Lines Matching +full:3 +full:rd
228 pr_info("rd %*pbl: Checking EAS, CPUs do not have asymmetric capacities\n", in sched_is_eas_possible()
237 pr_info("rd %*pbl: Checking EAS, SMT is not supported\n", in sched_is_eas_possible()
245 pr_info("rd %*pbl: Checking EAS: frequency-invariant load tracking not yet supported", in sched_is_eas_possible()
253 pr_info("rd %*pbl: Checking EAS: cpufreq is not ready\n", in sched_is_eas_possible()
405 * 3. no SMT is detected.
406 * 4. schedutil is driving the frequency of all CPUs of the rd;
414 struct root_domain *rd = cpu_rq(cpu)->rd; in build_perf_domains() local
438 tmp = rd->pd; in build_perf_domains()
439 rcu_assign_pointer(rd->pd, pd); in build_perf_domains()
447 tmp = rd->pd; in build_perf_domains()
448 rcu_assign_pointer(rd->pd, NULL); in build_perf_domains()
460 struct root_domain *rd = container_of(rcu, struct root_domain, rcu); in free_rootdomain() local
462 cpupri_cleanup(&rd->cpupri); in free_rootdomain()
463 cpudl_cleanup(&rd->cpudl); in free_rootdomain()
464 free_cpumask_var(rd->dlo_mask); in free_rootdomain()
465 free_cpumask_var(rd->rto_mask); in free_rootdomain()
466 free_cpumask_var(rd->online); in free_rootdomain()
467 free_cpumask_var(rd->span); in free_rootdomain()
468 free_pd(rd->pd); in free_rootdomain()
469 kfree(rd); in free_rootdomain()
472 void rq_attach_root(struct rq *rq, struct root_domain *rd) in rq_attach_root() argument
479 if (rq->rd) { in rq_attach_root()
480 old_rd = rq->rd; in rq_attach_root()
496 atomic_inc(&rd->refcount); in rq_attach_root()
497 rq->rd = rd; in rq_attach_root()
499 cpumask_set_cpu(rq->cpu, rd->span); in rq_attach_root()
505 * move the fair server bw to the rd if it already started. in rq_attach_root()
517 void sched_get_rd(struct root_domain *rd) in sched_get_rd() argument
519 atomic_inc(&rd->refcount); in sched_get_rd()
522 void sched_put_rd(struct root_domain *rd) in sched_put_rd() argument
524 if (!atomic_dec_and_test(&rd->refcount)) in sched_put_rd()
527 call_rcu(&rd->rcu, free_rootdomain); in sched_put_rd()
530 static int init_rootdomain(struct root_domain *rd) in init_rootdomain() argument
532 if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL)) in init_rootdomain()
534 if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL)) in init_rootdomain()
536 if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL)) in init_rootdomain()
538 if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL)) in init_rootdomain()
542 rd->rto_cpu = -1; in init_rootdomain()
543 raw_spin_lock_init(&rd->rto_lock); in init_rootdomain()
544 rd->rto_push_work = IRQ_WORK_INIT_HARD(rto_push_irq_work_func); in init_rootdomain()
547 rd->visit_cookie = 0; in init_rootdomain()
548 init_dl_bw(&rd->dl_bw); in init_rootdomain()
549 if (cpudl_init(&rd->cpudl) != 0) in init_rootdomain()
552 if (cpupri_init(&rd->cpupri) != 0) in init_rootdomain()
557 cpudl_cleanup(&rd->cpudl); in init_rootdomain()
559 free_cpumask_var(rd->rto_mask); in init_rootdomain()
561 free_cpumask_var(rd->dlo_mask); in init_rootdomain()
563 free_cpumask_var(rd->online); in init_rootdomain()
565 free_cpumask_var(rd->span); in init_rootdomain()
585 struct root_domain *rd; in alloc_rootdomain() local
587 rd = kzalloc(sizeof(*rd), GFP_KERNEL); in alloc_rootdomain()
588 if (!rd) in alloc_rootdomain()
591 if (init_rootdomain(rd) != 0) { in alloc_rootdomain()
592 kfree(rd); in alloc_rootdomain()
596 return rd; in alloc_rootdomain()
716 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu) in cpu_attach_domain() argument
769 rq_attach_root(rq, rd); in cpu_attach_domain()
780 struct root_domain *rd; member
810 * node 0 1 2 3
814 * 3: 20 30 20 10
822 * 3 ----- 2
828 * For the above NUMA topology that gives 3 levels:
830 * NUMA-2 0-3 0-3 0-3 0-3
831 * groups: {0-1,3},{1-3} {0-2},{0,2-3} {1-3},{0-1,3} {0,2-3},{0-2}
833 * NUMA-1 0-1,3 0-2 1-3 0,2-3
834 * groups: {0},{1},{3} {0},{1},{2} {1},{2},{3} {0},{2},{3}
836 * NUMA-0 0 1 2 3
845 * domain. For instance Node-0 NUMA-2 would only get groups: 0-1,3 and 1-3.
850 * gets us the first 0-1,3
851 * - the only uncovered node is 2, who's child domain is 1-3.
856 * end up at those groups (they would end up in group: 0-1,3).
871 * node 0 1 2 3
875 * 3: 30 20 20 10
883 * 2 ----- 3
885 * This topology is asymmetric, nodes 1,2 are fully connected, but nodes 0,3
891 * NUMA-2 0-3 0-3
892 * groups: {0-2},{1-3} {1-3},{0-2}
894 * NUMA-1 0-2 0-3 0-3 1-3
896 * NUMA-0 0 1 2 3
1059 * But for machines whose NUMA diameter are 3 or above, we move in build_overlap_sched_groups()
1064 * Smallest diameter=3 topology is: in build_overlap_sched_groups()
1066 * node 0 1 2 3 in build_overlap_sched_groups()
1070 * 3: 40 30 20 10 in build_overlap_sched_groups()
1072 * 0 --- 1 --- 2 --- 3 in build_overlap_sched_groups()
1074 * NUMA-3 0-3 N/A N/A 0-3 in build_overlap_sched_groups()
1075 * groups: {0-2},{1-3} {1-3},{0-2} in build_overlap_sched_groups()
1077 * NUMA-2 0-2 0-3 0-3 1-3 in build_overlap_sched_groups()
1078 * groups: {0-1},{1-3} {0-2},{2-3} {1-3},{0-1} {2-3},{0-2} in build_overlap_sched_groups()
1080 * NUMA-1 0-1 0-2 1-3 2-3 in build_overlap_sched_groups()
1081 * groups: {0},{1} {1},{2},{0} {2},{3},{1} {3},{2} in build_overlap_sched_groups()
1083 * NUMA-0 0 1 2 3 in build_overlap_sched_groups()
1085 * The NUMA-2 groups for nodes 0 and 3 are obviously buggered, as the in build_overlap_sched_groups()
1131 * The tree consists of 3 primary data structures:
1147 * CPU 0 1 2 3 4 5 6 7
1156 * MC 0-3 0-3 0-3 0-3 4-7 4-7 4-7 4-7
1157 * SMT 0-1 0-1 2-3 2-3 4-5 4-5 6-7 6-7
1159 * CPU 0 1 2 3 4 5 6 7
1537 if (!atomic_read(&d->rd->refcount)) in __free_domain_allocs()
1538 free_rootdomain(&d->rd->rcu); in __free_domain_allocs()
1561 d->rd = alloc_rootdomain(); in __visit_domain_allocation_hell()
1562 if (!d->rd) in __visit_domain_allocation_hell()
2571 imb = sd->span_weight >> 3; in build_sched_domains()
2608 cpu_attach_domain(sd, d.rd, i); in build_sched_domains()
2837 cpu_rq(cpumask_first(doms_cur[j]))->rd->pd) { in partition_sched_domains_locked()
2842 /* No match - add perf domains for a new rd */ in partition_sched_domains_locked()