History log of /freebsd/sys/dev/uart/uart_if.m (Results 1 – 19 of 19)
Revision (<<< Hide revision tags) (Show revision tags >>>) Date Author Comments
# 353e4c5a 12-Jan-2024 Marius Strobl <marius@FreeBSD.org>

uart(4): Honor hardware state of NS8250-class for tsw_busy

In 9750d9e5, I brought the equivalent of the TS_BUSY flag back in a
mostly hardware-agnostic way in order to fix tty_drain() and, thus,
TIO

uart(4): Honor hardware state of NS8250-class for tsw_busy

In 9750d9e5, I brought the equivalent of the TS_BUSY flag back in a
mostly hardware-agnostic way in order to fix tty_drain() and, thus,
TIOCDRAIN for UARTs with TX FIFOs. This proved to be sufficient for
fixing the regression reported. So in light of the release cycle of
FreeBSD 10.3, I decided that this change was be good enough for the
time being and opted to go with the smallest possible yet generic
(for all UARTs driven by uart(4)) solution addressing the problem at
hand.

However, at least for the NS8250-class the above isn't a complete
fix as these UARTs only trigger an interrupt when the TX FIFO became
empty. At this point, there still can be an outstanding character
left in the transmit shift register as indicated via the LSR. Thus,
this change adds the 3rd (besides the tty(4) and generic uart(4) bits)
part I had in my tree ever since, adding a uart_txbusy method to be
queried in addition for tsw_busy and hooking it up as appropriate
for the NS8250-class.

As it turns out, the exact equivalent of this 3rd part later on was
implemented for uftdi(4) in 9ad221a5.

While at it, explain the rational behind the deliberately missing
locking in uart_tty_busy() (also applying to the generic sc_txbusy
testing already present).

show more ...


Revision tags: release/14.0.0
# 031beb4e 16-Aug-2023 Warner Losh <imp@FreeBSD.org>

sys: Remove $FreeBSD$: one-line sh pattern

Remove /^\s*#[#!]?\s*\$FreeBSD\$.*$\n/


Revision tags: release/13.2.0, release/12.4.0, release/13.1.0, release/12.3.0, release/13.0.0, release/12.2.0, release/11.4.0, release/12.1.0, release/11.3.0, release/12.0.0, release/11.2.0, release/10.4.0, release/11.1.0, release/11.0.1, release/11.0.0, release/10.3.0, release/10.2.0, release/10.1.0, release/9.3.0
# 6cec9cad 03-Jun-2014 Peter Grehan <grehan@FreeBSD.org>

MFC @ r266724

An SVM update will follow this.


# 3b8f0845 28-Apr-2014 Simon J. Gerraty <sjg@FreeBSD.org>

Merge head


# 84e51a1b 23-Apr-2014 Alan Somers <asomers@FreeBSD.org>

IFC @264767


# 5748b897 19-Feb-2014 Martin Matuska <mm@FreeBSD.org>

Merge head up to r262222 (last merge was incomplete).


# 945a2095 20-Jan-2014 Kai Wang <kaiw@FreeBSD.org>

MFH@260917.


# 4f18ae67 19-Jan-2014 Glen Barber <gjb@FreeBSD.org>

MFH: Tracking commit (r260891)

Sponsored by: The FreeBSD Foundation


# d76a1ef4 19-Jan-2014 Warner Losh <imp@FreeBSD.org>

Introduce grab and ungrab upcalls. When the kernel desires to grab the
console, it calls the grab functions. These functions should turn off
the RX interrupts, and any others that interfere. This mak

Introduce grab and ungrab upcalls. When the kernel desires to grab the
console, it calls the grab functions. These functions should turn off
the RX interrupts, and any others that interfere. This makes mountroot
prompt work again. If there's more generalized need other than
prompting, many of these routines should be expanded to do those new
things.

Should have been part of r260889, but waasn't due to command line typo.

Reviewed by: bde (with reservations)

show more ...


Revision tags: release/10.0.0, release/9.2.0, release/8.4.0, release/9.1.0
# 6a068746 15-May-2012 Alexander Motin <mav@FreeBSD.org>

MFC


# 3d328873 30-Apr-2012 Gleb Smirnoff <glebius@FreeBSD.org>

Merge head r233826 through r234834.


# 38f1b189 26-Apr-2012 Peter Grehan <grehan@FreeBSD.org>

IFC @ r234692

sys/amd64/include/cpufunc.h
sys/amd64/include/fpu.h
sys/amd64/amd64/fpu.c
sys/amd64/vmm/vmm.c

- Add API to allow vmm FPU state init/save/restore.

FP stuff discussed with: kib


# 332cda07 12-Apr-2012 Peter Grehan <grehan@FreeBSD.org>

Complete polled-mode operation by using a callout if the device will be
used in polled-mode. The callout invokes uart_intr, which rearms the timeout.
Implemented for bhyve, but generically useful for

Complete polled-mode operation by using a callout if the device will be
used in polled-mode. The callout invokes uart_intr, which rearms the timeout.
Implemented for bhyve, but generically useful for e.g. embedded bringup
when the interrupt controller hasn't been setup, or if it's not deemed
worthy to wire an interrupt line from a serial port.

Submitted by: neel
Reviewed by: marcel
Obtained from: NetApp
MFC after: 3 weeks

show more ...


Revision tags: release/8.3.0_cvs, release/8.3.0, release/9.0.0, release/7.4.0_cvs, release/8.2.0_cvs, release/7.4.0, release/8.2.0, release/8.1.0_cvs, release/8.1.0, release/7.3.0_cvs, release/7.3.0, release/8.0.0_cvs, release/8.0.0, release/7.2.0_cvs, release/7.2.0, release/7.1.0_cvs, release/7.1.0, release/6.4.0_cvs, release/6.4.0, release/7.0.0_cvs, release/7.0.0, release/6.3.0_cvs, release/6.3.0, release/6.2.0_cvs, release/6.2.0, release/5.5.0_cvs, release/5.5.0, release/6.1.0_cvs, release/6.1.0, release/6.0.0_cvs, release/6.0.0, release/5.4.0_cvs, release/5.4.0, release/4.11.0_cvs, release/4.11.0
# 098ca2bd 06-Jan-2005 Warner Losh <imp@FreeBSD.org>

Start each of the license/copyright comments with /*-, minor shuffle of lines


Revision tags: release/5.3.0_cvs, release/5.3.0, release/4.10.0_cvs, release/4.10.0, release/5.2.1_cvs, release/5.2.1, release/5.2.0_cvs, release/5.2.0, release/4.9.0_cvs, release/4.9.0
# 06287620 17-Sep-2003 Marcel Moolenaar <marcel@FreeBSD.org>

Add locking to the hardware drivers. I intended to figure out more
precisely where locking would be needed before adding it, but it
seems uart(4) draws slightly too much attention to have it without

Add locking to the hardware drivers. I intended to figure out more
precisely where locking would be needed before adding it, but it
seems uart(4) draws slightly too much attention to have it without
locking for too long.
The lock added is a spinlock that protects access to the underlying
hardware. As a first and obvious stab at this, each method of the
hardware interface grabs the lock. Roughly speaking this serializes
the methods. Exceptions are the probe, attach and detach methods.

show more ...


# 27d5dc18 07-Sep-2003 Marcel Moolenaar <marcel@FreeBSD.org>

The uart(4) driver is an universal driver for various UART hardware.
It improves on sio(4) in the following areas:
o Fully newbusified to allow for memory mapped I/O. This is a must
for ia64 and

The uart(4) driver is an universal driver for various UART hardware.
It improves on sio(4) in the following areas:
o Fully newbusified to allow for memory mapped I/O. This is a must
for ia64 and sparc64,
o Machine dependent code to take full advantage of machine and firm-
ware specific ways to define serial consoles and/or debug ports.
o Hardware abstraction layer to allow the driver to be used with
various UARTs, such as the well-known ns8250 family of UARTs, the
Siemens sab82532 or the Zilog Z8530. This is especially important
for pc98 and sparc64 where it's common to have different UARTs,
o The notion of system devices to unkludge low-level consoles and
remote gdb ports and provides the mechanics necessary to support
the keyboard on sparc64 (which is UART based).
o The notion of a kernel interface so that a UART can be tied to
something other than the well-known TTY interface. This is needed
on sparc64 to present the user with a device and ioctl handling
suitable for a keyboard, but also allows us to cleanly hide an
UART when used as a debug port.

Following is a list of features and bugs/flaws specific to the ns8250
family of UARTs as compared to their support in sio(4):
o The uart(4) driver determines the FIFO size and automaticly takes
advantages of larger FIFOs and/or additional features. Note that
since I don't have sufficient access to 16[679]5x UARTs, hardware
flow control has not been enabled. This is almost trivial to do,
provided one can test. The downside of this is that broken UARTs
are more likely to not work correctly with uart(4). The need for
tunables or knobs may be large enough to warrant their creation.
o The uart(4) driver does not share the same bumpy history as sio(4)
and will therefore not provide the necessary hooks, tweaks, quirks
or work-arounds to deal with once common hardware. To that extend,
uart(4) supports a subset of the UARTs that sio(4) supports. The
question before us is whether the subset is sufficient for current
hardware.
o There is no support for multiport UARTs in uart(4). The decision
behind this is that uart(4) deals with one EIA RS232-C interface.
Packaging of multiple interfaces in a single chip or on a single
expansion board is beyond the scope of uart(4) and is now mostly
left for puc(4) to deal with. Lack of hardware made it impossible
to actually implement such a dependency other than is present for
the dual channel SAB82532 and Z8350 SCCs.

The current list of missing features is:
o No configuration capabilities. A set of tunables and sysctls is
being worked out. There are likely not going to be any or much
compile-time knobs. Such configuration does not fit well with
current hardware.
o No support for the PPS API. This is partly dependent on the
ability to configure uart(4) and partly dependent on having
sufficient information to implement it properly.

As usual, the manpage is present but lacks the attention the
software has gotten.

show more ...


Revision tags: release/8.3.0_cvs, release/8.3.0, release/9.0.0, release/7.4.0_cvs, release/8.2.0_cvs, release/7.4.0, release/8.2.0, release/8.1.0_cvs, release/8.1.0, release/7.3.0_cvs, release/7.3.0, release/8.0.0_cvs, release/8.0.0, release/7.2.0_cvs, release/7.2.0, release/7.1.0_cvs, release/7.1.0, release/6.4.0_cvs, release/6.4.0, release/7.0.0_cvs, release/7.0.0, release/6.3.0_cvs, release/6.3.0, release/6.2.0_cvs, release/6.2.0, release/5.5.0_cvs, release/5.5.0, release/6.1.0_cvs, release/6.1.0, release/6.0.0_cvs, release/6.0.0, release/5.4.0_cvs, release/5.4.0, release/4.11.0_cvs, release/4.11.0
# 098ca2bd 06-Jan-2005 Warner Losh <imp@FreeBSD.org>

Start each of the license/copyright comments with /*-, minor shuffle of lines


Revision tags: release/5.3.0_cvs, release/5.3.0, release/4.10.0_cvs, release/4.10.0, release/5.2.1_cvs, release/5.2.1, release/5.2.0_cvs, release/5.2.0, release/4.9.0_cvs, release/4.9.0
# 06287620 17-Sep-2003 Marcel Moolenaar <marcel@FreeBSD.org>

Add locking to the hardware drivers. I intended to figure out more
precisely where locking would be needed before adding it, but it
seems uart(4) draws slightly too much attention to have it without

Add locking to the hardware drivers. I intended to figure out more
precisely where locking would be needed before adding it, but it
seems uart(4) draws slightly too much attention to have it without
locking for too long.
The lock added is a spinlock that protects access to the underlying
hardware. As a first and obvious stab at this, each method of the
hardware interface grabs the lock. Roughly speaking this serializes
the methods. Exceptions are the probe, attach and detach methods.

show more ...


# 27d5dc18 07-Sep-2003 Marcel Moolenaar <marcel@FreeBSD.org>

The uart(4) driver is an universal driver for various UART hardware.
It improves on sio(4) in the following areas:
o Fully newbusified to allow for memory mapped I/O. This is a must
for ia64 and

The uart(4) driver is an universal driver for various UART hardware.
It improves on sio(4) in the following areas:
o Fully newbusified to allow for memory mapped I/O. This is a must
for ia64 and sparc64,
o Machine dependent code to take full advantage of machine and firm-
ware specific ways to define serial consoles and/or debug ports.
o Hardware abstraction layer to allow the driver to be used with
various UARTs, such as the well-known ns8250 family of UARTs, the
Siemens sab82532 or the Zilog Z8530. This is especially important
for pc98 and sparc64 where it's common to have different UARTs,
o The notion of system devices to unkludge low-level consoles and
remote gdb ports and provides the mechanics necessary to support
the keyboard on sparc64 (which is UART based).
o The notion of a kernel interface so that a UART can be tied to
something other than the well-known TTY interface. This is needed
on sparc64 to present the user with a device and ioctl handling
suitable for a keyboard, but also allows us to cleanly hide an
UART when used as a debug port.

Following is a list of features and bugs/flaws specific to the ns8250
family of UARTs as compared to their support in sio(4):
o The uart(4) driver determines the FIFO size and automaticly takes
advantages of larger FIFOs and/or additional features. Note that
since I don't have sufficient access to 16[679]5x UARTs, hardware
flow control has not been enabled. This is almost trivial to do,
provided one can test. The downside of this is that broken UARTs
are more likely to not work correctly with uart(4). The need for
tunables or knobs may be large enough to warrant their creation.
o The uart(4) driver does not share the same bumpy history as sio(4)
and will therefore not provide the necessary hooks, tweaks, quirks
or work-arounds to deal with once common hardware. To that extend,
uart(4) supports a subset of the UARTs that sio(4) supports. The
question before us is whether the subset is sufficient for current
hardware.
o There is no support for multiport UARTs in uart(4). The decision
behind this is that uart(4) deals with one EIA RS232-C interface.
Packaging of multiple interfaces in a single chip or on a single
expansion board is beyond the scope of uart(4) and is now mostly
left for puc(4) to deal with. Lack of hardware made it impossible
to actually implement such a dependency other than is present for
the dual channel SAB82532 and Z8350 SCCs.

The current list of missing features is:
o No configuration capabilities. A set of tunables and sysctls is
being worked out. There are likely not going to be any or much
compile-time knobs. Such configuration does not fit well with
current hardware.
o No support for the PPS API. This is partly dependent on the
ability to configure uart(4) and partly dependent on having
sufficient information to implement it properly.

As usual, the manpage is present but lacks the attention the
software has gotten.

show more ...