Lines Matching +full:supervisor +full:- +full:mode +full:- +full:visible
1 // SPDX-License-Identifier: GPL-2.0-only
3 * Kernel-based Virtual Machine driver for Linux
5 * This module enables machines with Intel VT-x extensions to run virtual
57 #include <asm/spec-ctrl.h>
64 int __read_mostly nx_huge_pages = -1;
100 * When setting this variable to true it enables Two-Dimensional-Paging
102 * 1. the guest-virtual to guest-physical
103 * 2. while doing 1. it walks guest-physical to host-physical
204 return !!(regs->reg & flag); \
226 return !!(mmu->cpu_role. base_or_ext . reg##_##name); \
239 return mmu->cpu_role.base.level > 0; in is_cr0_pg()
244 return !mmu->cpu_role.base.has_4_byte_gpte; in is_cr4_pae()
252 .efer = vcpu->arch.efer, in vcpu_to_role_regs()
266 if (IS_ENABLED(CONFIG_MITIGATION_RETPOLINE) && mmu->get_guest_pgd == get_guest_cr3) in kvm_mmu_get_guest_pgd()
269 return mmu->get_guest_pgd(vcpu); in kvm_mmu_get_guest_pgd()
289 kvm_flush_remote_tlbs_gfn(kvm, gfn, sp->role.level); in kvm_flush_remote_tlbs_sptep()
320 gen = kvm_vcpu_memslots(vcpu)->generation; in check_mmio_spte()
377 sp->clear_spte_count++; in count_spte_clear()
387 ssptep->spte_high = sspte.spte_high; in __set_spte()
396 WRITE_ONCE(ssptep->spte_low, sspte.spte_low); in __set_spte()
406 WRITE_ONCE(ssptep->spte_low, sspte.spte_low); in __update_clear_spte_fast()
414 ssptep->spte_high = sspte.spte_high; in __update_clear_spte_fast()
426 orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low); in __update_clear_spte_slow()
427 orig.spte_high = ssptep->spte_high; in __update_clear_spte_slow()
428 ssptep->spte_high = sspte.spte_high; in __update_clear_spte_slow()
440 * we need to protect against in-progress updates of the spte.
443 * for the high part of the spte. The race is fine for a present->non-present
444 * change (because the high part of the spte is ignored for non-present spte),
445 * but for a present->present change we must reread the spte.
447 * All such changes are done in two steps (present->non-present and
448 * non-present->present), hence it is enough to count the number of
449 * present->non-present updates: if it changed while reading the spte,
459 count = sp->clear_spte_count; in __get_spte_lockless()
462 spte.spte_low = orig->spte_low; in __get_spte_lockless()
465 spte.spte_high = orig->spte_high; in __get_spte_lockless()
468 if (unlikely(spte.spte_low != orig->spte_low || in __get_spte_lockless()
469 count != sp->clear_spte_count)) in __get_spte_lockless()
525 int level = sptep_to_sp(sptep)->role.level; in mmu_spte_clear_track_bits()
536 kvm_update_page_stats(kvm, level, -1); in mmu_spte_clear_track_bits()
557 return tdp_mmu_enabled && vcpu->arch.mmu->root_role.direct; in is_tdp_mmu_active()
566 * Prevent page table teardown by making any free-er wait during in walk_shadow_page_lockless_begin()
573 * to vcpu->mode. in walk_shadow_page_lockless_begin()
575 smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES); in walk_shadow_page_lockless_begin()
585 * Make sure the write to vcpu->mode is not reordered in front of in walk_shadow_page_lockless_end()
589 smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE); in walk_shadow_page_lockless_end()
599 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache, in mmu_topup_memory_caches()
603 if (kvm_has_mirrored_tdp(vcpu->kvm)) { in mmu_topup_memory_caches()
604 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_external_spt_cache, in mmu_topup_memory_caches()
609 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_shadow_page_cache, in mmu_topup_memory_caches()
614 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_shadowed_info_cache, in mmu_topup_memory_caches()
619 return kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache, in mmu_topup_memory_caches()
625 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache); in mmu_free_memory_caches()
626 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_shadow_page_cache); in mmu_free_memory_caches()
627 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_shadowed_info_cache); in mmu_free_memory_caches()
628 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_external_spt_cache); in mmu_free_memory_caches()
629 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache); in mmu_free_memory_caches()
641 if (sp->role.passthrough) in kvm_mmu_page_get_gfn()
642 return sp->gfn; in kvm_mmu_page_get_gfn()
644 if (sp->shadowed_translation) in kvm_mmu_page_get_gfn()
645 return sp->shadowed_translation[index] >> PAGE_SHIFT; in kvm_mmu_page_get_gfn()
647 return sp->gfn + (index << ((sp->role.level - 1) * SPTE_LEVEL_BITS)); in kvm_mmu_page_get_gfn()
658 if (sp->shadowed_translation) in kvm_mmu_page_get_access()
659 return sp->shadowed_translation[index] & ACC_ALL; in kvm_mmu_page_get_access()
662 * For direct MMUs (e.g. TDP or non-paging guests) or passthrough SPs, in kvm_mmu_page_get_access()
671 * In both cases, sp->role.access contains the correct access bits. in kvm_mmu_page_get_access()
673 return sp->role.access; in kvm_mmu_page_get_access()
679 if (sp->shadowed_translation) { in kvm_mmu_page_set_translation()
680 sp->shadowed_translation[index] = (gfn << PAGE_SHIFT) | access; in kvm_mmu_page_set_translation()
686 sp->role.passthrough ? "passthrough" : "direct", in kvm_mmu_page_set_translation()
687 sp->gfn, kvm_mmu_page_get_access(sp, index), access); in kvm_mmu_page_set_translation()
691 sp->role.passthrough ? "passthrough" : "direct", in kvm_mmu_page_set_translation()
692 sp->gfn, kvm_mmu_page_get_gfn(sp, index), gfn); in kvm_mmu_page_set_translation()
712 idx = gfn_to_index(gfn, slot->base_gfn, level); in lpage_info_slot()
713 return &slot->arch.lpage_info[level - 2][idx]; in lpage_info_slot()
733 old = linfo->disallow_lpage; in update_gfn_disallow_lpage_count()
734 linfo->disallow_lpage += count; in update_gfn_disallow_lpage_count()
735 WARN_ON_ONCE((old ^ linfo->disallow_lpage) & KVM_LPAGE_MIXED_FLAG); in update_gfn_disallow_lpage_count()
746 update_gfn_disallow_lpage_count(slot, gfn, -1); in kvm_mmu_gfn_allow_lpage()
755 kvm->arch.indirect_shadow_pages++; in account_shadowed()
757 * Ensure indirect_shadow_pages is elevated prior to re-reading guest in account_shadowed()
758 * child PTEs in FNAME(gpte_changed), i.e. guarantee either in-flight in account_shadowed()
759 * emulated writes are visible before re-reading guest PTEs, or that in account_shadowed()
765 gfn = sp->gfn; in account_shadowed()
766 slots = kvm_memslots_for_spte_role(kvm, sp->role); in account_shadowed()
769 /* the non-leaf shadow pages are keeping readonly. */ in account_shadowed()
770 if (sp->role.level > PG_LEVEL_4K) in account_shadowed()
790 if (!list_empty(&sp->possible_nx_huge_page_link)) in track_possible_nx_huge_page()
793 ++kvm->stat.nx_lpage_splits; in track_possible_nx_huge_page()
794 ++kvm->arch.possible_nx_huge_pages[mmu_type].nr_pages; in track_possible_nx_huge_page()
795 list_add_tail(&sp->possible_nx_huge_page_link, in track_possible_nx_huge_page()
796 &kvm->arch.possible_nx_huge_pages[mmu_type].pages); in track_possible_nx_huge_page()
802 sp->nx_huge_page_disallowed = true; in account_nx_huge_page()
814 kvm->arch.indirect_shadow_pages--; in unaccount_shadowed()
815 gfn = sp->gfn; in unaccount_shadowed()
816 slots = kvm_memslots_for_spte_role(kvm, sp->role); in unaccount_shadowed()
818 if (sp->role.level > PG_LEVEL_4K) in unaccount_shadowed()
827 if (list_empty(&sp->possible_nx_huge_page_link)) in untrack_possible_nx_huge_page()
830 --kvm->stat.nx_lpage_splits; in untrack_possible_nx_huge_page()
831 --kvm->arch.possible_nx_huge_pages[mmu_type].nr_pages; in untrack_possible_nx_huge_page()
832 list_del_init(&sp->possible_nx_huge_page_link); in untrack_possible_nx_huge_page()
837 sp->nx_huge_page_disallowed = false; in unaccount_nx_huge_page()
849 if (!slot || slot->flags & KVM_MEMSLOT_INVALID) in gfn_to_memslot_dirty_bitmap()
860 * If the bit zero of rmap_head->val is clear, then it points to the only spte
861 * in this rmap chain. Otherwise, (rmap_head->val & ~3) points to a struct
891 * Elide the lock if the rmap is empty, as lockless walkers (read-only in __kvm_rmap_lock()
892 * mode) don't need to (and can't) walk an empty rmap, nor can they add in __kvm_rmap_lock()
896 old_val = atomic_long_read(&rmap_head->val); in __kvm_rmap_lock()
908 old_val = atomic_long_read(&rmap_head->val); in __kvm_rmap_lock()
929 } while (!atomic_long_try_cmpxchg_acquire(&rmap_head->val, &old_val, new_val)); in __kvm_rmap_lock()
933 * impossible for the return value to be 0 (see above), i.e. the read- in __kvm_rmap_lock()
942 lockdep_assert_held_write(&kvm->mmu_lock); in kvm_rmap_lock()
957 atomic_long_set_release(&rmap_head->val, val); in __kvm_rmap_unlock()
964 lockdep_assert_held_write(&kvm->mmu_lock); in kvm_rmap_unlock()
971 return atomic_long_read(&rmap_head->val) & ~KVM_RMAP_LOCKED; in kvm_rmap_get()
975 * If mmu_lock isn't held, rmaps can only be locked in read-only mode. The
1020 desc->sptes[0] = (u64 *)old_val; in pte_list_add()
1021 desc->sptes[1] = spte; in pte_list_add()
1022 desc->spte_count = 2; in pte_list_add()
1023 desc->tail_count = 0; in pte_list_add()
1028 count = desc->tail_count + desc->spte_count; in pte_list_add()
1034 if (desc->spte_count == PTE_LIST_EXT) { in pte_list_add()
1036 desc->more = (struct pte_list_desc *)(old_val & ~KVM_RMAP_MANY); in pte_list_add()
1037 desc->spte_count = 0; in pte_list_add()
1038 desc->tail_count = count; in pte_list_add()
1043 desc->sptes[desc->spte_count++] = spte; in pte_list_add()
1055 int j = head_desc->spte_count - 1; in pte_list_desc_remove_entry()
1065 * Replace the to-be-freed SPTE with the last valid entry from the head in pte_list_desc_remove_entry()
1069 desc->sptes[i] = head_desc->sptes[j]; in pte_list_desc_remove_entry()
1070 head_desc->sptes[j] = NULL; in pte_list_desc_remove_entry()
1071 head_desc->spte_count--; in pte_list_desc_remove_entry()
1072 if (head_desc->spte_count) in pte_list_desc_remove_entry()
1080 if (!head_desc->more) in pte_list_desc_remove_entry()
1083 *rmap_val = (unsigned long)head_desc->more | KVM_RMAP_MANY; in pte_list_desc_remove_entry()
1106 for (i = 0; i < desc->spte_count; ++i) { in pte_list_remove()
1107 if (desc->sptes[i] == spte) { in pte_list_remove()
1113 desc = desc->more; in pte_list_remove()
1150 for (i = 0; i < desc->spte_count; i++) in kvm_zap_all_rmap_sptes()
1151 mmu_spte_clear_track_bits(kvm, desc->sptes[i]); in kvm_zap_all_rmap_sptes()
1152 next = desc->more; in kvm_zap_all_rmap_sptes()
1172 return desc->tail_count + desc->spte_count; in pte_list_count()
1180 idx = gfn_to_index(gfn, slot->base_gfn, level); in gfn_to_rmap()
1181 return &slot->arch.rmap[level - PG_LEVEL_4K][idx]; in gfn_to_rmap()
1198 * information in sp->role. in rmap_remove()
1200 slots = kvm_memslots_for_spte_role(kvm, sp->role); in rmap_remove()
1203 rmap_head = gfn_to_rmap(gfn, sp->role.level, slot); in rmap_remove()
1235 iter->desc = NULL; in rmap_get_first()
1239 iter->desc = (struct pte_list_desc *)(rmap_val & ~KVM_RMAP_MANY); in rmap_get_first()
1240 iter->pos = 0; in rmap_get_first()
1241 return iter->desc->sptes[iter->pos]; in rmap_get_first()
1251 if (iter->desc) { in rmap_get_next()
1252 if (iter->pos < PTE_LIST_EXT - 1) { in rmap_get_next()
1253 ++iter->pos; in rmap_get_next()
1254 if (iter->desc->sptes[iter->pos]) in rmap_get_next()
1255 return iter->desc->sptes[iter->pos]; in rmap_get_next()
1258 iter->desc = iter->desc->more; in rmap_get_next()
1260 if (iter->desc) { in rmap_get_next()
1261 iter->pos = 0; in rmap_get_next()
1262 /* desc->sptes[0] cannot be NULL */ in rmap_get_next()
1263 return iter->desc->sptes[iter->pos]; in rmap_get_next()
1295 WARN_ON_ONCE(sp->role.level == PG_LEVEL_4K); in drop_large_spte()
1304 * Write-protect on the specified @sptep, @pt_protect indicates whether
1305 * spte write-protection is caused by protecting shadow page table.
1309 * - for dirty logging, the spte can be set to writable at anytime if
1311 * - for spte protection, the spte can be writable only after unsync-ing
1355 * - D bit on ad-enabled SPTEs, and
1356 * - W bit on ad-disabled SPTEs.
1385 slot->base_gfn + gfn_offset, mask, true); in kvm_mmu_write_protect_pt_masked()
1391 rmap_head = gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask), in kvm_mmu_write_protect_pt_masked()
1396 mask &= mask - 1; in kvm_mmu_write_protect_pt_masked()
1408 slot->base_gfn + gfn_offset, mask, false); in kvm_mmu_clear_dirty_pt_masked()
1414 rmap_head = gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask), in kvm_mmu_clear_dirty_pt_masked()
1419 mask &= mask - 1; in kvm_mmu_clear_dirty_pt_masked()
1428 * If the slot was assumed to be "initially all dirty", write-protect in kvm_arch_mmu_enable_log_dirty_pt_masked()
1439 gfn_t start = slot->base_gfn + gfn_offset + __ffs(mask); in kvm_arch_mmu_enable_log_dirty_pt_masked()
1440 gfn_t end = slot->base_gfn + gfn_offset + __fls(mask); in kvm_arch_mmu_enable_log_dirty_pt_masked()
1456 * mask. If PML is enabled and the GFN doesn't need to be write- in kvm_arch_mmu_enable_log_dirty_pt_masked()
1464 if (kvm->arch.cpu_dirty_log_size) in kvm_arch_mmu_enable_log_dirty_pt_masked()
1472 return kvm->arch.cpu_dirty_log_size; in kvm_cpu_dirty_log_size()
1502 return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn, PG_LEVEL_4K); in kvm_vcpu_write_protect_gfn()
1531 iterator->level = level; in rmap_walk_init_level()
1532 iterator->gfn = iterator->start_gfn; in rmap_walk_init_level()
1533 iterator->rmap = gfn_to_rmap(iterator->gfn, level, iterator->slot); in rmap_walk_init_level()
1534 iterator->end_rmap = gfn_to_rmap(iterator->end_gfn, level, iterator->slot); in rmap_walk_init_level()
1542 iterator->slot = slot; in slot_rmap_walk_init()
1543 iterator->start_level = start_level; in slot_rmap_walk_init()
1544 iterator->end_level = end_level; in slot_rmap_walk_init()
1545 iterator->start_gfn = start_gfn; in slot_rmap_walk_init()
1546 iterator->end_gfn = end_gfn; in slot_rmap_walk_init()
1548 rmap_walk_init_level(iterator, iterator->start_level); in slot_rmap_walk_init()
1553 return !!iterator->rmap; in slot_rmap_walk_okay()
1558 while (++iterator->rmap <= iterator->end_rmap) { in slot_rmap_walk_next()
1559 iterator->gfn += KVM_PAGES_PER_HPAGE(iterator->level); in slot_rmap_walk_next()
1561 if (atomic_long_read(&iterator->rmap->val)) in slot_rmap_walk_next()
1565 if (++iterator->level > iterator->end_level) { in slot_rmap_walk_next()
1566 iterator->rmap = NULL; in slot_rmap_walk_next()
1570 rmap_walk_init_level(iterator, iterator->level); in slot_rmap_walk_next()
1595 lockdep_assert_held_write(&kvm->mmu_lock); in __walk_slot_rmaps()
1605 if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) { in __walk_slot_rmaps()
1608 iterator.gfn - start_gfn + 1); in __walk_slot_rmaps()
1611 cond_resched_rwlock_write(&kvm->mmu_lock); in __walk_slot_rmaps()
1625 slot->base_gfn, slot->base_gfn + slot->npages - 1, in walk_slot_rmaps()
1644 start, end - 1, can_yield, true, flush); in __kvm_rmap_zap_gfn_range()
1659 lockdep_assert_once(kvm->mmu_invalidate_in_progress || in kvm_unmap_gfn_range()
1660 lockdep_is_held(&kvm->slots_lock)); in kvm_unmap_gfn_range()
1663 flush = __kvm_rmap_zap_gfn_range(kvm, range->slot, in kvm_unmap_gfn_range()
1664 range->start, range->end, in kvm_unmap_gfn_range()
1665 range->may_block, flush); in kvm_unmap_gfn_range()
1671 range->slot->id == APIC_ACCESS_PAGE_PRIVATE_MEMSLOT) in kvm_unmap_gfn_range()
1690 kvm_update_page_stats(kvm, sp->role.level, 1); in __rmap_add()
1692 rmap_head = gfn_to_rmap(gfn, sp->role.level, slot); in __rmap_add()
1695 if (rmap_count > kvm->stat.max_mmu_rmap_size) in __rmap_add()
1696 kvm->stat.max_mmu_rmap_size = rmap_count; in __rmap_add()
1699 kvm_flush_remote_tlbs_gfn(kvm, gfn, sp->role.level); in __rmap_add()
1706 struct kvm_mmu_memory_cache *cache = &vcpu->arch.mmu_pte_list_desc_cache; in rmap_add()
1708 __rmap_add(vcpu->kvm, cache, slot, spte, gfn, access); in rmap_add()
1725 for (gfn = range->start; gfn < range->end; in kvm_rmap_age_gfn_range()
1727 rmap_head = gfn_to_rmap(gfn, level, range->slot); in kvm_rmap_age_gfn_range()
1740 clear_bit((ffs(shadow_accessed_mask) - 1), in kvm_rmap_age_gfn_range()
1761 return !tdp_mmu_enabled || READ_ONCE(kvm->arch.indirect_shadow_pages); in kvm_may_have_shadow_mmu_sptes()
1799 if (KVM_MMU_WARN_ON(is_shadow_present_pte(sp->spt[i]))) in kvm_mmu_check_sptes_at_free()
1800 pr_err_ratelimited("SPTE %llx (@ %p) for gfn %llx shadow-present at free", in kvm_mmu_check_sptes_at_free()
1801 sp->spt[i], &sp->spt[i], in kvm_mmu_check_sptes_at_free()
1809 kvm->arch.n_used_mmu_pages++; in kvm_account_mmu_page()
1810 kvm_account_pgtable_pages((void *)sp->spt, +1); in kvm_account_mmu_page()
1815 kvm->arch.n_used_mmu_pages--; in kvm_unaccount_mmu_page()
1816 kvm_account_pgtable_pages((void *)sp->spt, -1); in kvm_unaccount_mmu_page()
1823 hlist_del(&sp->hash_link); in kvm_mmu_free_shadow_page()
1824 list_del(&sp->link); in kvm_mmu_free_shadow_page()
1825 free_page((unsigned long)sp->spt); in kvm_mmu_free_shadow_page()
1826 free_page((unsigned long)sp->shadowed_translation); in kvm_mmu_free_shadow_page()
1842 pte_list_add(kvm, cache, parent_pte, &sp->parent_ptes); in mmu_page_add_parent_pte()
1848 pte_list_remove(kvm, parent_pte, &sp->parent_ptes); in mmu_page_remove_parent_pte()
1864 for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) { in kvm_mmu_mark_parents_unsync()
1874 if (__test_and_set_bit(spte_index(spte), sp->unsync_child_bitmap)) in mark_unsync()
1876 if (sp->unsync_children++) in mark_unsync()
1896 if (sp->unsync) in mmu_pages_add()
1897 for (i=0; i < pvec->nr; i++) in mmu_pages_add()
1898 if (pvec->page[i].sp == sp) in mmu_pages_add()
1901 pvec->page[pvec->nr].sp = sp; in mmu_pages_add()
1902 pvec->page[pvec->nr].idx = idx; in mmu_pages_add()
1903 pvec->nr++; in mmu_pages_add()
1904 return (pvec->nr == KVM_PAGE_ARRAY_NR); in mmu_pages_add()
1909 --sp->unsync_children; in clear_unsync_child_bit()
1910 WARN_ON_ONCE((int)sp->unsync_children < 0); in clear_unsync_child_bit()
1911 __clear_bit(idx, sp->unsync_child_bitmap); in clear_unsync_child_bit()
1919 for_each_set_bit(i, sp->unsync_child_bitmap, 512) { in __mmu_unsync_walk()
1921 u64 ent = sp->spt[i]; in __mmu_unsync_walk()
1930 if (child->unsync_children) { in __mmu_unsync_walk()
1932 return -ENOSPC; in __mmu_unsync_walk()
1942 } else if (child->unsync) { in __mmu_unsync_walk()
1945 return -ENOSPC; in __mmu_unsync_walk()
1953 #define INVALID_INDEX (-1)
1958 pvec->nr = 0; in mmu_unsync_walk()
1959 if (!sp->unsync_children) in mmu_unsync_walk()
1968 WARN_ON_ONCE(!sp->unsync); in kvm_unlink_unsync_page()
1970 sp->unsync = 0; in kvm_unlink_unsync_page()
1971 --kvm->stat.mmu_unsync; in kvm_unlink_unsync_page()
1981 if (sp->role.direct) in sp_has_gptes()
1984 if (sp->role.passthrough) in sp_has_gptes()
2002 struct hlist_head *page_hash = smp_load_acquire(&kvm->arch.mmu_page_hash); in kvm_get_mmu_page_hash()
2004 lockdep_assert_held(&kvm->mmu_lock); in kvm_get_mmu_page_hash()
2019 if ((_sp)->gfn != (_gfn) || !sp_has_gptes(_sp)) {} else
2023 union kvm_mmu_page_role root_role = vcpu->arch.mmu->root_role; in kvm_sync_page_check()
2029 * - level: not part of the overall MMU role and will never match as the MMU's in kvm_sync_page_check()
2031 * - access: updated based on the new guest PTE in kvm_sync_page_check()
2032 * - quadrant: not part of the overall MMU role (similar to level) in kvm_sync_page_check()
2044 * differs then the memslot lookup (SMM vs. non-SMM) will be bogus, the in kvm_sync_page_check()
2047 if (WARN_ON_ONCE(sp->role.direct || !vcpu->arch.mmu->sync_spte || in kvm_sync_page_check()
2048 (sp->role.word ^ root_role.word) & ~sync_role_ign.word)) in kvm_sync_page_check()
2056 /* sp->spt[i] has initial value of shadow page table allocation */ in kvm_sync_spte()
2057 if (sp->spt[i] == SHADOW_NONPRESENT_VALUE) in kvm_sync_spte()
2060 return vcpu->arch.mmu->sync_spte(vcpu, sp, i); in kvm_sync_spte()
2069 return -1; in __kvm_sync_page()
2074 if (ret < -1) in __kvm_sync_page()
2075 return -1; in __kvm_sync_page()
2097 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list); in kvm_sync_page()
2117 if (sp->role.invalid) in is_obsolete_sp()
2122 unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen); in is_obsolete_sp()
2141 for (n = i+1; n < pvec->nr; n++) { in mmu_pages_next()
2142 struct kvm_mmu_page *sp = pvec->page[n].sp; in mmu_pages_next()
2143 unsigned idx = pvec->page[n].idx; in mmu_pages_next()
2144 int level = sp->role.level; in mmu_pages_next()
2146 parents->idx[level-1] = idx; in mmu_pages_next()
2150 parents->parent[level-2] = sp; in mmu_pages_next()
2162 if (pvec->nr == 0) in mmu_pages_first()
2165 WARN_ON_ONCE(pvec->page[0].idx != INVALID_INDEX); in mmu_pages_first()
2167 sp = pvec->page[0].sp; in mmu_pages_first()
2168 level = sp->role.level; in mmu_pages_first()
2171 parents->parent[level-2] = sp; in mmu_pages_first()
2176 parents->parent[level-1] = NULL; in mmu_pages_first()
2186 unsigned int idx = parents->idx[level]; in mmu_pages_clear_parents()
2187 sp = parents->parent[level]; in mmu_pages_clear_parents()
2194 } while (!sp->unsync_children); in mmu_pages_clear_parents()
2211 protected |= kvm_vcpu_write_protect_gfn(vcpu, sp->gfn); in mmu_sync_children()
2214 kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, true); in mmu_sync_children()
2219 kvm_unlink_unsync_page(vcpu->kvm, sp); in mmu_sync_children()
2223 if (need_resched() || rwlock_needbreak(&vcpu->kvm->mmu_lock)) { in mmu_sync_children()
2224 kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, flush); in mmu_sync_children()
2227 return -EINTR; in mmu_sync_children()
2230 cond_resched_rwlock_write(&vcpu->kvm->mmu_lock); in mmu_sync_children()
2235 kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, flush); in mmu_sync_children()
2241 atomic_set(&sp->write_flooding_count, 0); in __clear_sp_write_flooding_count()
2267 if (sp->gfn != gfn) { in kvm_mmu_find_shadow_page()
2272 if (sp->role.word != role.word) { in kvm_mmu_find_shadow_page()
2274 * If the guest is creating an upper-level page, zap in kvm_mmu_find_shadow_page()
2280 * upper-level page will be write-protected. in kvm_mmu_find_shadow_page()
2282 if (role.level > PG_LEVEL_4K && sp->unsync) in kvm_mmu_find_shadow_page()
2288 /* unsync and write-flooding only apply to indirect SPs. */ in kvm_mmu_find_shadow_page()
2289 if (sp->role.direct) in kvm_mmu_find_shadow_page()
2292 if (sp->unsync) { in kvm_mmu_find_shadow_page()
2299 * it doesn't write-protect the page or mark it synchronized! in kvm_mmu_find_shadow_page()
2323 ++kvm->stat.mmu_cache_miss; in kvm_mmu_find_shadow_page()
2328 if (collisions > kvm->stat.max_mmu_page_hash_collisions) in kvm_mmu_find_shadow_page()
2329 kvm->stat.max_mmu_page_hash_collisions = collisions; in kvm_mmu_find_shadow_page()
2348 sp = kvm_mmu_memory_cache_alloc(caches->page_header_cache); in kvm_mmu_alloc_shadow_page()
2349 sp->spt = kvm_mmu_memory_cache_alloc(caches->shadow_page_cache); in kvm_mmu_alloc_shadow_page()
2351 sp->shadowed_translation = kvm_mmu_memory_cache_alloc(caches->shadowed_info_cache); in kvm_mmu_alloc_shadow_page()
2353 set_page_private(virt_to_page(sp->spt), (unsigned long)sp); in kvm_mmu_alloc_shadow_page()
2355 INIT_LIST_HEAD(&sp->possible_nx_huge_page_link); in kvm_mmu_alloc_shadow_page()
2362 sp->mmu_valid_gen = kvm->arch.mmu_valid_gen; in kvm_mmu_alloc_shadow_page()
2363 list_add(&sp->link, &kvm->arch.active_mmu_pages); in kvm_mmu_alloc_shadow_page()
2366 sp->gfn = gfn; in kvm_mmu_alloc_shadow_page()
2367 sp->role = role; in kvm_mmu_alloc_shadow_page()
2368 hlist_add_head(&sp->hash_link, sp_list); in kvm_mmu_alloc_shadow_page()
2391 BUG_ON(!kvm->arch.mmu_page_hash); in __kvm_mmu_get_shadow_page()
2392 sp_list = &kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]; in __kvm_mmu_get_shadow_page()
2409 .page_header_cache = &vcpu->arch.mmu_page_header_cache, in kvm_mmu_get_shadow_page()
2410 .shadow_page_cache = &vcpu->arch.mmu_shadow_page_cache, in kvm_mmu_get_shadow_page()
2411 .shadowed_info_cache = &vcpu->arch.mmu_shadowed_info_cache, in kvm_mmu_get_shadow_page()
2414 return __kvm_mmu_get_shadow_page(vcpu->kvm, vcpu, &caches, gfn, role); in kvm_mmu_get_shadow_page()
2423 role = parent_sp->role; in kvm_mmu_child_role()
2424 role.level--; in kvm_mmu_child_role()
2430 * If the guest has 4-byte PTEs then that means it's using 32-bit, in kvm_mmu_child_role()
2431 * 2-level, non-PAE paging. KVM shadows such guests with PAE paging in kvm_mmu_child_role()
2432 * (i.e. 8-byte PTEs). The difference in PTE size means that KVM must in kvm_mmu_child_role()
2445 * Concretely, a 4-byte PDE consumes bits 31:22, while an 8-byte PDE in kvm_mmu_child_role()
2447 * PDPTEs; those 4 PAE page directories are pre-allocated and their in kvm_mmu_child_role()
2448 * quadrant is assigned in mmu_alloc_root(). A 4-byte PTE consumes in kvm_mmu_child_role()
2449 * bits 21:12, while an 8-byte PTE consumes bits 20:12. To consume in kvm_mmu_child_role()
2451 * quadrant, i.e. sets quadrant to '0' or '1'. The parent 8-byte PDE in kvm_mmu_child_role()
2470 return ERR_PTR(-EEXIST); in kvm_mmu_get_child_sp()
2480 iterator->addr = addr; in shadow_walk_init_using_root()
2481 iterator->shadow_addr = root; in shadow_walk_init_using_root()
2482 iterator->level = vcpu->arch.mmu->root_role.level; in shadow_walk_init_using_root()
2484 if (iterator->level >= PT64_ROOT_4LEVEL && in shadow_walk_init_using_root()
2485 vcpu->arch.mmu->cpu_role.base.level < PT64_ROOT_4LEVEL && in shadow_walk_init_using_root()
2486 !vcpu->arch.mmu->root_role.direct) in shadow_walk_init_using_root()
2487 iterator->level = PT32E_ROOT_LEVEL; in shadow_walk_init_using_root()
2489 if (iterator->level == PT32E_ROOT_LEVEL) { in shadow_walk_init_using_root()
2491 * prev_root is currently only used for 64-bit hosts. So only in shadow_walk_init_using_root()
2494 BUG_ON(root != vcpu->arch.mmu->root.hpa); in shadow_walk_init_using_root()
2496 iterator->shadow_addr in shadow_walk_init_using_root()
2497 = vcpu->arch.mmu->pae_root[(addr >> 30) & 3]; in shadow_walk_init_using_root()
2498 iterator->shadow_addr &= SPTE_BASE_ADDR_MASK; in shadow_walk_init_using_root()
2499 --iterator->level; in shadow_walk_init_using_root()
2500 if (!iterator->shadow_addr) in shadow_walk_init_using_root()
2501 iterator->level = 0; in shadow_walk_init_using_root()
2508 shadow_walk_init_using_root(iterator, vcpu, vcpu->arch.mmu->root.hpa, in shadow_walk_init()
2514 if (iterator->level < PG_LEVEL_4K) in shadow_walk_okay()
2517 iterator->index = SPTE_INDEX(iterator->addr, iterator->level); in shadow_walk_okay()
2518 iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index; in shadow_walk_okay()
2525 if (!is_shadow_present_pte(spte) || is_last_spte(spte, iterator->level)) { in __shadow_walk_next()
2526 iterator->level = 0; in __shadow_walk_next()
2530 iterator->shadow_addr = spte & SPTE_BASE_ADDR_MASK; in __shadow_walk_next()
2531 --iterator->level; in __shadow_walk_next()
2536 __shadow_walk_next(iterator, *iterator->sptep); in shadow_walk_next()
2555 spte = make_nonleaf_spte(sp->spt, sp_ad_disabled(sp)); in __link_shadow_page()
2562 * The non-direct sub-pagetable must be updated before linking. For in __link_shadow_page()
2564 * kvm_mmu_find_shadow_page() without write-protecting the gfn, in __link_shadow_page()
2565 * so sp->unsync can be true or false. For higher level non-direct in __link_shadow_page()
2567 * FNAME(fetch)(), so sp->unsync_children can only be false. in __link_shadow_page()
2570 if (WARN_ON_ONCE(sp->unsync_children) || sp->unsync) in __link_shadow_page()
2577 __link_shadow_page(vcpu->kvm, &vcpu->arch.mmu_pte_list_desc_cache, sptep, sp, true); in link_shadow_page()
2589 * sp's access: allow writable in the read-only sp, in validate_direct_spte()
2594 if (child->role.access == direct_access) in validate_direct_spte()
2597 drop_parent_pte(vcpu->kvm, child, sptep); in validate_direct_spte()
2598 kvm_flush_remote_tlbs_sptep(vcpu->kvm, sptep); in validate_direct_spte()
2602 /* Returns the number of zapped non-leaf child shadow pages. */
2611 if (is_last_spte(pte, sp->role.level)) { in mmu_page_zap_pte()
2623 child->role.guest_mode && in mmu_page_zap_pte()
2624 !atomic_long_read(&child->parent_ptes.val)) in mmu_page_zap_pte()
2642 zapped += mmu_page_zap_pte(kvm, sp, sp->spt + i, invalid_list); in kvm_mmu_page_unlink_children()
2652 while ((sptep = rmap_get_first(&sp->parent_ptes, &iter))) in kvm_mmu_unlink_parents()
2664 if (parent->role.level == PG_LEVEL_4K) in mmu_zap_unsync_children()
2687 lockdep_assert_held_write(&kvm->mmu_lock); in __kvm_mmu_prepare_zap_page()
2689 ++kvm->stat.mmu_shadow_zapped; in __kvm_mmu_prepare_zap_page()
2697 if (!sp->role.invalid && sp_has_gptes(sp)) in __kvm_mmu_prepare_zap_page()
2700 if (sp->unsync) in __kvm_mmu_prepare_zap_page()
2702 if (!sp->root_count) { in __kvm_mmu_prepare_zap_page()
2709 * !sp->root_count. in __kvm_mmu_prepare_zap_page()
2711 if (sp->role.invalid) in __kvm_mmu_prepare_zap_page()
2712 list_add(&sp->link, invalid_list); in __kvm_mmu_prepare_zap_page()
2714 list_move(&sp->link, invalid_list); in __kvm_mmu_prepare_zap_page()
2721 list_del(&sp->link); in __kvm_mmu_prepare_zap_page()
2731 if (sp->nx_huge_page_disallowed) in __kvm_mmu_prepare_zap_page()
2734 sp->role.invalid = 1; in __kvm_mmu_prepare_zap_page()
2764 * the page tables and see changes to vcpu->mode here. The barrier in kvm_mmu_commit_zap_page()
2769 * guest mode and/or lockless shadow page table walks. in kvm_mmu_commit_zap_page()
2774 WARN_ON_ONCE(!sp->role.invalid || sp->root_count); in kvm_mmu_commit_zap_page()
2788 if (list_empty(&kvm->arch.active_mmu_pages)) in kvm_mmu_zap_oldest_mmu_pages()
2792 list_for_each_entry_safe_reverse(sp, tmp, &kvm->arch.active_mmu_pages, link) { in kvm_mmu_zap_oldest_mmu_pages()
2797 if (sp->root_count) in kvm_mmu_zap_oldest_mmu_pages()
2812 kvm->stat.mmu_recycled += total_zapped; in kvm_mmu_zap_oldest_mmu_pages()
2818 if (kvm->arch.n_max_mmu_pages > kvm->arch.n_used_mmu_pages) in kvm_mmu_available_pages()
2819 return kvm->arch.n_max_mmu_pages - in kvm_mmu_available_pages()
2820 kvm->arch.n_used_mmu_pages; in kvm_mmu_available_pages()
2827 unsigned long avail = kvm_mmu_available_pages(vcpu->kvm); in make_mmu_pages_available()
2832 kvm_mmu_zap_oldest_mmu_pages(vcpu->kvm, KVM_REFILL_PAGES - avail); in make_mmu_pages_available()
2837 * four pages, e.g. for PAE roots or for 5-level paging. Temporarily in make_mmu_pages_available()
2843 if (!kvm_mmu_available_pages(vcpu->kvm)) in make_mmu_pages_available()
2844 return -ENOSPC; in make_mmu_pages_available()
2854 write_lock(&kvm->mmu_lock); in kvm_mmu_change_mmu_pages()
2856 if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) { in kvm_mmu_change_mmu_pages()
2857 kvm_mmu_zap_oldest_mmu_pages(kvm, kvm->arch.n_used_mmu_pages - in kvm_mmu_change_mmu_pages()
2860 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages; in kvm_mmu_change_mmu_pages()
2863 kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages; in kvm_mmu_change_mmu_pages()
2865 write_unlock(&kvm->mmu_lock); in kvm_mmu_change_mmu_pages()
2871 struct kvm *kvm = vcpu->kvm; in __kvm_mmu_unprotect_gfn_and_retry()
2878 * Bail early if there aren't any write-protected shadow pages to avoid in __kvm_mmu_unprotect_gfn_and_retry()
2879 * unnecessarily taking mmu_lock lock, e.g. if the gfn is write-tracked in __kvm_mmu_unprotect_gfn_and_retry()
2885 if (!READ_ONCE(kvm->arch.indirect_shadow_pages)) in __kvm_mmu_unprotect_gfn_and_retry()
2888 if (!vcpu->arch.mmu->root_role.direct) { in __kvm_mmu_unprotect_gfn_and_retry()
2894 write_lock(&kvm->mmu_lock); in __kvm_mmu_unprotect_gfn_and_retry()
2904 write_unlock(&kvm->mmu_lock); in __kvm_mmu_unprotect_gfn_and_retry()
2908 vcpu->arch.last_retry_eip = kvm_rip_read(vcpu); in __kvm_mmu_unprotect_gfn_and_retry()
2909 vcpu->arch.last_retry_addr = cr2_or_gpa; in __kvm_mmu_unprotect_gfn_and_retry()
2917 ++kvm->stat.mmu_unsync; in kvm_unsync_page()
2918 sp->unsync = 1; in kvm_unsync_page()
2926 * were marked unsync (or if there is no shadow page), -EPERM if the SPTE must
2927 * be write-protected.
2936 * Force write-protection if the page is being tracked. Note, the page in mmu_try_to_unsync_pages()
2937 * track machinery is used to write-protect upper-level shadow pages, in mmu_try_to_unsync_pages()
2941 return -EPERM; in mmu_try_to_unsync_pages()
2944 * The page is not write-tracked, mark existing shadow pages unsync in mmu_try_to_unsync_pages()
2951 return -EPERM; in mmu_try_to_unsync_pages()
2953 if (sp->unsync) in mmu_try_to_unsync_pages()
2957 return -EEXIST; in mmu_try_to_unsync_pages()
2968 spin_lock(&kvm->arch.mmu_unsync_pages_lock); in mmu_try_to_unsync_pages()
2974 * possible as clearing sp->unsync _must_ hold mmu_lock in mmu_try_to_unsync_pages()
2975 * for write, i.e. unsync cannot transition from 1->0 in mmu_try_to_unsync_pages()
2978 if (READ_ONCE(sp->unsync)) in mmu_try_to_unsync_pages()
2982 WARN_ON_ONCE(sp->role.level != PG_LEVEL_4K); in mmu_try_to_unsync_pages()
2986 spin_unlock(&kvm->arch.mmu_unsync_pages_lock); in mmu_try_to_unsync_pages()
2989 * We need to ensure that the marking of unsync pages is visible in mmu_try_to_unsync_pages()
2993 * before the page had been marked as unsync-ed, something like the in mmu_try_to_unsync_pages()
2997 * --------------------------------------------------------------------- in mmu_try_to_unsync_pages()
3010 * 2.3 Walking of unsync pages sees sp->unsync is in mmu_try_to_unsync_pages()
3019 * (sp->unsync = true) in mmu_try_to_unsync_pages()
3035 int level = sp->role.level; in mmu_set_spte()
3043 bool host_writable = !fault || fault->map_writable; in mmu_set_spte()
3044 bool prefetch = !fault || fault->prefetch; in mmu_set_spte()
3045 bool write_fault = fault && fault->write; in mmu_set_spte()
3048 vcpu->stat.pf_mmio_spte_created++; in mmu_set_spte()
3067 drop_parent_pte(vcpu->kvm, child, sptep); in mmu_set_spte()
3070 drop_spte(vcpu->kvm, sptep); in mmu_set_spte()
3090 kvm_flush_remote_tlbs_gfn(vcpu->kvm, gfn, level); in mmu_set_spte()
3145 unsigned int access = sp->role.access; in direct_pte_prefetch_many()
3147 return kvm_mmu_prefetch_sptes(vcpu, gfn, start, end - start, access); in direct_pte_prefetch_many()
3156 WARN_ON_ONCE(!sp->role.direct); in __direct_pte_prefetch()
3158 i = spte_index(sptep) & ~(PTE_PREFETCH_NUM - 1); in __direct_pte_prefetch()
3159 spte = sp->spt + i; in __direct_pte_prefetch()
3190 if (sp->role.level > PG_LEVEL_4K) in direct_pte_prefetch()
3197 if (unlikely(vcpu->kvm->mmu_invalidate_in_progress)) in direct_pte_prefetch()
3211 * - Check mmu_invalidate_retry_gfn() after grabbing the mapping level, before
3215 * - Hold mmu_lock AND ensure there is no in-progress MMU notifier invalidation
3219 * - Do not use the result to install new mappings, e.g. use the host mapping
3240 * Note, using the already-retrieved memslot and __gfn_to_hva_memslot() in host_pfn_mapping_level()
3243 * read-only memslots due to gfn_to_hva() assuming writes. Earlier in host_pfn_mapping_level()
3245 * read-only memslot. in host_pfn_mapping_level()
3257 * Read each entry once. As above, a non-leaf entry can be promoted to in host_pfn_mapping_level()
3258 * a huge page _during_ this walk. Re-reading the entry could send the in host_pfn_mapping_level()
3263 pgd = READ_ONCE(*pgd_offset(kvm->mm, hva)); in host_pfn_mapping_level()
3318 pfn = fault->pfn; in kvm_gmem_max_mapping_level()
3319 max_level = fault->max_level; in kvm_gmem_max_mapping_level()
3331 * CoCo may influence the max mapping level, e.g. due to RMP or S-EPT in kvm_gmem_max_mapping_level()
3349 lockdep_assert_held(&kvm->mmu_lock); in kvm_mmu_max_mapping_level()
3352 max_level = fault->max_level; in kvm_mmu_max_mapping_level()
3353 is_private = fault->is_private; in kvm_mmu_max_mapping_level()
3360 for ( ; max_level > PG_LEVEL_4K; max_level--) { in kvm_mmu_max_mapping_level()
3362 if (!linfo->disallow_lpage) in kvm_mmu_max_mapping_level()
3379 struct kvm_memory_slot *slot = fault->slot; in kvm_mmu_hugepage_adjust()
3382 fault->huge_page_disallowed = fault->exec && fault->nx_huge_page_workaround_enabled; in kvm_mmu_hugepage_adjust()
3384 if (unlikely(fault->max_level == PG_LEVEL_4K)) in kvm_mmu_hugepage_adjust()
3387 if (is_error_noslot_pfn(fault->pfn)) in kvm_mmu_hugepage_adjust()
3397 fault->req_level = kvm_mmu_max_mapping_level(vcpu->kvm, fault, in kvm_mmu_hugepage_adjust()
3398 fault->slot, fault->gfn); in kvm_mmu_hugepage_adjust()
3399 if (fault->req_level == PG_LEVEL_4K || fault->huge_page_disallowed) in kvm_mmu_hugepage_adjust()
3406 fault->goal_level = fault->req_level; in kvm_mmu_hugepage_adjust()
3407 mask = KVM_PAGES_PER_HPAGE(fault->goal_level) - 1; in kvm_mmu_hugepage_adjust()
3408 VM_BUG_ON((fault->gfn & mask) != (fault->pfn & mask)); in kvm_mmu_hugepage_adjust()
3409 fault->pfn &= ~mask; in kvm_mmu_hugepage_adjust()
3415 cur_level == fault->goal_level && in disallowed_hugepage_adjust()
3418 spte_to_child_sp(spte)->nx_huge_page_disallowed) { in disallowed_hugepage_adjust()
3426 u64 page_mask = KVM_PAGES_PER_HPAGE(cur_level) - in disallowed_hugepage_adjust()
3427 KVM_PAGES_PER_HPAGE(cur_level - 1); in disallowed_hugepage_adjust()
3428 fault->pfn |= fault->gfn & page_mask; in disallowed_hugepage_adjust()
3429 fault->goal_level--; in disallowed_hugepage_adjust()
3438 gfn_t base_gfn = fault->gfn; in direct_map()
3443 for_each_shadow_entry(vcpu, fault->addr, it) { in direct_map()
3448 if (fault->nx_huge_page_workaround_enabled) in direct_map()
3451 base_gfn = gfn_round_for_level(fault->gfn, it.level); in direct_map()
3452 if (it.level == fault->goal_level) in direct_map()
3456 if (sp == ERR_PTR(-EEXIST)) in direct_map()
3460 if (fault->huge_page_disallowed) in direct_map()
3461 account_nx_huge_page(vcpu->kvm, sp, in direct_map()
3462 fault->req_level >= it.level); in direct_map()
3465 if (WARN_ON_ONCE(it.level != fault->goal_level)) in direct_map()
3466 return -EFAULT; in direct_map()
3468 ret = mmu_set_spte(vcpu, fault->slot, it.sptep, ACC_ALL, in direct_map()
3469 base_gfn, fault->pfn, fault); in direct_map()
3486 if (is_sigpending_pfn(fault->pfn)) { in kvm_handle_error_pfn()
3488 return -EINTR; in kvm_handle_error_pfn()
3496 if (fault->pfn == KVM_PFN_ERR_RO_FAULT) in kvm_handle_error_pfn()
3499 if (fault->pfn == KVM_PFN_ERR_HWPOISON) { in kvm_handle_error_pfn()
3500 kvm_send_hwpoison_signal(fault->slot, fault->gfn); in kvm_handle_error_pfn()
3504 return -EFAULT; in kvm_handle_error_pfn()
3511 gva_t gva = fault->is_tdp ? 0 : fault->addr; in kvm_handle_noslot_fault()
3513 if (fault->is_private) { in kvm_handle_noslot_fault()
3515 return -EFAULT; in kvm_handle_noslot_fault()
3518 vcpu_cache_mmio_info(vcpu, gva, fault->gfn, in kvm_handle_noslot_fault()
3521 fault->slot = NULL; in kvm_handle_noslot_fault()
3522 fault->pfn = KVM_PFN_NOSLOT; in kvm_handle_noslot_fault()
3523 fault->map_writable = false; in kvm_handle_noslot_fault()
3540 if (unlikely(fault->gfn > kvm_mmu_max_gfn())) in kvm_handle_noslot_fault()
3554 if (fault->rsvd) in page_fault_can_be_fast()
3558 * For hardware-protected VMs, certain conditions like attempting to in page_fault_can_be_fast()
3562 * result of a write-protected access, and treat it as a spurious case in page_fault_can_be_fast()
3573 if (kvm->arch.has_private_mem && in page_fault_can_be_fast()
3574 fault->is_private != kvm_mem_is_private(kvm, fault->gfn)) in page_fault_can_be_fast()
3588 * the fault was caused by a write-protection violation. If the in page_fault_can_be_fast()
3589 * SPTE is MMU-writable (determined later), the fault can be fixed in page_fault_can_be_fast()
3592 if (!fault->present) in page_fault_can_be_fast()
3599 return fault->write; in page_fault_can_be_fast()
3618 * so non-PML cases won't be impacted. in fast_pf_fix_direct_spte()
3626 mark_page_dirty_in_slot(vcpu->kvm, fault->slot, fault->gfn); in fast_pf_fix_direct_spte()
3633 * gpa, and sets *spte to the spte value. This spte may be non-preset. If no
3637 * - Must be called between walk_shadow_page_lockless_{begin,end}.
3638 * - The returned sptep must not be used after walk_shadow_page_lockless_end.
3665 if (!page_fault_can_be_fast(vcpu->kvm, fault)) in fast_page_fault()
3674 sptep = kvm_tdp_mmu_fast_pf_get_last_sptep(vcpu, fault->gfn, &spte); in fast_page_fault()
3676 sptep = fast_pf_get_last_sptep(vcpu, fault->addr, &spte); in fast_page_fault()
3690 if (!is_last_spte(spte, sp->role.level)) in fast_page_fault()
3713 * uses A/D bits for non-nested MMUs. Thus, if A/D bits are in fast_page_fault()
3714 * enabled, the SPTE can't be an access-tracked SPTE. in fast_page_fault()
3721 * To keep things simple, only SPTEs that are MMU-writable can in fast_page_fault()
3723 * that were write-protected for dirty-logging or access in fast_page_fault()
3728 * shadow-present, i.e. except for access tracking restoration in fast_page_fault()
3731 if (fault->write && is_mmu_writable_spte(spte)) { in fast_page_fault()
3735 * Do not fix write-permission on the large spte when in fast_page_fault()
3737 * first page into the dirty-bitmap in in fast_page_fault()
3744 if (sp->role.level > PG_LEVEL_4K && in fast_page_fault()
3745 kvm_slot_dirty_track_enabled(fault->slot)) in fast_page_fault()
3775 vcpu->stat.pf_fast++; in fast_page_fault()
3793 lockdep_assert_held_read(&kvm->mmu_lock); in mmu_free_root_page()
3796 lockdep_assert_held_write(&kvm->mmu_lock); in mmu_free_root_page()
3797 if (!--sp->root_count && sp->role.invalid) in mmu_free_root_page()
3808 bool is_tdp_mmu = tdp_mmu_enabled && mmu->root_role.direct; in kvm_mmu_free_roots()
3819 && VALID_PAGE(mmu->root.hpa); in kvm_mmu_free_roots()
3824 VALID_PAGE(mmu->prev_roots[i].hpa)) in kvm_mmu_free_roots()
3832 read_lock(&kvm->mmu_lock); in kvm_mmu_free_roots()
3834 write_lock(&kvm->mmu_lock); in kvm_mmu_free_roots()
3838 mmu_free_root_page(kvm, &mmu->prev_roots[i].hpa, in kvm_mmu_free_roots()
3842 if (kvm_mmu_is_dummy_root(mmu->root.hpa)) { in kvm_mmu_free_roots()
3844 } else if (root_to_sp(mmu->root.hpa)) { in kvm_mmu_free_roots()
3845 mmu_free_root_page(kvm, &mmu->root.hpa, &invalid_list); in kvm_mmu_free_roots()
3846 } else if (mmu->pae_root) { in kvm_mmu_free_roots()
3848 if (!IS_VALID_PAE_ROOT(mmu->pae_root[i])) in kvm_mmu_free_roots()
3851 mmu_free_root_page(kvm, &mmu->pae_root[i], in kvm_mmu_free_roots()
3853 mmu->pae_root[i] = INVALID_PAE_ROOT; in kvm_mmu_free_roots()
3856 mmu->root.hpa = INVALID_PAGE; in kvm_mmu_free_roots()
3857 mmu->root.pgd = 0; in kvm_mmu_free_roots()
3861 read_unlock(&kvm->mmu_lock); in kvm_mmu_free_roots()
3865 write_unlock(&kvm->mmu_lock); in kvm_mmu_free_roots()
3881 WARN_ON_ONCE(mmu->root_role.guest_mode); in kvm_mmu_free_guest_mode_roots()
3884 root_hpa = mmu->prev_roots[i].hpa; in kvm_mmu_free_guest_mode_roots()
3889 if (!sp || sp->role.guest_mode) in kvm_mmu_free_guest_mode_roots()
3900 union kvm_mmu_page_role role = vcpu->arch.mmu->root_role; in mmu_alloc_root()
3910 ++sp->root_count; in mmu_alloc_root()
3912 return __pa(sp->spt); in mmu_alloc_root()
3917 struct kvm_mmu *mmu = vcpu->arch.mmu; in mmu_alloc_direct_roots()
3918 u8 shadow_root_level = mmu->root_role.level; in mmu_alloc_direct_roots()
3924 if (kvm_has_mirrored_tdp(vcpu->kvm) && in mmu_alloc_direct_roots()
3925 !VALID_PAGE(mmu->mirror_root_hpa)) in mmu_alloc_direct_roots()
3931 write_lock(&vcpu->kvm->mmu_lock); in mmu_alloc_direct_roots()
3938 mmu->root.hpa = root; in mmu_alloc_direct_roots()
3940 if (WARN_ON_ONCE(!mmu->pae_root)) { in mmu_alloc_direct_roots()
3941 r = -EIO; in mmu_alloc_direct_roots()
3946 WARN_ON_ONCE(IS_VALID_PAE_ROOT(mmu->pae_root[i])); in mmu_alloc_direct_roots()
3948 root = mmu_alloc_root(vcpu, i << (30 - PAGE_SHIFT), 0, in mmu_alloc_direct_roots()
3950 mmu->pae_root[i] = root | PT_PRESENT_MASK | in mmu_alloc_direct_roots()
3953 mmu->root.hpa = __pa(mmu->pae_root); in mmu_alloc_direct_roots()
3956 r = -EIO; in mmu_alloc_direct_roots()
3961 mmu->root.pgd = 0; in mmu_alloc_direct_roots()
3963 write_unlock(&vcpu->kvm->mmu_lock); in mmu_alloc_direct_roots()
3971 if (kvm->arch.mmu_page_hash) in kvm_mmu_alloc_page_hash()
3976 return -ENOMEM; in kvm_mmu_alloc_page_hash()
3985 smp_store_release(&kvm->arch.mmu_page_hash, h); in kvm_mmu_alloc_page_hash()
4002 mutex_lock(&kvm->slots_arch_lock); in mmu_first_shadow_root_alloc()
4024 * Both of these functions are no-ops if the target is in mmu_first_shadow_root_alloc()
4033 r = memslot_rmap_alloc(slot, slot->npages); in mmu_first_shadow_root_alloc()
4047 smp_store_release(&kvm->arch.shadow_root_allocated, true); in mmu_first_shadow_root_alloc()
4050 mutex_unlock(&kvm->slots_arch_lock); in mmu_first_shadow_root_alloc()
4056 struct kvm_mmu *mmu = vcpu->arch.mmu; in mmu_alloc_shadow_roots()
4066 mmu->root.hpa = kvm_mmu_get_dummy_root(); in mmu_alloc_shadow_roots()
4074 if (mmu->cpu_role.base.level == PT32E_ROOT_LEVEL) { in mmu_alloc_shadow_roots()
4076 pdptrs[i] = mmu->get_pdptr(vcpu, i); in mmu_alloc_shadow_roots()
4085 r = mmu_first_shadow_root_alloc(vcpu->kvm); in mmu_alloc_shadow_roots()
4089 write_lock(&vcpu->kvm->mmu_lock); in mmu_alloc_shadow_roots()
4095 * Do we shadow a long mode page table? If so we need to in mmu_alloc_shadow_roots()
4096 * write-protect the guests page table root. in mmu_alloc_shadow_roots()
4098 if (mmu->cpu_role.base.level >= PT64_ROOT_4LEVEL) { in mmu_alloc_shadow_roots()
4100 mmu->root_role.level); in mmu_alloc_shadow_roots()
4101 mmu->root.hpa = root; in mmu_alloc_shadow_roots()
4105 if (WARN_ON_ONCE(!mmu->pae_root)) { in mmu_alloc_shadow_roots()
4106 r = -EIO; in mmu_alloc_shadow_roots()
4111 * We shadow a 32 bit page table. This may be a legacy 2-level in mmu_alloc_shadow_roots()
4112 * or a PAE 3-level page table. In either case we need to be aware that in mmu_alloc_shadow_roots()
4113 * the shadow page table may be a PAE or a long mode page table. in mmu_alloc_shadow_roots()
4116 if (mmu->root_role.level >= PT64_ROOT_4LEVEL) { in mmu_alloc_shadow_roots()
4119 if (WARN_ON_ONCE(!mmu->pml4_root)) { in mmu_alloc_shadow_roots()
4120 r = -EIO; in mmu_alloc_shadow_roots()
4123 mmu->pml4_root[0] = __pa(mmu->pae_root) | pm_mask; in mmu_alloc_shadow_roots()
4125 if (mmu->root_role.level == PT64_ROOT_5LEVEL) { in mmu_alloc_shadow_roots()
4126 if (WARN_ON_ONCE(!mmu->pml5_root)) { in mmu_alloc_shadow_roots()
4127 r = -EIO; in mmu_alloc_shadow_roots()
4130 mmu->pml5_root[0] = __pa(mmu->pml4_root) | pm_mask; in mmu_alloc_shadow_roots()
4135 WARN_ON_ONCE(IS_VALID_PAE_ROOT(mmu->pae_root[i])); in mmu_alloc_shadow_roots()
4137 if (mmu->cpu_role.base.level == PT32E_ROOT_LEVEL) { in mmu_alloc_shadow_roots()
4139 mmu->pae_root[i] = INVALID_PAE_ROOT; in mmu_alloc_shadow_roots()
4146 * If shadowing 32-bit non-PAE page tables, each PAE page in mmu_alloc_shadow_roots()
4147 * directory maps one quarter of the guest's non-PAE page in mmu_alloc_shadow_roots()
4151 quadrant = (mmu->cpu_role.base.level == PT32_ROOT_LEVEL) ? i : 0; in mmu_alloc_shadow_roots()
4154 mmu->pae_root[i] = root | pm_mask; in mmu_alloc_shadow_roots()
4157 if (mmu->root_role.level == PT64_ROOT_5LEVEL) in mmu_alloc_shadow_roots()
4158 mmu->root.hpa = __pa(mmu->pml5_root); in mmu_alloc_shadow_roots()
4159 else if (mmu->root_role.level == PT64_ROOT_4LEVEL) in mmu_alloc_shadow_roots()
4160 mmu->root.hpa = __pa(mmu->pml4_root); in mmu_alloc_shadow_roots()
4162 mmu->root.hpa = __pa(mmu->pae_root); in mmu_alloc_shadow_roots()
4165 mmu->root.pgd = root_pgd; in mmu_alloc_shadow_roots()
4167 write_unlock(&vcpu->kvm->mmu_lock); in mmu_alloc_shadow_roots()
4174 struct kvm_mmu *mmu = vcpu->arch.mmu; in mmu_alloc_special_roots()
4175 bool need_pml5 = mmu->root_role.level > PT64_ROOT_4LEVEL; in mmu_alloc_special_roots()
4181 * When shadowing 32-bit or PAE NPT with 64-bit NPT, the PML4 and PDP in mmu_alloc_special_roots()
4184 * on demand, as running a 32-bit L1 VMM on 64-bit KVM is very rare. in mmu_alloc_special_roots()
4186 if (mmu->root_role.direct || in mmu_alloc_special_roots()
4187 mmu->cpu_role.base.level >= PT64_ROOT_4LEVEL || in mmu_alloc_special_roots()
4188 mmu->root_role.level < PT64_ROOT_4LEVEL) in mmu_alloc_special_roots()
4192 * NPT, the only paging mode that uses this horror, uses a fixed number in mmu_alloc_special_roots()
4193 * of levels for the shadow page tables, e.g. all MMUs are 4-level or in mmu_alloc_special_roots()
4194 * all MMus are 5-level. Thus, this can safely require that pml5_root in mmu_alloc_special_roots()
4198 if (mmu->pae_root && mmu->pml4_root && (!need_pml5 || mmu->pml5_root)) in mmu_alloc_special_roots()
4205 if (WARN_ON_ONCE(!tdp_enabled || mmu->pae_root || mmu->pml4_root || in mmu_alloc_special_roots()
4206 (need_pml5 && mmu->pml5_root))) in mmu_alloc_special_roots()
4207 return -EIO; in mmu_alloc_special_roots()
4210 * Unlike 32-bit NPT, the PDP table doesn't need to be in low mem, and in mmu_alloc_special_roots()
4215 return -ENOMEM; in mmu_alloc_special_roots()
4229 mmu->pae_root = pae_root; in mmu_alloc_special_roots()
4230 mmu->pml4_root = pml4_root; in mmu_alloc_special_roots()
4231 mmu->pml5_root = pml5_root; in mmu_alloc_special_roots()
4240 return -ENOMEM; in mmu_alloc_special_roots()
4253 * walk before the reads of sp->unsync/sp->unsync_children here. in is_unsync_root()
4255 * Even if another CPU was marking the SP as unsync-ed simultaneously, in is_unsync_root()
4256 * any guest page table changes are not guaranteed to be visible anyway in is_unsync_root()
4273 if (sp->unsync || sp->unsync_children) in is_unsync_root()
4284 if (vcpu->arch.mmu->root_role.direct) in kvm_mmu_sync_roots()
4287 if (!VALID_PAGE(vcpu->arch.mmu->root.hpa)) in kvm_mmu_sync_roots()
4292 if (vcpu->arch.mmu->cpu_role.base.level >= PT64_ROOT_4LEVEL) { in kvm_mmu_sync_roots()
4293 hpa_t root = vcpu->arch.mmu->root.hpa; in kvm_mmu_sync_roots()
4300 write_lock(&vcpu->kvm->mmu_lock); in kvm_mmu_sync_roots()
4302 write_unlock(&vcpu->kvm->mmu_lock); in kvm_mmu_sync_roots()
4306 write_lock(&vcpu->kvm->mmu_lock); in kvm_mmu_sync_roots()
4309 hpa_t root = vcpu->arch.mmu->pae_root[i]; in kvm_mmu_sync_roots()
4317 write_unlock(&vcpu->kvm->mmu_lock); in kvm_mmu_sync_roots()
4326 if (is_unsync_root(vcpu->arch.mmu->prev_roots[i].hpa)) in kvm_mmu_sync_prev_roots()
4330 kvm_mmu_free_roots(vcpu->kvm, vcpu->arch.mmu, roots_to_free); in kvm_mmu_sync_prev_roots()
4338 exception->error_code = 0; in nonpaging_gva_to_gpa()
4359 * That SPTE may be non-present.
4366 int leaf = -1; in get_walk()
4398 /* return true if reserved bit(s) are detected on a valid, non-MMIO SPTE. */
4418 * to detect reserved bits on non-MMIO SPTEs. i.e. buggy SPTEs. in get_mmio_spte()
4423 rsvd_check = &vcpu->arch.mmu->shadow_zero_check; in get_mmio_spte()
4425 for (level = root; level >= leaf; level--) in get_mmio_spte()
4429 pr_err("%s: reserved bits set on MMU-present spte, addr 0x%llx, hierarchy:\n", in get_mmio_spte()
4431 for (level = root; level >= leaf; level--) in get_mmio_spte()
4432 pr_err("------ spte = 0x%llx level = %d, rsvd bits = 0x%llx", in get_mmio_spte()
4450 return -EINVAL; in handle_mmio_page_fault()
4452 if (is_mmio_spte(vcpu->kvm, spte)) { in handle_mmio_page_fault()
4477 if (unlikely(fault->rsvd)) in page_fault_handle_page_track()
4480 if (!fault->present || !fault->write) in page_fault_handle_page_track()
4487 if (kvm_gfn_is_write_tracked(vcpu->kvm, fault->slot, fault->gfn)) in page_fault_handle_page_track()
4507 u32 id = vcpu->arch.apf.id; in alloc_apf_token()
4510 vcpu->arch.apf.id = 1; in alloc_apf_token()
4512 return (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id; in alloc_apf_token()
4521 arch.gfn = fault->gfn; in kvm_arch_setup_async_pf()
4522 arch.error_code = fault->error_code; in kvm_arch_setup_async_pf()
4523 arch.direct_map = vcpu->arch.mmu->root_role.direct; in kvm_arch_setup_async_pf()
4524 arch.cr3 = kvm_mmu_get_guest_pgd(vcpu, vcpu->arch.mmu); in kvm_arch_setup_async_pf()
4526 return kvm_setup_async_pf(vcpu, fault->addr, in kvm_arch_setup_async_pf()
4527 kvm_vcpu_gfn_to_hva(vcpu, fault->gfn), &arch); in kvm_arch_setup_async_pf()
4534 if (WARN_ON_ONCE(work->arch.error_code & PFERR_PRIVATE_ACCESS)) in kvm_arch_async_page_ready()
4537 if ((vcpu->arch.mmu->root_role.direct != work->arch.direct_map) || in kvm_arch_async_page_ready()
4538 work->wakeup_all) in kvm_arch_async_page_ready()
4545 if (!vcpu->arch.mmu->root_role.direct && in kvm_arch_async_page_ready()
4546 work->arch.cr3 != kvm_mmu_get_guest_pgd(vcpu, vcpu->arch.mmu)) in kvm_arch_async_page_ready()
4549 r = kvm_mmu_do_page_fault(vcpu, work->cr2_or_gpa, work->arch.error_code, in kvm_arch_async_page_ready()
4554 * ignore stats for all other return times. Page-ready "faults" aren't in kvm_arch_async_page_ready()
4558 vcpu->stat.pf_fixed++; in kvm_arch_async_page_ready()
4564 kvm_release_faultin_page(vcpu->kvm, fault->refcounted_page, in kvm_mmu_finish_page_fault()
4565 r == RET_PF_RETRY, fault->map_writable); in kvm_mmu_finish_page_fault()
4573 if (!kvm_slot_has_gmem(fault->slot)) { in kvm_mmu_faultin_pfn_gmem()
4575 return -EFAULT; in kvm_mmu_faultin_pfn_gmem()
4578 r = kvm_gmem_get_pfn(vcpu->kvm, fault->slot, fault->gfn, &fault->pfn, in kvm_mmu_faultin_pfn_gmem()
4579 &fault->refcounted_page, &max_order); in kvm_mmu_faultin_pfn_gmem()
4585 fault->map_writable = !(fault->slot->flags & KVM_MEM_READONLY); in kvm_mmu_faultin_pfn_gmem()
4586 fault->max_level = kvm_max_level_for_order(max_order); in kvm_mmu_faultin_pfn_gmem()
4594 unsigned int foll = fault->write ? FOLL_WRITE : 0; in __kvm_mmu_faultin_pfn()
4596 if (fault->is_private || kvm_memslot_is_gmem_only(fault->slot)) in __kvm_mmu_faultin_pfn()
4600 fault->pfn = __kvm_faultin_pfn(fault->slot, fault->gfn, foll, in __kvm_mmu_faultin_pfn()
4601 &fault->map_writable, &fault->refcounted_page); in __kvm_mmu_faultin_pfn()
4604 * If resolving the page failed because I/O is needed to fault-in the in __kvm_mmu_faultin_pfn()
4609 if (fault->pfn != KVM_PFN_ERR_NEEDS_IO) in __kvm_mmu_faultin_pfn()
4612 if (!fault->prefetch && kvm_can_do_async_pf(vcpu)) { in __kvm_mmu_faultin_pfn()
4613 trace_kvm_try_async_get_page(fault->addr, fault->gfn); in __kvm_mmu_faultin_pfn()
4614 if (kvm_find_async_pf_gfn(vcpu, fault->gfn)) { in __kvm_mmu_faultin_pfn()
4615 trace_kvm_async_pf_repeated_fault(fault->addr, fault->gfn); in __kvm_mmu_faultin_pfn()
4624 * Allow gup to bail on pending non-fatal signals when it's also allowed in __kvm_mmu_faultin_pfn()
4630 fault->pfn = __kvm_faultin_pfn(fault->slot, fault->gfn, foll, in __kvm_mmu_faultin_pfn()
4631 &fault->map_writable, &fault->refcounted_page); in __kvm_mmu_faultin_pfn()
4639 struct kvm_memory_slot *slot = fault->slot; in kvm_mmu_faultin_pfn()
4640 struct kvm *kvm = vcpu->kvm; in kvm_mmu_faultin_pfn()
4643 if (KVM_BUG_ON(kvm_is_gfn_alias(kvm, fault->gfn), kvm)) in kvm_mmu_faultin_pfn()
4644 return -EFAULT; in kvm_mmu_faultin_pfn()
4649 * invalidation relate to fault->fn and resume the guest without in kvm_mmu_faultin_pfn()
4652 fault->mmu_seq = vcpu->kvm->mmu_invalidate_seq; in kvm_mmu_faultin_pfn()
4659 if (fault->is_private != kvm_mem_is_private(kvm, fault->gfn)) { in kvm_mmu_faultin_pfn()
4661 return -EFAULT; in kvm_mmu_faultin_pfn()
4674 if (slot->flags & KVM_MEMSLOT_INVALID) { in kvm_mmu_faultin_pfn()
4675 if (fault->prefetch) in kvm_mmu_faultin_pfn()
4676 return -EAGAIN; in kvm_mmu_faultin_pfn()
4681 if (slot->id == APIC_ACCESS_PAGE_PRIVATE_MEMSLOT) { in kvm_mmu_faultin_pfn()
4700 * when the AVIC is re-enabled. in kvm_mmu_faultin_pfn()
4702 if (!kvm_apicv_activated(vcpu->kvm)) in kvm_mmu_faultin_pfn()
4710 * For mmu_lock, if there is an in-progress invalidation and the kernel in kvm_mmu_faultin_pfn()
4712 * in response to mmu_lock being contended, which is *very* counter- in kvm_mmu_faultin_pfn()
4722 * Do the pre-check even for non-preemtible kernels, i.e. even if KVM in kvm_mmu_faultin_pfn()
4727 if (mmu_invalidate_retry_gfn_unsafe(kvm, fault->mmu_seq, fault->gfn)) in kvm_mmu_faultin_pfn()
4734 if (unlikely(is_error_pfn(fault->pfn))) in kvm_mmu_faultin_pfn()
4737 if (WARN_ON_ONCE(!fault->slot || is_noslot_pfn(fault->pfn))) in kvm_mmu_faultin_pfn()
4747 if (mmu_invalidate_retry_gfn_unsafe(kvm, fault->mmu_seq, fault->gfn)) { in kvm_mmu_faultin_pfn()
4762 struct kvm_mmu_page *sp = root_to_sp(vcpu->arch.mmu->root.hpa); in is_page_fault_stale()
4765 if (sp && is_obsolete_sp(vcpu->kvm, sp)) in is_page_fault_stale()
4784 return fault->slot && in is_page_fault_stale()
4785 mmu_invalidate_retry_gfn(vcpu->kvm, fault->mmu_seq, fault->gfn); in is_page_fault_stale()
4793 if (WARN_ON_ONCE(kvm_mmu_is_dummy_root(vcpu->arch.mmu->root.hpa))) in direct_page_fault()
4812 write_lock(&vcpu->kvm->mmu_lock); in direct_page_fault()
4825 write_unlock(&vcpu->kvm->mmu_lock); in direct_page_fault()
4833 fault->max_level = PG_LEVEL_2M; in nonpaging_page_fault()
4841 u32 flags = vcpu->arch.apf.host_apf_flags; in kvm_handle_page_fault()
4844 /* A 64-bit CR2 should be impossible on 32-bit KVM. */ in kvm_handle_page_fault()
4846 return -EFAULT; in kvm_handle_page_fault()
4849 * Legacy #PF exception only have a 32-bit error code. Simply drop the in kvm_handle_page_fault()
4851 * set), and to ensure there are no collisions with KVM-defined bits. in kvm_handle_page_fault()
4857 * Restrict KVM-defined flags to bits 63:32 so that it's impossible for in kvm_handle_page_fault()
4862 vcpu->arch.l1tf_flush_l1d = true; in kvm_handle_page_fault()
4869 vcpu->arch.apf.host_apf_flags = 0; in kvm_handle_page_fault()
4903 read_lock(&vcpu->kvm->mmu_lock); in kvm_tdp_mmu_page_fault()
4912 read_unlock(&vcpu->kvm->mmu_lock); in kvm_tdp_mmu_page_fault()
4935 if (vcpu->arch.mmu->page_fault != kvm_tdp_page_fault) in kvm_tdp_map_page()
4936 return -EOPNOTSUPP; in kvm_tdp_map_page()
4940 return -EINTR; in kvm_tdp_map_page()
4943 return -EIO; in kvm_tdp_map_page()
4959 return -ENOENT; in kvm_tdp_map_page()
4966 return -EIO; in kvm_tdp_map_page()
4980 if (!vcpu->kvm->arch.pre_fault_allowed) in kvm_arch_vcpu_pre_fault_memory()
4981 return -EOPNOTSUPP; in kvm_arch_vcpu_pre_fault_memory()
4983 if (kvm_is_gfn_alias(vcpu->kvm, gpa_to_gfn(range->gpa))) in kvm_arch_vcpu_pre_fault_memory()
4984 return -EINVAL; in kvm_arch_vcpu_pre_fault_memory()
4995 if (kvm_arch_has_private_mem(vcpu->kvm) && in kvm_arch_vcpu_pre_fault_memory()
4996 kvm_mem_is_private(vcpu->kvm, gpa_to_gfn(range->gpa))) in kvm_arch_vcpu_pre_fault_memory()
4999 direct_bits = gfn_to_gpa(kvm_gfn_direct_bits(vcpu->kvm)); in kvm_arch_vcpu_pre_fault_memory()
5003 * two-dimensional paging. in kvm_arch_vcpu_pre_fault_memory()
5005 r = kvm_tdp_map_page(vcpu, range->gpa | direct_bits, error_code, &level); in kvm_arch_vcpu_pre_fault_memory()
5010 * If the mapping that covers range->gpa can use a huge page, it in kvm_arch_vcpu_pre_fault_memory()
5011 * may start below it or end after range->gpa + range->size. in kvm_arch_vcpu_pre_fault_memory()
5013 end = (range->gpa & KVM_HPAGE_MASK(level)) + KVM_HPAGE_SIZE(level); in kvm_arch_vcpu_pre_fault_memory()
5014 return min(range->size, end - range->gpa); in kvm_arch_vcpu_pre_fault_memory()
5019 context->page_fault = nonpaging_page_fault; in nonpaging_init_context()
5020 context->gva_to_gpa = nonpaging_gva_to_gpa; in nonpaging_init_context()
5021 context->sync_spte = NULL; in nonpaging_init_context()
5029 if (!VALID_PAGE(root->hpa)) in is_root_usable()
5032 if (!role.direct && pgd != root->pgd) in is_root_usable()
5035 sp = root_to_sp(root->hpa); in is_root_usable()
5039 return role.word == sp->role.word; in is_root_usable()
5045 * If a matching root is found, it is assigned to kvm_mmu->root and
5047 * If no match is found, kvm_mmu->root is left invalid, the LRU root is
5056 if (is_root_usable(&mmu->root, new_pgd, new_role)) in cached_root_find_and_keep_current()
5068 swap(mmu->root, mmu->prev_roots[i]); in cached_root_find_and_keep_current()
5069 if (is_root_usable(&mmu->root, new_pgd, new_role)) in cached_root_find_and_keep_current()
5079 * On entry, mmu->root is invalid.
5080 * If a matching root is found, it is assigned to kvm_mmu->root, the LRU entry
5082 * If no match is found, kvm_mmu->root is left invalid and false is returned.
5091 if (is_root_usable(&mmu->prev_roots[i], new_pgd, new_role)) in cached_root_find_without_current()
5097 swap(mmu->root, mmu->prev_roots[i]); in cached_root_find_without_current()
5099 for (; i < KVM_MMU_NUM_PREV_ROOTS - 1; i++) in cached_root_find_without_current()
5100 mmu->prev_roots[i] = mmu->prev_roots[i + 1]; in cached_root_find_without_current()
5101 mmu->prev_roots[i].hpa = INVALID_PAGE; in cached_root_find_without_current()
5109 * Limit reuse to 64-bit hosts+VMs without "special" roots in order to in fast_pgd_switch()
5112 if (VALID_PAGE(mmu->root.hpa) && !root_to_sp(mmu->root.hpa)) in fast_pgd_switch()
5115 if (VALID_PAGE(mmu->root.hpa)) in fast_pgd_switch()
5123 struct kvm_mmu *mmu = vcpu->arch.mmu; in kvm_mmu_new_pgd()
5124 union kvm_mmu_page_role new_role = mmu->root_role; in kvm_mmu_new_pgd()
5128 * will establish a valid root prior to the next VM-Enter. in kvm_mmu_new_pgd()
5130 if (!fast_pgd_switch(vcpu->kvm, mmu, new_pgd, new_role)) in kvm_mmu_new_pgd()
5148 * switching to a new CR3, that GVA->GPA mapping may no longer be in kvm_mmu_new_pgd()
5159 struct kvm_mmu_page *sp = root_to_sp(vcpu->arch.mmu->root.hpa); in kvm_mmu_new_pgd()
5170 if (unlikely(is_mmio_spte(vcpu->kvm, *sptep))) { in sync_mmio_spte()
5204 rsvd_check->bad_mt_xwr = 0; in __reset_rsvds_bits_mask()
5219 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for in __reset_rsvds_bits_mask()
5228 rsvd_check->rsvd_bits_mask[0][1] = 0; in __reset_rsvds_bits_mask()
5229 rsvd_check->rsvd_bits_mask[0][0] = 0; in __reset_rsvds_bits_mask()
5230 rsvd_check->rsvd_bits_mask[1][0] = in __reset_rsvds_bits_mask()
5231 rsvd_check->rsvd_bits_mask[0][0]; in __reset_rsvds_bits_mask()
5234 rsvd_check->rsvd_bits_mask[1][1] = 0; in __reset_rsvds_bits_mask()
5240 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21); in __reset_rsvds_bits_mask()
5243 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21); in __reset_rsvds_bits_mask()
5246 rsvd_check->rsvd_bits_mask[0][2] = rsvd_bits(63, 63) | in __reset_rsvds_bits_mask()
5250 rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd; /* PDE */ in __reset_rsvds_bits_mask()
5251 rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd; /* PTE */ in __reset_rsvds_bits_mask()
5252 rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd | in __reset_rsvds_bits_mask()
5254 rsvd_check->rsvd_bits_mask[1][0] = in __reset_rsvds_bits_mask()
5255 rsvd_check->rsvd_bits_mask[0][0]; in __reset_rsvds_bits_mask()
5258 rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd | in __reset_rsvds_bits_mask()
5261 rsvd_check->rsvd_bits_mask[1][4] = in __reset_rsvds_bits_mask()
5262 rsvd_check->rsvd_bits_mask[0][4]; in __reset_rsvds_bits_mask()
5265 rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd | in __reset_rsvds_bits_mask()
5268 rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd | in __reset_rsvds_bits_mask()
5270 rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd; in __reset_rsvds_bits_mask()
5271 rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd; in __reset_rsvds_bits_mask()
5272 rsvd_check->rsvd_bits_mask[1][3] = in __reset_rsvds_bits_mask()
5273 rsvd_check->rsvd_bits_mask[0][3]; in __reset_rsvds_bits_mask()
5274 rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd | in __reset_rsvds_bits_mask()
5277 rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd | in __reset_rsvds_bits_mask()
5279 rsvd_check->rsvd_bits_mask[1][0] = in __reset_rsvds_bits_mask()
5280 rsvd_check->rsvd_bits_mask[0][0]; in __reset_rsvds_bits_mask()
5288 __reset_rsvds_bits_mask(&context->guest_rsvd_check, in reset_guest_rsvds_bits_mask()
5289 vcpu->arch.reserved_gpa_bits, in reset_guest_rsvds_bits_mask()
5290 context->cpu_role.base.level, is_efer_nx(context), in reset_guest_rsvds_bits_mask()
5309 rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd | rsvd_bits(3, 7); in __reset_rsvds_bits_mask_ept()
5310 rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd | rsvd_bits(3, 7); in __reset_rsvds_bits_mask_ept()
5311 rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd | rsvd_bits(3, 6) | large_1g_rsvd; in __reset_rsvds_bits_mask_ept()
5312 rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd | rsvd_bits(3, 6) | large_2m_rsvd; in __reset_rsvds_bits_mask_ept()
5313 rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd; in __reset_rsvds_bits_mask_ept()
5316 rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4]; in __reset_rsvds_bits_mask_ept()
5317 rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3]; in __reset_rsvds_bits_mask_ept()
5318 rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd | rsvd_bits(12, 29) | large_1g_rsvd; in __reset_rsvds_bits_mask_ept()
5319 rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd | rsvd_bits(12, 20) | large_2m_rsvd; in __reset_rsvds_bits_mask_ept()
5320 rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0]; in __reset_rsvds_bits_mask_ept()
5331 rsvd_check->bad_mt_xwr = bad_mt_xwr; in __reset_rsvds_bits_mask_ept()
5337 __reset_rsvds_bits_mask_ept(&context->guest_rsvd_check, in reset_rsvds_bits_mask_ept()
5338 vcpu->arch.reserved_gpa_bits, execonly, in reset_rsvds_bits_mask_ept()
5357 /* KVM doesn't use 2-level page tables for the shadow MMU. */ in reset_shadow_zero_bits_mask()
5362 WARN_ON_ONCE(context->root_role.level < PT32E_ROOT_LEVEL); in reset_shadow_zero_bits_mask()
5364 shadow_zero_check = &context->shadow_zero_check; in reset_shadow_zero_bits_mask()
5366 context->root_role.level, in reset_shadow_zero_bits_mask()
5367 context->root_role.efer_nx, in reset_shadow_zero_bits_mask()
5374 for (i = context->root_role.level; --i >= 0;) { in reset_shadow_zero_bits_mask()
5381 shadow_zero_check->rsvd_bits_mask[0][i] |= shadow_me_mask; in reset_shadow_zero_bits_mask()
5382 shadow_zero_check->rsvd_bits_mask[1][i] |= shadow_me_mask; in reset_shadow_zero_bits_mask()
5383 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_value; in reset_shadow_zero_bits_mask()
5384 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_value; in reset_shadow_zero_bits_mask()
5397 * possible, however, kvm currently does not do execution-protection.
5404 shadow_zero_check = &context->shadow_zero_check; in reset_tdp_shadow_zero_bits_mask()
5408 context->root_role.level, true, in reset_tdp_shadow_zero_bits_mask()
5419 for (i = context->root_role.level; --i >= 0;) { in reset_tdp_shadow_zero_bits_mask()
5420 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask; in reset_tdp_shadow_zero_bits_mask()
5421 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask; in reset_tdp_shadow_zero_bits_mask()
5432 __reset_rsvds_bits_mask_ept(&context->shadow_zero_check, in reset_ept_shadow_zero_bits_mask()
5460 for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) { in update_permission_bitmask()
5468 /* Faults from writes to non-writable pages */ in update_permission_bitmask()
5470 /* Faults from user mode accesses to supervisor pages */ in update_permission_bitmask()
5472 /* Faults from fetches of non-executable pages*/ in update_permission_bitmask()
5474 /* Faults from kernel mode fetches of user pages */ in update_permission_bitmask()
5476 /* Faults from kernel mode accesses of user pages */ in update_permission_bitmask()
5480 /* Faults from kernel mode accesses to user pages */ in update_permission_bitmask()
5487 /* Allow supervisor writes if !cr0.wp */ in update_permission_bitmask()
5491 /* Disallow supervisor fetches of user code if cr4.smep */ in update_permission_bitmask()
5496 * SMAP:kernel-mode data accesses from user-mode in update_permission_bitmask()
5500 * - X86_CR4_SMAP is set in CR4 in update_permission_bitmask()
5501 * - A user page is accessed in update_permission_bitmask()
5502 * - The access is not a fetch in update_permission_bitmask()
5503 * - The access is supervisor mode in update_permission_bitmask()
5504 * - If implicit supervisor access or X86_EFLAGS_AC is clear in update_permission_bitmask()
5515 mmu->permissions[byte] = ff | uf | wf | smepf | smapf; in update_permission_bitmask()
5521 * user-mode addresses based on the value in the PKRU register. Protection
5530 * - PK is always zero unless CR4.PKE=1 and EFER.LMA=1
5531 * - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch)
5532 * - PK is always zero if U=0 in the page tables
5533 * - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access.
5548 mmu->pkru_mask = 0; in update_pkru_bitmask()
5555 for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) { in update_pkru_bitmask()
5583 mmu->pkru_mask |= (pkey_bits & 3) << pfec; in update_pkru_bitmask()
5600 context->page_fault = paging64_page_fault; in paging64_init_context()
5601 context->gva_to_gpa = paging64_gva_to_gpa; in paging64_init_context()
5602 context->sync_spte = paging64_sync_spte; in paging64_init_context()
5607 context->page_fault = paging32_page_fault; in paging32_init_context()
5608 context->gva_to_gpa = paging32_gva_to_gpa; in paging32_init_context()
5609 context->sync_spte = paging32_sync_spte; in paging32_init_context()
5645 /* PKEY and LA57 are active iff long mode is active. */ in kvm_calc_cpu_role()
5663 mmu->cpu_role.base.cr0_wp = cr0_wp; in __kvm_mmu_refresh_passthrough_bits()
5671 if (vcpu->kvm->arch.vm_type == KVM_X86_TDX_VM) in kvm_mmu_get_tdp_level()
5680 /* Use 5-level TDP if and only if it's useful/necessary. */ in kvm_mmu_get_tdp_level()
5714 struct kvm_mmu *context = &vcpu->arch.root_mmu; in init_kvm_tdp_mmu()
5717 if (cpu_role.as_u64 == context->cpu_role.as_u64 && in init_kvm_tdp_mmu()
5718 root_role.word == context->root_role.word) in init_kvm_tdp_mmu()
5721 context->cpu_role.as_u64 = cpu_role.as_u64; in init_kvm_tdp_mmu()
5722 context->root_role.word = root_role.word; in init_kvm_tdp_mmu()
5723 context->page_fault = kvm_tdp_page_fault; in init_kvm_tdp_mmu()
5724 context->sync_spte = NULL; in init_kvm_tdp_mmu()
5725 context->get_guest_pgd = get_guest_cr3; in init_kvm_tdp_mmu()
5726 context->get_pdptr = kvm_pdptr_read; in init_kvm_tdp_mmu()
5727 context->inject_page_fault = kvm_inject_page_fault; in init_kvm_tdp_mmu()
5730 context->gva_to_gpa = nonpaging_gva_to_gpa; in init_kvm_tdp_mmu()
5732 context->gva_to_gpa = paging64_gva_to_gpa; in init_kvm_tdp_mmu()
5734 context->gva_to_gpa = paging32_gva_to_gpa; in init_kvm_tdp_mmu()
5744 if (cpu_role.as_u64 == context->cpu_role.as_u64 && in shadow_mmu_init_context()
5745 root_role.word == context->root_role.word) in shadow_mmu_init_context()
5748 context->cpu_role.as_u64 = cpu_role.as_u64; in shadow_mmu_init_context()
5749 context->root_role.word = root_role.word; in shadow_mmu_init_context()
5765 struct kvm_mmu *context = &vcpu->arch.root_mmu; in kvm_init_shadow_mmu()
5770 /* KVM uses PAE paging whenever the guest isn't using 64-bit paging. */ in kvm_init_shadow_mmu()
5776 * notably for huge SPTEs if iTLB multi-hit mitigation is enabled and in kvm_init_shadow_mmu()
5778 * The iTLB multi-hit workaround can be toggled at any time, so assume in kvm_init_shadow_mmu()
5779 * NX can be used by any non-nested shadow MMU to avoid having to reset in kvm_init_shadow_mmu()
5790 struct kvm_mmu *context = &vcpu->arch.guest_mmu; in kvm_init_shadow_npt_mmu()
5842 struct kvm_mmu *context = &vcpu->arch.guest_mmu; in kvm_init_shadow_ept_mmu()
5848 if (new_mode.as_u64 != context->cpu_role.as_u64) { in kvm_init_shadow_ept_mmu()
5850 context->cpu_role.as_u64 = new_mode.as_u64; in kvm_init_shadow_ept_mmu()
5851 context->root_role.word = new_mode.base.word; in kvm_init_shadow_ept_mmu()
5853 context->page_fault = ept_page_fault; in kvm_init_shadow_ept_mmu()
5854 context->gva_to_gpa = ept_gva_to_gpa; in kvm_init_shadow_ept_mmu()
5855 context->sync_spte = ept_sync_spte; in kvm_init_shadow_ept_mmu()
5858 context->pkru_mask = 0; in kvm_init_shadow_ept_mmu()
5870 struct kvm_mmu *context = &vcpu->arch.root_mmu; in init_kvm_softmmu()
5874 context->get_guest_pgd = get_guest_cr3; in init_kvm_softmmu()
5875 context->get_pdptr = kvm_pdptr_read; in init_kvm_softmmu()
5876 context->inject_page_fault = kvm_inject_page_fault; in init_kvm_softmmu()
5882 struct kvm_mmu *g_context = &vcpu->arch.nested_mmu; in init_kvm_nested_mmu()
5884 if (new_mode.as_u64 == g_context->cpu_role.as_u64) in init_kvm_nested_mmu()
5887 g_context->cpu_role.as_u64 = new_mode.as_u64; in init_kvm_nested_mmu()
5888 g_context->get_guest_pgd = get_guest_cr3; in init_kvm_nested_mmu()
5889 g_context->get_pdptr = kvm_pdptr_read; in init_kvm_nested_mmu()
5890 g_context->inject_page_fault = kvm_inject_page_fault; in init_kvm_nested_mmu()
5896 g_context->sync_spte = NULL; in init_kvm_nested_mmu()
5899 * Note that arch.mmu->gva_to_gpa translates l2_gpa to l1_gpa using in init_kvm_nested_mmu()
5907 g_context->gva_to_gpa = nonpaging_gva_to_gpa; in init_kvm_nested_mmu()
5909 g_context->gva_to_gpa = paging64_gva_to_gpa; in init_kvm_nested_mmu()
5911 g_context->gva_to_gpa = paging64_gva_to_gpa; in init_kvm_nested_mmu()
5913 g_context->gva_to_gpa = paging32_gva_to_gpa; in init_kvm_nested_mmu()
5946 vcpu->arch.root_mmu.root_role.invalid = 1; in kvm_mmu_after_set_cpuid()
5947 vcpu->arch.guest_mmu.root_role.invalid = 1; in kvm_mmu_after_set_cpuid()
5948 vcpu->arch.nested_mmu.root_role.invalid = 1; in kvm_mmu_after_set_cpuid()
5949 vcpu->arch.root_mmu.cpu_role.ext.valid = 0; in kvm_mmu_after_set_cpuid()
5950 vcpu->arch.guest_mmu.cpu_role.ext.valid = 0; in kvm_mmu_after_set_cpuid()
5951 vcpu->arch.nested_mmu.cpu_role.ext.valid = 0; in kvm_mmu_after_set_cpuid()
5958 KVM_BUG_ON(kvm_vcpu_has_run(vcpu), vcpu->kvm); in kvm_mmu_after_set_cpuid()
5972 r = mmu_topup_memory_caches(vcpu, !vcpu->arch.mmu->root_role.direct); in kvm_mmu_load()
5978 if (vcpu->arch.mmu->root_role.direct) in kvm_mmu_load()
6004 struct kvm *kvm = vcpu->kvm; in kvm_mmu_unload()
6006 kvm_mmu_free_roots(kvm, &vcpu->arch.root_mmu, KVM_MMU_ROOTS_ALL); in kvm_mmu_unload()
6007 WARN_ON_ONCE(VALID_PAGE(vcpu->arch.root_mmu.root.hpa)); in kvm_mmu_unload()
6008 kvm_mmu_free_roots(kvm, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL); in kvm_mmu_unload()
6009 WARN_ON_ONCE(VALID_PAGE(vcpu->arch.guest_mmu.root.hpa)); in kvm_mmu_unload()
6031 * is unlikely to zap an in-use PGD. in is_obsolete_root()
6045 if (is_obsolete_root(kvm, mmu->root.hpa)) in __kvm_mmu_free_obsolete_roots()
6049 if (is_obsolete_root(kvm, mmu->prev_roots[i].hpa)) in __kvm_mmu_free_obsolete_roots()
6059 __kvm_mmu_free_obsolete_roots(vcpu->kvm, &vcpu->arch.root_mmu); in kvm_mmu_free_obsolete_roots()
6060 __kvm_mmu_free_obsolete_roots(vcpu->kvm, &vcpu->arch.guest_mmu); in kvm_mmu_free_obsolete_roots()
6072 * as the current vcpu paging mode since we update the sptes only in mmu_pte_write_fetch_gpte()
6073 * when they have the same mode. in mmu_pte_write_fetch_gpte()
6076 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */ in mmu_pte_write_fetch_gpte()
6097 * Skip write-flooding detected for the sp whose level is 1, because in detect_write_flooding()
6098 * it can become unsync, then the guest page is not write-protected. in detect_write_flooding()
6100 if (sp->role.level == PG_LEVEL_4K) in detect_write_flooding()
6103 atomic_inc(&sp->write_flooding_count); in detect_write_flooding()
6104 return atomic_read(&sp->write_flooding_count) >= 3; in detect_write_flooding()
6117 pte_size = sp->role.has_4_byte_gpte ? 4 : 8; in detect_write_misaligned()
6123 if (!(offset & (pte_size - 1)) && bytes == 1) in detect_write_misaligned()
6126 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1); in detect_write_misaligned()
6139 level = sp->role.level; in get_written_sptes()
6141 if (sp->role.has_4_byte_gpte) { in get_written_sptes()
6142 page_offset <<= 1; /* 32->64 */ in get_written_sptes()
6144 * A 32-bit pde maps 4MB while the shadow pdes map in get_written_sptes()
6155 if (quadrant != sp->role.quadrant) in get_written_sptes()
6159 spte = &sp->spt[page_offset / sizeof(*spte)]; in get_written_sptes()
6174 * When emulating guest writes, ensure the written value is visible to in kvm_mmu_track_write()
6178 * a non-zero indirect_shadow_pages. Pairs with the smp_mb() in in kvm_mmu_track_write()
6182 if (!vcpu->kvm->arch.indirect_shadow_pages) in kvm_mmu_track_write()
6185 write_lock(&vcpu->kvm->mmu_lock); in kvm_mmu_track_write()
6189 ++vcpu->kvm->stat.mmu_pte_write; in kvm_mmu_track_write()
6191 for_each_gfn_valid_sp_with_gptes(vcpu->kvm, sp, gfn) { in kvm_mmu_track_write()
6194 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list); in kvm_mmu_track_write()
6195 ++vcpu->kvm->stat.mmu_flooded; in kvm_mmu_track_write()
6203 while (npte--) { in kvm_mmu_track_write()
6205 mmu_page_zap_pte(vcpu->kvm, sp, spte, NULL); in kvm_mmu_track_write()
6206 if (gentry && sp->role.level != PG_LEVEL_4K) in kvm_mmu_track_write()
6207 ++vcpu->kvm->stat.mmu_pde_zapped; in kvm_mmu_track_write()
6213 kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, flush); in kvm_mmu_track_write()
6214 write_unlock(&vcpu->kvm->mmu_lock); in kvm_mmu_track_write()
6227 bool direct = vcpu->arch.mmu->root_role.direct; in kvm_mmu_write_protect_fault()
6230 * Do not try to unprotect and retry if the vCPU re-faulted on the same in kvm_mmu_write_protect_fault()
6233 * a non-page-table modifying instruction on the PDE that points to the in kvm_mmu_write_protect_fault()
6237 if (vcpu->arch.last_retry_eip == kvm_rip_read(vcpu) && in kvm_mmu_write_protect_fault()
6238 vcpu->arch.last_retry_addr == cr2_or_gpa) in kvm_mmu_write_protect_fault()
6247 vcpu->arch.last_retry_eip = 0; in kvm_mmu_write_protect_fault()
6248 vcpu->arch.last_retry_addr = 0; in kvm_mmu_write_protect_fault()
6257 * will keep faulting on the non-existent MMIO address. in kvm_mmu_write_protect_fault()
6264 * to a read-only violation while the CPU was walking non-nested NPT in kvm_mmu_write_protect_fault()
6268 * (L0) write-protects the nested NPTs, i.e. npt12 entries, KVM is also in kvm_mmu_write_protect_fault()
6269 * unknowingly write-protecting L1's guest page tables, which KVM isn't in kvm_mmu_write_protect_fault()
6277 * isn't shadowed by KVM, there is no need to write-protect L1's gPTEs in kvm_mmu_write_protect_fault()
6283 * the instruction. If no shadow pages were zapped, then the write- in kvm_mmu_write_protect_fault()
6303 * The gfn is write-protected, but if KVM detects its emulating an in kvm_mmu_write_protect_fault()
6306 * re-execute the instruction that caused the page fault. Do not allow in kvm_mmu_write_protect_fault()
6321 bool direct = vcpu->arch.mmu->root_role.direct; in kvm_mmu_page_fault()
6323 if (WARN_ON_ONCE(!VALID_PAGE(vcpu->arch.mmu->root.hpa))) in kvm_mmu_page_fault()
6327 * Except for reserved faults (emulated MMIO is shared-only), set the in kvm_mmu_page_fault()
6328 * PFERR_PRIVATE_ACCESS flag for software-protected VMs based on the gfn's in kvm_mmu_page_fault()
6332 * for software-protected VMs. in kvm_mmu_page_fault()
6336 vcpu->kvm->arch.vm_type == KVM_X86_SW_PROTECTED_VM && in kvm_mmu_page_fault()
6337 kvm_mem_is_private(vcpu->kvm, gpa_to_gfn(cr2_or_gpa))) in kvm_mmu_page_fault()
6343 return -EFAULT; in kvm_mmu_page_fault()
6351 vcpu->stat.pf_taken++; in kvm_mmu_page_fault()
6355 if (KVM_BUG_ON(r == RET_PF_INVALID, vcpu->kvm)) in kvm_mmu_page_fault()
6356 return -EIO; in kvm_mmu_page_fault()
6367 vcpu->stat.pf_fixed++; in kvm_mmu_page_fault()
6369 vcpu->stat.pf_emulate++; in kvm_mmu_page_fault()
6371 vcpu->stat.pf_spurious++; in kvm_mmu_page_fault()
6400 for (level = root_level; level >= leaf; level--) in kvm_mmu_print_sptes()
6418 if (WARN_ON_ONCE(mmu != vcpu->arch.mmu)) in __kvm_mmu_invalidate_addr()
6424 write_lock(&vcpu->kvm->mmu_lock); in __kvm_mmu_invalidate_addr()
6428 if (sp->unsync) { in __kvm_mmu_invalidate_addr()
6432 mmu_page_zap_pte(vcpu->kvm, sp, iterator.sptep, NULL); in __kvm_mmu_invalidate_addr()
6434 kvm_flush_remote_tlbs_sptep(vcpu->kvm, iterator.sptep); in __kvm_mmu_invalidate_addr()
6437 if (!sp->unsync_children) in __kvm_mmu_invalidate_addr()
6440 write_unlock(&vcpu->kvm->mmu_lock); in __kvm_mmu_invalidate_addr()
6450 /* It's actually a GPA for vcpu->arch.guest_mmu. */ in kvm_mmu_invalidate_addr()
6451 if (mmu != &vcpu->arch.guest_mmu) { in kvm_mmu_invalidate_addr()
6452 /* INVLPG on a non-canonical address is a NOP according to the SDM. */ in kvm_mmu_invalidate_addr()
6459 if (!mmu->sync_spte) in kvm_mmu_invalidate_addr()
6463 __kvm_mmu_invalidate_addr(vcpu, mmu, addr, mmu->root.hpa); in kvm_mmu_invalidate_addr()
6467 __kvm_mmu_invalidate_addr(vcpu, mmu, addr, mmu->prev_roots[i].hpa); in kvm_mmu_invalidate_addr()
6484 kvm_mmu_invalidate_addr(vcpu, vcpu->arch.walk_mmu, gva, KVM_MMU_ROOTS_ALL); in kvm_mmu_invlpg()
6485 ++vcpu->stat.invlpg; in kvm_mmu_invlpg()
6492 struct kvm_mmu *mmu = vcpu->arch.mmu; in kvm_mmu_invpcid_gva()
6500 if (VALID_PAGE(mmu->prev_roots[i].hpa) && in kvm_mmu_invpcid_gva()
6501 pcid == kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd)) in kvm_mmu_invpcid_gva()
6507 ++vcpu->stat.invlpg; in kvm_mmu_invpcid_gva()
6544 if (!tdp_enabled && mmu->pae_root) in free_mmu_pages()
6545 set_memory_encrypted((unsigned long)mmu->pae_root, 1); in free_mmu_pages()
6546 free_page((unsigned long)mmu->pae_root); in free_mmu_pages()
6547 free_page((unsigned long)mmu->pml4_root); in free_mmu_pages()
6548 free_page((unsigned long)mmu->pml5_root); in free_mmu_pages()
6556 mmu->root.hpa = INVALID_PAGE; in __kvm_mmu_create()
6557 mmu->root.pgd = 0; in __kvm_mmu_create()
6558 mmu->mirror_root_hpa = INVALID_PAGE; in __kvm_mmu_create()
6560 mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID; in __kvm_mmu_create()
6562 /* vcpu->arch.guest_mmu isn't used when !tdp_enabled. */ in __kvm_mmu_create()
6563 if (!tdp_enabled && mmu == &vcpu->arch.guest_mmu) in __kvm_mmu_create()
6568 * while the PDP table is a per-vCPU construct that's allocated at MMU in __kvm_mmu_create()
6569 * creation. When emulating 32-bit mode, cr3 is only 32 bits even on in __kvm_mmu_create()
6573 * table. The main exception, handled here, is SVM's 32-bit NPT. The in __kvm_mmu_create()
6574 * other exception is for shadowing L1's 32-bit or PAE NPT on 64-bit in __kvm_mmu_create()
6575 * KVM; that horror is handled on-demand by mmu_alloc_special_roots(). in __kvm_mmu_create()
6582 return -ENOMEM; in __kvm_mmu_create()
6584 mmu->pae_root = page_address(page); in __kvm_mmu_create()
6590 * only necessary when using shadow paging, as 64-bit NPT can get at in __kvm_mmu_create()
6591 * the C-bit even when shadowing 32-bit NPT, and SME isn't supported in __kvm_mmu_create()
6592 * by 32-bit kernels (when KVM itself uses 32-bit NPT). in __kvm_mmu_create()
6595 set_memory_decrypted((unsigned long)mmu->pae_root, 1); in __kvm_mmu_create()
6600 mmu->pae_root[i] = INVALID_PAE_ROOT; in __kvm_mmu_create()
6609 vcpu->arch.mmu_pte_list_desc_cache.kmem_cache = pte_list_desc_cache; in kvm_mmu_create()
6610 vcpu->arch.mmu_pte_list_desc_cache.gfp_zero = __GFP_ZERO; in kvm_mmu_create()
6612 vcpu->arch.mmu_page_header_cache.kmem_cache = mmu_page_header_cache; in kvm_mmu_create()
6613 vcpu->arch.mmu_page_header_cache.gfp_zero = __GFP_ZERO; in kvm_mmu_create()
6615 vcpu->arch.mmu_shadow_page_cache.init_value = in kvm_mmu_create()
6617 if (!vcpu->arch.mmu_shadow_page_cache.init_value) in kvm_mmu_create()
6618 vcpu->arch.mmu_shadow_page_cache.gfp_zero = __GFP_ZERO; in kvm_mmu_create()
6620 vcpu->arch.mmu = &vcpu->arch.root_mmu; in kvm_mmu_create()
6621 vcpu->arch.walk_mmu = &vcpu->arch.root_mmu; in kvm_mmu_create()
6623 ret = __kvm_mmu_create(vcpu, &vcpu->arch.guest_mmu); in kvm_mmu_create()
6627 ret = __kvm_mmu_create(vcpu, &vcpu->arch.root_mmu); in kvm_mmu_create()
6633 free_mmu_pages(&vcpu->arch.guest_mmu); in kvm_mmu_create()
6645 lockdep_assert_held(&kvm->slots_lock); in kvm_zap_obsolete_pages()
6649 &kvm->arch.active_mmu_pages, link) { in kvm_zap_obsolete_pages()
6662 if (WARN_ON_ONCE(sp->role.invalid)) in kvm_zap_obsolete_pages()
6672 cond_resched_rwlock_write(&kvm->mmu_lock)) { in kvm_zap_obsolete_pages()
6698 * Fast invalidate all shadow pages and use lock-break technique
6703 * not use any resource of the being-deleted slot or all slots
6708 lockdep_assert_held(&kvm->slots_lock); in kvm_mmu_zap_all_fast()
6710 write_lock(&kvm->mmu_lock); in kvm_mmu_zap_all_fast()
6720 kvm->arch.mmu_valid_gen = kvm->arch.mmu_valid_gen ? 0 : 1; in kvm_mmu_zap_all_fast()
6723 * In order to ensure all vCPUs drop their soon-to-be invalid roots, in kvm_mmu_zap_all_fast()
6748 write_unlock(&kvm->mmu_lock); in kvm_mmu_zap_all_fast()
6756 * lead to use-after-free. in kvm_mmu_zap_all_fast()
6766 kvm->arch.shadow_mmio_value = shadow_mmio_value; in kvm_mmu_init_vm()
6767 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages); in kvm_mmu_init_vm()
6769 INIT_LIST_HEAD(&kvm->arch.possible_nx_huge_pages[i].pages); in kvm_mmu_init_vm()
6770 spin_lock_init(&kvm->arch.mmu_unsync_pages_lock); in kvm_mmu_init_vm()
6780 kvm->arch.split_page_header_cache.kmem_cache = mmu_page_header_cache; in kvm_mmu_init_vm()
6781 kvm->arch.split_page_header_cache.gfp_zero = __GFP_ZERO; in kvm_mmu_init_vm()
6783 kvm->arch.split_shadow_page_cache.gfp_zero = __GFP_ZERO; in kvm_mmu_init_vm()
6785 kvm->arch.split_desc_cache.kmem_cache = pte_list_desc_cache; in kvm_mmu_init_vm()
6786 kvm->arch.split_desc_cache.gfp_zero = __GFP_ZERO; in kvm_mmu_init_vm()
6792 kvm_mmu_free_memory_cache(&kvm->arch.split_desc_cache); in mmu_free_vm_memory_caches()
6793 kvm_mmu_free_memory_cache(&kvm->arch.split_page_header_cache); in mmu_free_vm_memory_caches()
6794 kvm_mmu_free_memory_cache(&kvm->arch.split_shadow_page_cache); in mmu_free_vm_memory_caches()
6799 kvfree(kvm->arch.mmu_page_hash); in kvm_mmu_uninit_vm()
6824 start = max(gfn_start, memslot->base_gfn); in kvm_rmap_zap_gfn_range()
6825 end = min(gfn_end, memslot->base_gfn + memslot->npages); in kvm_rmap_zap_gfn_range()
6848 write_lock(&kvm->mmu_lock); in kvm_zap_gfn_range()
6860 kvm_flush_remote_tlbs_range(kvm, gfn_start, gfn_end - gfn_start); in kvm_zap_gfn_range()
6864 write_unlock(&kvm->mmu_lock); in kvm_zap_gfn_range()
6879 write_lock(&kvm->mmu_lock); in kvm_mmu_slot_remove_write_access()
6882 write_unlock(&kvm->mmu_lock); in kvm_mmu_slot_remove_write_access()
6886 read_lock(&kvm->mmu_lock); in kvm_mmu_slot_remove_write_access()
6888 read_unlock(&kvm->mmu_lock); in kvm_mmu_slot_remove_write_access()
6899 if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) in need_topup_split_caches_or_resched()
6907 return need_topup(&kvm->arch.split_desc_cache, SPLIT_DESC_CACHE_MIN_NR_OBJECTS) || in need_topup_split_caches_or_resched()
6908 need_topup(&kvm->arch.split_page_header_cache, 1) || in need_topup_split_caches_or_resched()
6909 need_topup(&kvm->arch.split_shadow_page_cache, 1); in need_topup_split_caches_or_resched()
6921 * but aliasing rarely occurs post-boot or for many gfns. If there is in topup_split_caches()
6922 * only one rmap entry, rmap->val points directly at that one entry and in topup_split_caches()
6931 lockdep_assert_held(&kvm->slots_lock); in topup_split_caches()
6933 r = __kvm_mmu_topup_memory_cache(&kvm->arch.split_desc_cache, capacity, in topup_split_caches()
6938 r = kvm_mmu_topup_memory_cache(&kvm->arch.split_page_header_cache, 1); in topup_split_caches()
6942 return kvm_mmu_topup_memory_cache(&kvm->arch.split_shadow_page_cache, 1); in topup_split_caches()
6965 caches.page_header_cache = &kvm->arch.split_page_header_cache; in shadow_mmu_get_sp_for_split()
6966 caches.shadow_page_cache = &kvm->arch.split_shadow_page_cache; in shadow_mmu_get_sp_for_split()
6977 struct kvm_mmu_memory_cache *cache = &kvm->arch.split_desc_cache; in shadow_mmu_split_huge_page()
6988 sptep = &sp->spt[index]; in shadow_mmu_split_huge_page()
6995 * gfn-to-pfn translation since the SP is direct, so no need to in shadow_mmu_split_huge_page()
7006 flush |= !is_last_spte(*sptep, sp->role.level); in shadow_mmu_split_huge_page()
7010 spte = make_small_spte(kvm, huge_spte, sp->role, index); in shadow_mmu_split_huge_page()
7012 __rmap_add(kvm, cache, slot, sptep, gfn, sp->role.access); in shadow_mmu_split_huge_page()
7029 level = huge_sp->role.level; in shadow_mmu_try_split_huge_page()
7033 r = -ENOSPC; in shadow_mmu_try_split_huge_page()
7038 write_unlock(&kvm->mmu_lock); in shadow_mmu_try_split_huge_page()
7041 * If the topup succeeds, return -EAGAIN to indicate that the in shadow_mmu_try_split_huge_page()
7045 r = topup_split_caches(kvm) ?: -EAGAIN; in shadow_mmu_try_split_huge_page()
7046 write_lock(&kvm->mmu_lock); in shadow_mmu_try_split_huge_page()
7071 if (WARN_ON_ONCE(!sp->role.guest_mode)) in shadow_mmu_try_split_huge_pages()
7074 /* The rmaps should never contain non-leaf SPTEs. */ in shadow_mmu_try_split_huge_pages()
7079 if (WARN_ON_ONCE(sp->unsync)) in shadow_mmu_try_split_huge_pages()
7083 if (sp->role.invalid) in shadow_mmu_try_split_huge_pages()
7093 if (!r || r == -EAGAIN) in shadow_mmu_try_split_huge_pages()
7096 /* The split failed and shouldn't be retried (e.g. -ENOMEM). */ in shadow_mmu_try_split_huge_pages()
7116 for (level = KVM_MAX_HUGEPAGE_LEVEL; level > target_level; level--) in kvm_shadow_mmu_try_split_huge_pages()
7118 level, level, start, end - 1, true, true, false); in kvm_shadow_mmu_try_split_huge_pages()
7121 /* Must be called with the mmu_lock held in write-mode. */
7145 u64 start = memslot->base_gfn; in kvm_mmu_slot_try_split_huge_pages()
7146 u64 end = start + memslot->npages; in kvm_mmu_slot_try_split_huge_pages()
7152 write_lock(&kvm->mmu_lock); in kvm_mmu_slot_try_split_huge_pages()
7154 write_unlock(&kvm->mmu_lock); in kvm_mmu_slot_try_split_huge_pages()
7157 read_lock(&kvm->mmu_lock); in kvm_mmu_slot_try_split_huge_pages()
7159 read_unlock(&kvm->mmu_lock); in kvm_mmu_slot_try_split_huge_pages()
7163 * write-protecting and/or clearing dirty on the newly split SPTEs to in kvm_mmu_slot_try_split_huge_pages()
7192 if (sp->role.direct && in kvm_mmu_zap_collapsible_spte()
7193 sp->role.level < kvm_mmu_max_mapping_level(kvm, NULL, slot, sp->gfn)) { in kvm_mmu_zap_collapsible_spte()
7213 * Note, use KVM_MAX_HUGEPAGE_LEVEL - 1 since there's no need to zap in kvm_rmap_zap_collapsible_sptes()
7217 PG_LEVEL_4K, KVM_MAX_HUGEPAGE_LEVEL - 1, true)) in kvm_rmap_zap_collapsible_sptes()
7225 write_lock(&kvm->mmu_lock); in kvm_mmu_recover_huge_pages()
7227 write_unlock(&kvm->mmu_lock); in kvm_mmu_recover_huge_pages()
7231 read_lock(&kvm->mmu_lock); in kvm_mmu_recover_huge_pages()
7233 read_unlock(&kvm->mmu_lock); in kvm_mmu_recover_huge_pages()
7241 write_lock(&kvm->mmu_lock); in kvm_mmu_slot_leaf_clear_dirty()
7247 write_unlock(&kvm->mmu_lock); in kvm_mmu_slot_leaf_clear_dirty()
7251 read_lock(&kvm->mmu_lock); in kvm_mmu_slot_leaf_clear_dirty()
7253 read_unlock(&kvm->mmu_lock); in kvm_mmu_slot_leaf_clear_dirty()
7272 write_lock(&kvm->mmu_lock); in kvm_mmu_zap_all()
7274 list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link) { in kvm_mmu_zap_all()
7275 if (WARN_ON_ONCE(sp->role.invalid)) in kvm_mmu_zap_all()
7279 if (cond_resched_rwlock_write(&kvm->mmu_lock)) in kvm_mmu_zap_all()
7288 write_unlock(&kvm->mmu_lock); in kvm_mmu_zap_all()
7303 if (list_empty(&kvm->arch.active_mmu_pages)) in kvm_mmu_zap_memslot_pages_and_flush()
7310 * will result in use-after-free, e.g. in unaccount_shadowed(). in kvm_mmu_zap_memslot_pages_and_flush()
7312 for (i = 0; i < slot->npages; i++) { in kvm_mmu_zap_memslot_pages_and_flush()
7314 gfn_t gfn = slot->base_gfn + i; in kvm_mmu_zap_memslot_pages_and_flush()
7319 if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) { in kvm_mmu_zap_memslot_pages_and_flush()
7322 cond_resched_rwlock_write(&kvm->mmu_lock); in kvm_mmu_zap_memslot_pages_and_flush()
7335 .start = slot->base_gfn, in kvm_mmu_zap_memslot()
7336 .end = slot->base_gfn + slot->npages, in kvm_mmu_zap_memslot()
7342 write_lock(&kvm->mmu_lock); in kvm_mmu_zap_memslot()
7345 write_unlock(&kvm->mmu_lock); in kvm_mmu_zap_memslot()
7350 return kvm->arch.vm_type == KVM_X86_DEFAULT_VM && in kvm_memslot_flush_zap_all()
7376 gen &= ~((u64)kvm_arch_nr_memslot_as_ids(kvm) - 1); in kvm_mmu_invalidate_mmio_sptes()
7397 * The NX recovery thread is spawned on-demand at the first KVM_RUN and in kvm_wake_nx_recovery_thread()
7398 * may not be valid even though the VM is globally visible. Do nothing, in kvm_wake_nx_recovery_thread()
7401 struct vhost_task *nx_thread = READ_ONCE(kvm->arch.nx_huge_page_recovery_thread); in kvm_wake_nx_recovery_thread()
7432 return -EPERM; in set_nx_huge_pages()
7434 /* In "auto" mode deploy workaround only if CPU has the bug. */ in set_nx_huge_pages()
7447 return -EBUSY; in set_nx_huge_pages()
7452 return -EINVAL; in set_nx_huge_pages()
7463 mutex_lock(&kvm->slots_lock); in set_nx_huge_pages()
7465 mutex_unlock(&kvm->slots_lock); in set_nx_huge_pages()
7477 * its default value of -1 is technically undefined behavior for a boolean.
7483 if (nx_huge_pages == -1) in kvm_mmu_x86_module_init()
7503 int ret = -ENOMEM; in kvm_mmu_vendor_module_init()
7538 read_lock(&vcpu->kvm->mmu_lock); in kvm_mmu_destroy()
7539 mmu_free_root_page(vcpu->kvm, &vcpu->arch.mmu->mirror_root_hpa, in kvm_mmu_destroy()
7541 read_unlock(&vcpu->kvm->mmu_lock); in kvm_mmu_destroy()
7543 free_mmu_pages(&vcpu->arch.root_mmu); in kvm_mmu_destroy()
7544 free_mmu_pages(&vcpu->arch.guest_mmu); in kvm_mmu_destroy()
7585 return -EPERM; in set_nx_huge_pages_recovery_param()
7613 unsigned long pages = READ_ONCE(kvm->arch.possible_nx_huge_pages[mmu_type].nr_pages); in nx_huge_pages_to_zap()
7629 * kvm->nr_memslots_dirty_logging is not a problem: if it is becoming in kvm_mmu_sp_dirty_logging_enabled()
7634 if (!atomic_read(&kvm->nr_memslots_dirty_logging)) in kvm_mmu_sp_dirty_logging_enabled()
7637 slot = __gfn_to_memslot(kvm_memslots_for_spte_role(kvm, sp->role), sp->gfn); in kvm_mmu_sp_dirty_logging_enabled()
7649 spinlock_t *tdp_mmu_pages_lock = &kvm->arch.tdp_mmu_pages_lock; in kvm_recover_nx_huge_pages()
7661 nx_huge_pages = &kvm->arch.possible_nx_huge_pages[mmu_type].pages; in kvm_recover_nx_huge_pages()
7663 rcu_idx = srcu_read_lock(&kvm->srcu); in kvm_recover_nx_huge_pages()
7665 read_lock(&kvm->mmu_lock); in kvm_recover_nx_huge_pages()
7667 write_lock(&kvm->mmu_lock); in kvm_recover_nx_huge_pages()
7676 for ( ; to_zap; --to_zap) { in kvm_recover_nx_huge_pages()
7696 WARN_ON_ONCE(!sp->nx_huge_page_disallowed); in kvm_recover_nx_huge_pages()
7697 WARN_ON_ONCE(!sp->role.direct); in kvm_recover_nx_huge_pages()
7719 WARN_ON_ONCE(sp->nx_huge_page_disallowed); in kvm_recover_nx_huge_pages()
7721 if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) { in kvm_recover_nx_huge_pages()
7726 cond_resched_rwlock_read(&kvm->mmu_lock); in kvm_recover_nx_huge_pages()
7728 cond_resched_rwlock_write(&kvm->mmu_lock); in kvm_recover_nx_huge_pages()
7739 read_unlock(&kvm->mmu_lock); in kvm_recover_nx_huge_pages()
7741 write_unlock(&kvm->mmu_lock); in kvm_recover_nx_huge_pages()
7742 srcu_read_unlock(&kvm->srcu, rcu_idx); in kvm_recover_nx_huge_pages()
7761 remaining_time = kvm->arch.nx_huge_page_last + msecs_to_jiffies(period) in kvm_nx_huge_page_recovery_worker()
7762 - get_jiffies_64(); in kvm_nx_huge_page_recovery_worker()
7772 kvm->arch.nx_huge_page_last = get_jiffies_64(); in kvm_nx_huge_page_recovery_worker()
7782 kvm->arch.nx_huge_page_last = get_jiffies_64(); in kvm_mmu_start_lpage_recovery()
7785 kvm, "kvm-nx-lpage-recovery"); in kvm_mmu_start_lpage_recovery()
7792 /* Make the task visible only once it is fully started. */ in kvm_mmu_start_lpage_recovery()
7793 WRITE_ONCE(kvm->arch.nx_huge_page_recovery_thread, nx_thread); in kvm_mmu_start_lpage_recovery()
7802 return call_once(&kvm->arch.nx_once, kvm_mmu_start_lpage_recovery); in kvm_mmu_post_init_vm()
7807 if (kvm->arch.nx_huge_page_recovery_thread) in kvm_mmu_pre_destroy_vm()
7808 vhost_task_stop(kvm->arch.nx_huge_page_recovery_thread); in kvm_mmu_pre_destroy_vm()
7815 return lpage_info_slot(gfn, slot, level)->disallow_lpage & KVM_LPAGE_MIXED_FLAG; in hugepage_test_mixed()
7821 lpage_info_slot(gfn, slot, level)->disallow_lpage &= ~KVM_LPAGE_MIXED_FLAG; in hugepage_clear_mixed()
7827 lpage_info_slot(gfn, slot, level)->disallow_lpage |= KVM_LPAGE_MIXED_FLAG; in hugepage_set_mixed()
7833 struct kvm_memory_slot *slot = range->slot; in kvm_arch_pre_set_memory_attributes()
7850 if (WARN_ON_ONCE(range->end <= range->start)) in kvm_arch_pre_set_memory_attributes()
7863 gfn_t start = gfn_round_for_level(range->start, level); in kvm_arch_pre_set_memory_attributes()
7864 gfn_t end = gfn_round_for_level(range->end - 1, level); in kvm_arch_pre_set_memory_attributes()
7867 if ((start != range->start || start + nr_pages > range->end) && in kvm_arch_pre_set_memory_attributes()
7868 start >= slot->base_gfn && in kvm_arch_pre_set_memory_attributes()
7869 start + nr_pages <= slot->base_gfn + slot->npages && in kvm_arch_pre_set_memory_attributes()
7876 if ((end + nr_pages) > range->end && in kvm_arch_pre_set_memory_attributes()
7877 (end + nr_pages) <= (slot->base_gfn + slot->npages) && in kvm_arch_pre_set_memory_attributes()
7883 if (range->arg.attributes & KVM_MEMORY_ATTRIBUTE_PRIVATE) in kvm_arch_pre_set_memory_attributes()
7884 range->attr_filter = KVM_FILTER_SHARED; in kvm_arch_pre_set_memory_attributes()
7886 range->attr_filter = KVM_FILTER_PRIVATE; in kvm_arch_pre_set_memory_attributes()
7902 for (gfn = start; gfn < end; gfn += KVM_PAGES_PER_HPAGE(level - 1)) { in hugepage_has_attrs()
7903 if (hugepage_test_mixed(slot, gfn, level - 1) || in hugepage_has_attrs()
7913 unsigned long attrs = range->arg.attributes; in kvm_arch_post_set_memory_attributes()
7914 struct kvm_memory_slot *slot = range->slot; in kvm_arch_post_set_memory_attributes()
7917 lockdep_assert_held_write(&kvm->mmu_lock); in kvm_arch_post_set_memory_attributes()
7918 lockdep_assert_held(&kvm->slots_lock); in kvm_arch_post_set_memory_attributes()
7935 gfn_t gfn = gfn_round_for_level(range->start, level); in kvm_arch_post_set_memory_attributes()
7938 if (gfn != range->start || gfn + nr_pages > range->end) { in kvm_arch_post_set_memory_attributes()
7944 if (gfn >= slot->base_gfn && in kvm_arch_post_set_memory_attributes()
7945 gfn + nr_pages <= slot->base_gfn + slot->npages) { in kvm_arch_post_set_memory_attributes()
7958 for ( ; gfn + nr_pages <= range->end; gfn += nr_pages) in kvm_arch_post_set_memory_attributes()
7966 if (gfn < range->end && in kvm_arch_post_set_memory_attributes()
7967 (gfn + nr_pages) <= (slot->base_gfn + slot->npages)) { in kvm_arch_post_set_memory_attributes()
7991 gfn_t end = gfn_round_for_level(slot->base_gfn + slot->npages, level); in kvm_mmu_init_memslot_memory_attributes()
7992 gfn_t start = gfn_round_for_level(slot->base_gfn, level); in kvm_mmu_init_memslot_memory_attributes()
7996 if (start < slot->base_gfn) in kvm_mmu_init_memslot_memory_attributes()