Lines Matching +full:ext +full:- +full:gen

1 // SPDX-License-Identifier: GPL-2.0-only
3 * Kernel-based Virtual Machine driver for Linux
5 * This module enables machines with Intel VT-x extensions to run virtual
57 #include <asm/spec-ctrl.h>
64 int __read_mostly nx_huge_pages = -1;
100 * When setting this variable to true it enables Two-Dimensional-Paging
102 * 1. the guest-virtual to guest-physical
103 * 2. while doing 1. it walks guest-physical to host-physical
203 return !!(regs->reg & flag); \
225 return !!(mmu->cpu_role. base_or_ext . reg##_##name); \
228 BUILD_MMU_ROLE_ACCESSOR(ext, cr4, pse);
229 BUILD_MMU_ROLE_ACCESSOR(ext, cr4, smep);
230 BUILD_MMU_ROLE_ACCESSOR(ext, cr4, smap);
231 BUILD_MMU_ROLE_ACCESSOR(ext, cr4, pke);
232 BUILD_MMU_ROLE_ACCESSOR(ext, cr4, la57);
234 BUILD_MMU_ROLE_ACCESSOR(ext, efer, lma);
238 return mmu->cpu_role.base.level > 0; in is_cr0_pg()
243 return !mmu->cpu_role.base.has_4_byte_gpte; in is_cr4_pae()
251 .efer = vcpu->arch.efer, in vcpu_to_role_regs()
265 if (IS_ENABLED(CONFIG_MITIGATION_RETPOLINE) && mmu->get_guest_pgd == get_guest_cr3) in kvm_mmu_get_guest_pgd()
268 return mmu->get_guest_pgd(vcpu); in kvm_mmu_get_guest_pgd()
288 kvm_flush_remote_tlbs_gfn(kvm, gfn, sp->role.level); in kvm_flush_remote_tlbs_sptep()
317 u64 kvm_gen, spte_gen, gen; in check_mmio_spte() local
319 gen = kvm_vcpu_memslots(vcpu)->generation; in check_mmio_spte()
320 if (unlikely(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS)) in check_mmio_spte()
323 kvm_gen = gen & MMIO_SPTE_GEN_MASK; in check_mmio_spte()
376 sp->clear_spte_count++; in count_spte_clear()
386 ssptep->spte_high = sspte.spte_high; in __set_spte()
395 WRITE_ONCE(ssptep->spte_low, sspte.spte_low); in __set_spte()
405 WRITE_ONCE(ssptep->spte_low, sspte.spte_low); in __update_clear_spte_fast()
413 ssptep->spte_high = sspte.spte_high; in __update_clear_spte_fast()
425 orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low); in __update_clear_spte_slow()
426 orig.spte_high = ssptep->spte_high; in __update_clear_spte_slow()
427 ssptep->spte_high = sspte.spte_high; in __update_clear_spte_slow()
439 * we need to protect against in-progress updates of the spte.
442 * for the high part of the spte. The race is fine for a present->non-present
443 * change (because the high part of the spte is ignored for non-present spte),
444 * but for a present->present change we must reread the spte.
446 * All such changes are done in two steps (present->non-present and
447 * non-present->present), hence it is enough to count the number of
448 * present->non-present updates: if it changed while reading the spte,
458 count = sp->clear_spte_count; in __get_spte_lockless()
461 spte.spte_low = orig->spte_low; in __get_spte_lockless()
464 spte.spte_high = orig->spte_high; in __get_spte_lockless()
467 if (unlikely(spte.spte_low != orig->spte_low || in __get_spte_lockless()
468 count != sp->clear_spte_count)) in __get_spte_lockless()
524 int level = sptep_to_sp(sptep)->role.level; in mmu_spte_clear_track_bits()
535 kvm_update_page_stats(kvm, level, -1); in mmu_spte_clear_track_bits()
556 return tdp_mmu_enabled && vcpu->arch.mmu->root_role.direct; in is_tdp_mmu_active()
565 * Prevent page table teardown by making any free-er wait during in walk_shadow_page_lockless_begin()
572 * to vcpu->mode. in walk_shadow_page_lockless_begin()
574 smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES); in walk_shadow_page_lockless_begin()
584 * Make sure the write to vcpu->mode is not reordered in front of in walk_shadow_page_lockless_end()
588 smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE); in walk_shadow_page_lockless_end()
598 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache, in mmu_topup_memory_caches()
602 if (kvm_has_mirrored_tdp(vcpu->kvm)) { in mmu_topup_memory_caches()
603 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_external_spt_cache, in mmu_topup_memory_caches()
608 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_shadow_page_cache, in mmu_topup_memory_caches()
613 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_shadowed_info_cache, in mmu_topup_memory_caches()
618 return kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache, in mmu_topup_memory_caches()
624 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache); in mmu_free_memory_caches()
625 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_shadow_page_cache); in mmu_free_memory_caches()
626 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_shadowed_info_cache); in mmu_free_memory_caches()
627 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_external_spt_cache); in mmu_free_memory_caches()
628 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache); in mmu_free_memory_caches()
640 if (sp->role.passthrough) in kvm_mmu_page_get_gfn()
641 return sp->gfn; in kvm_mmu_page_get_gfn()
643 if (sp->shadowed_translation) in kvm_mmu_page_get_gfn()
644 return sp->shadowed_translation[index] >> PAGE_SHIFT; in kvm_mmu_page_get_gfn()
646 return sp->gfn + (index << ((sp->role.level - 1) * SPTE_LEVEL_BITS)); in kvm_mmu_page_get_gfn()
657 if (sp->shadowed_translation) in kvm_mmu_page_get_access()
658 return sp->shadowed_translation[index] & ACC_ALL; in kvm_mmu_page_get_access()
661 * For direct MMUs (e.g. TDP or non-paging guests) or passthrough SPs, in kvm_mmu_page_get_access()
670 * In both cases, sp->role.access contains the correct access bits. in kvm_mmu_page_get_access()
672 return sp->role.access; in kvm_mmu_page_get_access()
678 if (sp->shadowed_translation) { in kvm_mmu_page_set_translation()
679 sp->shadowed_translation[index] = (gfn << PAGE_SHIFT) | access; in kvm_mmu_page_set_translation()
685 sp->role.passthrough ? "passthrough" : "direct", in kvm_mmu_page_set_translation()
686 sp->gfn, kvm_mmu_page_get_access(sp, index), access); in kvm_mmu_page_set_translation()
690 sp->role.passthrough ? "passthrough" : "direct", in kvm_mmu_page_set_translation()
691 sp->gfn, kvm_mmu_page_get_gfn(sp, index), gfn); in kvm_mmu_page_set_translation()
711 idx = gfn_to_index(gfn, slot->base_gfn, level); in lpage_info_slot()
712 return &slot->arch.lpage_info[level - 2][idx]; in lpage_info_slot()
732 old = linfo->disallow_lpage; in update_gfn_disallow_lpage_count()
733 linfo->disallow_lpage += count; in update_gfn_disallow_lpage_count()
734 WARN_ON_ONCE((old ^ linfo->disallow_lpage) & KVM_LPAGE_MIXED_FLAG); in update_gfn_disallow_lpage_count()
745 update_gfn_disallow_lpage_count(slot, gfn, -1); in kvm_mmu_gfn_allow_lpage()
754 kvm->arch.indirect_shadow_pages++; in account_shadowed()
756 * Ensure indirect_shadow_pages is elevated prior to re-reading guest in account_shadowed()
757 * child PTEs in FNAME(gpte_changed), i.e. guarantee either in-flight in account_shadowed()
758 * emulated writes are visible before re-reading guest PTEs, or that in account_shadowed()
764 gfn = sp->gfn; in account_shadowed()
765 slots = kvm_memslots_for_spte_role(kvm, sp->role); in account_shadowed()
768 /* the non-leaf shadow pages are keeping readonly. */ in account_shadowed()
769 if (sp->role.level > PG_LEVEL_4K) in account_shadowed()
788 if (!list_empty(&sp->possible_nx_huge_page_link)) in track_possible_nx_huge_page()
791 ++kvm->stat.nx_lpage_splits; in track_possible_nx_huge_page()
792 list_add_tail(&sp->possible_nx_huge_page_link, in track_possible_nx_huge_page()
793 &kvm->arch.possible_nx_huge_pages); in track_possible_nx_huge_page()
799 sp->nx_huge_page_disallowed = true; in account_nx_huge_page()
811 kvm->arch.indirect_shadow_pages--; in unaccount_shadowed()
812 gfn = sp->gfn; in unaccount_shadowed()
813 slots = kvm_memslots_for_spte_role(kvm, sp->role); in unaccount_shadowed()
815 if (sp->role.level > PG_LEVEL_4K) in unaccount_shadowed()
823 if (list_empty(&sp->possible_nx_huge_page_link)) in untrack_possible_nx_huge_page()
826 --kvm->stat.nx_lpage_splits; in untrack_possible_nx_huge_page()
827 list_del_init(&sp->possible_nx_huge_page_link); in untrack_possible_nx_huge_page()
832 sp->nx_huge_page_disallowed = false; in unaccount_nx_huge_page()
844 if (!slot || slot->flags & KVM_MEMSLOT_INVALID) in gfn_to_memslot_dirty_bitmap()
855 * If the bit zero of rmap_head->val is clear, then it points to the only spte
856 * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct
870 if (!rmap_head->val) { in pte_list_add()
871 rmap_head->val = (unsigned long)spte; in pte_list_add()
872 } else if (!(rmap_head->val & KVM_RMAP_MANY)) { in pte_list_add()
874 desc->sptes[0] = (u64 *)rmap_head->val; in pte_list_add()
875 desc->sptes[1] = spte; in pte_list_add()
876 desc->spte_count = 2; in pte_list_add()
877 desc->tail_count = 0; in pte_list_add()
878 rmap_head->val = (unsigned long)desc | KVM_RMAP_MANY; in pte_list_add()
881 desc = (struct pte_list_desc *)(rmap_head->val & ~KVM_RMAP_MANY); in pte_list_add()
882 count = desc->tail_count + desc->spte_count; in pte_list_add()
888 if (desc->spte_count == PTE_LIST_EXT) { in pte_list_add()
890 desc->more = (struct pte_list_desc *)(rmap_head->val & ~KVM_RMAP_MANY); in pte_list_add()
891 desc->spte_count = 0; in pte_list_add()
892 desc->tail_count = count; in pte_list_add()
893 rmap_head->val = (unsigned long)desc | KVM_RMAP_MANY; in pte_list_add()
895 desc->sptes[desc->spte_count++] = spte; in pte_list_add()
904 struct pte_list_desc *head_desc = (struct pte_list_desc *)(rmap_head->val & ~KVM_RMAP_MANY); in pte_list_desc_remove_entry()
905 int j = head_desc->spte_count - 1; in pte_list_desc_remove_entry()
915 * Replace the to-be-freed SPTE with the last valid entry from the head in pte_list_desc_remove_entry()
919 desc->sptes[i] = head_desc->sptes[j]; in pte_list_desc_remove_entry()
920 head_desc->sptes[j] = NULL; in pte_list_desc_remove_entry()
921 head_desc->spte_count--; in pte_list_desc_remove_entry()
922 if (head_desc->spte_count) in pte_list_desc_remove_entry()
930 if (!head_desc->more) in pte_list_desc_remove_entry()
931 rmap_head->val = 0; in pte_list_desc_remove_entry()
933 rmap_head->val = (unsigned long)head_desc->more | KVM_RMAP_MANY; in pte_list_desc_remove_entry()
943 if (KVM_BUG_ON_DATA_CORRUPTION(!rmap_head->val, kvm)) in pte_list_remove()
946 if (!(rmap_head->val & KVM_RMAP_MANY)) { in pte_list_remove()
947 if (KVM_BUG_ON_DATA_CORRUPTION((u64 *)rmap_head->val != spte, kvm)) in pte_list_remove()
950 rmap_head->val = 0; in pte_list_remove()
952 desc = (struct pte_list_desc *)(rmap_head->val & ~KVM_RMAP_MANY); in pte_list_remove()
954 for (i = 0; i < desc->spte_count; ++i) { in pte_list_remove()
955 if (desc->sptes[i] == spte) { in pte_list_remove()
961 desc = desc->more; in pte_list_remove()
982 if (!rmap_head->val) in kvm_zap_all_rmap_sptes()
985 if (!(rmap_head->val & KVM_RMAP_MANY)) { in kvm_zap_all_rmap_sptes()
986 mmu_spte_clear_track_bits(kvm, (u64 *)rmap_head->val); in kvm_zap_all_rmap_sptes()
990 desc = (struct pte_list_desc *)(rmap_head->val & ~KVM_RMAP_MANY); in kvm_zap_all_rmap_sptes()
993 for (i = 0; i < desc->spte_count; i++) in kvm_zap_all_rmap_sptes()
994 mmu_spte_clear_track_bits(kvm, desc->sptes[i]); in kvm_zap_all_rmap_sptes()
995 next = desc->more; in kvm_zap_all_rmap_sptes()
1000 rmap_head->val = 0; in kvm_zap_all_rmap_sptes()
1008 if (!rmap_head->val) in pte_list_count()
1010 else if (!(rmap_head->val & KVM_RMAP_MANY)) in pte_list_count()
1013 desc = (struct pte_list_desc *)(rmap_head->val & ~KVM_RMAP_MANY); in pte_list_count()
1014 return desc->tail_count + desc->spte_count; in pte_list_count()
1022 idx = gfn_to_index(gfn, slot->base_gfn, level); in gfn_to_rmap()
1023 return &slot->arch.rmap[level - PG_LEVEL_4K][idx]; in gfn_to_rmap()
1040 * information in sp->role. in rmap_remove()
1042 slots = kvm_memslots_for_spte_role(kvm, sp->role); in rmap_remove()
1045 rmap_head = gfn_to_rmap(gfn, sp->role.level, slot); in rmap_remove()
1072 if (!rmap_head->val) in rmap_get_first()
1075 if (!(rmap_head->val & KVM_RMAP_MANY)) { in rmap_get_first()
1076 iter->desc = NULL; in rmap_get_first()
1077 sptep = (u64 *)rmap_head->val; in rmap_get_first()
1081 iter->desc = (struct pte_list_desc *)(rmap_head->val & ~KVM_RMAP_MANY); in rmap_get_first()
1082 iter->pos = 0; in rmap_get_first()
1083 sptep = iter->desc->sptes[iter->pos]; in rmap_get_first()
1098 if (iter->desc) { in rmap_get_next()
1099 if (iter->pos < PTE_LIST_EXT - 1) { in rmap_get_next()
1100 ++iter->pos; in rmap_get_next()
1101 sptep = iter->desc->sptes[iter->pos]; in rmap_get_next()
1106 iter->desc = iter->desc->more; in rmap_get_next()
1108 if (iter->desc) { in rmap_get_next()
1109 iter->pos = 0; in rmap_get_next()
1110 /* desc->sptes[0] cannot be NULL */ in rmap_get_next()
1111 sptep = iter->desc->sptes[iter->pos]; in rmap_get_next()
1139 WARN_ON_ONCE(sp->role.level == PG_LEVEL_4K); in drop_large_spte()
1148 * Write-protect on the specified @sptep, @pt_protect indicates whether
1149 * spte write-protection is caused by protecting shadow page table.
1153 * - for dirty logging, the spte can be set to writable at anytime if
1155 * - for spte protection, the spte can be writable only after unsync-ing
1199 * - D bit on ad-enabled SPTEs, and
1200 * - W bit on ad-disabled SPTEs.
1228 slot->base_gfn + gfn_offset, mask, true); in kvm_mmu_write_protect_pt_masked()
1234 rmap_head = gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask), in kvm_mmu_write_protect_pt_masked()
1239 mask &= mask - 1; in kvm_mmu_write_protect_pt_masked()
1251 slot->base_gfn + gfn_offset, mask, false); in kvm_mmu_clear_dirty_pt_masked()
1257 rmap_head = gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask), in kvm_mmu_clear_dirty_pt_masked()
1262 mask &= mask - 1; in kvm_mmu_clear_dirty_pt_masked()
1271 * If the slot was assumed to be "initially all dirty", write-protect in kvm_arch_mmu_enable_log_dirty_pt_masked()
1282 gfn_t start = slot->base_gfn + gfn_offset + __ffs(mask); in kvm_arch_mmu_enable_log_dirty_pt_masked()
1283 gfn_t end = slot->base_gfn + gfn_offset + __fls(mask); in kvm_arch_mmu_enable_log_dirty_pt_masked()
1299 * mask. If PML is enabled and the GFN doesn't need to be write- in kvm_arch_mmu_enable_log_dirty_pt_masked()
1345 return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn, PG_LEVEL_4K); in kvm_vcpu_write_protect_gfn()
1374 iterator->level = level; in rmap_walk_init_level()
1375 iterator->gfn = iterator->start_gfn; in rmap_walk_init_level()
1376 iterator->rmap = gfn_to_rmap(iterator->gfn, level, iterator->slot); in rmap_walk_init_level()
1377 iterator->end_rmap = gfn_to_rmap(iterator->end_gfn, level, iterator->slot); in rmap_walk_init_level()
1385 iterator->slot = slot; in slot_rmap_walk_init()
1386 iterator->start_level = start_level; in slot_rmap_walk_init()
1387 iterator->end_level = end_level; in slot_rmap_walk_init()
1388 iterator->start_gfn = start_gfn; in slot_rmap_walk_init()
1389 iterator->end_gfn = end_gfn; in slot_rmap_walk_init()
1391 rmap_walk_init_level(iterator, iterator->start_level); in slot_rmap_walk_init()
1396 return !!iterator->rmap; in slot_rmap_walk_okay()
1401 while (++iterator->rmap <= iterator->end_rmap) { in slot_rmap_walk_next()
1402 iterator->gfn += KVM_PAGES_PER_HPAGE(iterator->level); in slot_rmap_walk_next()
1404 if (iterator->rmap->val) in slot_rmap_walk_next()
1408 if (++iterator->level > iterator->end_level) { in slot_rmap_walk_next()
1409 iterator->rmap = NULL; in slot_rmap_walk_next()
1413 rmap_walk_init_level(iterator, iterator->level); in slot_rmap_walk_next()
1438 lockdep_assert_held_write(&kvm->mmu_lock); in __walk_slot_rmaps()
1448 if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) { in __walk_slot_rmaps()
1451 iterator.gfn - start_gfn + 1); in __walk_slot_rmaps()
1454 cond_resched_rwlock_write(&kvm->mmu_lock); in __walk_slot_rmaps()
1468 slot->base_gfn, slot->base_gfn + slot->npages - 1, in walk_slot_rmaps()
1487 start, end - 1, can_yield, true, flush); in __kvm_rmap_zap_gfn_range()
1502 lockdep_assert_once(kvm->mmu_invalidate_in_progress || in kvm_unmap_gfn_range()
1503 lockdep_is_held(&kvm->slots_lock)); in kvm_unmap_gfn_range()
1506 flush = __kvm_rmap_zap_gfn_range(kvm, range->slot, in kvm_unmap_gfn_range()
1507 range->start, range->end, in kvm_unmap_gfn_range()
1508 range->may_block, flush); in kvm_unmap_gfn_range()
1514 range->slot->id == APIC_ACCESS_PAGE_PRIVATE_MEMSLOT) in kvm_unmap_gfn_range()
1533 kvm_update_page_stats(kvm, sp->role.level, 1); in __rmap_add()
1535 rmap_head = gfn_to_rmap(gfn, sp->role.level, slot); in __rmap_add()
1538 if (rmap_count > kvm->stat.max_mmu_rmap_size) in __rmap_add()
1539 kvm->stat.max_mmu_rmap_size = rmap_count; in __rmap_add()
1542 kvm_flush_remote_tlbs_gfn(kvm, gfn, sp->role.level); in __rmap_add()
1549 struct kvm_mmu_memory_cache *cache = &vcpu->arch.mmu_pte_list_desc_cache; in rmap_add()
1551 __rmap_add(vcpu->kvm, cache, slot, spte, gfn, access); in rmap_add()
1562 for_each_slot_rmap_range(range->slot, PG_LEVEL_4K, KVM_MAX_HUGEPAGE_LEVEL, in kvm_rmap_age_gfn_range()
1563 range->start, range->end - 1, &iterator) { in kvm_rmap_age_gfn_range()
1574 clear_bit((ffs(shadow_accessed_mask) - 1), in kvm_rmap_age_gfn_range()
1623 if (KVM_MMU_WARN_ON(is_shadow_present_pte(sp->spt[i]))) in kvm_mmu_check_sptes_at_free()
1624 pr_err_ratelimited("SPTE %llx (@ %p) for gfn %llx shadow-present at free", in kvm_mmu_check_sptes_at_free()
1625 sp->spt[i], &sp->spt[i], in kvm_mmu_check_sptes_at_free()
1633 kvm->arch.n_used_mmu_pages++; in kvm_account_mmu_page()
1634 kvm_account_pgtable_pages((void *)sp->spt, +1); in kvm_account_mmu_page()
1639 kvm->arch.n_used_mmu_pages--; in kvm_unaccount_mmu_page()
1640 kvm_account_pgtable_pages((void *)sp->spt, -1); in kvm_unaccount_mmu_page()
1647 hlist_del(&sp->hash_link); in kvm_mmu_free_shadow_page()
1648 list_del(&sp->link); in kvm_mmu_free_shadow_page()
1649 free_page((unsigned long)sp->spt); in kvm_mmu_free_shadow_page()
1650 free_page((unsigned long)sp->shadowed_translation); in kvm_mmu_free_shadow_page()
1665 pte_list_add(cache, parent_pte, &sp->parent_ptes); in mmu_page_add_parent_pte()
1671 pte_list_remove(kvm, parent_pte, &sp->parent_ptes); in mmu_page_remove_parent_pte()
1687 for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) { in kvm_mmu_mark_parents_unsync()
1697 if (__test_and_set_bit(spte_index(spte), sp->unsync_child_bitmap)) in mark_unsync()
1699 if (sp->unsync_children++) in mark_unsync()
1719 if (sp->unsync) in mmu_pages_add()
1720 for (i=0; i < pvec->nr; i++) in mmu_pages_add()
1721 if (pvec->page[i].sp == sp) in mmu_pages_add()
1724 pvec->page[pvec->nr].sp = sp; in mmu_pages_add()
1725 pvec->page[pvec->nr].idx = idx; in mmu_pages_add()
1726 pvec->nr++; in mmu_pages_add()
1727 return (pvec->nr == KVM_PAGE_ARRAY_NR); in mmu_pages_add()
1732 --sp->unsync_children; in clear_unsync_child_bit()
1733 WARN_ON_ONCE((int)sp->unsync_children < 0); in clear_unsync_child_bit()
1734 __clear_bit(idx, sp->unsync_child_bitmap); in clear_unsync_child_bit()
1742 for_each_set_bit(i, sp->unsync_child_bitmap, 512) { in __mmu_unsync_walk()
1744 u64 ent = sp->spt[i]; in __mmu_unsync_walk()
1753 if (child->unsync_children) { in __mmu_unsync_walk()
1755 return -ENOSPC; in __mmu_unsync_walk()
1765 } else if (child->unsync) { in __mmu_unsync_walk()
1768 return -ENOSPC; in __mmu_unsync_walk()
1776 #define INVALID_INDEX (-1)
1781 pvec->nr = 0; in mmu_unsync_walk()
1782 if (!sp->unsync_children) in mmu_unsync_walk()
1791 WARN_ON_ONCE(!sp->unsync); in kvm_unlink_unsync_page()
1793 sp->unsync = 0; in kvm_unlink_unsync_page()
1794 --kvm->stat.mmu_unsync; in kvm_unlink_unsync_page()
1804 if (sp->role.direct) in sp_has_gptes()
1807 if (sp->role.passthrough) in sp_has_gptes()
1820 &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)]) \
1821 if ((_sp)->gfn != (_gfn) || !sp_has_gptes(_sp)) {} else
1825 union kvm_mmu_page_role root_role = vcpu->arch.mmu->root_role; in kvm_sync_page_check()
1831 * - level: not part of the overall MMU role and will never match as the MMU's in kvm_sync_page_check()
1833 * - access: updated based on the new guest PTE in kvm_sync_page_check()
1834 * - quadrant: not part of the overall MMU role (similar to level) in kvm_sync_page_check()
1846 * differs then the memslot lookup (SMM vs. non-SMM) will be bogus, the in kvm_sync_page_check()
1849 if (WARN_ON_ONCE(sp->role.direct || !vcpu->arch.mmu->sync_spte || in kvm_sync_page_check()
1850 (sp->role.word ^ root_role.word) & ~sync_role_ign.word)) in kvm_sync_page_check()
1858 /* sp->spt[i] has initial value of shadow page table allocation */ in kvm_sync_spte()
1859 if (sp->spt[i] == SHADOW_NONPRESENT_VALUE) in kvm_sync_spte()
1862 return vcpu->arch.mmu->sync_spte(vcpu, sp, i); in kvm_sync_spte()
1871 return -1; in __kvm_sync_page()
1876 if (ret < -1) in __kvm_sync_page()
1877 return -1; in __kvm_sync_page()
1899 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list); in kvm_sync_page()
1919 if (sp->role.invalid) in is_obsolete_sp()
1924 unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen); in is_obsolete_sp()
1943 for (n = i+1; n < pvec->nr; n++) { in mmu_pages_next()
1944 struct kvm_mmu_page *sp = pvec->page[n].sp; in mmu_pages_next()
1945 unsigned idx = pvec->page[n].idx; in mmu_pages_next()
1946 int level = sp->role.level; in mmu_pages_next()
1948 parents->idx[level-1] = idx; in mmu_pages_next()
1952 parents->parent[level-2] = sp; in mmu_pages_next()
1964 if (pvec->nr == 0) in mmu_pages_first()
1967 WARN_ON_ONCE(pvec->page[0].idx != INVALID_INDEX); in mmu_pages_first()
1969 sp = pvec->page[0].sp; in mmu_pages_first()
1970 level = sp->role.level; in mmu_pages_first()
1973 parents->parent[level-2] = sp; in mmu_pages_first()
1978 parents->parent[level-1] = NULL; in mmu_pages_first()
1988 unsigned int idx = parents->idx[level]; in mmu_pages_clear_parents()
1989 sp = parents->parent[level]; in mmu_pages_clear_parents()
1996 } while (!sp->unsync_children); in mmu_pages_clear_parents()
2013 protected |= kvm_vcpu_write_protect_gfn(vcpu, sp->gfn); in mmu_sync_children()
2016 kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, true); in mmu_sync_children()
2021 kvm_unlink_unsync_page(vcpu->kvm, sp); in mmu_sync_children()
2025 if (need_resched() || rwlock_needbreak(&vcpu->kvm->mmu_lock)) { in mmu_sync_children()
2026 kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, flush); in mmu_sync_children()
2029 return -EINTR; in mmu_sync_children()
2032 cond_resched_rwlock_write(&vcpu->kvm->mmu_lock); in mmu_sync_children()
2037 kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, flush); in mmu_sync_children()
2043 atomic_set(&sp->write_flooding_count, 0); in __clear_sp_write_flooding_count()
2069 if (sp->gfn != gfn) { in kvm_mmu_find_shadow_page()
2074 if (sp->role.word != role.word) { in kvm_mmu_find_shadow_page()
2076 * If the guest is creating an upper-level page, zap in kvm_mmu_find_shadow_page()
2082 * upper-level page will be write-protected. in kvm_mmu_find_shadow_page()
2084 if (role.level > PG_LEVEL_4K && sp->unsync) in kvm_mmu_find_shadow_page()
2090 /* unsync and write-flooding only apply to indirect SPs. */ in kvm_mmu_find_shadow_page()
2091 if (sp->role.direct) in kvm_mmu_find_shadow_page()
2094 if (sp->unsync) { in kvm_mmu_find_shadow_page()
2101 * it doesn't write-protect the page or mark it synchronized! in kvm_mmu_find_shadow_page()
2125 ++kvm->stat.mmu_cache_miss; in kvm_mmu_find_shadow_page()
2130 if (collisions > kvm->stat.max_mmu_page_hash_collisions) in kvm_mmu_find_shadow_page()
2131 kvm->stat.max_mmu_page_hash_collisions = collisions; in kvm_mmu_find_shadow_page()
2150 sp = kvm_mmu_memory_cache_alloc(caches->page_header_cache); in kvm_mmu_alloc_shadow_page()
2151 sp->spt = kvm_mmu_memory_cache_alloc(caches->shadow_page_cache); in kvm_mmu_alloc_shadow_page()
2153 sp->shadowed_translation = kvm_mmu_memory_cache_alloc(caches->shadowed_info_cache); in kvm_mmu_alloc_shadow_page()
2155 set_page_private(virt_to_page(sp->spt), (unsigned long)sp); in kvm_mmu_alloc_shadow_page()
2157 INIT_LIST_HEAD(&sp->possible_nx_huge_page_link); in kvm_mmu_alloc_shadow_page()
2164 sp->mmu_valid_gen = kvm->arch.mmu_valid_gen; in kvm_mmu_alloc_shadow_page()
2165 list_add(&sp->link, &kvm->arch.active_mmu_pages); in kvm_mmu_alloc_shadow_page()
2168 sp->gfn = gfn; in kvm_mmu_alloc_shadow_page()
2169 sp->role = role; in kvm_mmu_alloc_shadow_page()
2170 hlist_add_head(&sp->hash_link, sp_list); in kvm_mmu_alloc_shadow_page()
2188 sp_list = &kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]; in __kvm_mmu_get_shadow_page()
2205 .page_header_cache = &vcpu->arch.mmu_page_header_cache, in kvm_mmu_get_shadow_page()
2206 .shadow_page_cache = &vcpu->arch.mmu_shadow_page_cache, in kvm_mmu_get_shadow_page()
2207 .shadowed_info_cache = &vcpu->arch.mmu_shadowed_info_cache, in kvm_mmu_get_shadow_page()
2210 return __kvm_mmu_get_shadow_page(vcpu->kvm, vcpu, &caches, gfn, role); in kvm_mmu_get_shadow_page()
2219 role = parent_sp->role; in kvm_mmu_child_role()
2220 role.level--; in kvm_mmu_child_role()
2226 * If the guest has 4-byte PTEs then that means it's using 32-bit, in kvm_mmu_child_role()
2227 * 2-level, non-PAE paging. KVM shadows such guests with PAE paging in kvm_mmu_child_role()
2228 * (i.e. 8-byte PTEs). The difference in PTE size means that KVM must in kvm_mmu_child_role()
2241 * Concretely, a 4-byte PDE consumes bits 31:22, while an 8-byte PDE in kvm_mmu_child_role()
2243 * PDPTEs; those 4 PAE page directories are pre-allocated and their in kvm_mmu_child_role()
2244 * quadrant is assigned in mmu_alloc_root(). A 4-byte PTE consumes in kvm_mmu_child_role()
2245 * bits 21:12, while an 8-byte PTE consumes bits 20:12. To consume in kvm_mmu_child_role()
2247 * quadrant, i.e. sets quadrant to '0' or '1'. The parent 8-byte PDE in kvm_mmu_child_role()
2266 return ERR_PTR(-EEXIST); in kvm_mmu_get_child_sp()
2276 iterator->addr = addr; in shadow_walk_init_using_root()
2277 iterator->shadow_addr = root; in shadow_walk_init_using_root()
2278 iterator->level = vcpu->arch.mmu->root_role.level; in shadow_walk_init_using_root()
2280 if (iterator->level >= PT64_ROOT_4LEVEL && in shadow_walk_init_using_root()
2281 vcpu->arch.mmu->cpu_role.base.level < PT64_ROOT_4LEVEL && in shadow_walk_init_using_root()
2282 !vcpu->arch.mmu->root_role.direct) in shadow_walk_init_using_root()
2283 iterator->level = PT32E_ROOT_LEVEL; in shadow_walk_init_using_root()
2285 if (iterator->level == PT32E_ROOT_LEVEL) { in shadow_walk_init_using_root()
2287 * prev_root is currently only used for 64-bit hosts. So only in shadow_walk_init_using_root()
2290 BUG_ON(root != vcpu->arch.mmu->root.hpa); in shadow_walk_init_using_root()
2292 iterator->shadow_addr in shadow_walk_init_using_root()
2293 = vcpu->arch.mmu->pae_root[(addr >> 30) & 3]; in shadow_walk_init_using_root()
2294 iterator->shadow_addr &= SPTE_BASE_ADDR_MASK; in shadow_walk_init_using_root()
2295 --iterator->level; in shadow_walk_init_using_root()
2296 if (!iterator->shadow_addr) in shadow_walk_init_using_root()
2297 iterator->level = 0; in shadow_walk_init_using_root()
2304 shadow_walk_init_using_root(iterator, vcpu, vcpu->arch.mmu->root.hpa, in shadow_walk_init()
2310 if (iterator->level < PG_LEVEL_4K) in shadow_walk_okay()
2313 iterator->index = SPTE_INDEX(iterator->addr, iterator->level); in shadow_walk_okay()
2314 iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index; in shadow_walk_okay()
2321 if (!is_shadow_present_pte(spte) || is_last_spte(spte, iterator->level)) { in __shadow_walk_next()
2322 iterator->level = 0; in __shadow_walk_next()
2326 iterator->shadow_addr = spte & SPTE_BASE_ADDR_MASK; in __shadow_walk_next()
2327 --iterator->level; in __shadow_walk_next()
2332 __shadow_walk_next(iterator, *iterator->sptep); in shadow_walk_next()
2351 spte = make_nonleaf_spte(sp->spt, sp_ad_disabled(sp)); in __link_shadow_page()
2358 * The non-direct sub-pagetable must be updated before linking. For in __link_shadow_page()
2360 * kvm_mmu_find_shadow_page() without write-protecting the gfn, in __link_shadow_page()
2361 * so sp->unsync can be true or false. For higher level non-direct in __link_shadow_page()
2363 * FNAME(fetch)(), so sp->unsync_children can only be false. in __link_shadow_page()
2366 if (WARN_ON_ONCE(sp->unsync_children) || sp->unsync) in __link_shadow_page()
2373 __link_shadow_page(vcpu->kvm, &vcpu->arch.mmu_pte_list_desc_cache, sptep, sp, true); in link_shadow_page()
2385 * sp's access: allow writable in the read-only sp, in validate_direct_spte()
2390 if (child->role.access == direct_access) in validate_direct_spte()
2393 drop_parent_pte(vcpu->kvm, child, sptep); in validate_direct_spte()
2394 kvm_flush_remote_tlbs_sptep(vcpu->kvm, sptep); in validate_direct_spte()
2398 /* Returns the number of zapped non-leaf child shadow pages. */
2407 if (is_last_spte(pte, sp->role.level)) { in mmu_page_zap_pte()
2419 child->role.guest_mode && !child->parent_ptes.val) in mmu_page_zap_pte()
2437 zapped += mmu_page_zap_pte(kvm, sp, sp->spt + i, invalid_list); in kvm_mmu_page_unlink_children()
2447 while ((sptep = rmap_get_first(&sp->parent_ptes, &iter))) in kvm_mmu_unlink_parents()
2459 if (parent->role.level == PG_LEVEL_4K) in mmu_zap_unsync_children()
2482 lockdep_assert_held_write(&kvm->mmu_lock); in __kvm_mmu_prepare_zap_page()
2484 ++kvm->stat.mmu_shadow_zapped; in __kvm_mmu_prepare_zap_page()
2492 if (!sp->role.invalid && sp_has_gptes(sp)) in __kvm_mmu_prepare_zap_page()
2495 if (sp->unsync) in __kvm_mmu_prepare_zap_page()
2497 if (!sp->root_count) { in __kvm_mmu_prepare_zap_page()
2504 * !sp->root_count. in __kvm_mmu_prepare_zap_page()
2506 if (sp->role.invalid) in __kvm_mmu_prepare_zap_page()
2507 list_add(&sp->link, invalid_list); in __kvm_mmu_prepare_zap_page()
2509 list_move(&sp->link, invalid_list); in __kvm_mmu_prepare_zap_page()
2516 list_del(&sp->link); in __kvm_mmu_prepare_zap_page()
2526 if (sp->nx_huge_page_disallowed) in __kvm_mmu_prepare_zap_page()
2529 sp->role.invalid = 1; in __kvm_mmu_prepare_zap_page()
2559 * the page tables and see changes to vcpu->mode here. The barrier in kvm_mmu_commit_zap_page()
2569 WARN_ON_ONCE(!sp->role.invalid || sp->root_count); in kvm_mmu_commit_zap_page()
2583 if (list_empty(&kvm->arch.active_mmu_pages)) in kvm_mmu_zap_oldest_mmu_pages()
2587 list_for_each_entry_safe_reverse(sp, tmp, &kvm->arch.active_mmu_pages, link) { in kvm_mmu_zap_oldest_mmu_pages()
2592 if (sp->root_count) in kvm_mmu_zap_oldest_mmu_pages()
2607 kvm->stat.mmu_recycled += total_zapped; in kvm_mmu_zap_oldest_mmu_pages()
2613 if (kvm->arch.n_max_mmu_pages > kvm->arch.n_used_mmu_pages) in kvm_mmu_available_pages()
2614 return kvm->arch.n_max_mmu_pages - in kvm_mmu_available_pages()
2615 kvm->arch.n_used_mmu_pages; in kvm_mmu_available_pages()
2622 unsigned long avail = kvm_mmu_available_pages(vcpu->kvm); in make_mmu_pages_available()
2627 kvm_mmu_zap_oldest_mmu_pages(vcpu->kvm, KVM_REFILL_PAGES - avail); in make_mmu_pages_available()
2632 * four pages, e.g. for PAE roots or for 5-level paging. Temporarily in make_mmu_pages_available()
2638 if (!kvm_mmu_available_pages(vcpu->kvm)) in make_mmu_pages_available()
2639 return -ENOSPC; in make_mmu_pages_available()
2649 write_lock(&kvm->mmu_lock); in kvm_mmu_change_mmu_pages()
2651 if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) { in kvm_mmu_change_mmu_pages()
2652 kvm_mmu_zap_oldest_mmu_pages(kvm, kvm->arch.n_used_mmu_pages - in kvm_mmu_change_mmu_pages()
2655 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages; in kvm_mmu_change_mmu_pages()
2658 kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages; in kvm_mmu_change_mmu_pages()
2660 write_unlock(&kvm->mmu_lock); in kvm_mmu_change_mmu_pages()
2666 struct kvm *kvm = vcpu->kvm; in __kvm_mmu_unprotect_gfn_and_retry()
2673 * Bail early if there aren't any write-protected shadow pages to avoid in __kvm_mmu_unprotect_gfn_and_retry()
2674 * unnecessarily taking mmu_lock lock, e.g. if the gfn is write-tracked in __kvm_mmu_unprotect_gfn_and_retry()
2680 if (!READ_ONCE(kvm->arch.indirect_shadow_pages)) in __kvm_mmu_unprotect_gfn_and_retry()
2683 if (!vcpu->arch.mmu->root_role.direct) { in __kvm_mmu_unprotect_gfn_and_retry()
2689 write_lock(&kvm->mmu_lock); in __kvm_mmu_unprotect_gfn_and_retry()
2699 write_unlock(&kvm->mmu_lock); in __kvm_mmu_unprotect_gfn_and_retry()
2703 vcpu->arch.last_retry_eip = kvm_rip_read(vcpu); in __kvm_mmu_unprotect_gfn_and_retry()
2704 vcpu->arch.last_retry_addr = cr2_or_gpa; in __kvm_mmu_unprotect_gfn_and_retry()
2712 ++kvm->stat.mmu_unsync; in kvm_unsync_page()
2713 sp->unsync = 1; in kvm_unsync_page()
2721 * were marked unsync (or if there is no shadow page), -EPERM if the SPTE must
2722 * be write-protected.
2731 * Force write-protection if the page is being tracked. Note, the page in mmu_try_to_unsync_pages()
2732 * track machinery is used to write-protect upper-level shadow pages, in mmu_try_to_unsync_pages()
2736 return -EPERM; in mmu_try_to_unsync_pages()
2739 * The page is not write-tracked, mark existing shadow pages unsync in mmu_try_to_unsync_pages()
2746 return -EPERM; in mmu_try_to_unsync_pages()
2748 if (sp->unsync) in mmu_try_to_unsync_pages()
2752 return -EEXIST; in mmu_try_to_unsync_pages()
2763 spin_lock(&kvm->arch.mmu_unsync_pages_lock); in mmu_try_to_unsync_pages()
2769 * possible as clearing sp->unsync _must_ hold mmu_lock in mmu_try_to_unsync_pages()
2770 * for write, i.e. unsync cannot transition from 1->0 in mmu_try_to_unsync_pages()
2773 if (READ_ONCE(sp->unsync)) in mmu_try_to_unsync_pages()
2777 WARN_ON_ONCE(sp->role.level != PG_LEVEL_4K); in mmu_try_to_unsync_pages()
2781 spin_unlock(&kvm->arch.mmu_unsync_pages_lock); in mmu_try_to_unsync_pages()
2788 * before the page had been marked as unsync-ed, something like the in mmu_try_to_unsync_pages()
2792 * --------------------------------------------------------------------- in mmu_try_to_unsync_pages()
2805 * 2.3 Walking of unsync pages sees sp->unsync is in mmu_try_to_unsync_pages()
2814 * (sp->unsync = true) in mmu_try_to_unsync_pages()
2830 int level = sp->role.level; in mmu_set_spte()
2838 bool host_writable = !fault || fault->map_writable; in mmu_set_spte()
2839 bool prefetch = !fault || fault->prefetch; in mmu_set_spte()
2840 bool write_fault = fault && fault->write; in mmu_set_spte()
2843 vcpu->stat.pf_mmio_spte_created++; in mmu_set_spte()
2861 drop_parent_pte(vcpu->kvm, child, sptep); in mmu_set_spte()
2864 drop_spte(vcpu->kvm, sptep); in mmu_set_spte()
2884 kvm_flush_remote_tlbs_gfn(vcpu->kvm, gfn, level); in mmu_set_spte()
2939 unsigned int access = sp->role.access; in direct_pte_prefetch_many()
2941 return kvm_mmu_prefetch_sptes(vcpu, gfn, start, end - start, access); in direct_pte_prefetch_many()
2950 WARN_ON_ONCE(!sp->role.direct); in __direct_pte_prefetch()
2952 i = spte_index(sptep) & ~(PTE_PREFETCH_NUM - 1); in __direct_pte_prefetch()
2953 spte = sp->spt + i; in __direct_pte_prefetch()
2984 if (sp->role.level > PG_LEVEL_4K) in direct_pte_prefetch()
2991 if (unlikely(vcpu->kvm->mmu_invalidate_in_progress)) in direct_pte_prefetch()
3005 * - Check mmu_invalidate_retry_gfn() after grabbing the mapping level, before
3009 * - Hold mmu_lock AND ensure there is no in-progress MMU notifier invalidation
3013 * - Do not use the result to install new mappings, e.g. use the host mapping
3034 * Note, using the already-retrieved memslot and __gfn_to_hva_memslot() in host_pfn_mapping_level()
3037 * read-only memslots due to gfn_to_hva() assuming writes. Earlier in host_pfn_mapping_level()
3039 * read-only memslot. in host_pfn_mapping_level()
3051 * Read each entry once. As above, a non-leaf entry can be promoted to in host_pfn_mapping_level()
3052 * a huge page _during_ this walk. Re-reading the entry could send the in host_pfn_mapping_level()
3057 pgd = READ_ONCE(*pgd_offset(kvm->mm, hva)); in host_pfn_mapping_level()
3094 for ( ; max_level > PG_LEVEL_4K; max_level--) { in __kvm_mmu_max_mapping_level()
3096 if (!linfo->disallow_lpage) in __kvm_mmu_max_mapping_level()
3121 struct kvm_memory_slot *slot = fault->slot; in kvm_mmu_hugepage_adjust()
3124 fault->huge_page_disallowed = fault->exec && fault->nx_huge_page_workaround_enabled; in kvm_mmu_hugepage_adjust()
3126 if (unlikely(fault->max_level == PG_LEVEL_4K)) in kvm_mmu_hugepage_adjust()
3129 if (is_error_noslot_pfn(fault->pfn)) in kvm_mmu_hugepage_adjust()
3139 fault->req_level = __kvm_mmu_max_mapping_level(vcpu->kvm, slot, in kvm_mmu_hugepage_adjust()
3140 fault->gfn, fault->max_level, in kvm_mmu_hugepage_adjust()
3141 fault->is_private); in kvm_mmu_hugepage_adjust()
3142 if (fault->req_level == PG_LEVEL_4K || fault->huge_page_disallowed) in kvm_mmu_hugepage_adjust()
3149 fault->goal_level = fault->req_level; in kvm_mmu_hugepage_adjust()
3150 mask = KVM_PAGES_PER_HPAGE(fault->goal_level) - 1; in kvm_mmu_hugepage_adjust()
3151 VM_BUG_ON((fault->gfn & mask) != (fault->pfn & mask)); in kvm_mmu_hugepage_adjust()
3152 fault->pfn &= ~mask; in kvm_mmu_hugepage_adjust()
3158 cur_level == fault->goal_level && in disallowed_hugepage_adjust()
3161 spte_to_child_sp(spte)->nx_huge_page_disallowed) { in disallowed_hugepage_adjust()
3169 u64 page_mask = KVM_PAGES_PER_HPAGE(cur_level) - in disallowed_hugepage_adjust()
3170 KVM_PAGES_PER_HPAGE(cur_level - 1); in disallowed_hugepage_adjust()
3171 fault->pfn |= fault->gfn & page_mask; in disallowed_hugepage_adjust()
3172 fault->goal_level--; in disallowed_hugepage_adjust()
3181 gfn_t base_gfn = fault->gfn; in direct_map()
3186 for_each_shadow_entry(vcpu, fault->addr, it) { in direct_map()
3191 if (fault->nx_huge_page_workaround_enabled) in direct_map()
3194 base_gfn = gfn_round_for_level(fault->gfn, it.level); in direct_map()
3195 if (it.level == fault->goal_level) in direct_map()
3199 if (sp == ERR_PTR(-EEXIST)) in direct_map()
3203 if (fault->huge_page_disallowed) in direct_map()
3204 account_nx_huge_page(vcpu->kvm, sp, in direct_map()
3205 fault->req_level >= it.level); in direct_map()
3208 if (WARN_ON_ONCE(it.level != fault->goal_level)) in direct_map()
3209 return -EFAULT; in direct_map()
3211 ret = mmu_set_spte(vcpu, fault->slot, it.sptep, ACC_ALL, in direct_map()
3212 base_gfn, fault->pfn, fault); in direct_map()
3229 if (is_sigpending_pfn(fault->pfn)) { in kvm_handle_error_pfn()
3231 return -EINTR; in kvm_handle_error_pfn()
3239 if (fault->pfn == KVM_PFN_ERR_RO_FAULT) in kvm_handle_error_pfn()
3242 if (fault->pfn == KVM_PFN_ERR_HWPOISON) { in kvm_handle_error_pfn()
3243 kvm_send_hwpoison_signal(fault->slot, fault->gfn); in kvm_handle_error_pfn()
3247 return -EFAULT; in kvm_handle_error_pfn()
3254 gva_t gva = fault->is_tdp ? 0 : fault->addr; in kvm_handle_noslot_fault()
3256 if (fault->is_private) { in kvm_handle_noslot_fault()
3258 return -EFAULT; in kvm_handle_noslot_fault()
3261 vcpu_cache_mmio_info(vcpu, gva, fault->gfn, in kvm_handle_noslot_fault()
3264 fault->slot = NULL; in kvm_handle_noslot_fault()
3265 fault->pfn = KVM_PFN_NOSLOT; in kvm_handle_noslot_fault()
3266 fault->map_writable = false; in kvm_handle_noslot_fault()
3283 if (unlikely(fault->gfn > kvm_mmu_max_gfn())) in kvm_handle_noslot_fault()
3297 if (fault->rsvd) in page_fault_can_be_fast()
3301 * For hardware-protected VMs, certain conditions like attempting to in page_fault_can_be_fast()
3305 * result of a write-protected access, and treat it as a spurious case in page_fault_can_be_fast()
3316 if (kvm->arch.has_private_mem && in page_fault_can_be_fast()
3317 fault->is_private != kvm_mem_is_private(kvm, fault->gfn)) in page_fault_can_be_fast()
3331 * the fault was caused by a write-protection violation. If the in page_fault_can_be_fast()
3332 * SPTE is MMU-writable (determined later), the fault can be fixed in page_fault_can_be_fast()
3335 if (!fault->present) in page_fault_can_be_fast()
3342 return fault->write; in page_fault_can_be_fast()
3361 * so non-PML cases won't be impacted. in fast_pf_fix_direct_spte()
3369 mark_page_dirty_in_slot(vcpu->kvm, fault->slot, fault->gfn); in fast_pf_fix_direct_spte()
3376 * gpa, and sets *spte to the spte value. This spte may be non-preset. If no
3380 * - Must be called between walk_shadow_page_lockless_{begin,end}.
3381 * - The returned sptep must not be used after walk_shadow_page_lockless_end.
3408 if (!page_fault_can_be_fast(vcpu->kvm, fault)) in fast_page_fault()
3417 sptep = kvm_tdp_mmu_fast_pf_get_last_sptep(vcpu, fault->gfn, &spte); in fast_page_fault()
3419 sptep = fast_pf_get_last_sptep(vcpu, fault->addr, &spte); in fast_page_fault()
3433 if (!is_last_spte(spte, sp->role.level)) in fast_page_fault()
3456 * uses A/D bits for non-nested MMUs. Thus, if A/D bits are in fast_page_fault()
3457 * enabled, the SPTE can't be an access-tracked SPTE. in fast_page_fault()
3464 * To keep things simple, only SPTEs that are MMU-writable can in fast_page_fault()
3466 * that were write-protected for dirty-logging or access in fast_page_fault()
3471 * shadow-present, i.e. except for access tracking restoration in fast_page_fault()
3474 if (fault->write && is_mmu_writable_spte(spte)) { in fast_page_fault()
3478 * Do not fix write-permission on the large spte when in fast_page_fault()
3480 * first page into the dirty-bitmap in in fast_page_fault()
3487 if (sp->role.level > PG_LEVEL_4K && in fast_page_fault()
3488 kvm_slot_dirty_track_enabled(fault->slot)) in fast_page_fault()
3518 vcpu->stat.pf_fast++; in fast_page_fault()
3536 lockdep_assert_held_read(&kvm->mmu_lock); in mmu_free_root_page()
3539 lockdep_assert_held_write(&kvm->mmu_lock); in mmu_free_root_page()
3540 if (!--sp->root_count && sp->role.invalid) in mmu_free_root_page()
3551 bool is_tdp_mmu = tdp_mmu_enabled && mmu->root_role.direct; in kvm_mmu_free_roots()
3562 && VALID_PAGE(mmu->root.hpa); in kvm_mmu_free_roots()
3567 VALID_PAGE(mmu->prev_roots[i].hpa)) in kvm_mmu_free_roots()
3575 read_lock(&kvm->mmu_lock); in kvm_mmu_free_roots()
3577 write_lock(&kvm->mmu_lock); in kvm_mmu_free_roots()
3581 mmu_free_root_page(kvm, &mmu->prev_roots[i].hpa, in kvm_mmu_free_roots()
3585 if (kvm_mmu_is_dummy_root(mmu->root.hpa)) { in kvm_mmu_free_roots()
3587 } else if (root_to_sp(mmu->root.hpa)) { in kvm_mmu_free_roots()
3588 mmu_free_root_page(kvm, &mmu->root.hpa, &invalid_list); in kvm_mmu_free_roots()
3589 } else if (mmu->pae_root) { in kvm_mmu_free_roots()
3591 if (!IS_VALID_PAE_ROOT(mmu->pae_root[i])) in kvm_mmu_free_roots()
3594 mmu_free_root_page(kvm, &mmu->pae_root[i], in kvm_mmu_free_roots()
3596 mmu->pae_root[i] = INVALID_PAE_ROOT; in kvm_mmu_free_roots()
3599 mmu->root.hpa = INVALID_PAGE; in kvm_mmu_free_roots()
3600 mmu->root.pgd = 0; in kvm_mmu_free_roots()
3604 read_unlock(&kvm->mmu_lock); in kvm_mmu_free_roots()
3608 write_unlock(&kvm->mmu_lock); in kvm_mmu_free_roots()
3624 WARN_ON_ONCE(mmu->root_role.guest_mode); in kvm_mmu_free_guest_mode_roots()
3627 root_hpa = mmu->prev_roots[i].hpa; in kvm_mmu_free_guest_mode_roots()
3632 if (!sp || sp->role.guest_mode) in kvm_mmu_free_guest_mode_roots()
3643 union kvm_mmu_page_role role = vcpu->arch.mmu->root_role; in mmu_alloc_root()
3653 ++sp->root_count; in mmu_alloc_root()
3655 return __pa(sp->spt); in mmu_alloc_root()
3660 struct kvm_mmu *mmu = vcpu->arch.mmu; in mmu_alloc_direct_roots()
3661 u8 shadow_root_level = mmu->root_role.level; in mmu_alloc_direct_roots()
3667 if (kvm_has_mirrored_tdp(vcpu->kvm) && in mmu_alloc_direct_roots()
3668 !VALID_PAGE(mmu->mirror_root_hpa)) in mmu_alloc_direct_roots()
3674 write_lock(&vcpu->kvm->mmu_lock); in mmu_alloc_direct_roots()
3681 mmu->root.hpa = root; in mmu_alloc_direct_roots()
3683 if (WARN_ON_ONCE(!mmu->pae_root)) { in mmu_alloc_direct_roots()
3684 r = -EIO; in mmu_alloc_direct_roots()
3689 WARN_ON_ONCE(IS_VALID_PAE_ROOT(mmu->pae_root[i])); in mmu_alloc_direct_roots()
3691 root = mmu_alloc_root(vcpu, i << (30 - PAGE_SHIFT), 0, in mmu_alloc_direct_roots()
3693 mmu->pae_root[i] = root | PT_PRESENT_MASK | in mmu_alloc_direct_roots()
3696 mmu->root.hpa = __pa(mmu->pae_root); in mmu_alloc_direct_roots()
3699 r = -EIO; in mmu_alloc_direct_roots()
3704 mmu->root.pgd = 0; in mmu_alloc_direct_roots()
3706 write_unlock(&vcpu->kvm->mmu_lock); in mmu_alloc_direct_roots()
3723 mutex_lock(&kvm->slots_arch_lock); in mmu_first_shadow_root_alloc()
3741 * Both of these functions are no-ops if the target is in mmu_first_shadow_root_alloc()
3750 r = memslot_rmap_alloc(slot, slot->npages); in mmu_first_shadow_root_alloc()
3764 smp_store_release(&kvm->arch.shadow_root_allocated, true); in mmu_first_shadow_root_alloc()
3767 mutex_unlock(&kvm->slots_arch_lock); in mmu_first_shadow_root_alloc()
3773 struct kvm_mmu *mmu = vcpu->arch.mmu; in mmu_alloc_shadow_roots()
3783 mmu->root.hpa = kvm_mmu_get_dummy_root(); in mmu_alloc_shadow_roots()
3791 if (mmu->cpu_role.base.level == PT32E_ROOT_LEVEL) { in mmu_alloc_shadow_roots()
3793 pdptrs[i] = mmu->get_pdptr(vcpu, i); in mmu_alloc_shadow_roots()
3802 r = mmu_first_shadow_root_alloc(vcpu->kvm); in mmu_alloc_shadow_roots()
3806 write_lock(&vcpu->kvm->mmu_lock); in mmu_alloc_shadow_roots()
3813 * write-protect the guests page table root. in mmu_alloc_shadow_roots()
3815 if (mmu->cpu_role.base.level >= PT64_ROOT_4LEVEL) { in mmu_alloc_shadow_roots()
3817 mmu->root_role.level); in mmu_alloc_shadow_roots()
3818 mmu->root.hpa = root; in mmu_alloc_shadow_roots()
3822 if (WARN_ON_ONCE(!mmu->pae_root)) { in mmu_alloc_shadow_roots()
3823 r = -EIO; in mmu_alloc_shadow_roots()
3828 * We shadow a 32 bit page table. This may be a legacy 2-level in mmu_alloc_shadow_roots()
3829 * or a PAE 3-level page table. In either case we need to be aware that in mmu_alloc_shadow_roots()
3833 if (mmu->root_role.level >= PT64_ROOT_4LEVEL) { in mmu_alloc_shadow_roots()
3836 if (WARN_ON_ONCE(!mmu->pml4_root)) { in mmu_alloc_shadow_roots()
3837 r = -EIO; in mmu_alloc_shadow_roots()
3840 mmu->pml4_root[0] = __pa(mmu->pae_root) | pm_mask; in mmu_alloc_shadow_roots()
3842 if (mmu->root_role.level == PT64_ROOT_5LEVEL) { in mmu_alloc_shadow_roots()
3843 if (WARN_ON_ONCE(!mmu->pml5_root)) { in mmu_alloc_shadow_roots()
3844 r = -EIO; in mmu_alloc_shadow_roots()
3847 mmu->pml5_root[0] = __pa(mmu->pml4_root) | pm_mask; in mmu_alloc_shadow_roots()
3852 WARN_ON_ONCE(IS_VALID_PAE_ROOT(mmu->pae_root[i])); in mmu_alloc_shadow_roots()
3854 if (mmu->cpu_role.base.level == PT32E_ROOT_LEVEL) { in mmu_alloc_shadow_roots()
3856 mmu->pae_root[i] = INVALID_PAE_ROOT; in mmu_alloc_shadow_roots()
3863 * If shadowing 32-bit non-PAE page tables, each PAE page in mmu_alloc_shadow_roots()
3864 * directory maps one quarter of the guest's non-PAE page in mmu_alloc_shadow_roots()
3868 quadrant = (mmu->cpu_role.base.level == PT32_ROOT_LEVEL) ? i : 0; in mmu_alloc_shadow_roots()
3871 mmu->pae_root[i] = root | pm_mask; in mmu_alloc_shadow_roots()
3874 if (mmu->root_role.level == PT64_ROOT_5LEVEL) in mmu_alloc_shadow_roots()
3875 mmu->root.hpa = __pa(mmu->pml5_root); in mmu_alloc_shadow_roots()
3876 else if (mmu->root_role.level == PT64_ROOT_4LEVEL) in mmu_alloc_shadow_roots()
3877 mmu->root.hpa = __pa(mmu->pml4_root); in mmu_alloc_shadow_roots()
3879 mmu->root.hpa = __pa(mmu->pae_root); in mmu_alloc_shadow_roots()
3882 mmu->root.pgd = root_pgd; in mmu_alloc_shadow_roots()
3884 write_unlock(&vcpu->kvm->mmu_lock); in mmu_alloc_shadow_roots()
3891 struct kvm_mmu *mmu = vcpu->arch.mmu; in mmu_alloc_special_roots()
3892 bool need_pml5 = mmu->root_role.level > PT64_ROOT_4LEVEL; in mmu_alloc_special_roots()
3898 * When shadowing 32-bit or PAE NPT with 64-bit NPT, the PML4 and PDP in mmu_alloc_special_roots()
3901 * on demand, as running a 32-bit L1 VMM on 64-bit KVM is very rare. in mmu_alloc_special_roots()
3903 if (mmu->root_role.direct || in mmu_alloc_special_roots()
3904 mmu->cpu_role.base.level >= PT64_ROOT_4LEVEL || in mmu_alloc_special_roots()
3905 mmu->root_role.level < PT64_ROOT_4LEVEL) in mmu_alloc_special_roots()
3910 * of levels for the shadow page tables, e.g. all MMUs are 4-level or in mmu_alloc_special_roots()
3911 * all MMus are 5-level. Thus, this can safely require that pml5_root in mmu_alloc_special_roots()
3915 if (mmu->pae_root && mmu->pml4_root && (!need_pml5 || mmu->pml5_root)) in mmu_alloc_special_roots()
3922 if (WARN_ON_ONCE(!tdp_enabled || mmu->pae_root || mmu->pml4_root || in mmu_alloc_special_roots()
3923 (need_pml5 && mmu->pml5_root))) in mmu_alloc_special_roots()
3924 return -EIO; in mmu_alloc_special_roots()
3927 * Unlike 32-bit NPT, the PDP table doesn't need to be in low mem, and in mmu_alloc_special_roots()
3932 return -ENOMEM; in mmu_alloc_special_roots()
3946 mmu->pae_root = pae_root; in mmu_alloc_special_roots()
3947 mmu->pml4_root = pml4_root; in mmu_alloc_special_roots()
3948 mmu->pml5_root = pml5_root; in mmu_alloc_special_roots()
3957 return -ENOMEM; in mmu_alloc_special_roots()
3970 * walk before the reads of sp->unsync/sp->unsync_children here. in is_unsync_root()
3972 * Even if another CPU was marking the SP as unsync-ed simultaneously, in is_unsync_root()
3990 if (sp->unsync || sp->unsync_children) in is_unsync_root()
4001 if (vcpu->arch.mmu->root_role.direct) in kvm_mmu_sync_roots()
4004 if (!VALID_PAGE(vcpu->arch.mmu->root.hpa)) in kvm_mmu_sync_roots()
4009 if (vcpu->arch.mmu->cpu_role.base.level >= PT64_ROOT_4LEVEL) { in kvm_mmu_sync_roots()
4010 hpa_t root = vcpu->arch.mmu->root.hpa; in kvm_mmu_sync_roots()
4017 write_lock(&vcpu->kvm->mmu_lock); in kvm_mmu_sync_roots()
4019 write_unlock(&vcpu->kvm->mmu_lock); in kvm_mmu_sync_roots()
4023 write_lock(&vcpu->kvm->mmu_lock); in kvm_mmu_sync_roots()
4026 hpa_t root = vcpu->arch.mmu->pae_root[i]; in kvm_mmu_sync_roots()
4034 write_unlock(&vcpu->kvm->mmu_lock); in kvm_mmu_sync_roots()
4043 if (is_unsync_root(vcpu->arch.mmu->prev_roots[i].hpa)) in kvm_mmu_sync_prev_roots()
4047 kvm_mmu_free_roots(vcpu->kvm, vcpu->arch.mmu, roots_to_free); in kvm_mmu_sync_prev_roots()
4055 exception->error_code = 0; in nonpaging_gva_to_gpa()
4076 * That SPTE may be non-present.
4083 int leaf = -1; in get_walk()
4115 /* return true if reserved bit(s) are detected on a valid, non-MMIO SPTE. */
4135 * to detect reserved bits on non-MMIO SPTEs. i.e. buggy SPTEs. in get_mmio_spte()
4140 rsvd_check = &vcpu->arch.mmu->shadow_zero_check; in get_mmio_spte()
4142 for (level = root; level >= leaf; level--) in get_mmio_spte()
4146 pr_err("%s: reserved bits set on MMU-present spte, addr 0x%llx, hierarchy:\n", in get_mmio_spte()
4148 for (level = root; level >= leaf; level--) in get_mmio_spte()
4149 pr_err("------ spte = 0x%llx level = %d, rsvd bits = 0x%llx", in get_mmio_spte()
4167 return -EINVAL; in handle_mmio_page_fault()
4169 if (is_mmio_spte(vcpu->kvm, spte)) { in handle_mmio_page_fault()
4194 if (unlikely(fault->rsvd)) in page_fault_handle_page_track()
4197 if (!fault->present || !fault->write) in page_fault_handle_page_track()
4204 if (kvm_gfn_is_write_tracked(vcpu->kvm, fault->slot, fault->gfn)) in page_fault_handle_page_track()
4224 u32 id = vcpu->arch.apf.id; in alloc_apf_token()
4227 vcpu->arch.apf.id = 1; in alloc_apf_token()
4229 return (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id; in alloc_apf_token()
4238 arch.gfn = fault->gfn; in kvm_arch_setup_async_pf()
4239 arch.error_code = fault->error_code; in kvm_arch_setup_async_pf()
4240 arch.direct_map = vcpu->arch.mmu->root_role.direct; in kvm_arch_setup_async_pf()
4241 arch.cr3 = kvm_mmu_get_guest_pgd(vcpu, vcpu->arch.mmu); in kvm_arch_setup_async_pf()
4243 return kvm_setup_async_pf(vcpu, fault->addr, in kvm_arch_setup_async_pf()
4244 kvm_vcpu_gfn_to_hva(vcpu, fault->gfn), &arch); in kvm_arch_setup_async_pf()
4251 if (WARN_ON_ONCE(work->arch.error_code & PFERR_PRIVATE_ACCESS)) in kvm_arch_async_page_ready()
4254 if ((vcpu->arch.mmu->root_role.direct != work->arch.direct_map) || in kvm_arch_async_page_ready()
4255 work->wakeup_all) in kvm_arch_async_page_ready()
4262 if (!vcpu->arch.mmu->root_role.direct && in kvm_arch_async_page_ready()
4263 work->arch.cr3 != kvm_mmu_get_guest_pgd(vcpu, vcpu->arch.mmu)) in kvm_arch_async_page_ready()
4266 r = kvm_mmu_do_page_fault(vcpu, work->cr2_or_gpa, work->arch.error_code, in kvm_arch_async_page_ready()
4271 * ignore stats for all other return times. Page-ready "faults" aren't in kvm_arch_async_page_ready()
4275 vcpu->stat.pf_fixed++; in kvm_arch_async_page_ready()
4317 kvm_release_faultin_page(vcpu->kvm, fault->refcounted_page, in kvm_mmu_finish_page_fault()
4318 r == RET_PF_RETRY, fault->map_writable); in kvm_mmu_finish_page_fault()
4326 if (!kvm_slot_can_be_private(fault->slot)) { in kvm_mmu_faultin_pfn_private()
4328 return -EFAULT; in kvm_mmu_faultin_pfn_private()
4331 r = kvm_gmem_get_pfn(vcpu->kvm, fault->slot, fault->gfn, &fault->pfn, in kvm_mmu_faultin_pfn_private()
4332 &fault->refcounted_page, &max_order); in kvm_mmu_faultin_pfn_private()
4338 fault->map_writable = !(fault->slot->flags & KVM_MEM_READONLY); in kvm_mmu_faultin_pfn_private()
4339 fault->max_level = kvm_max_private_mapping_level(vcpu->kvm, fault->pfn, in kvm_mmu_faultin_pfn_private()
4340 fault->max_level, max_order); in kvm_mmu_faultin_pfn_private()
4348 unsigned int foll = fault->write ? FOLL_WRITE : 0; in __kvm_mmu_faultin_pfn()
4350 if (fault->is_private) in __kvm_mmu_faultin_pfn()
4354 fault->pfn = __kvm_faultin_pfn(fault->slot, fault->gfn, foll, in __kvm_mmu_faultin_pfn()
4355 &fault->map_writable, &fault->refcounted_page); in __kvm_mmu_faultin_pfn()
4358 * If resolving the page failed because I/O is needed to fault-in the in __kvm_mmu_faultin_pfn()
4363 if (fault->pfn != KVM_PFN_ERR_NEEDS_IO) in __kvm_mmu_faultin_pfn()
4366 if (!fault->prefetch && kvm_can_do_async_pf(vcpu)) { in __kvm_mmu_faultin_pfn()
4367 trace_kvm_try_async_get_page(fault->addr, fault->gfn); in __kvm_mmu_faultin_pfn()
4368 if (kvm_find_async_pf_gfn(vcpu, fault->gfn)) { in __kvm_mmu_faultin_pfn()
4369 trace_kvm_async_pf_repeated_fault(fault->addr, fault->gfn); in __kvm_mmu_faultin_pfn()
4378 * Allow gup to bail on pending non-fatal signals when it's also allowed in __kvm_mmu_faultin_pfn()
4384 fault->pfn = __kvm_faultin_pfn(fault->slot, fault->gfn, foll, in __kvm_mmu_faultin_pfn()
4385 &fault->map_writable, &fault->refcounted_page); in __kvm_mmu_faultin_pfn()
4393 struct kvm_memory_slot *slot = fault->slot; in kvm_mmu_faultin_pfn()
4394 struct kvm *kvm = vcpu->kvm; in kvm_mmu_faultin_pfn()
4397 if (KVM_BUG_ON(kvm_is_gfn_alias(kvm, fault->gfn), kvm)) in kvm_mmu_faultin_pfn()
4398 return -EFAULT; in kvm_mmu_faultin_pfn()
4403 * invalidation relate to fault->fn and resume the guest without in kvm_mmu_faultin_pfn()
4406 fault->mmu_seq = vcpu->kvm->mmu_invalidate_seq; in kvm_mmu_faultin_pfn()
4413 if (fault->is_private != kvm_mem_is_private(kvm, fault->gfn)) { in kvm_mmu_faultin_pfn()
4415 return -EFAULT; in kvm_mmu_faultin_pfn()
4426 if (slot->flags & KVM_MEMSLOT_INVALID) in kvm_mmu_faultin_pfn()
4429 if (slot->id == APIC_ACCESS_PAGE_PRIVATE_MEMSLOT) { in kvm_mmu_faultin_pfn()
4448 * when the AVIC is re-enabled. in kvm_mmu_faultin_pfn()
4450 if (!kvm_apicv_activated(vcpu->kvm)) in kvm_mmu_faultin_pfn()
4458 * For mmu_lock, if there is an in-progress invalidation and the kernel in kvm_mmu_faultin_pfn()
4460 * in response to mmu_lock being contended, which is *very* counter- in kvm_mmu_faultin_pfn()
4470 * Do the pre-check even for non-preemtible kernels, i.e. even if KVM in kvm_mmu_faultin_pfn()
4475 if (mmu_invalidate_retry_gfn_unsafe(kvm, fault->mmu_seq, fault->gfn)) in kvm_mmu_faultin_pfn()
4482 if (unlikely(is_error_pfn(fault->pfn))) in kvm_mmu_faultin_pfn()
4485 if (WARN_ON_ONCE(!fault->slot || is_noslot_pfn(fault->pfn))) in kvm_mmu_faultin_pfn()
4495 if (mmu_invalidate_retry_gfn_unsafe(kvm, fault->mmu_seq, fault->gfn)) { in kvm_mmu_faultin_pfn()
4510 struct kvm_mmu_page *sp = root_to_sp(vcpu->arch.mmu->root.hpa); in is_page_fault_stale()
4513 if (sp && is_obsolete_sp(vcpu->kvm, sp)) in is_page_fault_stale()
4532 return fault->slot && in is_page_fault_stale()
4533 mmu_invalidate_retry_gfn(vcpu->kvm, fault->mmu_seq, fault->gfn); in is_page_fault_stale()
4541 if (WARN_ON_ONCE(kvm_mmu_is_dummy_root(vcpu->arch.mmu->root.hpa))) in direct_page_fault()
4560 write_lock(&vcpu->kvm->mmu_lock); in direct_page_fault()
4573 write_unlock(&vcpu->kvm->mmu_lock); in direct_page_fault()
4581 fault->max_level = PG_LEVEL_2M; in nonpaging_page_fault()
4589 u32 flags = vcpu->arch.apf.host_apf_flags; in kvm_handle_page_fault()
4592 /* A 64-bit CR2 should be impossible on 32-bit KVM. */ in kvm_handle_page_fault()
4594 return -EFAULT; in kvm_handle_page_fault()
4597 * Legacy #PF exception only have a 32-bit error code. Simply drop the in kvm_handle_page_fault()
4599 * set), and to ensure there are no collisions with KVM-defined bits. in kvm_handle_page_fault()
4605 * Restrict KVM-defined flags to bits 63:32 so that it's impossible for in kvm_handle_page_fault()
4610 vcpu->arch.l1tf_flush_l1d = true; in kvm_handle_page_fault()
4617 vcpu->arch.apf.host_apf_flags = 0; in kvm_handle_page_fault()
4651 read_lock(&vcpu->kvm->mmu_lock); in kvm_tdp_mmu_page_fault()
4660 read_unlock(&vcpu->kvm->mmu_lock); in kvm_tdp_mmu_page_fault()
4668 * When EPT is enabled (shadow_memtype_mask is non-zero), and the VM in kvm_mmu_may_ignore_guest_pat()
4669 * has non-coherent DMA (DMA doesn't snoop CPU caches), KVM's ABI is to in kvm_mmu_may_ignore_guest_pat()
4672 * result, KVM _may_ ignore guest PAT, whereas without non-coherent DMA, in kvm_mmu_may_ignore_guest_pat()
4697 if (vcpu->arch.mmu->page_fault != kvm_tdp_page_fault) in kvm_tdp_map_page()
4698 return -EOPNOTSUPP; in kvm_tdp_map_page()
4702 return -EINTR; in kvm_tdp_map_page()
4717 return -ENOENT; in kvm_tdp_map_page()
4724 return -EIO; in kvm_tdp_map_page()
4736 if (!vcpu->kvm->arch.pre_fault_allowed) in kvm_arch_vcpu_pre_fault_memory()
4737 return -EOPNOTSUPP; in kvm_arch_vcpu_pre_fault_memory()
4747 if (kvm_arch_has_private_mem(vcpu->kvm) && in kvm_arch_vcpu_pre_fault_memory()
4748 kvm_mem_is_private(vcpu->kvm, gpa_to_gfn(range->gpa))) in kvm_arch_vcpu_pre_fault_memory()
4753 * two-dimensional paging. in kvm_arch_vcpu_pre_fault_memory()
4755 r = kvm_tdp_map_page(vcpu, range->gpa, error_code, &level); in kvm_arch_vcpu_pre_fault_memory()
4760 * If the mapping that covers range->gpa can use a huge page, it in kvm_arch_vcpu_pre_fault_memory()
4761 * may start below it or end after range->gpa + range->size. in kvm_arch_vcpu_pre_fault_memory()
4763 end = (range->gpa & KVM_HPAGE_MASK(level)) + KVM_HPAGE_SIZE(level); in kvm_arch_vcpu_pre_fault_memory()
4764 return min(range->size, end - range->gpa); in kvm_arch_vcpu_pre_fault_memory()
4769 context->page_fault = nonpaging_page_fault; in nonpaging_init_context()
4770 context->gva_to_gpa = nonpaging_gva_to_gpa; in nonpaging_init_context()
4771 context->sync_spte = NULL; in nonpaging_init_context()
4779 if (!VALID_PAGE(root->hpa)) in is_root_usable()
4782 if (!role.direct && pgd != root->pgd) in is_root_usable()
4785 sp = root_to_sp(root->hpa); in is_root_usable()
4789 return role.word == sp->role.word; in is_root_usable()
4795 * If a matching root is found, it is assigned to kvm_mmu->root and
4797 * If no match is found, kvm_mmu->root is left invalid, the LRU root is
4806 if (is_root_usable(&mmu->root, new_pgd, new_role)) in cached_root_find_and_keep_current()
4818 swap(mmu->root, mmu->prev_roots[i]); in cached_root_find_and_keep_current()
4819 if (is_root_usable(&mmu->root, new_pgd, new_role)) in cached_root_find_and_keep_current()
4829 * On entry, mmu->root is invalid.
4830 * If a matching root is found, it is assigned to kvm_mmu->root, the LRU entry
4832 * If no match is found, kvm_mmu->root is left invalid and false is returned.
4841 if (is_root_usable(&mmu->prev_roots[i], new_pgd, new_role)) in cached_root_find_without_current()
4847 swap(mmu->root, mmu->prev_roots[i]); in cached_root_find_without_current()
4849 for (; i < KVM_MMU_NUM_PREV_ROOTS - 1; i++) in cached_root_find_without_current()
4850 mmu->prev_roots[i] = mmu->prev_roots[i + 1]; in cached_root_find_without_current()
4851 mmu->prev_roots[i].hpa = INVALID_PAGE; in cached_root_find_without_current()
4859 * Limit reuse to 64-bit hosts+VMs without "special" roots in order to in fast_pgd_switch()
4862 if (VALID_PAGE(mmu->root.hpa) && !root_to_sp(mmu->root.hpa)) in fast_pgd_switch()
4865 if (VALID_PAGE(mmu->root.hpa)) in fast_pgd_switch()
4873 struct kvm_mmu *mmu = vcpu->arch.mmu; in kvm_mmu_new_pgd()
4874 union kvm_mmu_page_role new_role = mmu->root_role; in kvm_mmu_new_pgd()
4878 * will establish a valid root prior to the next VM-Enter. in kvm_mmu_new_pgd()
4880 if (!fast_pgd_switch(vcpu->kvm, mmu, new_pgd, new_role)) in kvm_mmu_new_pgd()
4898 * switching to a new CR3, that GVA->GPA mapping may no longer be in kvm_mmu_new_pgd()
4909 struct kvm_mmu_page *sp = root_to_sp(vcpu->arch.mmu->root.hpa); in kvm_mmu_new_pgd()
4920 if (unlikely(is_mmio_spte(vcpu->kvm, *sptep))) { in sync_mmio_spte()
4954 rsvd_check->bad_mt_xwr = 0; in __reset_rsvds_bits_mask()
4969 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for in __reset_rsvds_bits_mask()
4978 rsvd_check->rsvd_bits_mask[0][1] = 0; in __reset_rsvds_bits_mask()
4979 rsvd_check->rsvd_bits_mask[0][0] = 0; in __reset_rsvds_bits_mask()
4980 rsvd_check->rsvd_bits_mask[1][0] = in __reset_rsvds_bits_mask()
4981 rsvd_check->rsvd_bits_mask[0][0]; in __reset_rsvds_bits_mask()
4984 rsvd_check->rsvd_bits_mask[1][1] = 0; in __reset_rsvds_bits_mask()
4990 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21); in __reset_rsvds_bits_mask()
4993 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21); in __reset_rsvds_bits_mask()
4996 rsvd_check->rsvd_bits_mask[0][2] = rsvd_bits(63, 63) | in __reset_rsvds_bits_mask()
5000 rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd; /* PDE */ in __reset_rsvds_bits_mask()
5001 rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd; /* PTE */ in __reset_rsvds_bits_mask()
5002 rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd | in __reset_rsvds_bits_mask()
5004 rsvd_check->rsvd_bits_mask[1][0] = in __reset_rsvds_bits_mask()
5005 rsvd_check->rsvd_bits_mask[0][0]; in __reset_rsvds_bits_mask()
5008 rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd | in __reset_rsvds_bits_mask()
5011 rsvd_check->rsvd_bits_mask[1][4] = in __reset_rsvds_bits_mask()
5012 rsvd_check->rsvd_bits_mask[0][4]; in __reset_rsvds_bits_mask()
5015 rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd | in __reset_rsvds_bits_mask()
5018 rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd | in __reset_rsvds_bits_mask()
5020 rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd; in __reset_rsvds_bits_mask()
5021 rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd; in __reset_rsvds_bits_mask()
5022 rsvd_check->rsvd_bits_mask[1][3] = in __reset_rsvds_bits_mask()
5023 rsvd_check->rsvd_bits_mask[0][3]; in __reset_rsvds_bits_mask()
5024 rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd | in __reset_rsvds_bits_mask()
5027 rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd | in __reset_rsvds_bits_mask()
5029 rsvd_check->rsvd_bits_mask[1][0] = in __reset_rsvds_bits_mask()
5030 rsvd_check->rsvd_bits_mask[0][0]; in __reset_rsvds_bits_mask()
5038 __reset_rsvds_bits_mask(&context->guest_rsvd_check, in reset_guest_rsvds_bits_mask()
5039 vcpu->arch.reserved_gpa_bits, in reset_guest_rsvds_bits_mask()
5040 context->cpu_role.base.level, is_efer_nx(context), in reset_guest_rsvds_bits_mask()
5059 rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd | rsvd_bits(3, 7); in __reset_rsvds_bits_mask_ept()
5060 rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd | rsvd_bits(3, 7); in __reset_rsvds_bits_mask_ept()
5061 rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd | rsvd_bits(3, 6) | large_1g_rsvd; in __reset_rsvds_bits_mask_ept()
5062 rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd | rsvd_bits(3, 6) | large_2m_rsvd; in __reset_rsvds_bits_mask_ept()
5063 rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd; in __reset_rsvds_bits_mask_ept()
5066 rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4]; in __reset_rsvds_bits_mask_ept()
5067 rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3]; in __reset_rsvds_bits_mask_ept()
5068 rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd | rsvd_bits(12, 29) | large_1g_rsvd; in __reset_rsvds_bits_mask_ept()
5069 rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd | rsvd_bits(12, 20) | large_2m_rsvd; in __reset_rsvds_bits_mask_ept()
5070 rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0]; in __reset_rsvds_bits_mask_ept()
5081 rsvd_check->bad_mt_xwr = bad_mt_xwr; in __reset_rsvds_bits_mask_ept()
5087 __reset_rsvds_bits_mask_ept(&context->guest_rsvd_check, in reset_rsvds_bits_mask_ept()
5088 vcpu->arch.reserved_gpa_bits, execonly, in reset_rsvds_bits_mask_ept()
5107 /* KVM doesn't use 2-level page tables for the shadow MMU. */ in reset_shadow_zero_bits_mask()
5112 WARN_ON_ONCE(context->root_role.level < PT32E_ROOT_LEVEL); in reset_shadow_zero_bits_mask()
5114 shadow_zero_check = &context->shadow_zero_check; in reset_shadow_zero_bits_mask()
5116 context->root_role.level, in reset_shadow_zero_bits_mask()
5117 context->root_role.efer_nx, in reset_shadow_zero_bits_mask()
5124 for (i = context->root_role.level; --i >= 0;) { in reset_shadow_zero_bits_mask()
5131 shadow_zero_check->rsvd_bits_mask[0][i] |= shadow_me_mask; in reset_shadow_zero_bits_mask()
5132 shadow_zero_check->rsvd_bits_mask[1][i] |= shadow_me_mask; in reset_shadow_zero_bits_mask()
5133 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_value; in reset_shadow_zero_bits_mask()
5134 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_value; in reset_shadow_zero_bits_mask()
5147 * possible, however, kvm currently does not do execution-protection.
5154 shadow_zero_check = &context->shadow_zero_check; in reset_tdp_shadow_zero_bits_mask()
5158 context->root_role.level, true, in reset_tdp_shadow_zero_bits_mask()
5169 for (i = context->root_role.level; --i >= 0;) { in reset_tdp_shadow_zero_bits_mask()
5170 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask; in reset_tdp_shadow_zero_bits_mask()
5171 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask; in reset_tdp_shadow_zero_bits_mask()
5182 __reset_rsvds_bits_mask_ept(&context->shadow_zero_check, in reset_ept_shadow_zero_bits_mask()
5210 for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) { in update_permission_bitmask()
5218 /* Faults from writes to non-writable pages */ in update_permission_bitmask()
5222 /* Faults from fetches of non-executable pages*/ in update_permission_bitmask()
5246 * SMAP:kernel-mode data accesses from user-mode in update_permission_bitmask()
5250 * - X86_CR4_SMAP is set in CR4 in update_permission_bitmask()
5251 * - A user page is accessed in update_permission_bitmask()
5252 * - The access is not a fetch in update_permission_bitmask()
5253 * - The access is supervisor mode in update_permission_bitmask()
5254 * - If implicit supervisor access or X86_EFLAGS_AC is clear in update_permission_bitmask()
5265 mmu->permissions[byte] = ff | uf | wf | smepf | smapf; in update_permission_bitmask()
5271 * user-mode addresses based on the value in the PKRU register. Protection
5280 * - PK is always zero unless CR4.PKE=1 and EFER.LMA=1
5281 * - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch)
5282 * - PK is always zero if U=0 in the page tables
5283 * - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access.
5298 mmu->pkru_mask = 0; in update_pkru_bitmask()
5305 for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) { in update_pkru_bitmask()
5333 mmu->pkru_mask |= (pkey_bits & 3) << pfec; in update_pkru_bitmask()
5350 context->page_fault = paging64_page_fault; in paging64_init_context()
5351 context->gva_to_gpa = paging64_gva_to_gpa; in paging64_init_context()
5352 context->sync_spte = paging64_sync_spte; in paging64_init_context()
5357 context->page_fault = paging32_page_fault; in paging32_init_context()
5358 context->gva_to_gpa = paging32_gva_to_gpa; in paging32_init_context()
5359 context->sync_spte = paging32_sync_spte; in paging32_init_context()
5370 role.ext.valid = 1; in kvm_calc_cpu_role()
5391 role.ext.cr4_smep = ____is_cr4_smep(regs); in kvm_calc_cpu_role()
5392 role.ext.cr4_smap = ____is_cr4_smap(regs); in kvm_calc_cpu_role()
5393 role.ext.cr4_pse = ____is_cr4_pse(regs); in kvm_calc_cpu_role()
5396 role.ext.cr4_pke = ____is_efer_lma(regs) && ____is_cr4_pke(regs); in kvm_calc_cpu_role()
5397 role.ext.cr4_la57 = ____is_efer_lma(regs) && ____is_cr4_la57(regs); in kvm_calc_cpu_role()
5398 role.ext.efer_lma = ____is_efer_lma(regs); in kvm_calc_cpu_role()
5413 mmu->cpu_role.base.cr0_wp = cr0_wp; in __kvm_mmu_refresh_passthrough_bits()
5423 /* Use 5-level TDP if and only if it's useful/necessary. */ in kvm_mmu_get_tdp_level()
5457 struct kvm_mmu *context = &vcpu->arch.root_mmu; in init_kvm_tdp_mmu()
5460 if (cpu_role.as_u64 == context->cpu_role.as_u64 && in init_kvm_tdp_mmu()
5461 root_role.word == context->root_role.word) in init_kvm_tdp_mmu()
5464 context->cpu_role.as_u64 = cpu_role.as_u64; in init_kvm_tdp_mmu()
5465 context->root_role.word = root_role.word; in init_kvm_tdp_mmu()
5466 context->page_fault = kvm_tdp_page_fault; in init_kvm_tdp_mmu()
5467 context->sync_spte = NULL; in init_kvm_tdp_mmu()
5468 context->get_guest_pgd = get_guest_cr3; in init_kvm_tdp_mmu()
5469 context->get_pdptr = kvm_pdptr_read; in init_kvm_tdp_mmu()
5470 context->inject_page_fault = kvm_inject_page_fault; in init_kvm_tdp_mmu()
5473 context->gva_to_gpa = nonpaging_gva_to_gpa; in init_kvm_tdp_mmu()
5475 context->gva_to_gpa = paging64_gva_to_gpa; in init_kvm_tdp_mmu()
5477 context->gva_to_gpa = paging32_gva_to_gpa; in init_kvm_tdp_mmu()
5487 if (cpu_role.as_u64 == context->cpu_role.as_u64 && in shadow_mmu_init_context()
5488 root_role.word == context->root_role.word) in shadow_mmu_init_context()
5491 context->cpu_role.as_u64 = cpu_role.as_u64; in shadow_mmu_init_context()
5492 context->root_role.word = root_role.word; in shadow_mmu_init_context()
5508 struct kvm_mmu *context = &vcpu->arch.root_mmu; in kvm_init_shadow_mmu()
5513 /* KVM uses PAE paging whenever the guest isn't using 64-bit paging. */ in kvm_init_shadow_mmu()
5519 * notably for huge SPTEs if iTLB multi-hit mitigation is enabled and in kvm_init_shadow_mmu()
5521 * The iTLB multi-hit workaround can be toggled at any time, so assume in kvm_init_shadow_mmu()
5522 * NX can be used by any non-nested shadow MMU to avoid having to reset in kvm_init_shadow_mmu()
5533 struct kvm_mmu *context = &vcpu->arch.guest_mmu; in kvm_init_shadow_npt_mmu()
5574 role.ext.word = 0; in kvm_calc_shadow_ept_root_page_role()
5575 role.ext.execonly = execonly; in kvm_calc_shadow_ept_root_page_role()
5576 role.ext.valid = 1; in kvm_calc_shadow_ept_root_page_role()
5585 struct kvm_mmu *context = &vcpu->arch.guest_mmu; in kvm_init_shadow_ept_mmu()
5591 if (new_mode.as_u64 != context->cpu_role.as_u64) { in kvm_init_shadow_ept_mmu()
5593 context->cpu_role.as_u64 = new_mode.as_u64; in kvm_init_shadow_ept_mmu()
5594 context->root_role.word = new_mode.base.word; in kvm_init_shadow_ept_mmu()
5596 context->page_fault = ept_page_fault; in kvm_init_shadow_ept_mmu()
5597 context->gva_to_gpa = ept_gva_to_gpa; in kvm_init_shadow_ept_mmu()
5598 context->sync_spte = ept_sync_spte; in kvm_init_shadow_ept_mmu()
5601 context->pkru_mask = 0; in kvm_init_shadow_ept_mmu()
5613 struct kvm_mmu *context = &vcpu->arch.root_mmu; in init_kvm_softmmu()
5617 context->get_guest_pgd = get_guest_cr3; in init_kvm_softmmu()
5618 context->get_pdptr = kvm_pdptr_read; in init_kvm_softmmu()
5619 context->inject_page_fault = kvm_inject_page_fault; in init_kvm_softmmu()
5625 struct kvm_mmu *g_context = &vcpu->arch.nested_mmu; in init_kvm_nested_mmu()
5627 if (new_mode.as_u64 == g_context->cpu_role.as_u64) in init_kvm_nested_mmu()
5630 g_context->cpu_role.as_u64 = new_mode.as_u64; in init_kvm_nested_mmu()
5631 g_context->get_guest_pgd = get_guest_cr3; in init_kvm_nested_mmu()
5632 g_context->get_pdptr = kvm_pdptr_read; in init_kvm_nested_mmu()
5633 g_context->inject_page_fault = kvm_inject_page_fault; in init_kvm_nested_mmu()
5639 g_context->sync_spte = NULL; in init_kvm_nested_mmu()
5642 * Note that arch.mmu->gva_to_gpa translates l2_gpa to l1_gpa using in init_kvm_nested_mmu()
5650 g_context->gva_to_gpa = nonpaging_gva_to_gpa; in init_kvm_nested_mmu()
5652 g_context->gva_to_gpa = paging64_gva_to_gpa; in init_kvm_nested_mmu()
5654 g_context->gva_to_gpa = paging64_gva_to_gpa; in init_kvm_nested_mmu()
5656 g_context->gva_to_gpa = paging32_gva_to_gpa; in init_kvm_nested_mmu()
5689 vcpu->arch.root_mmu.root_role.invalid = 1; in kvm_mmu_after_set_cpuid()
5690 vcpu->arch.guest_mmu.root_role.invalid = 1; in kvm_mmu_after_set_cpuid()
5691 vcpu->arch.nested_mmu.root_role.invalid = 1; in kvm_mmu_after_set_cpuid()
5692 vcpu->arch.root_mmu.cpu_role.ext.valid = 0; in kvm_mmu_after_set_cpuid()
5693 vcpu->arch.guest_mmu.cpu_role.ext.valid = 0; in kvm_mmu_after_set_cpuid()
5694 vcpu->arch.nested_mmu.cpu_role.ext.valid = 0; in kvm_mmu_after_set_cpuid()
5701 KVM_BUG_ON(kvm_vcpu_has_run(vcpu), vcpu->kvm); in kvm_mmu_after_set_cpuid()
5715 r = mmu_topup_memory_caches(vcpu, !vcpu->arch.mmu->root_role.direct); in kvm_mmu_load()
5721 if (vcpu->arch.mmu->root_role.direct) in kvm_mmu_load()
5746 struct kvm *kvm = vcpu->kvm; in kvm_mmu_unload()
5748 kvm_mmu_free_roots(kvm, &vcpu->arch.root_mmu, KVM_MMU_ROOTS_ALL); in kvm_mmu_unload()
5749 WARN_ON_ONCE(VALID_PAGE(vcpu->arch.root_mmu.root.hpa)); in kvm_mmu_unload()
5750 kvm_mmu_free_roots(kvm, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL); in kvm_mmu_unload()
5751 WARN_ON_ONCE(VALID_PAGE(vcpu->arch.guest_mmu.root.hpa)); in kvm_mmu_unload()
5773 * is unlikely to zap an in-use PGD. in is_obsolete_root()
5787 if (is_obsolete_root(kvm, mmu->root.hpa)) in __kvm_mmu_free_obsolete_roots()
5791 if (is_obsolete_root(kvm, mmu->prev_roots[i].hpa)) in __kvm_mmu_free_obsolete_roots()
5801 __kvm_mmu_free_obsolete_roots(vcpu->kvm, &vcpu->arch.root_mmu); in kvm_mmu_free_obsolete_roots()
5802 __kvm_mmu_free_obsolete_roots(vcpu->kvm, &vcpu->arch.guest_mmu); in kvm_mmu_free_obsolete_roots()
5817 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */ in mmu_pte_write_fetch_gpte()
5838 * Skip write-flooding detected for the sp whose level is 1, because in detect_write_flooding()
5839 * it can become unsync, then the guest page is not write-protected. in detect_write_flooding()
5841 if (sp->role.level == PG_LEVEL_4K) in detect_write_flooding()
5844 atomic_inc(&sp->write_flooding_count); in detect_write_flooding()
5845 return atomic_read(&sp->write_flooding_count) >= 3; in detect_write_flooding()
5858 pte_size = sp->role.has_4_byte_gpte ? 4 : 8; in detect_write_misaligned()
5864 if (!(offset & (pte_size - 1)) && bytes == 1) in detect_write_misaligned()
5867 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1); in detect_write_misaligned()
5880 level = sp->role.level; in get_written_sptes()
5882 if (sp->role.has_4_byte_gpte) { in get_written_sptes()
5883 page_offset <<= 1; /* 32->64 */ in get_written_sptes()
5885 * A 32-bit pde maps 4MB while the shadow pdes map in get_written_sptes()
5896 if (quadrant != sp->role.quadrant) in get_written_sptes()
5900 spte = &sp->spt[page_offset / sizeof(*spte)]; in get_written_sptes()
5919 * a non-zero indirect_shadow_pages. Pairs with the smp_mb() in in kvm_mmu_track_write()
5923 if (!vcpu->kvm->arch.indirect_shadow_pages) in kvm_mmu_track_write()
5926 write_lock(&vcpu->kvm->mmu_lock); in kvm_mmu_track_write()
5930 ++vcpu->kvm->stat.mmu_pte_write; in kvm_mmu_track_write()
5932 for_each_gfn_valid_sp_with_gptes(vcpu->kvm, sp, gfn) { in kvm_mmu_track_write()
5935 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list); in kvm_mmu_track_write()
5936 ++vcpu->kvm->stat.mmu_flooded; in kvm_mmu_track_write()
5944 while (npte--) { in kvm_mmu_track_write()
5946 mmu_page_zap_pte(vcpu->kvm, sp, spte, NULL); in kvm_mmu_track_write()
5947 if (gentry && sp->role.level != PG_LEVEL_4K) in kvm_mmu_track_write()
5948 ++vcpu->kvm->stat.mmu_pde_zapped; in kvm_mmu_track_write()
5954 kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, flush); in kvm_mmu_track_write()
5955 write_unlock(&vcpu->kvm->mmu_lock); in kvm_mmu_track_write()
5968 bool direct = vcpu->arch.mmu->root_role.direct; in kvm_mmu_write_protect_fault()
5971 * Do not try to unprotect and retry if the vCPU re-faulted on the same in kvm_mmu_write_protect_fault()
5974 * a non-page-table modifying instruction on the PDE that points to the in kvm_mmu_write_protect_fault()
5978 if (vcpu->arch.last_retry_eip == kvm_rip_read(vcpu) && in kvm_mmu_write_protect_fault()
5979 vcpu->arch.last_retry_addr == cr2_or_gpa) in kvm_mmu_write_protect_fault()
5988 vcpu->arch.last_retry_eip = 0; in kvm_mmu_write_protect_fault()
5989 vcpu->arch.last_retry_addr = 0; in kvm_mmu_write_protect_fault()
5998 * will keep faulting on the non-existent MMIO address. in kvm_mmu_write_protect_fault()
6005 * to a read-only violation while the CPU was walking non-nested NPT in kvm_mmu_write_protect_fault()
6009 * (L0) write-protects the nested NPTs, i.e. npt12 entries, KVM is also in kvm_mmu_write_protect_fault()
6010 * unknowingly write-protecting L1's guest page tables, which KVM isn't in kvm_mmu_write_protect_fault()
6018 * isn't shadowed by KVM, there is no need to write-protect L1's gPTEs in kvm_mmu_write_protect_fault()
6024 * the instruction. If no shadow pages were zapped, then the write- in kvm_mmu_write_protect_fault()
6044 * The gfn is write-protected, but if KVM detects its emulating an in kvm_mmu_write_protect_fault()
6047 * re-execute the instruction that caused the page fault. Do not allow in kvm_mmu_write_protect_fault()
6062 bool direct = vcpu->arch.mmu->root_role.direct; in kvm_mmu_page_fault()
6064 if (WARN_ON_ONCE(!VALID_PAGE(vcpu->arch.mmu->root.hpa))) in kvm_mmu_page_fault()
6068 * Except for reserved faults (emulated MMIO is shared-only), set the in kvm_mmu_page_fault()
6069 * PFERR_PRIVATE_ACCESS flag for software-protected VMs based on the gfn's in kvm_mmu_page_fault()
6073 * for software-protected VMs. in kvm_mmu_page_fault()
6077 vcpu->kvm->arch.vm_type == KVM_X86_SW_PROTECTED_VM && in kvm_mmu_page_fault()
6078 kvm_mem_is_private(vcpu->kvm, gpa_to_gfn(cr2_or_gpa))) in kvm_mmu_page_fault()
6084 return -EFAULT; in kvm_mmu_page_fault()
6092 vcpu->stat.pf_taken++; in kvm_mmu_page_fault()
6096 if (KVM_BUG_ON(r == RET_PF_INVALID, vcpu->kvm)) in kvm_mmu_page_fault()
6097 return -EIO; in kvm_mmu_page_fault()
6108 vcpu->stat.pf_fixed++; in kvm_mmu_page_fault()
6110 vcpu->stat.pf_emulate++; in kvm_mmu_page_fault()
6112 vcpu->stat.pf_spurious++; in kvm_mmu_page_fault()
6141 for (level = root_level; level >= leaf; level--) in kvm_mmu_print_sptes()
6159 if (WARN_ON_ONCE(mmu != vcpu->arch.mmu)) in __kvm_mmu_invalidate_addr()
6165 write_lock(&vcpu->kvm->mmu_lock); in __kvm_mmu_invalidate_addr()
6169 if (sp->unsync) { in __kvm_mmu_invalidate_addr()
6173 mmu_page_zap_pte(vcpu->kvm, sp, iterator.sptep, NULL); in __kvm_mmu_invalidate_addr()
6175 kvm_flush_remote_tlbs_sptep(vcpu->kvm, iterator.sptep); in __kvm_mmu_invalidate_addr()
6178 if (!sp->unsync_children) in __kvm_mmu_invalidate_addr()
6181 write_unlock(&vcpu->kvm->mmu_lock); in __kvm_mmu_invalidate_addr()
6191 /* It's actually a GPA for vcpu->arch.guest_mmu. */ in kvm_mmu_invalidate_addr()
6192 if (mmu != &vcpu->arch.guest_mmu) { in kvm_mmu_invalidate_addr()
6193 /* INVLPG on a non-canonical address is a NOP according to the SDM. */ in kvm_mmu_invalidate_addr()
6200 if (!mmu->sync_spte) in kvm_mmu_invalidate_addr()
6204 __kvm_mmu_invalidate_addr(vcpu, mmu, addr, mmu->root.hpa); in kvm_mmu_invalidate_addr()
6208 __kvm_mmu_invalidate_addr(vcpu, mmu, addr, mmu->prev_roots[i].hpa); in kvm_mmu_invalidate_addr()
6225 kvm_mmu_invalidate_addr(vcpu, vcpu->arch.walk_mmu, gva, KVM_MMU_ROOTS_ALL); in kvm_mmu_invlpg()
6226 ++vcpu->stat.invlpg; in kvm_mmu_invlpg()
6233 struct kvm_mmu *mmu = vcpu->arch.mmu; in kvm_mmu_invpcid_gva()
6241 if (VALID_PAGE(mmu->prev_roots[i].hpa) && in kvm_mmu_invpcid_gva()
6242 pcid == kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd)) in kvm_mmu_invpcid_gva()
6248 ++vcpu->stat.invlpg; in kvm_mmu_invpcid_gva()
6285 if (!tdp_enabled && mmu->pae_root) in free_mmu_pages()
6286 set_memory_encrypted((unsigned long)mmu->pae_root, 1); in free_mmu_pages()
6287 free_page((unsigned long)mmu->pae_root); in free_mmu_pages()
6288 free_page((unsigned long)mmu->pml4_root); in free_mmu_pages()
6289 free_page((unsigned long)mmu->pml5_root); in free_mmu_pages()
6297 mmu->root.hpa = INVALID_PAGE; in __kvm_mmu_create()
6298 mmu->root.pgd = 0; in __kvm_mmu_create()
6299 mmu->mirror_root_hpa = INVALID_PAGE; in __kvm_mmu_create()
6301 mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID; in __kvm_mmu_create()
6303 /* vcpu->arch.guest_mmu isn't used when !tdp_enabled. */ in __kvm_mmu_create()
6304 if (!tdp_enabled && mmu == &vcpu->arch.guest_mmu) in __kvm_mmu_create()
6309 * while the PDP table is a per-vCPU construct that's allocated at MMU in __kvm_mmu_create()
6310 * creation. When emulating 32-bit mode, cr3 is only 32 bits even on in __kvm_mmu_create()
6314 * table. The main exception, handled here, is SVM's 32-bit NPT. The in __kvm_mmu_create()
6315 * other exception is for shadowing L1's 32-bit or PAE NPT on 64-bit in __kvm_mmu_create()
6316 * KVM; that horror is handled on-demand by mmu_alloc_special_roots(). in __kvm_mmu_create()
6323 return -ENOMEM; in __kvm_mmu_create()
6325 mmu->pae_root = page_address(page); in __kvm_mmu_create()
6331 * only necessary when using shadow paging, as 64-bit NPT can get at in __kvm_mmu_create()
6332 * the C-bit even when shadowing 32-bit NPT, and SME isn't supported in __kvm_mmu_create()
6333 * by 32-bit kernels (when KVM itself uses 32-bit NPT). in __kvm_mmu_create()
6336 set_memory_decrypted((unsigned long)mmu->pae_root, 1); in __kvm_mmu_create()
6341 mmu->pae_root[i] = INVALID_PAE_ROOT; in __kvm_mmu_create()
6350 vcpu->arch.mmu_pte_list_desc_cache.kmem_cache = pte_list_desc_cache; in kvm_mmu_create()
6351 vcpu->arch.mmu_pte_list_desc_cache.gfp_zero = __GFP_ZERO; in kvm_mmu_create()
6353 vcpu->arch.mmu_page_header_cache.kmem_cache = mmu_page_header_cache; in kvm_mmu_create()
6354 vcpu->arch.mmu_page_header_cache.gfp_zero = __GFP_ZERO; in kvm_mmu_create()
6356 vcpu->arch.mmu_shadow_page_cache.init_value = in kvm_mmu_create()
6358 if (!vcpu->arch.mmu_shadow_page_cache.init_value) in kvm_mmu_create()
6359 vcpu->arch.mmu_shadow_page_cache.gfp_zero = __GFP_ZERO; in kvm_mmu_create()
6361 vcpu->arch.mmu = &vcpu->arch.root_mmu; in kvm_mmu_create()
6362 vcpu->arch.walk_mmu = &vcpu->arch.root_mmu; in kvm_mmu_create()
6364 ret = __kvm_mmu_create(vcpu, &vcpu->arch.guest_mmu); in kvm_mmu_create()
6368 ret = __kvm_mmu_create(vcpu, &vcpu->arch.root_mmu); in kvm_mmu_create()
6374 free_mmu_pages(&vcpu->arch.guest_mmu); in kvm_mmu_create()
6386 lockdep_assert_held(&kvm->slots_lock); in kvm_zap_obsolete_pages()
6390 &kvm->arch.active_mmu_pages, link) { in kvm_zap_obsolete_pages()
6403 if (WARN_ON_ONCE(sp->role.invalid)) in kvm_zap_obsolete_pages()
6413 cond_resched_rwlock_write(&kvm->mmu_lock)) { in kvm_zap_obsolete_pages()
6439 * Fast invalidate all shadow pages and use lock-break technique
6444 * not use any resource of the being-deleted slot or all slots
6449 lockdep_assert_held(&kvm->slots_lock); in kvm_mmu_zap_all_fast()
6451 write_lock(&kvm->mmu_lock); in kvm_mmu_zap_all_fast()
6461 kvm->arch.mmu_valid_gen = kvm->arch.mmu_valid_gen ? 0 : 1; in kvm_mmu_zap_all_fast()
6464 * In order to ensure all vCPUs drop their soon-to-be invalid roots, in kvm_mmu_zap_all_fast()
6489 write_unlock(&kvm->mmu_lock); in kvm_mmu_zap_all_fast()
6497 * lead to use-after-free. in kvm_mmu_zap_all_fast()
6505 kvm->arch.shadow_mmio_value = shadow_mmio_value; in kvm_mmu_init_vm()
6506 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages); in kvm_mmu_init_vm()
6507 INIT_LIST_HEAD(&kvm->arch.possible_nx_huge_pages); in kvm_mmu_init_vm()
6508 spin_lock_init(&kvm->arch.mmu_unsync_pages_lock); in kvm_mmu_init_vm()
6513 kvm->arch.split_page_header_cache.kmem_cache = mmu_page_header_cache; in kvm_mmu_init_vm()
6514 kvm->arch.split_page_header_cache.gfp_zero = __GFP_ZERO; in kvm_mmu_init_vm()
6516 kvm->arch.split_shadow_page_cache.gfp_zero = __GFP_ZERO; in kvm_mmu_init_vm()
6518 kvm->arch.split_desc_cache.kmem_cache = pte_list_desc_cache; in kvm_mmu_init_vm()
6519 kvm->arch.split_desc_cache.gfp_zero = __GFP_ZERO; in kvm_mmu_init_vm()
6524 kvm_mmu_free_memory_cache(&kvm->arch.split_desc_cache); in mmu_free_vm_memory_caches()
6525 kvm_mmu_free_memory_cache(&kvm->arch.split_page_header_cache); in mmu_free_vm_memory_caches()
6526 kvm_mmu_free_memory_cache(&kvm->arch.split_shadow_page_cache); in mmu_free_vm_memory_caches()
6554 start = max(gfn_start, memslot->base_gfn); in kvm_rmap_zap_gfn_range()
6555 end = min(gfn_end, memslot->base_gfn + memslot->npages); in kvm_rmap_zap_gfn_range()
6578 write_lock(&kvm->mmu_lock); in kvm_zap_gfn_range()
6590 kvm_flush_remote_tlbs_range(kvm, gfn_start, gfn_end - gfn_start); in kvm_zap_gfn_range()
6594 write_unlock(&kvm->mmu_lock); in kvm_zap_gfn_range()
6609 write_lock(&kvm->mmu_lock); in kvm_mmu_slot_remove_write_access()
6612 write_unlock(&kvm->mmu_lock); in kvm_mmu_slot_remove_write_access()
6616 read_lock(&kvm->mmu_lock); in kvm_mmu_slot_remove_write_access()
6618 read_unlock(&kvm->mmu_lock); in kvm_mmu_slot_remove_write_access()
6629 if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) in need_topup_split_caches_or_resched()
6637 return need_topup(&kvm->arch.split_desc_cache, SPLIT_DESC_CACHE_MIN_NR_OBJECTS) || in need_topup_split_caches_or_resched()
6638 need_topup(&kvm->arch.split_page_header_cache, 1) || in need_topup_split_caches_or_resched()
6639 need_topup(&kvm->arch.split_shadow_page_cache, 1); in need_topup_split_caches_or_resched()
6651 * but aliasing rarely occurs post-boot or for many gfns. If there is in topup_split_caches()
6652 * only one rmap entry, rmap->val points directly at that one entry and in topup_split_caches()
6661 lockdep_assert_held(&kvm->slots_lock); in topup_split_caches()
6663 r = __kvm_mmu_topup_memory_cache(&kvm->arch.split_desc_cache, capacity, in topup_split_caches()
6668 r = kvm_mmu_topup_memory_cache(&kvm->arch.split_page_header_cache, 1); in topup_split_caches()
6672 return kvm_mmu_topup_memory_cache(&kvm->arch.split_shadow_page_cache, 1); in topup_split_caches()
6695 caches.page_header_cache = &kvm->arch.split_page_header_cache; in shadow_mmu_get_sp_for_split()
6696 caches.shadow_page_cache = &kvm->arch.split_shadow_page_cache; in shadow_mmu_get_sp_for_split()
6707 struct kvm_mmu_memory_cache *cache = &kvm->arch.split_desc_cache; in shadow_mmu_split_huge_page()
6718 sptep = &sp->spt[index]; in shadow_mmu_split_huge_page()
6725 * gfn-to-pfn translation since the SP is direct, so no need to in shadow_mmu_split_huge_page()
6736 flush |= !is_last_spte(*sptep, sp->role.level); in shadow_mmu_split_huge_page()
6740 spte = make_small_spte(kvm, huge_spte, sp->role, index); in shadow_mmu_split_huge_page()
6742 __rmap_add(kvm, cache, slot, sptep, gfn, sp->role.access); in shadow_mmu_split_huge_page()
6759 level = huge_sp->role.level; in shadow_mmu_try_split_huge_page()
6763 r = -ENOSPC; in shadow_mmu_try_split_huge_page()
6768 write_unlock(&kvm->mmu_lock); in shadow_mmu_try_split_huge_page()
6771 * If the topup succeeds, return -EAGAIN to indicate that the in shadow_mmu_try_split_huge_page()
6775 r = topup_split_caches(kvm) ?: -EAGAIN; in shadow_mmu_try_split_huge_page()
6776 write_lock(&kvm->mmu_lock); in shadow_mmu_try_split_huge_page()
6801 if (WARN_ON_ONCE(!sp->role.guest_mode)) in shadow_mmu_try_split_huge_pages()
6804 /* The rmaps should never contain non-leaf SPTEs. */ in shadow_mmu_try_split_huge_pages()
6809 if (WARN_ON_ONCE(sp->unsync)) in shadow_mmu_try_split_huge_pages()
6813 if (sp->role.invalid) in shadow_mmu_try_split_huge_pages()
6823 if (!r || r == -EAGAIN) in shadow_mmu_try_split_huge_pages()
6826 /* The split failed and shouldn't be retried (e.g. -ENOMEM). */ in shadow_mmu_try_split_huge_pages()
6846 for (level = KVM_MAX_HUGEPAGE_LEVEL; level > target_level; level--) in kvm_shadow_mmu_try_split_huge_pages()
6848 level, level, start, end - 1, true, true, false); in kvm_shadow_mmu_try_split_huge_pages()
6851 /* Must be called with the mmu_lock held in write-mode. */
6875 u64 start = memslot->base_gfn; in kvm_mmu_slot_try_split_huge_pages()
6876 u64 end = start + memslot->npages; in kvm_mmu_slot_try_split_huge_pages()
6882 write_lock(&kvm->mmu_lock); in kvm_mmu_slot_try_split_huge_pages()
6884 write_unlock(&kvm->mmu_lock); in kvm_mmu_slot_try_split_huge_pages()
6887 read_lock(&kvm->mmu_lock); in kvm_mmu_slot_try_split_huge_pages()
6889 read_unlock(&kvm->mmu_lock); in kvm_mmu_slot_try_split_huge_pages()
6893 * write-protecting and/or clearing dirty on the newly split SPTEs to in kvm_mmu_slot_try_split_huge_pages()
6922 if (sp->role.direct && in kvm_mmu_zap_collapsible_spte()
6923 sp->role.level < kvm_mmu_max_mapping_level(kvm, slot, sp->gfn)) { in kvm_mmu_zap_collapsible_spte()
6943 * Note, use KVM_MAX_HUGEPAGE_LEVEL - 1 since there's no need to zap in kvm_rmap_zap_collapsible_sptes()
6947 PG_LEVEL_4K, KVM_MAX_HUGEPAGE_LEVEL - 1, true)) in kvm_rmap_zap_collapsible_sptes()
6955 write_lock(&kvm->mmu_lock); in kvm_mmu_recover_huge_pages()
6957 write_unlock(&kvm->mmu_lock); in kvm_mmu_recover_huge_pages()
6961 read_lock(&kvm->mmu_lock); in kvm_mmu_recover_huge_pages()
6963 read_unlock(&kvm->mmu_lock); in kvm_mmu_recover_huge_pages()
6971 write_lock(&kvm->mmu_lock); in kvm_mmu_slot_leaf_clear_dirty()
6977 write_unlock(&kvm->mmu_lock); in kvm_mmu_slot_leaf_clear_dirty()
6981 read_lock(&kvm->mmu_lock); in kvm_mmu_slot_leaf_clear_dirty()
6983 read_unlock(&kvm->mmu_lock); in kvm_mmu_slot_leaf_clear_dirty()
7002 write_lock(&kvm->mmu_lock); in kvm_mmu_zap_all()
7004 list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link) { in kvm_mmu_zap_all()
7005 if (WARN_ON_ONCE(sp->role.invalid)) in kvm_mmu_zap_all()
7009 if (cond_resched_rwlock_write(&kvm->mmu_lock)) in kvm_mmu_zap_all()
7018 write_unlock(&kvm->mmu_lock); in kvm_mmu_zap_all()
7033 if (list_empty(&kvm->arch.active_mmu_pages)) in kvm_mmu_zap_memslot_pages_and_flush()
7040 * will result in use-after-free, e.g. in unaccount_shadowed(). in kvm_mmu_zap_memslot_pages_and_flush()
7042 for (i = 0; i < slot->npages; i++) { in kvm_mmu_zap_memslot_pages_and_flush()
7044 gfn_t gfn = slot->base_gfn + i; in kvm_mmu_zap_memslot_pages_and_flush()
7049 if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) { in kvm_mmu_zap_memslot_pages_and_flush()
7052 cond_resched_rwlock_write(&kvm->mmu_lock); in kvm_mmu_zap_memslot_pages_and_flush()
7065 .start = slot->base_gfn, in kvm_mmu_zap_memslot()
7066 .end = slot->base_gfn + slot->npages, in kvm_mmu_zap_memslot()
7071 write_lock(&kvm->mmu_lock); in kvm_mmu_zap_memslot()
7074 write_unlock(&kvm->mmu_lock); in kvm_mmu_zap_memslot()
7079 return kvm->arch.vm_type == KVM_X86_DEFAULT_VM && in kvm_memslot_flush_zap_all()
7092 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen) in kvm_mmu_invalidate_mmio_sptes() argument
7094 WARN_ON_ONCE(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS); in kvm_mmu_invalidate_mmio_sptes()
7096 gen &= MMIO_SPTE_GEN_MASK; in kvm_mmu_invalidate_mmio_sptes()
7105 gen &= ~((u64)kvm_arch_nr_memslot_as_ids(kvm) - 1); in kvm_mmu_invalidate_mmio_sptes()
7111 if (unlikely(gen == 0)) { in kvm_mmu_invalidate_mmio_sptes()
7126 * The NX recovery thread is spawned on-demand at the first KVM_RUN and in kvm_wake_nx_recovery_thread()
7130 struct vhost_task *nx_thread = READ_ONCE(kvm->arch.nx_huge_page_recovery_thread); in kvm_wake_nx_recovery_thread()
7161 return -EPERM; in set_nx_huge_pages()
7176 return -EBUSY; in set_nx_huge_pages()
7181 return -EINVAL; in set_nx_huge_pages()
7192 mutex_lock(&kvm->slots_lock); in set_nx_huge_pages()
7194 mutex_unlock(&kvm->slots_lock); in set_nx_huge_pages()
7206 * its default value of -1 is technically undefined behavior for a boolean.
7212 if (nx_huge_pages == -1) in kvm_mmu_x86_module_init()
7232 int ret = -ENOMEM; in kvm_mmu_vendor_module_init()
7267 read_lock(&vcpu->kvm->mmu_lock); in kvm_mmu_destroy()
7268 mmu_free_root_page(vcpu->kvm, &vcpu->arch.mmu->mirror_root_hpa, in kvm_mmu_destroy()
7270 read_unlock(&vcpu->kvm->mmu_lock); in kvm_mmu_destroy()
7272 free_mmu_pages(&vcpu->arch.root_mmu); in kvm_mmu_destroy()
7273 free_mmu_pages(&vcpu->arch.guest_mmu); in kvm_mmu_destroy()
7314 return -EPERM; in set_nx_huge_pages_recovery_param()
7341 unsigned long nx_lpage_splits = kvm->stat.nx_lpage_splits; in kvm_recover_nx_huge_pages()
7350 rcu_idx = srcu_read_lock(&kvm->srcu); in kvm_recover_nx_huge_pages()
7351 write_lock(&kvm->mmu_lock); in kvm_recover_nx_huge_pages()
7362 for ( ; to_zap; --to_zap) { in kvm_recover_nx_huge_pages()
7363 if (list_empty(&kvm->arch.possible_nx_huge_pages)) in kvm_recover_nx_huge_pages()
7373 sp = list_first_entry(&kvm->arch.possible_nx_huge_pages, in kvm_recover_nx_huge_pages()
7376 WARN_ON_ONCE(!sp->nx_huge_page_disallowed); in kvm_recover_nx_huge_pages()
7377 WARN_ON_ONCE(!sp->role.direct); in kvm_recover_nx_huge_pages()
7393 * of kvm->nr_memslots_dirty_logging is not a problem: if it is in kvm_recover_nx_huge_pages()
7400 if (atomic_read(&kvm->nr_memslots_dirty_logging)) { in kvm_recover_nx_huge_pages()
7403 slots = kvm_memslots_for_spte_role(kvm, sp->role); in kvm_recover_nx_huge_pages()
7404 slot = __gfn_to_memslot(slots, sp->gfn); in kvm_recover_nx_huge_pages()
7414 WARN_ON_ONCE(sp->nx_huge_page_disallowed); in kvm_recover_nx_huge_pages()
7416 if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) { in kvm_recover_nx_huge_pages()
7420 cond_resched_rwlock_write(&kvm->mmu_lock); in kvm_recover_nx_huge_pages()
7430 write_unlock(&kvm->mmu_lock); in kvm_recover_nx_huge_pages()
7431 srcu_read_unlock(&kvm->srcu, rcu_idx); in kvm_recover_nx_huge_pages()
7449 remaining_time = kvm->arch.nx_huge_page_last + msecs_to_jiffies(period) in kvm_nx_huge_page_recovery_worker()
7450 - get_jiffies_64(); in kvm_nx_huge_page_recovery_worker()
7459 kvm->arch.nx_huge_page_last = get_jiffies_64(); in kvm_nx_huge_page_recovery_worker()
7469 kvm->arch.nx_huge_page_last = get_jiffies_64(); in kvm_mmu_start_lpage_recovery()
7472 kvm, "kvm-nx-lpage-recovery"); in kvm_mmu_start_lpage_recovery()
7480 WRITE_ONCE(kvm->arch.nx_huge_page_recovery_thread, nx_thread); in kvm_mmu_start_lpage_recovery()
7489 return call_once(&kvm->arch.nx_once, kvm_mmu_start_lpage_recovery); in kvm_mmu_post_init_vm()
7494 if (kvm->arch.nx_huge_page_recovery_thread) in kvm_mmu_pre_destroy_vm()
7495 vhost_task_stop(kvm->arch.nx_huge_page_recovery_thread); in kvm_mmu_pre_destroy_vm()
7517 if (range->arg.attributes & KVM_MEMORY_ATTRIBUTE_PRIVATE) in kvm_arch_pre_set_memory_attributes()
7518 range->attr_filter = KVM_FILTER_SHARED; in kvm_arch_pre_set_memory_attributes()
7520 range->attr_filter = KVM_FILTER_PRIVATE; in kvm_arch_pre_set_memory_attributes()
7528 return lpage_info_slot(gfn, slot, level)->disallow_lpage & KVM_LPAGE_MIXED_FLAG; in hugepage_test_mixed()
7534 lpage_info_slot(gfn, slot, level)->disallow_lpage &= ~KVM_LPAGE_MIXED_FLAG; in hugepage_clear_mixed()
7540 lpage_info_slot(gfn, slot, level)->disallow_lpage |= KVM_LPAGE_MIXED_FLAG; in hugepage_set_mixed()
7552 for (gfn = start; gfn < end; gfn += KVM_PAGES_PER_HPAGE(level - 1)) { in hugepage_has_attrs()
7553 if (hugepage_test_mixed(slot, gfn, level - 1) || in hugepage_has_attrs()
7563 unsigned long attrs = range->arg.attributes; in kvm_arch_post_set_memory_attributes()
7564 struct kvm_memory_slot *slot = range->slot; in kvm_arch_post_set_memory_attributes()
7567 lockdep_assert_held_write(&kvm->mmu_lock); in kvm_arch_post_set_memory_attributes()
7568 lockdep_assert_held(&kvm->slots_lock); in kvm_arch_post_set_memory_attributes()
7585 gfn_t gfn = gfn_round_for_level(range->start, level); in kvm_arch_post_set_memory_attributes()
7588 if (gfn != range->start || gfn + nr_pages > range->end) { in kvm_arch_post_set_memory_attributes()
7594 if (gfn >= slot->base_gfn && in kvm_arch_post_set_memory_attributes()
7595 gfn + nr_pages <= slot->base_gfn + slot->npages) { in kvm_arch_post_set_memory_attributes()
7608 for ( ; gfn + nr_pages <= range->end; gfn += nr_pages) in kvm_arch_post_set_memory_attributes()
7616 if (gfn < range->end && in kvm_arch_post_set_memory_attributes()
7617 (gfn + nr_pages) <= (slot->base_gfn + slot->npages)) { in kvm_arch_post_set_memory_attributes()
7641 gfn_t end = gfn_round_for_level(slot->base_gfn + slot->npages, level); in kvm_mmu_init_memslot_memory_attributes()
7642 gfn_t start = gfn_round_for_level(slot->base_gfn, level); in kvm_mmu_init_memslot_memory_attributes()
7646 if (start < slot->base_gfn) in kvm_mmu_init_memslot_memory_attributes()