Lines Matching +full:chip +full:- +full:reset

1 // SPDX-License-Identifier: GPL-2.0-or-later
5 * VX222-specific low-level routines
76 struct snd_vx222 *chip = to_vx222(_chip);
77 return chip->port[vx2_reg_index[reg]] + vx2_reg_offset[reg];
81 * vx2_inb - read a byte from the register
82 * @chip: VX core instance
85 static unsigned char vx2_inb(struct vx_core *chip, int offset)
87 return inb(vx2_reg_addr(chip, offset));
91 * vx2_outb - write a byte on the register
92 * @chip: VX core instance
96 static void vx2_outb(struct vx_core *chip, int offset, unsigned char val)
98 outb(val, vx2_reg_addr(chip, offset));
100 dev_dbg(chip->card->dev, "outb: %x -> %x\n", val, vx2_reg_addr(chip, offset));
105 * vx2_inl - read a 32bit word from the register
106 * @chip: VX core instance
109 static unsigned int vx2_inl(struct vx_core *chip, int offset)
111 return inl(vx2_reg_addr(chip, offset));
115 * vx2_outl - write a 32bit word on the register
116 * @chip: VX core instance
120 static void vx2_outl(struct vx_core *chip, int offset, unsigned int val)
123 dev_dbg(chip->card->dev, "outl: %x -> %x\n", val, vx2_reg_addr(chip, offset));
125 outl(val, vx2_reg_addr(chip, offset));
132 #define vx_inb(chip,reg) vx2_inb((struct vx_core*)(chip), VX_##reg)
134 #define vx_outb(chip,reg,val) vx2_outb((struct vx_core*)(chip), VX_##reg, val)
136 #define vx_inl(chip,reg) vx2_inl((struct vx_core*)(chip), VX_##reg)
138 #define vx_outl(chip,reg,val) vx2_outl((struct vx_core*)(chip), VX_##reg, val)
142 * vx_reset_dsp - reset the DSP
149 struct snd_vx222 *chip = to_vx222(_chip);
151 /* set the reset dsp bit to 0 */
152 vx_outl(chip, CDSP, chip->regCDSP & ~VX_CDSP_DSP_RESET_MASK);
156 chip->regCDSP |= VX_CDSP_DSP_RESET_MASK;
157 /* set the reset dsp bit to 1 */
158 vx_outl(chip, CDSP, chip->regCDSP);
164 struct snd_vx222 *chip = to_vx222(_chip);
167 dev_dbg(_chip->card->dev, "testing xilinx...\n");
173 vx_outl(chip, CDSP, chip->regCDSP | VX_CDSP_TEST0_MASK);
174 vx_inl(chip, ISR);
175 data = vx_inl(chip, STATUS);
177 dev_dbg(_chip->card->dev, "bad!\n");
178 return -ENODEV;
182 vx_outl(chip, CDSP, chip->regCDSP & ~VX_CDSP_TEST0_MASK);
183 vx_inl(chip, ISR);
184 data = vx_inl(chip, STATUS);
186 dev_dbg(_chip->card->dev, "bad! #2\n");
187 return -ENODEV;
190 if (_chip->type == VX_TYPE_BOARD) {
193 vx_outl(chip, CDSP, chip->regCDSP | VX_CDSP_TEST1_MASK);
194 vx_inl(chip, ISR);
195 data = vx_inl(chip, STATUS);
197 dev_dbg(_chip->card->dev, "bad! #3\n");
198 return -ENODEV;
202 vx_outl(chip, CDSP, chip->regCDSP & ~VX_CDSP_TEST1_MASK);
203 vx_inl(chip, ISR);
204 data = vx_inl(chip, STATUS);
206 dev_dbg(_chip->card->dev, "bad! #4\n");
207 return -ENODEV;
210 dev_dbg(_chip->card->dev, "ok, xilinx fine.\n");
216 * vx2_setup_pseudo_dma - set up the pseudo dma read/write mode.
217 * @chip: VX core instance
220 static void vx2_setup_pseudo_dma(struct vx_core *chip, int do_write)
223 * (in case of the use of the pseudo-dma facility).
225 vx_outl(chip, ICR, do_write ? ICR_TREQ : ICR_RREQ);
227 /* Reset the pseudo-dma register (in case of the use of the
228 * pseudo-dma facility).
230 vx_outl(chip, RESET_DMA, 0);
234 * vx_release_pseudo_dma - disable the pseudo-DMA mode
236 static inline void vx2_release_pseudo_dma(struct vx_core *chip)
239 vx_outl(chip, ICR, 0);
244 /* pseudo-dma write */
245 static void vx2_dma_write(struct vx_core *chip, struct snd_pcm_runtime *runtime,
248 unsigned long port = vx2_reg_addr(chip, VX_DMA);
249 int offset = pipe->hw_ptr;
250 u32 *addr = (u32 *)(runtime->dma_area + offset);
255 vx2_setup_pseudo_dma(chip, 1);
257 /* Transfer using pseudo-dma.
259 if (offset + count >= pipe->buffer_bytes) {
260 int length = pipe->buffer_bytes - offset;
261 count -= length;
263 /* Transfer using pseudo-dma. */
264 for (; length > 0; length--) {
268 addr = (u32 *)runtime->dma_area;
269 pipe->hw_ptr = 0;
271 pipe->hw_ptr += count;
273 /* Transfer using pseudo-dma. */
274 for (; count > 0; count--) {
279 vx2_release_pseudo_dma(chip);
284 static void vx2_dma_read(struct vx_core *chip, struct snd_pcm_runtime *runtime,
287 int offset = pipe->hw_ptr;
288 u32 *addr = (u32 *)(runtime->dma_area + offset);
289 unsigned long port = vx2_reg_addr(chip, VX_DMA);
294 vx2_setup_pseudo_dma(chip, 0);
295 /* Transfer using pseudo-dma.
297 if (offset + count >= pipe->buffer_bytes) {
298 int length = pipe->buffer_bytes - offset;
299 count -= length;
301 /* Transfer using pseudo-dma. */
302 for (; length > 0; length--)
304 addr = (u32 *)runtime->dma_area;
305 pipe->hw_ptr = 0;
307 pipe->hw_ptr += count;
309 /* Transfer using pseudo-dma. */
310 for (; count > 0; count--)
313 vx2_release_pseudo_dma(chip);
324 static int put_xilinx_data(struct vx_core *chip, unsigned int port, unsigned int counts, unsigned char data)
333 vx2_outl(chip, port, val);
334 vx2_inl(chip, port);
341 vx2_outl(chip, port, val);
342 vx2_inl(chip, port);
346 vx2_outl(chip, port, val);
347 vx2_inl(chip, port);
356 static int vx2_load_xilinx_binary(struct vx_core *chip, const struct firmware *xilinx)
362 /* XILINX reset (wait at least 1 millisecond between reset on and off). */
363 vx_outl(chip, CNTRL, VX_CNTRL_REGISTER_VALUE | VX_XILINX_RESET_MASK);
364 vx_inl(chip, CNTRL);
366 vx_outl(chip, CNTRL, VX_CNTRL_REGISTER_VALUE);
367 vx_inl(chip, CNTRL);
370 if (chip->type == VX_TYPE_BOARD)
375 image = xilinx->data;
376 for (i = 0; i < xilinx->size; i++, image++) {
377 if (put_xilinx_data(chip, port, 8, *image) < 0)
378 return -EINVAL;
382 put_xilinx_data(chip, port, 4, 0xff); /* end signature */
387 if (chip->type != VX_TYPE_BOARD) {
389 i = vx_inl(chip, GPIOC);
392 dev_err(chip->card->dev,
394 return -EINVAL;
426 return -EINVAL;
432 * vx_test_and_ack - test and acknowledge interrupt
438 static int vx2_test_and_ack(struct vx_core *chip)
441 if (! (chip->chip_status & VX_STAT_XILINX_LOADED))
442 return -ENXIO;
444 if (! (vx_inl(chip, STATUS) & VX_STATUS_MEMIRQ_MASK))
445 return -EIO;
449 vx_outl(chip, STATUS, 0);
453 vx_inl(chip, STATUS);
455 vx_outl(chip, STATUS, VX_STATUS_MEMIRQ_MASK);
458 vx_inl(chip, STATUS);
460 vx_outl(chip, STATUS, 0);
467 * vx_validate_irq - enable/disable IRQ
471 struct snd_vx222 *chip = to_vx222(_chip);
476 vx_outl(chip, INTCSR, VX_INTCSR_VALUE|VX_PCI_INTERRUPT_MASK);
477 chip->regCDSP |= VX_CDSP_VALID_IRQ_MASK;
480 vx_outl(chip, INTCSR, VX_INTCSR_VALUE&~VX_PCI_INTERRUPT_MASK);
481 chip->regCDSP &= ~VX_CDSP_VALID_IRQ_MASK;
483 vx_outl(chip, CDSP, chip->regCDSP);
490 static void vx2_write_codec_reg(struct vx_core *chip, unsigned int data)
494 vx_inl(chip, HIFREQ);
498 vx_outl(chip, DATA, ((data & 0x800000) ? VX_DATA_CODEC_MASK : 0));
500 vx_inl(chip, RUER);
514 0x7f, // [000] = +0.000 dB -> AKM(0x7f) = +0.000 dB error(+0.000 dB)
515 0x7d, // [001] = -0.500 dB -> AKM(0x7d) = -0.572 dB error(-0.072 dB)
516 0x7c, // [002] = -1.000 dB -> AKM(0x7c) = -0.873 dB error(+0.127 dB)
517 0x7a, // [003] = -1.500 dB -> AKM(0x7a) = -1.508 dB error(-0.008 dB)
518 0x79, // [004] = -2.000 dB -> AKM(0x79) = -1.844 dB error(+0.156 dB)
519 0x77, // [005] = -2.500 dB -> AKM(0x77) = -2.557 dB error(-0.057 dB)
520 0x76, // [006] = -3.000 dB -> AKM(0x76) = -2.937 dB error(+0.063 dB)
521 0x75, // [007] = -3.500 dB -> AKM(0x75) = -3.334 dB error(+0.166 dB)
522 0x73, // [008] = -4.000 dB -> AKM(0x73) = -4.188 dB error(-0.188 dB)
523 0x72, // [009] = -4.500 dB -> AKM(0x72) = -4.648 dB error(-0.148 dB)
524 0x71, // [010] = -5.000 dB -> AKM(0x71) = -5.134 dB error(-0.134 dB)
525 0x70, // [011] = -5.500 dB -> AKM(0x70) = -5.649 dB error(-0.149 dB)
526 0x6f, // [012] = -6.000 dB -> AKM(0x6f) = -6.056 dB error(-0.056 dB)
527 0x6d, // [013] = -6.500 dB -> AKM(0x6d) = -6.631 dB error(-0.131 dB)
528 0x6c, // [014] = -7.000 dB -> AKM(0x6c) = -6.933 dB error(+0.067 dB)
529 0x6a, // [015] = -7.500 dB -> AKM(0x6a) = -7.571 dB error(-0.071 dB)
530 0x69, // [016] = -8.000 dB -> AKM(0x69) = -7.909 dB error(+0.091 dB)
531 0x67, // [017] = -8.500 dB -> AKM(0x67) = -8.626 dB error(-0.126 dB)
532 0x66, // [018] = -9.000 dB -> AKM(0x66) = -9.008 dB error(-0.008 dB)
533 0x65, // [019] = -9.500 dB -> AKM(0x65) = -9.407 dB error(+0.093 dB)
534 0x64, // [020] = -10.000 dB -> AKM(0x64) = -9.826 dB error(+0.174 dB)
535 0x62, // [021] = -10.500 dB -> AKM(0x62) = -10.730 dB error(-0.230 dB)
536 0x61, // [022] = -11.000 dB -> AKM(0x61) = -11.219 dB error(-0.219 dB)
537 0x60, // [023] = -11.500 dB -> AKM(0x60) = -11.738 dB error(-0.238 dB)
538 0x5f, // [024] = -12.000 dB -> AKM(0x5f) = -12.149 dB error(-0.149 dB)
539 0x5e, // [025] = -12.500 dB -> AKM(0x5e) = -12.434 dB error(+0.066 dB)
540 0x5c, // [026] = -13.000 dB -> AKM(0x5c) = -13.033 dB error(-0.033 dB)
541 0x5b, // [027] = -13.500 dB -> AKM(0x5b) = -13.350 dB error(+0.150 dB)
542 0x59, // [028] = -14.000 dB -> AKM(0x59) = -14.018 dB error(-0.018 dB)
543 0x58, // [029] = -14.500 dB -> AKM(0x58) = -14.373 dB error(+0.127 dB)
544 0x56, // [030] = -15.000 dB -> AKM(0x56) = -15.130 dB error(-0.130 dB)
545 0x55, // [031] = -15.500 dB -> AKM(0x55) = -15.534 dB error(-0.034 dB)
546 0x54, // [032] = -16.000 dB -> AKM(0x54) = -15.958 dB error(+0.042 dB)
547 0x53, // [033] = -16.500 dB -> AKM(0x53) = -16.404 dB error(+0.096 dB)
548 0x52, // [034] = -17.000 dB -> AKM(0x52) = -16.874 dB error(+0.126 dB)
549 0x51, // [035] = -17.500 dB -> AKM(0x51) = -17.371 dB error(+0.129 dB)
550 0x50, // [036] = -18.000 dB -> AKM(0x50) = -17.898 dB error(+0.102 dB)
551 0x4e, // [037] = -18.500 dB -> AKM(0x4e) = -18.605 dB error(-0.105 dB)
552 0x4d, // [038] = -19.000 dB -> AKM(0x4d) = -18.905 dB error(+0.095 dB)
553 0x4b, // [039] = -19.500 dB -> AKM(0x4b) = -19.538 dB error(-0.038 dB)
554 0x4a, // [040] = -20.000 dB -> AKM(0x4a) = -19.872 dB error(+0.128 dB)
555 0x48, // [041] = -20.500 dB -> AKM(0x48) = -20.583 dB error(-0.083 dB)
556 0x47, // [042] = -21.000 dB -> AKM(0x47) = -20.961 dB error(+0.039 dB)
557 0x46, // [043] = -21.500 dB -> AKM(0x46) = -21.356 dB error(+0.144 dB)
558 0x44, // [044] = -22.000 dB -> AKM(0x44) = -22.206 dB error(-0.206 dB)
559 0x43, // [045] = -22.500 dB -> AKM(0x43) = -22.664 dB error(-0.164 dB)
560 0x42, // [046] = -23.000 dB -> AKM(0x42) = -23.147 dB error(-0.147 dB)
561 0x41, // [047] = -23.500 dB -> AKM(0x41) = -23.659 dB error(-0.159 dB)
562 0x40, // [048] = -24.000 dB -> AKM(0x40) = -24.203 dB error(-0.203 dB)
563 0x3f, // [049] = -24.500 dB -> AKM(0x3f) = -24.635 dB error(-0.135 dB)
564 0x3e, // [050] = -25.000 dB -> AKM(0x3e) = -24.935 dB error(+0.065 dB)
565 0x3c, // [051] = -25.500 dB -> AKM(0x3c) = -25.569 dB error(-0.069 dB)
566 0x3b, // [052] = -26.000 dB -> AKM(0x3b) = -25.904 dB error(+0.096 dB)
567 0x39, // [053] = -26.500 dB -> AKM(0x39) = -26.615 dB error(-0.115 dB)
568 0x38, // [054] = -27.000 dB -> AKM(0x38) = -26.994 dB error(+0.006 dB)
569 0x37, // [055] = -27.500 dB -> AKM(0x37) = -27.390 dB error(+0.110 dB)
570 0x36, // [056] = -28.000 dB -> AKM(0x36) = -27.804 dB error(+0.196 dB)
571 0x34, // [057] = -28.500 dB -> AKM(0x34) = -28.699 dB error(-0.199 dB)
572 0x33, // [058] = -29.000 dB -> AKM(0x33) = -29.183 dB error(-0.183 dB)
573 0x32, // [059] = -29.500 dB -> AKM(0x32) = -29.696 dB error(-0.196 dB)
574 0x31, // [060] = -30.000 dB -> AKM(0x31) = -30.241 dB error(-0.241 dB)
575 0x31, // [061] = -30.500 dB -> AKM(0x31) = -30.241 dB error(+0.259 dB)
576 0x30, // [062] = -31.000 dB -> AKM(0x30) = -30.823 dB error(+0.177 dB)
577 0x2e, // [063] = -31.500 dB -> AKM(0x2e) = -31.610 dB error(-0.110 dB)
578 0x2d, // [064] = -32.000 dB -> AKM(0x2d) = -31.945 dB error(+0.055 dB)
579 0x2b, // [065] = -32.500 dB -> AKM(0x2b) = -32.659 dB error(-0.159 dB)
580 0x2a, // [066] = -33.000 dB -> AKM(0x2a) = -33.038 dB error(-0.038 dB)
581 0x29, // [067] = -33.500 dB -> AKM(0x29) = -33.435 dB error(+0.065 dB)
582 0x28, // [068] = -34.000 dB -> AKM(0x28) = -33.852 dB error(+0.148 dB)
583 0x27, // [069] = -34.500 dB -> AKM(0x27) = -34.289 dB error(+0.211 dB)
584 0x25, // [070] = -35.000 dB -> AKM(0x25) = -35.235 dB error(-0.235 dB)
585 0x24, // [071] = -35.500 dB -> AKM(0x24) = -35.750 dB error(-0.250 dB)
586 0x24, // [072] = -36.000 dB -> AKM(0x24) = -35.750 dB error(+0.250 dB)
587 0x23, // [073] = -36.500 dB -> AKM(0x23) = -36.297 dB error(+0.203 dB)
588 0x22, // [074] = -37.000 dB -> AKM(0x22) = -36.881 dB error(+0.119 dB)
589 0x21, // [075] = -37.500 dB -> AKM(0x21) = -37.508 dB error(-0.008 dB)
590 0x20, // [076] = -38.000 dB -> AKM(0x20) = -38.183 dB error(-0.183 dB)
591 0x1f, // [077] = -38.500 dB -> AKM(0x1f) = -38.726 dB error(-0.226 dB)
592 0x1e, // [078] = -39.000 dB -> AKM(0x1e) = -39.108 dB error(-0.108 dB)
593 0x1d, // [079] = -39.500 dB -> AKM(0x1d) = -39.507 dB error(-0.007 dB)
594 0x1c, // [080] = -40.000 dB -> AKM(0x1c) = -39.926 dB error(+0.074 dB)
595 0x1b, // [081] = -40.500 dB -> AKM(0x1b) = -40.366 dB error(+0.134 dB)
596 0x1a, // [082] = -41.000 dB -> AKM(0x1a) = -40.829 dB error(+0.171 dB)
597 0x19, // [083] = -41.500 dB -> AKM(0x19) = -41.318 dB error(+0.182 dB)
598 0x18, // [084] = -42.000 dB -> AKM(0x18) = -41.837 dB error(+0.163 dB)
599 0x17, // [085] = -42.500 dB -> AKM(0x17) = -42.389 dB error(+0.111 dB)
600 0x16, // [086] = -43.000 dB -> AKM(0x16) = -42.978 dB error(+0.022 dB)
601 0x15, // [087] = -43.500 dB -> AKM(0x15) = -43.610 dB error(-0.110 dB)
602 0x14, // [088] = -44.000 dB -> AKM(0x14) = -44.291 dB error(-0.291 dB)
603 0x14, // [089] = -44.500 dB -> AKM(0x14) = -44.291 dB error(+0.209 dB)
604 0x13, // [090] = -45.000 dB -> AKM(0x13) = -45.031 dB error(-0.031 dB)
605 0x12, // [091] = -45.500 dB -> AKM(0x12) = -45.840 dB error(-0.340 dB)
606 0x12, // [092] = -46.000 dB -> AKM(0x12) = -45.840 dB error(+0.160 dB)
607 0x11, // [093] = -46.500 dB -> AKM(0x11) = -46.731 dB error(-0.231 dB)
608 0x11, // [094] = -47.000 dB -> AKM(0x11) = -46.731 dB error(+0.269 dB)
609 0x10, // [095] = -47.500 dB -> AKM(0x10) = -47.725 dB error(-0.225 dB)
610 0x10, // [096] = -48.000 dB -> AKM(0x10) = -47.725 dB error(+0.275 dB)
611 0x0f, // [097] = -48.500 dB -> AKM(0x0f) = -48.553 dB error(-0.053 dB)
612 0x0e, // [098] = -49.000 dB -> AKM(0x0e) = -49.152 dB error(-0.152 dB)
613 0x0d, // [099] = -49.500 dB -> AKM(0x0d) = -49.796 dB error(-0.296 dB)
614 0x0d, // [100] = -50.000 dB -> AKM(0x0d) = -49.796 dB error(+0.204 dB)
615 0x0c, // [101] = -50.500 dB -> AKM(0x0c) = -50.491 dB error(+0.009 dB)
616 0x0b, // [102] = -51.000 dB -> AKM(0x0b) = -51.247 dB error(-0.247 dB)
617 0x0b, // [103] = -51.500 dB -> AKM(0x0b) = -51.247 dB error(+0.253 dB)
618 0x0a, // [104] = -52.000 dB -> AKM(0x0a) = -52.075 dB error(-0.075 dB)
619 0x0a, // [105] = -52.500 dB -> AKM(0x0a) = -52.075 dB error(+0.425 dB)
620 0x09, // [106] = -53.000 dB -> AKM(0x09) = -52.990 dB error(+0.010 dB)
621 0x09, // [107] = -53.500 dB -> AKM(0x09) = -52.990 dB error(+0.510 dB)
622 0x08, // [108] = -54.000 dB -> AKM(0x08) = -54.013 dB error(-0.013 dB)
623 0x08, // [109] = -54.500 dB -> AKM(0x08) = -54.013 dB error(+0.487 dB)
624 0x07, // [110] = -55.000 dB -> AKM(0x07) = -55.173 dB error(-0.173 dB)
625 0x07, // [111] = -55.500 dB -> AKM(0x07) = -55.173 dB error(+0.327 dB)
626 0x06, // [112] = -56.000 dB -> AKM(0x06) = -56.512 dB error(-0.512 dB)
627 0x06, // [113] = -56.500 dB -> AKM(0x06) = -56.512 dB error(-0.012 dB)
628 0x06, // [114] = -57.000 dB -> AKM(0x06) = -56.512 dB error(+0.488 dB)
629 0x05, // [115] = -57.500 dB -> AKM(0x05) = -58.095 dB error(-0.595 dB)
630 0x05, // [116] = -58.000 dB -> AKM(0x05) = -58.095 dB error(-0.095 dB)
631 0x05, // [117] = -58.500 dB -> AKM(0x05) = -58.095 dB error(+0.405 dB)
632 0x05, // [118] = -59.000 dB -> AKM(0x05) = -58.095 dB error(+0.905 dB)
633 0x04, // [119] = -59.500 dB -> AKM(0x04) = -60.034 dB error(-0.534 dB)
634 0x04, // [120] = -60.000 dB -> AKM(0x04) = -60.034 dB error(-0.034 dB)
635 0x04, // [121] = -60.500 dB -> AKM(0x04) = -60.034 dB error(+0.466 dB)
636 0x04, // [122] = -61.000 dB -> AKM(0x04) = -60.034 dB error(+0.966 dB)
637 0x03, // [123] = -61.500 dB -> AKM(0x03) = -62.532 dB error(-1.032 dB)
638 0x03, // [124] = -62.000 dB -> AKM(0x03) = -62.532 dB error(-0.532 dB)
639 0x03, // [125] = -62.500 dB -> AKM(0x03) = -62.532 dB error(-0.032 dB)
640 0x03, // [126] = -63.000 dB -> AKM(0x03) = -62.532 dB error(+0.468 dB)
641 0x03, // [127] = -63.500 dB -> AKM(0x03) = -62.532 dB error(+0.968 dB)
642 0x03, // [128] = -64.000 dB -> AKM(0x03) = -62.532 dB error(+1.468 dB)
643 0x02, // [129] = -64.500 dB -> AKM(0x02) = -66.054 dB error(-1.554 dB)
644 0x02, // [130] = -65.000 dB -> AKM(0x02) = -66.054 dB error(-1.054 dB)
645 0x02, // [131] = -65.500 dB -> AKM(0x02) = -66.054 dB error(-0.554 dB)
646 0x02, // [132] = -66.000 dB -> AKM(0x02) = -66.054 dB error(-0.054 dB)
647 0x02, // [133] = -66.500 dB -> AKM(0x02) = -66.054 dB error(+0.446 dB)
648 0x02, // [134] = -67.000 dB -> AKM(0x02) = -66.054 dB error(+0.946 dB)
649 0x02, // [135] = -67.500 dB -> AKM(0x02) = -66.054 dB error(+1.446 dB)
650 0x02, // [136] = -68.000 dB -> AKM(0x02) = -66.054 dB error(+1.946 dB)
651 0x02, // [137] = -68.500 dB -> AKM(0x02) = -66.054 dB error(+2.446 dB)
652 0x02, // [138] = -69.000 dB -> AKM(0x02) = -66.054 dB error(+2.946 dB)
653 0x01, // [139] = -69.500 dB -> AKM(0x01) = -72.075 dB error(-2.575 dB)
654 0x01, // [140] = -70.000 dB -> AKM(0x01) = -72.075 dB error(-2.075 dB)
655 0x01, // [141] = -70.500 dB -> AKM(0x01) = -72.075 dB error(-1.575 dB)
656 0x01, // [142] = -71.000 dB -> AKM(0x01) = -72.075 dB error(-1.075 dB)
657 0x01, // [143] = -71.500 dB -> AKM(0x01) = -72.075 dB error(-0.575 dB)
658 0x01, // [144] = -72.000 dB -> AKM(0x01) = -72.075 dB error(-0.075 dB)
659 0x01, // [145] = -72.500 dB -> AKM(0x01) = -72.075 dB error(+0.425 dB)
660 0x01, // [146] = -73.000 dB -> AKM(0x01) = -72.075 dB error(+0.925 dB)
661 0x00}; // [147] = -73.500 dB -> AKM(0x00) = mute error(+infini)
664 * pseudo-codec write entry
666 static void vx2_write_akm(struct vx_core *chip, int reg, unsigned int data)
671 vx2_write_codec_reg(chip, data ? AKM_CODEC_MUTE_CMD : AKM_CODEC_UNMUTE_CMD);
695 vx2_write_codec_reg(chip, val);
702 static void vx2_old_write_codec_bit(struct vx_core *chip, int codec, unsigned int data)
707 vx_inl(chip, HIFREQ);
710 vx_outl(chip, DATA, ((data & 0x800000) ? VX_DATA_CODEC_MASK : 0));
713 vx_inl(chip, RUER);
718 * reset codec bit
722 struct snd_vx222 *chip = to_vx222(_chip);
724 /* Set the reset CODEC bit to 0. */
725 vx_outl(chip, CDSP, chip->regCDSP &~ VX_CDSP_CODEC_RESET_MASK);
726 vx_inl(chip, CDSP);
728 /* Set the reset CODEC bit to 1. */
729 chip->regCDSP |= VX_CDSP_CODEC_RESET_MASK;
730 vx_outl(chip, CDSP, chip->regCDSP);
731 vx_inl(chip, CDSP);
732 if (_chip->type == VX_TYPE_BOARD) {
745 if (_chip->type == VX_TYPE_MIC) {
747 chip->regSELMIC = MICRO_SELECT_INPUT_NORM |
751 /* reset phantom power supply */
752 chip->regSELMIC &= ~MICRO_SELECT_PHANTOM_ALIM;
754 vx_outl(_chip, SELMIC, chip->regSELMIC);
764 struct snd_vx222 *chip = to_vx222(_chip);
768 chip->regCFG |= VX_CFG_DATAIN_SEL_MASK;
771 chip->regCFG &= ~VX_CFG_DATAIN_SEL_MASK;
774 vx_outl(chip, CFG, chip->regCFG);
783 struct snd_vx222 *chip = to_vx222(_chip);
786 chip->regCFG &= ~VX_CFG_CLOCKIN_SEL_MASK;
788 chip->regCFG |= VX_CFG_CLOCKIN_SEL_MASK;
789 vx_outl(chip, CFG, chip->regCFG);
793 * reset the board
797 struct snd_vx222 *chip = to_vx222(_chip);
800 chip->regCDSP = VX_CDSP_CODEC_RESET_MASK | VX_CDSP_DSP_RESET_MASK ;
801 chip->regCFG = 0;
810 /* Micro level is specified to be adjustable from -96dB to 63 dB (board coded 0x00 ... 318),
812 * as we will mute if less than -110dB, so let's simply use line input coded levels and add constant offset !
814 #define V2_MICRO_LEVEL_RANGE (318 - 255)
816 static void vx2_set_input_level(struct snd_vx222 *chip)
821 miclevel = chip->mic_level;
822 miclevel += V2_MICRO_LEVEL_RANGE; /* add 318 - 0xff */
826 miclevel -= (18 * 2); /* lower level 18 dB (*2 because of 0.5 dB steps !) */
831 /* set pre-amp level */
832 chip->regSELMIC &= ~MICRO_SELECT_PREAMPLI_MASK;
833 chip->regSELMIC |= (preamp << MICRO_SELECT_PREAMPLI_OFFSET) & MICRO_SELECT_PREAMPLI_MASK;
834 vx_outl(chip, SELMIC, chip->regSELMIC);
837 (unsigned int)chip->input_level[1] << 8 |
838 (unsigned int)chip->input_level[0];
839 vx_inl(chip, DATA); /* Activate input level programming */
843 vx_outl(chip, DATA, ((data & 0x80000000) ? VX_DATA_CODEC_MASK : 0));
845 vx_inl(chip, RUER); /* Terminate input level programming */
851 static const DECLARE_TLV_DB_SCALE(db_scale_mic, -6450, 50, 0);
860 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
861 uinfo->count = 2;
862 uinfo->value.integer.min = 0;
863 uinfo->value.integer.max = MIC_LEVEL_MAX;
870 struct snd_vx222 *chip = to_vx222(_chip);
872 guard(mutex)(&_chip->mixer_mutex);
873 ucontrol->value.integer.value[0] = chip->input_level[0];
874 ucontrol->value.integer.value[1] = chip->input_level[1];
881 struct snd_vx222 *chip = to_vx222(_chip);
882 if (ucontrol->value.integer.value[0] < 0 ||
883 ucontrol->value.integer.value[0] > MIC_LEVEL_MAX)
884 return -EINVAL;
885 if (ucontrol->value.integer.value[1] < 0 ||
886 ucontrol->value.integer.value[1] > MIC_LEVEL_MAX)
887 return -EINVAL;
888 guard(mutex)(&_chip->mixer_mutex);
889 if (chip->input_level[0] != ucontrol->value.integer.value[0] ||
890 chip->input_level[1] != ucontrol->value.integer.value[1]) {
891 chip->input_level[0] = ucontrol->value.integer.value[0];
892 chip->input_level[1] = ucontrol->value.integer.value[1];
893 vx2_set_input_level(chip);
902 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
903 uinfo->count = 1;
904 uinfo->value.integer.min = 0;
905 uinfo->value.integer.max = MIC_LEVEL_MAX;
912 struct snd_vx222 *chip = to_vx222(_chip);
913 ucontrol->value.integer.value[0] = chip->mic_level;
920 struct snd_vx222 *chip = to_vx222(_chip);
921 if (ucontrol->value.integer.value[0] < 0 ||
922 ucontrol->value.integer.value[0] > MIC_LEVEL_MAX)
923 return -EINVAL;
924 guard(mutex)(&_chip->mixer_mutex);
925 if (chip->mic_level != ucontrol->value.integer.value[0]) {
926 chip->mic_level = ucontrol->value.integer.value[0];
927 vx2_set_input_level(chip);
961 struct snd_vx222 *chip = to_vx222(_chip);
964 if (_chip->type != VX_TYPE_MIC)
968 chip->input_level[0] = chip->input_level[1] = 0;
969 chip->mic_level = 0;
970 vx2_set_input_level(chip);
973 err = snd_ctl_add(_chip->card, snd_ctl_new1(&vx_control_input_level, chip));
976 err = snd_ctl_add(_chip->card, snd_ctl_new1(&vx_control_mic_level, chip));