crypto.c (79c0949e9a09f6a14a6dd18dc8396029423f9b68) | crypto.c (65492c5a6ab5df5091a77562dbcca2d2dc3877c0) |
---|---|
1// SPDX-License-Identifier: GPL-2.0 2/* Multipath TCP cryptographic functions 3 * Copyright (c) 2017 - 2019, Intel Corporation. 4 * 5 * Note: This code is based on mptcp_ctrl.c, mptcp_ipv4.c, and 6 * mptcp_ipv6 from multipath-tcp.org, authored by: 7 * 8 * Sébastien Barré <sebastien.barre@uclouvain.be> --- 7 unchanged lines hidden (view full) --- 16 * Vlad Dogaru <vlad.dogaru@intel.com> 17 * Octavian Purdila <octavian.purdila@intel.com> 18 * John Ronan <jronan@tssg.org> 19 * Catalin Nicutar <catalin.nicutar@gmail.com> 20 * Brandon Heller <brandonh@stanford.edu> 21 */ 22 23#include <linux/kernel.h> | 1// SPDX-License-Identifier: GPL-2.0 2/* Multipath TCP cryptographic functions 3 * Copyright (c) 2017 - 2019, Intel Corporation. 4 * 5 * Note: This code is based on mptcp_ctrl.c, mptcp_ipv4.c, and 6 * mptcp_ipv6 from multipath-tcp.org, authored by: 7 * 8 * Sébastien Barré <sebastien.barre@uclouvain.be> --- 7 unchanged lines hidden (view full) --- 16 * Vlad Dogaru <vlad.dogaru@intel.com> 17 * Octavian Purdila <octavian.purdila@intel.com> 18 * John Ronan <jronan@tssg.org> 19 * Catalin Nicutar <catalin.nicutar@gmail.com> 20 * Brandon Heller <brandonh@stanford.edu> 21 */ 22 23#include <linux/kernel.h> |
24#include <linux/cryptohash.h> | 24#include <crypto/sha.h> |
25#include <asm/unaligned.h> 26 27#include "protocol.h" 28 | 25#include <asm/unaligned.h> 26 27#include "protocol.h" 28 |
29struct sha1_state { 30 u32 workspace[SHA_WORKSPACE_WORDS]; 31 u32 digest[SHA_DIGEST_WORDS]; 32 unsigned int count; 33}; | 29#define SHA256_DIGEST_WORDS (SHA256_DIGEST_SIZE / 4) |
34 | 30 |
35static void sha1_init(struct sha1_state *state) 36{ 37 sha_init(state->digest); 38 state->count = 0; 39} 40 41static void sha1_update(struct sha1_state *state, u8 *input) 42{ 43 sha_transform(state->digest, input, state->workspace); 44 state->count += SHA_MESSAGE_BYTES; 45} 46 47static void sha1_pad_final(struct sha1_state *state, u8 *input, 48 unsigned int length, __be32 *mptcp_hashed_key) 49{ 50 int i; 51 52 input[length] = 0x80; 53 memset(&input[length + 1], 0, SHA_MESSAGE_BYTES - length - 9); 54 put_unaligned_be64((length + state->count) << 3, 55 &input[SHA_MESSAGE_BYTES - 8]); 56 57 sha_transform(state->digest, input, state->workspace); 58 for (i = 0; i < SHA_DIGEST_WORDS; ++i) 59 put_unaligned_be32(state->digest[i], &mptcp_hashed_key[i]); 60 61 memzero_explicit(state->workspace, SHA_WORKSPACE_WORDS << 2); 62} 63 | |
64void mptcp_crypto_key_sha(u64 key, u32 *token, u64 *idsn) 65{ | 31void mptcp_crypto_key_sha(u64 key, u32 *token, u64 *idsn) 32{ |
66 __be32 mptcp_hashed_key[SHA_DIGEST_WORDS]; 67 u8 input[SHA_MESSAGE_BYTES]; 68 struct sha1_state state; | 33 __be32 mptcp_hashed_key[SHA256_DIGEST_WORDS]; 34 __be64 input = cpu_to_be64(key); 35 struct sha256_state state; |
69 | 36 |
70 sha1_init(&state); 71 put_unaligned_be64(key, input); 72 sha1_pad_final(&state, input, 8, mptcp_hashed_key); | 37 sha256_init(&state); 38 sha256_update(&state, (__force u8 *)&input, sizeof(input)); 39 sha256_final(&state, (u8 *)mptcp_hashed_key); |
73 74 if (token) 75 *token = be32_to_cpu(mptcp_hashed_key[0]); 76 if (idsn) | 40 41 if (token) 42 *token = be32_to_cpu(mptcp_hashed_key[0]); 43 if (idsn) |
77 *idsn = be64_to_cpu(*((__be64 *)&mptcp_hashed_key[3])); | 44 *idsn = be64_to_cpu(*((__be64 *)&mptcp_hashed_key[6])); |
78} 79 80void mptcp_crypto_hmac_sha(u64 key1, u64 key2, u32 nonce1, u32 nonce2, | 45} 46 47void mptcp_crypto_hmac_sha(u64 key1, u64 key2, u32 nonce1, u32 nonce2, |
81 u32 *hash_out) | 48 void *hmac) |
82{ | 49{ |
83 u8 input[SHA_MESSAGE_BYTES * 2]; 84 struct sha1_state state; | 50 u8 input[SHA256_BLOCK_SIZE + SHA256_DIGEST_SIZE]; 51 __be32 mptcp_hashed_key[SHA256_DIGEST_WORDS]; 52 __be32 *hash_out = (__force __be32 *)hmac; 53 struct sha256_state state; |
85 u8 key1be[8]; 86 u8 key2be[8]; 87 int i; 88 89 put_unaligned_be64(key1, key1be); 90 put_unaligned_be64(key2, key2be); 91 92 /* Generate key xored with ipad */ 93 memset(input, 0x36, SHA_MESSAGE_BYTES); 94 for (i = 0; i < 8; i++) 95 input[i] ^= key1be[i]; 96 for (i = 0; i < 8; i++) 97 input[i + 8] ^= key2be[i]; 98 | 54 u8 key1be[8]; 55 u8 key2be[8]; 56 int i; 57 58 put_unaligned_be64(key1, key1be); 59 put_unaligned_be64(key2, key2be); 60 61 /* Generate key xored with ipad */ 62 memset(input, 0x36, SHA_MESSAGE_BYTES); 63 for (i = 0; i < 8; i++) 64 input[i] ^= key1be[i]; 65 for (i = 0; i < 8; i++) 66 input[i + 8] ^= key2be[i]; 67 |
99 put_unaligned_be32(nonce1, &input[SHA_MESSAGE_BYTES]); 100 put_unaligned_be32(nonce2, &input[SHA_MESSAGE_BYTES + 4]); | 68 put_unaligned_be32(nonce1, &input[SHA256_BLOCK_SIZE]); 69 put_unaligned_be32(nonce2, &input[SHA256_BLOCK_SIZE + 4]); |
101 | 70 |
102 sha1_init(&state); 103 sha1_update(&state, input); | 71 sha256_init(&state); 72 sha256_update(&state, input, SHA256_BLOCK_SIZE + 8); |
104 105 /* emit sha256(K1 || msg) on the second input block, so we can 106 * reuse 'input' for the last hashing 107 */ | 73 74 /* emit sha256(K1 || msg) on the second input block, so we can 75 * reuse 'input' for the last hashing 76 */ |
108 sha1_pad_final(&state, &input[SHA_MESSAGE_BYTES], 8, 109 (__force __be32 *)&input[SHA_MESSAGE_BYTES]); | 77 sha256_final(&state, &input[SHA256_BLOCK_SIZE]); |
110 111 /* Prepare second part of hmac */ 112 memset(input, 0x5C, SHA_MESSAGE_BYTES); 113 for (i = 0; i < 8; i++) 114 input[i] ^= key1be[i]; 115 for (i = 0; i < 8; i++) 116 input[i + 8] ^= key2be[i]; 117 | 78 79 /* Prepare second part of hmac */ 80 memset(input, 0x5C, SHA_MESSAGE_BYTES); 81 for (i = 0; i < 8; i++) 82 input[i] ^= key1be[i]; 83 for (i = 0; i < 8; i++) 84 input[i + 8] ^= key2be[i]; 85 |
118 sha1_init(&state); 119 sha1_update(&state, input); 120 sha1_pad_final(&state, &input[SHA_MESSAGE_BYTES], SHA_DIGEST_WORDS << 2, 121 (__be32 *)hash_out); | 86 sha256_init(&state); 87 sha256_update(&state, input, SHA256_BLOCK_SIZE + SHA256_DIGEST_SIZE); 88 sha256_final(&state, (u8 *)mptcp_hashed_key); 89 90 /* takes only first 160 bits */ 91 for (i = 0; i < 5; i++) 92 hash_out[i] = mptcp_hashed_key[i]; |
122} | 93} |
94 95#ifdef CONFIG_MPTCP_HMAC_TEST 96struct test_cast { 97 char *key; 98 char *msg; 99 char *result; 100}; 101 102/* we can't reuse RFC 4231 test vectors, as we have constraint on the 103 * input and key size, and we truncate the output. 104 */ 105static struct test_cast tests[] = { 106 { 107 .key = "0b0b0b0b0b0b0b0b", 108 .msg = "48692054", 109 .result = "8385e24fb4235ac37556b6b886db106284a1da67", 110 }, 111 { 112 .key = "aaaaaaaaaaaaaaaa", 113 .msg = "dddddddd", 114 .result = "2c5e219164ff1dca1c4a92318d847bb6b9d44492", 115 }, 116 { 117 .key = "0102030405060708", 118 .msg = "cdcdcdcd", 119 .result = "e73b9ba9969969cefb04aa0d6df18ec2fcc075b6", 120 }, 121}; 122 123static int __init test_mptcp_crypto(void) 124{ 125 char hmac[20], hmac_hex[41]; 126 u32 nonce1, nonce2; 127 u64 key1, key2; 128 int i, j; 129 130 for (i = 0; i < ARRAY_SIZE(tests); ++i) { 131 /* mptcp hmap will convert to be before computing the hmac */ 132 key1 = be64_to_cpu(*((__be64 *)&tests[i].key[0])); 133 key2 = be64_to_cpu(*((__be64 *)&tests[i].key[8])); 134 nonce1 = be32_to_cpu(*((__be32 *)&tests[i].msg[0])); 135 nonce2 = be32_to_cpu(*((__be32 *)&tests[i].msg[4])); 136 137 mptcp_crypto_hmac_sha(key1, key2, nonce1, nonce2, hmac); 138 for (j = 0; j < 20; ++j) 139 sprintf(&hmac_hex[j << 1], "%02x", hmac[j] & 0xff); 140 hmac_hex[40] = 0; 141 142 if (memcmp(hmac_hex, tests[i].result, 40)) 143 pr_err("test %d failed, got %s expected %s", i, 144 hmac_hex, tests[i].result); 145 else 146 pr_info("test %d [ ok ]", i); 147 } 148 return 0; 149} 150 151late_initcall(test_mptcp_crypto); 152#endif |
|