kexec.c (01b944fe1cd4e21a2a9ed51adbdbafe2d5e905ba) | kexec.c (a43cac0d9dc2073ff2245a171429ddbe1accece7) |
---|---|
1/* 2 * kexec.c - kexec system call 3 * Copyright (C) 2002-2004 Eric Biederman <ebiederm@xmission.com> 4 * 5 * This source code is licensed under the GNU General Public License, 6 * Version 2. See the file COPYING for more details. 7 */ 8 --- 14 unchanged lines hidden (view full) --- 23#include <linux/hardirq.h> 24#include <linux/elf.h> 25#include <linux/elfcore.h> 26#include <linux/utsname.h> 27#include <linux/numa.h> 28#include <linux/suspend.h> 29#include <linux/device.h> 30#include <linux/freezer.h> | 1/* 2 * kexec.c - kexec system call 3 * Copyright (C) 2002-2004 Eric Biederman <ebiederm@xmission.com> 4 * 5 * This source code is licensed under the GNU General Public License, 6 * Version 2. See the file COPYING for more details. 7 */ 8 --- 14 unchanged lines hidden (view full) --- 23#include <linux/hardirq.h> 24#include <linux/elf.h> 25#include <linux/elfcore.h> 26#include <linux/utsname.h> 27#include <linux/numa.h> 28#include <linux/suspend.h> 29#include <linux/device.h> 30#include <linux/freezer.h> |
31#include <linux/vmalloc.h> |
|
31#include <linux/pm.h> 32#include <linux/cpu.h> 33#include <linux/console.h> | 32#include <linux/pm.h> 33#include <linux/cpu.h> 34#include <linux/console.h> |
34#include <linux/vmalloc.h> | |
35#include <linux/swap.h> 36#include <linux/syscore_ops.h> 37#include <linux/compiler.h> 38#include <linux/hugetlb.h> 39 40#include <asm/page.h> 41#include <asm/uaccess.h> 42#include <asm/io.h> 43#include <asm/sections.h> 44 45#include <crypto/hash.h> 46#include <crypto/sha.h> | 35#include <linux/swap.h> 36#include <linux/syscore_ops.h> 37#include <linux/compiler.h> 38#include <linux/hugetlb.h> 39 40#include <asm/page.h> 41#include <asm/uaccess.h> 42#include <asm/io.h> 43#include <asm/sections.h> 44 45#include <crypto/hash.h> 46#include <crypto/sha.h> |
47#include "kexec_internal.h" |
|
47 | 48 |
49DEFINE_MUTEX(kexec_mutex); 50 |
|
48/* Per cpu memory for storing cpu states in case of system crash. */ 49note_buf_t __percpu *crash_notes; 50 51/* vmcoreinfo stuff */ 52static unsigned char vmcoreinfo_data[VMCOREINFO_BYTES]; 53u32 vmcoreinfo_note[VMCOREINFO_NOTE_SIZE/4]; 54size_t vmcoreinfo_size; 55size_t vmcoreinfo_max_size = sizeof(vmcoreinfo_data); 56 57/* Flag to indicate we are going to kexec a new kernel */ 58bool kexec_in_progress = false; 59 | 51/* Per cpu memory for storing cpu states in case of system crash. */ 52note_buf_t __percpu *crash_notes; 53 54/* vmcoreinfo stuff */ 55static unsigned char vmcoreinfo_data[VMCOREINFO_BYTES]; 56u32 vmcoreinfo_note[VMCOREINFO_NOTE_SIZE/4]; 57size_t vmcoreinfo_size; 58size_t vmcoreinfo_max_size = sizeof(vmcoreinfo_data); 59 60/* Flag to indicate we are going to kexec a new kernel */ 61bool kexec_in_progress = false; 62 |
60/* 61 * Declare these symbols weak so that if architecture provides a purgatory, 62 * these will be overridden. 63 */ 64char __weak kexec_purgatory[0]; 65size_t __weak kexec_purgatory_size = 0; | |
66 | 63 |
67#ifdef CONFIG_KEXEC_FILE 68static int kexec_calculate_store_digests(struct kimage *image); 69#endif 70 | |
71/* Location of the reserved area for the crash kernel */ 72struct resource crashk_res = { 73 .name = "Crash kernel", 74 .start = 0, 75 .end = 0, 76 .flags = IORESOURCE_BUSY | IORESOURCE_MEM 77}; 78struct resource crashk_low_res = { --- 62 unchanged lines hidden (view full) --- 141 */ 142 143/* 144 * KIMAGE_NO_DEST is an impossible destination address..., for 145 * allocating pages whose destination address we do not care about. 146 */ 147#define KIMAGE_NO_DEST (-1UL) 148 | 64/* Location of the reserved area for the crash kernel */ 65struct resource crashk_res = { 66 .name = "Crash kernel", 67 .start = 0, 68 .end = 0, 69 .flags = IORESOURCE_BUSY | IORESOURCE_MEM 70}; 71struct resource crashk_low_res = { --- 62 unchanged lines hidden (view full) --- 134 */ 135 136/* 137 * KIMAGE_NO_DEST is an impossible destination address..., for 138 * allocating pages whose destination address we do not care about. 139 */ 140#define KIMAGE_NO_DEST (-1UL) 141 |
149static int kimage_is_destination_range(struct kimage *image, 150 unsigned long start, unsigned long end); | |
151static struct page *kimage_alloc_page(struct kimage *image, 152 gfp_t gfp_mask, 153 unsigned long dest); 154 155static int copy_user_segment_list(struct kimage *image, 156 unsigned long nr_segments, 157 struct kexec_segment __user *segments) 158{ --- 5 unchanged lines hidden (view full) --- 164 segment_bytes = nr_segments * sizeof(*segments); 165 ret = copy_from_user(image->segment, segments, segment_bytes); 166 if (ret) 167 ret = -EFAULT; 168 169 return ret; 170} 171 | 142static struct page *kimage_alloc_page(struct kimage *image, 143 gfp_t gfp_mask, 144 unsigned long dest); 145 146static int copy_user_segment_list(struct kimage *image, 147 unsigned long nr_segments, 148 struct kexec_segment __user *segments) 149{ --- 5 unchanged lines hidden (view full) --- 155 segment_bytes = nr_segments * sizeof(*segments); 156 ret = copy_from_user(image->segment, segments, segment_bytes); 157 if (ret) 158 ret = -EFAULT; 159 160 return ret; 161} 162 |
172static int sanity_check_segment_list(struct kimage *image) | 163int sanity_check_segment_list(struct kimage *image) |
173{ 174 int result, i; 175 unsigned long nr_segments = image->nr_segments; 176 177 /* 178 * Verify we have good destination addresses. The caller is 179 * responsible for making certain we don't attempt to load 180 * the new image into invalid or reserved areas of RAM. This --- 73 unchanged lines hidden (view full) --- 254 (mend > crashk_res.end)) 255 return result; 256 } 257 } 258 259 return 0; 260} 261 | 164{ 165 int result, i; 166 unsigned long nr_segments = image->nr_segments; 167 168 /* 169 * Verify we have good destination addresses. The caller is 170 * responsible for making certain we don't attempt to load 171 * the new image into invalid or reserved areas of RAM. This --- 73 unchanged lines hidden (view full) --- 245 (mend > crashk_res.end)) 246 return result; 247 } 248 } 249 250 return 0; 251} 252 |
262static struct kimage *do_kimage_alloc_init(void) | 253struct kimage *do_kimage_alloc_init(void) |
263{ 264 struct kimage *image; 265 266 /* Allocate a controlling structure */ 267 image = kzalloc(sizeof(*image), GFP_KERNEL); 268 if (!image) 269 return NULL; 270 --- 10 unchanged lines hidden (view full) --- 281 INIT_LIST_HEAD(&image->dest_pages); 282 283 /* Initialize the list of unusable pages */ 284 INIT_LIST_HEAD(&image->unusable_pages); 285 286 return image; 287} 288 | 254{ 255 struct kimage *image; 256 257 /* Allocate a controlling structure */ 258 image = kzalloc(sizeof(*image), GFP_KERNEL); 259 if (!image) 260 return NULL; 261 --- 10 unchanged lines hidden (view full) --- 272 INIT_LIST_HEAD(&image->dest_pages); 273 274 /* Initialize the list of unusable pages */ 275 INIT_LIST_HEAD(&image->unusable_pages); 276 277 return image; 278} 279 |
289static void kimage_free_page_list(struct list_head *list); 290 | |
291static int kimage_alloc_init(struct kimage **rimage, unsigned long entry, 292 unsigned long nr_segments, 293 struct kexec_segment __user *segments, 294 unsigned long flags) 295{ 296 int ret; 297 struct kimage *image; 298 bool kexec_on_panic = flags & KEXEC_ON_CRASH; --- 50 unchanged lines hidden (view full) --- 349 return 0; 350out_free_control_pages: 351 kimage_free_page_list(&image->control_pages); 352out_free_image: 353 kfree(image); 354 return ret; 355} 356 | 280static int kimage_alloc_init(struct kimage **rimage, unsigned long entry, 281 unsigned long nr_segments, 282 struct kexec_segment __user *segments, 283 unsigned long flags) 284{ 285 int ret; 286 struct kimage *image; 287 bool kexec_on_panic = flags & KEXEC_ON_CRASH; --- 50 unchanged lines hidden (view full) --- 338 return 0; 339out_free_control_pages: 340 kimage_free_page_list(&image->control_pages); 341out_free_image: 342 kfree(image); 343 return ret; 344} 345 |
357#ifdef CONFIG_KEXEC_FILE 358static int copy_file_from_fd(int fd, void **buf, unsigned long *buf_len) 359{ 360 struct fd f = fdget(fd); 361 int ret; 362 struct kstat stat; 363 loff_t pos; 364 ssize_t bytes = 0; 365 366 if (!f.file) 367 return -EBADF; 368 369 ret = vfs_getattr(&f.file->f_path, &stat); 370 if (ret) 371 goto out; 372 373 if (stat.size > INT_MAX) { 374 ret = -EFBIG; 375 goto out; 376 } 377 378 /* Don't hand 0 to vmalloc, it whines. */ 379 if (stat.size == 0) { 380 ret = -EINVAL; 381 goto out; 382 } 383 384 *buf = vmalloc(stat.size); 385 if (!*buf) { 386 ret = -ENOMEM; 387 goto out; 388 } 389 390 pos = 0; 391 while (pos < stat.size) { 392 bytes = kernel_read(f.file, pos, (char *)(*buf) + pos, 393 stat.size - pos); 394 if (bytes < 0) { 395 vfree(*buf); 396 ret = bytes; 397 goto out; 398 } 399 400 if (bytes == 0) 401 break; 402 pos += bytes; 403 } 404 405 if (pos != stat.size) { 406 ret = -EBADF; 407 vfree(*buf); 408 goto out; 409 } 410 411 *buf_len = pos; 412out: 413 fdput(f); 414 return ret; 415} 416 417/* Architectures can provide this probe function */ 418int __weak arch_kexec_kernel_image_probe(struct kimage *image, void *buf, 419 unsigned long buf_len) 420{ 421 return -ENOEXEC; 422} 423 424void * __weak arch_kexec_kernel_image_load(struct kimage *image) 425{ 426 return ERR_PTR(-ENOEXEC); 427} 428 429void __weak arch_kimage_file_post_load_cleanup(struct kimage *image) 430{ 431} 432 433int __weak arch_kexec_kernel_verify_sig(struct kimage *image, void *buf, 434 unsigned long buf_len) 435{ 436 return -EKEYREJECTED; 437} 438 439/* Apply relocations of type RELA */ 440int __weak 441arch_kexec_apply_relocations_add(const Elf_Ehdr *ehdr, Elf_Shdr *sechdrs, 442 unsigned int relsec) 443{ 444 pr_err("RELA relocation unsupported.\n"); 445 return -ENOEXEC; 446} 447 448/* Apply relocations of type REL */ 449int __weak 450arch_kexec_apply_relocations(const Elf_Ehdr *ehdr, Elf_Shdr *sechdrs, 451 unsigned int relsec) 452{ 453 pr_err("REL relocation unsupported.\n"); 454 return -ENOEXEC; 455} 456 457/* 458 * Free up memory used by kernel, initrd, and command line. This is temporary 459 * memory allocation which is not needed any more after these buffers have 460 * been loaded into separate segments and have been copied elsewhere. 461 */ 462static void kimage_file_post_load_cleanup(struct kimage *image) 463{ 464 struct purgatory_info *pi = &image->purgatory_info; 465 466 vfree(image->kernel_buf); 467 image->kernel_buf = NULL; 468 469 vfree(image->initrd_buf); 470 image->initrd_buf = NULL; 471 472 kfree(image->cmdline_buf); 473 image->cmdline_buf = NULL; 474 475 vfree(pi->purgatory_buf); 476 pi->purgatory_buf = NULL; 477 478 vfree(pi->sechdrs); 479 pi->sechdrs = NULL; 480 481 /* See if architecture has anything to cleanup post load */ 482 arch_kimage_file_post_load_cleanup(image); 483 484 /* 485 * Above call should have called into bootloader to free up 486 * any data stored in kimage->image_loader_data. It should 487 * be ok now to free it up. 488 */ 489 kfree(image->image_loader_data); 490 image->image_loader_data = NULL; 491} 492 493/* 494 * In file mode list of segments is prepared by kernel. Copy relevant 495 * data from user space, do error checking, prepare segment list 496 */ 497static int 498kimage_file_prepare_segments(struct kimage *image, int kernel_fd, int initrd_fd, 499 const char __user *cmdline_ptr, 500 unsigned long cmdline_len, unsigned flags) 501{ 502 int ret = 0; 503 void *ldata; 504 505 ret = copy_file_from_fd(kernel_fd, &image->kernel_buf, 506 &image->kernel_buf_len); 507 if (ret) 508 return ret; 509 510 /* Call arch image probe handlers */ 511 ret = arch_kexec_kernel_image_probe(image, image->kernel_buf, 512 image->kernel_buf_len); 513 514 if (ret) 515 goto out; 516 517#ifdef CONFIG_KEXEC_VERIFY_SIG 518 ret = arch_kexec_kernel_verify_sig(image, image->kernel_buf, 519 image->kernel_buf_len); 520 if (ret) { 521 pr_debug("kernel signature verification failed.\n"); 522 goto out; 523 } 524 pr_debug("kernel signature verification successful.\n"); 525#endif 526 /* It is possible that there no initramfs is being loaded */ 527 if (!(flags & KEXEC_FILE_NO_INITRAMFS)) { 528 ret = copy_file_from_fd(initrd_fd, &image->initrd_buf, 529 &image->initrd_buf_len); 530 if (ret) 531 goto out; 532 } 533 534 if (cmdline_len) { 535 image->cmdline_buf = kzalloc(cmdline_len, GFP_KERNEL); 536 if (!image->cmdline_buf) { 537 ret = -ENOMEM; 538 goto out; 539 } 540 541 ret = copy_from_user(image->cmdline_buf, cmdline_ptr, 542 cmdline_len); 543 if (ret) { 544 ret = -EFAULT; 545 goto out; 546 } 547 548 image->cmdline_buf_len = cmdline_len; 549 550 /* command line should be a string with last byte null */ 551 if (image->cmdline_buf[cmdline_len - 1] != '\0') { 552 ret = -EINVAL; 553 goto out; 554 } 555 } 556 557 /* Call arch image load handlers */ 558 ldata = arch_kexec_kernel_image_load(image); 559 560 if (IS_ERR(ldata)) { 561 ret = PTR_ERR(ldata); 562 goto out; 563 } 564 565 image->image_loader_data = ldata; 566out: 567 /* In case of error, free up all allocated memory in this function */ 568 if (ret) 569 kimage_file_post_load_cleanup(image); 570 return ret; 571} 572 573static int 574kimage_file_alloc_init(struct kimage **rimage, int kernel_fd, 575 int initrd_fd, const char __user *cmdline_ptr, 576 unsigned long cmdline_len, unsigned long flags) 577{ 578 int ret; 579 struct kimage *image; 580 bool kexec_on_panic = flags & KEXEC_FILE_ON_CRASH; 581 582 image = do_kimage_alloc_init(); 583 if (!image) 584 return -ENOMEM; 585 586 image->file_mode = 1; 587 588 if (kexec_on_panic) { 589 /* Enable special crash kernel control page alloc policy. */ 590 image->control_page = crashk_res.start; 591 image->type = KEXEC_TYPE_CRASH; 592 } 593 594 ret = kimage_file_prepare_segments(image, kernel_fd, initrd_fd, 595 cmdline_ptr, cmdline_len, flags); 596 if (ret) 597 goto out_free_image; 598 599 ret = sanity_check_segment_list(image); 600 if (ret) 601 goto out_free_post_load_bufs; 602 603 ret = -ENOMEM; 604 image->control_code_page = kimage_alloc_control_pages(image, 605 get_order(KEXEC_CONTROL_PAGE_SIZE)); 606 if (!image->control_code_page) { 607 pr_err("Could not allocate control_code_buffer\n"); 608 goto out_free_post_load_bufs; 609 } 610 611 if (!kexec_on_panic) { 612 image->swap_page = kimage_alloc_control_pages(image, 0); 613 if (!image->swap_page) { 614 pr_err("Could not allocate swap buffer\n"); 615 goto out_free_control_pages; 616 } 617 } 618 619 *rimage = image; 620 return 0; 621out_free_control_pages: 622 kimage_free_page_list(&image->control_pages); 623out_free_post_load_bufs: 624 kimage_file_post_load_cleanup(image); 625out_free_image: 626 kfree(image); 627 return ret; 628} 629#else /* CONFIG_KEXEC_FILE */ 630static inline void kimage_file_post_load_cleanup(struct kimage *image) { } 631#endif /* CONFIG_KEXEC_FILE */ 632 633static int kimage_is_destination_range(struct kimage *image, | 346int kimage_is_destination_range(struct kimage *image, |
634 unsigned long start, 635 unsigned long end) 636{ 637 unsigned long i; 638 639 for (i = 0; i < image->nr_segments; i++) { 640 unsigned long mstart, mend; 641 --- 29 unchanged lines hidden (view full) --- 671 672 order = page_private(page); 673 count = 1 << order; 674 for (i = 0; i < count; i++) 675 ClearPageReserved(page + i); 676 __free_pages(page, order); 677} 678 | 347 unsigned long start, 348 unsigned long end) 349{ 350 unsigned long i; 351 352 for (i = 0; i < image->nr_segments; i++) { 353 unsigned long mstart, mend; 354 --- 29 unchanged lines hidden (view full) --- 384 385 order = page_private(page); 386 count = 1 << order; 387 for (i = 0; i < count; i++) 388 ClearPageReserved(page + i); 389 __free_pages(page, order); 390} 391 |
679static void kimage_free_page_list(struct list_head *list) | 392void kimage_free_page_list(struct list_head *list) |
680{ 681 struct list_head *pos, *next; 682 683 list_for_each_safe(pos, next, list) { 684 struct page *page; 685 686 page = list_entry(pos, struct page, lru); 687 list_del(&page->lru); --- 199 unchanged lines hidden (view full) --- 887{ 888 /* Walk through and free any extra destination pages I may have */ 889 kimage_free_page_list(&image->dest_pages); 890 891 /* Walk through and free any unusable pages I have cached */ 892 kimage_free_page_list(&image->unusable_pages); 893 894} | 393{ 394 struct list_head *pos, *next; 395 396 list_for_each_safe(pos, next, list) { 397 struct page *page; 398 399 page = list_entry(pos, struct page, lru); 400 list_del(&page->lru); --- 199 unchanged lines hidden (view full) --- 600{ 601 /* Walk through and free any extra destination pages I may have */ 602 kimage_free_page_list(&image->dest_pages); 603 604 /* Walk through and free any unusable pages I have cached */ 605 kimage_free_page_list(&image->unusable_pages); 606 607} |
895static void kimage_terminate(struct kimage *image) | 608void kimage_terminate(struct kimage *image) |
896{ 897 if (*image->entry != 0) 898 image->entry++; 899 900 *image->entry = IND_DONE; 901} 902 903#define for_each_kimage_entry(image, ptr, entry) \ --- 4 unchanged lines hidden (view full) --- 908static void kimage_free_entry(kimage_entry_t entry) 909{ 910 struct page *page; 911 912 page = pfn_to_page(entry >> PAGE_SHIFT); 913 kimage_free_pages(page); 914} 915 | 609{ 610 if (*image->entry != 0) 611 image->entry++; 612 613 *image->entry = IND_DONE; 614} 615 616#define for_each_kimage_entry(image, ptr, entry) \ --- 4 unchanged lines hidden (view full) --- 621static void kimage_free_entry(kimage_entry_t entry) 622{ 623 struct page *page; 624 625 page = pfn_to_page(entry >> PAGE_SHIFT); 626 kimage_free_pages(page); 627} 628 |
916static void kimage_free(struct kimage *image) | 629void kimage_free(struct kimage *image) |
917{ 918 kimage_entry_t *ptr, entry; 919 kimage_entry_t ind = 0; 920 921 if (!image) 922 return; 923 924 kimage_free_extra_pages(image); --- 274 unchanged lines hidden (view full) --- 1199 else 1200 buf += mchunk; 1201 mbytes -= mchunk; 1202 } 1203out: 1204 return result; 1205} 1206 | 630{ 631 kimage_entry_t *ptr, entry; 632 kimage_entry_t ind = 0; 633 634 if (!image) 635 return; 636 637 kimage_free_extra_pages(image); --- 274 unchanged lines hidden (view full) --- 912 else 913 buf += mchunk; 914 mbytes -= mchunk; 915 } 916out: 917 return result; 918} 919 |
1207static int kimage_load_segment(struct kimage *image, | 920int kimage_load_segment(struct kimage *image, |
1208 struct kexec_segment *segment) 1209{ 1210 int result = -ENOMEM; 1211 1212 switch (image->type) { 1213 case KEXEC_TYPE_DEFAULT: 1214 result = kimage_load_normal_segment(image, segment); 1215 break; --- 24 unchanged lines hidden (view full) --- 1240 * 1241 * kexec does not sync, or unmount filesystems so if you need 1242 * that to happen you need to do that yourself. 1243 */ 1244struct kimage *kexec_image; 1245struct kimage *kexec_crash_image; 1246int kexec_load_disabled; 1247 | 921 struct kexec_segment *segment) 922{ 923 int result = -ENOMEM; 924 925 switch (image->type) { 926 case KEXEC_TYPE_DEFAULT: 927 result = kimage_load_normal_segment(image, segment); 928 break; --- 24 unchanged lines hidden (view full) --- 953 * 954 * kexec does not sync, or unmount filesystems so if you need 955 * that to happen you need to do that yourself. 956 */ 957struct kimage *kexec_image; 958struct kimage *kexec_crash_image; 959int kexec_load_disabled; 960 |
1248static DEFINE_MUTEX(kexec_mutex); 1249 | |
1250SYSCALL_DEFINE4(kexec_load, unsigned long, entry, unsigned long, nr_segments, 1251 struct kexec_segment __user *, segments, unsigned long, flags) 1252{ 1253 struct kimage **dest_image, *image; 1254 int result; 1255 1256 /* We only trust the superuser with rebooting the system. */ 1257 if (!capable(CAP_SYS_BOOT) || kexec_load_disabled) --- 128 unchanged lines hidden (view full) --- 1386 if (result) 1387 return -EFAULT; 1388 } 1389 1390 return sys_kexec_load(entry, nr_segments, ksegments, flags); 1391} 1392#endif 1393 | 961SYSCALL_DEFINE4(kexec_load, unsigned long, entry, unsigned long, nr_segments, 962 struct kexec_segment __user *, segments, unsigned long, flags) 963{ 964 struct kimage **dest_image, *image; 965 int result; 966 967 /* We only trust the superuser with rebooting the system. */ 968 if (!capable(CAP_SYS_BOOT) || kexec_load_disabled) --- 128 unchanged lines hidden (view full) --- 1097 if (result) 1098 return -EFAULT; 1099 } 1100 1101 return sys_kexec_load(entry, nr_segments, ksegments, flags); 1102} 1103#endif 1104 |
1394#ifdef CONFIG_KEXEC_FILE 1395SYSCALL_DEFINE5(kexec_file_load, int, kernel_fd, int, initrd_fd, 1396 unsigned long, cmdline_len, const char __user *, cmdline_ptr, 1397 unsigned long, flags) 1398{ 1399 int ret = 0, i; 1400 struct kimage **dest_image, *image; 1401 1402 /* We only trust the superuser with rebooting the system. */ 1403 if (!capable(CAP_SYS_BOOT) || kexec_load_disabled) 1404 return -EPERM; 1405 1406 /* Make sure we have a legal set of flags */ 1407 if (flags != (flags & KEXEC_FILE_FLAGS)) 1408 return -EINVAL; 1409 1410 image = NULL; 1411 1412 if (!mutex_trylock(&kexec_mutex)) 1413 return -EBUSY; 1414 1415 dest_image = &kexec_image; 1416 if (flags & KEXEC_FILE_ON_CRASH) 1417 dest_image = &kexec_crash_image; 1418 1419 if (flags & KEXEC_FILE_UNLOAD) 1420 goto exchange; 1421 1422 /* 1423 * In case of crash, new kernel gets loaded in reserved region. It is 1424 * same memory where old crash kernel might be loaded. Free any 1425 * current crash dump kernel before we corrupt it. 1426 */ 1427 if (flags & KEXEC_FILE_ON_CRASH) 1428 kimage_free(xchg(&kexec_crash_image, NULL)); 1429 1430 ret = kimage_file_alloc_init(&image, kernel_fd, initrd_fd, cmdline_ptr, 1431 cmdline_len, flags); 1432 if (ret) 1433 goto out; 1434 1435 ret = machine_kexec_prepare(image); 1436 if (ret) 1437 goto out; 1438 1439 ret = kexec_calculate_store_digests(image); 1440 if (ret) 1441 goto out; 1442 1443 for (i = 0; i < image->nr_segments; i++) { 1444 struct kexec_segment *ksegment; 1445 1446 ksegment = &image->segment[i]; 1447 pr_debug("Loading segment %d: buf=0x%p bufsz=0x%zx mem=0x%lx memsz=0x%zx\n", 1448 i, ksegment->buf, ksegment->bufsz, ksegment->mem, 1449 ksegment->memsz); 1450 1451 ret = kimage_load_segment(image, &image->segment[i]); 1452 if (ret) 1453 goto out; 1454 } 1455 1456 kimage_terminate(image); 1457 1458 /* 1459 * Free up any temporary buffers allocated which are not needed 1460 * after image has been loaded 1461 */ 1462 kimage_file_post_load_cleanup(image); 1463exchange: 1464 image = xchg(dest_image, image); 1465out: 1466 mutex_unlock(&kexec_mutex); 1467 kimage_free(image); 1468 return ret; 1469} 1470 1471#endif /* CONFIG_KEXEC_FILE */ 1472 | |
1473void crash_kexec(struct pt_regs *regs) 1474{ 1475 /* Take the kexec_mutex here to prevent sys_kexec_load 1476 * running on one cpu from replacing the crash kernel 1477 * we are using after a panic on a different cpu. 1478 * 1479 * If the crash kernel was not located in a fixed area 1480 * of memory the xchg(&kexec_crash_image) would be --- 538 unchanged lines hidden (view full) --- 2019 arch_crash_save_vmcoreinfo(); 2020 update_vmcoreinfo_note(); 2021 2022 return 0; 2023} 2024 2025subsys_initcall(crash_save_vmcoreinfo_init); 2026 | 1105void crash_kexec(struct pt_regs *regs) 1106{ 1107 /* Take the kexec_mutex here to prevent sys_kexec_load 1108 * running on one cpu from replacing the crash kernel 1109 * we are using after a panic on a different cpu. 1110 * 1111 * If the crash kernel was not located in a fixed area 1112 * of memory the xchg(&kexec_crash_image) would be --- 538 unchanged lines hidden (view full) --- 1651 arch_crash_save_vmcoreinfo(); 1652 update_vmcoreinfo_note(); 1653 1654 return 0; 1655} 1656 1657subsys_initcall(crash_save_vmcoreinfo_init); 1658 |
2027#ifdef CONFIG_KEXEC_FILE 2028static int locate_mem_hole_top_down(unsigned long start, unsigned long end, 2029 struct kexec_buf *kbuf) 2030{ 2031 struct kimage *image = kbuf->image; 2032 unsigned long temp_start, temp_end; 2033 2034 temp_end = min(end, kbuf->buf_max); 2035 temp_start = temp_end - kbuf->memsz; 2036 2037 do { 2038 /* align down start */ 2039 temp_start = temp_start & (~(kbuf->buf_align - 1)); 2040 2041 if (temp_start < start || temp_start < kbuf->buf_min) 2042 return 0; 2043 2044 temp_end = temp_start + kbuf->memsz - 1; 2045 2046 /* 2047 * Make sure this does not conflict with any of existing 2048 * segments 2049 */ 2050 if (kimage_is_destination_range(image, temp_start, temp_end)) { 2051 temp_start = temp_start - PAGE_SIZE; 2052 continue; 2053 } 2054 2055 /* We found a suitable memory range */ 2056 break; 2057 } while (1); 2058 2059 /* If we are here, we found a suitable memory range */ 2060 kbuf->mem = temp_start; 2061 2062 /* Success, stop navigating through remaining System RAM ranges */ 2063 return 1; 2064} 2065 2066static int locate_mem_hole_bottom_up(unsigned long start, unsigned long end, 2067 struct kexec_buf *kbuf) 2068{ 2069 struct kimage *image = kbuf->image; 2070 unsigned long temp_start, temp_end; 2071 2072 temp_start = max(start, kbuf->buf_min); 2073 2074 do { 2075 temp_start = ALIGN(temp_start, kbuf->buf_align); 2076 temp_end = temp_start + kbuf->memsz - 1; 2077 2078 if (temp_end > end || temp_end > kbuf->buf_max) 2079 return 0; 2080 /* 2081 * Make sure this does not conflict with any of existing 2082 * segments 2083 */ 2084 if (kimage_is_destination_range(image, temp_start, temp_end)) { 2085 temp_start = temp_start + PAGE_SIZE; 2086 continue; 2087 } 2088 2089 /* We found a suitable memory range */ 2090 break; 2091 } while (1); 2092 2093 /* If we are here, we found a suitable memory range */ 2094 kbuf->mem = temp_start; 2095 2096 /* Success, stop navigating through remaining System RAM ranges */ 2097 return 1; 2098} 2099 2100static int locate_mem_hole_callback(u64 start, u64 end, void *arg) 2101{ 2102 struct kexec_buf *kbuf = (struct kexec_buf *)arg; 2103 unsigned long sz = end - start + 1; 2104 2105 /* Returning 0 will take to next memory range */ 2106 if (sz < kbuf->memsz) 2107 return 0; 2108 2109 if (end < kbuf->buf_min || start > kbuf->buf_max) 2110 return 0; 2111 2112 /* 2113 * Allocate memory top down with-in ram range. Otherwise bottom up 2114 * allocation. 2115 */ 2116 if (kbuf->top_down) 2117 return locate_mem_hole_top_down(start, end, kbuf); 2118 return locate_mem_hole_bottom_up(start, end, kbuf); 2119} 2120 | |
2121/* | 1659/* |
2122 * Helper function for placing a buffer in a kexec segment. This assumes 2123 * that kexec_mutex is held. 2124 */ 2125int kexec_add_buffer(struct kimage *image, char *buffer, unsigned long bufsz, 2126 unsigned long memsz, unsigned long buf_align, 2127 unsigned long buf_min, unsigned long buf_max, 2128 bool top_down, unsigned long *load_addr) 2129{ 2130 2131 struct kexec_segment *ksegment; 2132 struct kexec_buf buf, *kbuf; 2133 int ret; 2134 2135 /* Currently adding segment this way is allowed only in file mode */ 2136 if (!image->file_mode) 2137 return -EINVAL; 2138 2139 if (image->nr_segments >= KEXEC_SEGMENT_MAX) 2140 return -EINVAL; 2141 2142 /* 2143 * Make sure we are not trying to add buffer after allocating 2144 * control pages. All segments need to be placed first before 2145 * any control pages are allocated. As control page allocation 2146 * logic goes through list of segments to make sure there are 2147 * no destination overlaps. 2148 */ 2149 if (!list_empty(&image->control_pages)) { 2150 WARN_ON(1); 2151 return -EINVAL; 2152 } 2153 2154 memset(&buf, 0, sizeof(struct kexec_buf)); 2155 kbuf = &buf; 2156 kbuf->image = image; 2157 kbuf->buffer = buffer; 2158 kbuf->bufsz = bufsz; 2159 2160 kbuf->memsz = ALIGN(memsz, PAGE_SIZE); 2161 kbuf->buf_align = max(buf_align, PAGE_SIZE); 2162 kbuf->buf_min = buf_min; 2163 kbuf->buf_max = buf_max; 2164 kbuf->top_down = top_down; 2165 2166 /* Walk the RAM ranges and allocate a suitable range for the buffer */ 2167 if (image->type == KEXEC_TYPE_CRASH) 2168 ret = walk_iomem_res("Crash kernel", 2169 IORESOURCE_MEM | IORESOURCE_BUSY, 2170 crashk_res.start, crashk_res.end, kbuf, 2171 locate_mem_hole_callback); 2172 else 2173 ret = walk_system_ram_res(0, -1, kbuf, 2174 locate_mem_hole_callback); 2175 if (ret != 1) { 2176 /* A suitable memory range could not be found for buffer */ 2177 return -EADDRNOTAVAIL; 2178 } 2179 2180 /* Found a suitable memory range */ 2181 ksegment = &image->segment[image->nr_segments]; 2182 ksegment->kbuf = kbuf->buffer; 2183 ksegment->bufsz = kbuf->bufsz; 2184 ksegment->mem = kbuf->mem; 2185 ksegment->memsz = kbuf->memsz; 2186 image->nr_segments++; 2187 *load_addr = ksegment->mem; 2188 return 0; 2189} 2190 2191/* Calculate and store the digest of segments */ 2192static int kexec_calculate_store_digests(struct kimage *image) 2193{ 2194 struct crypto_shash *tfm; 2195 struct shash_desc *desc; 2196 int ret = 0, i, j, zero_buf_sz, sha_region_sz; 2197 size_t desc_size, nullsz; 2198 char *digest; 2199 void *zero_buf; 2200 struct kexec_sha_region *sha_regions; 2201 struct purgatory_info *pi = &image->purgatory_info; 2202 2203 zero_buf = __va(page_to_pfn(ZERO_PAGE(0)) << PAGE_SHIFT); 2204 zero_buf_sz = PAGE_SIZE; 2205 2206 tfm = crypto_alloc_shash("sha256", 0, 0); 2207 if (IS_ERR(tfm)) { 2208 ret = PTR_ERR(tfm); 2209 goto out; 2210 } 2211 2212 desc_size = crypto_shash_descsize(tfm) + sizeof(*desc); 2213 desc = kzalloc(desc_size, GFP_KERNEL); 2214 if (!desc) { 2215 ret = -ENOMEM; 2216 goto out_free_tfm; 2217 } 2218 2219 sha_region_sz = KEXEC_SEGMENT_MAX * sizeof(struct kexec_sha_region); 2220 sha_regions = vzalloc(sha_region_sz); 2221 if (!sha_regions) 2222 goto out_free_desc; 2223 2224 desc->tfm = tfm; 2225 desc->flags = 0; 2226 2227 ret = crypto_shash_init(desc); 2228 if (ret < 0) 2229 goto out_free_sha_regions; 2230 2231 digest = kzalloc(SHA256_DIGEST_SIZE, GFP_KERNEL); 2232 if (!digest) { 2233 ret = -ENOMEM; 2234 goto out_free_sha_regions; 2235 } 2236 2237 for (j = i = 0; i < image->nr_segments; i++) { 2238 struct kexec_segment *ksegment; 2239 2240 ksegment = &image->segment[i]; 2241 /* 2242 * Skip purgatory as it will be modified once we put digest 2243 * info in purgatory. 2244 */ 2245 if (ksegment->kbuf == pi->purgatory_buf) 2246 continue; 2247 2248 ret = crypto_shash_update(desc, ksegment->kbuf, 2249 ksegment->bufsz); 2250 if (ret) 2251 break; 2252 2253 /* 2254 * Assume rest of the buffer is filled with zero and 2255 * update digest accordingly. 2256 */ 2257 nullsz = ksegment->memsz - ksegment->bufsz; 2258 while (nullsz) { 2259 unsigned long bytes = nullsz; 2260 2261 if (bytes > zero_buf_sz) 2262 bytes = zero_buf_sz; 2263 ret = crypto_shash_update(desc, zero_buf, bytes); 2264 if (ret) 2265 break; 2266 nullsz -= bytes; 2267 } 2268 2269 if (ret) 2270 break; 2271 2272 sha_regions[j].start = ksegment->mem; 2273 sha_regions[j].len = ksegment->memsz; 2274 j++; 2275 } 2276 2277 if (!ret) { 2278 ret = crypto_shash_final(desc, digest); 2279 if (ret) 2280 goto out_free_digest; 2281 ret = kexec_purgatory_get_set_symbol(image, "sha_regions", 2282 sha_regions, sha_region_sz, 0); 2283 if (ret) 2284 goto out_free_digest; 2285 2286 ret = kexec_purgatory_get_set_symbol(image, "sha256_digest", 2287 digest, SHA256_DIGEST_SIZE, 0); 2288 if (ret) 2289 goto out_free_digest; 2290 } 2291 2292out_free_digest: 2293 kfree(digest); 2294out_free_sha_regions: 2295 vfree(sha_regions); 2296out_free_desc: 2297 kfree(desc); 2298out_free_tfm: 2299 kfree(tfm); 2300out: 2301 return ret; 2302} 2303 2304/* Actually load purgatory. Lot of code taken from kexec-tools */ 2305static int __kexec_load_purgatory(struct kimage *image, unsigned long min, 2306 unsigned long max, int top_down) 2307{ 2308 struct purgatory_info *pi = &image->purgatory_info; 2309 unsigned long align, buf_align, bss_align, buf_sz, bss_sz, bss_pad; 2310 unsigned long memsz, entry, load_addr, curr_load_addr, bss_addr, offset; 2311 unsigned char *buf_addr, *src; 2312 int i, ret = 0, entry_sidx = -1; 2313 const Elf_Shdr *sechdrs_c; 2314 Elf_Shdr *sechdrs = NULL; 2315 void *purgatory_buf = NULL; 2316 2317 /* 2318 * sechdrs_c points to section headers in purgatory and are read 2319 * only. No modifications allowed. 2320 */ 2321 sechdrs_c = (void *)pi->ehdr + pi->ehdr->e_shoff; 2322 2323 /* 2324 * We can not modify sechdrs_c[] and its fields. It is read only. 2325 * Copy it over to a local copy where one can store some temporary 2326 * data and free it at the end. We need to modify ->sh_addr and 2327 * ->sh_offset fields to keep track of permanent and temporary 2328 * locations of sections. 2329 */ 2330 sechdrs = vzalloc(pi->ehdr->e_shnum * sizeof(Elf_Shdr)); 2331 if (!sechdrs) 2332 return -ENOMEM; 2333 2334 memcpy(sechdrs, sechdrs_c, pi->ehdr->e_shnum * sizeof(Elf_Shdr)); 2335 2336 /* 2337 * We seem to have multiple copies of sections. First copy is which 2338 * is embedded in kernel in read only section. Some of these sections 2339 * will be copied to a temporary buffer and relocated. And these 2340 * sections will finally be copied to their final destination at 2341 * segment load time. 2342 * 2343 * Use ->sh_offset to reflect section address in memory. It will 2344 * point to original read only copy if section is not allocatable. 2345 * Otherwise it will point to temporary copy which will be relocated. 2346 * 2347 * Use ->sh_addr to contain final address of the section where it 2348 * will go during execution time. 2349 */ 2350 for (i = 0; i < pi->ehdr->e_shnum; i++) { 2351 if (sechdrs[i].sh_type == SHT_NOBITS) 2352 continue; 2353 2354 sechdrs[i].sh_offset = (unsigned long)pi->ehdr + 2355 sechdrs[i].sh_offset; 2356 } 2357 2358 /* 2359 * Identify entry point section and make entry relative to section 2360 * start. 2361 */ 2362 entry = pi->ehdr->e_entry; 2363 for (i = 0; i < pi->ehdr->e_shnum; i++) { 2364 if (!(sechdrs[i].sh_flags & SHF_ALLOC)) 2365 continue; 2366 2367 if (!(sechdrs[i].sh_flags & SHF_EXECINSTR)) 2368 continue; 2369 2370 /* Make entry section relative */ 2371 if (sechdrs[i].sh_addr <= pi->ehdr->e_entry && 2372 ((sechdrs[i].sh_addr + sechdrs[i].sh_size) > 2373 pi->ehdr->e_entry)) { 2374 entry_sidx = i; 2375 entry -= sechdrs[i].sh_addr; 2376 break; 2377 } 2378 } 2379 2380 /* Determine how much memory is needed to load relocatable object. */ 2381 buf_align = 1; 2382 bss_align = 1; 2383 buf_sz = 0; 2384 bss_sz = 0; 2385 2386 for (i = 0; i < pi->ehdr->e_shnum; i++) { 2387 if (!(sechdrs[i].sh_flags & SHF_ALLOC)) 2388 continue; 2389 2390 align = sechdrs[i].sh_addralign; 2391 if (sechdrs[i].sh_type != SHT_NOBITS) { 2392 if (buf_align < align) 2393 buf_align = align; 2394 buf_sz = ALIGN(buf_sz, align); 2395 buf_sz += sechdrs[i].sh_size; 2396 } else { 2397 /* bss section */ 2398 if (bss_align < align) 2399 bss_align = align; 2400 bss_sz = ALIGN(bss_sz, align); 2401 bss_sz += sechdrs[i].sh_size; 2402 } 2403 } 2404 2405 /* Determine the bss padding required to align bss properly */ 2406 bss_pad = 0; 2407 if (buf_sz & (bss_align - 1)) 2408 bss_pad = bss_align - (buf_sz & (bss_align - 1)); 2409 2410 memsz = buf_sz + bss_pad + bss_sz; 2411 2412 /* Allocate buffer for purgatory */ 2413 purgatory_buf = vzalloc(buf_sz); 2414 if (!purgatory_buf) { 2415 ret = -ENOMEM; 2416 goto out; 2417 } 2418 2419 if (buf_align < bss_align) 2420 buf_align = bss_align; 2421 2422 /* Add buffer to segment list */ 2423 ret = kexec_add_buffer(image, purgatory_buf, buf_sz, memsz, 2424 buf_align, min, max, top_down, 2425 &pi->purgatory_load_addr); 2426 if (ret) 2427 goto out; 2428 2429 /* Load SHF_ALLOC sections */ 2430 buf_addr = purgatory_buf; 2431 load_addr = curr_load_addr = pi->purgatory_load_addr; 2432 bss_addr = load_addr + buf_sz + bss_pad; 2433 2434 for (i = 0; i < pi->ehdr->e_shnum; i++) { 2435 if (!(sechdrs[i].sh_flags & SHF_ALLOC)) 2436 continue; 2437 2438 align = sechdrs[i].sh_addralign; 2439 if (sechdrs[i].sh_type != SHT_NOBITS) { 2440 curr_load_addr = ALIGN(curr_load_addr, align); 2441 offset = curr_load_addr - load_addr; 2442 /* We already modifed ->sh_offset to keep src addr */ 2443 src = (char *) sechdrs[i].sh_offset; 2444 memcpy(buf_addr + offset, src, sechdrs[i].sh_size); 2445 2446 /* Store load address and source address of section */ 2447 sechdrs[i].sh_addr = curr_load_addr; 2448 2449 /* 2450 * This section got copied to temporary buffer. Update 2451 * ->sh_offset accordingly. 2452 */ 2453 sechdrs[i].sh_offset = (unsigned long)(buf_addr + offset); 2454 2455 /* Advance to the next address */ 2456 curr_load_addr += sechdrs[i].sh_size; 2457 } else { 2458 bss_addr = ALIGN(bss_addr, align); 2459 sechdrs[i].sh_addr = bss_addr; 2460 bss_addr += sechdrs[i].sh_size; 2461 } 2462 } 2463 2464 /* Update entry point based on load address of text section */ 2465 if (entry_sidx >= 0) 2466 entry += sechdrs[entry_sidx].sh_addr; 2467 2468 /* Make kernel jump to purgatory after shutdown */ 2469 image->start = entry; 2470 2471 /* Used later to get/set symbol values */ 2472 pi->sechdrs = sechdrs; 2473 2474 /* 2475 * Used later to identify which section is purgatory and skip it 2476 * from checksumming. 2477 */ 2478 pi->purgatory_buf = purgatory_buf; 2479 return ret; 2480out: 2481 vfree(sechdrs); 2482 vfree(purgatory_buf); 2483 return ret; 2484} 2485 2486static int kexec_apply_relocations(struct kimage *image) 2487{ 2488 int i, ret; 2489 struct purgatory_info *pi = &image->purgatory_info; 2490 Elf_Shdr *sechdrs = pi->sechdrs; 2491 2492 /* Apply relocations */ 2493 for (i = 0; i < pi->ehdr->e_shnum; i++) { 2494 Elf_Shdr *section, *symtab; 2495 2496 if (sechdrs[i].sh_type != SHT_RELA && 2497 sechdrs[i].sh_type != SHT_REL) 2498 continue; 2499 2500 /* 2501 * For section of type SHT_RELA/SHT_REL, 2502 * ->sh_link contains section header index of associated 2503 * symbol table. And ->sh_info contains section header 2504 * index of section to which relocations apply. 2505 */ 2506 if (sechdrs[i].sh_info >= pi->ehdr->e_shnum || 2507 sechdrs[i].sh_link >= pi->ehdr->e_shnum) 2508 return -ENOEXEC; 2509 2510 section = &sechdrs[sechdrs[i].sh_info]; 2511 symtab = &sechdrs[sechdrs[i].sh_link]; 2512 2513 if (!(section->sh_flags & SHF_ALLOC)) 2514 continue; 2515 2516 /* 2517 * symtab->sh_link contain section header index of associated 2518 * string table. 2519 */ 2520 if (symtab->sh_link >= pi->ehdr->e_shnum) 2521 /* Invalid section number? */ 2522 continue; 2523 2524 /* 2525 * Respective architecture needs to provide support for applying 2526 * relocations of type SHT_RELA/SHT_REL. 2527 */ 2528 if (sechdrs[i].sh_type == SHT_RELA) 2529 ret = arch_kexec_apply_relocations_add(pi->ehdr, 2530 sechdrs, i); 2531 else if (sechdrs[i].sh_type == SHT_REL) 2532 ret = arch_kexec_apply_relocations(pi->ehdr, 2533 sechdrs, i); 2534 if (ret) 2535 return ret; 2536 } 2537 2538 return 0; 2539} 2540 2541/* Load relocatable purgatory object and relocate it appropriately */ 2542int kexec_load_purgatory(struct kimage *image, unsigned long min, 2543 unsigned long max, int top_down, 2544 unsigned long *load_addr) 2545{ 2546 struct purgatory_info *pi = &image->purgatory_info; 2547 int ret; 2548 2549 if (kexec_purgatory_size <= 0) 2550 return -EINVAL; 2551 2552 if (kexec_purgatory_size < sizeof(Elf_Ehdr)) 2553 return -ENOEXEC; 2554 2555 pi->ehdr = (Elf_Ehdr *)kexec_purgatory; 2556 2557 if (memcmp(pi->ehdr->e_ident, ELFMAG, SELFMAG) != 0 2558 || pi->ehdr->e_type != ET_REL 2559 || !elf_check_arch(pi->ehdr) 2560 || pi->ehdr->e_shentsize != sizeof(Elf_Shdr)) 2561 return -ENOEXEC; 2562 2563 if (pi->ehdr->e_shoff >= kexec_purgatory_size 2564 || (pi->ehdr->e_shnum * sizeof(Elf_Shdr) > 2565 kexec_purgatory_size - pi->ehdr->e_shoff)) 2566 return -ENOEXEC; 2567 2568 ret = __kexec_load_purgatory(image, min, max, top_down); 2569 if (ret) 2570 return ret; 2571 2572 ret = kexec_apply_relocations(image); 2573 if (ret) 2574 goto out; 2575 2576 *load_addr = pi->purgatory_load_addr; 2577 return 0; 2578out: 2579 vfree(pi->sechdrs); 2580 vfree(pi->purgatory_buf); 2581 return ret; 2582} 2583 2584static Elf_Sym *kexec_purgatory_find_symbol(struct purgatory_info *pi, 2585 const char *name) 2586{ 2587 Elf_Sym *syms; 2588 Elf_Shdr *sechdrs; 2589 Elf_Ehdr *ehdr; 2590 int i, k; 2591 const char *strtab; 2592 2593 if (!pi->sechdrs || !pi->ehdr) 2594 return NULL; 2595 2596 sechdrs = pi->sechdrs; 2597 ehdr = pi->ehdr; 2598 2599 for (i = 0; i < ehdr->e_shnum; i++) { 2600 if (sechdrs[i].sh_type != SHT_SYMTAB) 2601 continue; 2602 2603 if (sechdrs[i].sh_link >= ehdr->e_shnum) 2604 /* Invalid strtab section number */ 2605 continue; 2606 strtab = (char *)sechdrs[sechdrs[i].sh_link].sh_offset; 2607 syms = (Elf_Sym *)sechdrs[i].sh_offset; 2608 2609 /* Go through symbols for a match */ 2610 for (k = 0; k < sechdrs[i].sh_size/sizeof(Elf_Sym); k++) { 2611 if (ELF_ST_BIND(syms[k].st_info) != STB_GLOBAL) 2612 continue; 2613 2614 if (strcmp(strtab + syms[k].st_name, name) != 0) 2615 continue; 2616 2617 if (syms[k].st_shndx == SHN_UNDEF || 2618 syms[k].st_shndx >= ehdr->e_shnum) { 2619 pr_debug("Symbol: %s has bad section index %d.\n", 2620 name, syms[k].st_shndx); 2621 return NULL; 2622 } 2623 2624 /* Found the symbol we are looking for */ 2625 return &syms[k]; 2626 } 2627 } 2628 2629 return NULL; 2630} 2631 2632void *kexec_purgatory_get_symbol_addr(struct kimage *image, const char *name) 2633{ 2634 struct purgatory_info *pi = &image->purgatory_info; 2635 Elf_Sym *sym; 2636 Elf_Shdr *sechdr; 2637 2638 sym = kexec_purgatory_find_symbol(pi, name); 2639 if (!sym) 2640 return ERR_PTR(-EINVAL); 2641 2642 sechdr = &pi->sechdrs[sym->st_shndx]; 2643 2644 /* 2645 * Returns the address where symbol will finally be loaded after 2646 * kexec_load_segment() 2647 */ 2648 return (void *)(sechdr->sh_addr + sym->st_value); 2649} 2650 2651/* 2652 * Get or set value of a symbol. If "get_value" is true, symbol value is 2653 * returned in buf otherwise symbol value is set based on value in buf. 2654 */ 2655int kexec_purgatory_get_set_symbol(struct kimage *image, const char *name, 2656 void *buf, unsigned int size, bool get_value) 2657{ 2658 Elf_Sym *sym; 2659 Elf_Shdr *sechdrs; 2660 struct purgatory_info *pi = &image->purgatory_info; 2661 char *sym_buf; 2662 2663 sym = kexec_purgatory_find_symbol(pi, name); 2664 if (!sym) 2665 return -EINVAL; 2666 2667 if (sym->st_size != size) { 2668 pr_err("symbol %s size mismatch: expected %lu actual %u\n", 2669 name, (unsigned long)sym->st_size, size); 2670 return -EINVAL; 2671 } 2672 2673 sechdrs = pi->sechdrs; 2674 2675 if (sechdrs[sym->st_shndx].sh_type == SHT_NOBITS) { 2676 pr_err("symbol %s is in a bss section. Cannot %s\n", name, 2677 get_value ? "get" : "set"); 2678 return -EINVAL; 2679 } 2680 2681 sym_buf = (unsigned char *)sechdrs[sym->st_shndx].sh_offset + 2682 sym->st_value; 2683 2684 if (get_value) 2685 memcpy((void *)buf, sym_buf, size); 2686 else 2687 memcpy((void *)sym_buf, buf, size); 2688 2689 return 0; 2690} 2691#endif /* CONFIG_KEXEC_FILE */ 2692 2693/* | |
2694 * Move into place and start executing a preloaded standalone 2695 * executable. If nothing was preloaded return an error. 2696 */ 2697int kernel_kexec(void) 2698{ 2699 int error = 0; 2700 2701 if (!mutex_trylock(&kexec_mutex)) --- 79 unchanged lines hidden --- | 1660 * Move into place and start executing a preloaded standalone 1661 * executable. If nothing was preloaded return an error. 1662 */ 1663int kernel_kexec(void) 1664{ 1665 int error = 0; 1666 1667 if (!mutex_trylock(&kexec_mutex)) --- 79 unchanged lines hidden --- |