mmap.c (d61f0d59683d9c899211c300254d4140c482a6c0) | mmap.c (49b1b8d6f6831026cb105b0eafa18f13db612d86) |
---|---|
1// SPDX-License-Identifier: GPL-2.0-only 2/* 3 * mm/mmap.c 4 * 5 * Written by obz. 6 * 7 * Address space accounting code <alan@lxorguk.ukuu.org.uk> 8 */ --- 62 unchanged lines hidden (view full) --- 71const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN; 72const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX; 73int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS; 74#endif 75 76static bool ignore_rlimit_data; 77core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644); 78 | 1// SPDX-License-Identifier: GPL-2.0-only 2/* 3 * mm/mmap.c 4 * 5 * Written by obz. 6 * 7 * Address space accounting code <alan@lxorguk.ukuu.org.uk> 8 */ --- 62 unchanged lines hidden (view full) --- 71const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN; 72const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX; 73int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS; 74#endif 75 76static bool ignore_rlimit_data; 77core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644); 78 |
79static void unmap_region(struct mm_struct *mm, struct ma_state *mas, 80 struct vm_area_struct *vma, struct vm_area_struct *prev, 81 struct vm_area_struct *next, unsigned long start, 82 unsigned long end, unsigned long tree_end, bool mm_wr_locked); 83 84static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags) 85{ 86 return pgprot_modify(oldprot, vm_get_page_prot(vm_flags)); 87} 88 | |
89/* Update vma->vm_page_prot to reflect vma->vm_flags. */ 90void vma_set_page_prot(struct vm_area_struct *vma) 91{ 92 unsigned long vm_flags = vma->vm_flags; 93 pgprot_t vm_page_prot; 94 95 vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags); 96 if (vma_wants_writenotify(vma, vm_page_prot)) { 97 vm_flags &= ~VM_SHARED; 98 vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags); 99 } 100 /* remove_protection_ptes reads vma->vm_page_prot without mmap_lock */ 101 WRITE_ONCE(vma->vm_page_prot, vm_page_prot); 102} 103 104/* | 79/* Update vma->vm_page_prot to reflect vma->vm_flags. */ 80void vma_set_page_prot(struct vm_area_struct *vma) 81{ 82 unsigned long vm_flags = vma->vm_flags; 83 pgprot_t vm_page_prot; 84 85 vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags); 86 if (vma_wants_writenotify(vma, vm_page_prot)) { 87 vm_flags &= ~VM_SHARED; 88 vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags); 89 } 90 /* remove_protection_ptes reads vma->vm_page_prot without mmap_lock */ 91 WRITE_ONCE(vma->vm_page_prot, vm_page_prot); 92} 93 94/* |
105 * Requires inode->i_mapping->i_mmap_rwsem 106 */ 107static void __remove_shared_vm_struct(struct vm_area_struct *vma, 108 struct address_space *mapping) 109{ 110 if (vma_is_shared_maywrite(vma)) 111 mapping_unmap_writable(mapping); 112 113 flush_dcache_mmap_lock(mapping); 114 vma_interval_tree_remove(vma, &mapping->i_mmap); 115 flush_dcache_mmap_unlock(mapping); 116} 117 118/* 119 * Unlink a file-based vm structure from its interval tree, to hide 120 * vma from rmap and vmtruncate before freeing its page tables. 121 */ 122void unlink_file_vma(struct vm_area_struct *vma) 123{ 124 struct file *file = vma->vm_file; 125 126 if (file) { 127 struct address_space *mapping = file->f_mapping; 128 i_mmap_lock_write(mapping); 129 __remove_shared_vm_struct(vma, mapping); 130 i_mmap_unlock_write(mapping); 131 } 132} 133 134void unlink_file_vma_batch_init(struct unlink_vma_file_batch *vb) 135{ 136 vb->count = 0; 137} 138 139static void unlink_file_vma_batch_process(struct unlink_vma_file_batch *vb) 140{ 141 struct address_space *mapping; 142 int i; 143 144 mapping = vb->vmas[0]->vm_file->f_mapping; 145 i_mmap_lock_write(mapping); 146 for (i = 0; i < vb->count; i++) { 147 VM_WARN_ON_ONCE(vb->vmas[i]->vm_file->f_mapping != mapping); 148 __remove_shared_vm_struct(vb->vmas[i], mapping); 149 } 150 i_mmap_unlock_write(mapping); 151 152 unlink_file_vma_batch_init(vb); 153} 154 155void unlink_file_vma_batch_add(struct unlink_vma_file_batch *vb, 156 struct vm_area_struct *vma) 157{ 158 if (vma->vm_file == NULL) 159 return; 160 161 if ((vb->count > 0 && vb->vmas[0]->vm_file != vma->vm_file) || 162 vb->count == ARRAY_SIZE(vb->vmas)) 163 unlink_file_vma_batch_process(vb); 164 165 vb->vmas[vb->count] = vma; 166 vb->count++; 167} 168 169void unlink_file_vma_batch_final(struct unlink_vma_file_batch *vb) 170{ 171 if (vb->count > 0) 172 unlink_file_vma_batch_process(vb); 173} 174 175/* 176 * Close a vm structure and free it. 177 */ 178static void remove_vma(struct vm_area_struct *vma, bool unreachable) 179{ 180 might_sleep(); 181 if (vma->vm_ops && vma->vm_ops->close) 182 vma->vm_ops->close(vma); 183 if (vma->vm_file) 184 fput(vma->vm_file); 185 mpol_put(vma_policy(vma)); 186 if (unreachable) 187 __vm_area_free(vma); 188 else 189 vm_area_free(vma); 190} 191 192static inline struct vm_area_struct *vma_prev_limit(struct vma_iterator *vmi, 193 unsigned long min) 194{ 195 return mas_prev(&vmi->mas, min); 196} 197 198/* | |
199 * check_brk_limits() - Use platform specific check of range & verify mlock 200 * limits. 201 * @addr: The address to check 202 * @len: The size of increase. 203 * 204 * Return: 0 on success. 205 */ 206static int check_brk_limits(unsigned long addr, unsigned long len) --- 106 unchanged lines hidden (view full) --- 313 return brk; 314 315out: 316 mm->brk = origbrk; 317 mmap_write_unlock(mm); 318 return origbrk; 319} 320 | 95 * check_brk_limits() - Use platform specific check of range & verify mlock 96 * limits. 97 * @addr: The address to check 98 * @len: The size of increase. 99 * 100 * Return: 0 on success. 101 */ 102static int check_brk_limits(unsigned long addr, unsigned long len) --- 106 unchanged lines hidden (view full) --- 209 return brk; 210 211out: 212 mm->brk = origbrk; 213 mmap_write_unlock(mm); 214 return origbrk; 215} 216 |
321#if defined(CONFIG_DEBUG_VM_MAPLE_TREE) 322static void validate_mm(struct mm_struct *mm) 323{ 324 int bug = 0; 325 int i = 0; 326 struct vm_area_struct *vma; 327 VMA_ITERATOR(vmi, mm, 0); 328 329 mt_validate(&mm->mm_mt); 330 for_each_vma(vmi, vma) { 331#ifdef CONFIG_DEBUG_VM_RB 332 struct anon_vma *anon_vma = vma->anon_vma; 333 struct anon_vma_chain *avc; 334#endif 335 unsigned long vmi_start, vmi_end; 336 bool warn = 0; 337 338 vmi_start = vma_iter_addr(&vmi); 339 vmi_end = vma_iter_end(&vmi); 340 if (VM_WARN_ON_ONCE_MM(vma->vm_end != vmi_end, mm)) 341 warn = 1; 342 343 if (VM_WARN_ON_ONCE_MM(vma->vm_start != vmi_start, mm)) 344 warn = 1; 345 346 if (warn) { 347 pr_emerg("issue in %s\n", current->comm); 348 dump_stack(); 349 dump_vma(vma); 350 pr_emerg("tree range: %px start %lx end %lx\n", vma, 351 vmi_start, vmi_end - 1); 352 vma_iter_dump_tree(&vmi); 353 } 354 355#ifdef CONFIG_DEBUG_VM_RB 356 if (anon_vma) { 357 anon_vma_lock_read(anon_vma); 358 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 359 anon_vma_interval_tree_verify(avc); 360 anon_vma_unlock_read(anon_vma); 361 } 362#endif 363 i++; 364 } 365 if (i != mm->map_count) { 366 pr_emerg("map_count %d vma iterator %d\n", mm->map_count, i); 367 bug = 1; 368 } 369 VM_BUG_ON_MM(bug, mm); 370} 371 372#else /* !CONFIG_DEBUG_VM_MAPLE_TREE */ 373#define validate_mm(mm) do { } while (0) 374#endif /* CONFIG_DEBUG_VM_MAPLE_TREE */ 375 | |
376/* | 217/* |
377 * vma has some anon_vma assigned, and is already inserted on that 378 * anon_vma's interval trees. 379 * 380 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the 381 * vma must be removed from the anon_vma's interval trees using 382 * anon_vma_interval_tree_pre_update_vma(). 383 * 384 * After the update, the vma will be reinserted using 385 * anon_vma_interval_tree_post_update_vma(). 386 * 387 * The entire update must be protected by exclusive mmap_lock and by 388 * the root anon_vma's mutex. 389 */ 390static inline void 391anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma) 392{ 393 struct anon_vma_chain *avc; 394 395 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 396 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root); 397} 398 399static inline void 400anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma) 401{ 402 struct anon_vma_chain *avc; 403 404 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 405 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root); 406} 407 408static unsigned long count_vma_pages_range(struct mm_struct *mm, 409 unsigned long addr, unsigned long end) 410{ 411 VMA_ITERATOR(vmi, mm, addr); 412 struct vm_area_struct *vma; 413 unsigned long nr_pages = 0; 414 415 for_each_vma_range(vmi, vma, end) { 416 unsigned long vm_start = max(addr, vma->vm_start); 417 unsigned long vm_end = min(end, vma->vm_end); 418 419 nr_pages += PHYS_PFN(vm_end - vm_start); 420 } 421 422 return nr_pages; 423} 424 425static void __vma_link_file(struct vm_area_struct *vma, 426 struct address_space *mapping) 427{ 428 if (vma_is_shared_maywrite(vma)) 429 mapping_allow_writable(mapping); 430 431 flush_dcache_mmap_lock(mapping); 432 vma_interval_tree_insert(vma, &mapping->i_mmap); 433 flush_dcache_mmap_unlock(mapping); 434} 435 436static void vma_link_file(struct vm_area_struct *vma) 437{ 438 struct file *file = vma->vm_file; 439 struct address_space *mapping; 440 441 if (file) { 442 mapping = file->f_mapping; 443 i_mmap_lock_write(mapping); 444 __vma_link_file(vma, mapping); 445 i_mmap_unlock_write(mapping); 446 } 447} 448 449static int vma_link(struct mm_struct *mm, struct vm_area_struct *vma) 450{ 451 VMA_ITERATOR(vmi, mm, 0); 452 453 vma_iter_config(&vmi, vma->vm_start, vma->vm_end); 454 if (vma_iter_prealloc(&vmi, vma)) 455 return -ENOMEM; 456 457 vma_start_write(vma); 458 vma_iter_store(&vmi, vma); 459 vma_link_file(vma); 460 mm->map_count++; 461 validate_mm(mm); 462 return 0; 463} 464 465/* 466 * init_multi_vma_prep() - Initializer for struct vma_prepare 467 * @vp: The vma_prepare struct 468 * @vma: The vma that will be altered once locked 469 * @next: The next vma if it is to be adjusted 470 * @remove: The first vma to be removed 471 * @remove2: The second vma to be removed 472 */ 473static inline void init_multi_vma_prep(struct vma_prepare *vp, 474 struct vm_area_struct *vma, struct vm_area_struct *next, 475 struct vm_area_struct *remove, struct vm_area_struct *remove2) 476{ 477 memset(vp, 0, sizeof(struct vma_prepare)); 478 vp->vma = vma; 479 vp->anon_vma = vma->anon_vma; 480 vp->remove = remove; 481 vp->remove2 = remove2; 482 vp->adj_next = next; 483 if (!vp->anon_vma && next) 484 vp->anon_vma = next->anon_vma; 485 486 vp->file = vma->vm_file; 487 if (vp->file) 488 vp->mapping = vma->vm_file->f_mapping; 489 490} 491 492/* 493 * init_vma_prep() - Initializer wrapper for vma_prepare struct 494 * @vp: The vma_prepare struct 495 * @vma: The vma that will be altered once locked 496 */ 497static inline void init_vma_prep(struct vma_prepare *vp, 498 struct vm_area_struct *vma) 499{ 500 init_multi_vma_prep(vp, vma, NULL, NULL, NULL); 501} 502 503 504/* 505 * vma_prepare() - Helper function for handling locking VMAs prior to altering 506 * @vp: The initialized vma_prepare struct 507 */ 508static inline void vma_prepare(struct vma_prepare *vp) 509{ 510 if (vp->file) { 511 uprobe_munmap(vp->vma, vp->vma->vm_start, vp->vma->vm_end); 512 513 if (vp->adj_next) 514 uprobe_munmap(vp->adj_next, vp->adj_next->vm_start, 515 vp->adj_next->vm_end); 516 517 i_mmap_lock_write(vp->mapping); 518 if (vp->insert && vp->insert->vm_file) { 519 /* 520 * Put into interval tree now, so instantiated pages 521 * are visible to arm/parisc __flush_dcache_page 522 * throughout; but we cannot insert into address 523 * space until vma start or end is updated. 524 */ 525 __vma_link_file(vp->insert, 526 vp->insert->vm_file->f_mapping); 527 } 528 } 529 530 if (vp->anon_vma) { 531 anon_vma_lock_write(vp->anon_vma); 532 anon_vma_interval_tree_pre_update_vma(vp->vma); 533 if (vp->adj_next) 534 anon_vma_interval_tree_pre_update_vma(vp->adj_next); 535 } 536 537 if (vp->file) { 538 flush_dcache_mmap_lock(vp->mapping); 539 vma_interval_tree_remove(vp->vma, &vp->mapping->i_mmap); 540 if (vp->adj_next) 541 vma_interval_tree_remove(vp->adj_next, 542 &vp->mapping->i_mmap); 543 } 544 545} 546 547/* 548 * vma_complete- Helper function for handling the unlocking after altering VMAs, 549 * or for inserting a VMA. 550 * 551 * @vp: The vma_prepare struct 552 * @vmi: The vma iterator 553 * @mm: The mm_struct 554 */ 555static inline void vma_complete(struct vma_prepare *vp, 556 struct vma_iterator *vmi, struct mm_struct *mm) 557{ 558 if (vp->file) { 559 if (vp->adj_next) 560 vma_interval_tree_insert(vp->adj_next, 561 &vp->mapping->i_mmap); 562 vma_interval_tree_insert(vp->vma, &vp->mapping->i_mmap); 563 flush_dcache_mmap_unlock(vp->mapping); 564 } 565 566 if (vp->remove && vp->file) { 567 __remove_shared_vm_struct(vp->remove, vp->mapping); 568 if (vp->remove2) 569 __remove_shared_vm_struct(vp->remove2, vp->mapping); 570 } else if (vp->insert) { 571 /* 572 * split_vma has split insert from vma, and needs 573 * us to insert it before dropping the locks 574 * (it may either follow vma or precede it). 575 */ 576 vma_iter_store(vmi, vp->insert); 577 mm->map_count++; 578 } 579 580 if (vp->anon_vma) { 581 anon_vma_interval_tree_post_update_vma(vp->vma); 582 if (vp->adj_next) 583 anon_vma_interval_tree_post_update_vma(vp->adj_next); 584 anon_vma_unlock_write(vp->anon_vma); 585 } 586 587 if (vp->file) { 588 i_mmap_unlock_write(vp->mapping); 589 uprobe_mmap(vp->vma); 590 591 if (vp->adj_next) 592 uprobe_mmap(vp->adj_next); 593 } 594 595 if (vp->remove) { 596again: 597 vma_mark_detached(vp->remove, true); 598 if (vp->file) { 599 uprobe_munmap(vp->remove, vp->remove->vm_start, 600 vp->remove->vm_end); 601 fput(vp->file); 602 } 603 if (vp->remove->anon_vma) 604 anon_vma_merge(vp->vma, vp->remove); 605 mm->map_count--; 606 mpol_put(vma_policy(vp->remove)); 607 if (!vp->remove2) 608 WARN_ON_ONCE(vp->vma->vm_end < vp->remove->vm_end); 609 vm_area_free(vp->remove); 610 611 /* 612 * In mprotect's case 6 (see comments on vma_merge), 613 * we are removing both mid and next vmas 614 */ 615 if (vp->remove2) { 616 vp->remove = vp->remove2; 617 vp->remove2 = NULL; 618 goto again; 619 } 620 } 621 if (vp->insert && vp->file) 622 uprobe_mmap(vp->insert); 623 validate_mm(mm); 624} 625 626/* 627 * dup_anon_vma() - Helper function to duplicate anon_vma 628 * @dst: The destination VMA 629 * @src: The source VMA 630 * @dup: Pointer to the destination VMA when successful. 631 * 632 * Returns: 0 on success. 633 */ 634static inline int dup_anon_vma(struct vm_area_struct *dst, 635 struct vm_area_struct *src, struct vm_area_struct **dup) 636{ 637 /* 638 * Easily overlooked: when mprotect shifts the boundary, make sure the 639 * expanding vma has anon_vma set if the shrinking vma had, to cover any 640 * anon pages imported. 641 */ 642 if (src->anon_vma && !dst->anon_vma) { 643 int ret; 644 645 vma_assert_write_locked(dst); 646 dst->anon_vma = src->anon_vma; 647 ret = anon_vma_clone(dst, src); 648 if (ret) 649 return ret; 650 651 *dup = dst; 652 } 653 654 return 0; 655} 656 657/* 658 * vma_expand - Expand an existing VMA 659 * 660 * @vmi: The vma iterator 661 * @vma: The vma to expand 662 * @start: The start of the vma 663 * @end: The exclusive end of the vma 664 * @pgoff: The page offset of vma 665 * @next: The current of next vma. 666 * 667 * Expand @vma to @start and @end. Can expand off the start and end. Will 668 * expand over @next if it's different from @vma and @end == @next->vm_end. 669 * Checking if the @vma can expand and merge with @next needs to be handled by 670 * the caller. 671 * 672 * Returns: 0 on success 673 */ 674int vma_expand(struct vma_iterator *vmi, struct vm_area_struct *vma, 675 unsigned long start, unsigned long end, pgoff_t pgoff, 676 struct vm_area_struct *next) 677{ 678 struct vm_area_struct *anon_dup = NULL; 679 bool remove_next = false; 680 struct vma_prepare vp; 681 682 vma_start_write(vma); 683 if (next && (vma != next) && (end == next->vm_end)) { 684 int ret; 685 686 remove_next = true; 687 vma_start_write(next); 688 ret = dup_anon_vma(vma, next, &anon_dup); 689 if (ret) 690 return ret; 691 } 692 693 init_multi_vma_prep(&vp, vma, NULL, remove_next ? next : NULL, NULL); 694 /* Not merging but overwriting any part of next is not handled. */ 695 VM_WARN_ON(next && !vp.remove && 696 next != vma && end > next->vm_start); 697 /* Only handles expanding */ 698 VM_WARN_ON(vma->vm_start < start || vma->vm_end > end); 699 700 /* Note: vma iterator must be pointing to 'start' */ 701 vma_iter_config(vmi, start, end); 702 if (vma_iter_prealloc(vmi, vma)) 703 goto nomem; 704 705 vma_prepare(&vp); 706 vma_adjust_trans_huge(vma, start, end, 0); 707 vma_set_range(vma, start, end, pgoff); 708 vma_iter_store(vmi, vma); 709 710 vma_complete(&vp, vmi, vma->vm_mm); 711 return 0; 712 713nomem: 714 if (anon_dup) 715 unlink_anon_vmas(anon_dup); 716 return -ENOMEM; 717} 718 719/* 720 * vma_shrink() - Reduce an existing VMAs memory area 721 * @vmi: The vma iterator 722 * @vma: The VMA to modify 723 * @start: The new start 724 * @end: The new end 725 * 726 * Returns: 0 on success, -ENOMEM otherwise 727 */ 728int vma_shrink(struct vma_iterator *vmi, struct vm_area_struct *vma, 729 unsigned long start, unsigned long end, pgoff_t pgoff) 730{ 731 struct vma_prepare vp; 732 733 WARN_ON((vma->vm_start != start) && (vma->vm_end != end)); 734 735 if (vma->vm_start < start) 736 vma_iter_config(vmi, vma->vm_start, start); 737 else 738 vma_iter_config(vmi, end, vma->vm_end); 739 740 if (vma_iter_prealloc(vmi, NULL)) 741 return -ENOMEM; 742 743 vma_start_write(vma); 744 745 init_vma_prep(&vp, vma); 746 vma_prepare(&vp); 747 vma_adjust_trans_huge(vma, start, end, 0); 748 749 vma_iter_clear(vmi); 750 vma_set_range(vma, start, end, pgoff); 751 vma_complete(&vp, vmi, vma->vm_mm); 752 return 0; 753} 754 755/* 756 * If the vma has a ->close operation then the driver probably needs to release 757 * per-vma resources, so we don't attempt to merge those if the caller indicates 758 * the current vma may be removed as part of the merge. 759 */ 760static inline bool is_mergeable_vma(struct vm_area_struct *vma, 761 struct file *file, unsigned long vm_flags, 762 struct vm_userfaultfd_ctx vm_userfaultfd_ctx, 763 struct anon_vma_name *anon_name, bool may_remove_vma) 764{ 765 /* 766 * VM_SOFTDIRTY should not prevent from VMA merging, if we 767 * match the flags but dirty bit -- the caller should mark 768 * merged VMA as dirty. If dirty bit won't be excluded from 769 * comparison, we increase pressure on the memory system forcing 770 * the kernel to generate new VMAs when old one could be 771 * extended instead. 772 */ 773 if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY) 774 return false; 775 if (vma->vm_file != file) 776 return false; 777 if (may_remove_vma && vma->vm_ops && vma->vm_ops->close) 778 return false; 779 if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx)) 780 return false; 781 if (!anon_vma_name_eq(anon_vma_name(vma), anon_name)) 782 return false; 783 return true; 784} 785 786static inline bool is_mergeable_anon_vma(struct anon_vma *anon_vma1, 787 struct anon_vma *anon_vma2, struct vm_area_struct *vma) 788{ 789 /* 790 * The list_is_singular() test is to avoid merging VMA cloned from 791 * parents. This can improve scalability caused by anon_vma lock. 792 */ 793 if ((!anon_vma1 || !anon_vma2) && (!vma || 794 list_is_singular(&vma->anon_vma_chain))) 795 return true; 796 return anon_vma1 == anon_vma2; 797} 798 799/* 800 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff) 801 * in front of (at a lower virtual address and file offset than) the vma. 802 * 803 * We cannot merge two vmas if they have differently assigned (non-NULL) 804 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible. 805 * 806 * We don't check here for the merged mmap wrapping around the end of pagecache 807 * indices (16TB on ia32) because do_mmap() does not permit mmap's which 808 * wrap, nor mmaps which cover the final page at index -1UL. 809 * 810 * We assume the vma may be removed as part of the merge. 811 */ 812static bool 813can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags, 814 struct anon_vma *anon_vma, struct file *file, 815 pgoff_t vm_pgoff, struct vm_userfaultfd_ctx vm_userfaultfd_ctx, 816 struct anon_vma_name *anon_name) 817{ 818 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name, true) && 819 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) { 820 if (vma->vm_pgoff == vm_pgoff) 821 return true; 822 } 823 return false; 824} 825 826/* 827 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff) 828 * beyond (at a higher virtual address and file offset than) the vma. 829 * 830 * We cannot merge two vmas if they have differently assigned (non-NULL) 831 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible. 832 * 833 * We assume that vma is not removed as part of the merge. 834 */ 835static bool 836can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags, 837 struct anon_vma *anon_vma, struct file *file, 838 pgoff_t vm_pgoff, struct vm_userfaultfd_ctx vm_userfaultfd_ctx, 839 struct anon_vma_name *anon_name) 840{ 841 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name, false) && 842 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) { 843 pgoff_t vm_pglen; 844 vm_pglen = vma_pages(vma); 845 if (vma->vm_pgoff + vm_pglen == vm_pgoff) 846 return true; 847 } 848 return false; 849} 850 851/* 852 * Given a mapping request (addr,end,vm_flags,file,pgoff,anon_name), 853 * figure out whether that can be merged with its predecessor or its 854 * successor. Or both (it neatly fills a hole). 855 * 856 * In most cases - when called for mmap, brk or mremap - [addr,end) is 857 * certain not to be mapped by the time vma_merge is called; but when 858 * called for mprotect, it is certain to be already mapped (either at 859 * an offset within prev, or at the start of next), and the flags of 860 * this area are about to be changed to vm_flags - and the no-change 861 * case has already been eliminated. 862 * 863 * The following mprotect cases have to be considered, where **** is 864 * the area passed down from mprotect_fixup, never extending beyond one 865 * vma, PPPP is the previous vma, CCCC is a concurrent vma that starts 866 * at the same address as **** and is of the same or larger span, and 867 * NNNN the next vma after ****: 868 * 869 * **** **** **** 870 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPCCCCCC 871 * cannot merge might become might become 872 * PPNNNNNNNNNN PPPPPPPPPPCC 873 * mmap, brk or case 4 below case 5 below 874 * mremap move: 875 * **** **** 876 * PPPP NNNN PPPPCCCCNNNN 877 * might become might become 878 * PPPPPPPPPPPP 1 or PPPPPPPPPPPP 6 or 879 * PPPPPPPPNNNN 2 or PPPPPPPPNNNN 7 or 880 * PPPPNNNNNNNN 3 PPPPNNNNNNNN 8 881 * 882 * It is important for case 8 that the vma CCCC overlapping the 883 * region **** is never going to extended over NNNN. Instead NNNN must 884 * be extended in region **** and CCCC must be removed. This way in 885 * all cases where vma_merge succeeds, the moment vma_merge drops the 886 * rmap_locks, the properties of the merged vma will be already 887 * correct for the whole merged range. Some of those properties like 888 * vm_page_prot/vm_flags may be accessed by rmap_walks and they must 889 * be correct for the whole merged range immediately after the 890 * rmap_locks are released. Otherwise if NNNN would be removed and 891 * CCCC would be extended over the NNNN range, remove_migration_ptes 892 * or other rmap walkers (if working on addresses beyond the "end" 893 * parameter) may establish ptes with the wrong permissions of CCCC 894 * instead of the right permissions of NNNN. 895 * 896 * In the code below: 897 * PPPP is represented by *prev 898 * CCCC is represented by *curr or not represented at all (NULL) 899 * NNNN is represented by *next or not represented at all (NULL) 900 * **** is not represented - it will be merged and the vma containing the 901 * area is returned, or the function will return NULL 902 */ 903static struct vm_area_struct 904*vma_merge(struct vma_iterator *vmi, struct vm_area_struct *prev, 905 struct vm_area_struct *src, unsigned long addr, unsigned long end, 906 unsigned long vm_flags, pgoff_t pgoff, struct mempolicy *policy, 907 struct vm_userfaultfd_ctx vm_userfaultfd_ctx, 908 struct anon_vma_name *anon_name) 909{ 910 struct mm_struct *mm = src->vm_mm; 911 struct anon_vma *anon_vma = src->anon_vma; 912 struct file *file = src->vm_file; 913 struct vm_area_struct *curr, *next, *res; 914 struct vm_area_struct *vma, *adjust, *remove, *remove2; 915 struct vm_area_struct *anon_dup = NULL; 916 struct vma_prepare vp; 917 pgoff_t vma_pgoff; 918 int err = 0; 919 bool merge_prev = false; 920 bool merge_next = false; 921 bool vma_expanded = false; 922 unsigned long vma_start = addr; 923 unsigned long vma_end = end; 924 pgoff_t pglen = (end - addr) >> PAGE_SHIFT; 925 long adj_start = 0; 926 927 /* 928 * We later require that vma->vm_flags == vm_flags, 929 * so this tests vma->vm_flags & VM_SPECIAL, too. 930 */ 931 if (vm_flags & VM_SPECIAL) 932 return NULL; 933 934 /* Does the input range span an existing VMA? (cases 5 - 8) */ 935 curr = find_vma_intersection(mm, prev ? prev->vm_end : 0, end); 936 937 if (!curr || /* cases 1 - 4 */ 938 end == curr->vm_end) /* cases 6 - 8, adjacent VMA */ 939 next = vma_lookup(mm, end); 940 else 941 next = NULL; /* case 5 */ 942 943 if (prev) { 944 vma_start = prev->vm_start; 945 vma_pgoff = prev->vm_pgoff; 946 947 /* Can we merge the predecessor? */ 948 if (addr == prev->vm_end && mpol_equal(vma_policy(prev), policy) 949 && can_vma_merge_after(prev, vm_flags, anon_vma, file, 950 pgoff, vm_userfaultfd_ctx, anon_name)) { 951 merge_prev = true; 952 vma_prev(vmi); 953 } 954 } 955 956 /* Can we merge the successor? */ 957 if (next && mpol_equal(policy, vma_policy(next)) && 958 can_vma_merge_before(next, vm_flags, anon_vma, file, pgoff+pglen, 959 vm_userfaultfd_ctx, anon_name)) { 960 merge_next = true; 961 } 962 963 /* Verify some invariant that must be enforced by the caller. */ 964 VM_WARN_ON(prev && addr <= prev->vm_start); 965 VM_WARN_ON(curr && (addr != curr->vm_start || end > curr->vm_end)); 966 VM_WARN_ON(addr >= end); 967 968 if (!merge_prev && !merge_next) 969 return NULL; /* Not mergeable. */ 970 971 if (merge_prev) 972 vma_start_write(prev); 973 974 res = vma = prev; 975 remove = remove2 = adjust = NULL; 976 977 /* Can we merge both the predecessor and the successor? */ 978 if (merge_prev && merge_next && 979 is_mergeable_anon_vma(prev->anon_vma, next->anon_vma, NULL)) { 980 vma_start_write(next); 981 remove = next; /* case 1 */ 982 vma_end = next->vm_end; 983 err = dup_anon_vma(prev, next, &anon_dup); 984 if (curr) { /* case 6 */ 985 vma_start_write(curr); 986 remove = curr; 987 remove2 = next; 988 /* 989 * Note that the dup_anon_vma below cannot overwrite err 990 * since the first caller would do nothing unless next 991 * has an anon_vma. 992 */ 993 if (!next->anon_vma) 994 err = dup_anon_vma(prev, curr, &anon_dup); 995 } 996 } else if (merge_prev) { /* case 2 */ 997 if (curr) { 998 vma_start_write(curr); 999 if (end == curr->vm_end) { /* case 7 */ 1000 /* 1001 * can_vma_merge_after() assumed we would not be 1002 * removing prev vma, so it skipped the check 1003 * for vm_ops->close, but we are removing curr 1004 */ 1005 if (curr->vm_ops && curr->vm_ops->close) 1006 err = -EINVAL; 1007 remove = curr; 1008 } else { /* case 5 */ 1009 adjust = curr; 1010 adj_start = (end - curr->vm_start); 1011 } 1012 if (!err) 1013 err = dup_anon_vma(prev, curr, &anon_dup); 1014 } 1015 } else { /* merge_next */ 1016 vma_start_write(next); 1017 res = next; 1018 if (prev && addr < prev->vm_end) { /* case 4 */ 1019 vma_start_write(prev); 1020 vma_end = addr; 1021 adjust = next; 1022 adj_start = -(prev->vm_end - addr); 1023 err = dup_anon_vma(next, prev, &anon_dup); 1024 } else { 1025 /* 1026 * Note that cases 3 and 8 are the ONLY ones where prev 1027 * is permitted to be (but is not necessarily) NULL. 1028 */ 1029 vma = next; /* case 3 */ 1030 vma_start = addr; 1031 vma_end = next->vm_end; 1032 vma_pgoff = next->vm_pgoff - pglen; 1033 if (curr) { /* case 8 */ 1034 vma_pgoff = curr->vm_pgoff; 1035 vma_start_write(curr); 1036 remove = curr; 1037 err = dup_anon_vma(next, curr, &anon_dup); 1038 } 1039 } 1040 } 1041 1042 /* Error in anon_vma clone. */ 1043 if (err) 1044 goto anon_vma_fail; 1045 1046 if (vma_start < vma->vm_start || vma_end > vma->vm_end) 1047 vma_expanded = true; 1048 1049 if (vma_expanded) { 1050 vma_iter_config(vmi, vma_start, vma_end); 1051 } else { 1052 vma_iter_config(vmi, adjust->vm_start + adj_start, 1053 adjust->vm_end); 1054 } 1055 1056 if (vma_iter_prealloc(vmi, vma)) 1057 goto prealloc_fail; 1058 1059 init_multi_vma_prep(&vp, vma, adjust, remove, remove2); 1060 VM_WARN_ON(vp.anon_vma && adjust && adjust->anon_vma && 1061 vp.anon_vma != adjust->anon_vma); 1062 1063 vma_prepare(&vp); 1064 vma_adjust_trans_huge(vma, vma_start, vma_end, adj_start); 1065 vma_set_range(vma, vma_start, vma_end, vma_pgoff); 1066 1067 if (vma_expanded) 1068 vma_iter_store(vmi, vma); 1069 1070 if (adj_start) { 1071 adjust->vm_start += adj_start; 1072 adjust->vm_pgoff += adj_start >> PAGE_SHIFT; 1073 if (adj_start < 0) { 1074 WARN_ON(vma_expanded); 1075 vma_iter_store(vmi, next); 1076 } 1077 } 1078 1079 vma_complete(&vp, vmi, mm); 1080 khugepaged_enter_vma(res, vm_flags); 1081 return res; 1082 1083prealloc_fail: 1084 if (anon_dup) 1085 unlink_anon_vmas(anon_dup); 1086 1087anon_vma_fail: 1088 vma_iter_set(vmi, addr); 1089 vma_iter_load(vmi); 1090 return NULL; 1091} 1092 1093/* 1094 * Rough compatibility check to quickly see if it's even worth looking 1095 * at sharing an anon_vma. 1096 * 1097 * They need to have the same vm_file, and the flags can only differ 1098 * in things that mprotect may change. 1099 * 1100 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that 1101 * we can merge the two vma's. For example, we refuse to merge a vma if 1102 * there is a vm_ops->close() function, because that indicates that the 1103 * driver is doing some kind of reference counting. But that doesn't 1104 * really matter for the anon_vma sharing case. 1105 */ 1106static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b) 1107{ 1108 return a->vm_end == b->vm_start && 1109 mpol_equal(vma_policy(a), vma_policy(b)) && 1110 a->vm_file == b->vm_file && 1111 !((a->vm_flags ^ b->vm_flags) & ~(VM_ACCESS_FLAGS | VM_SOFTDIRTY)) && 1112 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT); 1113} 1114 1115/* 1116 * Do some basic sanity checking to see if we can re-use the anon_vma 1117 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be 1118 * the same as 'old', the other will be the new one that is trying 1119 * to share the anon_vma. 1120 * 1121 * NOTE! This runs with mmap_lock held for reading, so it is possible that 1122 * the anon_vma of 'old' is concurrently in the process of being set up 1123 * by another page fault trying to merge _that_. But that's ok: if it 1124 * is being set up, that automatically means that it will be a singleton 1125 * acceptable for merging, so we can do all of this optimistically. But 1126 * we do that READ_ONCE() to make sure that we never re-load the pointer. 1127 * 1128 * IOW: that the "list_is_singular()" test on the anon_vma_chain only 1129 * matters for the 'stable anon_vma' case (ie the thing we want to avoid 1130 * is to return an anon_vma that is "complex" due to having gone through 1131 * a fork). 1132 * 1133 * We also make sure that the two vma's are compatible (adjacent, 1134 * and with the same memory policies). That's all stable, even with just 1135 * a read lock on the mmap_lock. 1136 */ 1137static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b) 1138{ 1139 if (anon_vma_compatible(a, b)) { 1140 struct anon_vma *anon_vma = READ_ONCE(old->anon_vma); 1141 1142 if (anon_vma && list_is_singular(&old->anon_vma_chain)) 1143 return anon_vma; 1144 } 1145 return NULL; 1146} 1147 1148/* 1149 * find_mergeable_anon_vma is used by anon_vma_prepare, to check 1150 * neighbouring vmas for a suitable anon_vma, before it goes off 1151 * to allocate a new anon_vma. It checks because a repetitive 1152 * sequence of mprotects and faults may otherwise lead to distinct 1153 * anon_vmas being allocated, preventing vma merge in subsequent 1154 * mprotect. 1155 */ 1156struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma) 1157{ 1158 struct anon_vma *anon_vma = NULL; 1159 struct vm_area_struct *prev, *next; 1160 VMA_ITERATOR(vmi, vma->vm_mm, vma->vm_end); 1161 1162 /* Try next first. */ 1163 next = vma_iter_load(&vmi); 1164 if (next) { 1165 anon_vma = reusable_anon_vma(next, vma, next); 1166 if (anon_vma) 1167 return anon_vma; 1168 } 1169 1170 prev = vma_prev(&vmi); 1171 VM_BUG_ON_VMA(prev != vma, vma); 1172 prev = vma_prev(&vmi); 1173 /* Try prev next. */ 1174 if (prev) 1175 anon_vma = reusable_anon_vma(prev, prev, vma); 1176 1177 /* 1178 * We might reach here with anon_vma == NULL if we can't find 1179 * any reusable anon_vma. 1180 * There's no absolute need to look only at touching neighbours: 1181 * we could search further afield for "compatible" anon_vmas. 1182 * But it would probably just be a waste of time searching, 1183 * or lead to too many vmas hanging off the same anon_vma. 1184 * We're trying to allow mprotect remerging later on, 1185 * not trying to minimize memory used for anon_vmas. 1186 */ 1187 return anon_vma; 1188} 1189 1190/* | |
1191 * If a hint addr is less than mmap_min_addr change hint to be as 1192 * low as possible but still greater than mmap_min_addr 1193 */ 1194static inline unsigned long round_hint_to_min(unsigned long hint) 1195{ 1196 hint &= PAGE_MASK; 1197 if (((void *)hint != NULL) && 1198 (hint < mmap_min_addr)) --- 345 unchanged lines hidden (view full) --- 1544 if (offset_in_page(a.offset)) 1545 return -EINVAL; 1546 1547 return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd, 1548 a.offset >> PAGE_SHIFT); 1549} 1550#endif /* __ARCH_WANT_SYS_OLD_MMAP */ 1551 | 218 * If a hint addr is less than mmap_min_addr change hint to be as 219 * low as possible but still greater than mmap_min_addr 220 */ 221static inline unsigned long round_hint_to_min(unsigned long hint) 222{ 223 hint &= PAGE_MASK; 224 if (((void *)hint != NULL) && 225 (hint < mmap_min_addr)) --- 345 unchanged lines hidden (view full) --- 571 if (offset_in_page(a.offset)) 572 return -EINVAL; 573 574 return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd, 575 a.offset >> PAGE_SHIFT); 576} 577#endif /* __ARCH_WANT_SYS_OLD_MMAP */ 578 |
1552static bool vm_ops_needs_writenotify(const struct vm_operations_struct *vm_ops) 1553{ 1554 return vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite); 1555} 1556 1557static bool vma_is_shared_writable(struct vm_area_struct *vma) 1558{ 1559 return (vma->vm_flags & (VM_WRITE | VM_SHARED)) == 1560 (VM_WRITE | VM_SHARED); 1561} 1562 1563static bool vma_fs_can_writeback(struct vm_area_struct *vma) 1564{ 1565 /* No managed pages to writeback. */ 1566 if (vma->vm_flags & VM_PFNMAP) 1567 return false; 1568 1569 return vma->vm_file && vma->vm_file->f_mapping && 1570 mapping_can_writeback(vma->vm_file->f_mapping); 1571} 1572 | |
1573/* | 579/* |
1574 * Does this VMA require the underlying folios to have their dirty state 1575 * tracked? 1576 */ 1577bool vma_needs_dirty_tracking(struct vm_area_struct *vma) 1578{ 1579 /* Only shared, writable VMAs require dirty tracking. */ 1580 if (!vma_is_shared_writable(vma)) 1581 return false; 1582 1583 /* Does the filesystem need to be notified? */ 1584 if (vm_ops_needs_writenotify(vma->vm_ops)) 1585 return true; 1586 1587 /* 1588 * Even if the filesystem doesn't indicate a need for writenotify, if it 1589 * can writeback, dirty tracking is still required. 1590 */ 1591 return vma_fs_can_writeback(vma); 1592} 1593 1594/* 1595 * Some shared mappings will want the pages marked read-only 1596 * to track write events. If so, we'll downgrade vm_page_prot 1597 * to the private version (using protection_map[] without the 1598 * VM_SHARED bit). 1599 */ 1600bool vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot) 1601{ 1602 /* If it was private or non-writable, the write bit is already clear */ 1603 if (!vma_is_shared_writable(vma)) 1604 return false; 1605 1606 /* The backer wishes to know when pages are first written to? */ 1607 if (vm_ops_needs_writenotify(vma->vm_ops)) 1608 return true; 1609 1610 /* The open routine did something to the protections that pgprot_modify 1611 * won't preserve? */ 1612 if (pgprot_val(vm_page_prot) != 1613 pgprot_val(vm_pgprot_modify(vm_page_prot, vma->vm_flags))) 1614 return false; 1615 1616 /* 1617 * Do we need to track softdirty? hugetlb does not support softdirty 1618 * tracking yet. 1619 */ 1620 if (vma_soft_dirty_enabled(vma) && !is_vm_hugetlb_page(vma)) 1621 return true; 1622 1623 /* Do we need write faults for uffd-wp tracking? */ 1624 if (userfaultfd_wp(vma)) 1625 return true; 1626 1627 /* Can the mapping track the dirty pages? */ 1628 return vma_fs_can_writeback(vma); 1629} 1630 1631/* | |
1632 * We account for memory if it's a private writeable mapping, 1633 * not hugepages and VM_NORESERVE wasn't set. 1634 */ 1635static inline bool accountable_mapping(struct file *file, vm_flags_t vm_flags) 1636{ 1637 /* 1638 * hugetlb has its own accounting separate from the core VM 1639 * VM_HUGETLB may not be set yet so we cannot check for that flag. --- 748 unchanged lines hidden (view full) --- 2388 mmap_write_unlock(mm); 2389 return NULL; 2390 2391success: 2392 mmap_write_downgrade(mm); 2393 return vma; 2394} 2395 | 580 * We account for memory if it's a private writeable mapping, 581 * not hugepages and VM_NORESERVE wasn't set. 582 */ 583static inline bool accountable_mapping(struct file *file, vm_flags_t vm_flags) 584{ 585 /* 586 * hugetlb has its own accounting separate from the core VM 587 * VM_HUGETLB may not be set yet so we cannot check for that flag. --- 748 unchanged lines hidden (view full) --- 1336 mmap_write_unlock(mm); 1337 return NULL; 1338 1339success: 1340 mmap_write_downgrade(mm); 1341 return vma; 1342} 1343 |
2396/* 2397 * Ok - we have the memory areas we should free on a maple tree so release them, 2398 * and do the vma updates. 2399 * 2400 * Called with the mm semaphore held. 2401 */ 2402static inline void remove_mt(struct mm_struct *mm, struct ma_state *mas) 2403{ 2404 unsigned long nr_accounted = 0; 2405 struct vm_area_struct *vma; 2406 2407 /* Update high watermark before we lower total_vm */ 2408 update_hiwater_vm(mm); 2409 mas_for_each(mas, vma, ULONG_MAX) { 2410 long nrpages = vma_pages(vma); 2411 2412 if (vma->vm_flags & VM_ACCOUNT) 2413 nr_accounted += nrpages; 2414 vm_stat_account(mm, vma->vm_flags, -nrpages); 2415 remove_vma(vma, false); 2416 } 2417 vm_unacct_memory(nr_accounted); 2418} 2419 2420/* 2421 * Get rid of page table information in the indicated region. 2422 * 2423 * Called with the mm semaphore held. 2424 */ 2425static void unmap_region(struct mm_struct *mm, struct ma_state *mas, 2426 struct vm_area_struct *vma, struct vm_area_struct *prev, 2427 struct vm_area_struct *next, unsigned long start, 2428 unsigned long end, unsigned long tree_end, bool mm_wr_locked) 2429{ 2430 struct mmu_gather tlb; 2431 unsigned long mt_start = mas->index; 2432 2433 lru_add_drain(); 2434 tlb_gather_mmu(&tlb, mm); 2435 update_hiwater_rss(mm); 2436 unmap_vmas(&tlb, mas, vma, start, end, tree_end, mm_wr_locked); 2437 mas_set(mas, mt_start); 2438 free_pgtables(&tlb, mas, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS, 2439 next ? next->vm_start : USER_PGTABLES_CEILING, 2440 mm_wr_locked); 2441 tlb_finish_mmu(&tlb); 2442} 2443 2444/* 2445 * __split_vma() bypasses sysctl_max_map_count checking. We use this where it 2446 * has already been checked or doesn't make sense to fail. 2447 * VMA Iterator will point to the end VMA. 2448 */ 2449static int __split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma, 2450 unsigned long addr, int new_below) 2451{ 2452 struct vma_prepare vp; 2453 struct vm_area_struct *new; 2454 int err; 2455 2456 WARN_ON(vma->vm_start >= addr); 2457 WARN_ON(vma->vm_end <= addr); 2458 2459 if (vma->vm_ops && vma->vm_ops->may_split) { 2460 err = vma->vm_ops->may_split(vma, addr); 2461 if (err) 2462 return err; 2463 } 2464 2465 new = vm_area_dup(vma); 2466 if (!new) 2467 return -ENOMEM; 2468 2469 if (new_below) { 2470 new->vm_end = addr; 2471 } else { 2472 new->vm_start = addr; 2473 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT); 2474 } 2475 2476 err = -ENOMEM; 2477 vma_iter_config(vmi, new->vm_start, new->vm_end); 2478 if (vma_iter_prealloc(vmi, new)) 2479 goto out_free_vma; 2480 2481 err = vma_dup_policy(vma, new); 2482 if (err) 2483 goto out_free_vmi; 2484 2485 err = anon_vma_clone(new, vma); 2486 if (err) 2487 goto out_free_mpol; 2488 2489 if (new->vm_file) 2490 get_file(new->vm_file); 2491 2492 if (new->vm_ops && new->vm_ops->open) 2493 new->vm_ops->open(new); 2494 2495 vma_start_write(vma); 2496 vma_start_write(new); 2497 2498 init_vma_prep(&vp, vma); 2499 vp.insert = new; 2500 vma_prepare(&vp); 2501 vma_adjust_trans_huge(vma, vma->vm_start, addr, 0); 2502 2503 if (new_below) { 2504 vma->vm_start = addr; 2505 vma->vm_pgoff += (addr - new->vm_start) >> PAGE_SHIFT; 2506 } else { 2507 vma->vm_end = addr; 2508 } 2509 2510 /* vma_complete stores the new vma */ 2511 vma_complete(&vp, vmi, vma->vm_mm); 2512 2513 /* Success. */ 2514 if (new_below) 2515 vma_next(vmi); 2516 return 0; 2517 2518out_free_mpol: 2519 mpol_put(vma_policy(new)); 2520out_free_vmi: 2521 vma_iter_free(vmi); 2522out_free_vma: 2523 vm_area_free(new); 2524 return err; 2525} 2526 2527/* 2528 * Split a vma into two pieces at address 'addr', a new vma is allocated 2529 * either for the first part or the tail. 2530 */ 2531static int split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma, 2532 unsigned long addr, int new_below) 2533{ 2534 if (vma->vm_mm->map_count >= sysctl_max_map_count) 2535 return -ENOMEM; 2536 2537 return __split_vma(vmi, vma, addr, new_below); 2538} 2539 2540/* 2541 * We are about to modify one or multiple of a VMA's flags, policy, userfaultfd 2542 * context and anonymous VMA name within the range [start, end). 2543 * 2544 * As a result, we might be able to merge the newly modified VMA range with an 2545 * adjacent VMA with identical properties. 2546 * 2547 * If no merge is possible and the range does not span the entirety of the VMA, 2548 * we then need to split the VMA to accommodate the change. 2549 * 2550 * The function returns either the merged VMA, the original VMA if a split was 2551 * required instead, or an error if the split failed. 2552 */ 2553struct vm_area_struct *vma_modify(struct vma_iterator *vmi, 2554 struct vm_area_struct *prev, 2555 struct vm_area_struct *vma, 2556 unsigned long start, unsigned long end, 2557 unsigned long vm_flags, 2558 struct mempolicy *policy, 2559 struct vm_userfaultfd_ctx uffd_ctx, 2560 struct anon_vma_name *anon_name) 2561{ 2562 pgoff_t pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT); 2563 struct vm_area_struct *merged; 2564 2565 merged = vma_merge(vmi, prev, vma, start, end, vm_flags, 2566 pgoff, policy, uffd_ctx, anon_name); 2567 if (merged) 2568 return merged; 2569 2570 if (vma->vm_start < start) { 2571 int err = split_vma(vmi, vma, start, 1); 2572 2573 if (err) 2574 return ERR_PTR(err); 2575 } 2576 2577 if (vma->vm_end > end) { 2578 int err = split_vma(vmi, vma, end, 0); 2579 2580 if (err) 2581 return ERR_PTR(err); 2582 } 2583 2584 return vma; 2585} 2586 2587/* 2588 * Attempt to merge a newly mapped VMA with those adjacent to it. The caller 2589 * must ensure that [start, end) does not overlap any existing VMA. 2590 */ 2591static struct vm_area_struct 2592*vma_merge_new_vma(struct vma_iterator *vmi, struct vm_area_struct *prev, 2593 struct vm_area_struct *vma, unsigned long start, 2594 unsigned long end, pgoff_t pgoff) 2595{ 2596 return vma_merge(vmi, prev, vma, start, end, vma->vm_flags, pgoff, 2597 vma_policy(vma), vma->vm_userfaultfd_ctx, anon_vma_name(vma)); 2598} 2599 2600/* 2601 * Expand vma by delta bytes, potentially merging with an immediately adjacent 2602 * VMA with identical properties. 2603 */ 2604struct vm_area_struct *vma_merge_extend(struct vma_iterator *vmi, 2605 struct vm_area_struct *vma, 2606 unsigned long delta) 2607{ 2608 pgoff_t pgoff = vma->vm_pgoff + vma_pages(vma); 2609 2610 /* vma is specified as prev, so case 1 or 2 will apply. */ 2611 return vma_merge(vmi, vma, vma, vma->vm_end, vma->vm_end + delta, 2612 vma->vm_flags, pgoff, vma_policy(vma), 2613 vma->vm_userfaultfd_ctx, anon_vma_name(vma)); 2614} 2615 2616/* 2617 * do_vmi_align_munmap() - munmap the aligned region from @start to @end. 2618 * @vmi: The vma iterator 2619 * @vma: The starting vm_area_struct 2620 * @mm: The mm_struct 2621 * @start: The aligned start address to munmap. 2622 * @end: The aligned end address to munmap. 2623 * @uf: The userfaultfd list_head 2624 * @unlock: Set to true to drop the mmap_lock. unlocking only happens on 2625 * success. 2626 * 2627 * Return: 0 on success and drops the lock if so directed, error and leaves the 2628 * lock held otherwise. 2629 */ 2630static int 2631do_vmi_align_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma, 2632 struct mm_struct *mm, unsigned long start, 2633 unsigned long end, struct list_head *uf, bool unlock) 2634{ 2635 struct vm_area_struct *prev, *next = NULL; 2636 struct maple_tree mt_detach; 2637 int count = 0; 2638 int error = -ENOMEM; 2639 unsigned long locked_vm = 0; 2640 MA_STATE(mas_detach, &mt_detach, 0, 0); 2641 mt_init_flags(&mt_detach, vmi->mas.tree->ma_flags & MT_FLAGS_LOCK_MASK); 2642 mt_on_stack(mt_detach); 2643 2644 /* 2645 * If we need to split any vma, do it now to save pain later. 2646 * 2647 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially 2648 * unmapped vm_area_struct will remain in use: so lower split_vma 2649 * places tmp vma above, and higher split_vma places tmp vma below. 2650 */ 2651 2652 /* Does it split the first one? */ 2653 if (start > vma->vm_start) { 2654 2655 /* 2656 * Make sure that map_count on return from munmap() will 2657 * not exceed its limit; but let map_count go just above 2658 * its limit temporarily, to help free resources as expected. 2659 */ 2660 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count) 2661 goto map_count_exceeded; 2662 2663 error = __split_vma(vmi, vma, start, 1); 2664 if (error) 2665 goto start_split_failed; 2666 } 2667 2668 /* 2669 * Detach a range of VMAs from the mm. Using next as a temp variable as 2670 * it is always overwritten. 2671 */ 2672 next = vma; 2673 do { 2674 /* Does it split the end? */ 2675 if (next->vm_end > end) { 2676 error = __split_vma(vmi, next, end, 0); 2677 if (error) 2678 goto end_split_failed; 2679 } 2680 vma_start_write(next); 2681 mas_set(&mas_detach, count); 2682 error = mas_store_gfp(&mas_detach, next, GFP_KERNEL); 2683 if (error) 2684 goto munmap_gather_failed; 2685 vma_mark_detached(next, true); 2686 if (next->vm_flags & VM_LOCKED) 2687 locked_vm += vma_pages(next); 2688 2689 count++; 2690 if (unlikely(uf)) { 2691 /* 2692 * If userfaultfd_unmap_prep returns an error the vmas 2693 * will remain split, but userland will get a 2694 * highly unexpected error anyway. This is no 2695 * different than the case where the first of the two 2696 * __split_vma fails, but we don't undo the first 2697 * split, despite we could. This is unlikely enough 2698 * failure that it's not worth optimizing it for. 2699 */ 2700 error = userfaultfd_unmap_prep(next, start, end, uf); 2701 2702 if (error) 2703 goto userfaultfd_error; 2704 } 2705#ifdef CONFIG_DEBUG_VM_MAPLE_TREE 2706 BUG_ON(next->vm_start < start); 2707 BUG_ON(next->vm_start > end); 2708#endif 2709 } for_each_vma_range(*vmi, next, end); 2710 2711#if defined(CONFIG_DEBUG_VM_MAPLE_TREE) 2712 /* Make sure no VMAs are about to be lost. */ 2713 { 2714 MA_STATE(test, &mt_detach, 0, 0); 2715 struct vm_area_struct *vma_mas, *vma_test; 2716 int test_count = 0; 2717 2718 vma_iter_set(vmi, start); 2719 rcu_read_lock(); 2720 vma_test = mas_find(&test, count - 1); 2721 for_each_vma_range(*vmi, vma_mas, end) { 2722 BUG_ON(vma_mas != vma_test); 2723 test_count++; 2724 vma_test = mas_next(&test, count - 1); 2725 } 2726 rcu_read_unlock(); 2727 BUG_ON(count != test_count); 2728 } 2729#endif 2730 2731 while (vma_iter_addr(vmi) > start) 2732 vma_iter_prev_range(vmi); 2733 2734 error = vma_iter_clear_gfp(vmi, start, end, GFP_KERNEL); 2735 if (error) 2736 goto clear_tree_failed; 2737 2738 /* Point of no return */ 2739 mm->locked_vm -= locked_vm; 2740 mm->map_count -= count; 2741 if (unlock) 2742 mmap_write_downgrade(mm); 2743 2744 prev = vma_iter_prev_range(vmi); 2745 next = vma_next(vmi); 2746 if (next) 2747 vma_iter_prev_range(vmi); 2748 2749 /* 2750 * We can free page tables without write-locking mmap_lock because VMAs 2751 * were isolated before we downgraded mmap_lock. 2752 */ 2753 mas_set(&mas_detach, 1); 2754 unmap_region(mm, &mas_detach, vma, prev, next, start, end, count, 2755 !unlock); 2756 /* Statistics and freeing VMAs */ 2757 mas_set(&mas_detach, 0); 2758 remove_mt(mm, &mas_detach); 2759 validate_mm(mm); 2760 if (unlock) 2761 mmap_read_unlock(mm); 2762 2763 __mt_destroy(&mt_detach); 2764 return 0; 2765 2766clear_tree_failed: 2767userfaultfd_error: 2768munmap_gather_failed: 2769end_split_failed: 2770 mas_set(&mas_detach, 0); 2771 mas_for_each(&mas_detach, next, end) 2772 vma_mark_detached(next, false); 2773 2774 __mt_destroy(&mt_detach); 2775start_split_failed: 2776map_count_exceeded: 2777 validate_mm(mm); 2778 return error; 2779} 2780 2781/* 2782 * do_vmi_munmap() - munmap a given range. 2783 * @vmi: The vma iterator 2784 * @mm: The mm_struct 2785 * @start: The start address to munmap 2786 * @len: The length of the range to munmap 2787 * @uf: The userfaultfd list_head 2788 * @unlock: set to true if the user wants to drop the mmap_lock on success 2789 * 2790 * This function takes a @mas that is either pointing to the previous VMA or set 2791 * to MA_START and sets it up to remove the mapping(s). The @len will be 2792 * aligned and any arch_unmap work will be preformed. 2793 * 2794 * Return: 0 on success and drops the lock if so directed, error and leaves the 2795 * lock held otherwise. 2796 */ 2797int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm, 2798 unsigned long start, size_t len, struct list_head *uf, 2799 bool unlock) 2800{ 2801 unsigned long end; 2802 struct vm_area_struct *vma; 2803 2804 if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start) 2805 return -EINVAL; 2806 2807 end = start + PAGE_ALIGN(len); 2808 if (end == start) 2809 return -EINVAL; 2810 2811 /* 2812 * Check if memory is sealed before arch_unmap. 2813 * Prevent unmapping a sealed VMA. 2814 * can_modify_mm assumes we have acquired the lock on MM. 2815 */ 2816 if (unlikely(!can_modify_mm(mm, start, end))) 2817 return -EPERM; 2818 2819 /* arch_unmap() might do unmaps itself. */ 2820 arch_unmap(mm, start, end); 2821 2822 /* Find the first overlapping VMA */ 2823 vma = vma_find(vmi, end); 2824 if (!vma) { 2825 if (unlock) 2826 mmap_write_unlock(mm); 2827 return 0; 2828 } 2829 2830 return do_vmi_align_munmap(vmi, vma, mm, start, end, uf, unlock); 2831} 2832 | |
2833/* do_munmap() - Wrapper function for non-maple tree aware do_munmap() calls. 2834 * @mm: The mm_struct 2835 * @start: The start address to munmap 2836 * @len: The length to be munmapped. 2837 * @uf: The userfaultfd list_head 2838 * 2839 * Return: 0 on success, error otherwise. 2840 */ --- 645 unchanged lines hidden (view full) --- 3486 vm_unacct_memory(charged); 3487 return -ENOMEM; 3488 } 3489 3490 return 0; 3491} 3492 3493/* | 1344/* do_munmap() - Wrapper function for non-maple tree aware do_munmap() calls. 1345 * @mm: The mm_struct 1346 * @start: The start address to munmap 1347 * @len: The length to be munmapped. 1348 * @uf: The userfaultfd list_head 1349 * 1350 * Return: 0 on success, error otherwise. 1351 */ --- 645 unchanged lines hidden (view full) --- 1997 vm_unacct_memory(charged); 1998 return -ENOMEM; 1999 } 2000 2001 return 0; 2002} 2003 2004/* |
3494 * Copy the vma structure to a new location in the same mm, 3495 * prior to moving page table entries, to effect an mremap move. 3496 */ 3497struct vm_area_struct *copy_vma(struct vm_area_struct **vmap, 3498 unsigned long addr, unsigned long len, pgoff_t pgoff, 3499 bool *need_rmap_locks) 3500{ 3501 struct vm_area_struct *vma = *vmap; 3502 unsigned long vma_start = vma->vm_start; 3503 struct mm_struct *mm = vma->vm_mm; 3504 struct vm_area_struct *new_vma, *prev; 3505 bool faulted_in_anon_vma = true; 3506 VMA_ITERATOR(vmi, mm, addr); 3507 3508 /* 3509 * If anonymous vma has not yet been faulted, update new pgoff 3510 * to match new location, to increase its chance of merging. 3511 */ 3512 if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) { 3513 pgoff = addr >> PAGE_SHIFT; 3514 faulted_in_anon_vma = false; 3515 } 3516 3517 new_vma = find_vma_prev(mm, addr, &prev); 3518 if (new_vma && new_vma->vm_start < addr + len) 3519 return NULL; /* should never get here */ 3520 3521 new_vma = vma_merge_new_vma(&vmi, prev, vma, addr, addr + len, pgoff); 3522 if (new_vma) { 3523 /* 3524 * Source vma may have been merged into new_vma 3525 */ 3526 if (unlikely(vma_start >= new_vma->vm_start && 3527 vma_start < new_vma->vm_end)) { 3528 /* 3529 * The only way we can get a vma_merge with 3530 * self during an mremap is if the vma hasn't 3531 * been faulted in yet and we were allowed to 3532 * reset the dst vma->vm_pgoff to the 3533 * destination address of the mremap to allow 3534 * the merge to happen. mremap must change the 3535 * vm_pgoff linearity between src and dst vmas 3536 * (in turn preventing a vma_merge) to be 3537 * safe. It is only safe to keep the vm_pgoff 3538 * linear if there are no pages mapped yet. 3539 */ 3540 VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma); 3541 *vmap = vma = new_vma; 3542 } 3543 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff); 3544 } else { 3545 new_vma = vm_area_dup(vma); 3546 if (!new_vma) 3547 goto out; 3548 vma_set_range(new_vma, addr, addr + len, pgoff); 3549 if (vma_dup_policy(vma, new_vma)) 3550 goto out_free_vma; 3551 if (anon_vma_clone(new_vma, vma)) 3552 goto out_free_mempol; 3553 if (new_vma->vm_file) 3554 get_file(new_vma->vm_file); 3555 if (new_vma->vm_ops && new_vma->vm_ops->open) 3556 new_vma->vm_ops->open(new_vma); 3557 if (vma_link(mm, new_vma)) 3558 goto out_vma_link; 3559 *need_rmap_locks = false; 3560 } 3561 return new_vma; 3562 3563out_vma_link: 3564 if (new_vma->vm_ops && new_vma->vm_ops->close) 3565 new_vma->vm_ops->close(new_vma); 3566 3567 if (new_vma->vm_file) 3568 fput(new_vma->vm_file); 3569 3570 unlink_anon_vmas(new_vma); 3571out_free_mempol: 3572 mpol_put(vma_policy(new_vma)); 3573out_free_vma: 3574 vm_area_free(new_vma); 3575out: 3576 return NULL; 3577} 3578 3579/* | |
3580 * Return true if the calling process may expand its vm space by the passed 3581 * number of pages 3582 */ 3583bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages) 3584{ 3585 if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT) 3586 return false; 3587 --- 180 unchanged lines hidden (view full) --- 3768{ 3769 struct vm_area_struct *vma = __install_special_mapping( 3770 mm, addr, len, vm_flags, (void *)pages, 3771 &legacy_special_mapping_vmops); 3772 3773 return PTR_ERR_OR_ZERO(vma); 3774} 3775 | 2005 * Return true if the calling process may expand its vm space by the passed 2006 * number of pages 2007 */ 2008bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages) 2009{ 2010 if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT) 2011 return false; 2012 --- 180 unchanged lines hidden (view full) --- 2193{ 2194 struct vm_area_struct *vma = __install_special_mapping( 2195 mm, addr, len, vm_flags, (void *)pages, 2196 &legacy_special_mapping_vmops); 2197 2198 return PTR_ERR_OR_ZERO(vma); 2199} 2200 |
3776static DEFINE_MUTEX(mm_all_locks_mutex); 3777 3778static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma) 3779{ 3780 if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) { 3781 /* 3782 * The LSB of head.next can't change from under us 3783 * because we hold the mm_all_locks_mutex. 3784 */ 3785 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_lock); 3786 /* 3787 * We can safely modify head.next after taking the 3788 * anon_vma->root->rwsem. If some other vma in this mm shares 3789 * the same anon_vma we won't take it again. 3790 * 3791 * No need of atomic instructions here, head.next 3792 * can't change from under us thanks to the 3793 * anon_vma->root->rwsem. 3794 */ 3795 if (__test_and_set_bit(0, (unsigned long *) 3796 &anon_vma->root->rb_root.rb_root.rb_node)) 3797 BUG(); 3798 } 3799} 3800 3801static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping) 3802{ 3803 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) { 3804 /* 3805 * AS_MM_ALL_LOCKS can't change from under us because 3806 * we hold the mm_all_locks_mutex. 3807 * 3808 * Operations on ->flags have to be atomic because 3809 * even if AS_MM_ALL_LOCKS is stable thanks to the 3810 * mm_all_locks_mutex, there may be other cpus 3811 * changing other bitflags in parallel to us. 3812 */ 3813 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags)) 3814 BUG(); 3815 down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_lock); 3816 } 3817} 3818 | |
3819/* | 2201/* |
3820 * This operation locks against the VM for all pte/vma/mm related 3821 * operations that could ever happen on a certain mm. This includes 3822 * vmtruncate, try_to_unmap, and all page faults. 3823 * 3824 * The caller must take the mmap_lock in write mode before calling 3825 * mm_take_all_locks(). The caller isn't allowed to release the 3826 * mmap_lock until mm_drop_all_locks() returns. 3827 * 3828 * mmap_lock in write mode is required in order to block all operations 3829 * that could modify pagetables and free pages without need of 3830 * altering the vma layout. It's also needed in write mode to avoid new 3831 * anon_vmas to be associated with existing vmas. 3832 * 3833 * A single task can't take more than one mm_take_all_locks() in a row 3834 * or it would deadlock. 3835 * 3836 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in 3837 * mapping->flags avoid to take the same lock twice, if more than one 3838 * vma in this mm is backed by the same anon_vma or address_space. 3839 * 3840 * We take locks in following order, accordingly to comment at beginning 3841 * of mm/rmap.c: 3842 * - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for 3843 * hugetlb mapping); 3844 * - all vmas marked locked 3845 * - all i_mmap_rwsem locks; 3846 * - all anon_vma->rwseml 3847 * 3848 * We can take all locks within these types randomly because the VM code 3849 * doesn't nest them and we protected from parallel mm_take_all_locks() by 3850 * mm_all_locks_mutex. 3851 * 3852 * mm_take_all_locks() and mm_drop_all_locks are expensive operations 3853 * that may have to take thousand of locks. 3854 * 3855 * mm_take_all_locks() can fail if it's interrupted by signals. 3856 */ 3857int mm_take_all_locks(struct mm_struct *mm) 3858{ 3859 struct vm_area_struct *vma; 3860 struct anon_vma_chain *avc; 3861 VMA_ITERATOR(vmi, mm, 0); 3862 3863 mmap_assert_write_locked(mm); 3864 3865 mutex_lock(&mm_all_locks_mutex); 3866 3867 /* 3868 * vma_start_write() does not have a complement in mm_drop_all_locks() 3869 * because vma_start_write() is always asymmetrical; it marks a VMA as 3870 * being written to until mmap_write_unlock() or mmap_write_downgrade() 3871 * is reached. 3872 */ 3873 for_each_vma(vmi, vma) { 3874 if (signal_pending(current)) 3875 goto out_unlock; 3876 vma_start_write(vma); 3877 } 3878 3879 vma_iter_init(&vmi, mm, 0); 3880 for_each_vma(vmi, vma) { 3881 if (signal_pending(current)) 3882 goto out_unlock; 3883 if (vma->vm_file && vma->vm_file->f_mapping && 3884 is_vm_hugetlb_page(vma)) 3885 vm_lock_mapping(mm, vma->vm_file->f_mapping); 3886 } 3887 3888 vma_iter_init(&vmi, mm, 0); 3889 for_each_vma(vmi, vma) { 3890 if (signal_pending(current)) 3891 goto out_unlock; 3892 if (vma->vm_file && vma->vm_file->f_mapping && 3893 !is_vm_hugetlb_page(vma)) 3894 vm_lock_mapping(mm, vma->vm_file->f_mapping); 3895 } 3896 3897 vma_iter_init(&vmi, mm, 0); 3898 for_each_vma(vmi, vma) { 3899 if (signal_pending(current)) 3900 goto out_unlock; 3901 if (vma->anon_vma) 3902 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 3903 vm_lock_anon_vma(mm, avc->anon_vma); 3904 } 3905 3906 return 0; 3907 3908out_unlock: 3909 mm_drop_all_locks(mm); 3910 return -EINTR; 3911} 3912 3913static void vm_unlock_anon_vma(struct anon_vma *anon_vma) 3914{ 3915 if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) { 3916 /* 3917 * The LSB of head.next can't change to 0 from under 3918 * us because we hold the mm_all_locks_mutex. 3919 * 3920 * We must however clear the bitflag before unlocking 3921 * the vma so the users using the anon_vma->rb_root will 3922 * never see our bitflag. 3923 * 3924 * No need of atomic instructions here, head.next 3925 * can't change from under us until we release the 3926 * anon_vma->root->rwsem. 3927 */ 3928 if (!__test_and_clear_bit(0, (unsigned long *) 3929 &anon_vma->root->rb_root.rb_root.rb_node)) 3930 BUG(); 3931 anon_vma_unlock_write(anon_vma); 3932 } 3933} 3934 3935static void vm_unlock_mapping(struct address_space *mapping) 3936{ 3937 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) { 3938 /* 3939 * AS_MM_ALL_LOCKS can't change to 0 from under us 3940 * because we hold the mm_all_locks_mutex. 3941 */ 3942 i_mmap_unlock_write(mapping); 3943 if (!test_and_clear_bit(AS_MM_ALL_LOCKS, 3944 &mapping->flags)) 3945 BUG(); 3946 } 3947} 3948 3949/* 3950 * The mmap_lock cannot be released by the caller until 3951 * mm_drop_all_locks() returns. 3952 */ 3953void mm_drop_all_locks(struct mm_struct *mm) 3954{ 3955 struct vm_area_struct *vma; 3956 struct anon_vma_chain *avc; 3957 VMA_ITERATOR(vmi, mm, 0); 3958 3959 mmap_assert_write_locked(mm); 3960 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex)); 3961 3962 for_each_vma(vmi, vma) { 3963 if (vma->anon_vma) 3964 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 3965 vm_unlock_anon_vma(avc->anon_vma); 3966 if (vma->vm_file && vma->vm_file->f_mapping) 3967 vm_unlock_mapping(vma->vm_file->f_mapping); 3968 } 3969 3970 mutex_unlock(&mm_all_locks_mutex); 3971} 3972 3973/* | |
3974 * initialise the percpu counter for VM 3975 */ 3976void __init mmap_init(void) 3977{ 3978 int ret; 3979 3980 ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL); 3981 VM_BUG_ON(ret); --- 190 unchanged lines hidden --- | 2202 * initialise the percpu counter for VM 2203 */ 2204void __init mmap_init(void) 2205{ 2206 int ret; 2207 2208 ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL); 2209 VM_BUG_ON(ret); --- 190 unchanged lines hidden --- |