURE_COMPAT_CHECKSUM, 0,
4078 			JBD2_FEATURE_INCOMPAT_CSUM_V3 |
4079 			JBD2_FEATURE_INCOMPAT_CSUM_V2);
4080 	if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4081 		ret = jbd2_journal_set_features(sbi->s_journal,
4082 				compat, 0,
4083 				JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT |
4084 				incompat);
4085 	} else if (test_opt(sb, JOURNAL_CHECKSUM)) {
4086 		ret = jbd2_journal_set_features(sbi->s_journal,
4087 				compat, 0,
4088 				incompat);
4089 		jbd2_journal_clear_features(sbi->s_journal, 0, 0,
4090 				JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
4091 	} else {
4092 		jbd2_journal_clear_features(sbi->s_journal, 0, 0,
4093 				JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
4094 	}
4095 
4096 	return ret;
4097 }
4098 
4099 /*
4100  * Note: calculating the overhead so we can be compatible with
4101  * historical BSD practice is quite difficult in the face of
4102  * clusters/bigalloc.  This is because multiple metadata blocks from
4103  * different block group can end up in the same allocation cluster.
4104  * Calculating the exact overhead in the face of clustered allocation
4105  * requires either O(all block bitmaps) in memory or O(number of block
4106  * groups**2) in time.  We will still calculate the superblock for
4107  * older file systems --- and if we come across with a bigalloc file
4108  * system with zero in s_overhead_clusters the estimate will be close to
4109  * correct especially for very large cluster sizes --- but for newer
4110  * file systems, it's better to calculate this figure once at mkfs
4111  * time, and store it in the superblock.  If the superblock value is
4112  * present (even for non-bigalloc file systems), we will use it.
4113  */
count_overhead(struct super_block * sb,ext4_group_t grp,char * buf)4114 static int count_overhead(struct super_block *sb, ext4_group_t grp,
4115 			  char *buf)
4116 {
4117 	struct ext4_sb_info	*sbi = EXT4_SB(sb);
4118 	struct ext4_group_desc	*gdp;
4119 	ext4_fsblk_t		first_block, last_block, b;
4120 	ext4_group_t		i, ngroups = ext4_get_groups_count(sb);
4121 	int			s, j, count = 0;
4122 	int			has_super = ext4_bg_has_super(sb, grp);
4123 
4124 	if (!ext4_has_feature_bigalloc(sb))
4125 		return (has_super + ext4_bg_num_gdb(sb, grp) +
4126 			(has_super ? le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) : 0) +
4127 			sbi->s_itb_per_group + 2);
4128 
4129 	first_block = le32_to_cpu(sbi->s_es->s_first_data_block) +
4130 		(grp * EXT4_BLOCKS_PER_GROUP(sb));
4131 	last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1;
4132 	for (i = 0; i < ngroups; i++) {
4133 		gdp = ext4_get_group_desc(sb, i, NULL);
4134 		b = ext4_block_bitmap(sb, gdp);
4135 		if (b >= first_block && b <= last_block) {
4136 			ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
4137 			count++;
4138 		}
4139 		b = ext4_inode_bitmap(sb, gdp);
4140 		if (b >= first_block && b <= last_block) {
4141 			ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
4142 			count++;
4143 		}
4144 		b = ext4_inode_table(sb, gdp);
4145 		if (b >= first_block && b + sbi->s_itb_per_group <= last_block)
4146 			for (j = 0; j < sbi->s_itb_per_group; j++, b++) {
4147 				int c = EXT4_B2C(sbi, b - first_block);
4148 				ext4_set_bit(c, buf);
4149 				count++;
4150 			}
4151 		if (i != grp)
4152 			continue;
4153 		s = 0;
4154 		if (ext4_bg_has_super(sb, grp)) {
4155 			ext4_set_bit(s++, buf);
4156 			count++;
4157 		}
4158 		j = ext4_bg_num_gdb(sb, grp);
4159 		if (s + j > EXT4_BLOCKS_PER_GROUP(sb)) {
4160 			ext4_error(sb, "Invalid number of block group "
4161 				   "descriptor blocks: %d", j);
4162 			j = EXT4_BLOCKS_PER_GROUP(sb) - s;
4163 		}
4164 		count += j;
4165 		for (; j > 0; j--)
4166 			ext4_set_bit(EXT4_B2C(sbi, s++), buf);
4167 	}
4168 	if (!count)
4169 		return 0;
4170 	return EXT4_CLUSTERS_PER_GROUP(sb) -
4171 		ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8);
4172 }
4173 
4174 /*
4175  * Compute the overhead and stash it in sbi->s_overhead
4176  */
ext4_calculate_overhead(struct super_block * sb)4177 int ext4_calculate_overhead(struct super_block *sb)
4178 {
4179 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4180 	struct ext4_super_block *es = sbi->s_es;
4181 	struct inode *j_inode;
4182 	unsigned int j_blocks, j_inum = le32_to_cpu(es->s_journal_inum);
4183 	ext4_group_t i, ngroups = ext4_get_groups_count(sb);
4184 	ext4_fsblk_t overhead = 0;
4185 	char *buf = (char *) get_zeroed_page(GFP_NOFS);
4186 
4187 	if (!buf)
4188 		return -ENOMEM;
4189 
4190 	/*
4191 	 * Compute the overhead (FS structures).  This is constant
4192 	 * for a given filesystem unless the number of block groups
4193 	 * changes so we cache the previous value until it does.
4194 	 */
4195 
4196 	/*
4197 	 * All of the blocks before first_data_block are overhead
4198 	 */
4199 	overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block));
4200 
4201 	/*
4202 	 * Add the overhead found in each block group
4203 	 */
4204 	for (i = 0; i < ngroups; i++) {
4205 		int blks;
4206 
4207 		blks = count_overhead(sb, i, buf);
4208 		overhead += blks;
4209 		if (blks)
4210 			memset(buf, 0, PAGE_SIZE);
4211 		cond_resched();
4212 	}
4213 
4214 	/*
4215 	 * Add the internal journal blocks whether the journal has been
4216 	 * loaded or not
4217 	 */
4218 	if (sbi->s_journal && !sbi->s_journal_bdev_file)
4219 		overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_total_len);
4220 	else if (ext4_has_feature_journal(sb) && !sbi->s_journal && j_inum) {
4221 		/* j_inum for internal journal is non-zero */
4222 		j_inode = ext4_get_journal_inode(sb, j_inum);
4223 		if (!IS_ERR(j_inode)) {
4224 			j_blocks = j_inode->i_size >> sb->s_blocksize_bits;
4225 			overhead += EXT4_NUM_B2C(sbi, j_blocks);
4226 			iput(j_inode);
4227 		} else {
4228 			ext4_msg(sb, KERN_ERR, "can't get journal size");
4229 		}
4230 	}
4231 	sbi->s_overhead = overhead;
4232 	smp_wmb();
4233 	free_page((unsigned long) buf);
4234 	return 0;
4235 }
4236 
ext4_set_resv_clusters(struct super_block * sb)4237 static void ext4_set_resv_clusters(struct super_block *sb)
4238 {
4239 	ext4_fsblk_t resv_clusters;
4240 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4241 
4242 	/*
4243 	 * There's no need to reserve anything when we aren't using extents.
4244 	 * The space estimates are exact, there are no unwritten extents,
4245 	 * hole punching doesn't need new metadata... This is needed especially
4246 	 * to keep ext2/3 backward compatibility.
4247 	 */
4248 	if (!ext4_has_feature_extents(sb))
4249 		return;
4250 	/*
4251 	 * By default we reserve 2% or 4096 clusters, whichever is smaller.
4252 	 * This should cover the situations where we can not afford to run
4253 	 * out of space like for example punch hole, or converting
4254 	 * unwritten extents in delalloc path. In most cases such
4255 	 * allocation would require 1, or 2 blocks, higher numbers are
4256 	 * very rare.
4257 	 */
4258 	resv_clusters = (ext4_blocks_count(sbi->s_es) >>
4259 			 sbi->s_cluster_bits);
4260 
4261 	do_div(resv_clusters, 50);
4262 	resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096);
4263 
4264 	atomic64_set(&sbi->s_resv_clusters, resv_clusters);
4265 }
4266 
ext4_quota_mode(struct super_block * sb)4267 static const char *ext4_quota_mode(struct super_block *sb)
4268 {
4269 #ifdef CONFIG_QUOTA
4270 	if (!ext4_quota_capable(sb))
4271 		return "none";
4272 
4273 	if (EXT4_SB(sb)->s_journal && ext4_is_quota_journalled(sb))
4274 		return "journalled";
4275 	else
4276 		return "writeback";
4277 #else
4278 	return "disabled";
4279 #endif
4280 }
4281 
ext4_setup_csum_trigger(struct super_block * sb,enum ext4_journal_trigger_type type,void (* trigger)(struct jbd2_buffer_trigger_type * type,struct buffer_head * bh,void * mapped_data,size_t size))4282 static void ext4_setup_csum_trigger(struct super_block *sb,
4283 				    enum ext4_journal_trigger_type type,
4284 				    void (*trigger)(
4285 					struct jbd2_buffer_trigger_type *type,
4286 					struct buffer_head *bh,
4287 					void *mapped_data,
4288 					size_t size))
4289 {
4290 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4291 
4292 	sbi->s_journal_triggers[type].sb = sb;
4293 	sbi->s_journal_triggers[type].tr_triggers.t_frozen = trigger;
4294 }
4295 
ext4_free_sbi(struct ext4_sb_info * sbi)4296 static void ext4_free_sbi(struct ext4_sb_info *sbi)
4297 {
4298 	if (!sbi)
4299 		return;
4300 
4301 	kfree(sbi->s_blockgroup_lock);
4302 	fs_put_dax(sbi->s_daxdev, NULL);
4303 	kfree(sbi);
4304 }
4305 
ext4_alloc_sbi(struct super_block * sb)4306 static struct ext4_sb_info *ext4_alloc_sbi(struct super_block *sb)
4307 {
4308 	struct ext4_sb_info *sbi;
4309 
4310 	sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
4311 	if (!sbi)
4312 		return NULL;
4313 
4314 	sbi->s_daxdev = fs_dax_get_by_bdev(sb->s_bdev, &sbi->s_dax_part_off,
4315 					   NULL, NULL);
4316 
4317 	sbi->s_blockgroup_lock =
4318 		kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL);
4319 
4320 	if (!sbi->s_blockgroup_lock)
4321 		goto err_out;
4322 
4323 	sb->s_fs_info = sbi;
4324 	sbi->s_sb = sb;
4325 	return sbi;
4326 err_out:
4327 	fs_put_dax(sbi->s_daxdev, NULL);
4328 	kfree(sbi);
4329 	return NULL;
4330 }
4331 
ext4_set_def_opts(struct super_block * sb,struct ext4_super_block * es)4332 static void ext4_set_def_opts(struct super_block *sb,
4333 			      struct ext4_super_block *es)
4334 {
4335 	unsigned long def_mount_opts;
4336 
4337 	/* Set defaults before we parse the mount options */
4338 	def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
4339 	set_opt(sb, INIT_INODE_TABLE);
4340 	if (def_mount_opts & EXT4_DEFM_DEBUG)
4341 		set_opt(sb, DEBUG);
4342 	if (def_mount_opts & EXT4_DEFM_BSDGROUPS)
4343 		set_opt(sb, GRPID);
4344 	if (def_mount_opts & EXT4_DEFM_UID16)
4345 		set_opt(sb, NO_UID32);
4346 	/* xattr user namespace & acls are now defaulted on */
4347 	set_opt(sb, XATTR_USER);
4348 #ifdef CONFIG_EXT4_FS_POSIX_ACL
4349 	set_opt(sb, POSIX_ACL);
4350 #endif
4351 	if (ext4_has_feature_fast_commit(sb))
4352 		set_opt2(sb, JOURNAL_FAST_COMMIT);
4353 	/* don't forget to enable journal_csum when metadata_csum is enabled. */
4354 	if (ext4_has_metadata_csum(sb))
4355 		set_opt(sb, JOURNAL_CHECKSUM);
4356 
4357 	if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA)
4358 		set_opt(sb, JOURNAL_DATA);
4359 	else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED)
4360 		set_opt(sb, ORDERED_DATA);
4361 	else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK)
4362 		set_opt(sb, WRITEBACK_DATA);
4363 
4364 	if (le16_to_cpu(es->s_errors) == EXT4_ERRORS_PANIC)
4365 		set_opt(sb, ERRORS_PANIC);
4366 	else if (le16_to_cpu(es->s_errors) == EXT4_ERRORS_CONTINUE)
4367 		set_opt(sb, ERRORS_CONT);
4368 	else
4369 		set_opt(sb, ERRORS_RO);
4370 	/* block_validity enabled by default; disable with noblock_validity */
4371 	set_opt(sb, BLOCK_VALIDITY);
4372 	if (def_mount_opts & EXT4_DEFM_DISCARD)
4373 		set_opt(sb, DISCARD);
4374 
4375 	if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0)
4376 		set_opt(sb, BARRIER);
4377 
4378 	/*
4379 	 * enable delayed allocation by default
4380 	 * Use -o nodelalloc to turn it off
4381 	 */
4382 	if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) &&
4383 	    ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0))
4384 		set_opt(sb, DELALLOC);
4385 
4386 	if (sb->s_blocksize <= PAGE_SIZE)
4387 		set_opt(sb, DIOREAD_NOLOCK);
4388 }
4389 
ext4_handle_clustersize(struct super_block * sb)4390 static int ext4_handle_clustersize(struct super_block *sb)
4391 {
4392 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4393 	struct ext4_super_block *es = sbi->s_es;
4394 	int clustersize;
4395 
4396 	/* Handle clustersize */
4397 	clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size);
4398 	if (ext4_has_feature_bigalloc(sb)) {
4399 		if (clustersize < sb->s_blocksize) {
4400 			ext4_msg(sb, KERN_ERR,
4401 				 "cluster size (%d) smaller than "
4402 				 "block size (%lu)", clustersize, sb->s_blocksize);
4403 			return -EINVAL;
4404 		}
4405 		sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) -
4406 			le32_to_cpu(es->s_log_block_size);
4407 	} else {
4408 		if (clustersize != sb->s_blocksize) {
4409 			ext4_msg(sb, KERN_ERR,
4410 				 "fragment/cluster size (%d) != "
4411 				 "block size (%lu)", clustersize, sb->s_blocksize);
4412 			return -EINVAL;
4413 		}
4414 		if (sbi->s_blocks_per_group > sb->s_blocksize * 8) {
4415 			ext4_msg(sb, KERN_ERR,
4416 				 "#blocks per group too big: %lu",
4417 				 sbi->s_blocks_per_group);
4418 			return -EINVAL;
4419 		}
4420 		sbi->s_cluster_bits = 0;
4421 	}
4422 	sbi->s_clusters_per_group = le32_to_cpu(es->s_clusters_per_group);
4423 	if (sbi->s_clusters_per_group > sb->s_blocksize * 8) {
4424 		ext4_msg(sb, KERN_ERR, "#clusters per group too big: %lu",
4425 			 sbi->s_clusters_per_group);
4426 		return -EINVAL;
4427 	}
4428 	if (sbi->s_blocks_per_group !=
4429 	    (sbi->s_clusters_per_group * (clustersize / sb->s_blocksize))) {
4430 		ext4_msg(sb, KERN_ERR,
4431 			 "blocks per group (%lu) and clusters per group (%lu) inconsistent",
4432 			 sbi->s_blocks_per_group, sbi->s_clusters_per_group);
4433 		return -EINVAL;
4434 	}
4435 	sbi->s_cluster_ratio = clustersize / sb->s_blocksize;
4436 
4437 	/* Do we have standard group size of clustersize * 8 blocks ? */
4438 	if (sbi->s_blocks_per_group == clustersize << 3)
4439 		set_opt2(sb, STD_GROUP_SIZE);
4440 
4441 	return 0;
4442 }
4443 
4444 /*
4445  * ext4_atomic_write_init: Initializes filesystem min & max atomic write units.
4446  * @sb: super block
4447  * TODO: Later add support for bigalloc
4448  */
ext4_atomic_write_init(struct super_block * sb)4449 static void ext4_atomic_write_init(struct super_block *sb)
4450 {
4451 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4452 	struct block_device *bdev = sb->s_bdev;
4453 
4454 	if (!bdev_can_atomic_write(bdev))
4455 		return;
4456 
4457 	if (!ext4_has_feature_extents(sb))
4458 		return;
4459 
4460 	sbi->s_awu_min = max(sb->s_blocksize,
4461 			      bdev_atomic_write_unit_min_bytes(bdev));
4462 	sbi->s_awu_max = min(sb->s_blocksize,
4463 			      bdev_atomic_write_unit_max_bytes(bdev));
4464 	if (sbi->s_awu_min && sbi->s_awu_max &&
4465 	    sbi->s_awu_min <= sbi->s_awu_max) {
4466 		ext4_msg(sb, KERN_NOTICE, "Supports (experimental) DIO atomic writes awu_min: %u, awu_max: %u",
4467 			 sbi->s_awu_min, sbi->s_awu_max);
4468 	} else {
4469 		sbi->s_awu_min = 0;
4470 		sbi->s_awu_max = 0;
4471 	}
4472 }
4473 
ext4_fast_commit_init(struct super_block * sb)4474 static void ext4_fast_commit_init(struct super_block *sb)
4475 {
4476 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4477 
4478 	/* Initialize fast commit stuff */
4479 	atomic_set(&sbi->s_fc_subtid, 0);
4480 	INIT_LIST_HEAD(&sbi->s_fc_q[FC_Q_MAIN]);
4481 	INIT_LIST_HEAD(&sbi->s_fc_q[FC_Q_STAGING]);
4482 	INIT_LIST_HEAD(&sbi->s_fc_dentry_q[FC_Q_MAIN]);
4483 	INIT_LIST_HEAD(&sbi->s_fc_dentry_q[FC_Q_STAGING]);
4484 	sbi->s_fc_bytes = 0;
4485 	ext4_clear_mount_flag(sb, EXT4_MF_FC_INELIGIBLE);
4486 	sbi->s_fc_ineligible_tid = 0;
4487 	spin_lock_init(&sbi->s_fc_lock);
4488 	memset(&sbi->s_fc_stats, 0, sizeof(sbi->s_fc_stats));
4489 	sbi->s_fc_replay_state.fc_regions = NULL;
4490 	sbi->s_fc_replay_state.fc_regions_size = 0;
4491 	sbi->s_fc_replay_state.fc_regions_used = 0;
4492 	sbi->s_fc_replay_state.fc_regions_valid = 0;
4493 	sbi->s_fc_replay_state.fc_modified_inodes = NULL;
4494 	sbi->s_fc_replay_state.fc_modified_inodes_size = 0;
4495 	sbi->s_fc_replay_state.fc_modified_inodes_used = 0;
4496 }
4497 
ext4_inode_info_init(struct super_block * sb,struct ext4_super_block * es)4498 static int ext4_inode_info_init(struct super_block *sb,
4499 				struct ext4_super_block *es)
4500 {
4501 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4502 
4503 	if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) {
4504 		sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE;
4505 		sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO;
4506 	} else {
4507 		sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
4508 		sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
4509 		if (sbi->s_first_ino < EXT4_GOOD_OLD_FIRST_INO) {
4510 			ext4_msg(sb, KERN_ERR, "invalid first ino: %u",
4511 				 sbi->s_first_ino);
4512 			return -EINVAL;
4513 		}
4514 		if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) ||
4515 		    (!is_power_of_2(sbi->s_inode_size)) ||
4516 		    (sbi->s_inode_size > sb->s_blocksize)) {
4517 			ext4_msg(sb, KERN_ERR,
4518 			       "unsupported inode size: %d",
4519 			       sbi->s_inode_size);
4520 			ext4_msg(sb, KERN_ERR, "blocksize: %lu", sb->s_blocksize);
4521 			return -EINVAL;
4522 		}
4523 		/*
4524 		 * i_atime_extra is the last extra field available for
4525 		 * [acm]times in struct ext4_inode. Checking for that
4526 		 * field should suffice to ensure we have extra space
4527 		 * for all three.
4528 		 */
4529 		if (sbi->s_inode_size >= offsetof(struct ext4_inode, i_atime_extra) +
4530 			sizeof(((struct ext4_inode *)0)->i_atime_extra)) {
4531 			sb->s_time_gran = 1;
4532 			sb->s_time_max = EXT4_EXTRA_TIMESTAMP_MAX;
4533 		} else {
4534 			sb->s_time_gran = NSEC_PER_SEC;
4535 			sb->s_time_max = EXT4_NON_EXTRA_TIMESTAMP_MAX;
4536 		}
4537 		sb->s_time_min = EXT4_TIMESTAMP_MIN;
4538 	}
4539 
4540 	if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) {
4541 		sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
4542 			EXT4_GOOD_OLD_INODE_SIZE;
4543 		if (ext4_has_feature_extra_isize(sb)) {
4544 			unsigned v, max = (sbi->s_inode_size -
4545 					   EXT4_GOOD_OLD_INODE_SIZE);
4546 
4547 			v = le16_to_cpu(es->s_want_extra_isize);
4548 			if (v > max) {
4549 				ext4_msg(sb, KERN_ERR,
4550 					 "bad s_want_extra_isize: %d", v);
4551 				return -EINVAL;
4552 			}
4553 			if (sbi->s_want_extra_isize < v)
4554 				sbi->s_want_extra_isize = v;
4555 
4556 			v = le16_to_cpu(es->s_min_extra_isize);
4557 			if (v > max) {
4558 				ext4_msg(sb, KERN_ERR,
4559 					 "bad s_min_extra_isize: %d", v);
4560 				return -EINVAL;
4561 			}
4562 			if (sbi->s_want_extra_isize < v)
4563 				sbi->s_want_extra_isize = v;
4564 		}
4565 	}
4566 
4567 	return 0;
4568 }
4569 
4570 #if IS_ENABLED(CONFIG_UNICODE)
ext4_encoding_init(struct super_block * sb,struct ext4_super_block * es)4571 static int ext4_encoding_init(struct super_block *sb, struct ext4_super_block *es)
4572 {
4573 	const struct ext4_sb_encodings *encoding_info;
4574 	struct unicode_map *encoding;
4575 	__u16 encoding_flags = le16_to_cpu(es->s_encoding_flags);
4576 
4577 	if (!ext4_has_feature_casefold(sb) || sb->s_encoding)
4578 		return 0;
4579 
4580 	encoding_info = ext4_sb_read_encoding(es);
4581 	if (!encoding_info) {
4582 		ext4_msg(sb, KERN_ERR,
4583 			"Encoding requested by superblock is unknown");
4584 		return -EINVAL;
4585 	}
4586 
4587 	encoding = utf8_load(encoding_info->version);
4588 	if (IS_ERR(encoding)) {
4589 		ext4_msg(sb, KERN_ERR,
4590 			"can't mount with superblock charset: %s-%u.%u.%u "
4591 			"not supported by the kernel. flags: 0x%x.",
4592 			encoding_info->name,
4593 			unicode_major(encoding_info->version),
4594 			unicode_minor(encoding_info->version),
4595 			unicode_rev(encoding_info->version),
4596 			encoding_flags);
4597 		return -EINVAL;
4598 	}
4599 	ext4_msg(sb, KERN_INFO,"Using encoding defined by superblock: "
4600 		"%s-%u.%u.%u with flags 0x%hx", encoding_info->name,
4601 		unicode_major(encoding_info->version),
4602 		unicode_minor(encoding_info->version),
4603 		unicode_rev(encoding_info->version),
4604 		encoding_flags);
4605 
4606 	sb->s_encoding = encoding;
4607 	sb->s_encoding_flags = encoding_flags;
4608 
4609 	return 0;
4610 }
4611 #else
ext4_encoding_init(struct super_block * sb,struct ext4_super_block * es)4612 static inline int ext4_encoding_init(struct super_block *sb, struct ext4_super_block *es)
4613 {
4614 	return 0;
4615 }
4616 #endif
4617 
ext4_init_metadata_csum(struct super_block * sb,struct ext4_super_block * es)4618 static int ext4_init_metadata_csum(struct super_block *sb, struct ext4_super_block *es)
4619 {
4620 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4621 
4622 	/* Warn if metadata_csum and gdt_csum are both set. */
4623 	if (ext4_has_feature_metadata_csum(sb) &&
4624 	    ext4_has_feature_gdt_csum(sb))
4625 		ext4_warning(sb, "metadata_csum and uninit_bg are "
4626 			     "redundant flags; please run fsck.");
4627 
4628 	/* Check for a known checksum algorithm */
4629 	if (!ext4_verify_csum_type(sb, es)) {
4630 		ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
4631 			 "unknown checksum algorithm.");
4632 		return -EINVAL;
4633 	}
4634 	ext4_setup_csum_trigger(sb, EXT4_JTR_ORPHAN_FILE,
4635 				ext4_orphan_file_block_trigger);
4636 
4637 	/* Load the checksum driver */
4638 	sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
4639 	if (IS_ERR(sbi->s_chksum_driver)) {
4640 		int ret = PTR_ERR(sbi->s_chksum_driver);
4641 		ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver.");
4642 		sbi->s_chksum_driver = NULL;
4643 		return ret;
4644 	}
4645 
4646 	/* Check superblock checksum */
4647 	if (!ext4_superblock_csum_verify(sb, es)) {
4648 		ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
4649 			 "invalid superblock checksum.  Run e2fsck?");
4650 		return -EFSBADCRC;
4651 	}
4652 
4653 	/* Precompute checksum seed for all metadata */
4654 	if (ext4_has_feature_csum_seed(sb))
4655 		sbi->s_csum_seed = le32_to_cpu(es->s_checksum_seed);
4656 	else if (ext4_has_metadata_csum(sb) || ext4_has_feature_ea_inode(sb))
4657 		sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid,
4658 					       sizeof(es->s_uuid));
4659 	return 0;
4660 }
4661 
ext4_check_feature_compatibility(struct super_block * sb,struct ext4_super_block * es,int silent)4662 static int ext4_check_feature_compatibility(struct super_block *sb,
4663 					    struct ext4_super_block *es,
4664 					    int silent)
4665 {
4666 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4667 
4668 	if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV &&
4669 	    (ext4_has_compat_features(sb) ||
4670 	     ext4_has_ro_compat_features(sb) ||
4671 	     ext4_has_incompat_features(sb)))
4672 		ext4_msg(sb, KERN_WARNING,
4673 		       "feature flags set on rev 0 fs, "
4674 		       "running e2fsck is recommended");
4675 
4676 	if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) {
4677 		set_opt2(sb, HURD_COMPAT);
4678 		if (ext4_has_feature_64bit(sb)) {
4679 			ext4_msg(sb, KERN_ERR,
4680 				 "The Hurd can't support 64-bit file systems");
4681 			return -EINVAL;
4682 		}
4683 
4684 		/*
4685 		 * ea_inode feature uses l_i_version field which is not
4686 		 * available in HURD_COMPAT mode.
4687 		 */
4688 		if (ext4_has_feature_ea_inode(sb)) {
4689 			ext4_msg(sb, KERN_ERR,
4690 				 "ea_inode feature is not supported for Hurd");
4691 			return -EINVAL;
4692 		}
4693 	}
4694 
4695 	if (IS_EXT2_SB(sb)) {
4696 		if (ext2_feature_set_ok(sb))
4697 			ext4_msg(sb, KERN_INFO, "mounting ext2 file system "
4698 				 "using the ext4 subsystem");
4699 		else {
4700 			/*
4701 			 * If we're probing be silent, if this looks like
4702 			 * it's actually an ext[34] filesystem.
4703 			 */
4704 			if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb)))
4705 				return -EINVAL;
4706 			ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due "
4707 				 "to feature incompatibilities");
4708 			return -EINVAL;
4709 		}
4710 	}
4711 
4712 	if (IS_EXT3_SB(sb)) {
4713 		if (ext3_feature_set_ok(sb))
4714 			ext4_msg(sb, KERN_INFO, "mounting ext3 file system "
4715 				 "using the ext4 subsystem");
4716 		else {
4717 			/*
4718 			 * If we're probing be silent, if this looks like
4719 			 * it's actually an ext4 filesystem.
4720 			 */
4721 			if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb)))
4722 				return -EINVAL;
4723 			ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due "
4724 				 "to feature incompatibilities");
4725 			return -EINVAL;
4726 		}
4727 	}
4728 
4729 	/*
4730 	 * Check feature flags regardless of the revision level, since we
4731 	 * previously didn't change the revision level when setting the flags,
4732 	 * so there is a chance incompat flags are set on a rev 0 filesystem.
4733 	 */
4734 	if (!ext4_feature_set_ok(sb, (sb_rdonly(sb))))
4735 		return -EINVAL;
4736 
4737 	if (sbi->s_daxdev) {
4738 		if (sb->s_blocksize == PAGE_SIZE)
4739 			set_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags);
4740 		else
4741 			ext4_msg(sb, KERN_ERR, "unsupported blocksize for DAX\n");
4742 	}
4743 
4744 	if (sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) {
4745 		if (ext4_has_feature_inline_data(sb)) {
4746 			ext4_msg(sb, KERN_ERR, "Cannot use DAX on a filesystem"
4747 					" that may contain inline data");
4748 			return -EINVAL;
4749 		}
4750 		if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags)) {
4751 			ext4_msg(sb, KERN_ERR,
4752 				"DAX unsupported by block device.");
4753 			return -EINVAL;
4754 		}
4755 	}
4756 
4757 	if (ext4_has_feature_encrypt(sb) && es->s_encryption_level) {
4758 		ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d",
4759 			 es->s_encryption_level);
4760 		return -EINVAL;
4761 	}
4762 
4763 	return 0;
4764 }
4765 
ext4_check_geometry(struct super_block * sb,struct ext4_super_block * es)4766 static int ext4_check_geometry(struct super_block *sb,
4767 			       struct ext4_super_block *es)
4768 {
4769 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4770 	__u64 blocks_count;
4771 	int err;
4772 
4773 	if (le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) > (sb->s_blocksize / 4)) {
4774 		ext4_msg(sb, KERN_ERR,
4775 			 "Number of reserved GDT blocks insanely large: %d",
4776 			 le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks));
4777 		return -EINVAL;
4778 	}
4779 	/*
4780 	 * Test whether we have more sectors than will fit in sector_t,
4781 	 * and whether the max offset is addressable by the page cache.
4782 	 */
4783 	err = generic_check_addressable(sb->s_blocksize_bits,
4784 					ext4_blocks_count(es));
4785 	if (err) {
4786 		ext4_msg(sb, KERN_ERR, "filesystem"
4787 			 " too large to mount safely on this system");
4788 		return err;
4789 	}
4790 
4791 	/* check blocks count against device size */
4792 	blocks_count = sb_bdev_nr_blocks(sb);
4793 	if (blocks_count && ext4_blocks_count(es) > blocks_count) {
4794 		ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu "
4795 		       "exceeds size of device (%llu blocks)",
4796 		       ext4_blocks_count(es), blocks_count);
4797 		return -EINVAL;
4798 	}
4799 
4800 	/*
4801 	 * It makes no sense for the first data block to be beyond the end
4802 	 * of the filesystem.
4803 	 */
4804 	if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) {
4805 		ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
4806 			 "block %u is beyond end of filesystem (%llu)",
4807 			 le32_to_cpu(es->s_first_data_block),
4808 			 ext4_blocks_count(es));
4809 		return -EINVAL;
4810 	}
4811 	if ((es->s_first_data_block == 0) && (es->s_log_block_size == 0) &&
4812 	    (sbi->s_cluster_ratio == 1)) {
4813 		ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
4814 			 "block is 0 with a 1k block and cluster size");
4815 		return -EINVAL;
4816 	}
4817 
4818 	blocks_count = (ext4_blocks_count(es) -
4819 			le32_to_cpu(es->s_first_data_block) +
4820 			EXT4_BLOCKS_PER_GROUP(sb) - 1);
4821 	do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb));
4822 	if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) {
4823 		ext4_msg(sb, KERN_WARNING, "groups count too large: %llu "
4824 		       "(block count %llu, first data block %u, "
4825 		       "blocks per group %lu)", blocks_count,
4826 		       ext4_blocks_count(es),
4827 		       le32_to_cpu(es->s_first_data_block),
4828 		       EXT4_BLOCKS_PER_GROUP(sb));
4829 		return -EINVAL;
4830 	}
4831 	sbi->s_groups_count = blocks_count;
4832 	sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count,
4833 			(EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb)));
4834 	if (((u64)sbi->s_groups_count * sbi->s_inodes_per_group) !=
4835 	    le32_to_cpu(es->s_inodes_count)) {
4836 		ext4_msg(sb, KERN_ERR, "inodes count not valid: %u vs %llu",
4837 			 le32_to_cpu(es->s_inodes_count),
4838 			 ((u64)sbi->s_groups_count * sbi->s_inodes_per_group));
4839 		return -EINVAL;
4840 	}
4841 
4842 	return 0;
4843 }
4844 
ext4_group_desc_init(struct super_block * sb,struct ext4_super_block * es,ext4_fsblk_t logical_sb_block,ext4_group_t * first_not_zeroed)4845 static int ext4_group_desc_init(struct super_block *sb,
4846 				struct ext4_super_block *es,
4847 				ext4_fsblk_t logical_sb_block,
4848 				ext4_group_t *first_not_zeroed)
4849 {
4850 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4851 	unsigned int db_count;
4852 	ext4_fsblk_t block;
4853 	int i;
4854 
4855 	db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) /
4856 		   EXT4_DESC_PER_BLOCK(sb);
4857 	if (ext4_has_feature_meta_bg(sb)) {
4858 		if (le32_to_cpu(es->s_first_meta_bg) > db_count) {
4859 			ext4_msg(sb, KERN_WARNING,
4860 				 "first meta block group too large: %u "
4861 				 "(group descriptor block count %u)",
4862 				 le32_to_cpu(es->s_first_meta_bg), db_count);
4863 			return -EINVAL;
4864 		}
4865 	}
4866 	rcu_assign_pointer(sbi->s_group_desc,
4867 			   kvmalloc_array(db_count,
4868 					  sizeof(struct buffer_head *),
4869 					  GFP_KERNEL));
4870 	if (sbi->s_group_desc == NULL) {
4871 		ext4_msg(sb, KERN_ERR, "not enough memory");
4872 		return -ENOMEM;
4873 	}
4874 
4875 	bgl_lock_init(sbi->s_blockgroup_lock);
4876 
4877 	/* Pre-read the descriptors into the buffer cache */
4878 	for (i = 0; i < db_count; i++) {
4879 		block = descriptor_loc(sb, logical_sb_block, i);
4880 		ext4_sb_breadahead_unmovable(sb, block);
4881 	}
4882 
4883 	for (i = 0; i < db_count; i++) {
4884 		struct buffer_head *bh;
4885 
4886 		block = descriptor_loc(sb, logical_sb_block, i);
4887 		bh = ext4_sb_bread_unmovable(sb, block);
4888 		if (IS_ERR(bh)) {
4889 			ext4_msg(sb, KERN_ERR,
4890 			       "can't read group descriptor %d", i);
4891 			sbi->s_gdb_count = i;
4892 			return PTR_ERR(bh);
4893 		}
4894 		rcu_read_lock();
4895 		rcu_dereference(sbi->s_group_desc)[i] = bh;
4896 		rcu_read_unlock();
4897 	}
4898 	sbi->s_gdb_count = db_count;
4899 	if (!ext4_check_descriptors(sb, logical_sb_block, first_not_zeroed)) {
4900 		ext4_msg(sb, KERN_ERR, "group descriptors corrupted!");
4901 		return -EFSCORRUPTED;
4902 	}
4903 
4904 	return 0;
4905 }
4906 
ext4_load_and_init_journal(struct super_block * sb,struct ext4_super_block * es,struct ext4_fs_context * ctx)4907 static int ext4_load_and_init_journal(struct super_block *sb,
4908 				      struct ext4_super_block *es,
4909 				      struct ext4_fs_context *ctx)
4910 {
4911 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4912 	int err;
4913 
4914 	err = ext4_load_journal(sb, es, ctx->journal_devnum);
4915 	if (err)
4916 		return err;
4917 
4918 	if (ext4_has_feature_64bit(sb) &&
4919 	    !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
4920 				       JBD2_FEATURE_INCOMPAT_64BIT)) {
4921 		ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature");
4922 		goto out;
4923 	}
4924 
4925 	if (!set_journal_csum_feature_set(sb)) {
4926 		ext4_msg(sb, KERN_ERR, "Failed to set journal checksum "
4927 			 "feature set");
4928 		goto out;
4929 	}
4930 
4931 	if (test_opt2(sb, JOURNAL_FAST_COMMIT) &&
4932 		!jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
4933 					  JBD2_FEATURE_INCOMPAT_FAST_COMMIT)) {
4934 		ext4_msg(sb, KERN_ERR,
4935 			"Failed to set fast commit journal feature");
4936 		goto out;
4937 	}
4938 
4939 	/* We have now updated the journal if required, so we can
4940 	 * validate the data journaling mode. */
4941 	switch (test_opt(sb, DATA_FLAGS)) {
4942 	case 0:
4943 		/* No mode set, assume a default based on the journal
4944 		 * capabilities: ORDERED_DATA if the journal can
4945 		 * cope, else JOURNAL_DATA
4946 		 */
4947 		if (jbd2_journal_check_available_features
4948 		    (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4949 			set_opt(sb, ORDERED_DATA);
4950 			sbi->s_def_mount_opt |= EXT4_MOUNT_ORDERED_DATA;
4951 		} else {
4952 			set_opt(sb, JOURNAL_DATA);
4953 			sbi->s_def_mount_opt |= EXT4_MOUNT_JOURNAL_DATA;
4954 		}
4955 		break;
4956 
4957 	case EXT4_MOUNT_ORDERED_DATA:
4958 	case EXT4_MOUNT_WRITEBACK_DATA:
4959 		if (!jbd2_journal_check_available_features
4960 		    (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4961 			ext4_msg(sb, KERN_ERR, "Journal does not support "
4962 			       "requested data journaling mode");
4963 			goto out;
4964 		}
4965 		break;
4966 	default:
4967 		break;
4968 	}
4969 
4970 	if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA &&
4971 	    test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4972 		ext4_msg(sb, KERN_ERR, "can't mount with "
4973 			"journal_async_commit in data=ordered mode");
4974 		goto out;
4975 	}
4976 
4977 	set_task_ioprio(sbi->s_journal->j_task, ctx->journal_ioprio);
4978 
4979 	sbi->s_journal->j_submit_inode_data_buffers =
4980 		ext4_journal_submit_inode_data_buffers;
4981 	sbi->s_journal->j_finish_inode_data_buffers =
4982 		ext4_journal_finish_inode_data_buffers;
4983 
4984 	return 0;
4985 
4986 out:
4987 	/* flush s_sb_upd_work before destroying the journal. */
4988 	flush_work(&sbi->s_sb_upd_work);
4989 	jbd2_journal_destroy(sbi->s_journal);
4990 	sbi->s_journal = NULL;
4991 	return -EINVAL;
4992 }
4993 
ext4_check_journal_data_mode(struct super_block * sb)4994 static int ext4_check_journal_data_mode(struct super_block *sb)
4995 {
4996 	if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
4997 		printk_once(KERN_WARNING "EXT4-fs: Warning: mounting with "
4998 			    "data=journal disables delayed allocation, "
4999 			    "dioread_nolock, O_DIRECT and fast_commit support!\n");
5000 		/* can't mount with both data=journal and dioread_nolock. */
5001 		clear_opt(sb, DIOREAD_NOLOCK);
5002 		clear_opt2(sb, JOURNAL_FAST_COMMIT);
5003 		if (test_opt2(sb, EXPLICIT_DELALLOC)) {
5004 			ext4_msg(sb, KERN_ERR, "can't mount with "
5005 				 "both data=journal and delalloc");
5006 			return -EINVAL;
5007 		}
5008 		if (test_opt(sb, DAX_ALWAYS)) {
5009 			ext4_msg(sb, KERN_ERR, "can't mount with "
5010 				 "both data=journal and dax");
5011 			return -EINVAL;
5012 		}
5013 		if (ext4_has_feature_encrypt(sb)) {
5014 			ext4_msg(sb, KERN_WARNING,
5015 				 "encrypted files will use data=ordered "
5016 				 "instead of data journaling mode");
5017 		}
5018 		if (test_opt(sb, DELALLOC))
5019 			clear_opt(sb, DELALLOC);
5020 	} else {
5021 		sb->s_iflags |= SB_I_CGROUPWB;
5022 	}
5023 
5024 	return 0;
5025 }
5026 
ext4_load_super(struct super_block * sb,ext4_fsblk_t * lsb,int silent)5027 static int ext4_load_super(struct super_block *sb, ext4_fsblk_t *lsb,
5028 			   int silent)
5029 {
5030 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5031 	struct ext4_super_block *es;
5032 	ext4_fsblk_t logical_sb_block;
5033 	unsigned long offset = 0;
5034 	struct buffer_head *bh;
5035 	int ret = -EINVAL;
5036 	int blocksize;
5037 
5038 	blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE);
5039 	if (!blocksize) {
5040 		ext4_msg(sb, KERN_ERR, "unable to set blocksize");
5041 		return -EINVAL;
5042 	}
5043 
5044 	/*
5045 	 * The ext4 superblock will not be buffer aligned for other than 1kB
5046 	 * block sizes.  We need to calculate the offset from buffer start.
5047 	 */
5048 	if (blocksize != EXT4_MIN_BLOCK_SIZE) {
5049 		logical_sb_block = sbi->s_sb_block * EXT4_MIN_BLOCK_SIZE;
5050 		offset = do_div(logical_sb_block, blocksize);
5051 	} else {
5052 		logical_sb_block = sbi->s_sb_block;
5053 	}
5054 
5055 	bh = ext4_sb_bread_unmovable(sb, logical_sb_block);
5056 	if (IS_ERR(bh)) {
5057 		ext4_msg(sb, KERN_ERR, "unable to read superblock");
5058 		return PTR_ERR(bh);
5059 	}
5060 	/*
5061 	 * Note: s_es must be initialized as soon as possible because
5062 	 *       some ext4 macro-instructions depend on its value
5063 	 */
5064 	es = (struct ext4_super_block *) (bh->b_data + offset);
5065 	sbi->s_es = es;
5066 	sb->s_magic = le16_to_cpu(es->s_magic);
5067 	if (sb->s_magic != EXT4_SUPER_MAGIC) {
5068 		if (!silent)
5069 			ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
5070 		goto out;
5071 	}
5072 
5073 	if (le32_to_cpu(es->s_log_block_size) >
5074 	    (EXT4_MAX_BLOCK_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
5075 		ext4_msg(sb, KERN_ERR,
5076 			 "Invalid log block size: %u",
5077 			 le32_to_cpu(es->s_log_block_size));
5078 		goto out;
5079 	}
5080 	if (le32_to_cpu(es->s_log_cluster_size) >
5081 	    (EXT4_MAX_CLUSTER_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
5082 		ext4_msg(sb, KERN_ERR,
5083 			 "Invalid log cluster size: %u",
5084 			 le32_to_cpu(es->s_log_cluster_size));
5085 		goto out;
5086 	}
5087 
5088 	blocksize = EXT4_MIN_BLOCK_SIZE << le32_to_cpu(es->s_log_block_size);
5089 
5090 	/*
5091 	 * If the default block size is not the same as the real block size,
5092 	 * we need to reload it.
5093 	 */
5094 	if (sb->s_blocksize == blocksize) {
5095 		*lsb = logical_sb_block;
5096 		sbi->s_sbh = bh;
5097 		return 0;
5098 	}
5099 
5100 	/*
5101 	 * bh must be released before kill_bdev(), otherwise
5102 	 * it won't be freed and its page also. kill_bdev()
5103 	 * is called by sb_set_blocksize().
5104 	 */
5105 	brelse(bh);
5106 	/* Validate the filesystem blocksize */
5107 	if (!sb_set_blocksize(sb, blocksize)) {
5108 		ext4_msg(sb, KERN_ERR, "bad block size %d",
5109 				blocksize);
5110 		bh = NULL;
5111 		goto out;
5112 	}
5113 
5114 	logical_sb_block = sbi->s_sb_block * EXT4_MIN_BLOCK_SIZE;
5115 	offset = do_div(logical_sb_block, blocksize);
5116 	bh = ext4_sb_bread_unmovable(sb, logical_sb_block);
5117 	if (IS_ERR(bh)) {
5118 		ext4_msg(sb, KERN_ERR, "Can't read superblock on 2nd try");
5119 		ret = PTR_ERR(bh);
5120 		bh = NULL;
5121 		goto out;
5122 	}
5123 	es = (struct ext4_super_block *)(bh->b_data + offset);
5124 	sbi->s_es = es;
5125 	if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) {
5126 		ext4_msg(sb, KERN_ERR, "Magic mismatch, very weird!");
5127 		goto out;
5128 	}
5129 	*lsb = logical_sb_block;
5130 	sbi->s_sbh = bh;
5131 	return 0;
5132 out:
5133 	brelse(bh);
5134 	return ret;
5135 }
5136 
ext4_hash_info_init(struct super_block * sb)5137 static int ext4_hash_info_init(struct super_block *sb)
5138 {
5139 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5140 	struct ext4_super_block *es = sbi->s_es;
5141 	unsigned int i;
5142 
5143 	sbi->s_def_hash_version = es->s_def_hash_version;
5144 
5145 	if (sbi->s_def_hash_version > DX_HASH_LAST) {
5146 		ext4_msg(sb, KERN_ERR,
5147 			 "Invalid default hash set in the superblock");
5148 		return -EINVAL;
5149 	} else if (sbi->s_def_hash_version == DX_HASH_SIPHASH) {
5150 		ext4_msg(sb, KERN_ERR,
5151 			 "SIPHASH is not a valid default hash value");
5152 		return -EINVAL;
5153 	}
5154 
5155 	for (i = 0; i < 4; i++)
5156 		sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]);
5157 
5158 	if (ext4_has_feature_dir_index(sb)) {
5159 		i = le32_to_cpu(es->s_flags);
5160 		if (i & EXT2_FLAGS_UNSIGNED_HASH)
5161 			sbi->s_hash_unsigned = 3;
5162 		else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) {
5163 #ifdef __CHAR_UNSIGNED__
5164 			if (!sb_rdonly(sb))
5165 				es->s_flags |=
5166 					cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH);
5167 			sbi->s_hash_unsigned = 3;
5168 #else
5169 			if (!sb_rdonly(sb))
5170 				es->s_flags |=
5171 					cpu_to_le32(EXT2_FLAGS_SIGNED_HASH);
5172 #endif
5173 		}
5174 	}
5175 	return 0;
5176 }
5177 
ext4_block_group_meta_init(struct super_block * sb,int silent)5178 static int ext4_block_group_meta_init(struct super_block *sb, int silent)
5179 {
5180 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5181 	struct ext4_super_block *es = sbi->s_es;
5182 	int has_huge_files;
5183 
5184 	has_huge_files = ext4_has_feature_huge_file(sb);
5185 	sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits,
5186 						      has_huge_files);
5187 	sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files);
5188 
5189 	sbi->s_desc_size = le16_to_cpu(es->s_desc_size);
5190 	if (ext4_has_feature_64bit(sb)) {
5191 		if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT ||
5192 		    sbi->s_desc_size > EXT4_MAX_DESC_SIZE ||
5193 		    !is_power_of_2(sbi->s_desc_size)) {
5194 			ext4_msg(sb, KERN_ERR,
5195 			       "unsupported descriptor size %lu",
5196 			       sbi->s_desc_size);
5197 			return -EINVAL;
5198 		}
5199 	} else
5200 		sbi->s_desc_size = EXT4_MIN_DESC_SIZE;
5201 
5202 	sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
5203 	sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
5204 
5205 	sbi->s_inodes_per_block = sb->s_blocksize / EXT4_INODE_SIZE(sb);
5206 	if (sbi->s_inodes_per_block == 0 || sbi->s_blocks_per_group == 0) {
5207 		if (!silent)
5208 			ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
5209 		return -EINVAL;
5210 	}
5211 	if (sbi->s_inodes_per_group < sbi->s_inodes_per_block ||
5212 	    sbi->s_inodes_per_group > sb->s_blocksize * 8) {
5213 		ext4_msg(sb, KERN_ERR, "invalid inodes per group: %lu\n",
5214 			 sbi->s_inodes_per_group);
5215 		return -EINVAL;
5216 	}
5217 	sbi->s_itb_per_group = sbi->s_inodes_per_group /
5218 					sbi->s_inodes_per_block;
5219 	sbi->s_desc_per_block = sb->s_blocksize / EXT4_DESC_SIZE(sb);
5220 	sbi->s_mount_state = le16_to_cpu(es->s_state) & ~EXT4_FC_REPLAY;
5221 	sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb));
5222 	sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb));
5223 
5224 	return 0;
5225 }
5226 
5227 /*
5228  * It's hard to get stripe aligned blocks if stripe is not aligned with
5229  * cluster, just disable stripe and alert user to simplify code and avoid
5230  * stripe aligned allocation which will rarely succeed.
5231  */
ext4_is_stripe_incompatible(struct super_block * sb,unsigned long stripe)5232 static bool ext4_is_stripe_incompatible(struct super_block *sb, unsigned long stripe)
5233 {
5234 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5235 	return (stripe > 0 && sbi->s_cluster_ratio > 1 &&
5236 		stripe % sbi->s_cluster_ratio != 0);
5237 }
5238 
__ext4_fill_super(struct fs_context * fc,struct super_block * sb)5239 static int __ext4_fill_super(struct fs_context *fc, struct super_block *sb)
5240 {
5241 	struct ext4_super_block *es = NULL;
5242 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5243 	ext4_fsblk_t logical_sb_block;
5244 	struct inode *root;
5245 	int needs_recovery;
5246 	int err;
5247 	ext4_group_t first_not_zeroed;
5248 	struct ext4_fs_context *ctx = fc->fs_private;
5249 	int silent = fc->sb_flags & SB_SILENT;
5250 
5251 	/* Set defaults for the variables that will be set during parsing */
5252 	if (!(ctx->spec & EXT4_SPEC_JOURNAL_IOPRIO))
5253 		ctx->journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
5254 
5255 	sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS;
5256 	sbi->s_sectors_written_start =
5257 		part_stat_read(sb->s_bdev, sectors[STAT_WRITE]);
5258 
5259 	err = ext4_load_super(sb, &logical_sb_block, silent);
5260 	if (err)
5261 		goto out_fail;
5262 
5263 	es = sbi->s_es;
5264 	sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written);
5265 
5266 	err = ext4_init_metadata_csum(sb, es);
5267 	if (err)
5268 		goto failed_mount;
5269 
5270 	ext4_set_def_opts(sb, es);
5271 
5272 	sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid));
5273 	sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid));
5274 	sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ;
5275 	sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME;
5276 	sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME;
5277 
5278 	/*
5279 	 * set default s_li_wait_mult for lazyinit, for the case there is
5280 	 * no mount option specified.
5281 	 */
5282 	sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
5283 
5284 	err = ext4_inode_info_init(sb, es);
5285 	if (err)
5286 		goto failed_mount;
5287 
5288 	err = parse_apply_sb_mount_options(sb, ctx);
5289 	if (err < 0)
5290 		goto failed_mount;
5291 
5292 	sbi->s_def_mount_opt = sbi->s_mount_opt;
5293 	sbi->s_def_mount_opt2 = sbi->s_mount_opt2;
5294 
5295 	err = ext4_check_opt_consistency(fc, sb);
5296 	if (err < 0)
5297 		goto failed_mount;
5298 
5299 	ext4_apply_options(fc, sb);
5300 
5301 	err = ext4_encoding_init(sb, es);
5302 	if (err)
5303 		goto failed_mount;
5304 
5305 	err = ext4_check_journal_data_mode(sb);
5306 	if (err)
5307 		goto failed_mount;
5308 
5309 	sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
5310 		(test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0);
5311 
5312 	/* i_version is always enabled now */
5313 	sb->s_flags |= SB_I_VERSION;
5314 
5315 	err = ext4_check_feature_compatibility(sb, es, silent);
5316 	if (err)
5317 		goto failed_mount;
5318 
5319 	err = ext4_block_group_meta_init(sb, silent);
5320 	if (err)
5321 		goto failed_mount;
5322 
5323 	err = ext4_hash_info_init(sb);
5324 	if (err)
5325 		goto failed_mount;
5326 
5327 	err = ext4_handle_clustersize(sb);
5328 	if (err)
5329 		goto failed_mount;
5330 
5331 	err = ext4_check_geometry(sb, es);
5332 	if (err)
5333 		goto failed_mount;
5334 
5335 	timer_setup(&sbi->s_err_report, print_daily_error_info, 0);
5336 	spin_lock_init(&sbi->s_error_lock);
5337 	INIT_WORK(&sbi->s_sb_upd_work, update_super_work);
5338 
5339 	err = ext4_group_desc_init(sb, es, logical_sb_block, &first_not_zeroed);
5340 	if (err)
5341 		goto failed_mount3;
5342 
5343 	err = ext4_es_register_shrinker(sbi);
5344 	if (err)
5345 		goto failed_mount3;
5346 
5347 	sbi->s_stripe = ext4_get_stripe_size(sbi);
5348 	if (ext4_is_stripe_incompatible(sb, sbi->s_stripe)) {
5349 		ext4_msg(sb, KERN_WARNING,
5350 			 "stripe (%lu) is not aligned with cluster size (%u), "
5351 			 "stripe is disabled",
5352 			 sbi->s_stripe, sbi->s_cluster_ratio);
5353 		sbi->s_stripe = 0;
5354 	}
5355 	sbi->s_extent_max_zeroout_kb = 32;
5356 
5357 	/*
5358 	 * set up enough so that it can read an inode
5359 	 */
5360 	sb->s_op = &ext4_sops;
5361 	sb->s_export_op = &ext4_export_ops;
5362 	sb->s_xattr = ext4_xattr_handlers;
5363 #ifdef CONFIG_FS_ENCRYPTION
5364 	sb->s_cop = &ext4_cryptops;
5365 #endif
5366 #ifdef CONFIG_FS_VERITY
5367 	sb->s_vop = &ext4_verityops;
5368 #endif
5369 #ifdef CONFIG_QUOTA
5370 	sb->dq_op = &ext4_quota_operations;
5371 	if (ext4_has_feature_quota(sb))
5372 		sb->s_qcop = &dquot_quotactl_sysfile_ops;
5373 	else
5374 		sb->s_qcop = &ext4_qctl_operations;
5375 	sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ;
5376 #endif
5377 	super_set_uuid(sb, es->s_uuid, sizeof(es->s_uuid));
5378 	super_set_sysfs_name_bdev(sb);
5379 
5380 	INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */
5381 	mutex_init(&sbi->s_orphan_lock);
5382 
5383 	spin_lock_init(&sbi->s_bdev_wb_lock);
5384 
5385 	ext4_atomic_write_init(sb);
5386 	ext4_fast_commit_init(sb);
5387 
5388 	sb->s_root = NULL;
5389 
5390 	needs_recovery = (es->s_last_orphan != 0 ||
5391 			  ext4_has_feature_orphan_present(sb) ||
5392 			  ext4_has_feature_journal_needs_recovery(sb));
5393 
5394 	if (ext4_has_feature_mmp(sb) && !sb_rdonly(sb)) {
5395 		err = ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block));
5396 		if (err)
5397 			goto failed_mount3a;
5398 	}
5399 
5400 	err = -EINVAL;
5401 	/*
5402 	 * The first inode we look at is the journal inode.  Don't try
5403 	 * root first: it may be modified in the journal!
5404 	 */
5405 	if (!test_opt(sb, NOLOAD) && ext4_has_feature_journal(sb)) {
5406 		err = ext4_load_and_init_journal(sb, es, ctx);
5407 		if (err)
5408 			goto failed_mount3a;
5409 	} else if (test_opt(sb, NOLOAD) && !sb_rdonly(sb) &&
5410 		   ext4_has_feature_journal_needs_recovery(sb)) {
5411 		ext4_msg(sb, KERN_ERR, "required journal recovery "
5412 		       "suppressed and not mounted read-only");
5413 		goto failed_mount3a;
5414 	} else {
5415 		/* Nojournal mode, all journal mount options are illegal */
5416 		if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
5417 			ext4_msg(sb, KERN_ERR, "can't mount with "
5418 				 "journal_async_commit, fs mounted w/o journal");
5419 			goto failed_mount3a;
5420 		}
5421 
5422 		if (test_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM)) {
5423 			ext4_msg(sb, KERN_ERR, "can't mount with "
5424 				 "journal_checksum, fs mounted w/o journal");
5425 			goto failed_mount3a;
5426 		}
5427 		if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) {
5428 			ext4_msg(sb, KERN_ERR, "can't mount with "
5429 				 "commit=%lu, fs mounted w/o journal",
5430 				 sbi->s_commit_interval / HZ);
5431 			goto failed_mount3a;
5432 		}
5433 		if (EXT4_MOUNT_DATA_FLAGS &
5434 		    (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) {
5435 			ext4_msg(sb, KERN_ERR, "can't mount with "
5436 				 "data=, fs mounted w/o journal");
5437 			goto failed_mount3a;
5438 		}
5439 		sbi->s_def_mount_opt &= ~EXT4_MOUNT_JOURNAL_CHECKSUM;
5440 		clear_opt(sb, JOURNAL_CHECKSUM);
5441 		clear_opt(sb, DATA_FLAGS);
5442 		clear_opt2(sb, JOURNAL_FAST_COMMIT);
5443 		sbi->s_journal = NULL;
5444 		needs_recovery = 0;
5445 	}
5446 
5447 	if (!test_opt(sb, NO_MBCACHE)) {
5448 		sbi->s_ea_block_cache = ext4_xattr_create_cache();
5449 		if (!sbi->s_ea_block_cache) {
5450 			ext4_msg(sb, KERN_ERR,
5451 				 "Failed to create ea_block_cache");
5452 			err = -EINVAL;
5453 			goto failed_mount_wq;
5454 		}
5455 
5456 		if (ext4_has_feature_ea_inode(sb)) {
5457 			sbi->s_ea_inode_cache = ext4_xattr_create_cache();
5458 			if (!sbi->s_ea_inode_cache) {
5459 				ext4_msg(sb, KERN_ERR,
5460 					 "Failed to create ea_inode_cache");
5461 				err = -EINVAL;
5462 				goto failed_mount_wq;
5463 			}
5464 		}
5465 	}
5466 
5467 	/*
5468 	 * Get the # of file system overhead blocks from the
5469 	 * superblock if present.
5470 	 */
5471 	sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters);
5472 	/* ignore the precalculated value if it is ridiculous */
5473 	if (sbi->s_overhead > ext4_blocks_count(es))
5474 		sbi->s_overhead = 0;
5475 	/*
5476 	 * If the bigalloc feature is not enabled recalculating the
5477 	 * overhead doesn't take long, so we might as well just redo
5478 	 * it to make sure we are using the correct value.
5479 	 */
5480 	if (!ext4_has_feature_bigalloc(sb))
5481 		sbi->s_overhead = 0;
5482 	if (sbi->s_overhead == 0) {
5483 		err = ext4_calculate_overhead(sb);
5484 		if (err)
5485 			goto failed_mount_wq;
5486 	}
5487 
5488 	/*
5489 	 * The maximum number of concurrent works can be high and
5490 	 * concurrency isn't really necessary.  Limit it to 1.
5491 	 */
5492 	EXT4_SB(sb)->rsv_conversion_wq =
5493 		alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
5494 	if (!EXT4_SB(sb)->rsv_conversion_wq) {
5495 		printk(KERN_ERR "EXT4-fs: failed to create workqueue\n");
5496 		err = -ENOMEM;
5497 		goto failed_mount4;
5498 	}
5499 
5500 	/*
5501 	 * The jbd2_journal_load will have done any necessary log recovery,
5502 	 * so we can safely mount the rest of the filesystem now.
5503 	 */
5504 
5505 	root = ext4_iget(sb, EXT4_ROOT_INO, EXT4_IGET_SPECIAL);
5506 	if (IS_ERR(root)) {
5507 		ext4_msg(sb, KERN_ERR, "get root inode failed");
5508 		err = PTR_ERR(root);
5509 		root = NULL;
5510 		goto failed_mount4;
5511 	}
5512 	if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
5513 		ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck");
5514 		iput(root);
5515 		err = -EFSCORRUPTED;
5516 		goto failed_mount4;
5517 	}
5518 
5519 	generic_set_sb_d_ops(sb);
5520 	sb->s_root = d_make_root(root);
5521 	if (!sb->s_root) {
5522 		ext4_msg(sb, KERN_ERR, "get root dentry failed");
5523 		err = -ENOMEM;
5524 		goto failed_mount4;
5525 	}
5526 
5527 	err = ext4_setup_super(sb, es, sb_rdonly(sb));
5528 	if (err == -EROFS) {
5529 		sb->s_flags |= SB_RDONLY;
5530 	} else if (err)
5531 		goto failed_mount4a;
5532 
5533 	ext4_set_resv_clusters(sb);
5534 
5535 	if (test_opt(sb, BLOCK_VALIDITY)) {
5536 		err = ext4_setup_system_zone(sb);
5537 		if (err) {
5538 			ext4_msg(sb, KERN_ERR, "failed to initialize system "
5539 				 "zone (%d)", err);
5540 			goto failed_mount4a;
5541 		}
5542 	}
5543 	ext4_fc_replay_cleanup(sb);
5544 
5545 	ext4_ext_init(sb);
5546 
5547 	/*
5548 	 * Enable optimize_scan if number of groups is > threshold. This can be
5549 	 * turned off by passing "mb_optimize_scan=0". This can also be
5550 	 * turned on forcefully by passing "mb_optimize_scan=1".
5551 	 */
5552 	if (!(ctx->spec & EXT4_SPEC_mb_optimize_scan)) {
5553 		if (sbi->s_groups_count >= MB_DEFAULT_LINEAR_SCAN_THRESHOLD)
5554 			set_opt2(sb, MB_OPTIMIZE_SCAN);
5555 		else
5556 			clear_opt2(sb, MB_OPTIMIZE_SCAN);
5557 	}
5558 
5559 	err = ext4_mb_init(sb);
5560 	if (err) {
5561 		ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)",
5562 			 err);
5563 		goto failed_mount5;
5564 	}
5565 
5566 	/*
5567 	 * We can only set up the journal commit callback once
5568 	 * mballoc is initialized
5569 	 */
5570 	if (sbi->s_journal)
5571 		sbi->s_journal->j_commit_callback =
5572 			ext4_journal_commit_callback;
5573 
5574 	err = ext4_percpu_param_init(sbi);
5575 	if (err)
5576 		goto failed_mount6;
5577 
5578 	if (ext4_has_feature_flex_bg(sb))
5579 		if (!ext4_fill_flex_info(sb)) {
5580 			ext4_msg(sb, KERN_ERR,
5581 			       "unable to initialize "
5582 			       "flex_bg meta info!");
5583 			err = -ENOMEM;
5584 			goto failed_mount6;
5585 		}
5586 
5587 	err = ext4_register_li_request(sb, first_not_zeroed);
5588 	if (err)
5589 		goto failed_mount6;
5590 
5591 	err = ext4_init_orphan_info(sb);
5592 	if (err)
5593 		goto failed_mount7;
5594 #ifdef CONFIG_QUOTA
5595 	/* Enable quota usage during mount. */
5596 	if (ext4_has_feature_quota(sb) && !sb_rdonly(sb)) {
5597 		err = ext4_enable_quotas(sb);
5598 		if (err)
5599 			goto failed_mount8;
5600 	}
5601 #endif  /* CONFIG_QUOTA */
5602 
5603 	/*
5604 	 * Save the original bdev mapping's wb_err value which could be
5605 	 * used to detect the metadata async write error.
5606 	 */
5607 	errseq_check_and_advance(&sb->s_bdev->bd_mapping->wb_err,
5608 				 &sbi->s_bdev_wb_err);
5609 	EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS;
5610 	ext4_orphan_cleanup(sb, es);
5611 	EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS;
5612 	/*
5613 	 * Update the checksum after updating free space/inode counters and
5614 	 * ext4_orphan_cleanup. Otherwise the superblock can have an incorrect
5615 	 * checksum in the buffer cache until it is written out and
5616 	 * e2fsprogs programs trying to open a file system immediately
5617 	 * after it is mounted can fail.
5618 	 */
5619 	ext4_superblock_csum_set(sb);
5620 	if (needs_recovery) {
5621 		ext4_msg(sb, KERN_INFO, "recovery complete");
5622 		err = ext4_mark_recovery_complete(sb, es);
5623 		if (err)
5624 			goto failed_mount9;
5625 	}
5626 
5627 	if (test_opt(sb, DISCARD) && !bdev_max_discard_sectors(sb->s_bdev))
5628 		ext4_msg(sb, KERN_WARNING,
5629 			 "mounting with \"discard\" option, but the device does not support discard");
5630 
5631 	if (es->s_error_count)
5632 		mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */
5633 
5634 	/* Enable message ratelimiting. Default is 10 messages per 5 secs. */
5635 	ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10);
5636 	ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10);
5637 	ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10);
5638 	atomic_set(&sbi->s_warning_count, 0);
5639 	atomic_set(&sbi->s_msg_count, 0);
5640 
5641 	/* Register sysfs after all initializations are complete. */
5642 	err = ext4_register_sysfs(sb);
5643 	if (err)
5644 		goto failed_mount9;
5645 
5646 	return 0;
5647 
5648 failed_mount9:
5649 	ext4_quotas_off(sb, EXT4_MAXQUOTAS);
5650 failed_mount8: __maybe_unused
5651 	ext4_release_orphan_info(sb);
5652 failed_mount7:
5653 	ext4_unregister_li_request(sb);
5654 failed_mount6:
5655 	ext4_mb_release(sb);
5656 	ext4_flex_groups_free(sbi);
5657 	ext4_percpu_param_destroy(sbi);
5658 failed_mount5:
5659 	ext4_ext_release(sb);
5660 	ext4_release_system_zone(sb);
5661 failed_mount4a:
5662 	dput(sb->s_root);
5663 	sb->s_root = NULL;
5664 failed_mount4:
5665 	ext4_msg(sb, KERN_ERR, "mount failed");
5666 	if (EXT4_SB(sb)->rsv_conversion_wq)
5667 		destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq);
5668 failed_mount_wq:
5669 	ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
5670 	sbi->s_ea_inode_cache = NULL;
5671 
5672 	ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
5673 	sbi->s_ea_block_cache = NULL;
5674 
5675 	if (sbi->s_journal) {
5676 		/* flush s_sb_upd_work before journal destroy. */
5677 		flush_work(&sbi->s_sb_upd_work);
5678 		jbd2_journal_destroy(sbi->s_journal);
5679 		sbi->s_journal = NULL;
5680 	}
5681 failed_mount3a:
5682 	ext4_es_unregister_shrinker(sbi);
5683 failed_mount3:
5684 	/* flush s_sb_upd_work before sbi destroy */
5685 	flush_work(&sbi->s_sb_upd_work);
5686 	ext4_stop_mmpd(sbi);
5687 	del_timer_sync(&sbi->s_err_report);
5688 	ext4_group_desc_free(sbi);
5689 failed_mount:
5690 	if (sbi->s_chksum_driver)
5691 		crypto_free_shash(sbi->s_chksum_driver);
5692 
5693 #if IS_ENABLED(CONFIG_UNICODE)
5694 	utf8_unload(sb->s_encoding);
5695 #endif
5696 
5697 #ifdef CONFIG_QUOTA
5698 	for (unsigned int i = 0; i < EXT4_MAXQUOTAS; i++)
5699 		kfree(get_qf_name(sb, sbi, i));
5700 #endif
5701 	fscrypt_free_dummy_policy(&sbi->s_dummy_enc_policy);
5702 	brelse(sbi->s_sbh);
5703 	if (sbi->s_journal_bdev_file) {
5704 		invalidate_bdev(file_bdev(sbi->s_journal_bdev_file));
5705 		bdev_fput(sbi->s_journal_bdev_file);
5706 	}
5707 out_fail:
5708 	invalidate_bdev(sb->s_bdev);
5709 	sb->s_fs_info = NULL;
5710 	return err;
5711 }
5712 
ext4_fill_super(struct super_block * sb,struct fs_context * fc)5713 static int ext4_fill_super(struct super_block *sb, struct fs_context *fc)
5714 {
5715 	struct ext4_fs_context *ctx = fc->fs_private;
5716 	struct ext4_sb_info *sbi;
5717 	const char *descr;
5718 	int ret;
5719 
5720 	sbi = ext4_alloc_sbi(sb);
5721 	if (!sbi)
5722 		return -ENOMEM;
5723 
5724 	fc->s_fs_info = sbi;
5725 
5726 	/* Cleanup superblock name */
5727 	strreplace(sb->s_id, '/', '!');
5728 
5729 	sbi->s_sb_block = 1;	/* Default super block location */
5730 	if (ctx->spec & EXT4_SPEC_s_sb_block)
5731 		sbi->s_sb_block = ctx->s_sb_block;
5732 
5733 	ret = __ext4_fill_super(fc, sb);
5734 	if (ret < 0)
5735 		goto free_sbi;
5736 
5737 	if (sbi->s_journal) {
5738 		if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
5739 			descr = " journalled data mode";
5740 		else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
5741 			descr = " ordered data mode";
5742 		else
5743 			descr = " writeback data mode";
5744 	} else
5745 		descr = "out journal";
5746 
5747 	if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs mount"))
5748 		ext4_msg(sb, KERN_INFO, "mounted filesystem %pU %s with%s. "
5749 			 "Quota mode: %s.", &sb->s_uuid,
5750 			 sb_rdonly(sb) ? "ro" : "r/w", descr,
5751 			 ext4_quota_mode(sb));
5752 
5753 	/* Update the s_overhead_clusters if necessary */
5754 	ext4_update_overhead(sb, false);
5755 	return 0;
5756 
5757 free_sbi:
5758 	ext4_free_sbi(sbi);
5759 	fc->s_fs_info = NULL;
5760 	return ret;
5761 }
5762 
ext4_get_tree(struct fs_context * fc)5763 static int ext4_get_tree(struct fs_context *fc)
5764 {
5765 	return get_tree_bdev(fc, ext4_fill_super);
5766 }
5767 
5768 /*
5769  * Setup any per-fs journal parameters now.  We'll do this both on
5770  * initial mount, once the journal has been initialised but before we've
5771  * done any recovery; and again on any subsequent remount.
5772  */
ext4_init_journal_params(struct super_block * sb,journal_t * journal)5773 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal)
5774 {
5775 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5776 
5777 	journal->j_commit_interval = sbi->s_commit_interval;
5778 	journal->j_min_batch_time = sbi->s_min_batch_time;
5779 	journal->j_max_batch_time = sbi->s_max_batch_time;
5780 	ext4_fc_init(sb, journal);
5781 
5782 	write_lock(&journal->j_state_lock);
5783 	if (test_opt(sb, BARRIER))
5784 		journal->j_flags |= JBD2_BARRIER;
5785 	else
5786 		journal->j_flags &= ~JBD2_BARRIER;
5787 	if (test_opt(sb, DATA_ERR_ABORT))
5788 		journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR;
5789 	else
5790 		journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR;
5791 	/*
5792 	 * Always enable journal cycle record option, letting the journal
5793 	 * records log transactions continuously between each mount.
5794 	 */
5795 	journal->j_flags |= JBD2_CYCLE_RECORD;
5796 	write_unlock(&journal->j_state_lock);
5797 }
5798 
ext4_get_journal_inode(struct super_block * sb,unsigned int journal_inum)5799 static struct inode *ext4_get_journal_inode(struct super_block *sb,
5800 					     unsigned int journal_inum)
5801 {
5802 	struct inode *journal_inode;
5803 
5804 	/*
5805 	 * Test for the existence of a valid inode on disk.  Bad things
5806 	 * happen if we iget() an unused inode, as the subsequent iput()
5807 	 * will try to delete it.
5808 	 */
5809 	journal_inode = ext4_iget(sb, journal_inum, EXT4_IGET_SPECIAL);
5810 	if (IS_ERR(journal_inode)) {
5811 		ext4_msg(sb, KERN_ERR, "no journal found");
5812 		return ERR_CAST(journal_inode);
5813 	}
5814 	if (!journal_inode->i_nlink) {
5815 		make_bad_inode(journal_inode);
5816 		iput(journal_inode);
5817 		ext4_msg(sb, KERN_ERR, "journal inode is deleted");
5818 		return ERR_PTR(-EFSCORRUPTED);
5819 	}
5820 	if (!S_ISREG(journal_inode->i_mode) || IS_ENCRYPTED(journal_inode)) {
5821 		ext4_msg(sb, KERN_ERR, "invalid journal inode");
5822 		iput(journal_inode);
5823 		return ERR_PTR(-EFSCORRUPTED);
5824 	}
5825 
5826 	ext4_debug("Journal inode found at %p: %lld bytes\n",
5827 		  journal_inode, journal_inode->i_size);
5828 	return journal_inode;
5829 }
5830 
ext4_journal_bmap(journal_t * journal,sector_t * block)5831 static int ext4_journal_bmap(journal_t *journal, sector_t *block)
5832 {
5833 	struct ext4_map_blocks map;
5834 	int ret;
5835 
5836 	if (journal->j_inode == NULL)
5837 		return 0;
5838 
5839 	map.m_lblk = *block;
5840 	map.m_len = 1;
5841 	ret = ext4_map_blocks(NULL, journal->j_inode, &map, 0);
5842 	if (ret <= 0) {
5843 		ext4_msg(journal->j_inode->i_sb, KERN_CRIT,
5844 			 "journal bmap failed: block %llu ret %d\n",
5845 			 *block, ret);
5846 		jbd2_journal_abort(journal, ret ? ret : -EIO);
5847 		return ret;
5848 	}
5849 	*block = map.m_pblk;
5850 	return 0;
5851 }
5852 
ext4_open_inode_journal(struct super_block * sb,unsigned int journal_inum)5853 static journal_t *ext4_open_inode_journal(struct super_block *sb,
5854 					  unsigned int journal_inum)
5855 {
5856 	struct inode *journal_inode;
5857 	journal_t *journal;
5858 
5859 	journal_inode = ext4_get_journal_inode(sb, journal_inum);
5860 	if (IS_ERR(journal_inode))
5861 		return ERR_CAST(journal_inode);
5862 
5863 	journal = jbd2_journal_init_inode(journal_inode);
5864 	if (IS_ERR(journal)) {
5865 		ext4_msg(sb, KERN_ERR, "Could not load journal inode");
5866 		iput(journal_inode);
5867 		return ERR_CAST(journal);
5868 	}
5869 	journal->j_private = sb;
5870 	journal->j_bmap = ext4_journal_bmap;
5871 	ext4_init_journal_params(sb, journal);
5872 	return journal;
5873 }
5874 
ext4_get_journal_blkdev(struct super_block * sb,dev_t j_dev,ext4_fsblk_t * j_start,ext4_fsblk_t * j_len)5875 static struct file *ext4_get_journal_blkdev(struct super_block *sb,
5876 					dev_t j_dev, ext4_fsblk_t *j_start,
5877 					ext4_fsblk_t *j_len)
5878 {
5879 	struct buffer_head *bh;
5880 	struct block_device *bdev;
5881 	struct file *bdev_file;
5882 	int hblock, blocksize;
5883 	ext4_fsblk_t sb_block;
5884 	unsigned long offset;
5885 	struct ext4_super_block *es;
5886 	int errno;
5887 
5888 	bdev_file = bdev_file_open_by_dev(j_dev,
5889 		BLK_OPEN_READ | BLK_OPEN_WRITE | BLK_OPEN_RESTRICT_WRITES,
5890 		sb, &fs_holder_ops);
5891 	if (IS_ERR(bdev_file)) {
5892 		ext4_msg(sb, KERN_ERR,
5893 			 "failed to open journal device unknown-block(%u,%u) %ld",
5894 			 MAJOR(j_dev), MINOR(j_dev), PTR_ERR(bdev_file));
5895 		return bdev_file;
5896 	}
5897 
5898 	bdev = file_bdev(bdev_file);
5899 	blocksize = sb->s_blocksize;
5900 	hblock = bdev_logical_block_size(bdev);
5901 	if (blocksize < hblock) {
5902 		ext4_msg(sb, KERN_ERR,
5903 			"blocksize too small for journal device");
5904 		errno = -EINVAL;
5905 		goto out_bdev;
5906 	}
5907 
5908 	sb_block = EXT4_MIN_BLOCK_SIZE / blocksize;
5909 	offset = EXT4_MIN_BLOCK_SIZE % blocksize;
5910 	set_blocksize(bdev_file, blocksize);
5911 	bh = __bread(bdev, sb_block, blocksize);
5912 	if (!bh) {
5913 		ext4_msg(sb, KERN_ERR, "couldn't read superblock of "
5914 		       "external journal");
5915 		errno = -EINVAL;
5916 		goto out_bdev;
5917 	}
5918 
5919 	es = (struct ext4_super_block *) (bh->b_data + offset);
5920 	if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) ||
5921 	    !(le32_to_cpu(es->s_feature_incompat) &
5922 	      EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) {
5923 		ext4_msg(sb, KERN_ERR, "external journal has bad superblock");
5924 		errno = -EFSCORRUPTED;
5925 		goto out_bh;
5926 	}
5927 
5928 	if ((le32_to_cpu(es->s_feature_ro_compat) &
5929 	     EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) &&
5930 	    es->s_checksum != ext4_superblock_csum(sb, es)) {
5931 		ext4_msg(sb, KERN_ERR, "external journal has corrupt superblock");
5932 		errno = -EFSCORRUPTED;
5933 		goto out_bh;
5934 	}
5935 
5936 	if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) {
5937 		ext4_msg(sb, KERN_ERR, "journal UUID does not match");
5938 		errno = -EFSCORRUPTED;
5939 		goto out_bh;
5940 	}
5941 
5942 	*j_start = sb_block + 1;
5943 	*j_len = ext4_blocks_count(es);
5944 	brelse(bh);
5945 	return bdev_file;
5946 
5947 out_bh:
5948 	brelse(bh);
5949 out_bdev:
5950 	bdev_fput(bdev_file);
5951 	return ERR_PTR(errno);
5952 }
5953 
ext4_open_dev_journal(struct super_block * sb,dev_t j_dev)5954 static journal_t *ext4_open_dev_journal(struct super_block *sb,
5955 					dev_t j_dev)
5956 {
5957 	journal_t *journal;
5958 	ext4_fsblk_t j_start;
5959 	ext4_fsblk_t j_len;
5960 	struct file *bdev_file;
5961 	int errno = 0;
5962 
5963 	bdev_file = ext4_get_journal_blkdev(sb, j_dev, &j_start, &j_len);
5964 	if (IS_ERR(bdev_file))
5965 		return ERR_CAST(bdev_file);
5966 
5967 	journal = jbd2_journal_init_dev(file_bdev(bdev_file), sb->s_bdev, j_start,
5968 					j_len, sb->s_blocksize);
5969 	if (IS_ERR(journal)) {
5970 		ext4_msg(sb, KERN_ERR, "failed to create device journal");
5971 		errno = PTR_ERR(journal);
5972 		goto out_bdev;
5973 	}
5974 	if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) {
5975 		ext4_msg(sb, KERN_ERR, "External journal has more than one "
5976 					"user (unsupported) - %d",
5977 			be32_to_cpu(journal->j_superblock->s_nr_users));
5978 		errno = -EINVAL;
5979 		goto out_journal;
5980 	}
5981 	journal->j_private = sb;
5982 	EXT4_SB(sb)->s_journal_bdev_file = bdev_file;
5983 	ext4_init_journal_params(sb, journal);
5984 	return journal;
5985 
5986 out_journal:
5987 	jbd2_journal_destroy(journal);
5988 out_bdev:
5989 	bdev_fput(bdev_file);
5990 	return ERR_PTR(errno);
5991 }
5992 
ext4_load_journal(struct super_block * sb,struct ext4_super_block * es,unsigned long journal_devnum)5993 static int ext4_load_journal(struct super_block *sb,
5994 			     struct ext4_super_block *es,
5995 			     unsigned long journal_devnum)
5996 {
5997 	journal_t *journal;
5998 	unsigned int journal_inum = le32_to_cpu(es->s_journal_inum);
5999 	dev_t journal_dev;
6000 	int err = 0;
6001 	int really_read_only;
6002 	int journal_dev_ro;
6003 
6004 	if (WARN_ON_ONCE(!ext4_has_feature_journal(sb)))
6005 		return -EFSCORRUPTED;
6006 
6007 	if (journal_devnum &&
6008 	    journal_devnum != le32_to_cpu(es->s_journal_dev)) {
6009 		ext4_msg(sb, KERN_INFO, "external journal device major/minor "
6010 			"numbers have changed");
6011 		journal_dev = new_decode_dev(journal_devnum);
6012 	} else
6013 		journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev));
6014 
6015 	if (journal_inum && journal_dev) {
6016 		ext4_msg(sb, KERN_ERR,
6017 			 "filesystem has both journal inode and journal device!");
6018 		return -EINVAL;
6019 	}
6020 
6021 	if (journal_inum) {
6022 		journal = ext4_open_inode_journal(sb, journal_inum);
6023 		if (IS_ERR(journal))
6024 			return PTR_ERR(journal);
6025 	} else {
6026 		journal = ext4_open_dev_journal(sb, journal_dev);
6027 		if (IS_ERR(journal))
6028 			return PTR_ERR(journal);
6029 	}
6030 
6031 	journal_dev_ro = bdev_read_only(journal->j_dev);
6032 	really_read_only = bdev_read_only(sb->s_bdev) | journal_dev_ro;
6033 
6034 	if (journal_dev_ro && !sb_rdonly(sb)) {
6035 		ext4_msg(sb, KERN_ERR,
6036 			 "journal device read-only, try mounting with '-o ro'");
6037 		err = -EROFS;
6038 		goto err_out;
6039 	}
6040 
6041 	/*
6042 	 * Are we loading a blank journal or performing recovery after a
6043 	 * crash?  For recovery, we need to check in advance whether we
6044 	 * can get read-write access to the device.
6045 	 */
6046 	if (ext4_has_feature_journal_needs_recovery(sb)) {
6047 		if (sb_rdonly(sb)) {
6048 			ext4_msg(sb, KERN_INFO, "INFO: recovery "
6049 					"required on readonly filesystem");
6050 			if (really_read_only) {
6051 				ext4_msg(sb, KERN_ERR, "write access "
6052 					"unavailable, cannot proceed "
6053 					"(try mounting with noload)");
6054 				err = -EROFS;
6055 				goto err_out;
6056 			}
6057 			ext4_msg(sb, KERN_INFO, "write access will "
6058 			       "be enabled during recovery");
6059 		}
6060 	}
6061 
6062 	if (!(journal->j_flags & JBD2_BARRIER))
6063 		ext4_msg(sb, KERN_INFO, "barriers disabled");
6064 
6065 	if (!ext4_has_feature_journal_needs_recovery(sb))
6066 		err = jbd2_journal_wipe(journal, !really_read_only);
6067 	if (!err) {
6068 		char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL);
6069 		__le16 orig_state;
6070 		bool changed = false;
6071 
6072 		if (save)
6073 			memcpy(save, ((char *) es) +
6074 			       EXT4_S_ERR_START, EXT4_S_ERR_LEN);
6075 		err = jbd2_journal_load(journal);
6076 		if (save && memcmp(((char *) es) + EXT4_S_ERR_START,
6077 				   save, EXT4_S_ERR_LEN)) {
6078 			memcpy(((char *) es) + EXT4_S_ERR_START,
6079 			       save, EXT4_S_ERR_LEN);
6080 			changed = true;
6081 		}
6082 		kfree(save);
6083 		orig_state = es->s_state;
6084 		es->s_state |= cpu_to_le16(EXT4_SB(sb)->s_mount_state &
6085 					   EXT4_ERROR_FS);
6086 		if (orig_state != es->s_state)
6087 			changed = true;
6088 		/* Write out restored error information to the superblock */
6089 		if (changed && !really_read_only) {
6090 			int err2;
6091 			err2 = ext4_commit_super(sb);
6092 			err = err ? : err2;
6093 		}
6094 	}
6095 
6096 	if (err) {
6097 		ext4_msg(sb, KERN_ERR, "error loading journal");
6098 		goto err_out;
6099 	}
6100 
6101 	EXT4_SB(sb)->s_journal = journal;
6102 	err = ext4_clear_journal_err(sb, es);
6103 	if (err) {
6104 		EXT4_SB(sb)->s_journal = NULL;
6105 		jbd2_journal_destroy(journal);
6106 		return err;
6107 	}
6108 
6109 	if (!really_read_only && journal_devnum &&
6110 	    journal_devnum != le32_to_cpu(es->s_journal_dev)) {
6111 		es->s_journal_dev = cpu_to_le32(journal_devnum);
6112 		ext4_commit_super(sb);
6113 	}
6114 	if (!really_read_only && journal_inum &&
6115 	    journal_inum != le32_to_cpu(es->s_journal_inum)) {
6116 		es->s_journal_inum = cpu_to_le32(journal_inum);
6117 		ext4_commit_super(sb);
6118 	}
6119 
6120 	return 0;
6121 
6122 err_out:
6123 	jbd2_journal_destroy(journal);
6124 	return err;
6125 }
6126 
6127 /* Copy state of EXT4_SB(sb) into buffer for on-disk superblock */
ext4_update_super(struct super_block * sb)6128 static void ext4_update_super(struct super_block *sb)
6129 {
6130 	struct ext4_sb_info *sbi = EXT4_SB(sb);
6131 	struct ext4_super_block *es = sbi->s_es;
6132 	struct buffer_head *sbh = sbi->s_sbh;
6133 
6134 	lock_buffer(sbh);
6135 	/*
6136 	 * If the file system is mounted read-only, don't update the
6137 	 * superblock write time.  This avoids updating the superblock
6138 	 * write time when we are mounting the root file system
6139 	 * read/only but we need to replay the journal; at that point,
6140 	 * for people who are east of GMT and who make their clock
6141 	 * tick in localtime for Windows bug-for-bug compatibility,
6142 	 * the clock is set in the future, and this will cause e2fsck
6143 	 * to complain and force a full file system check.
6144 	 */
6145 	if (!sb_rdonly(sb))
6146 		ext4_update_tstamp(es, s_wtime);
6147 	es->s_kbytes_written =
6148 		cpu_to_le64(sbi->s_kbytes_written +
6149 		    ((part_stat_read(sb->s_bdev, sectors[STAT_WRITE]) -
6150 		      sbi->s_sectors_written_start) >> 1));
6151 	if (percpu_counter_initialized(&sbi->s_freeclusters_counter))
6152 		ext4_free_blocks_count_set(es,
6153 			EXT4_C2B(sbi, percpu_counter_sum_positive(
6154 				&sbi->s_freeclusters_counter)));
6155 	if (percpu_counter_initialized(&sbi->s_freeinodes_counter))
6156 		es->s_free_inodes_count =
6157 			cpu_to_le32(percpu_counter_sum_positive(
6158 				&sbi->s_freeinodes_counter));
6159 	/* Copy error information to the on-disk superblock */
6160 	spin_lock(&sbi->s_error_lock);
6161 	if (sbi->s_add_error_count > 0) {
6162 		es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
6163 		if (!es->s_first_error_time && !es->s_first_error_time_hi) {
6164 			__ext4_update_tstamp(&es->s_first_error_time,
6165 					     &es->s_first_error_time_hi,
6166 					     sbi->s_first_error_time);
6167 			strtomem_pad(es->s_first_error_func,
6168 				     sbi->s_first_error_func, 0);
6169 			es->s_first_error_line =
6170 				cpu_to_le32(sbi->s_first_error_line);
6171 			es->s_first_error_ino =
6172 				cpu_to_le32(sbi->s_first_error_ino);
6173 			es->s_first_error_block =
6174 				cpu_to_le64(sbi->s_first_error_block);
6175 			es->s_first_error_errcode =
6176 				ext4_errno_to_code(sbi->s_first_error_code);
6177 		}
6178 		__ext4_update_tstamp(&es->s_last_error_time,
6179 				     &es->s_last_error_time_hi,
6180 				     sbi->s_last_error_time);
6181 		strtomem_pad(es->s_last_error_func, sbi->s_last_error_func, 0);
6182 		es->s_last_error_line = cpu_to_le32(sbi->s_last_error_line);
6183 		es->s_last_error_ino = cpu_to_le32(sbi->s_last_error_ino);
6184 		es->s_last_error_block = cpu_to_le64(sbi->s_last_error_block);
6185 		es->s_last_error_errcode =
6186 				ext4_errno_to_code(sbi->s_last_error_code);
6187 		/*
6188 		 * Start the daily error reporting function if it hasn't been
6189 		 * started already
6190 		 */
6191 		if (!es->s_error_count)
6192 			mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ);
6193 		le32_add_cpu(&es->s_error_count, sbi->s_add_error_count);
6194 		sbi->s_add_error_count = 0;
6195 	}
6196 	spin_unlock(&sbi->s_error_lock);
6197 
6198 	ext4_superblock_csum_set(sb);
6199 	unlock_buffer(sbh);
6200 }
6201 
ext4_commit_super(struct super_block * sb)6202 static int ext4_commit_super(struct super_block *sb)
6203 {
6204 	struct buffer_head *sbh = EXT4_SB(sb)->s_sbh;
6205 
6206 	if (!sbh)
6207 		return -EINVAL;
6208 
6209 	ext4_update_super(sb);
6210 
6211 	lock_buffer(sbh);
6212 	/* Buffer got discarded which means block device got invalidated */
6213 	if (!buffer_mapped(sbh)) {
6214 		unlock_buffer(sbh);
6215 		return -EIO;
6216 	}
6217 
6218 	if (buffer_write_io_error(sbh) || !buffer_uptodate(sbh)) {
6219 		/*
6220 		 * Oh, dear.  A previous attempt to write the
6221 		 * superblock failed.  This could happen because the
6222 		 * USB device was yanked out.  Or it could happen to
6223 		 * be a transient write error and maybe the block will
6224 		 * be remapped.  Nothing we can do but to retry the
6225 		 * write and hope for the best.
6226 		 */
6227 		ext4_msg(sb, KERN_ERR, "previous I/O error to "
6228 		       "superblock detected");
6229 		clear_buffer_write_io_error(sbh);
6230 		set_buffer_uptodate(sbh);
6231 	}
6232 	get_bh(sbh);
6233 	/* Clear potential dirty bit if it was journalled update */
6234 	clear_buffer_dirty(sbh);
6235 	sbh->b_end_io = end_buffer_write_sync;
6236 	submit_bh(REQ_OP_WRITE | REQ_SYNC |
6237 		  (test_opt(sb, BARRIER) ? REQ_FUA : 0), sbh);
6238 	wait_on_buffer(sbh);
6239 	if (buffer_write_io_error(sbh)) {
6240 		ext4_msg(sb, KERN_ERR, "I/O error while writing "
6241 		       "superblock");
6242 		clear_buffer_write_io_error(sbh);
6243 		set_buffer_uptodate(sbh);
6244 		return -EIO;
6245 	}
6246 	return 0;
6247 }
6248 
6249 /*
6250  * Have we just finished recovery?  If so, and if we are mounting (or
6251  * remounting) the filesystem readonly, then we will end up with a
6252  * consistent fs on disk.  Record that fact.
6253  */
ext4_mark_recovery_complete(struct super_block * sb,struct ext4_super_block * es)6254 static int ext4_mark_recovery_complete(struct super_block *sb,
6255 				       struct ext4_super_block *es)
6256 {
6257 	int err;
6258 	journal_t *journal = EXT4_SB(sb)->s_journal;
6259 
6260 	if (!ext4_has_feature_journal(sb)) {
6261 		if (journal != NULL) {
6262 			ext4_error(sb, "Journal got removed while the fs was "
6263 				   "mounted!");
6264 			return -EFSCORRUPTED;
6265 		}
6266 		return 0;
6267 	}
6268 	jbd2_journal_lock_updates(journal);
6269 	err = jbd2_journal_flush(journal, 0);
6270 	if (err < 0)
6271 		goto out;
6272 
6273 	if (sb_rdonly(sb) && (ext4_has_feature_journal_needs_recovery(sb) ||
6274 	    ext4_has_feature_orphan_present(sb))) {
6275 		if (!ext4_orphan_file_empty(sb)) {
6276 			ext4_error(sb, "Orphan file not empty on read-only fs.");
6277 			err = -EFSCORRUPTED;
6278 			goto out;
6279 		}
6280 		ext4_clear_feature_journal_needs_recovery(sb);
6281 		ext4_clear_feature_orphan_present(sb);
6282 		ext4_commit_super(sb);
6283 	}
6284 out:
6285 	jbd2_journal_unlock_updates(journal);
6286 	return err;
6287 }
6288 
6289 /*
6290  * If we are mounting (or read-write remounting) a filesystem whose journal
6291  * has recorded an error from a previous lifetime, move that error to the
6292  * main filesystem now.
6293  */
ext4_clear_journal_err(struct super_block * sb,struct ext4_super_block * es)6294 static int ext4_clear_journal_err(struct super_block *sb,
6295 				   struct ext4_super_block *es)
6296 {
6297 	journal_t *journal;
6298 	int j_errno;
6299 	const char *errstr;
6300 
6301 	if (!ext4_has_feature_journal(sb)) {
6302 		ext4_error(sb, "Journal got removed while the fs was mounted!");
6303 		return -EFSCORRUPTED;
6304 	}
6305 
6306 	journal = EXT4_SB(sb)->s_journal;
6307 
6308 	/*
6309 	 * Now check for any error status which may have been recorded in the
6310 	 * journal by a prior ext4_error() or ext4_abort()
6311 	 */
6312 
6313 	j_errno = jbd2_journal_errno(journal);
6314 	if (j_errno) {
6315 		char nbuf[16];
6316 
6317 		errstr = ext4_decode_error(sb, j_errno, nbuf);
6318 		ext4_warning(sb, "Filesystem error recorded "
6319 			     "from previous mount: %s", errstr);
6320 
6321 		EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
6322 		es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
6323 		j_errno = ext4_commit_super(sb);
6324 		if (j_errno)
6325 			return j_errno;
6326 		ext4_warning(sb, "Marked fs in need of filesystem check.");
6327 
6328 		jbd2_journal_clear_err(journal);
6329 		jbd2_journal_update_sb_errno(journal);
6330 	}
6331 	return 0;
6332 }
6333 
6334 /*
6335  * Force the running and committing transactions to commit,
6336  * and wait on the commit.
6337  */
ext4_force_commit(struct super_block * sb)6338 int ext4_force_commit(struct super_block *sb)
6339 {
6340 	return ext4_journal_force_commit(EXT4_SB(sb)->s_journal);
6341 }
6342 
ext4_sync_fs(struct super_block * sb,int wait)6343 static int ext4_sync_fs(struct super_block *sb, int wait)
6344 {
6345 	int ret = 0;
6346 	tid_t target;
6347 	bool needs_barrier = false;
6348 	struct ext4_sb_info *sbi = EXT4_SB(sb);
6349 
6350 	if (unlikely(ext4_forced_shutdown(sb)))
6351 		return -EIO;
6352 
6353 	trace_ext4_sync_fs(sb, wait);
6354 	flush_workqueue(sbi->rsv_conversion_wq);
6355 	/*
6356 	 * Writeback quota in non-journalled quota case - journalled quota has
6357 	 * no dirty dquots
6358 	 */
6359 	dquot_writeback_dquots(sb, -1);
6360 	/*
6361 	 * Data writeback is possible w/o journal transaction, so barrier must
6362 	 * being sent at the end of the function. But we can skip it if
6363 	 * transaction_commit will do it for us.
6364 	 */
6365 	if (sbi->s_journal) {
6366 		target = jbd2_get_latest_transaction(sbi->s_journal);
6367 		if (wait && sbi->s_journal->j_flags & JBD2_BARRIER &&
6368 		    !jbd2_trans_will_send_data_barrier(sbi->s_journal, target))
6369 			needs_barrier = true;
6370 
6371 		if (jbd2_journal_start_commit(sbi->s_journal, &target)) {
6372 			if (wait)
6373 				ret = jbd2_log_wait_commit(sbi->s_journal,
6374 							   target);
6375 		}
6376 	} else if (wait && test_opt(sb, BARRIER))
6377 		needs_barrier = true;
6378 	if (needs_barrier) {
6379 		int err;
6380 		err = blkdev_issue_flush(sb->s_bdev);
6381 		if (!ret)
6382 			ret = err;
6383 	}
6384 
6385 	return ret;
6386 }
6387 
6388 /*
6389  * LVM calls this function before a (read-only) snapshot is created.  This
6390  * gives us a chance to flush the journal completely and mark the fs clean.
6391  *
6392  * Note that only this function cannot bring a filesystem to be in a clean
6393  * state independently. It relies on upper layer to stop all data & metadata
6394  * modifications.
6395  */
ext4_freeze(struct super_block * sb)6396 static int ext4_freeze(struct super_block *sb)
6397 {
6398 	int error = 0;
6399 	journal_t *journal = EXT4_SB(sb)->s_journal;
6400 
6401 	if (journal) {
6402 		/* Now we set up the journal barrier. */
6403 		jbd2_journal_lock_updates(journal);
6404 
6405 		/*
6406 		 * Don't clear the needs_recovery flag if we failed to
6407 		 * flush the journal.
6408 		 */
6409 		error = jbd2_journal_flush(journal, 0);
6410 		if (error < 0)
6411 			goto out;
6412 
6413 		/* Journal blocked and flushed, clear needs_recovery flag. */
6414 		ext4_clear_feature_journal_needs_recovery(sb);
6415 		if (ext4_orphan_file_empty(sb))
6416 			ext4_clear_feature_orphan_present(sb);
6417 	}
6418 
6419 	error = ext4_commit_super(sb);
6420 out:
6421 	if (journal)
6422 		/* we rely on upper layer to stop further updates */
6423 		jbd2_journal_unlock_updates(journal);
6424 	return error;
6425 }
6426 
6427 /*
6428  * Called by LVM after the snapshot is done.  We need to reset the RECOVER
6429  * flag here, even though the filesystem is not technically dirty yet.
6430  */
ext4_unfreeze(struct super_block * sb)6431 static int ext4_unfreeze(struct super_block *sb)
6432 {
6433 	if (ext4_forced_shutdown(sb))
6434 		return 0;
6435 
6436 	if (EXT4_SB(sb)->s_journal) {
6437 		/* Reset the needs_recovery flag before the fs is unlocked. */
6438 		ext4_set_feature_journal_needs_recovery(sb);
6439 		if (ext4_has_feature_orphan_file(sb))
6440 			ext4_set_feature_orphan_present(sb);
6441 	}
6442 
6443 	ext4_commit_super(sb);
6444 	return 0;
6445 }
6446 
6447 /*
6448  * Structure to save mount options for ext4_remount's benefit
6449  */
6450 struct ext4_mount_options {
6451 	unsigned long s_mount_opt;
6452 	unsigned long s_mount_opt2;
6453 	kuid_t s_resuid;
6454 	kgid_t s_resgid;
6455 	unsigned long s_commit_interval;
6456 	u32 s_min_batch_time, s_max_batch_time;
6457 #ifdef CONFIG_QUOTA
6458 	int s_jquota_fmt;
6459 	char *s_qf_names[EXT4_MAXQUOTAS];
6460 #endif
6461 };
6462 
__ext4_remount(struct fs_context * fc,struct super_block * sb)6463 static int __ext4_remount(struct fs_context *fc, struct super_block *sb)
6464 {
6465 	struct ext4_fs_context *ctx = fc->fs_private;
6466 	struct ext4_super_block *es;
6467 	struct ext4_sb_info *sbi = EXT4_SB(sb);
6468 	unsigned long old_sb_flags;
6469 	struct ext4_mount_options old_opts;
6470 	ext4_group_t g;
6471 	int err = 0;
6472 	int alloc_ctx;
6473 #ifdef CONFIG_QUOTA
6474 	int enable_quota = 0;
6475 	int i, j;
6476 	char *to_free[EXT4_MAXQUOTAS];
6477 #endif
6478 
6479 
6480 	/* Store the original options */
6481 	old_sb_flags = sb->s_flags;
6482 	old_opts.s_mount_opt = sbi->s_mount_opt;
6483 	old_opts.s_mount_opt2 = sbi->s_mount_opt2;
6484 	old_opts.s_resuid = sbi->s_resuid;
6485 	old_opts.s_resgid = sbi->s_resgid;
6486 	old_opts.s_commit_interval = sbi->s_commit_interval;
6487 	old_opts.s_min_batch_time = sbi->s_min_batch_time;
6488 	old_opts.s_max_batch_time = sbi->s_max_batch_time;
6489 #ifdef CONFIG_QUOTA
6490 	old_opts.s_jquota_fmt = sbi->s_jquota_fmt;
6491 	for (i = 0; i < EXT4_MAXQUOTAS; i++)
6492 		if (sbi->s_qf_names[i]) {
6493 			char *qf_name = get_qf_name(sb, sbi, i);
6494 
6495 			old_opts.s_qf_names[i] = kstrdup(qf_name, GFP_KERNEL);
6496 			if (!old_opts.s_qf_names[i]) {
6497 				for (j = 0; j < i; j++)
6498 					kfree(old_opts.s_qf_names[j]);
6499 				return -ENOMEM;
6500 			}
6501 		} else
6502 			old_opts.s_qf_names[i] = NULL;
6503 #endif
6504 	if (!(ctx->spec & EXT4_SPEC_JOURNAL_IOPRIO)) {
6505 		if (sbi->s_journal && sbi->s_journal->j_task->io_context)
6506 			ctx->journal_ioprio =
6507 				sbi->s_journal->j_task->io_context->ioprio;
6508 		else
6509 			ctx->journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
6510 
6511 	}
6512 
6513 	if ((ctx->spec & EXT4_SPEC_s_stripe) &&
6514 	    ext4_is_stripe_incompatible(sb, ctx->s_stripe)) {
6515 		ext4_msg(sb, KERN_WARNING,
6516 			 "stripe (%lu) is not aligned with cluster size (%u), "
6517 			 "stripe is disabled",
6518 			 ctx->s_stripe, sbi->s_cluster_ratio);
6519 		ctx->s_stripe = 0;
6520 	}
6521 
6522 	/*
6523 	 * Changing the DIOREAD_NOLOCK or DELALLOC mount options may cause
6524 	 * two calls to ext4_should_dioread_nolock() to return inconsistent
6525 	 * values, triggering WARN_ON in ext4_add_complete_io(). we grab
6526 	 * here s_writepages_rwsem to avoid race between writepages ops and
6527 	 * remount.
6528 	 */
6529 	alloc_ctx = ext4_writepages_down_write(sb);
6530 	ext4_apply_options(fc, sb);
6531 	ext4_writepages_up_write(sb, alloc_ctx);
6532 
6533 	if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^
6534 	    test_opt(sb, JOURNAL_CHECKSUM)) {
6535 		ext4_msg(sb, KERN_ERR, "changing journal_checksum "
6536 			 "during remount not supported; ignoring");
6537 		sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM;
6538 	}
6539 
6540 	if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
6541 		if (test_opt2(sb, EXPLICIT_DELALLOC)) {
6542 			ext4_msg(sb, KERN_ERR, "can't mount with "
6543 				 "both data=journal and delalloc");
6544 			err = -EINVAL;
6545 			goto restore_opts;
6546 		}
6547 		if (test_opt(sb, DIOREAD_NOLOCK)) {
6548 			ext4_msg(sb, KERN_ERR, "can't mount with "
6549 				 "both data=journal and dioread_nolock");
6550 			err = -EINVAL;
6551 			goto restore_opts;
6552 		}
6553 	} else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) {
6554 		if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
6555 			ext4_msg(sb, KERN_ERR, "can't mount with "
6556 				"journal_async_commit in data=ordered mode");
6557 			err = -EINVAL;
6558 			goto restore_opts;
6559 		}
6560 	}
6561 
6562 	if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_NO_MBCACHE) {
6563 		ext4_msg(sb, KERN_ERR, "can't enable nombcache during remount");
6564 		err = -EINVAL;
6565 		goto restore_opts;
6566 	}
6567 
6568 	if ((old_opts.s_mount_opt & EXT4_MOUNT_DELALLOC) &&
6569 	    !test_opt(sb, DELALLOC)) {
6570 		ext4_msg(sb, KERN_ERR, "can't disable delalloc during remount");
6571 		err = -EINVAL;
6572 		goto restore_opts;
6573 	}
6574 
6575 	sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
6576 		(test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0);
6577 
6578 	es = sbi->s_es;
6579 
6580 	if (sbi->s_journal) {
6581 		ext4_init_journal_params(sb, sbi->s_journal);
6582 		set_task_ioprio(sbi->s_journal->j_task, ctx->journal_ioprio);
6583 	}
6584 
6585 	/* Flush outstanding errors before changing fs state */
6586 	flush_work(&sbi->s_sb_upd_work);
6587 
6588 	if ((bool)(fc->sb_flags & SB_RDONLY) != sb_rdonly(sb)) {
6589 		if (ext4_forced_shutdown(sb)) {
6590 			err = -EROFS;
6591 			goto restore_opts;
6592 		}
6593 
6594 		if (fc->sb_flags & SB_RDONLY) {
6595 			err = sync_filesystem(sb);
6596 			if (err < 0)
6597 				goto restore_opts;
6598 			err = dquot_suspend(sb, -1);
6599 			if (err < 0)
6600 				goto restore_opts;
6601 
6602 			/*
6603 			 * First of all, the unconditional stuff we have to do
6604 			 * to disable replay of the journal when we next remount
6605 			 */
6606 			sb->s_flags |= SB_RDONLY;
6607 
6608 			/*
6609 			 * OK, test if we are remounting a valid rw partition
6610 			 * readonly, and if so set the rdonly flag and then
6611 			 * mark the partition as valid again.
6612 			 */
6613 			if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) &&
6614 			    (sbi->s_mount_state & EXT4_VALID_FS))
6615 				es->s_state = cpu_to_le16(sbi->s_mount_state);
6616 
6617 			if (sbi->s_journal) {
6618 				/*
6619 				 * We let remount-ro finish even if marking fs
6620 				 * as clean failed...
6621 				 */
6622 				ext4_mark_recovery_complete(sb, es);
6623 			}
6624 		} else {
6625 			/* Make sure we can mount this feature set readwrite */
6626 			if (ext4_has_feature_readonly(sb) ||
6627 			    !ext4_feature_set_ok(sb, 0)) {
6628 				err = -EROFS;
6629 				goto restore_opts;
6630 			}
6631 			/*
6632 			 * Make sure the group descriptor checksums
6633 			 * are sane.  If they aren't, refuse to remount r/w.
6634 			 */
6635 			for (g = 0; g < sbi->s_groups_count; g++) {
6636 				struct ext4_group_desc *gdp =
6637 					ext4_get_group_desc(sb, g, NULL);
6638 
6639 				if (!ext4_group_desc_csum_verify(sb, g, gdp)) {
6640 					ext4_msg(sb, KERN_ERR,
6641 	       "ext4_remount: Checksum for group %u failed (%u!=%u)",
6642 		g, le16_to_cpu(ext4_group_desc_csum(sb, g, gdp)),
6643 					       le16_to_cpu(gdp->bg_checksum));
6644 					err = -EFSBADCRC;
6645 					goto restore_opts;
6646 				}
6647 			}
6648 
6649 			/*
6650 			 * If we have an unprocessed orphan list hanging
6651 			 * around from a previously readonly bdev mount,
6652 			 * require a full umount/remount for now.
6653 			 */
6654 			if (es->s_last_orphan || !ext4_orphan_file_empty(sb)) {
6655 				ext4_msg(sb, KERN_WARNING, "Couldn't "
6656 				       "remount RDWR because of unprocessed "
6657 				       "orphan inode list.  Please "
6658 				       "umount/remount instead");
6659 				err = -EINVAL;
6660 				goto restore_opts;
6661 			}
6662 
6663 			/*
6664 			 * Mounting a RDONLY partition read-write, so reread
6665 			 * and store the current valid flag.  (It may have
6666 			 * been changed by e2fsck since we originally mounted
6667 			 * the partition.)
6668 			 */
6669 			if (sbi->s_journal) {
6670 				err = ext4_clear_journal_err(sb, es);
6671 				if (err)
6672 					goto restore_opts;
6673 			}
6674 			sbi->s_mount_state = (le16_to_cpu(es->s_state) &
6675 					      ~EXT4_FC_REPLAY);
6676 
6677 			err = ext4_setup_super(sb, es, 0);
6678 			if (err)
6679 				goto restore_opts;
6680 
6681 			sb->s_flags &= ~SB_RDONLY;
6682 			if (ext4_has_feature_mmp(sb)) {
6683 				err = ext4_multi_mount_protect(sb,
6684 						le64_to_cpu(es->s_mmp_block));
6685 				if (err)
6686 					goto restore_opts;
6687 			}
6688 #ifdef CONFIG_QUOTA
6689 			enable_quota = 1;
6690 #endif
6691 		}
6692 	}
6693 
6694 	/*
6695 	 * Handle creation of system zone data early because it can fail.
6696 	 * Releasing of existing data is done when we are sure remount will
6697 	 * succeed.
6698 	 */
6699 	if (test_opt(sb, BLOCK_VALIDITY) && !sbi->s_system_blks) {
6700 		err = ext4_setup_system_zone(sb);
6701 		if (err)
6702 			goto restore_opts;
6703 	}
6704 
6705 	if (sbi->s_journal == NULL && !(old_sb_flags & SB_RDONLY)) {
6706 		err = ext4_commit_super(sb);
6707 		if (err)
6708 			goto restore_opts;
6709 	}
6710 
6711 #ifdef CONFIG_QUOTA
6712 	if (enable_quota) {
6713 		if (sb_any_quota_suspended(sb))
6714 			dquot_resume(sb, -1);
6715 		else if (ext4_has_feature_quota(sb)) {
6716 			err = ext4_enable_quotas(sb);
6717 			if (err)
6718 				goto restore_opts;
6719 		}
6720 	}
6721 	/* Release old quota file names */
6722 	for (i = 0; i < EXT4_MAXQUOTAS; i++)
6723 		kfree(old_opts.s_qf_names[i]);
6724 #endif
6725 	if (!test_opt(sb, BLOCK_VALIDITY) && sbi->s_system_blks)
6726 		ext4_release_system_zone(sb);
6727 
6728 	/*
6729 	 * Reinitialize lazy itable initialization thread based on
6730 	 * current settings
6731 	 */
6732 	if (sb_rdonly(sb) || !test_opt(sb, INIT_INODE_TABLE))
6733 		ext4_unregister_li_request(sb);
6734 	else {
6735 		ext4_group_t first_not_zeroed;
6736 		first_not_zeroed = ext4_has_uninit_itable(sb);
6737 		ext4_register_li_request(sb, first_not_zeroed);
6738 	}
6739 
6740 	if (!ext4_has_feature_mmp(sb) || sb_rdonly(sb))
6741 		ext4_stop_mmpd(sbi);
6742 
6743 	/*
6744 	 * Handle aborting the filesystem as the last thing during remount to
6745 	 * avoid obsure errors during remount when some option changes fail to
6746 	 * apply due to shutdown filesystem.
6747 	 */
6748 	if (test_opt2(sb, ABORT))
6749 		ext4_abort(sb, ESHUTDOWN, "Abort forced by user");
6750 
6751 	return 0;
6752 
6753 restore_opts:
6754 	/*
6755 	 * If there was a failing r/w to ro transition, we may need to
6756 	 * re-enable quota
6757 	 */
6758 	if (sb_rdonly(sb) && !(old_sb_flags & SB_RDONLY) &&
6759 	    sb_any_quota_suspended(sb))
6760 		dquot_resume(sb, -1);
6761 
6762 	alloc_ctx = ext4_writepages_down_write(sb);
6763 	sb->s_flags = old_sb_flags;
6764 	sbi->s_mount_opt = old_opts.s_mount_opt;
6765 	sbi->s_mount_opt2 = old_opts.s_mount_opt2;
6766 	sbi->s_resuid = old_opts.s_resuid;
6767 	sbi->s_resgid = old_opts.s_resgid;
6768 	sbi->s_commit_interval = old_opts.s_commit_interval;
6769 	sbi->s_min_batch_time = old_opts.s_min_batch_time;
6770 	sbi->s_max_batch_time = old_opts.s_max_batch_time;
6771 	ext4_writepages_up_write(sb, alloc_ctx);
6772 
6773 	if (!test_opt(sb, BLOCK_VALIDITY) && sbi->s_system_blks)
6774 		ext4_release_system_zone(sb);
6775 #ifdef CONFIG_QUOTA
6776 	sbi->s_jquota_fmt = old_opts.s_jquota_fmt;
6777 	for (i = 0; i < EXT4_MAXQUOTAS; i++) {
6778 		to_free[i] = get_qf_name(sb, sbi, i);
6779 		rcu_assign_pointer(sbi->s_qf_names[i], old_opts.s_qf_names[i]);
6780 	}
6781 	synchronize_rcu();
6782 	for (i = 0; i < EXT4_MAXQUOTAS; i++)
6783 		kfree(to_free[i]);
6784 #endif
6785 	if (!ext4_has_feature_mmp(sb) || sb_rdonly(sb))
6786 		ext4_stop_mmpd(sbi);
6787 	return err;
6788 }
6789 
ext4_reconfigure(struct fs_context * fc)6790 static int ext4_reconfigure(struct fs_context *fc)
6791 {
6792 	struct super_block *sb = fc->root->d_sb;
6793 	int ret;
6794 
6795 	fc->s_fs_info = EXT4_SB(sb);
6796 
6797 	ret = ext4_check_opt_consistency(fc, sb);
6798 	if (ret < 0)
6799 		return ret;
6800 
6801 	ret = __ext4_remount(fc, sb);
6802 	if (ret < 0)
6803 		return ret;
6804 
6805 	ext4_msg(sb, KERN_INFO, "re-mounted %pU %s. Quota mode: %s.",
6806 		 &sb->s_uuid, sb_rdonly(sb) ? "ro" : "r/w",
6807 		 ext4_quota_mode(sb));
6808 
6809 	return 0;
6810 }
6811 
6812 #ifdef CONFIG_QUOTA
ext4_statfs_project(struct super_block * sb,kprojid_t projid,struct kstatfs * buf)6813 static int ext4_statfs_project(struct super_block *sb,
6814 			       kprojid_t projid, struct kstatfs *buf)
6815 {
6816 	struct kqid qid;
6817 	struct dquot *dquot;
6818 	u64 limit;
6819 	u64 curblock;
6820 
6821 	qid = make_kqid_projid(projid);
6822 	dquot = dqget(sb, qid);
6823 	if (IS_ERR(dquot))
6824 		return PTR_ERR(dquot);
6825 	spin_lock(&dquot->dq_dqb_lock);
6826 
6827 	limit = min_not_zero(dquot->dq_dqb.dqb_bsoftlimit,
6828 			     dquot->dq_dqb.dqb_bhardlimit);
6829 	limit >>= sb->s_blocksize_bits;
6830 
6831 	if (limit && buf->f_blocks > limit) {
6832 		curblock = (dquot->dq_dqb.dqb_curspace +
6833 			    dquot->dq_dqb.dqb_rsvspace) >> sb->s_blocksize_bits;
6834 		buf->f_blocks = limit;
6835 		buf->f_bfree = buf->f_bavail =
6836 			(buf->f_blocks > curblock) ?
6837 			 (buf->f_blocks - curblock) : 0;
6838 	}
6839 
6840 	limit = min_not_zero(dquot->dq_dqb.dqb_isoftlimit,
6841 			     dquot->dq_dqb.dqb_ihardlimit);
6842 	if (limit && buf->f_files > limit) {
6843 		buf->f_files = limit;
6844 		buf->f_ffree =
6845 			(buf->f_files > dquot->dq_dqb.dqb_curinodes) ?
6846 			 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0;
6847 	}
6848 
6849 	spin_unlock(&dquot->dq_dqb_lock);
6850 	dqput(dquot);
6851 	return 0;
6852 }
6853 #endif
6854 
ext4_statfs(struct dentry * dentry,struct kstatfs * buf)6855 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf)
6856 {
6857 	struct super_block *sb = dentry->d_sb;
6858 	struct ext4_sb_info *sbi = EXT4_SB(sb);
6859 	struct ext4_super_block *es = sbi->s_es;
6860 	ext4_fsblk_t overhead = 0, resv_blocks;
6861 	s64 bfree;
6862 	resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters));
6863 
6864 	if (!test_opt(sb, MINIX_DF))
6865 		overhead = sbi->s_overhead;
6866 
6867 	buf->f_type = EXT4_SUPER_MAGIC;
6868 	buf->f_bsize = sb->s_blocksize;
6869 	buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead);
6870 	bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) -
6871 		percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter);
6872 	/* prevent underflow in case that few free space is available */
6873 	buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0));
6874 	buf->f_bavail = buf->f_bfree -
6875 			(ext4_r_blocks_count(es) + resv_blocks);
6876 	if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks))
6877 		buf->f_bavail = 0;
6878 	buf->f_files = le32_to_cpu(es->s_inodes_count);
6879 	buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter);
6880 	buf->f_namelen = EXT4_NAME_LEN;
6881 	buf->f_fsid = uuid_to_fsid(es->s_uuid);
6882 
6883 #ifdef CONFIG_QUOTA
6884 	if (ext4_test_inode_flag(dentry->d_inode, EXT4_INODE_PROJINHERIT) &&
6885 	    sb_has_quota_limits_enabled(sb, PRJQUOTA))
6886 		ext4_statfs_project(sb, EXT4_I(dentry->d_inode)->i_projid, buf);
6887 #endif
6888 	return 0;
6889 }
6890 
6891 
6892 #ifdef CONFIG_QUOTA
6893 
6894 /*
6895  * Helper functions so that transaction is started before we acquire dqio_sem
6896  * to keep correct lock ordering of transaction > dqio_sem
6897  */
dquot_to_inode(struct dquot * dquot)6898 static inline struct inode *dquot_to_inode(struct dquot *dquot)
6899 {
6900 	return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type];
6901 }
6902 
ext4_write_dquot(struct dquot * dquot)6903 static int ext4_write_dquot(struct dquot *dquot)
6904 {
6905 	int ret, err;
6906 	handle_t *handle;
6907 	struct inode *inode;
6908 
6909 	inode = dquot_to_inode(dquot);
6910 	handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
6911 				    EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb));
6912 	if (IS_ERR(handle))
6913 		return PTR_ERR(handle);
6914 	ret = dquot_commit(dquot);
6915 	if (ret < 0)
6916 		ext4_error_err(dquot->dq_sb, -ret,
6917 			       "Failed to commit dquot type %d",
6918 			       dquot->dq_id.type);
6919 	err = ext4_journal_stop(handle);
6920 	if (!ret)
6921 		ret = err;
6922 	return ret;
6923 }
6924 
ext4_acquire_dquot(struct dquot * dquot)6925 static int ext4_acquire_dquot(struct dquot *dquot)
6926 {
6927 	int ret, err;
6928 	handle_t *handle;
6929 
6930 	handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
6931 				    EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb));
6932 	if (IS_ERR(handle))
6933 		return PTR_ERR(handle);
6934 	ret = dquot_acquire(dquot);
6935 	if (ret < 0)
6936 		ext4_error_err(dquot->dq_sb, -ret,
6937 			      "Failed to acquire dquot type %d",
6938 			      dquot->dq_id.type);
6939 	err = ext4_journal_stop(handle);
6940 	if (!ret)
6941 		ret = err;
6942 	return ret;
6943 }
6944 
ext4_release_dquot(struct dquot * dquot)6945 static int ext4_release_dquot(struct dquot *dquot)
6946 {
6947 	int ret, err;
6948 	handle_t *handle;
6949 
6950 	handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
6951 				    EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb));
6952 	if (IS_ERR(handle)) {
6953 		/* Release dquot anyway to avoid endless cycle in dqput() */
6954 		dquot_release(dquot);
6955 		return PTR_ERR(handle);
6956 	}
6957 	ret = dquot_release(dquot);
6958 	if (ret < 0)
6959 		ext4_error_err(dquot->dq_sb, -ret,
6960 			       "Failed to release dquot type %d",
6961 			       dquot->dq_id.type);
6962 	err = ext4_journal_stop(handle);
6963 	if (!ret)
6964 		ret = err;
6965 	return ret;
6966 }
6967 
ext4_mark_dquot_dirty(struct dquot * dquot)6968 static int ext4_mark_dquot_dirty(struct dquot *dquot)
6969 {
6970 	struct super_block *sb = dquot->dq_sb;
6971 
6972 	if (ext4_is_quota_journalled(sb)) {
6973 		dquot_mark_dquot_dirty(dquot);
6974 		return ext4_write_dquot(dquot);
6975 	} else {
6976 		return dquot_mark_dquot_dirty(dquot);
6977 	}
6978 }
6979 
ext4_write_info(struct super_block * sb,int type)6980 static int ext4_write_info(struct super_block *sb, int type)
6981 {
6982 	int ret, err;
6983 	handle_t *handle;
6984 
6985 	/* Data block + inode block */
6986 	handle = ext4_journal_start_sb(sb, EXT4_HT_QUOTA, 2);
6987 	if (IS_ERR(handle))
6988 		return PTR_ERR(handle);
6989 	ret = dquot_commit_info(sb, type);
6990 	err = ext4_journal_stop(handle);
6991 	if (!ret)
6992 		ret = err;
6993 	return ret;
6994 }
6995 
lockdep_set_quota_inode(struct inode * inode,int subclass)6996 static void lockdep_set_quota_inode(struct inode *inode, int subclass)
6997 {
6998 	struct ext4_inode_info *ei = EXT4_I(inode);
6999 
7000 	/* The first argument of lockdep_set_subclass has to be
7001 	 * *exactly* the same as the argument to init_rwsem() --- in
7002 	 * this case, in init_once() --- or lockdep gets unhappy
7003 	 * because the name of the lock is set using the
7004 	 * stringification of the argument to init_rwsem().
7005 	 */
7006 	(void) ei;	/* shut up clang warning if !CONFIG_LOCKDEP */
7007 	lockdep_set_subclass(&ei->i_data_sem, subclass);
7008 }
7009 
7010 /*
7011  * Standard function to be called on quota_on
7012  */
ext4_quota_on(struct super_block * sb,int type,int format_id,const struct path * path)7013 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
7014 			 const struct path *path)
7015 {
7016 	int err;
7017 
7018 	if (!test_opt(sb, QUOTA))
7019 		return -EINVAL;
7020 
7021 	/* Quotafile not on the same filesystem? */
7022 	if (path->dentry->d_sb != sb)
7023 		return -EXDEV;
7024 
7025 	/* Quota already enabled for this file? */
7026 	if (IS_NOQUOTA(d_inode(path->dentry)))
7027 		return -EBUSY;
7028 
7029 	/* Journaling quota? */
7030 	if (EXT4_SB(sb)->s_qf_names[type]) {
7031 		/* Quotafile not in fs root? */
7032 		if (path->dentry->d_parent != sb->s_root)
7033 			ext4_msg(sb, KERN_WARNING,
7034 				"Quota file not on filesystem root. "
7035 				"Journaled quota will not work");
7036 		sb_dqopt(sb)->flags |= DQUOT_NOLIST_DIRTY;
7037 	} else {
7038 		/*
7039 		 * Clear the flag just in case mount options changed since
7040 		 * last time.
7041 		 */
7042 		sb_dqopt(sb)->flags &= ~DQUOT_NOLIST_DIRTY;
7043 	}
7044 
7045 	lockdep_set_quota_inode(path->dentry->d_inode, I_DATA_SEM_QUOTA);
7046 	err = dquot_quota_on(sb, type, format_id, path);
7047 	if (!err) {
7048 		struct inode *inode = d_inode(path->dentry);
7049 		handle_t *handle;
7050 
7051 		/*
7052 		 * Set inode flags to prevent userspace from messing with quota
7053 		 * files. If this fails, we return success anyway since quotas
7054 		 * are already enabled and this is not a hard failure.
7055 		 */
7056 		inode_lock(inode);
7057 		handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
7058 		if (IS_ERR(handle))
7059 			goto unlock_inode;
7060 		EXT4_I(inode)->i_flags |= EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL;
7061 		inode_set_flags(inode, S_NOATIME | S_IMMUTABLE,
7062 				S_NOATIME | S_IMMUTABLE);
7063 		err = ext4_mark_inode_dirty(handle, inode);
7064 		ext4_journal_stop(handle);
7065 	unlock_inode:
7066 		inode_unlock(inode);
7067 		if (err)
7068 			dquot_quota_off(sb, type);
7069 	}
7070 	if (err)
7071 		lockdep_set_quota_inode(path->dentry->d_inode,
7072 					     I_DATA_SEM_NORMAL);
7073 	return err;
7074 }
7075 
ext4_check_quota_inum(int type,unsigned long qf_inum)7076 static inline bool ext4_check_quota_inum(int type, unsigned long qf_inum)
7077 {
7078 	switch (type) {
7079 	case USRQUOTA:
7080 		return qf_inum == EXT4_USR_QUOTA_INO;
7081 	case GRPQUOTA:
7082 		return qf_inum == EXT4_GRP_QUOTA_INO;
7083 	case PRJQUOTA:
7084 		return qf_inum >= EXT4_GOOD_OLD_FIRST_INO;
7085 	default:
7086 		BUG();
7087 	}
7088 }
7089 
ext4_quota_enable(struct super_block * sb,int type,int format_id,unsigned int flags)7090 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
7091 			     unsigned int flags)
7092 {
7093 	int err;
7094 	struct inode *qf_inode;
7095 	unsigned long qf_inums[EXT4_MAXQUOTAS] = {
7096 		le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
7097 		le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
7098 		le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
7099 	};
7100 
7101 	BUG_ON(!ext4_has_feature_quota(sb));
7102 
7103 	if (!qf_inums[type])
7104 		return -EPERM;
7105 
7106 	if (!ext4_check_quota_inum(type, qf_inums[type])) {
7107 		ext4_error(sb, "Bad quota inum: %lu, type: %d",
7108 				qf_inums[type], type);
7109 		return -EUCLEAN;
7110 	}
7111 
7112 	qf_inode = ext4_iget(sb, qf_inums[type], EXT4_IGET_SPECIAL);
7113 	if (IS_ERR(qf_inode)) {
7114 		ext4_error(sb, "Bad quota inode: %lu, type: %d",
7115 				qf_inums[type], type);
7116 		return PTR_ERR(qf_inode);
7117 	}
7118 
7119 	/* Don't account quota for quota files to avoid recursion */
7120 	qf_inode->i_flags |= S_NOQUOTA;
7121 	lockdep_set_quota_inode(qf_inode, I_DATA_SEM_QUOTA);
7122 	err = dquot_load_quota_inode(qf_inode, type, format_id, flags);
7123 	if (err)
7124 		lockdep_set_quota_inode(qf_inode, I_DATA_SEM_NORMAL);
7125 	iput(qf_inode);
7126 
7127 	return err;
7128 }
7129 
7130 /* Enable usage tracking for all quota types. */
ext4_enable_quotas(struct super_block * sb)7131 int ext4_enable_quotas(struct super_block *sb)
7132 {
7133 	int type, err = 0;
7134 	unsigned long qf_inums[EXT4_MAXQUOTAS] = {
7135 		le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
7136 		le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
7137 		le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
7138 	};
7139 	bool quota_mopt[EXT4_MAXQUOTAS] = {
7140 		test_opt(sb, USRQUOTA),
7141 		test_opt(sb, GRPQUOTA),
7142 		test_opt(sb, PRJQUOTA),
7143 	};
7144 
7145 	sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY;
7146 	for (type = 0; type < EXT4_MAXQUOTAS; type++) {
7147 		if (qf_inums[type]) {
7148 			err = ext4_quota_enable(sb, type, QFMT_VFS_V1,
7149 				DQUOT_USAGE_ENABLED |
7150 				(quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0));
7151 			if (err) {
7152 				ext4_warning(sb,
7153 					"Failed to enable quota tracking "
7154 					"(type=%d, err=%d, ino=%lu). "
7155 					"Please run e2fsck to fix.", type,
7156 					err, qf_inums[type]);
7157 
7158 				ext4_quotas_off(sb, type);
7159 				return err;
7160 			}
7161 		}
7162 	}
7163 	return 0;
7164 }
7165 
ext4_quota_off(struct super_block * sb,int type)7166 static int ext4_quota_off(struct super_block *sb, int type)
7167 {
7168 	struct inode *inode = sb_dqopt(sb)->files[type];
7169 	handle_t *handle;
7170 	int err;
7171 
7172 	/* Force all delayed allocation blocks to be allocated.
7173 	 * Caller already holds s_umount sem */
7174 	if (test_opt(sb, DELALLOC))
7175 		sync_filesystem(sb);
7176 
7177 	if (!inode || !igrab(inode))
7178 		goto out;
7179 
7180 	err = dquot_quota_off(sb, type);
7181 	if (err || ext4_has_feature_quota(sb))
7182 		goto out_put;
7183 	/*
7184 	 * When the filesystem was remounted read-only first, we cannot cleanup
7185 	 * inode flags here. Bad luck but people should be using QUOTA feature
7186 	 * these days anyway.
7187 	 */
7188 	if (sb_rdonly(sb))
7189 		goto out_put;
7190 
7191 	inode_lock(inode);
7192 	/*
7193 	 * Update modification times of quota files when userspace can
7194 	 * start looking at them. If we fail, we return success anyway since
7195 	 * this is not a hard failure and quotas are already disabled.
7196 	 */
7197 	handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
7198 	if (IS_ERR(handle)) {
7199 		err = PTR_ERR(handle);
7200 		goto out_unlock;
7201 	}
7202 	EXT4_I(inode)->i_flags &= ~(EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL);
7203 	inode_set_flags(inode, 0, S_NOATIME | S_IMMUTABLE);
7204 	inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
7205 	err = ext4_mark_inode_dirty(handle, inode);
7206 	ext4_journal_stop(handle);
7207 out_unlock:
7208 	inode_unlock(inode);
7209 out_put:
7210 	lockdep_set_quota_inode(inode, I_DATA_SEM_NORMAL);
7211 	iput(inode);
7212 	return err;
7213 out:
7214 	return dquot_quota_off(sb, type);
7215 }
7216 
7217 /* Read data from quotafile - avoid pagecache and such because we cannot afford
7218  * acquiring the locks... As quota files are never truncated and quota code
7219  * itself serializes the operations (and no one else should touch the files)
7220  * we don't have to be afraid of races */
ext4_quota_read(struct super_block * sb,int type,char * data,size_t len,loff_t off)7221 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
7222 			       size_t len, loff_t off)
7223 {
7224 	struct inode *inode = sb_dqopt(sb)->files[type];
7225 	ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
7226 	int offset = off & (sb->s_blocksize - 1);
7227 	int tocopy;
7228 	size_t toread;
7229 	struct buffer_head *bh;
7230 	loff_t i_size = i_size_read(inode);
7231 
7232 	if (off > i_size)
7233 		return 0;
7234 	if (off+len > i_size)
7235 		len = i_size-off;
7236 	toread = len;
7237 	while (toread > 0) {
7238 		tocopy = min_t(unsigned long, sb->s_blocksize - offset, toread);
7239 		bh = ext4_bread(NULL, inode, blk, 0);
7240 		if (IS_ERR(bh))
7241 			return PTR_ERR(bh);
7242 		if (!bh)	/* A hole? */
7243 			memset(data, 0, tocopy);
7244 		else
7245 			memcpy(data, bh->b_data+offset, tocopy);
7246 		brelse(bh);
7247 		offset = 0;
7248 		toread -= tocopy;
7249 		data += tocopy;
7250 		blk++;
7251 	}
7252 	return len;
7253 }
7254 
7255 /* Write to quotafile (we know the transaction is already started and has
7256  * enough credits) */
ext4_quota_write(struct super_block * sb,int type,const char * data,size_t len,loff_t off)7257 static ssize_t ext4_quota_write(struct super_block *sb, int type,
7258 				const char *data, size_t len, loff_t off)
7259 {
7260 	struct inode *inode = sb_dqopt(sb)->files[type];
7261 	ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
7262 	int err = 0, err2 = 0, offset = off & (sb->s_blocksize - 1);
7263 	int retries = 0;
7264 	struct buffer_head *bh;
7265 	handle_t *handle = journal_current_handle();
7266 
7267 	if (!handle) {
7268 		ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
7269 			" cancelled because transaction is not started",
7270 			(unsigned long long)off, (unsigned long long)len);
7271 		return -EIO;
7272 	}
7273 	/*
7274 	 * Since we account only one data block in transaction credits,
7275 	 * then it is impossible to cross a block boundary.
7276 	 */
7277 	if (sb->s_blocksize - offset < len) {
7278 		ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
7279 			" cancelled because not block aligned",
7280 			(unsigned long long)off, (unsigned long long)len);
7281 		return -EIO;
7282 	}
7283 
7284 	do {
7285 		bh = ext4_bread(handle, inode, blk,
7286 				EXT4_GET_BLOCKS_CREATE |
7287 				EXT4_GET_BLOCKS_METADATA_NOFAIL);
7288 	} while (PTR_ERR(bh) == -ENOSPC &&
7289 		 ext4_should_retry_alloc(inode->i_sb, &retries));
7290 	if (IS_ERR(bh))
7291 		return PTR_ERR(bh);
7292 	if (!bh)
7293 		goto out;
7294 	BUFFER_TRACE(bh, "get write access");
7295 	err = ext4_journal_get_write_access(handle, sb, bh, EXT4_JTR_NONE);
7296 	if (err) {
7297 		brelse(bh);
7298 		return err;
7299 	}
7300 	lock_buffer(bh);
7301 	memcpy(bh->b_data+offset, data, len);
7302 	flush_dcache_page(bh->b_page);
7303 	unlock_buffer(bh);
7304 	err = ext4_handle_dirty_metadata(handle, NULL, bh);
7305 	brelse(bh);
7306 out:
7307 	if (inode->i_size < off + len) {
7308 		i_size_write(inode, off + len);
7309 		EXT4_I(inode)->i_disksize = inode->i_size;
7310 		err2 = ext4_mark_inode_dirty(handle, inode);
7311 		if (unlikely(err2 && !err))
7312 			err = err2;
7313 	}
7314 	return err ? err : len;
7315 }
7316 #endif
7317 
7318 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
register_as_ext2(void)7319 static inline void register_as_ext2(void)
7320 {
7321 	int err = register_filesystem(&ext2_fs_type);
7322 	if (err)
7323 		printk(KERN_WARNING
7324 		       "EXT4-fs: Unable to register as ext2 (%d)\n", err);
7325 }
7326 
unregister_as_ext2(void)7327 static inline void unregister_as_ext2(void)
7328 {
7329 	unregister_filesystem(&ext2_fs_type);
7330 }
7331 
ext2_feature_set_ok(struct super_block * sb)7332 static inline int ext2_feature_set_ok(struct super_block *sb)
7333 {
7334 	if (ext4_has_unknown_ext2_incompat_features(sb))
7335 		return 0;
7336 	if (sb_rdonly(sb))
7337 		return 1;
7338 	if (ext4_has_unknown_ext2_ro_compat_features(sb))
7339 		return 0;
7340 	return 1;
7341 }
7342 #else
register_as_ext2(void)7343 static inline void register_as_ext2(void) { }
unregister_as_ext2(void)7344 static inline void unregister_as_ext2(void) { }
ext2_feature_set_ok(struct super_block * sb)7345 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; }
7346 #endif
7347 
register_as_ext3(void)7348 static inline void register_as_ext3(void)
7349 {
7350 	int err = register_filesystem(&ext3_fs_type);
7351 	if (err)
7352 		printk(KERN_WARNING
7353 		       "EXT4-fs: Unable to register as ext3 (%d)\n", err);
7354 }
7355 
unregister_as_ext3(void)7356 static inline void unregister_as_ext3(void)
7357 {
7358 	unregister_filesystem(&ext3_fs_type);
7359 }
7360 
ext3_feature_set_ok(struct super_block * sb)7361 static inline int ext3_feature_set_ok(struct super_block *sb)
7362 {
7363 	if (ext4_has_unknown_ext3_incompat_features(sb))
7364 		return 0;
7365 	if (!ext4_has_feature_journal(sb))
7366 		return 0;
7367 	if (sb_rdonly(sb))
7368 		return 1;
7369 	if (ext4_has_unknown_ext3_ro_compat_features(sb))
7370 		return 0;
7371 	return 1;
7372 }
7373 
ext4_kill_sb(struct super_block * sb)7374 static void ext4_kill_sb(struct super_block *sb)
7375 {
7376 	struct ext4_sb_info *sbi = EXT4_SB(sb);
7377 	struct file *bdev_file = sbi ? sbi->s_journal_bdev_file : NULL;
7378 
7379 	kill_block_super(sb);
7380 
7381 	if (bdev_file)
7382 		bdev_fput(bdev_file);
7383 }
7384 
7385 static struct file_system_type ext4_fs_type = {
7386 	.owner			= THIS_MODULE,
7387 	.name			= "ext4",
7388 	.init_fs_context	= ext4_init_fs_context,
7389 	.parameters		= ext4_param_specs,
7390 	.kill_sb		= ext4_kill_sb,
7391 	.fs_flags		= FS_REQUIRES_DEV | FS_ALLOW_IDMAP | FS_MGTIME,
7392 };
7393 MODULE_ALIAS_FS("ext4");
7394 
7395 /* Shared across all ext4 file systems */
7396 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ];
7397 
ext4_init_fs(void)7398 static int __init ext4_init_fs(void)
7399 {
7400 	int i, err;
7401 
7402 	ratelimit_state_init(&ext4_mount_msg_ratelimit, 30 * HZ, 64);
7403 	ext4_li_info = NULL;
7404 
7405 	/* Build-time check for flags consistency */
7406 	ext4_check_flag_values();
7407 
7408 	for (i = 0; i < EXT4_WQ_HASH_SZ; i++)
7409 		init_waitqueue_head(&ext4__ioend_wq[i]);
7410 
7411 	err = ext4_init_es();
7412 	if (err)
7413 		return err;
7414 
7415 	err = ext4_init_pending();
7416 	if (err)
7417 		goto out7;
7418 
7419 	err = ext4_init_post_read_processing();
7420 	if (err)
7421 		goto out6;
7422 
7423 	err = ext4_init_pageio();
7424 	if (err)
7425 		goto out5;
7426 
7427 	err = ext4_init_system_zone();
7428 	if (err)
7429 		goto out4;
7430 
7431 	err = ext4_init_sysfs();
7432 	if (err)
7433 		goto out3;
7434 
7435 	err = ext4_init_mballoc();
7436 	if (err)
7437 		goto out2;
7438 	err = init_inodecache();
7439 	if (err)
7440 		goto out1;
7441 
7442 	err = ext4_fc_init_dentry_cache();
7443 	if (err)
7444 		goto out05;
7445 
7446 	register_as_ext3();
7447 	register_as_ext2();
7448 	err = register_filesystem(&ext4_fs_type);
7449 	if (err)
7450 		goto out;
7451 
7452 	return 0;
7453 out:
7454 	unregister_as_ext2();
7455 	unregister_as_ext3();
7456 	ext4_fc_destroy_dentry_cache();
7457 out05:
7458 	destroy_inodecache();
7459 out1:
7460 	ext4_exit_mballoc();
7461 out2:
7462 	ext4_exit_sysfs();
7463 out3:
7464 	ext4_exit_system_zone();
7465 out4:
7466 	ext4_exit_pageio();
7467 out5:
7468 	ext4_exit_post_read_processing();
7469 out6:
7470 	ext4_exit_pending();
7471 out7:
7472 	ext4_exit_es();
7473 
7474 	return err;
7475 }
7476 
ext4_exit_fs(void)7477 static void __exit ext4_exit_fs(void)
7478 {
7479 	ext4_destroy_lazyinit_thread();
7480 	unregister_as_ext2();
7481 	unregister_as_ext3();
7482 	unregister_filesystem(&ext4_fs_type);
7483 	ext4_fc_destroy_dentry_cache();
7484 	destroy_inodecache();
7485 	ext4_exit_mballoc();
7486 	ext4_exit_sysfs();
7487 	ext4_exit_system_zone();
7488 	ext4_exit_pageio();
7489 	ext4_exit_post_read_processing();
7490 	ext4_exit_es();
7491 	ext4_exit_pending();
7492 }
7493 
7494 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
7495 MODULE_DESCRIPTION("Fourth Extended Filesystem");
7496 MODULE_LICENSE("GPL");
7497 MODULE_SOFTDEP("pre: crc32c");
7498 module_init(ext4_init_fs)
7499 module_exit(ext4_exit_fs)
7500