verifier.c (ab387f0af24e661fc1c2f609664ec9ae6618e3f0) | verifier.c (ab3f0063c48c26c927851b6767824e35a716d878) |
---|---|
1/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 2 * Copyright (c) 2016 Facebook 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of version 2 of the GNU General Public 6 * License as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, but --- 7 unchanged lines hidden (view full) --- 16#include <linux/bpf.h> 17#include <linux/bpf_verifier.h> 18#include <linux/filter.h> 19#include <net/netlink.h> 20#include <linux/file.h> 21#include <linux/vmalloc.h> 22#include <linux/stringify.h> 23 | 1/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 2 * Copyright (c) 2016 Facebook 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of version 2 of the GNU General Public 6 * License as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, but --- 7 unchanged lines hidden (view full) --- 16#include <linux/bpf.h> 17#include <linux/bpf_verifier.h> 18#include <linux/filter.h> 19#include <net/netlink.h> 20#include <linux/file.h> 21#include <linux/vmalloc.h> 22#include <linux/stringify.h> 23 |
24#include "disasm.h" 25 26static const struct bpf_verifier_ops * const bpf_verifier_ops[] = { 27#define BPF_PROG_TYPE(_id, _name) \ 28 [_id] = & _name ## _verifier_ops, 29#define BPF_MAP_TYPE(_id, _ops) 30#include <linux/bpf_types.h> 31#undef BPF_PROG_TYPE 32#undef BPF_MAP_TYPE 33}; 34 |
|
24/* bpf_check() is a static code analyzer that walks eBPF program 25 * instruction by instruction and updates register/stack state. 26 * All paths of conditional branches are analyzed until 'bpf_exit' insn. 27 * 28 * The first pass is depth-first-search to check that the program is a DAG. 29 * It rejects the following programs: 30 * - larger than BPF_MAXINSNS insns 31 * - if loop is present (detected via back-edge) --- 116 unchanged lines hidden (view full) --- 148struct bpf_call_arg_meta { 149 struct bpf_map *map_ptr; 150 bool raw_mode; 151 bool pkt_access; 152 int regno; 153 int access_size; 154}; 155 | 35/* bpf_check() is a static code analyzer that walks eBPF program 36 * instruction by instruction and updates register/stack state. 37 * All paths of conditional branches are analyzed until 'bpf_exit' insn. 38 * 39 * The first pass is depth-first-search to check that the program is a DAG. 40 * It rejects the following programs: 41 * - larger than BPF_MAXINSNS insns 42 * - if loop is present (detected via back-edge) --- 116 unchanged lines hidden (view full) --- 159struct bpf_call_arg_meta { 160 struct bpf_map *map_ptr; 161 bool raw_mode; 162 bool pkt_access; 163 int regno; 164 int access_size; 165}; 166 |
156/* verbose verifier prints what it's seeing 157 * bpf_check() is called under lock, so no race to access these global vars 158 */ 159static u32 log_level, log_size, log_len; 160static char *log_buf; 161 | |
162static DEFINE_MUTEX(bpf_verifier_lock); 163 164/* log_level controls verbosity level of eBPF verifier. 165 * verbose() is used to dump the verification trace to the log, so the user 166 * can figure out what's wrong with the program 167 */ | 167static DEFINE_MUTEX(bpf_verifier_lock); 168 169/* log_level controls verbosity level of eBPF verifier. 170 * verbose() is used to dump the verification trace to the log, so the user 171 * can figure out what's wrong with the program 172 */ |
168static __printf(1, 2) void verbose(const char *fmt, ...) | 173static __printf(2, 3) void verbose(struct bpf_verifier_env *env, 174 const char *fmt, ...) |
169{ | 175{ |
176 struct bpf_verifer_log *log = &env->log; 177 unsigned int n; |
|
170 va_list args; 171 | 178 va_list args; 179 |
172 if (log_level == 0 || log_len >= log_size - 1) | 180 if (!log->level || !log->ubuf || bpf_verifier_log_full(log)) |
173 return; 174 175 va_start(args, fmt); | 181 return; 182 183 va_start(args, fmt); |
176 log_len += vscnprintf(log_buf + log_len, log_size - log_len, fmt, args); | 184 n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args); |
177 va_end(args); | 185 va_end(args); |
186 187 WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1, 188 "verifier log line truncated - local buffer too short\n"); 189 190 n = min(log->len_total - log->len_used - 1, n); 191 log->kbuf[n] = '\0'; 192 193 if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1)) 194 log->len_used += n; 195 else 196 log->ubuf = NULL; |
|
178} 179 | 197} 198 |
199static bool type_is_pkt_pointer(enum bpf_reg_type type) 200{ 201 return type == PTR_TO_PACKET || 202 type == PTR_TO_PACKET_META; 203} 204 |
|
180/* string representation of 'enum bpf_reg_type' */ 181static const char * const reg_type_str[] = { 182 [NOT_INIT] = "?", 183 [SCALAR_VALUE] = "inv", 184 [PTR_TO_CTX] = "ctx", 185 [CONST_PTR_TO_MAP] = "map_ptr", 186 [PTR_TO_MAP_VALUE] = "map_value", 187 [PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null", 188 [PTR_TO_STACK] = "fp", 189 [PTR_TO_PACKET] = "pkt", | 205/* string representation of 'enum bpf_reg_type' */ 206static const char * const reg_type_str[] = { 207 [NOT_INIT] = "?", 208 [SCALAR_VALUE] = "inv", 209 [PTR_TO_CTX] = "ctx", 210 [CONST_PTR_TO_MAP] = "map_ptr", 211 [PTR_TO_MAP_VALUE] = "map_value", 212 [PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null", 213 [PTR_TO_STACK] = "fp", 214 [PTR_TO_PACKET] = "pkt", |
215 [PTR_TO_PACKET_META] = "pkt_meta", |
|
190 [PTR_TO_PACKET_END] = "pkt_end", 191}; 192 | 216 [PTR_TO_PACKET_END] = "pkt_end", 217}; 218 |
193#define __BPF_FUNC_STR_FN(x) [BPF_FUNC_ ## x] = __stringify(bpf_ ## x) 194static const char * const func_id_str[] = { 195 __BPF_FUNC_MAPPER(__BPF_FUNC_STR_FN) 196}; 197#undef __BPF_FUNC_STR_FN 198 199static const char *func_id_name(int id) | 219static void print_verifier_state(struct bpf_verifier_env *env, 220 struct bpf_verifier_state *state) |
200{ | 221{ |
201 BUILD_BUG_ON(ARRAY_SIZE(func_id_str) != __BPF_FUNC_MAX_ID); 202 203 if (id >= 0 && id < __BPF_FUNC_MAX_ID && func_id_str[id]) 204 return func_id_str[id]; 205 else 206 return "unknown"; 207} 208 209static void print_verifier_state(struct bpf_verifier_state *state) 210{ | |
211 struct bpf_reg_state *reg; 212 enum bpf_reg_type t; 213 int i; 214 215 for (i = 0; i < MAX_BPF_REG; i++) { 216 reg = &state->regs[i]; 217 t = reg->type; 218 if (t == NOT_INIT) 219 continue; | 222 struct bpf_reg_state *reg; 223 enum bpf_reg_type t; 224 int i; 225 226 for (i = 0; i < MAX_BPF_REG; i++) { 227 reg = &state->regs[i]; 228 t = reg->type; 229 if (t == NOT_INIT) 230 continue; |
220 verbose(" R%d=%s", i, reg_type_str[t]); | 231 verbose(env, " R%d=%s", i, reg_type_str[t]); |
221 if ((t == SCALAR_VALUE || t == PTR_TO_STACK) && 222 tnum_is_const(reg->var_off)) { 223 /* reg->off should be 0 for SCALAR_VALUE */ | 232 if ((t == SCALAR_VALUE || t == PTR_TO_STACK) && 233 tnum_is_const(reg->var_off)) { 234 /* reg->off should be 0 for SCALAR_VALUE */ |
224 verbose("%lld", reg->var_off.value + reg->off); | 235 verbose(env, "%lld", reg->var_off.value + reg->off); |
225 } else { | 236 } else { |
226 verbose("(id=%d", reg->id); | 237 verbose(env, "(id=%d", reg->id); |
227 if (t != SCALAR_VALUE) | 238 if (t != SCALAR_VALUE) |
228 verbose(",off=%d", reg->off); 229 if (t == PTR_TO_PACKET) 230 verbose(",r=%d", reg->range); | 239 verbose(env, ",off=%d", reg->off); 240 if (type_is_pkt_pointer(t)) 241 verbose(env, ",r=%d", reg->range); |
231 else if (t == CONST_PTR_TO_MAP || 232 t == PTR_TO_MAP_VALUE || 233 t == PTR_TO_MAP_VALUE_OR_NULL) | 242 else if (t == CONST_PTR_TO_MAP || 243 t == PTR_TO_MAP_VALUE || 244 t == PTR_TO_MAP_VALUE_OR_NULL) |
234 verbose(",ks=%d,vs=%d", | 245 verbose(env, ",ks=%d,vs=%d", |
235 reg->map_ptr->key_size, 236 reg->map_ptr->value_size); 237 if (tnum_is_const(reg->var_off)) { 238 /* Typically an immediate SCALAR_VALUE, but 239 * could be a pointer whose offset is too big 240 * for reg->off 241 */ | 246 reg->map_ptr->key_size, 247 reg->map_ptr->value_size); 248 if (tnum_is_const(reg->var_off)) { 249 /* Typically an immediate SCALAR_VALUE, but 250 * could be a pointer whose offset is too big 251 * for reg->off 252 */ |
242 verbose(",imm=%llx", reg->var_off.value); | 253 verbose(env, ",imm=%llx", reg->var_off.value); |
243 } else { 244 if (reg->smin_value != reg->umin_value && 245 reg->smin_value != S64_MIN) | 254 } else { 255 if (reg->smin_value != reg->umin_value && 256 reg->smin_value != S64_MIN) |
246 verbose(",smin_value=%lld", | 257 verbose(env, ",smin_value=%lld", |
247 (long long)reg->smin_value); 248 if (reg->smax_value != reg->umax_value && 249 reg->smax_value != S64_MAX) | 258 (long long)reg->smin_value); 259 if (reg->smax_value != reg->umax_value && 260 reg->smax_value != S64_MAX) |
250 verbose(",smax_value=%lld", | 261 verbose(env, ",smax_value=%lld", |
251 (long long)reg->smax_value); 252 if (reg->umin_value != 0) | 262 (long long)reg->smax_value); 263 if (reg->umin_value != 0) |
253 verbose(",umin_value=%llu", | 264 verbose(env, ",umin_value=%llu", |
254 (unsigned long long)reg->umin_value); 255 if (reg->umax_value != U64_MAX) | 265 (unsigned long long)reg->umin_value); 266 if (reg->umax_value != U64_MAX) |
256 verbose(",umax_value=%llu", | 267 verbose(env, ",umax_value=%llu", |
257 (unsigned long long)reg->umax_value); 258 if (!tnum_is_unknown(reg->var_off)) { 259 char tn_buf[48]; 260 261 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); | 268 (unsigned long long)reg->umax_value); 269 if (!tnum_is_unknown(reg->var_off)) { 270 char tn_buf[48]; 271 272 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); |
262 verbose(",var_off=%s", tn_buf); | 273 verbose(env, ",var_off=%s", tn_buf); |
263 } 264 } | 274 } 275 } |
265 verbose(")"); | 276 verbose(env, ")"); |
266 } 267 } | 277 } 278 } |
268 for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) { 269 if (state->stack_slot_type[i] == STACK_SPILL) 270 verbose(" fp%d=%s", -MAX_BPF_STACK + i, 271 reg_type_str[state->spilled_regs[i / BPF_REG_SIZE].type]); | 279 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 280 if (state->stack[i].slot_type[0] == STACK_SPILL) 281 verbose(env, " fp%d=%s", 282 -MAX_BPF_STACK + i * BPF_REG_SIZE, 283 reg_type_str[state->stack[i].spilled_ptr.type]); |
272 } | 284 } |
273 verbose("\n"); | 285 verbose(env, "\n"); |
274} 275 | 286} 287 |
276static const char *const bpf_class_string[] = { 277 [BPF_LD] = "ld", 278 [BPF_LDX] = "ldx", 279 [BPF_ST] = "st", 280 [BPF_STX] = "stx", 281 [BPF_ALU] = "alu", 282 [BPF_JMP] = "jmp", 283 [BPF_RET] = "BUG", 284 [BPF_ALU64] = "alu64", 285}; | 288static int copy_stack_state(struct bpf_verifier_state *dst, 289 const struct bpf_verifier_state *src) 290{ 291 if (!src->stack) 292 return 0; 293 if (WARN_ON_ONCE(dst->allocated_stack < src->allocated_stack)) { 294 /* internal bug, make state invalid to reject the program */ 295 memset(dst, 0, sizeof(*dst)); 296 return -EFAULT; 297 } 298 memcpy(dst->stack, src->stack, 299 sizeof(*src->stack) * (src->allocated_stack / BPF_REG_SIZE)); 300 return 0; 301} |
286 | 302 |
287static const char *const bpf_alu_string[16] = { 288 [BPF_ADD >> 4] = "+=", 289 [BPF_SUB >> 4] = "-=", 290 [BPF_MUL >> 4] = "*=", 291 [BPF_DIV >> 4] = "/=", 292 [BPF_OR >> 4] = "|=", 293 [BPF_AND >> 4] = "&=", 294 [BPF_LSH >> 4] = "<<=", 295 [BPF_RSH >> 4] = ">>=", 296 [BPF_NEG >> 4] = "neg", 297 [BPF_MOD >> 4] = "%=", 298 [BPF_XOR >> 4] = "^=", 299 [BPF_MOV >> 4] = "=", 300 [BPF_ARSH >> 4] = "s>>=", 301 [BPF_END >> 4] = "endian", 302}; 303 304static const char *const bpf_ldst_string[] = { 305 [BPF_W >> 3] = "u32", 306 [BPF_H >> 3] = "u16", 307 [BPF_B >> 3] = "u8", 308 [BPF_DW >> 3] = "u64", 309}; 310 311static const char *const bpf_jmp_string[16] = { 312 [BPF_JA >> 4] = "jmp", 313 [BPF_JEQ >> 4] = "==", 314 [BPF_JGT >> 4] = ">", 315 [BPF_JLT >> 4] = "<", 316 [BPF_JGE >> 4] = ">=", 317 [BPF_JLE >> 4] = "<=", 318 [BPF_JSET >> 4] = "&", 319 [BPF_JNE >> 4] = "!=", 320 [BPF_JSGT >> 4] = "s>", 321 [BPF_JSLT >> 4] = "s<", 322 [BPF_JSGE >> 4] = "s>=", 323 [BPF_JSLE >> 4] = "s<=", 324 [BPF_CALL >> 4] = "call", 325 [BPF_EXIT >> 4] = "exit", 326}; 327 328static void print_bpf_insn(const struct bpf_verifier_env *env, 329 const struct bpf_insn *insn) | 303/* do_check() starts with zero-sized stack in struct bpf_verifier_state to 304 * make it consume minimal amount of memory. check_stack_write() access from 305 * the program calls into realloc_verifier_state() to grow the stack size. 306 * Note there is a non-zero 'parent' pointer inside bpf_verifier_state 307 * which this function copies over. It points to previous bpf_verifier_state 308 * which is never reallocated 309 */ 310static int realloc_verifier_state(struct bpf_verifier_state *state, int size, 311 bool copy_old) |
330{ | 312{ |
331 u8 class = BPF_CLASS(insn->code); | 313 u32 old_size = state->allocated_stack; 314 struct bpf_stack_state *new_stack; 315 int slot = size / BPF_REG_SIZE; |
332 | 316 |
333 if (class == BPF_ALU || class == BPF_ALU64) { 334 if (BPF_SRC(insn->code) == BPF_X) 335 verbose("(%02x) %sr%d %s %sr%d\n", 336 insn->code, class == BPF_ALU ? "(u32) " : "", 337 insn->dst_reg, 338 bpf_alu_string[BPF_OP(insn->code) >> 4], 339 class == BPF_ALU ? "(u32) " : "", 340 insn->src_reg); 341 else 342 verbose("(%02x) %sr%d %s %s%d\n", 343 insn->code, class == BPF_ALU ? "(u32) " : "", 344 insn->dst_reg, 345 bpf_alu_string[BPF_OP(insn->code) >> 4], 346 class == BPF_ALU ? "(u32) " : "", 347 insn->imm); 348 } else if (class == BPF_STX) { 349 if (BPF_MODE(insn->code) == BPF_MEM) 350 verbose("(%02x) *(%s *)(r%d %+d) = r%d\n", 351 insn->code, 352 bpf_ldst_string[BPF_SIZE(insn->code) >> 3], 353 insn->dst_reg, 354 insn->off, insn->src_reg); 355 else if (BPF_MODE(insn->code) == BPF_XADD) 356 verbose("(%02x) lock *(%s *)(r%d %+d) += r%d\n", 357 insn->code, 358 bpf_ldst_string[BPF_SIZE(insn->code) >> 3], 359 insn->dst_reg, insn->off, 360 insn->src_reg); 361 else 362 verbose("BUG_%02x\n", insn->code); 363 } else if (class == BPF_ST) { 364 if (BPF_MODE(insn->code) != BPF_MEM) { 365 verbose("BUG_st_%02x\n", insn->code); 366 return; | 317 if (size <= old_size || !size) { 318 if (copy_old) 319 return 0; 320 state->allocated_stack = slot * BPF_REG_SIZE; 321 if (!size && old_size) { 322 kfree(state->stack); 323 state->stack = NULL; |
367 } | 324 } |
368 verbose("(%02x) *(%s *)(r%d %+d) = %d\n", 369 insn->code, 370 bpf_ldst_string[BPF_SIZE(insn->code) >> 3], 371 insn->dst_reg, 372 insn->off, insn->imm); 373 } else if (class == BPF_LDX) { 374 if (BPF_MODE(insn->code) != BPF_MEM) { 375 verbose("BUG_ldx_%02x\n", insn->code); 376 return; 377 } 378 verbose("(%02x) r%d = *(%s *)(r%d %+d)\n", 379 insn->code, insn->dst_reg, 380 bpf_ldst_string[BPF_SIZE(insn->code) >> 3], 381 insn->src_reg, insn->off); 382 } else if (class == BPF_LD) { 383 if (BPF_MODE(insn->code) == BPF_ABS) { 384 verbose("(%02x) r0 = *(%s *)skb[%d]\n", 385 insn->code, 386 bpf_ldst_string[BPF_SIZE(insn->code) >> 3], 387 insn->imm); 388 } else if (BPF_MODE(insn->code) == BPF_IND) { 389 verbose("(%02x) r0 = *(%s *)skb[r%d + %d]\n", 390 insn->code, 391 bpf_ldst_string[BPF_SIZE(insn->code) >> 3], 392 insn->src_reg, insn->imm); 393 } else if (BPF_MODE(insn->code) == BPF_IMM && 394 BPF_SIZE(insn->code) == BPF_DW) { 395 /* At this point, we already made sure that the second 396 * part of the ldimm64 insn is accessible. 397 */ 398 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm; 399 bool map_ptr = insn->src_reg == BPF_PSEUDO_MAP_FD; | 325 return 0; 326 } 327 new_stack = kmalloc_array(slot, sizeof(struct bpf_stack_state), 328 GFP_KERNEL); 329 if (!new_stack) 330 return -ENOMEM; 331 if (copy_old) { 332 if (state->stack) 333 memcpy(new_stack, state->stack, 334 sizeof(*new_stack) * (old_size / BPF_REG_SIZE)); 335 memset(new_stack + old_size / BPF_REG_SIZE, 0, 336 sizeof(*new_stack) * (size - old_size) / BPF_REG_SIZE); 337 } 338 state->allocated_stack = slot * BPF_REG_SIZE; 339 kfree(state->stack); 340 state->stack = new_stack; 341 return 0; 342} |
400 | 343 |
401 if (map_ptr && !env->allow_ptr_leaks) 402 imm = 0; | 344static void free_verifier_state(struct bpf_verifier_state *state, 345 bool free_self) 346{ 347 kfree(state->stack); 348 if (free_self) 349 kfree(state); 350} |
403 | 351 |
404 verbose("(%02x) r%d = 0x%llx\n", insn->code, 405 insn->dst_reg, (unsigned long long)imm); 406 } else { 407 verbose("BUG_ld_%02x\n", insn->code); 408 return; 409 } 410 } else if (class == BPF_JMP) { 411 u8 opcode = BPF_OP(insn->code); | 352/* copy verifier state from src to dst growing dst stack space 353 * when necessary to accommodate larger src stack 354 */ 355static int copy_verifier_state(struct bpf_verifier_state *dst, 356 const struct bpf_verifier_state *src) 357{ 358 int err; |
412 | 359 |
413 if (opcode == BPF_CALL) { 414 verbose("(%02x) call %s#%d\n", insn->code, 415 func_id_name(insn->imm), insn->imm); 416 } else if (insn->code == (BPF_JMP | BPF_JA)) { 417 verbose("(%02x) goto pc%+d\n", 418 insn->code, insn->off); 419 } else if (insn->code == (BPF_JMP | BPF_EXIT)) { 420 verbose("(%02x) exit\n", insn->code); 421 } else if (BPF_SRC(insn->code) == BPF_X) { 422 verbose("(%02x) if r%d %s r%d goto pc%+d\n", 423 insn->code, insn->dst_reg, 424 bpf_jmp_string[BPF_OP(insn->code) >> 4], 425 insn->src_reg, insn->off); 426 } else { 427 verbose("(%02x) if r%d %s 0x%x goto pc%+d\n", 428 insn->code, insn->dst_reg, 429 bpf_jmp_string[BPF_OP(insn->code) >> 4], 430 insn->imm, insn->off); 431 } 432 } else { 433 verbose("(%02x) %s\n", insn->code, bpf_class_string[class]); 434 } | 360 err = realloc_verifier_state(dst, src->allocated_stack, false); 361 if (err) 362 return err; 363 memcpy(dst, src, offsetof(struct bpf_verifier_state, allocated_stack)); 364 return copy_stack_state(dst, src); |
435} 436 | 365} 366 |
437static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx) | 367static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx, 368 int *insn_idx) |
438{ | 369{ |
439 struct bpf_verifier_stack_elem *elem; 440 int insn_idx; | 370 struct bpf_verifier_state *cur = env->cur_state; 371 struct bpf_verifier_stack_elem *elem, *head = env->head; 372 int err; |
441 442 if (env->head == NULL) | 373 374 if (env->head == NULL) |
443 return -1; | 375 return -ENOENT; |
444 | 376 |
445 memcpy(&env->cur_state, &env->head->st, sizeof(env->cur_state)); 446 insn_idx = env->head->insn_idx; | 377 if (cur) { 378 err = copy_verifier_state(cur, &head->st); 379 if (err) 380 return err; 381 } 382 if (insn_idx) 383 *insn_idx = head->insn_idx; |
447 if (prev_insn_idx) | 384 if (prev_insn_idx) |
448 *prev_insn_idx = env->head->prev_insn_idx; 449 elem = env->head->next; 450 kfree(env->head); | 385 *prev_insn_idx = head->prev_insn_idx; 386 elem = head->next; 387 free_verifier_state(&head->st, false); 388 kfree(head); |
451 env->head = elem; 452 env->stack_size--; | 389 env->head = elem; 390 env->stack_size--; |
453 return insn_idx; | 391 return 0; |
454} 455 456static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env, 457 int insn_idx, int prev_insn_idx) 458{ | 392} 393 394static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env, 395 int insn_idx, int prev_insn_idx) 396{ |
397 struct bpf_verifier_state *cur = env->cur_state; |
|
459 struct bpf_verifier_stack_elem *elem; | 398 struct bpf_verifier_stack_elem *elem; |
399 int err; |
|
460 | 400 |
461 elem = kmalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL); | 401 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL); |
462 if (!elem) 463 goto err; 464 | 402 if (!elem) 403 goto err; 404 |
465 memcpy(&elem->st, &env->cur_state, sizeof(env->cur_state)); | |
466 elem->insn_idx = insn_idx; 467 elem->prev_insn_idx = prev_insn_idx; 468 elem->next = env->head; 469 env->head = elem; 470 env->stack_size++; | 405 elem->insn_idx = insn_idx; 406 elem->prev_insn_idx = prev_insn_idx; 407 elem->next = env->head; 408 env->head = elem; 409 env->stack_size++; |
410 err = copy_verifier_state(&elem->st, cur); 411 if (err) 412 goto err; |
|
471 if (env->stack_size > BPF_COMPLEXITY_LIMIT_STACK) { | 413 if (env->stack_size > BPF_COMPLEXITY_LIMIT_STACK) { |
472 verbose("BPF program is too complex\n"); | 414 verbose(env, "BPF program is too complex\n"); |
473 goto err; 474 } 475 return &elem->st; 476err: 477 /* pop all elements and return */ | 415 goto err; 416 } 417 return &elem->st; 418err: 419 /* pop all elements and return */ |
478 while (pop_stack(env, NULL) >= 0); | 420 while (!pop_stack(env, NULL, NULL)); |
479 return NULL; 480} 481 482#define CALLER_SAVED_REGS 6 483static const int caller_saved[CALLER_SAVED_REGS] = { 484 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5 485}; 486 --- 15 unchanged lines hidden (view full) --- 502/* Mark the 'variable offset' part of a register as zero. This should be 503 * used only on registers holding a pointer type. 504 */ 505static void __mark_reg_known_zero(struct bpf_reg_state *reg) 506{ 507 __mark_reg_known(reg, 0); 508} 509 | 421 return NULL; 422} 423 424#define CALLER_SAVED_REGS 6 425static const int caller_saved[CALLER_SAVED_REGS] = { 426 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5 427}; 428 --- 15 unchanged lines hidden (view full) --- 444/* Mark the 'variable offset' part of a register as zero. This should be 445 * used only on registers holding a pointer type. 446 */ 447static void __mark_reg_known_zero(struct bpf_reg_state *reg) 448{ 449 __mark_reg_known(reg, 0); 450} 451 |
510static void mark_reg_known_zero(struct bpf_reg_state *regs, u32 regno) | 452static void mark_reg_known_zero(struct bpf_verifier_env *env, 453 struct bpf_reg_state *regs, u32 regno) |
511{ 512 if (WARN_ON(regno >= MAX_BPF_REG)) { | 454{ 455 if (WARN_ON(regno >= MAX_BPF_REG)) { |
513 verbose("mark_reg_known_zero(regs, %u)\n", regno); | 456 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno); |
514 /* Something bad happened, let's kill all regs */ 515 for (regno = 0; regno < MAX_BPF_REG; regno++) 516 __mark_reg_not_init(regs + regno); 517 return; 518 } 519 __mark_reg_known_zero(regs + regno); 520} 521 | 457 /* Something bad happened, let's kill all regs */ 458 for (regno = 0; regno < MAX_BPF_REG; regno++) 459 __mark_reg_not_init(regs + regno); 460 return; 461 } 462 __mark_reg_known_zero(regs + regno); 463} 464 |
465static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg) 466{ 467 return type_is_pkt_pointer(reg->type); 468} 469 470static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg) 471{ 472 return reg_is_pkt_pointer(reg) || 473 reg->type == PTR_TO_PACKET_END; 474} 475 476/* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */ 477static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg, 478 enum bpf_reg_type which) 479{ 480 /* The register can already have a range from prior markings. 481 * This is fine as long as it hasn't been advanced from its 482 * origin. 483 */ 484 return reg->type == which && 485 reg->id == 0 && 486 reg->off == 0 && 487 tnum_equals_const(reg->var_off, 0); 488} 489 |
|
522/* Attempts to improve min/max values based on var_off information */ 523static void __update_reg_bounds(struct bpf_reg_state *reg) 524{ 525 /* min signed is max(sign bit) | min(other bits) */ 526 reg->smin_value = max_t(s64, reg->smin_value, 527 reg->var_off.value | (reg->var_off.mask & S64_MIN)); 528 /* max signed is min(sign bit) | max(other bits) */ 529 reg->smax_value = min_t(s64, reg->smax_value, --- 60 unchanged lines hidden (view full) --- 590{ 591 reg->type = SCALAR_VALUE; 592 reg->id = 0; 593 reg->off = 0; 594 reg->var_off = tnum_unknown; 595 __mark_reg_unbounded(reg); 596} 597 | 490/* Attempts to improve min/max values based on var_off information */ 491static void __update_reg_bounds(struct bpf_reg_state *reg) 492{ 493 /* min signed is max(sign bit) | min(other bits) */ 494 reg->smin_value = max_t(s64, reg->smin_value, 495 reg->var_off.value | (reg->var_off.mask & S64_MIN)); 496 /* max signed is min(sign bit) | max(other bits) */ 497 reg->smax_value = min_t(s64, reg->smax_value, --- 60 unchanged lines hidden (view full) --- 558{ 559 reg->type = SCALAR_VALUE; 560 reg->id = 0; 561 reg->off = 0; 562 reg->var_off = tnum_unknown; 563 __mark_reg_unbounded(reg); 564} 565 |
598static void mark_reg_unknown(struct bpf_reg_state *regs, u32 regno) | 566static void mark_reg_unknown(struct bpf_verifier_env *env, 567 struct bpf_reg_state *regs, u32 regno) |
599{ 600 if (WARN_ON(regno >= MAX_BPF_REG)) { | 568{ 569 if (WARN_ON(regno >= MAX_BPF_REG)) { |
601 verbose("mark_reg_unknown(regs, %u)\n", regno); | 570 verbose(env, "mark_reg_unknown(regs, %u)\n", regno); |
602 /* Something bad happened, let's kill all regs */ 603 for (regno = 0; regno < MAX_BPF_REG; regno++) 604 __mark_reg_not_init(regs + regno); 605 return; 606 } 607 __mark_reg_unknown(regs + regno); 608} 609 610static void __mark_reg_not_init(struct bpf_reg_state *reg) 611{ 612 __mark_reg_unknown(reg); 613 reg->type = NOT_INIT; 614} 615 | 571 /* Something bad happened, let's kill all regs */ 572 for (regno = 0; regno < MAX_BPF_REG; regno++) 573 __mark_reg_not_init(regs + regno); 574 return; 575 } 576 __mark_reg_unknown(regs + regno); 577} 578 579static void __mark_reg_not_init(struct bpf_reg_state *reg) 580{ 581 __mark_reg_unknown(reg); 582 reg->type = NOT_INIT; 583} 584 |
616static void mark_reg_not_init(struct bpf_reg_state *regs, u32 regno) | 585static void mark_reg_not_init(struct bpf_verifier_env *env, 586 struct bpf_reg_state *regs, u32 regno) |
617{ 618 if (WARN_ON(regno >= MAX_BPF_REG)) { | 587{ 588 if (WARN_ON(regno >= MAX_BPF_REG)) { |
619 verbose("mark_reg_not_init(regs, %u)\n", regno); | 589 verbose(env, "mark_reg_not_init(regs, %u)\n", regno); |
620 /* Something bad happened, let's kill all regs */ 621 for (regno = 0; regno < MAX_BPF_REG; regno++) 622 __mark_reg_not_init(regs + regno); 623 return; 624 } 625 __mark_reg_not_init(regs + regno); 626} 627 | 590 /* Something bad happened, let's kill all regs */ 591 for (regno = 0; regno < MAX_BPF_REG; regno++) 592 __mark_reg_not_init(regs + regno); 593 return; 594 } 595 __mark_reg_not_init(regs + regno); 596} 597 |
628static void init_reg_state(struct bpf_reg_state *regs) | 598static void init_reg_state(struct bpf_verifier_env *env, 599 struct bpf_reg_state *regs) |
629{ 630 int i; 631 632 for (i = 0; i < MAX_BPF_REG; i++) { | 600{ 601 int i; 602 603 for (i = 0; i < MAX_BPF_REG; i++) { |
633 mark_reg_not_init(regs, i); | 604 mark_reg_not_init(env, regs, i); |
634 regs[i].live = REG_LIVE_NONE; 635 } 636 637 /* frame pointer */ 638 regs[BPF_REG_FP].type = PTR_TO_STACK; | 605 regs[i].live = REG_LIVE_NONE; 606 } 607 608 /* frame pointer */ 609 regs[BPF_REG_FP].type = PTR_TO_STACK; |
639 mark_reg_known_zero(regs, BPF_REG_FP); | 610 mark_reg_known_zero(env, regs, BPF_REG_FP); |
640 641 /* 1st arg to a function */ 642 regs[BPF_REG_1].type = PTR_TO_CTX; | 611 612 /* 1st arg to a function */ 613 regs[BPF_REG_1].type = PTR_TO_CTX; |
643 mark_reg_known_zero(regs, BPF_REG_1); | 614 mark_reg_known_zero(env, regs, BPF_REG_1); |
644} 645 646enum reg_arg_type { 647 SRC_OP, /* register is used as source operand */ 648 DST_OP, /* register is used as destination operand */ 649 DST_OP_NO_MARK /* same as above, check only, don't mark */ 650}; 651 652static void mark_reg_read(const struct bpf_verifier_state *state, u32 regno) 653{ 654 struct bpf_verifier_state *parent = state->parent; 655 | 615} 616 617enum reg_arg_type { 618 SRC_OP, /* register is used as source operand */ 619 DST_OP, /* register is used as destination operand */ 620 DST_OP_NO_MARK /* same as above, check only, don't mark */ 621}; 622 623static void mark_reg_read(const struct bpf_verifier_state *state, u32 regno) 624{ 625 struct bpf_verifier_state *parent = state->parent; 626 |
627 if (regno == BPF_REG_FP) 628 /* We don't need to worry about FP liveness because it's read-only */ 629 return; 630 |
|
656 while (parent) { 657 /* if read wasn't screened by an earlier write ... */ 658 if (state->regs[regno].live & REG_LIVE_WRITTEN) 659 break; 660 /* ... then we depend on parent's value */ 661 parent->regs[regno].live |= REG_LIVE_READ; 662 state = parent; 663 parent = state->parent; 664 } 665} 666 667static int check_reg_arg(struct bpf_verifier_env *env, u32 regno, 668 enum reg_arg_type t) 669{ | 631 while (parent) { 632 /* if read wasn't screened by an earlier write ... */ 633 if (state->regs[regno].live & REG_LIVE_WRITTEN) 634 break; 635 /* ... then we depend on parent's value */ 636 parent->regs[regno].live |= REG_LIVE_READ; 637 state = parent; 638 parent = state->parent; 639 } 640} 641 642static int check_reg_arg(struct bpf_verifier_env *env, u32 regno, 643 enum reg_arg_type t) 644{ |
670 struct bpf_reg_state *regs = env->cur_state.regs; | 645 struct bpf_reg_state *regs = env->cur_state->regs; |
671 672 if (regno >= MAX_BPF_REG) { | 646 647 if (regno >= MAX_BPF_REG) { |
673 verbose("R%d is invalid\n", regno); | 648 verbose(env, "R%d is invalid\n", regno); |
674 return -EINVAL; 675 } 676 677 if (t == SRC_OP) { 678 /* check whether register used as source operand can be read */ 679 if (regs[regno].type == NOT_INIT) { | 649 return -EINVAL; 650 } 651 652 if (t == SRC_OP) { 653 /* check whether register used as source operand can be read */ 654 if (regs[regno].type == NOT_INIT) { |
680 verbose("R%d !read_ok\n", regno); | 655 verbose(env, "R%d !read_ok\n", regno); |
681 return -EACCES; 682 } | 656 return -EACCES; 657 } |
683 mark_reg_read(&env->cur_state, regno); | 658 mark_reg_read(env->cur_state, regno); |
684 } else { 685 /* check whether register used as dest operand can be written to */ 686 if (regno == BPF_REG_FP) { | 659 } else { 660 /* check whether register used as dest operand can be written to */ 661 if (regno == BPF_REG_FP) { |
687 verbose("frame pointer is read only\n"); | 662 verbose(env, "frame pointer is read only\n"); |
688 return -EACCES; 689 } 690 regs[regno].live |= REG_LIVE_WRITTEN; 691 if (t == DST_OP) | 663 return -EACCES; 664 } 665 regs[regno].live |= REG_LIVE_WRITTEN; 666 if (t == DST_OP) |
692 mark_reg_unknown(regs, regno); | 667 mark_reg_unknown(env, regs, regno); |
693 } 694 return 0; 695} 696 697static bool is_spillable_regtype(enum bpf_reg_type type) 698{ 699 switch (type) { 700 case PTR_TO_MAP_VALUE: 701 case PTR_TO_MAP_VALUE_OR_NULL: 702 case PTR_TO_STACK: 703 case PTR_TO_CTX: 704 case PTR_TO_PACKET: | 668 } 669 return 0; 670} 671 672static bool is_spillable_regtype(enum bpf_reg_type type) 673{ 674 switch (type) { 675 case PTR_TO_MAP_VALUE: 676 case PTR_TO_MAP_VALUE_OR_NULL: 677 case PTR_TO_STACK: 678 case PTR_TO_CTX: 679 case PTR_TO_PACKET: |
680 case PTR_TO_PACKET_META: |
|
705 case PTR_TO_PACKET_END: 706 case CONST_PTR_TO_MAP: 707 return true; 708 default: 709 return false; 710 } 711} 712 713/* check_stack_read/write functions track spill/fill of registers, 714 * stack boundary and alignment are checked in check_mem_access() 715 */ | 681 case PTR_TO_PACKET_END: 682 case CONST_PTR_TO_MAP: 683 return true; 684 default: 685 return false; 686 } 687} 688 689/* check_stack_read/write functions track spill/fill of registers, 690 * stack boundary and alignment are checked in check_mem_access() 691 */ |
716static int check_stack_write(struct bpf_verifier_state *state, int off, | 692static int check_stack_write(struct bpf_verifier_env *env, 693 struct bpf_verifier_state *state, int off, |
717 int size, int value_regno) 718{ | 694 int size, int value_regno) 695{ |
719 int i, spi = (MAX_BPF_STACK + off) / BPF_REG_SIZE; | 696 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err; 697 698 err = realloc_verifier_state(state, round_up(slot + 1, BPF_REG_SIZE), 699 true); 700 if (err) 701 return err; |
720 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0, 721 * so it's aligned access and [off, off + size) are within stack limits 722 */ | 702 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0, 703 * so it's aligned access and [off, off + size) are within stack limits 704 */ |
705 if (!env->allow_ptr_leaks && 706 state->stack[spi].slot_type[0] == STACK_SPILL && 707 size != BPF_REG_SIZE) { 708 verbose(env, "attempt to corrupt spilled pointer on stack\n"); 709 return -EACCES; 710 } |
|
723 724 if (value_regno >= 0 && 725 is_spillable_regtype(state->regs[value_regno].type)) { 726 727 /* register containing pointer is being spilled into stack */ 728 if (size != BPF_REG_SIZE) { | 711 712 if (value_regno >= 0 && 713 is_spillable_regtype(state->regs[value_regno].type)) { 714 715 /* register containing pointer is being spilled into stack */ 716 if (size != BPF_REG_SIZE) { |
729 verbose("invalid size of register spill\n"); | 717 verbose(env, "invalid size of register spill\n"); |
730 return -EACCES; 731 } 732 733 /* save register state */ | 718 return -EACCES; 719 } 720 721 /* save register state */ |
734 state->spilled_regs[spi] = state->regs[value_regno]; 735 state->spilled_regs[spi].live |= REG_LIVE_WRITTEN; | 722 state->stack[spi].spilled_ptr = state->regs[value_regno]; 723 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; |
736 737 for (i = 0; i < BPF_REG_SIZE; i++) | 724 725 for (i = 0; i < BPF_REG_SIZE; i++) |
738 state->stack_slot_type[MAX_BPF_STACK + off + i] = STACK_SPILL; | 726 state->stack[spi].slot_type[i] = STACK_SPILL; |
739 } else { 740 /* regular write of data into stack */ | 727 } else { 728 /* regular write of data into stack */ |
741 state->spilled_regs[spi] = (struct bpf_reg_state) {}; | 729 state->stack[spi].spilled_ptr = (struct bpf_reg_state) {}; |
742 743 for (i = 0; i < size; i++) | 730 731 for (i = 0; i < size; i++) |
744 state->stack_slot_type[MAX_BPF_STACK + off + i] = STACK_MISC; | 732 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] = 733 STACK_MISC; |
745 } 746 return 0; 747} 748 749static void mark_stack_slot_read(const struct bpf_verifier_state *state, int slot) 750{ 751 struct bpf_verifier_state *parent = state->parent; 752 753 while (parent) { 754 /* if read wasn't screened by an earlier write ... */ | 734 } 735 return 0; 736} 737 738static void mark_stack_slot_read(const struct bpf_verifier_state *state, int slot) 739{ 740 struct bpf_verifier_state *parent = state->parent; 741 742 while (parent) { 743 /* if read wasn't screened by an earlier write ... */ |
755 if (state->spilled_regs[slot].live & REG_LIVE_WRITTEN) | 744 if (state->stack[slot].spilled_ptr.live & REG_LIVE_WRITTEN) |
756 break; 757 /* ... then we depend on parent's value */ | 745 break; 746 /* ... then we depend on parent's value */ |
758 parent->spilled_regs[slot].live |= REG_LIVE_READ; | 747 parent->stack[slot].spilled_ptr.live |= REG_LIVE_READ; |
759 state = parent; 760 parent = state->parent; 761 } 762} 763 | 748 state = parent; 749 parent = state->parent; 750 } 751} 752 |
764static int check_stack_read(struct bpf_verifier_state *state, int off, int size, | 753static int check_stack_read(struct bpf_verifier_env *env, 754 struct bpf_verifier_state *state, int off, int size, |
765 int value_regno) 766{ | 755 int value_regno) 756{ |
767 u8 *slot_type; 768 int i, spi; | 757 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE; 758 u8 *stype; |
769 | 759 |
770 slot_type = &state->stack_slot_type[MAX_BPF_STACK + off]; | 760 if (state->allocated_stack <= slot) { 761 verbose(env, "invalid read from stack off %d+0 size %d\n", 762 off, size); 763 return -EACCES; 764 } 765 stype = state->stack[spi].slot_type; |
771 | 766 |
772 if (slot_type[0] == STACK_SPILL) { | 767 if (stype[0] == STACK_SPILL) { |
773 if (size != BPF_REG_SIZE) { | 768 if (size != BPF_REG_SIZE) { |
774 verbose("invalid size of register spill\n"); | 769 verbose(env, "invalid size of register spill\n"); |
775 return -EACCES; 776 } 777 for (i = 1; i < BPF_REG_SIZE; i++) { | 770 return -EACCES; 771 } 772 for (i = 1; i < BPF_REG_SIZE; i++) { |
778 if (slot_type[i] != STACK_SPILL) { 779 verbose("corrupted spill memory\n"); | 773 if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) { 774 verbose(env, "corrupted spill memory\n"); |
780 return -EACCES; 781 } 782 } 783 | 775 return -EACCES; 776 } 777 } 778 |
784 spi = (MAX_BPF_STACK + off) / BPF_REG_SIZE; 785 | |
786 if (value_regno >= 0) { 787 /* restore register state from stack */ | 779 if (value_regno >= 0) { 780 /* restore register state from stack */ |
788 state->regs[value_regno] = state->spilled_regs[spi]; | 781 state->regs[value_regno] = state->stack[spi].spilled_ptr; |
789 mark_stack_slot_read(state, spi); 790 } 791 return 0; 792 } else { 793 for (i = 0; i < size; i++) { | 782 mark_stack_slot_read(state, spi); 783 } 784 return 0; 785 } else { 786 for (i = 0; i < size; i++) { |
794 if (slot_type[i] != STACK_MISC) { 795 verbose("invalid read from stack off %d+%d size %d\n", | 787 if (stype[(slot - i) % BPF_REG_SIZE] != STACK_MISC) { 788 verbose(env, "invalid read from stack off %d+%d size %d\n", |
796 off, i, size); 797 return -EACCES; 798 } 799 } 800 if (value_regno >= 0) 801 /* have read misc data from the stack */ | 789 off, i, size); 790 return -EACCES; 791 } 792 } 793 if (value_regno >= 0) 794 /* have read misc data from the stack */ |
802 mark_reg_unknown(state->regs, value_regno); | 795 mark_reg_unknown(env, state->regs, value_regno); |
803 return 0; 804 } 805} 806 807/* check read/write into map element returned by bpf_map_lookup_elem() */ 808static int __check_map_access(struct bpf_verifier_env *env, u32 regno, int off, 809 int size) 810{ | 796 return 0; 797 } 798} 799 800/* check read/write into map element returned by bpf_map_lookup_elem() */ 801static int __check_map_access(struct bpf_verifier_env *env, u32 regno, int off, 802 int size) 803{ |
811 struct bpf_map *map = env->cur_state.regs[regno].map_ptr; | 804 struct bpf_reg_state *regs = cur_regs(env); 805 struct bpf_map *map = regs[regno].map_ptr; |
812 813 if (off < 0 || size <= 0 || off + size > map->value_size) { | 806 807 if (off < 0 || size <= 0 || off + size > map->value_size) { |
814 verbose("invalid access to map value, value_size=%d off=%d size=%d\n", | 808 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n", |
815 map->value_size, off, size); 816 return -EACCES; 817 } 818 return 0; 819} 820 821/* check read/write into a map element with possible variable offset */ 822static int check_map_access(struct bpf_verifier_env *env, u32 regno, | 809 map->value_size, off, size); 810 return -EACCES; 811 } 812 return 0; 813} 814 815/* check read/write into a map element with possible variable offset */ 816static int check_map_access(struct bpf_verifier_env *env, u32 regno, |
823 int off, int size) | 817 int off, int size) |
824{ | 818{ |
825 struct bpf_verifier_state *state = &env->cur_state; | 819 struct bpf_verifier_state *state = env->cur_state; |
826 struct bpf_reg_state *reg = &state->regs[regno]; 827 int err; 828 829 /* We may have adjusted the register to this map value, so we 830 * need to try adding each of min_value and max_value to off 831 * to make sure our theoretical access will be safe. 832 */ | 820 struct bpf_reg_state *reg = &state->regs[regno]; 821 int err; 822 823 /* We may have adjusted the register to this map value, so we 824 * need to try adding each of min_value and max_value to off 825 * to make sure our theoretical access will be safe. 826 */ |
833 if (log_level) 834 print_verifier_state(state); | 827 if (env->log.level) 828 print_verifier_state(env, state); |
835 /* The minimum value is only important with signed 836 * comparisons where we can't assume the floor of a 837 * value is 0. If we are using signed variables for our 838 * index'es we need to make sure that whatever we use 839 * will have a set floor within our range. 840 */ 841 if (reg->smin_value < 0) { | 829 /* The minimum value is only important with signed 830 * comparisons where we can't assume the floor of a 831 * value is 0. If we are using signed variables for our 832 * index'es we need to make sure that whatever we use 833 * will have a set floor within our range. 834 */ 835 if (reg->smin_value < 0) { |
842 verbose("R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", | 836 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", |
843 regno); 844 return -EACCES; 845 } 846 err = __check_map_access(env, regno, reg->smin_value + off, size); 847 if (err) { | 837 regno); 838 return -EACCES; 839 } 840 err = __check_map_access(env, regno, reg->smin_value + off, size); 841 if (err) { |
848 verbose("R%d min value is outside of the array range\n", regno); | 842 verbose(env, "R%d min value is outside of the array range\n", 843 regno); |
849 return err; 850 } 851 852 /* If we haven't set a max value then we need to bail since we can't be 853 * sure we won't do bad things. 854 * If reg->umax_value + off could overflow, treat that as unbounded too. 855 */ 856 if (reg->umax_value >= BPF_MAX_VAR_OFF) { | 844 return err; 845 } 846 847 /* If we haven't set a max value then we need to bail since we can't be 848 * sure we won't do bad things. 849 * If reg->umax_value + off could overflow, treat that as unbounded too. 850 */ 851 if (reg->umax_value >= BPF_MAX_VAR_OFF) { |
857 verbose("R%d unbounded memory access, make sure to bounds check any array access into a map\n", | 852 verbose(env, "R%d unbounded memory access, make sure to bounds check any array access into a map\n", |
858 regno); 859 return -EACCES; 860 } 861 err = __check_map_access(env, regno, reg->umax_value + off, size); 862 if (err) | 853 regno); 854 return -EACCES; 855 } 856 err = __check_map_access(env, regno, reg->umax_value + off, size); 857 if (err) |
863 verbose("R%d max value is outside of the array range\n", regno); | 858 verbose(env, "R%d max value is outside of the array range\n", 859 regno); |
864 return err; 865} 866 867#define MAX_PACKET_OFF 0xffff 868 869static bool may_access_direct_pkt_data(struct bpf_verifier_env *env, 870 const struct bpf_call_arg_meta *meta, 871 enum bpf_access_type t) --- 18 unchanged lines hidden (view full) --- 890 default: 891 return false; 892 } 893} 894 895static int __check_packet_access(struct bpf_verifier_env *env, u32 regno, 896 int off, int size) 897{ | 860 return err; 861} 862 863#define MAX_PACKET_OFF 0xffff 864 865static bool may_access_direct_pkt_data(struct bpf_verifier_env *env, 866 const struct bpf_call_arg_meta *meta, 867 enum bpf_access_type t) --- 18 unchanged lines hidden (view full) --- 886 default: 887 return false; 888 } 889} 890 891static int __check_packet_access(struct bpf_verifier_env *env, u32 regno, 892 int off, int size) 893{ |
898 struct bpf_reg_state *regs = env->cur_state.regs; | 894 struct bpf_reg_state *regs = cur_regs(env); |
899 struct bpf_reg_state *reg = ®s[regno]; 900 901 if (off < 0 || size <= 0 || (u64)off + size > reg->range) { | 895 struct bpf_reg_state *reg = ®s[regno]; 896 897 if (off < 0 || size <= 0 || (u64)off + size > reg->range) { |
902 verbose("invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n", | 898 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n", |
903 off, size, regno, reg->id, reg->off, reg->range); 904 return -EACCES; 905 } 906 return 0; 907} 908 909static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off, 910 int size) 911{ | 899 off, size, regno, reg->id, reg->off, reg->range); 900 return -EACCES; 901 } 902 return 0; 903} 904 905static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off, 906 int size) 907{ |
912 struct bpf_reg_state *regs = env->cur_state.regs; | 908 struct bpf_reg_state *regs = cur_regs(env); |
913 struct bpf_reg_state *reg = ®s[regno]; 914 int err; 915 916 /* We may have added a variable offset to the packet pointer; but any 917 * reg->range we have comes after that. We are only checking the fixed 918 * offset. 919 */ 920 921 /* We don't allow negative numbers, because we aren't tracking enough 922 * detail to prove they're safe. 923 */ 924 if (reg->smin_value < 0) { | 909 struct bpf_reg_state *reg = ®s[regno]; 910 int err; 911 912 /* We may have added a variable offset to the packet pointer; but any 913 * reg->range we have comes after that. We are only checking the fixed 914 * offset. 915 */ 916 917 /* We don't allow negative numbers, because we aren't tracking enough 918 * detail to prove they're safe. 919 */ 920 if (reg->smin_value < 0) { |
925 verbose("R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", | 921 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", |
926 regno); 927 return -EACCES; 928 } 929 err = __check_packet_access(env, regno, off, size); 930 if (err) { | 922 regno); 923 return -EACCES; 924 } 925 err = __check_packet_access(env, regno, off, size); 926 if (err) { |
931 verbose("R%d offset is outside of the packet\n", regno); | 927 verbose(env, "R%d offset is outside of the packet\n", regno); |
932 return err; 933 } 934 return err; 935} 936 937/* check access to 'struct bpf_context' fields. Supports fixed offsets only */ 938static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size, 939 enum bpf_access_type t, enum bpf_reg_type *reg_type) 940{ 941 struct bpf_insn_access_aux info = { 942 .reg_type = *reg_type, 943 }; 944 | 928 return err; 929 } 930 return err; 931} 932 933/* check access to 'struct bpf_context' fields. Supports fixed offsets only */ 934static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size, 935 enum bpf_access_type t, enum bpf_reg_type *reg_type) 936{ 937 struct bpf_insn_access_aux info = { 938 .reg_type = *reg_type, 939 }; 940 |
945 /* for analyzer ctx accesses are already validated and converted */ 946 if (env->analyzer_ops) 947 return 0; 948 949 if (env->prog->aux->ops->is_valid_access && 950 env->prog->aux->ops->is_valid_access(off, size, t, &info)) { | 941 if (env->ops->is_valid_access && 942 env->ops->is_valid_access(off, size, t, &info)) { |
951 /* A non zero info.ctx_field_size indicates that this field is a 952 * candidate for later verifier transformation to load the whole 953 * field and then apply a mask when accessed with a narrower 954 * access than actual ctx access size. A zero info.ctx_field_size 955 * will only allow for whole field access and rejects any other 956 * type of narrower access. 957 */ | 943 /* A non zero info.ctx_field_size indicates that this field is a 944 * candidate for later verifier transformation to load the whole 945 * field and then apply a mask when accessed with a narrower 946 * access than actual ctx access size. A zero info.ctx_field_size 947 * will only allow for whole field access and rejects any other 948 * type of narrower access. 949 */ |
958 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size; | |
959 *reg_type = info.reg_type; 960 | 950 *reg_type = info.reg_type; 951 |
952 if (env->analyzer_ops) 953 return 0; 954 955 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size; |
|
961 /* remember the offset of last byte accessed in ctx */ 962 if (env->prog->aux->max_ctx_offset < off + size) 963 env->prog->aux->max_ctx_offset = off + size; 964 return 0; 965 } 966 | 956 /* remember the offset of last byte accessed in ctx */ 957 if (env->prog->aux->max_ctx_offset < off + size) 958 env->prog->aux->max_ctx_offset = off + size; 959 return 0; 960 } 961 |
967 verbose("invalid bpf_context access off=%d size=%d\n", off, size); | 962 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size); |
968 return -EACCES; 969} 970 971static bool __is_pointer_value(bool allow_ptr_leaks, 972 const struct bpf_reg_state *reg) 973{ 974 if (allow_ptr_leaks) 975 return false; 976 977 return reg->type != SCALAR_VALUE; 978} 979 980static bool is_pointer_value(struct bpf_verifier_env *env, int regno) 981{ | 963 return -EACCES; 964} 965 966static bool __is_pointer_value(bool allow_ptr_leaks, 967 const struct bpf_reg_state *reg) 968{ 969 if (allow_ptr_leaks) 970 return false; 971 972 return reg->type != SCALAR_VALUE; 973} 974 975static bool is_pointer_value(struct bpf_verifier_env *env, int regno) 976{ |
982 return __is_pointer_value(env->allow_ptr_leaks, &env->cur_state.regs[regno]); | 977 return __is_pointer_value(env->allow_ptr_leaks, cur_regs(env) + regno); |
983} 984 | 978} 979 |
985static int check_pkt_ptr_alignment(const struct bpf_reg_state *reg, | 980static int check_pkt_ptr_alignment(struct bpf_verifier_env *env, 981 const struct bpf_reg_state *reg, |
986 int off, int size, bool strict) 987{ 988 struct tnum reg_off; 989 int ip_align; 990 991 /* Byte size accesses are always allowed. */ 992 if (!strict || size == 1) 993 return 0; --- 8 unchanged lines hidden (view full) --- 1002 */ 1003 ip_align = 2; 1004 1005 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off)); 1006 if (!tnum_is_aligned(reg_off, size)) { 1007 char tn_buf[48]; 1008 1009 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); | 982 int off, int size, bool strict) 983{ 984 struct tnum reg_off; 985 int ip_align; 986 987 /* Byte size accesses are always allowed. */ 988 if (!strict || size == 1) 989 return 0; --- 8 unchanged lines hidden (view full) --- 998 */ 999 ip_align = 2; 1000 1001 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off)); 1002 if (!tnum_is_aligned(reg_off, size)) { 1003 char tn_buf[48]; 1004 1005 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); |
1010 verbose("misaligned packet access off %d+%s+%d+%d size %d\n", | 1006 verbose(env, 1007 "misaligned packet access off %d+%s+%d+%d size %d\n", |
1011 ip_align, tn_buf, reg->off, off, size); 1012 return -EACCES; 1013 } 1014 1015 return 0; 1016} 1017 | 1008 ip_align, tn_buf, reg->off, off, size); 1009 return -EACCES; 1010 } 1011 1012 return 0; 1013} 1014 |
1018static int check_generic_ptr_alignment(const struct bpf_reg_state *reg, | 1015static int check_generic_ptr_alignment(struct bpf_verifier_env *env, 1016 const struct bpf_reg_state *reg, |
1019 const char *pointer_desc, 1020 int off, int size, bool strict) 1021{ 1022 struct tnum reg_off; 1023 1024 /* Byte size accesses are always allowed. */ 1025 if (!strict || size == 1) 1026 return 0; 1027 1028 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off)); 1029 if (!tnum_is_aligned(reg_off, size)) { 1030 char tn_buf[48]; 1031 1032 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); | 1017 const char *pointer_desc, 1018 int off, int size, bool strict) 1019{ 1020 struct tnum reg_off; 1021 1022 /* Byte size accesses are always allowed. */ 1023 if (!strict || size == 1) 1024 return 0; 1025 1026 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off)); 1027 if (!tnum_is_aligned(reg_off, size)) { 1028 char tn_buf[48]; 1029 1030 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); |
1033 verbose("misaligned %saccess off %s+%d+%d size %d\n", | 1031 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n", |
1034 pointer_desc, tn_buf, reg->off, off, size); 1035 return -EACCES; 1036 } 1037 1038 return 0; 1039} 1040 1041static int check_ptr_alignment(struct bpf_verifier_env *env, 1042 const struct bpf_reg_state *reg, 1043 int off, int size) 1044{ 1045 bool strict = env->strict_alignment; 1046 const char *pointer_desc = ""; 1047 1048 switch (reg->type) { 1049 case PTR_TO_PACKET: | 1032 pointer_desc, tn_buf, reg->off, off, size); 1033 return -EACCES; 1034 } 1035 1036 return 0; 1037} 1038 1039static int check_ptr_alignment(struct bpf_verifier_env *env, 1040 const struct bpf_reg_state *reg, 1041 int off, int size) 1042{ 1043 bool strict = env->strict_alignment; 1044 const char *pointer_desc = ""; 1045 1046 switch (reg->type) { 1047 case PTR_TO_PACKET: |
1050 /* special case, because of NET_IP_ALIGN */ 1051 return check_pkt_ptr_alignment(reg, off, size, strict); | 1048 case PTR_TO_PACKET_META: 1049 /* Special case, because of NET_IP_ALIGN. Given metadata sits 1050 * right in front, treat it the very same way. 1051 */ 1052 return check_pkt_ptr_alignment(env, reg, off, size, strict); |
1052 case PTR_TO_MAP_VALUE: 1053 pointer_desc = "value "; 1054 break; 1055 case PTR_TO_CTX: 1056 pointer_desc = "context "; 1057 break; 1058 case PTR_TO_STACK: 1059 pointer_desc = "stack "; 1060 break; 1061 default: 1062 break; 1063 } | 1053 case PTR_TO_MAP_VALUE: 1054 pointer_desc = "value "; 1055 break; 1056 case PTR_TO_CTX: 1057 pointer_desc = "context "; 1058 break; 1059 case PTR_TO_STACK: 1060 pointer_desc = "stack "; 1061 break; 1062 default: 1063 break; 1064 } |
1064 return check_generic_ptr_alignment(reg, pointer_desc, off, size, strict); | 1065 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size, 1066 strict); |
1065} 1066 1067/* check whether memory at (regno + off) is accessible for t = (read | write) 1068 * if t==write, value_regno is a register which value is stored into memory 1069 * if t==read, value_regno is a register which will receive the value from memory 1070 * if t==write && value_regno==-1, some unknown value is stored into memory 1071 * if t==read && value_regno==-1, don't care what we read from memory 1072 */ 1073static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno, int off, 1074 int bpf_size, enum bpf_access_type t, 1075 int value_regno) 1076{ | 1067} 1068 1069/* check whether memory at (regno + off) is accessible for t = (read | write) 1070 * if t==write, value_regno is a register which value is stored into memory 1071 * if t==read, value_regno is a register which will receive the value from memory 1072 * if t==write && value_regno==-1, some unknown value is stored into memory 1073 * if t==read && value_regno==-1, don't care what we read from memory 1074 */ 1075static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno, int off, 1076 int bpf_size, enum bpf_access_type t, 1077 int value_regno) 1078{ |
1077 struct bpf_verifier_state *state = &env->cur_state; 1078 struct bpf_reg_state *reg = &state->regs[regno]; | 1079 struct bpf_verifier_state *state = env->cur_state; 1080 struct bpf_reg_state *regs = cur_regs(env); 1081 struct bpf_reg_state *reg = regs + regno; |
1079 int size, err = 0; 1080 1081 size = bpf_size_to_bytes(bpf_size); 1082 if (size < 0) 1083 return size; 1084 1085 /* alignment checks will add in reg->off themselves */ 1086 err = check_ptr_alignment(env, reg, off, size); 1087 if (err) 1088 return err; 1089 1090 /* for access checks, reg->off is just part of off */ 1091 off += reg->off; 1092 1093 if (reg->type == PTR_TO_MAP_VALUE) { 1094 if (t == BPF_WRITE && value_regno >= 0 && 1095 is_pointer_value(env, value_regno)) { | 1082 int size, err = 0; 1083 1084 size = bpf_size_to_bytes(bpf_size); 1085 if (size < 0) 1086 return size; 1087 1088 /* alignment checks will add in reg->off themselves */ 1089 err = check_ptr_alignment(env, reg, off, size); 1090 if (err) 1091 return err; 1092 1093 /* for access checks, reg->off is just part of off */ 1094 off += reg->off; 1095 1096 if (reg->type == PTR_TO_MAP_VALUE) { 1097 if (t == BPF_WRITE && value_regno >= 0 && 1098 is_pointer_value(env, value_regno)) { |
1096 verbose("R%d leaks addr into map\n", value_regno); | 1099 verbose(env, "R%d leaks addr into map\n", value_regno); |
1097 return -EACCES; 1098 } 1099 1100 err = check_map_access(env, regno, off, size); 1101 if (!err && t == BPF_READ && value_regno >= 0) | 1100 return -EACCES; 1101 } 1102 1103 err = check_map_access(env, regno, off, size); 1104 if (!err && t == BPF_READ && value_regno >= 0) |
1102 mark_reg_unknown(state->regs, value_regno); | 1105 mark_reg_unknown(env, regs, value_regno); |
1103 1104 } else if (reg->type == PTR_TO_CTX) { 1105 enum bpf_reg_type reg_type = SCALAR_VALUE; 1106 1107 if (t == BPF_WRITE && value_regno >= 0 && 1108 is_pointer_value(env, value_regno)) { | 1106 1107 } else if (reg->type == PTR_TO_CTX) { 1108 enum bpf_reg_type reg_type = SCALAR_VALUE; 1109 1110 if (t == BPF_WRITE && value_regno >= 0 && 1111 is_pointer_value(env, value_regno)) { |
1109 verbose("R%d leaks addr into ctx\n", value_regno); | 1112 verbose(env, "R%d leaks addr into ctx\n", value_regno); |
1110 return -EACCES; 1111 } 1112 /* ctx accesses must be at a fixed offset, so that we can 1113 * determine what type of data were returned. 1114 */ | 1113 return -EACCES; 1114 } 1115 /* ctx accesses must be at a fixed offset, so that we can 1116 * determine what type of data were returned. 1117 */ |
1115 if (!tnum_is_const(reg->var_off)) { | 1118 if (reg->off) { 1119 verbose(env, 1120 "dereference of modified ctx ptr R%d off=%d+%d, ctx+const is allowed, ctx+const+const is not\n", 1121 regno, reg->off, off - reg->off); 1122 return -EACCES; 1123 } 1124 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { |
1116 char tn_buf[48]; 1117 1118 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); | 1125 char tn_buf[48]; 1126 1127 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); |
1119 verbose("variable ctx access var_off=%s off=%d size=%d", | 1128 verbose(env, 1129 "variable ctx access var_off=%s off=%d size=%d", |
1120 tn_buf, off, size); 1121 return -EACCES; 1122 } | 1130 tn_buf, off, size); 1131 return -EACCES; 1132 } |
1123 off += reg->var_off.value; | |
1124 err = check_ctx_access(env, insn_idx, off, size, t, ®_type); 1125 if (!err && t == BPF_READ && value_regno >= 0) { 1126 /* ctx access returns either a scalar, or a | 1133 err = check_ctx_access(env, insn_idx, off, size, t, ®_type); 1134 if (!err && t == BPF_READ && value_regno >= 0) { 1135 /* ctx access returns either a scalar, or a |
1127 * PTR_TO_PACKET[_END]. In the latter case, we know 1128 * the offset is zero. | 1136 * PTR_TO_PACKET[_META,_END]. In the latter 1137 * case, we know the offset is zero. |
1129 */ 1130 if (reg_type == SCALAR_VALUE) | 1138 */ 1139 if (reg_type == SCALAR_VALUE) |
1131 mark_reg_unknown(state->regs, value_regno); | 1140 mark_reg_unknown(env, regs, value_regno); |
1132 else | 1141 else |
1133 mark_reg_known_zero(state->regs, value_regno); 1134 state->regs[value_regno].id = 0; 1135 state->regs[value_regno].off = 0; 1136 state->regs[value_regno].range = 0; 1137 state->regs[value_regno].type = reg_type; | 1142 mark_reg_known_zero(env, regs, 1143 value_regno); 1144 regs[value_regno].id = 0; 1145 regs[value_regno].off = 0; 1146 regs[value_regno].range = 0; 1147 regs[value_regno].type = reg_type; |
1138 } 1139 1140 } else if (reg->type == PTR_TO_STACK) { 1141 /* stack accesses must be at a fixed offset, so that we can 1142 * determine what type of data were returned. 1143 * See check_stack_read(). 1144 */ 1145 if (!tnum_is_const(reg->var_off)) { 1146 char tn_buf[48]; 1147 1148 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); | 1148 } 1149 1150 } else if (reg->type == PTR_TO_STACK) { 1151 /* stack accesses must be at a fixed offset, so that we can 1152 * determine what type of data were returned. 1153 * See check_stack_read(). 1154 */ 1155 if (!tnum_is_const(reg->var_off)) { 1156 char tn_buf[48]; 1157 1158 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); |
1149 verbose("variable stack access var_off=%s off=%d size=%d", | 1159 verbose(env, "variable stack access var_off=%s off=%d size=%d", |
1150 tn_buf, off, size); 1151 return -EACCES; 1152 } 1153 off += reg->var_off.value; 1154 if (off >= 0 || off < -MAX_BPF_STACK) { | 1160 tn_buf, off, size); 1161 return -EACCES; 1162 } 1163 off += reg->var_off.value; 1164 if (off >= 0 || off < -MAX_BPF_STACK) { |
1155 verbose("invalid stack off=%d size=%d\n", off, size); | 1165 verbose(env, "invalid stack off=%d size=%d\n", off, 1166 size); |
1156 return -EACCES; 1157 } 1158 1159 if (env->prog->aux->stack_depth < -off) 1160 env->prog->aux->stack_depth = -off; 1161 | 1167 return -EACCES; 1168 } 1169 1170 if (env->prog->aux->stack_depth < -off) 1171 env->prog->aux->stack_depth = -off; 1172 |
1162 if (t == BPF_WRITE) { 1163 if (!env->allow_ptr_leaks && 1164 state->stack_slot_type[MAX_BPF_STACK + off] == STACK_SPILL && 1165 size != BPF_REG_SIZE) { 1166 verbose("attempt to corrupt spilled pointer on stack\n"); 1167 return -EACCES; 1168 } 1169 err = check_stack_write(state, off, size, value_regno); 1170 } else { 1171 err = check_stack_read(state, off, size, value_regno); 1172 } 1173 } else if (reg->type == PTR_TO_PACKET) { | 1173 if (t == BPF_WRITE) 1174 err = check_stack_write(env, state, off, size, 1175 value_regno); 1176 else 1177 err = check_stack_read(env, state, off, size, 1178 value_regno); 1179 } else if (reg_is_pkt_pointer(reg)) { |
1174 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) { | 1180 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) { |
1175 verbose("cannot write into packet\n"); | 1181 verbose(env, "cannot write into packet\n"); |
1176 return -EACCES; 1177 } 1178 if (t == BPF_WRITE && value_regno >= 0 && 1179 is_pointer_value(env, value_regno)) { | 1182 return -EACCES; 1183 } 1184 if (t == BPF_WRITE && value_regno >= 0 && 1185 is_pointer_value(env, value_regno)) { |
1180 verbose("R%d leaks addr into packet\n", value_regno); | 1186 verbose(env, "R%d leaks addr into packet\n", 1187 value_regno); |
1181 return -EACCES; 1182 } 1183 err = check_packet_access(env, regno, off, size); 1184 if (!err && t == BPF_READ && value_regno >= 0) | 1188 return -EACCES; 1189 } 1190 err = check_packet_access(env, regno, off, size); 1191 if (!err && t == BPF_READ && value_regno >= 0) |
1185 mark_reg_unknown(state->regs, value_regno); | 1192 mark_reg_unknown(env, regs, value_regno); |
1186 } else { | 1193 } else { |
1187 verbose("R%d invalid mem access '%s'\n", 1188 regno, reg_type_str[reg->type]); | 1194 verbose(env, "R%d invalid mem access '%s'\n", regno, 1195 reg_type_str[reg->type]); |
1189 return -EACCES; 1190 } 1191 1192 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ && | 1196 return -EACCES; 1197 } 1198 1199 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ && |
1193 state->regs[value_regno].type == SCALAR_VALUE) { | 1200 regs[value_regno].type == SCALAR_VALUE) { |
1194 /* b/h/w load zero-extends, mark upper bits as known 0 */ | 1201 /* b/h/w load zero-extends, mark upper bits as known 0 */ |
1195 state->regs[value_regno].var_off = tnum_cast( 1196 state->regs[value_regno].var_off, size); 1197 __update_reg_bounds(&state->regs[value_regno]); | 1202 regs[value_regno].var_off = 1203 tnum_cast(regs[value_regno].var_off, size); 1204 __update_reg_bounds(®s[value_regno]); |
1198 } 1199 return err; 1200} 1201 1202static int check_xadd(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn) 1203{ 1204 int err; 1205 1206 if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) || 1207 insn->imm != 0) { | 1205 } 1206 return err; 1207} 1208 1209static int check_xadd(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn) 1210{ 1211 int err; 1212 1213 if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) || 1214 insn->imm != 0) { |
1208 verbose("BPF_XADD uses reserved fields\n"); | 1215 verbose(env, "BPF_XADD uses reserved fields\n"); |
1209 return -EINVAL; 1210 } 1211 1212 /* check src1 operand */ 1213 err = check_reg_arg(env, insn->src_reg, SRC_OP); 1214 if (err) 1215 return err; 1216 1217 /* check src2 operand */ 1218 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 1219 if (err) 1220 return err; 1221 1222 if (is_pointer_value(env, insn->src_reg)) { | 1216 return -EINVAL; 1217 } 1218 1219 /* check src1 operand */ 1220 err = check_reg_arg(env, insn->src_reg, SRC_OP); 1221 if (err) 1222 return err; 1223 1224 /* check src2 operand */ 1225 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 1226 if (err) 1227 return err; 1228 1229 if (is_pointer_value(env, insn->src_reg)) { |
1223 verbose("R%d leaks addr into mem\n", insn->src_reg); | 1230 verbose(env, "R%d leaks addr into mem\n", insn->src_reg); |
1224 return -EACCES; 1225 } 1226 1227 /* check whether atomic_add can read the memory */ 1228 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 1229 BPF_SIZE(insn->code), BPF_READ, -1); 1230 if (err) 1231 return err; --- 14 unchanged lines hidden (view full) --- 1246 * and all elements of stack are initialized. 1247 * Unlike most pointer bounds-checking functions, this one doesn't take an 1248 * 'off' argument, so it has to add in reg->off itself. 1249 */ 1250static int check_stack_boundary(struct bpf_verifier_env *env, int regno, 1251 int access_size, bool zero_size_allowed, 1252 struct bpf_call_arg_meta *meta) 1253{ | 1231 return -EACCES; 1232 } 1233 1234 /* check whether atomic_add can read the memory */ 1235 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 1236 BPF_SIZE(insn->code), BPF_READ, -1); 1237 if (err) 1238 return err; --- 14 unchanged lines hidden (view full) --- 1253 * and all elements of stack are initialized. 1254 * Unlike most pointer bounds-checking functions, this one doesn't take an 1255 * 'off' argument, so it has to add in reg->off itself. 1256 */ 1257static int check_stack_boundary(struct bpf_verifier_env *env, int regno, 1258 int access_size, bool zero_size_allowed, 1259 struct bpf_call_arg_meta *meta) 1260{ |
1254 struct bpf_verifier_state *state = &env->cur_state; | 1261 struct bpf_verifier_state *state = env->cur_state; |
1255 struct bpf_reg_state *regs = state->regs; | 1262 struct bpf_reg_state *regs = state->regs; |
1256 int off, i; | 1263 int off, i, slot, spi; |
1257 1258 if (regs[regno].type != PTR_TO_STACK) { 1259 /* Allow zero-byte read from NULL, regardless of pointer type */ 1260 if (zero_size_allowed && access_size == 0 && 1261 register_is_null(regs[regno])) 1262 return 0; 1263 | 1264 1265 if (regs[regno].type != PTR_TO_STACK) { 1266 /* Allow zero-byte read from NULL, regardless of pointer type */ 1267 if (zero_size_allowed && access_size == 0 && 1268 register_is_null(regs[regno])) 1269 return 0; 1270 |
1264 verbose("R%d type=%s expected=%s\n", regno, | 1271 verbose(env, "R%d type=%s expected=%s\n", regno, |
1265 reg_type_str[regs[regno].type], 1266 reg_type_str[PTR_TO_STACK]); 1267 return -EACCES; 1268 } 1269 1270 /* Only allow fixed-offset stack reads */ 1271 if (!tnum_is_const(regs[regno].var_off)) { 1272 char tn_buf[48]; 1273 1274 tnum_strn(tn_buf, sizeof(tn_buf), regs[regno].var_off); | 1272 reg_type_str[regs[regno].type], 1273 reg_type_str[PTR_TO_STACK]); 1274 return -EACCES; 1275 } 1276 1277 /* Only allow fixed-offset stack reads */ 1278 if (!tnum_is_const(regs[regno].var_off)) { 1279 char tn_buf[48]; 1280 1281 tnum_strn(tn_buf, sizeof(tn_buf), regs[regno].var_off); |
1275 verbose("invalid variable stack read R%d var_off=%s\n", | 1282 verbose(env, "invalid variable stack read R%d var_off=%s\n", |
1276 regno, tn_buf); 1277 } 1278 off = regs[regno].off + regs[regno].var_off.value; 1279 if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 || 1280 access_size <= 0) { | 1283 regno, tn_buf); 1284 } 1285 off = regs[regno].off + regs[regno].var_off.value; 1286 if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 || 1287 access_size <= 0) { |
1281 verbose("invalid stack type R%d off=%d access_size=%d\n", | 1288 verbose(env, "invalid stack type R%d off=%d access_size=%d\n", |
1282 regno, off, access_size); 1283 return -EACCES; 1284 } 1285 1286 if (env->prog->aux->stack_depth < -off) 1287 env->prog->aux->stack_depth = -off; 1288 1289 if (meta && meta->raw_mode) { 1290 meta->access_size = access_size; 1291 meta->regno = regno; 1292 return 0; 1293 } 1294 1295 for (i = 0; i < access_size; i++) { | 1289 regno, off, access_size); 1290 return -EACCES; 1291 } 1292 1293 if (env->prog->aux->stack_depth < -off) 1294 env->prog->aux->stack_depth = -off; 1295 1296 if (meta && meta->raw_mode) { 1297 meta->access_size = access_size; 1298 meta->regno = regno; 1299 return 0; 1300 } 1301 1302 for (i = 0; i < access_size; i++) { |
1296 if (state->stack_slot_type[MAX_BPF_STACK + off + i] != STACK_MISC) { 1297 verbose("invalid indirect read from stack off %d+%d size %d\n", | 1303 slot = -(off + i) - 1; 1304 spi = slot / BPF_REG_SIZE; 1305 if (state->allocated_stack <= slot || 1306 state->stack[spi].slot_type[slot % BPF_REG_SIZE] != 1307 STACK_MISC) { 1308 verbose(env, "invalid indirect read from stack off %d+%d size %d\n", |
1298 off, i, access_size); 1299 return -EACCES; 1300 } 1301 } 1302 return 0; 1303} 1304 1305static int check_helper_mem_access(struct bpf_verifier_env *env, int regno, 1306 int access_size, bool zero_size_allowed, 1307 struct bpf_call_arg_meta *meta) 1308{ | 1309 off, i, access_size); 1310 return -EACCES; 1311 } 1312 } 1313 return 0; 1314} 1315 1316static int check_helper_mem_access(struct bpf_verifier_env *env, int regno, 1317 int access_size, bool zero_size_allowed, 1318 struct bpf_call_arg_meta *meta) 1319{ |
1309 struct bpf_reg_state *regs = env->cur_state.regs, *reg = ®s[regno]; | 1320 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; |
1310 1311 switch (reg->type) { 1312 case PTR_TO_PACKET: | 1321 1322 switch (reg->type) { 1323 case PTR_TO_PACKET: |
1324 case PTR_TO_PACKET_META: |
|
1313 return check_packet_access(env, regno, reg->off, access_size); 1314 case PTR_TO_MAP_VALUE: 1315 return check_map_access(env, regno, reg->off, access_size); 1316 default: /* scalar_value|ptr_to_stack or invalid ptr */ 1317 return check_stack_boundary(env, regno, access_size, 1318 zero_size_allowed, meta); 1319 } 1320} 1321 1322static int check_func_arg(struct bpf_verifier_env *env, u32 regno, 1323 enum bpf_arg_type arg_type, 1324 struct bpf_call_arg_meta *meta) 1325{ | 1325 return check_packet_access(env, regno, reg->off, access_size); 1326 case PTR_TO_MAP_VALUE: 1327 return check_map_access(env, regno, reg->off, access_size); 1328 default: /* scalar_value|ptr_to_stack or invalid ptr */ 1329 return check_stack_boundary(env, regno, access_size, 1330 zero_size_allowed, meta); 1331 } 1332} 1333 1334static int check_func_arg(struct bpf_verifier_env *env, u32 regno, 1335 enum bpf_arg_type arg_type, 1336 struct bpf_call_arg_meta *meta) 1337{ |
1326 struct bpf_reg_state *regs = env->cur_state.regs, *reg = ®s[regno]; | 1338 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; |
1327 enum bpf_reg_type expected_type, type = reg->type; 1328 int err = 0; 1329 1330 if (arg_type == ARG_DONTCARE) 1331 return 0; 1332 1333 err = check_reg_arg(env, regno, SRC_OP); 1334 if (err) 1335 return err; 1336 1337 if (arg_type == ARG_ANYTHING) { 1338 if (is_pointer_value(env, regno)) { | 1339 enum bpf_reg_type expected_type, type = reg->type; 1340 int err = 0; 1341 1342 if (arg_type == ARG_DONTCARE) 1343 return 0; 1344 1345 err = check_reg_arg(env, regno, SRC_OP); 1346 if (err) 1347 return err; 1348 1349 if (arg_type == ARG_ANYTHING) { 1350 if (is_pointer_value(env, regno)) { |
1339 verbose("R%d leaks addr into helper function\n", regno); | 1351 verbose(env, "R%d leaks addr into helper function\n", 1352 regno); |
1340 return -EACCES; 1341 } 1342 return 0; 1343 } 1344 | 1353 return -EACCES; 1354 } 1355 return 0; 1356 } 1357 |
1345 if (type == PTR_TO_PACKET && | 1358 if (type_is_pkt_pointer(type) && |
1346 !may_access_direct_pkt_data(env, meta, BPF_READ)) { | 1359 !may_access_direct_pkt_data(env, meta, BPF_READ)) { |
1347 verbose("helper access to the packet is not allowed\n"); | 1360 verbose(env, "helper access to the packet is not allowed\n"); |
1348 return -EACCES; 1349 } 1350 1351 if (arg_type == ARG_PTR_TO_MAP_KEY || 1352 arg_type == ARG_PTR_TO_MAP_VALUE) { 1353 expected_type = PTR_TO_STACK; | 1361 return -EACCES; 1362 } 1363 1364 if (arg_type == ARG_PTR_TO_MAP_KEY || 1365 arg_type == ARG_PTR_TO_MAP_VALUE) { 1366 expected_type = PTR_TO_STACK; |
1354 if (type != PTR_TO_PACKET && type != expected_type) | 1367 if (!type_is_pkt_pointer(type) && 1368 type != expected_type) |
1355 goto err_type; 1356 } else if (arg_type == ARG_CONST_SIZE || 1357 arg_type == ARG_CONST_SIZE_OR_ZERO) { 1358 expected_type = SCALAR_VALUE; 1359 if (type != expected_type) 1360 goto err_type; 1361 } else if (arg_type == ARG_CONST_MAP_PTR) { 1362 expected_type = CONST_PTR_TO_MAP; --- 7 unchanged lines hidden (view full) --- 1370 arg_type == ARG_PTR_TO_UNINIT_MEM) { 1371 expected_type = PTR_TO_STACK; 1372 /* One exception here. In case function allows for NULL to be 1373 * passed in as argument, it's a SCALAR_VALUE type. Final test 1374 * happens during stack boundary checking. 1375 */ 1376 if (register_is_null(*reg)) 1377 /* final test in check_stack_boundary() */; | 1369 goto err_type; 1370 } else if (arg_type == ARG_CONST_SIZE || 1371 arg_type == ARG_CONST_SIZE_OR_ZERO) { 1372 expected_type = SCALAR_VALUE; 1373 if (type != expected_type) 1374 goto err_type; 1375 } else if (arg_type == ARG_CONST_MAP_PTR) { 1376 expected_type = CONST_PTR_TO_MAP; --- 7 unchanged lines hidden (view full) --- 1384 arg_type == ARG_PTR_TO_UNINIT_MEM) { 1385 expected_type = PTR_TO_STACK; 1386 /* One exception here. In case function allows for NULL to be 1387 * passed in as argument, it's a SCALAR_VALUE type. Final test 1388 * happens during stack boundary checking. 1389 */ 1390 if (register_is_null(*reg)) 1391 /* final test in check_stack_boundary() */; |
1378 else if (type != PTR_TO_PACKET && type != PTR_TO_MAP_VALUE && | 1392 else if (!type_is_pkt_pointer(type) && 1393 type != PTR_TO_MAP_VALUE && |
1379 type != expected_type) 1380 goto err_type; 1381 meta->raw_mode = arg_type == ARG_PTR_TO_UNINIT_MEM; 1382 } else { | 1394 type != expected_type) 1395 goto err_type; 1396 meta->raw_mode = arg_type == ARG_PTR_TO_UNINIT_MEM; 1397 } else { |
1383 verbose("unsupported arg_type %d\n", arg_type); | 1398 verbose(env, "unsupported arg_type %d\n", arg_type); |
1384 return -EFAULT; 1385 } 1386 1387 if (arg_type == ARG_CONST_MAP_PTR) { 1388 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */ 1389 meta->map_ptr = reg->map_ptr; 1390 } else if (arg_type == ARG_PTR_TO_MAP_KEY) { 1391 /* bpf_map_xxx(..., map_ptr, ..., key) call: 1392 * check that [key, key + map->key_size) are within 1393 * stack limits and initialized 1394 */ 1395 if (!meta->map_ptr) { 1396 /* in function declaration map_ptr must come before 1397 * map_key, so that it's verified and known before 1398 * we have to check map_key here. Otherwise it means 1399 * that kernel subsystem misconfigured verifier 1400 */ | 1399 return -EFAULT; 1400 } 1401 1402 if (arg_type == ARG_CONST_MAP_PTR) { 1403 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */ 1404 meta->map_ptr = reg->map_ptr; 1405 } else if (arg_type == ARG_PTR_TO_MAP_KEY) { 1406 /* bpf_map_xxx(..., map_ptr, ..., key) call: 1407 * check that [key, key + map->key_size) are within 1408 * stack limits and initialized 1409 */ 1410 if (!meta->map_ptr) { 1411 /* in function declaration map_ptr must come before 1412 * map_key, so that it's verified and known before 1413 * we have to check map_key here. Otherwise it means 1414 * that kernel subsystem misconfigured verifier 1415 */ |
1401 verbose("invalid map_ptr to access map->key\n"); | 1416 verbose(env, "invalid map_ptr to access map->key\n"); |
1402 return -EACCES; 1403 } | 1417 return -EACCES; 1418 } |
1404 if (type == PTR_TO_PACKET) | 1419 if (type_is_pkt_pointer(type)) |
1405 err = check_packet_access(env, regno, reg->off, 1406 meta->map_ptr->key_size); 1407 else 1408 err = check_stack_boundary(env, regno, 1409 meta->map_ptr->key_size, 1410 false, NULL); 1411 } else if (arg_type == ARG_PTR_TO_MAP_VALUE) { 1412 /* bpf_map_xxx(..., map_ptr, ..., value) call: 1413 * check [value, value + map->value_size) validity 1414 */ 1415 if (!meta->map_ptr) { 1416 /* kernel subsystem misconfigured verifier */ | 1420 err = check_packet_access(env, regno, reg->off, 1421 meta->map_ptr->key_size); 1422 else 1423 err = check_stack_boundary(env, regno, 1424 meta->map_ptr->key_size, 1425 false, NULL); 1426 } else if (arg_type == ARG_PTR_TO_MAP_VALUE) { 1427 /* bpf_map_xxx(..., map_ptr, ..., value) call: 1428 * check [value, value + map->value_size) validity 1429 */ 1430 if (!meta->map_ptr) { 1431 /* kernel subsystem misconfigured verifier */ |
1417 verbose("invalid map_ptr to access map->value\n"); | 1432 verbose(env, "invalid map_ptr to access map->value\n"); |
1418 return -EACCES; 1419 } | 1433 return -EACCES; 1434 } |
1420 if (type == PTR_TO_PACKET) | 1435 if (type_is_pkt_pointer(type)) |
1421 err = check_packet_access(env, regno, reg->off, 1422 meta->map_ptr->value_size); 1423 else 1424 err = check_stack_boundary(env, regno, 1425 meta->map_ptr->value_size, 1426 false, NULL); 1427 } else if (arg_type == ARG_CONST_SIZE || 1428 arg_type == ARG_CONST_SIZE_OR_ZERO) { 1429 bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO); 1430 1431 /* bpf_xxx(..., buf, len) call will access 'len' bytes 1432 * from stack pointer 'buf'. Check it 1433 * note: regno == len, regno - 1 == buf 1434 */ 1435 if (regno == 0) { 1436 /* kernel subsystem misconfigured verifier */ | 1436 err = check_packet_access(env, regno, reg->off, 1437 meta->map_ptr->value_size); 1438 else 1439 err = check_stack_boundary(env, regno, 1440 meta->map_ptr->value_size, 1441 false, NULL); 1442 } else if (arg_type == ARG_CONST_SIZE || 1443 arg_type == ARG_CONST_SIZE_OR_ZERO) { 1444 bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO); 1445 1446 /* bpf_xxx(..., buf, len) call will access 'len' bytes 1447 * from stack pointer 'buf'. Check it 1448 * note: regno == len, regno - 1 == buf 1449 */ 1450 if (regno == 0) { 1451 /* kernel subsystem misconfigured verifier */ |
1437 verbose("ARG_CONST_SIZE cannot be first argument\n"); | 1452 verbose(env, 1453 "ARG_CONST_SIZE cannot be first argument\n"); |
1438 return -EACCES; 1439 } 1440 1441 /* The register is SCALAR_VALUE; the access check 1442 * happens using its boundaries. 1443 */ 1444 1445 if (!tnum_is_const(reg->var_off)) 1446 /* For unprivileged variable accesses, disable raw 1447 * mode so that the program is required to 1448 * initialize all the memory that the helper could 1449 * just partially fill up. 1450 */ 1451 meta = NULL; 1452 1453 if (reg->smin_value < 0) { | 1454 return -EACCES; 1455 } 1456 1457 /* The register is SCALAR_VALUE; the access check 1458 * happens using its boundaries. 1459 */ 1460 1461 if (!tnum_is_const(reg->var_off)) 1462 /* For unprivileged variable accesses, disable raw 1463 * mode so that the program is required to 1464 * initialize all the memory that the helper could 1465 * just partially fill up. 1466 */ 1467 meta = NULL; 1468 1469 if (reg->smin_value < 0) { |
1454 verbose("R%d min value is negative, either use unsigned or 'var &= const'\n", | 1470 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n", |
1455 regno); 1456 return -EACCES; 1457 } 1458 1459 if (reg->umin_value == 0) { 1460 err = check_helper_mem_access(env, regno - 1, 0, 1461 zero_size_allowed, 1462 meta); 1463 if (err) 1464 return err; 1465 } 1466 1467 if (reg->umax_value >= BPF_MAX_VAR_SIZ) { | 1471 regno); 1472 return -EACCES; 1473 } 1474 1475 if (reg->umin_value == 0) { 1476 err = check_helper_mem_access(env, regno - 1, 0, 1477 zero_size_allowed, 1478 meta); 1479 if (err) 1480 return err; 1481 } 1482 1483 if (reg->umax_value >= BPF_MAX_VAR_SIZ) { |
1468 verbose("R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n", | 1484 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n", |
1469 regno); 1470 return -EACCES; 1471 } 1472 err = check_helper_mem_access(env, regno - 1, 1473 reg->umax_value, 1474 zero_size_allowed, meta); 1475 } 1476 1477 return err; 1478err_type: | 1485 regno); 1486 return -EACCES; 1487 } 1488 err = check_helper_mem_access(env, regno - 1, 1489 reg->umax_value, 1490 zero_size_allowed, meta); 1491 } 1492 1493 return err; 1494err_type: |
1479 verbose("R%d type=%s expected=%s\n", regno, | 1495 verbose(env, "R%d type=%s expected=%s\n", regno, |
1480 reg_type_str[type], reg_type_str[expected_type]); 1481 return -EACCES; 1482} 1483 | 1496 reg_type_str[type], reg_type_str[expected_type]); 1497 return -EACCES; 1498} 1499 |
1484static int check_map_func_compatibility(struct bpf_map *map, int func_id) | 1500static int check_map_func_compatibility(struct bpf_verifier_env *env, 1501 struct bpf_map *map, int func_id) |
1485{ 1486 if (!map) 1487 return 0; 1488 1489 /* We need a two way check, first is from map perspective ... */ 1490 switch (map->map_type) { 1491 case BPF_MAP_TYPE_PROG_ARRAY: 1492 if (func_id != BPF_FUNC_tail_call) 1493 goto error; 1494 break; 1495 case BPF_MAP_TYPE_PERF_EVENT_ARRAY: 1496 if (func_id != BPF_FUNC_perf_event_read && | 1502{ 1503 if (!map) 1504 return 0; 1505 1506 /* We need a two way check, first is from map perspective ... */ 1507 switch (map->map_type) { 1508 case BPF_MAP_TYPE_PROG_ARRAY: 1509 if (func_id != BPF_FUNC_tail_call) 1510 goto error; 1511 break; 1512 case BPF_MAP_TYPE_PERF_EVENT_ARRAY: 1513 if (func_id != BPF_FUNC_perf_event_read && |
1497 func_id != BPF_FUNC_perf_event_output) | 1514 func_id != BPF_FUNC_perf_event_output && 1515 func_id != BPF_FUNC_perf_event_read_value) |
1498 goto error; 1499 break; 1500 case BPF_MAP_TYPE_STACK_TRACE: 1501 if (func_id != BPF_FUNC_get_stackid) 1502 goto error; 1503 break; 1504 case BPF_MAP_TYPE_CGROUP_ARRAY: 1505 if (func_id != BPF_FUNC_skb_under_cgroup && 1506 func_id != BPF_FUNC_current_task_under_cgroup) 1507 goto error; 1508 break; 1509 /* devmap returns a pointer to a live net_device ifindex that we cannot 1510 * allow to be modified from bpf side. So do not allow lookup elements 1511 * for now. 1512 */ 1513 case BPF_MAP_TYPE_DEVMAP: 1514 if (func_id != BPF_FUNC_redirect_map) 1515 goto error; 1516 break; | 1516 goto error; 1517 break; 1518 case BPF_MAP_TYPE_STACK_TRACE: 1519 if (func_id != BPF_FUNC_get_stackid) 1520 goto error; 1521 break; 1522 case BPF_MAP_TYPE_CGROUP_ARRAY: 1523 if (func_id != BPF_FUNC_skb_under_cgroup && 1524 func_id != BPF_FUNC_current_task_under_cgroup) 1525 goto error; 1526 break; 1527 /* devmap returns a pointer to a live net_device ifindex that we cannot 1528 * allow to be modified from bpf side. So do not allow lookup elements 1529 * for now. 1530 */ 1531 case BPF_MAP_TYPE_DEVMAP: 1532 if (func_id != BPF_FUNC_redirect_map) 1533 goto error; 1534 break; |
1535 /* Restrict bpf side of cpumap, open when use-cases appear */ 1536 case BPF_MAP_TYPE_CPUMAP: 1537 if (func_id != BPF_FUNC_redirect_map) 1538 goto error; 1539 break; |
|
1517 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 1518 case BPF_MAP_TYPE_HASH_OF_MAPS: 1519 if (func_id != BPF_FUNC_map_lookup_elem) 1520 goto error; 1521 break; 1522 case BPF_MAP_TYPE_SOCKMAP: 1523 if (func_id != BPF_FUNC_sk_redirect_map && 1524 func_id != BPF_FUNC_sock_map_update && --- 7 unchanged lines hidden (view full) --- 1532 /* ... and second from the function itself. */ 1533 switch (func_id) { 1534 case BPF_FUNC_tail_call: 1535 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY) 1536 goto error; 1537 break; 1538 case BPF_FUNC_perf_event_read: 1539 case BPF_FUNC_perf_event_output: | 1540 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 1541 case BPF_MAP_TYPE_HASH_OF_MAPS: 1542 if (func_id != BPF_FUNC_map_lookup_elem) 1543 goto error; 1544 break; 1545 case BPF_MAP_TYPE_SOCKMAP: 1546 if (func_id != BPF_FUNC_sk_redirect_map && 1547 func_id != BPF_FUNC_sock_map_update && --- 7 unchanged lines hidden (view full) --- 1555 /* ... and second from the function itself. */ 1556 switch (func_id) { 1557 case BPF_FUNC_tail_call: 1558 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY) 1559 goto error; 1560 break; 1561 case BPF_FUNC_perf_event_read: 1562 case BPF_FUNC_perf_event_output: |
1563 case BPF_FUNC_perf_event_read_value: |
|
1540 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) 1541 goto error; 1542 break; 1543 case BPF_FUNC_get_stackid: 1544 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE) 1545 goto error; 1546 break; 1547 case BPF_FUNC_current_task_under_cgroup: 1548 case BPF_FUNC_skb_under_cgroup: 1549 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY) 1550 goto error; 1551 break; 1552 case BPF_FUNC_redirect_map: | 1564 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) 1565 goto error; 1566 break; 1567 case BPF_FUNC_get_stackid: 1568 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE) 1569 goto error; 1570 break; 1571 case BPF_FUNC_current_task_under_cgroup: 1572 case BPF_FUNC_skb_under_cgroup: 1573 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY) 1574 goto error; 1575 break; 1576 case BPF_FUNC_redirect_map: |
1553 if (map->map_type != BPF_MAP_TYPE_DEVMAP) | 1577 if (map->map_type != BPF_MAP_TYPE_DEVMAP && 1578 map->map_type != BPF_MAP_TYPE_CPUMAP) |
1554 goto error; 1555 break; 1556 case BPF_FUNC_sk_redirect_map: 1557 if (map->map_type != BPF_MAP_TYPE_SOCKMAP) 1558 goto error; 1559 break; 1560 case BPF_FUNC_sock_map_update: 1561 if (map->map_type != BPF_MAP_TYPE_SOCKMAP) 1562 goto error; 1563 break; 1564 default: 1565 break; 1566 } 1567 1568 return 0; 1569error: | 1579 goto error; 1580 break; 1581 case BPF_FUNC_sk_redirect_map: 1582 if (map->map_type != BPF_MAP_TYPE_SOCKMAP) 1583 goto error; 1584 break; 1585 case BPF_FUNC_sock_map_update: 1586 if (map->map_type != BPF_MAP_TYPE_SOCKMAP) 1587 goto error; 1588 break; 1589 default: 1590 break; 1591 } 1592 1593 return 0; 1594error: |
1570 verbose("cannot pass map_type %d into func %s#%d\n", | 1595 verbose(env, "cannot pass map_type %d into func %s#%d\n", |
1571 map->map_type, func_id_name(func_id), func_id); 1572 return -EINVAL; 1573} 1574 1575static int check_raw_mode(const struct bpf_func_proto *fn) 1576{ 1577 int count = 0; 1578 --- 6 unchanged lines hidden (view full) --- 1585 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM) 1586 count++; 1587 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM) 1588 count++; 1589 1590 return count > 1 ? -EINVAL : 0; 1591} 1592 | 1596 map->map_type, func_id_name(func_id), func_id); 1597 return -EINVAL; 1598} 1599 1600static int check_raw_mode(const struct bpf_func_proto *fn) 1601{ 1602 int count = 0; 1603 --- 6 unchanged lines hidden (view full) --- 1610 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM) 1611 count++; 1612 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM) 1613 count++; 1614 1615 return count > 1 ? -EINVAL : 0; 1616} 1617 |
1593/* Packet data might have moved, any old PTR_TO_PACKET[_END] are now invalid, 1594 * so turn them into unknown SCALAR_VALUE. | 1618/* Packet data might have moved, any old PTR_TO_PACKET[_META,_END] 1619 * are now invalid, so turn them into unknown SCALAR_VALUE. |
1595 */ 1596static void clear_all_pkt_pointers(struct bpf_verifier_env *env) 1597{ | 1620 */ 1621static void clear_all_pkt_pointers(struct bpf_verifier_env *env) 1622{ |
1598 struct bpf_verifier_state *state = &env->cur_state; | 1623 struct bpf_verifier_state *state = env->cur_state; |
1599 struct bpf_reg_state *regs = state->regs, *reg; 1600 int i; 1601 1602 for (i = 0; i < MAX_BPF_REG; i++) | 1624 struct bpf_reg_state *regs = state->regs, *reg; 1625 int i; 1626 1627 for (i = 0; i < MAX_BPF_REG; i++) |
1603 if (regs[i].type == PTR_TO_PACKET || 1604 regs[i].type == PTR_TO_PACKET_END) 1605 mark_reg_unknown(regs, i); | 1628 if (reg_is_pkt_pointer_any(®s[i])) 1629 mark_reg_unknown(env, regs, i); |
1606 | 1630 |
1607 for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) { 1608 if (state->stack_slot_type[i] != STACK_SPILL) | 1631 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 1632 if (state->stack[i].slot_type[0] != STACK_SPILL) |
1609 continue; | 1633 continue; |
1610 reg = &state->spilled_regs[i / BPF_REG_SIZE]; 1611 if (reg->type != PTR_TO_PACKET && 1612 reg->type != PTR_TO_PACKET_END) 1613 continue; 1614 __mark_reg_unknown(reg); | 1634 reg = &state->stack[i].spilled_ptr; 1635 if (reg_is_pkt_pointer_any(reg)) 1636 __mark_reg_unknown(reg); |
1615 } 1616} 1617 1618static int check_call(struct bpf_verifier_env *env, int func_id, int insn_idx) 1619{ | 1637 } 1638} 1639 1640static int check_call(struct bpf_verifier_env *env, int func_id, int insn_idx) 1641{ |
1620 struct bpf_verifier_state *state = &env->cur_state; | |
1621 const struct bpf_func_proto *fn = NULL; | 1642 const struct bpf_func_proto *fn = NULL; |
1622 struct bpf_reg_state *regs = state->regs; | 1643 struct bpf_reg_state *regs; |
1623 struct bpf_call_arg_meta meta; 1624 bool changes_data; 1625 int i, err; 1626 1627 /* find function prototype */ 1628 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) { | 1644 struct bpf_call_arg_meta meta; 1645 bool changes_data; 1646 int i, err; 1647 1648 /* find function prototype */ 1649 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) { |
1629 verbose("invalid func %s#%d\n", func_id_name(func_id), func_id); | 1650 verbose(env, "invalid func %s#%d\n", func_id_name(func_id), 1651 func_id); |
1630 return -EINVAL; 1631 } 1632 | 1652 return -EINVAL; 1653 } 1654 |
1633 if (env->prog->aux->ops->get_func_proto) 1634 fn = env->prog->aux->ops->get_func_proto(func_id); | 1655 if (env->ops->get_func_proto) 1656 fn = env->ops->get_func_proto(func_id); |
1635 1636 if (!fn) { | 1657 1658 if (!fn) { |
1637 verbose("unknown func %s#%d\n", func_id_name(func_id), func_id); | 1659 verbose(env, "unknown func %s#%d\n", func_id_name(func_id), 1660 func_id); |
1638 return -EINVAL; 1639 } 1640 1641 /* eBPF programs must be GPL compatible to use GPL-ed functions */ 1642 if (!env->prog->gpl_compatible && fn->gpl_only) { | 1661 return -EINVAL; 1662 } 1663 1664 /* eBPF programs must be GPL compatible to use GPL-ed functions */ 1665 if (!env->prog->gpl_compatible && fn->gpl_only) { |
1643 verbose("cannot call GPL only function from proprietary program\n"); | 1666 verbose(env, "cannot call GPL only function from proprietary program\n"); |
1644 return -EINVAL; 1645 } 1646 1647 changes_data = bpf_helper_changes_pkt_data(fn->func); 1648 1649 memset(&meta, 0, sizeof(meta)); 1650 meta.pkt_access = fn->pkt_access; 1651 1652 /* We only support one arg being in raw mode at the moment, which 1653 * is sufficient for the helper functions we have right now. 1654 */ 1655 err = check_raw_mode(fn); 1656 if (err) { | 1667 return -EINVAL; 1668 } 1669 1670 changes_data = bpf_helper_changes_pkt_data(fn->func); 1671 1672 memset(&meta, 0, sizeof(meta)); 1673 meta.pkt_access = fn->pkt_access; 1674 1675 /* We only support one arg being in raw mode at the moment, which 1676 * is sufficient for the helper functions we have right now. 1677 */ 1678 err = check_raw_mode(fn); 1679 if (err) { |
1657 verbose("kernel subsystem misconfigured func %s#%d\n", | 1680 verbose(env, "kernel subsystem misconfigured func %s#%d\n", |
1658 func_id_name(func_id), func_id); 1659 return err; 1660 } 1661 1662 /* check args */ 1663 err = check_func_arg(env, BPF_REG_1, fn->arg1_type, &meta); 1664 if (err) 1665 return err; --- 14 unchanged lines hidden (view full) --- 1680 * is inferred from register state. 1681 */ 1682 for (i = 0; i < meta.access_size; i++) { 1683 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B, BPF_WRITE, -1); 1684 if (err) 1685 return err; 1686 } 1687 | 1681 func_id_name(func_id), func_id); 1682 return err; 1683 } 1684 1685 /* check args */ 1686 err = check_func_arg(env, BPF_REG_1, fn->arg1_type, &meta); 1687 if (err) 1688 return err; --- 14 unchanged lines hidden (view full) --- 1703 * is inferred from register state. 1704 */ 1705 for (i = 0; i < meta.access_size; i++) { 1706 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B, BPF_WRITE, -1); 1707 if (err) 1708 return err; 1709 } 1710 |
1711 regs = cur_regs(env); |
|
1688 /* reset caller saved regs */ 1689 for (i = 0; i < CALLER_SAVED_REGS; i++) { | 1712 /* reset caller saved regs */ 1713 for (i = 0; i < CALLER_SAVED_REGS; i++) { |
1690 mark_reg_not_init(regs, caller_saved[i]); | 1714 mark_reg_not_init(env, regs, caller_saved[i]); |
1691 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 1692 } 1693 1694 /* update return register (already marked as written above) */ 1695 if (fn->ret_type == RET_INTEGER) { 1696 /* sets type to SCALAR_VALUE */ | 1715 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 1716 } 1717 1718 /* update return register (already marked as written above) */ 1719 if (fn->ret_type == RET_INTEGER) { 1720 /* sets type to SCALAR_VALUE */ |
1697 mark_reg_unknown(regs, BPF_REG_0); | 1721 mark_reg_unknown(env, regs, BPF_REG_0); |
1698 } else if (fn->ret_type == RET_VOID) { 1699 regs[BPF_REG_0].type = NOT_INIT; 1700 } else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL) { 1701 struct bpf_insn_aux_data *insn_aux; 1702 1703 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL; 1704 /* There is no offset yet applied, variable or fixed */ | 1722 } else if (fn->ret_type == RET_VOID) { 1723 regs[BPF_REG_0].type = NOT_INIT; 1724 } else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL) { 1725 struct bpf_insn_aux_data *insn_aux; 1726 1727 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL; 1728 /* There is no offset yet applied, variable or fixed */ |
1705 mark_reg_known_zero(regs, BPF_REG_0); | 1729 mark_reg_known_zero(env, regs, BPF_REG_0); |
1706 regs[BPF_REG_0].off = 0; 1707 /* remember map_ptr, so that check_map_access() 1708 * can check 'value_size' boundary of memory access 1709 * to map element returned from bpf_map_lookup_elem() 1710 */ 1711 if (meta.map_ptr == NULL) { | 1730 regs[BPF_REG_0].off = 0; 1731 /* remember map_ptr, so that check_map_access() 1732 * can check 'value_size' boundary of memory access 1733 * to map element returned from bpf_map_lookup_elem() 1734 */ 1735 if (meta.map_ptr == NULL) { |
1712 verbose("kernel subsystem misconfigured verifier\n"); | 1736 verbose(env, 1737 "kernel subsystem misconfigured verifier\n"); |
1713 return -EINVAL; 1714 } 1715 regs[BPF_REG_0].map_ptr = meta.map_ptr; 1716 regs[BPF_REG_0].id = ++env->id_gen; 1717 insn_aux = &env->insn_aux_data[insn_idx]; 1718 if (!insn_aux->map_ptr) 1719 insn_aux->map_ptr = meta.map_ptr; 1720 else if (insn_aux->map_ptr != meta.map_ptr) 1721 insn_aux->map_ptr = BPF_MAP_PTR_POISON; 1722 } else { | 1738 return -EINVAL; 1739 } 1740 regs[BPF_REG_0].map_ptr = meta.map_ptr; 1741 regs[BPF_REG_0].id = ++env->id_gen; 1742 insn_aux = &env->insn_aux_data[insn_idx]; 1743 if (!insn_aux->map_ptr) 1744 insn_aux->map_ptr = meta.map_ptr; 1745 else if (insn_aux->map_ptr != meta.map_ptr) 1746 insn_aux->map_ptr = BPF_MAP_PTR_POISON; 1747 } else { |
1723 verbose("unknown return type %d of func %s#%d\n", | 1748 verbose(env, "unknown return type %d of func %s#%d\n", |
1724 fn->ret_type, func_id_name(func_id), func_id); 1725 return -EINVAL; 1726 } 1727 | 1749 fn->ret_type, func_id_name(func_id), func_id); 1750 return -EINVAL; 1751 } 1752 |
1728 err = check_map_func_compatibility(meta.map_ptr, func_id); | 1753 err = check_map_func_compatibility(env, meta.map_ptr, func_id); |
1729 if (err) 1730 return err; 1731 1732 if (changes_data) 1733 clear_all_pkt_pointers(env); 1734 return 0; 1735} 1736 --- 30 unchanged lines hidden (view full) --- 1767 * If we return -EACCES, caller may want to try again treating pointer as a 1768 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks. 1769 */ 1770static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env, 1771 struct bpf_insn *insn, 1772 const struct bpf_reg_state *ptr_reg, 1773 const struct bpf_reg_state *off_reg) 1774{ | 1754 if (err) 1755 return err; 1756 1757 if (changes_data) 1758 clear_all_pkt_pointers(env); 1759 return 0; 1760} 1761 --- 30 unchanged lines hidden (view full) --- 1792 * If we return -EACCES, caller may want to try again treating pointer as a 1793 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks. 1794 */ 1795static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env, 1796 struct bpf_insn *insn, 1797 const struct bpf_reg_state *ptr_reg, 1798 const struct bpf_reg_state *off_reg) 1799{ |
1775 struct bpf_reg_state *regs = env->cur_state.regs, *dst_reg; | 1800 struct bpf_reg_state *regs = cur_regs(env), *dst_reg; |
1776 bool known = tnum_is_const(off_reg->var_off); 1777 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value, 1778 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value; 1779 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value, 1780 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value; 1781 u8 opcode = BPF_OP(insn->code); 1782 u32 dst = insn->dst_reg; 1783 1784 dst_reg = ®s[dst]; 1785 1786 if (WARN_ON_ONCE(known && (smin_val != smax_val))) { | 1801 bool known = tnum_is_const(off_reg->var_off); 1802 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value, 1803 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value; 1804 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value, 1805 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value; 1806 u8 opcode = BPF_OP(insn->code); 1807 u32 dst = insn->dst_reg; 1808 1809 dst_reg = ®s[dst]; 1810 1811 if (WARN_ON_ONCE(known && (smin_val != smax_val))) { |
1787 print_verifier_state(&env->cur_state); 1788 verbose("verifier internal error: known but bad sbounds\n"); | 1812 print_verifier_state(env, env->cur_state); 1813 verbose(env, 1814 "verifier internal error: known but bad sbounds\n"); |
1789 return -EINVAL; 1790 } 1791 if (WARN_ON_ONCE(known && (umin_val != umax_val))) { | 1815 return -EINVAL; 1816 } 1817 if (WARN_ON_ONCE(known && (umin_val != umax_val))) { |
1792 print_verifier_state(&env->cur_state); 1793 verbose("verifier internal error: known but bad ubounds\n"); | 1818 print_verifier_state(env, env->cur_state); 1819 verbose(env, 1820 "verifier internal error: known but bad ubounds\n"); |
1794 return -EINVAL; 1795 } 1796 1797 if (BPF_CLASS(insn->code) != BPF_ALU64) { 1798 /* 32-bit ALU ops on pointers produce (meaningless) scalars */ 1799 if (!env->allow_ptr_leaks) | 1821 return -EINVAL; 1822 } 1823 1824 if (BPF_CLASS(insn->code) != BPF_ALU64) { 1825 /* 32-bit ALU ops on pointers produce (meaningless) scalars */ 1826 if (!env->allow_ptr_leaks) |
1800 verbose("R%d 32-bit pointer arithmetic prohibited\n", | 1827 verbose(env, 1828 "R%d 32-bit pointer arithmetic prohibited\n", |
1801 dst); 1802 return -EACCES; 1803 } 1804 1805 if (ptr_reg->type == PTR_TO_MAP_VALUE_OR_NULL) { 1806 if (!env->allow_ptr_leaks) | 1829 dst); 1830 return -EACCES; 1831 } 1832 1833 if (ptr_reg->type == PTR_TO_MAP_VALUE_OR_NULL) { 1834 if (!env->allow_ptr_leaks) |
1807 verbose("R%d pointer arithmetic on PTR_TO_MAP_VALUE_OR_NULL prohibited, null-check it first\n", | 1835 verbose(env, "R%d pointer arithmetic on PTR_TO_MAP_VALUE_OR_NULL prohibited, null-check it first\n", |
1808 dst); 1809 return -EACCES; 1810 } 1811 if (ptr_reg->type == CONST_PTR_TO_MAP) { 1812 if (!env->allow_ptr_leaks) | 1836 dst); 1837 return -EACCES; 1838 } 1839 if (ptr_reg->type == CONST_PTR_TO_MAP) { 1840 if (!env->allow_ptr_leaks) |
1813 verbose("R%d pointer arithmetic on CONST_PTR_TO_MAP prohibited\n", | 1841 verbose(env, "R%d pointer arithmetic on CONST_PTR_TO_MAP prohibited\n", |
1814 dst); 1815 return -EACCES; 1816 } 1817 if (ptr_reg->type == PTR_TO_PACKET_END) { 1818 if (!env->allow_ptr_leaks) | 1842 dst); 1843 return -EACCES; 1844 } 1845 if (ptr_reg->type == PTR_TO_PACKET_END) { 1846 if (!env->allow_ptr_leaks) |
1819 verbose("R%d pointer arithmetic on PTR_TO_PACKET_END prohibited\n", | 1847 verbose(env, "R%d pointer arithmetic on PTR_TO_PACKET_END prohibited\n", |
1820 dst); 1821 return -EACCES; 1822 } 1823 1824 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id. 1825 * The id may be overwritten later if we create a new variable offset. 1826 */ 1827 dst_reg->type = ptr_reg->type; --- 38 unchanged lines hidden (view full) --- 1866 dst_reg->umin_value = 0; 1867 dst_reg->umax_value = U64_MAX; 1868 } else { 1869 dst_reg->umin_value = umin_ptr + umin_val; 1870 dst_reg->umax_value = umax_ptr + umax_val; 1871 } 1872 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off); 1873 dst_reg->off = ptr_reg->off; | 1848 dst); 1849 return -EACCES; 1850 } 1851 1852 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id. 1853 * The id may be overwritten later if we create a new variable offset. 1854 */ 1855 dst_reg->type = ptr_reg->type; --- 38 unchanged lines hidden (view full) --- 1894 dst_reg->umin_value = 0; 1895 dst_reg->umax_value = U64_MAX; 1896 } else { 1897 dst_reg->umin_value = umin_ptr + umin_val; 1898 dst_reg->umax_value = umax_ptr + umax_val; 1899 } 1900 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off); 1901 dst_reg->off = ptr_reg->off; |
1874 if (ptr_reg->type == PTR_TO_PACKET) { | 1902 if (reg_is_pkt_pointer(ptr_reg)) { |
1875 dst_reg->id = ++env->id_gen; 1876 /* something was added to pkt_ptr, set range to zero */ 1877 dst_reg->range = 0; 1878 } 1879 break; 1880 case BPF_SUB: 1881 if (dst_reg == off_reg) { 1882 /* scalar -= pointer. Creates an unknown scalar */ 1883 if (!env->allow_ptr_leaks) | 1903 dst_reg->id = ++env->id_gen; 1904 /* something was added to pkt_ptr, set range to zero */ 1905 dst_reg->range = 0; 1906 } 1907 break; 1908 case BPF_SUB: 1909 if (dst_reg == off_reg) { 1910 /* scalar -= pointer. Creates an unknown scalar */ 1911 if (!env->allow_ptr_leaks) |
1884 verbose("R%d tried to subtract pointer from scalar\n", | 1912 verbose(env, "R%d tried to subtract pointer from scalar\n", |
1885 dst); 1886 return -EACCES; 1887 } 1888 /* We don't allow subtraction from FP, because (according to 1889 * test_verifier.c test "invalid fp arithmetic", JITs might not 1890 * be able to deal with it. 1891 */ 1892 if (ptr_reg->type == PTR_TO_STACK) { 1893 if (!env->allow_ptr_leaks) | 1913 dst); 1914 return -EACCES; 1915 } 1916 /* We don't allow subtraction from FP, because (according to 1917 * test_verifier.c test "invalid fp arithmetic", JITs might not 1918 * be able to deal with it. 1919 */ 1920 if (ptr_reg->type == PTR_TO_STACK) { 1921 if (!env->allow_ptr_leaks) |
1894 verbose("R%d subtraction from stack pointer prohibited\n", | 1922 verbose(env, "R%d subtraction from stack pointer prohibited\n", |
1895 dst); 1896 return -EACCES; 1897 } 1898 if (known && (ptr_reg->off - smin_val == 1899 (s64)(s32)(ptr_reg->off - smin_val))) { 1900 /* pointer -= K. Subtract it from fixed offset */ 1901 dst_reg->smin_value = smin_ptr; 1902 dst_reg->smax_value = smax_ptr; --- 23 unchanged lines hidden (view full) --- 1926 dst_reg->umax_value = U64_MAX; 1927 } else { 1928 /* Cannot overflow (as long as bounds are consistent) */ 1929 dst_reg->umin_value = umin_ptr - umax_val; 1930 dst_reg->umax_value = umax_ptr - umin_val; 1931 } 1932 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off); 1933 dst_reg->off = ptr_reg->off; | 1923 dst); 1924 return -EACCES; 1925 } 1926 if (known && (ptr_reg->off - smin_val == 1927 (s64)(s32)(ptr_reg->off - smin_val))) { 1928 /* pointer -= K. Subtract it from fixed offset */ 1929 dst_reg->smin_value = smin_ptr; 1930 dst_reg->smax_value = smax_ptr; --- 23 unchanged lines hidden (view full) --- 1954 dst_reg->umax_value = U64_MAX; 1955 } else { 1956 /* Cannot overflow (as long as bounds are consistent) */ 1957 dst_reg->umin_value = umin_ptr - umax_val; 1958 dst_reg->umax_value = umax_ptr - umin_val; 1959 } 1960 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off); 1961 dst_reg->off = ptr_reg->off; |
1934 if (ptr_reg->type == PTR_TO_PACKET) { | 1962 if (reg_is_pkt_pointer(ptr_reg)) { |
1935 dst_reg->id = ++env->id_gen; 1936 /* something was added to pkt_ptr, set range to zero */ 1937 if (smin_val < 0) 1938 dst_reg->range = 0; 1939 } 1940 break; 1941 case BPF_AND: 1942 case BPF_OR: 1943 case BPF_XOR: 1944 /* bitwise ops on pointers are troublesome, prohibit for now. 1945 * (However, in principle we could allow some cases, e.g. 1946 * ptr &= ~3 which would reduce min_value by 3.) 1947 */ 1948 if (!env->allow_ptr_leaks) | 1963 dst_reg->id = ++env->id_gen; 1964 /* something was added to pkt_ptr, set range to zero */ 1965 if (smin_val < 0) 1966 dst_reg->range = 0; 1967 } 1968 break; 1969 case BPF_AND: 1970 case BPF_OR: 1971 case BPF_XOR: 1972 /* bitwise ops on pointers are troublesome, prohibit for now. 1973 * (However, in principle we could allow some cases, e.g. 1974 * ptr &= ~3 which would reduce min_value by 3.) 1975 */ 1976 if (!env->allow_ptr_leaks) |
1949 verbose("R%d bitwise operator %s on pointer prohibited\n", | 1977 verbose(env, "R%d bitwise operator %s on pointer prohibited\n", |
1950 dst, bpf_alu_string[opcode >> 4]); 1951 return -EACCES; 1952 default: 1953 /* other operators (e.g. MUL,LSH) produce non-pointer results */ 1954 if (!env->allow_ptr_leaks) | 1978 dst, bpf_alu_string[opcode >> 4]); 1979 return -EACCES; 1980 default: 1981 /* other operators (e.g. MUL,LSH) produce non-pointer results */ 1982 if (!env->allow_ptr_leaks) |
1955 verbose("R%d pointer arithmetic with %s operator prohibited\n", | 1983 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n", |
1956 dst, bpf_alu_string[opcode >> 4]); 1957 return -EACCES; 1958 } 1959 1960 __update_reg_bounds(dst_reg); 1961 __reg_deduce_bounds(dst_reg); 1962 __reg_bound_offset(dst_reg); 1963 return 0; 1964} 1965 1966static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env, 1967 struct bpf_insn *insn, 1968 struct bpf_reg_state *dst_reg, 1969 struct bpf_reg_state src_reg) 1970{ | 1984 dst, bpf_alu_string[opcode >> 4]); 1985 return -EACCES; 1986 } 1987 1988 __update_reg_bounds(dst_reg); 1989 __reg_deduce_bounds(dst_reg); 1990 __reg_bound_offset(dst_reg); 1991 return 0; 1992} 1993 1994static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env, 1995 struct bpf_insn *insn, 1996 struct bpf_reg_state *dst_reg, 1997 struct bpf_reg_state src_reg) 1998{ |
1971 struct bpf_reg_state *regs = env->cur_state.regs; | 1999 struct bpf_reg_state *regs = cur_regs(env); |
1972 u8 opcode = BPF_OP(insn->code); 1973 bool src_known, dst_known; 1974 s64 smin_val, smax_val; 1975 u64 umin_val, umax_val; 1976 1977 if (BPF_CLASS(insn->code) != BPF_ALU64) { 1978 /* 32-bit ALU ops are (32,32)->64 */ 1979 coerce_reg_to_32(dst_reg); --- 133 unchanged lines hidden (view full) --- 2113 /* We may learn something more from the var_off */ 2114 __update_reg_bounds(dst_reg); 2115 break; 2116 case BPF_LSH: 2117 if (umax_val > 63) { 2118 /* Shifts greater than 63 are undefined. This includes 2119 * shifts by a negative number. 2120 */ | 2000 u8 opcode = BPF_OP(insn->code); 2001 bool src_known, dst_known; 2002 s64 smin_val, smax_val; 2003 u64 umin_val, umax_val; 2004 2005 if (BPF_CLASS(insn->code) != BPF_ALU64) { 2006 /* 32-bit ALU ops are (32,32)->64 */ 2007 coerce_reg_to_32(dst_reg); --- 133 unchanged lines hidden (view full) --- 2141 /* We may learn something more from the var_off */ 2142 __update_reg_bounds(dst_reg); 2143 break; 2144 case BPF_LSH: 2145 if (umax_val > 63) { 2146 /* Shifts greater than 63 are undefined. This includes 2147 * shifts by a negative number. 2148 */ |
2121 mark_reg_unknown(regs, insn->dst_reg); | 2149 mark_reg_unknown(env, regs, insn->dst_reg); |
2122 break; 2123 } 2124 /* We lose all sign bit information (except what we can pick 2125 * up from var_off) 2126 */ 2127 dst_reg->smin_value = S64_MIN; 2128 dst_reg->smax_value = S64_MAX; 2129 /* If we might shift our top bit out, then we know nothing */ --- 11 unchanged lines hidden (view full) --- 2141 /* We may learn something more from the var_off */ 2142 __update_reg_bounds(dst_reg); 2143 break; 2144 case BPF_RSH: 2145 if (umax_val > 63) { 2146 /* Shifts greater than 63 are undefined. This includes 2147 * shifts by a negative number. 2148 */ | 2150 break; 2151 } 2152 /* We lose all sign bit information (except what we can pick 2153 * up from var_off) 2154 */ 2155 dst_reg->smin_value = S64_MIN; 2156 dst_reg->smax_value = S64_MAX; 2157 /* If we might shift our top bit out, then we know nothing */ --- 11 unchanged lines hidden (view full) --- 2169 /* We may learn something more from the var_off */ 2170 __update_reg_bounds(dst_reg); 2171 break; 2172 case BPF_RSH: 2173 if (umax_val > 63) { 2174 /* Shifts greater than 63 are undefined. This includes 2175 * shifts by a negative number. 2176 */ |
2149 mark_reg_unknown(regs, insn->dst_reg); | 2177 mark_reg_unknown(env, regs, insn->dst_reg); |
2150 break; 2151 } 2152 /* BPF_RSH is an unsigned shift, so make the appropriate casts */ 2153 if (dst_reg->smin_value < 0) { 2154 if (umin_val) { 2155 /* Sign bit will be cleared */ 2156 dst_reg->smin_value = 0; 2157 } else { --- 11 unchanged lines hidden (view full) --- 2169 else 2170 dst_reg->var_off = tnum_rshift(tnum_unknown, umin_val); 2171 dst_reg->umin_value >>= umax_val; 2172 dst_reg->umax_value >>= umin_val; 2173 /* We may learn something more from the var_off */ 2174 __update_reg_bounds(dst_reg); 2175 break; 2176 default: | 2178 break; 2179 } 2180 /* BPF_RSH is an unsigned shift, so make the appropriate casts */ 2181 if (dst_reg->smin_value < 0) { 2182 if (umin_val) { 2183 /* Sign bit will be cleared */ 2184 dst_reg->smin_value = 0; 2185 } else { --- 11 unchanged lines hidden (view full) --- 2197 else 2198 dst_reg->var_off = tnum_rshift(tnum_unknown, umin_val); 2199 dst_reg->umin_value >>= umax_val; 2200 dst_reg->umax_value >>= umin_val; 2201 /* We may learn something more from the var_off */ 2202 __update_reg_bounds(dst_reg); 2203 break; 2204 default: |
2177 mark_reg_unknown(regs, insn->dst_reg); | 2205 mark_reg_unknown(env, regs, insn->dst_reg); |
2178 break; 2179 } 2180 2181 __reg_deduce_bounds(dst_reg); 2182 __reg_bound_offset(dst_reg); 2183 return 0; 2184} 2185 2186/* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max 2187 * and var_off. 2188 */ 2189static int adjust_reg_min_max_vals(struct bpf_verifier_env *env, 2190 struct bpf_insn *insn) 2191{ | 2206 break; 2207 } 2208 2209 __reg_deduce_bounds(dst_reg); 2210 __reg_bound_offset(dst_reg); 2211 return 0; 2212} 2213 2214/* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max 2215 * and var_off. 2216 */ 2217static int adjust_reg_min_max_vals(struct bpf_verifier_env *env, 2218 struct bpf_insn *insn) 2219{ |
2192 struct bpf_reg_state *regs = env->cur_state.regs, *dst_reg, *src_reg; | 2220 struct bpf_reg_state *regs = cur_regs(env), *dst_reg, *src_reg; |
2193 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0}; 2194 u8 opcode = BPF_OP(insn->code); 2195 int rc; 2196 2197 dst_reg = ®s[insn->dst_reg]; 2198 src_reg = NULL; 2199 if (dst_reg->type != SCALAR_VALUE) 2200 ptr_reg = dst_reg; 2201 if (BPF_SRC(insn->code) == BPF_X) { 2202 src_reg = ®s[insn->src_reg]; 2203 if (src_reg->type != SCALAR_VALUE) { 2204 if (dst_reg->type != SCALAR_VALUE) { 2205 /* Combining two pointers by any ALU op yields 2206 * an arbitrary scalar. 2207 */ 2208 if (!env->allow_ptr_leaks) { | 2221 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0}; 2222 u8 opcode = BPF_OP(insn->code); 2223 int rc; 2224 2225 dst_reg = ®s[insn->dst_reg]; 2226 src_reg = NULL; 2227 if (dst_reg->type != SCALAR_VALUE) 2228 ptr_reg = dst_reg; 2229 if (BPF_SRC(insn->code) == BPF_X) { 2230 src_reg = ®s[insn->src_reg]; 2231 if (src_reg->type != SCALAR_VALUE) { 2232 if (dst_reg->type != SCALAR_VALUE) { 2233 /* Combining two pointers by any ALU op yields 2234 * an arbitrary scalar. 2235 */ 2236 if (!env->allow_ptr_leaks) { |
2209 verbose("R%d pointer %s pointer prohibited\n", | 2237 verbose(env, "R%d pointer %s pointer prohibited\n", |
2210 insn->dst_reg, 2211 bpf_alu_string[opcode >> 4]); 2212 return -EACCES; 2213 } | 2238 insn->dst_reg, 2239 bpf_alu_string[opcode >> 4]); 2240 return -EACCES; 2241 } |
2214 mark_reg_unknown(regs, insn->dst_reg); | 2242 mark_reg_unknown(env, regs, insn->dst_reg); |
2215 return 0; 2216 } else { 2217 /* scalar += pointer 2218 * This is legal, but we have to reverse our 2219 * src/dest handling in computing the range 2220 */ 2221 rc = adjust_ptr_min_max_vals(env, insn, 2222 src_reg, dst_reg); --- 35 unchanged lines hidden (view full) --- 2258 env, insn, dst_reg, off_reg); 2259 } 2260 return rc; 2261 } 2262 } 2263 2264 /* Got here implies adding two SCALAR_VALUEs */ 2265 if (WARN_ON_ONCE(ptr_reg)) { | 2243 return 0; 2244 } else { 2245 /* scalar += pointer 2246 * This is legal, but we have to reverse our 2247 * src/dest handling in computing the range 2248 */ 2249 rc = adjust_ptr_min_max_vals(env, insn, 2250 src_reg, dst_reg); --- 35 unchanged lines hidden (view full) --- 2286 env, insn, dst_reg, off_reg); 2287 } 2288 return rc; 2289 } 2290 } 2291 2292 /* Got here implies adding two SCALAR_VALUEs */ 2293 if (WARN_ON_ONCE(ptr_reg)) { |
2266 print_verifier_state(&env->cur_state); 2267 verbose("verifier internal error: unexpected ptr_reg\n"); | 2294 print_verifier_state(env, env->cur_state); 2295 verbose(env, "verifier internal error: unexpected ptr_reg\n"); |
2268 return -EINVAL; 2269 } 2270 if (WARN_ON(!src_reg)) { | 2296 return -EINVAL; 2297 } 2298 if (WARN_ON(!src_reg)) { |
2271 print_verifier_state(&env->cur_state); 2272 verbose("verifier internal error: no src_reg\n"); | 2299 print_verifier_state(env, env->cur_state); 2300 verbose(env, "verifier internal error: no src_reg\n"); |
2273 return -EINVAL; 2274 } 2275 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg); 2276} 2277 2278/* check validity of 32-bit and 64-bit arithmetic operations */ 2279static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn) 2280{ | 2301 return -EINVAL; 2302 } 2303 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg); 2304} 2305 2306/* check validity of 32-bit and 64-bit arithmetic operations */ 2307static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn) 2308{ |
2281 struct bpf_reg_state *regs = env->cur_state.regs; | 2309 struct bpf_reg_state *regs = cur_regs(env); |
2282 u8 opcode = BPF_OP(insn->code); 2283 int err; 2284 2285 if (opcode == BPF_END || opcode == BPF_NEG) { 2286 if (opcode == BPF_NEG) { 2287 if (BPF_SRC(insn->code) != 0 || 2288 insn->src_reg != BPF_REG_0 || 2289 insn->off != 0 || insn->imm != 0) { | 2310 u8 opcode = BPF_OP(insn->code); 2311 int err; 2312 2313 if (opcode == BPF_END || opcode == BPF_NEG) { 2314 if (opcode == BPF_NEG) { 2315 if (BPF_SRC(insn->code) != 0 || 2316 insn->src_reg != BPF_REG_0 || 2317 insn->off != 0 || insn->imm != 0) { |
2290 verbose("BPF_NEG uses reserved fields\n"); | 2318 verbose(env, "BPF_NEG uses reserved fields\n"); |
2291 return -EINVAL; 2292 } 2293 } else { 2294 if (insn->src_reg != BPF_REG_0 || insn->off != 0 || 2295 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) || 2296 BPF_CLASS(insn->code) == BPF_ALU64) { | 2319 return -EINVAL; 2320 } 2321 } else { 2322 if (insn->src_reg != BPF_REG_0 || insn->off != 0 || 2323 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) || 2324 BPF_CLASS(insn->code) == BPF_ALU64) { |
2297 verbose("BPF_END uses reserved fields\n"); | 2325 verbose(env, "BPF_END uses reserved fields\n"); |
2298 return -EINVAL; 2299 } 2300 } 2301 2302 /* check src operand */ 2303 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 2304 if (err) 2305 return err; 2306 2307 if (is_pointer_value(env, insn->dst_reg)) { | 2326 return -EINVAL; 2327 } 2328 } 2329 2330 /* check src operand */ 2331 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 2332 if (err) 2333 return err; 2334 2335 if (is_pointer_value(env, insn->dst_reg)) { |
2308 verbose("R%d pointer arithmetic prohibited\n", | 2336 verbose(env, "R%d pointer arithmetic prohibited\n", |
2309 insn->dst_reg); 2310 return -EACCES; 2311 } 2312 2313 /* check dest operand */ 2314 err = check_reg_arg(env, insn->dst_reg, DST_OP); 2315 if (err) 2316 return err; 2317 2318 } else if (opcode == BPF_MOV) { 2319 2320 if (BPF_SRC(insn->code) == BPF_X) { 2321 if (insn->imm != 0 || insn->off != 0) { | 2337 insn->dst_reg); 2338 return -EACCES; 2339 } 2340 2341 /* check dest operand */ 2342 err = check_reg_arg(env, insn->dst_reg, DST_OP); 2343 if (err) 2344 return err; 2345 2346 } else if (opcode == BPF_MOV) { 2347 2348 if (BPF_SRC(insn->code) == BPF_X) { 2349 if (insn->imm != 0 || insn->off != 0) { |
2322 verbose("BPF_MOV uses reserved fields\n"); | 2350 verbose(env, "BPF_MOV uses reserved fields\n"); |
2323 return -EINVAL; 2324 } 2325 2326 /* check src operand */ 2327 err = check_reg_arg(env, insn->src_reg, SRC_OP); 2328 if (err) 2329 return err; 2330 } else { 2331 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { | 2351 return -EINVAL; 2352 } 2353 2354 /* check src operand */ 2355 err = check_reg_arg(env, insn->src_reg, SRC_OP); 2356 if (err) 2357 return err; 2358 } else { 2359 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { |
2332 verbose("BPF_MOV uses reserved fields\n"); | 2360 verbose(env, "BPF_MOV uses reserved fields\n"); |
2333 return -EINVAL; 2334 } 2335 } 2336 2337 /* check dest operand */ 2338 err = check_reg_arg(env, insn->dst_reg, DST_OP); 2339 if (err) 2340 return err; 2341 2342 if (BPF_SRC(insn->code) == BPF_X) { 2343 if (BPF_CLASS(insn->code) == BPF_ALU64) { 2344 /* case: R1 = R2 2345 * copy register state to dest reg 2346 */ 2347 regs[insn->dst_reg] = regs[insn->src_reg]; | 2361 return -EINVAL; 2362 } 2363 } 2364 2365 /* check dest operand */ 2366 err = check_reg_arg(env, insn->dst_reg, DST_OP); 2367 if (err) 2368 return err; 2369 2370 if (BPF_SRC(insn->code) == BPF_X) { 2371 if (BPF_CLASS(insn->code) == BPF_ALU64) { 2372 /* case: R1 = R2 2373 * copy register state to dest reg 2374 */ 2375 regs[insn->dst_reg] = regs[insn->src_reg]; |
2376 regs[insn->dst_reg].live |= REG_LIVE_WRITTEN; |
|
2348 } else { 2349 /* R1 = (u32) R2 */ 2350 if (is_pointer_value(env, insn->src_reg)) { | 2377 } else { 2378 /* R1 = (u32) R2 */ 2379 if (is_pointer_value(env, insn->src_reg)) { |
2351 verbose("R%d partial copy of pointer\n", | 2380 verbose(env, 2381 "R%d partial copy of pointer\n", |
2352 insn->src_reg); 2353 return -EACCES; 2354 } | 2382 insn->src_reg); 2383 return -EACCES; 2384 } |
2355 mark_reg_unknown(regs, insn->dst_reg); | 2385 mark_reg_unknown(env, regs, insn->dst_reg); |
2356 /* high 32 bits are known zero. */ 2357 regs[insn->dst_reg].var_off = tnum_cast( 2358 regs[insn->dst_reg].var_off, 4); 2359 __update_reg_bounds(®s[insn->dst_reg]); 2360 } 2361 } else { 2362 /* case: R = imm 2363 * remember the value we stored into this reg 2364 */ 2365 regs[insn->dst_reg].type = SCALAR_VALUE; 2366 __mark_reg_known(regs + insn->dst_reg, insn->imm); 2367 } 2368 2369 } else if (opcode > BPF_END) { | 2386 /* high 32 bits are known zero. */ 2387 regs[insn->dst_reg].var_off = tnum_cast( 2388 regs[insn->dst_reg].var_off, 4); 2389 __update_reg_bounds(®s[insn->dst_reg]); 2390 } 2391 } else { 2392 /* case: R = imm 2393 * remember the value we stored into this reg 2394 */ 2395 regs[insn->dst_reg].type = SCALAR_VALUE; 2396 __mark_reg_known(regs + insn->dst_reg, insn->imm); 2397 } 2398 2399 } else if (opcode > BPF_END) { |
2370 verbose("invalid BPF_ALU opcode %x\n", opcode); | 2400 verbose(env, "invalid BPF_ALU opcode %x\n", opcode); |
2371 return -EINVAL; 2372 2373 } else { /* all other ALU ops: and, sub, xor, add, ... */ 2374 2375 if (BPF_SRC(insn->code) == BPF_X) { 2376 if (insn->imm != 0 || insn->off != 0) { | 2401 return -EINVAL; 2402 2403 } else { /* all other ALU ops: and, sub, xor, add, ... */ 2404 2405 if (BPF_SRC(insn->code) == BPF_X) { 2406 if (insn->imm != 0 || insn->off != 0) { |
2377 verbose("BPF_ALU uses reserved fields\n"); | 2407 verbose(env, "BPF_ALU uses reserved fields\n"); |
2378 return -EINVAL; 2379 } 2380 /* check src1 operand */ 2381 err = check_reg_arg(env, insn->src_reg, SRC_OP); 2382 if (err) 2383 return err; 2384 } else { 2385 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { | 2408 return -EINVAL; 2409 } 2410 /* check src1 operand */ 2411 err = check_reg_arg(env, insn->src_reg, SRC_OP); 2412 if (err) 2413 return err; 2414 } else { 2415 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { |
2386 verbose("BPF_ALU uses reserved fields\n"); | 2416 verbose(env, "BPF_ALU uses reserved fields\n"); |
2387 return -EINVAL; 2388 } 2389 } 2390 2391 /* check src2 operand */ 2392 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 2393 if (err) 2394 return err; 2395 2396 if ((opcode == BPF_MOD || opcode == BPF_DIV) && 2397 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) { | 2417 return -EINVAL; 2418 } 2419 } 2420 2421 /* check src2 operand */ 2422 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 2423 if (err) 2424 return err; 2425 2426 if ((opcode == BPF_MOD || opcode == BPF_DIV) && 2427 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) { |
2398 verbose("div by zero\n"); | 2428 verbose(env, "div by zero\n"); |
2399 return -EINVAL; 2400 } 2401 2402 if ((opcode == BPF_LSH || opcode == BPF_RSH || 2403 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) { 2404 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32; 2405 2406 if (insn->imm < 0 || insn->imm >= size) { | 2429 return -EINVAL; 2430 } 2431 2432 if ((opcode == BPF_LSH || opcode == BPF_RSH || 2433 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) { 2434 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32; 2435 2436 if (insn->imm < 0 || insn->imm >= size) { |
2407 verbose("invalid shift %d\n", insn->imm); | 2437 verbose(env, "invalid shift %d\n", insn->imm); |
2408 return -EINVAL; 2409 } 2410 } 2411 2412 /* check dest operand */ 2413 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 2414 if (err) 2415 return err; 2416 2417 return adjust_reg_min_max_vals(env, insn); 2418 } 2419 2420 return 0; 2421} 2422 2423static void find_good_pkt_pointers(struct bpf_verifier_state *state, | 2438 return -EINVAL; 2439 } 2440 } 2441 2442 /* check dest operand */ 2443 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 2444 if (err) 2445 return err; 2446 2447 return adjust_reg_min_max_vals(env, insn); 2448 } 2449 2450 return 0; 2451} 2452 2453static void find_good_pkt_pointers(struct bpf_verifier_state *state, |
2424 struct bpf_reg_state *dst_reg) | 2454 struct bpf_reg_state *dst_reg, 2455 enum bpf_reg_type type, 2456 bool range_right_open) |
2425{ 2426 struct bpf_reg_state *regs = state->regs, *reg; | 2457{ 2458 struct bpf_reg_state *regs = state->regs, *reg; |
2459 u16 new_range; |
|
2427 int i; 2428 | 2460 int i; 2461 |
2429 if (dst_reg->off < 0) | 2462 if (dst_reg->off < 0 || 2463 (dst_reg->off == 0 && range_right_open)) |
2430 /* This doesn't give us any range */ 2431 return; 2432 2433 if (dst_reg->umax_value > MAX_PACKET_OFF || 2434 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF) 2435 /* Risk of overflow. For instance, ptr + (1<<63) may be less 2436 * than pkt_end, but that's because it's also less than pkt. 2437 */ 2438 return; 2439 | 2464 /* This doesn't give us any range */ 2465 return; 2466 2467 if (dst_reg->umax_value > MAX_PACKET_OFF || 2468 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF) 2469 /* Risk of overflow. For instance, ptr + (1<<63) may be less 2470 * than pkt_end, but that's because it's also less than pkt. 2471 */ 2472 return; 2473 |
2440 /* LLVM can generate four kind of checks: | 2474 new_range = dst_reg->off; 2475 if (range_right_open) 2476 new_range--; 2477 2478 /* Examples for register markings: |
2441 * | 2479 * |
2442 * Type 1/2: | 2480 * pkt_data in dst register: |
2443 * 2444 * r2 = r3; 2445 * r2 += 8; 2446 * if (r2 > pkt_end) goto <handle exception> 2447 * <access okay> 2448 * 2449 * r2 = r3; 2450 * r2 += 8; 2451 * if (r2 < pkt_end) goto <access okay> 2452 * <handle exception> 2453 * 2454 * Where: 2455 * r2 == dst_reg, pkt_end == src_reg 2456 * r2=pkt(id=n,off=8,r=0) 2457 * r3=pkt(id=n,off=0,r=0) 2458 * | 2481 * 2482 * r2 = r3; 2483 * r2 += 8; 2484 * if (r2 > pkt_end) goto <handle exception> 2485 * <access okay> 2486 * 2487 * r2 = r3; 2488 * r2 += 8; 2489 * if (r2 < pkt_end) goto <access okay> 2490 * <handle exception> 2491 * 2492 * Where: 2493 * r2 == dst_reg, pkt_end == src_reg 2494 * r2=pkt(id=n,off=8,r=0) 2495 * r3=pkt(id=n,off=0,r=0) 2496 * |
2459 * Type 3/4: | 2497 * pkt_data in src register: |
2460 * 2461 * r2 = r3; 2462 * r2 += 8; 2463 * if (pkt_end >= r2) goto <access okay> 2464 * <handle exception> 2465 * 2466 * r2 = r3; 2467 * r2 += 8; 2468 * if (pkt_end <= r2) goto <handle exception> 2469 * <access okay> 2470 * 2471 * Where: 2472 * pkt_end == dst_reg, r2 == src_reg 2473 * r2=pkt(id=n,off=8,r=0) 2474 * r3=pkt(id=n,off=0,r=0) 2475 * 2476 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8) | 2498 * 2499 * r2 = r3; 2500 * r2 += 8; 2501 * if (pkt_end >= r2) goto <access okay> 2502 * <handle exception> 2503 * 2504 * r2 = r3; 2505 * r2 += 8; 2506 * if (pkt_end <= r2) goto <handle exception> 2507 * <access okay> 2508 * 2509 * Where: 2510 * pkt_end == dst_reg, r2 == src_reg 2511 * r2=pkt(id=n,off=8,r=0) 2512 * r3=pkt(id=n,off=0,r=0) 2513 * 2514 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8) |
2477 * so that range of bytes [r3, r3 + 8) is safe to access. | 2515 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8) 2516 * and [r3, r3 + 8-1) respectively is safe to access depending on 2517 * the check. |
2478 */ 2479 2480 /* If our ids match, then we must have the same max_value. And we 2481 * don't care about the other reg's fixed offset, since if it's too big 2482 * the range won't allow anything. 2483 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16. 2484 */ 2485 for (i = 0; i < MAX_BPF_REG; i++) | 2518 */ 2519 2520 /* If our ids match, then we must have the same max_value. And we 2521 * don't care about the other reg's fixed offset, since if it's too big 2522 * the range won't allow anything. 2523 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16. 2524 */ 2525 for (i = 0; i < MAX_BPF_REG; i++) |
2486 if (regs[i].type == PTR_TO_PACKET && regs[i].id == dst_reg->id) | 2526 if (regs[i].type == type && regs[i].id == dst_reg->id) |
2487 /* keep the maximum range already checked */ | 2527 /* keep the maximum range already checked */ |
2488 regs[i].range = max_t(u16, regs[i].range, dst_reg->off); | 2528 regs[i].range = max(regs[i].range, new_range); |
2489 | 2529 |
2490 for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) { 2491 if (state->stack_slot_type[i] != STACK_SPILL) | 2530 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 2531 if (state->stack[i].slot_type[0] != STACK_SPILL) |
2492 continue; | 2532 continue; |
2493 reg = &state->spilled_regs[i / BPF_REG_SIZE]; 2494 if (reg->type == PTR_TO_PACKET && reg->id == dst_reg->id) 2495 reg->range = max_t(u16, reg->range, dst_reg->off); | 2533 reg = &state->stack[i].spilled_ptr; 2534 if (reg->type == type && reg->id == dst_reg->id) 2535 reg->range = max(reg->range, new_range); |
2496 } 2497} 2498 2499/* Adjusts the register min/max values in the case that the dst_reg is the 2500 * variable register that we are working on, and src_reg is a constant or we're 2501 * simply doing a BPF_K check. 2502 * In JEQ/JNE cases we also adjust the var_off values. 2503 */ --- 231 unchanged lines hidden (view full) --- 2735{ 2736 struct bpf_reg_state *regs = state->regs; 2737 u32 id = regs[regno].id; 2738 int i; 2739 2740 for (i = 0; i < MAX_BPF_REG; i++) 2741 mark_map_reg(regs, i, id, is_null); 2742 | 2536 } 2537} 2538 2539/* Adjusts the register min/max values in the case that the dst_reg is the 2540 * variable register that we are working on, and src_reg is a constant or we're 2541 * simply doing a BPF_K check. 2542 * In JEQ/JNE cases we also adjust the var_off values. 2543 */ --- 231 unchanged lines hidden (view full) --- 2775{ 2776 struct bpf_reg_state *regs = state->regs; 2777 u32 id = regs[regno].id; 2778 int i; 2779 2780 for (i = 0; i < MAX_BPF_REG; i++) 2781 mark_map_reg(regs, i, id, is_null); 2782 |
2743 for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) { 2744 if (state->stack_slot_type[i] != STACK_SPILL) | 2783 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 2784 if (state->stack[i].slot_type[0] != STACK_SPILL) |
2745 continue; | 2785 continue; |
2746 mark_map_reg(state->spilled_regs, i / BPF_REG_SIZE, id, is_null); | 2786 mark_map_reg(&state->stack[i].spilled_ptr, 0, id, is_null); |
2747 } 2748} 2749 | 2787 } 2788} 2789 |
2790static bool try_match_pkt_pointers(const struct bpf_insn *insn, 2791 struct bpf_reg_state *dst_reg, 2792 struct bpf_reg_state *src_reg, 2793 struct bpf_verifier_state *this_branch, 2794 struct bpf_verifier_state *other_branch) 2795{ 2796 if (BPF_SRC(insn->code) != BPF_X) 2797 return false; 2798 2799 switch (BPF_OP(insn->code)) { 2800 case BPF_JGT: 2801 if ((dst_reg->type == PTR_TO_PACKET && 2802 src_reg->type == PTR_TO_PACKET_END) || 2803 (dst_reg->type == PTR_TO_PACKET_META && 2804 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 2805 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */ 2806 find_good_pkt_pointers(this_branch, dst_reg, 2807 dst_reg->type, false); 2808 } else if ((dst_reg->type == PTR_TO_PACKET_END && 2809 src_reg->type == PTR_TO_PACKET) || 2810 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 2811 src_reg->type == PTR_TO_PACKET_META)) { 2812 /* pkt_end > pkt_data', pkt_data > pkt_meta' */ 2813 find_good_pkt_pointers(other_branch, src_reg, 2814 src_reg->type, true); 2815 } else { 2816 return false; 2817 } 2818 break; 2819 case BPF_JLT: 2820 if ((dst_reg->type == PTR_TO_PACKET && 2821 src_reg->type == PTR_TO_PACKET_END) || 2822 (dst_reg->type == PTR_TO_PACKET_META && 2823 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 2824 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */ 2825 find_good_pkt_pointers(other_branch, dst_reg, 2826 dst_reg->type, true); 2827 } else if ((dst_reg->type == PTR_TO_PACKET_END && 2828 src_reg->type == PTR_TO_PACKET) || 2829 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 2830 src_reg->type == PTR_TO_PACKET_META)) { 2831 /* pkt_end < pkt_data', pkt_data > pkt_meta' */ 2832 find_good_pkt_pointers(this_branch, src_reg, 2833 src_reg->type, false); 2834 } else { 2835 return false; 2836 } 2837 break; 2838 case BPF_JGE: 2839 if ((dst_reg->type == PTR_TO_PACKET && 2840 src_reg->type == PTR_TO_PACKET_END) || 2841 (dst_reg->type == PTR_TO_PACKET_META && 2842 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 2843 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */ 2844 find_good_pkt_pointers(this_branch, dst_reg, 2845 dst_reg->type, true); 2846 } else if ((dst_reg->type == PTR_TO_PACKET_END && 2847 src_reg->type == PTR_TO_PACKET) || 2848 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 2849 src_reg->type == PTR_TO_PACKET_META)) { 2850 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */ 2851 find_good_pkt_pointers(other_branch, src_reg, 2852 src_reg->type, false); 2853 } else { 2854 return false; 2855 } 2856 break; 2857 case BPF_JLE: 2858 if ((dst_reg->type == PTR_TO_PACKET && 2859 src_reg->type == PTR_TO_PACKET_END) || 2860 (dst_reg->type == PTR_TO_PACKET_META && 2861 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 2862 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */ 2863 find_good_pkt_pointers(other_branch, dst_reg, 2864 dst_reg->type, false); 2865 } else if ((dst_reg->type == PTR_TO_PACKET_END && 2866 src_reg->type == PTR_TO_PACKET) || 2867 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 2868 src_reg->type == PTR_TO_PACKET_META)) { 2869 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */ 2870 find_good_pkt_pointers(this_branch, src_reg, 2871 src_reg->type, true); 2872 } else { 2873 return false; 2874 } 2875 break; 2876 default: 2877 return false; 2878 } 2879 2880 return true; 2881} 2882 |
|
2750static int check_cond_jmp_op(struct bpf_verifier_env *env, 2751 struct bpf_insn *insn, int *insn_idx) 2752{ | 2883static int check_cond_jmp_op(struct bpf_verifier_env *env, 2884 struct bpf_insn *insn, int *insn_idx) 2885{ |
2753 struct bpf_verifier_state *other_branch, *this_branch = &env->cur_state; | 2886 struct bpf_verifier_state *other_branch, *this_branch = env->cur_state; |
2754 struct bpf_reg_state *regs = this_branch->regs, *dst_reg; 2755 u8 opcode = BPF_OP(insn->code); 2756 int err; 2757 2758 if (opcode > BPF_JSLE) { | 2887 struct bpf_reg_state *regs = this_branch->regs, *dst_reg; 2888 u8 opcode = BPF_OP(insn->code); 2889 int err; 2890 2891 if (opcode > BPF_JSLE) { |
2759 verbose("invalid BPF_JMP opcode %x\n", opcode); | 2892 verbose(env, "invalid BPF_JMP opcode %x\n", opcode); |
2760 return -EINVAL; 2761 } 2762 2763 if (BPF_SRC(insn->code) == BPF_X) { 2764 if (insn->imm != 0) { | 2893 return -EINVAL; 2894 } 2895 2896 if (BPF_SRC(insn->code) == BPF_X) { 2897 if (insn->imm != 0) { |
2765 verbose("BPF_JMP uses reserved fields\n"); | 2898 verbose(env, "BPF_JMP uses reserved fields\n"); |
2766 return -EINVAL; 2767 } 2768 2769 /* check src1 operand */ 2770 err = check_reg_arg(env, insn->src_reg, SRC_OP); 2771 if (err) 2772 return err; 2773 2774 if (is_pointer_value(env, insn->src_reg)) { | 2899 return -EINVAL; 2900 } 2901 2902 /* check src1 operand */ 2903 err = check_reg_arg(env, insn->src_reg, SRC_OP); 2904 if (err) 2905 return err; 2906 2907 if (is_pointer_value(env, insn->src_reg)) { |
2775 verbose("R%d pointer comparison prohibited\n", | 2908 verbose(env, "R%d pointer comparison prohibited\n", |
2776 insn->src_reg); 2777 return -EACCES; 2778 } 2779 } else { 2780 if (insn->src_reg != BPF_REG_0) { | 2909 insn->src_reg); 2910 return -EACCES; 2911 } 2912 } else { 2913 if (insn->src_reg != BPF_REG_0) { |
2781 verbose("BPF_JMP uses reserved fields\n"); | 2914 verbose(env, "BPF_JMP uses reserved fields\n"); |
2782 return -EINVAL; 2783 } 2784 } 2785 2786 /* check src2 operand */ 2787 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 2788 if (err) 2789 return err; --- 58 unchanged lines hidden (view full) --- 2848 if (BPF_SRC(insn->code) == BPF_K && 2849 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) && 2850 dst_reg->type == PTR_TO_MAP_VALUE_OR_NULL) { 2851 /* Mark all identical map registers in each branch as either 2852 * safe or unknown depending R == 0 or R != 0 conditional. 2853 */ 2854 mark_map_regs(this_branch, insn->dst_reg, opcode == BPF_JNE); 2855 mark_map_regs(other_branch, insn->dst_reg, opcode == BPF_JEQ); | 2915 return -EINVAL; 2916 } 2917 } 2918 2919 /* check src2 operand */ 2920 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 2921 if (err) 2922 return err; --- 58 unchanged lines hidden (view full) --- 2981 if (BPF_SRC(insn->code) == BPF_K && 2982 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) && 2983 dst_reg->type == PTR_TO_MAP_VALUE_OR_NULL) { 2984 /* Mark all identical map registers in each branch as either 2985 * safe or unknown depending R == 0 or R != 0 conditional. 2986 */ 2987 mark_map_regs(this_branch, insn->dst_reg, opcode == BPF_JNE); 2988 mark_map_regs(other_branch, insn->dst_reg, opcode == BPF_JEQ); |
2856 } else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JGT && 2857 dst_reg->type == PTR_TO_PACKET && 2858 regs[insn->src_reg].type == PTR_TO_PACKET_END) { 2859 find_good_pkt_pointers(this_branch, dst_reg); 2860 } else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JLT && 2861 dst_reg->type == PTR_TO_PACKET && 2862 regs[insn->src_reg].type == PTR_TO_PACKET_END) { 2863 find_good_pkt_pointers(other_branch, dst_reg); 2864 } else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JGE && 2865 dst_reg->type == PTR_TO_PACKET_END && 2866 regs[insn->src_reg].type == PTR_TO_PACKET) { 2867 find_good_pkt_pointers(other_branch, ®s[insn->src_reg]); 2868 } else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JLE && 2869 dst_reg->type == PTR_TO_PACKET_END && 2870 regs[insn->src_reg].type == PTR_TO_PACKET) { 2871 find_good_pkt_pointers(this_branch, ®s[insn->src_reg]); 2872 } else if (is_pointer_value(env, insn->dst_reg)) { 2873 verbose("R%d pointer comparison prohibited\n", insn->dst_reg); | 2989 } else if (!try_match_pkt_pointers(insn, dst_reg, ®s[insn->src_reg], 2990 this_branch, other_branch) && 2991 is_pointer_value(env, insn->dst_reg)) { 2992 verbose(env, "R%d pointer comparison prohibited\n", 2993 insn->dst_reg); |
2874 return -EACCES; 2875 } | 2994 return -EACCES; 2995 } |
2876 if (log_level) 2877 print_verifier_state(this_branch); | 2996 if (env->log.level) 2997 print_verifier_state(env, this_branch); |
2878 return 0; 2879} 2880 2881/* return the map pointer stored inside BPF_LD_IMM64 instruction */ 2882static struct bpf_map *ld_imm64_to_map_ptr(struct bpf_insn *insn) 2883{ 2884 u64 imm64 = ((u64) (u32) insn[0].imm) | ((u64) (u32) insn[1].imm) << 32; 2885 2886 return (struct bpf_map *) (unsigned long) imm64; 2887} 2888 2889/* verify BPF_LD_IMM64 instruction */ 2890static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn) 2891{ | 2998 return 0; 2999} 3000 3001/* return the map pointer stored inside BPF_LD_IMM64 instruction */ 3002static struct bpf_map *ld_imm64_to_map_ptr(struct bpf_insn *insn) 3003{ 3004 u64 imm64 = ((u64) (u32) insn[0].imm) | ((u64) (u32) insn[1].imm) << 32; 3005 3006 return (struct bpf_map *) (unsigned long) imm64; 3007} 3008 3009/* verify BPF_LD_IMM64 instruction */ 3010static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn) 3011{ |
2892 struct bpf_reg_state *regs = env->cur_state.regs; | 3012 struct bpf_reg_state *regs = cur_regs(env); |
2893 int err; 2894 2895 if (BPF_SIZE(insn->code) != BPF_DW) { | 3013 int err; 3014 3015 if (BPF_SIZE(insn->code) != BPF_DW) { |
2896 verbose("invalid BPF_LD_IMM insn\n"); | 3016 verbose(env, "invalid BPF_LD_IMM insn\n"); |
2897 return -EINVAL; 2898 } 2899 if (insn->off != 0) { | 3017 return -EINVAL; 3018 } 3019 if (insn->off != 0) { |
2900 verbose("BPF_LD_IMM64 uses reserved fields\n"); | 3020 verbose(env, "BPF_LD_IMM64 uses reserved fields\n"); |
2901 return -EINVAL; 2902 } 2903 2904 err = check_reg_arg(env, insn->dst_reg, DST_OP); 2905 if (err) 2906 return err; 2907 2908 if (insn->src_reg == 0) { --- 36 unchanged lines hidden (view full) --- 2945 * SRC == any register 2946 * IMM == 32-bit immediate 2947 * 2948 * Output: 2949 * R0 - 8/16/32-bit skb data converted to cpu endianness 2950 */ 2951static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn) 2952{ | 3021 return -EINVAL; 3022 } 3023 3024 err = check_reg_arg(env, insn->dst_reg, DST_OP); 3025 if (err) 3026 return err; 3027 3028 if (insn->src_reg == 0) { --- 36 unchanged lines hidden (view full) --- 3065 * SRC == any register 3066 * IMM == 32-bit immediate 3067 * 3068 * Output: 3069 * R0 - 8/16/32-bit skb data converted to cpu endianness 3070 */ 3071static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn) 3072{ |
2953 struct bpf_reg_state *regs = env->cur_state.regs; | 3073 struct bpf_reg_state *regs = cur_regs(env); |
2954 u8 mode = BPF_MODE(insn->code); 2955 int i, err; 2956 2957 if (!may_access_skb(env->prog->type)) { | 3074 u8 mode = BPF_MODE(insn->code); 3075 int i, err; 3076 3077 if (!may_access_skb(env->prog->type)) { |
2958 verbose("BPF_LD_[ABS|IND] instructions not allowed for this program type\n"); | 3078 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n"); |
2959 return -EINVAL; 2960 } 2961 2962 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 || 2963 BPF_SIZE(insn->code) == BPF_DW || 2964 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) { | 3079 return -EINVAL; 3080 } 3081 3082 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 || 3083 BPF_SIZE(insn->code) == BPF_DW || 3084 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) { |
2965 verbose("BPF_LD_[ABS|IND] uses reserved fields\n"); | 3085 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n"); |
2966 return -EINVAL; 2967 } 2968 2969 /* check whether implicit source operand (register R6) is readable */ 2970 err = check_reg_arg(env, BPF_REG_6, SRC_OP); 2971 if (err) 2972 return err; 2973 2974 if (regs[BPF_REG_6].type != PTR_TO_CTX) { | 3086 return -EINVAL; 3087 } 3088 3089 /* check whether implicit source operand (register R6) is readable */ 3090 err = check_reg_arg(env, BPF_REG_6, SRC_OP); 3091 if (err) 3092 return err; 3093 3094 if (regs[BPF_REG_6].type != PTR_TO_CTX) { |
2975 verbose("at the time of BPF_LD_ABS|IND R6 != pointer to skb\n"); | 3095 verbose(env, 3096 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n"); |
2976 return -EINVAL; 2977 } 2978 2979 if (mode == BPF_IND) { 2980 /* check explicit source operand */ 2981 err = check_reg_arg(env, insn->src_reg, SRC_OP); 2982 if (err) 2983 return err; 2984 } 2985 2986 /* reset caller saved regs to unreadable */ 2987 for (i = 0; i < CALLER_SAVED_REGS; i++) { | 3097 return -EINVAL; 3098 } 3099 3100 if (mode == BPF_IND) { 3101 /* check explicit source operand */ 3102 err = check_reg_arg(env, insn->src_reg, SRC_OP); 3103 if (err) 3104 return err; 3105 } 3106 3107 /* reset caller saved regs to unreadable */ 3108 for (i = 0; i < CALLER_SAVED_REGS; i++) { |
2988 mark_reg_not_init(regs, caller_saved[i]); | 3109 mark_reg_not_init(env, regs, caller_saved[i]); |
2989 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 2990 } 2991 2992 /* mark destination R0 register as readable, since it contains 2993 * the value fetched from the packet. 2994 * Already marked as written above. 2995 */ | 3110 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 3111 } 3112 3113 /* mark destination R0 register as readable, since it contains 3114 * the value fetched from the packet. 3115 * Already marked as written above. 3116 */ |
2996 mark_reg_unknown(regs, BPF_REG_0); | 3117 mark_reg_unknown(env, regs, BPF_REG_0); |
2997 return 0; 2998} 2999 | 3118 return 0; 3119} 3120 |
3121static int check_return_code(struct bpf_verifier_env *env) 3122{ 3123 struct bpf_reg_state *reg; 3124 struct tnum range = tnum_range(0, 1); 3125 3126 switch (env->prog->type) { 3127 case BPF_PROG_TYPE_CGROUP_SKB: 3128 case BPF_PROG_TYPE_CGROUP_SOCK: 3129 case BPF_PROG_TYPE_SOCK_OPS: 3130 break; 3131 default: 3132 return 0; 3133 } 3134 3135 reg = cur_regs(env) + BPF_REG_0; 3136 if (reg->type != SCALAR_VALUE) { 3137 verbose(env, "At program exit the register R0 is not a known value (%s)\n", 3138 reg_type_str[reg->type]); 3139 return -EINVAL; 3140 } 3141 3142 if (!tnum_in(range, reg->var_off)) { 3143 verbose(env, "At program exit the register R0 "); 3144 if (!tnum_is_unknown(reg->var_off)) { 3145 char tn_buf[48]; 3146 3147 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3148 verbose(env, "has value %s", tn_buf); 3149 } else { 3150 verbose(env, "has unknown scalar value"); 3151 } 3152 verbose(env, " should have been 0 or 1\n"); 3153 return -EINVAL; 3154 } 3155 return 0; 3156} 3157 |
|
3000/* non-recursive DFS pseudo code 3001 * 1 procedure DFS-iterative(G,v): 3002 * 2 label v as discovered 3003 * 3 let S be a stack 3004 * 4 S.push(v) 3005 * 5 while S is not empty 3006 * 6 t <- S.pop() 3007 * 7 if t is what we're looking for: --- 44 unchanged lines hidden (view full) --- 3052{ 3053 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH)) 3054 return 0; 3055 3056 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH)) 3057 return 0; 3058 3059 if (w < 0 || w >= env->prog->len) { | 3158/* non-recursive DFS pseudo code 3159 * 1 procedure DFS-iterative(G,v): 3160 * 2 label v as discovered 3161 * 3 let S be a stack 3162 * 4 S.push(v) 3163 * 5 while S is not empty 3164 * 6 t <- S.pop() 3165 * 7 if t is what we're looking for: --- 44 unchanged lines hidden (view full) --- 3210{ 3211 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH)) 3212 return 0; 3213 3214 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH)) 3215 return 0; 3216 3217 if (w < 0 || w >= env->prog->len) { |
3060 verbose("jump out of range from insn %d to %d\n", t, w); | 3218 verbose(env, "jump out of range from insn %d to %d\n", t, w); |
3061 return -EINVAL; 3062 } 3063 3064 if (e == BRANCH) 3065 /* mark branch target for state pruning */ 3066 env->explored_states[w] = STATE_LIST_MARK; 3067 3068 if (insn_state[w] == 0) { 3069 /* tree-edge */ 3070 insn_state[t] = DISCOVERED | e; 3071 insn_state[w] = DISCOVERED; 3072 if (cur_stack >= env->prog->len) 3073 return -E2BIG; 3074 insn_stack[cur_stack++] = w; 3075 return 1; 3076 } else if ((insn_state[w] & 0xF0) == DISCOVERED) { | 3219 return -EINVAL; 3220 } 3221 3222 if (e == BRANCH) 3223 /* mark branch target for state pruning */ 3224 env->explored_states[w] = STATE_LIST_MARK; 3225 3226 if (insn_state[w] == 0) { 3227 /* tree-edge */ 3228 insn_state[t] = DISCOVERED | e; 3229 insn_state[w] = DISCOVERED; 3230 if (cur_stack >= env->prog->len) 3231 return -E2BIG; 3232 insn_stack[cur_stack++] = w; 3233 return 1; 3234 } else if ((insn_state[w] & 0xF0) == DISCOVERED) { |
3077 verbose("back-edge from insn %d to %d\n", t, w); | 3235 verbose(env, "back-edge from insn %d to %d\n", t, w); |
3078 return -EINVAL; 3079 } else if (insn_state[w] == EXPLORED) { 3080 /* forward- or cross-edge */ 3081 insn_state[t] = DISCOVERED | e; 3082 } else { | 3236 return -EINVAL; 3237 } else if (insn_state[w] == EXPLORED) { 3238 /* forward- or cross-edge */ 3239 insn_state[t] = DISCOVERED | e; 3240 } else { |
3083 verbose("insn state internal bug\n"); | 3241 verbose(env, "insn state internal bug\n"); |
3084 return -EFAULT; 3085 } 3086 return 0; 3087} 3088 3089/* non-recursive depth-first-search to detect loops in BPF program 3090 * loop == back-edge in directed graph 3091 */ --- 77 unchanged lines hidden (view full) --- 3169 goto peek_stack; 3170 else if (ret < 0) 3171 goto err_free; 3172 } 3173 3174mark_explored: 3175 insn_state[t] = EXPLORED; 3176 if (cur_stack-- <= 0) { | 3242 return -EFAULT; 3243 } 3244 return 0; 3245} 3246 3247/* non-recursive depth-first-search to detect loops in BPF program 3248 * loop == back-edge in directed graph 3249 */ --- 77 unchanged lines hidden (view full) --- 3327 goto peek_stack; 3328 else if (ret < 0) 3329 goto err_free; 3330 } 3331 3332mark_explored: 3333 insn_state[t] = EXPLORED; 3334 if (cur_stack-- <= 0) { |
3177 verbose("pop stack internal bug\n"); | 3335 verbose(env, "pop stack internal bug\n"); |
3178 ret = -EFAULT; 3179 goto err_free; 3180 } 3181 goto peek_stack; 3182 3183check_state: 3184 for (i = 0; i < insn_cnt; i++) { 3185 if (insn_state[i] != EXPLORED) { | 3336 ret = -EFAULT; 3337 goto err_free; 3338 } 3339 goto peek_stack; 3340 3341check_state: 3342 for (i = 0; i < insn_cnt; i++) { 3343 if (insn_state[i] != EXPLORED) { |
3186 verbose("unreachable insn %d\n", i); | 3344 verbose(env, "unreachable insn %d\n", i); |
3187 ret = -EINVAL; 3188 goto err_free; 3189 } 3190 } 3191 ret = 0; /* cfg looks good */ 3192 3193err_free: 3194 kfree(insn_state); --- 98 unchanged lines hidden (view full) --- 3293 * we converted to a PTR_TO_MAP_VALUE. 3294 */ 3295 if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL) 3296 return false; 3297 if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id))) 3298 return false; 3299 /* Check our ids match any regs they're supposed to */ 3300 return check_ids(rold->id, rcur->id, idmap); | 3345 ret = -EINVAL; 3346 goto err_free; 3347 } 3348 } 3349 ret = 0; /* cfg looks good */ 3350 3351err_free: 3352 kfree(insn_state); --- 98 unchanged lines hidden (view full) --- 3451 * we converted to a PTR_TO_MAP_VALUE. 3452 */ 3453 if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL) 3454 return false; 3455 if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id))) 3456 return false; 3457 /* Check our ids match any regs they're supposed to */ 3458 return check_ids(rold->id, rcur->id, idmap); |
3459 case PTR_TO_PACKET_META: |
|
3301 case PTR_TO_PACKET: | 3460 case PTR_TO_PACKET: |
3302 if (rcur->type != PTR_TO_PACKET) | 3461 if (rcur->type != rold->type) |
3303 return false; 3304 /* We must have at least as much range as the old ptr 3305 * did, so that any accesses which were safe before are 3306 * still safe. This is true even if old range < old off, 3307 * since someone could have accessed through (ptr - k), or 3308 * even done ptr -= k in a register, to get a safe access. 3309 */ 3310 if (rold->range > rcur->range) --- 21 unchanged lines hidden (view full) --- 3332 return false; 3333 } 3334 3335 /* Shouldn't get here; if we do, say it's not safe */ 3336 WARN_ON_ONCE(1); 3337 return false; 3338} 3339 | 3462 return false; 3463 /* We must have at least as much range as the old ptr 3464 * did, so that any accesses which were safe before are 3465 * still safe. This is true even if old range < old off, 3466 * since someone could have accessed through (ptr - k), or 3467 * even done ptr -= k in a register, to get a safe access. 3468 */ 3469 if (rold->range > rcur->range) --- 21 unchanged lines hidden (view full) --- 3491 return false; 3492 } 3493 3494 /* Shouldn't get here; if we do, say it's not safe */ 3495 WARN_ON_ONCE(1); 3496 return false; 3497} 3498 |
3499static bool stacksafe(struct bpf_verifier_state *old, 3500 struct bpf_verifier_state *cur, 3501 struct idpair *idmap) 3502{ 3503 int i, spi; 3504 3505 /* if explored stack has more populated slots than current stack 3506 * such stacks are not equivalent 3507 */ 3508 if (old->allocated_stack > cur->allocated_stack) 3509 return false; 3510 3511 /* walk slots of the explored stack and ignore any additional 3512 * slots in the current stack, since explored(safe) state 3513 * didn't use them 3514 */ 3515 for (i = 0; i < old->allocated_stack; i++) { 3516 spi = i / BPF_REG_SIZE; 3517 3518 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID) 3519 continue; 3520 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] != 3521 cur->stack[spi].slot_type[i % BPF_REG_SIZE]) 3522 /* Ex: old explored (safe) state has STACK_SPILL in 3523 * this stack slot, but current has has STACK_MISC -> 3524 * this verifier states are not equivalent, 3525 * return false to continue verification of this path 3526 */ 3527 return false; 3528 if (i % BPF_REG_SIZE) 3529 continue; 3530 if (old->stack[spi].slot_type[0] != STACK_SPILL) 3531 continue; 3532 if (!regsafe(&old->stack[spi].spilled_ptr, 3533 &cur->stack[spi].spilled_ptr, 3534 idmap)) 3535 /* when explored and current stack slot are both storing 3536 * spilled registers, check that stored pointers types 3537 * are the same as well. 3538 * Ex: explored safe path could have stored 3539 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8} 3540 * but current path has stored: 3541 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16} 3542 * such verifier states are not equivalent. 3543 * return false to continue verification of this path 3544 */ 3545 return false; 3546 } 3547 return true; 3548} 3549 |
|
3340/* compare two verifier states 3341 * 3342 * all states stored in state_list are known to be valid, since 3343 * verifier reached 'bpf_exit' instruction through them 3344 * 3345 * this function is called when verifier exploring different branches of 3346 * execution popped from the state stack. If it sees an old state that has 3347 * more strict register state and more strict stack state then this execution --- 28 unchanged lines hidden (view full) --- 3376 if (!idmap) 3377 return false; 3378 3379 for (i = 0; i < MAX_BPF_REG; i++) { 3380 if (!regsafe(&old->regs[i], &cur->regs[i], idmap)) 3381 goto out_free; 3382 } 3383 | 3550/* compare two verifier states 3551 * 3552 * all states stored in state_list are known to be valid, since 3553 * verifier reached 'bpf_exit' instruction through them 3554 * 3555 * this function is called when verifier exploring different branches of 3556 * execution popped from the state stack. If it sees an old state that has 3557 * more strict register state and more strict stack state then this execution --- 28 unchanged lines hidden (view full) --- 3586 if (!idmap) 3587 return false; 3588 3589 for (i = 0; i < MAX_BPF_REG; i++) { 3590 if (!regsafe(&old->regs[i], &cur->regs[i], idmap)) 3591 goto out_free; 3592 } 3593 |
3384 for (i = 0; i < MAX_BPF_STACK; i++) { 3385 if (old->stack_slot_type[i] == STACK_INVALID) 3386 continue; 3387 if (old->stack_slot_type[i] != cur->stack_slot_type[i]) 3388 /* Ex: old explored (safe) state has STACK_SPILL in 3389 * this stack slot, but current has has STACK_MISC -> 3390 * this verifier states are not equivalent, 3391 * return false to continue verification of this path 3392 */ 3393 goto out_free; 3394 if (i % BPF_REG_SIZE) 3395 continue; 3396 if (old->stack_slot_type[i] != STACK_SPILL) 3397 continue; 3398 if (!regsafe(&old->spilled_regs[i / BPF_REG_SIZE], 3399 &cur->spilled_regs[i / BPF_REG_SIZE], 3400 idmap)) 3401 /* when explored and current stack slot are both storing 3402 * spilled registers, check that stored pointers types 3403 * are the same as well. 3404 * Ex: explored safe path could have stored 3405 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8} 3406 * but current path has stored: 3407 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16} 3408 * such verifier states are not equivalent. 3409 * return false to continue verification of this path 3410 */ 3411 goto out_free; 3412 else 3413 continue; 3414 } | 3594 if (!stacksafe(old, cur, idmap)) 3595 goto out_free; |
3415 ret = true; 3416out_free: 3417 kfree(idmap); 3418 return ret; 3419} 3420 3421/* A write screens off any subsequent reads; but write marks come from the 3422 * straight-line code between a state and its parent. When we arrive at a --- 19 unchanged lines hidden (view full) --- 3442 if (writes && (state->regs[i].live & REG_LIVE_WRITTEN)) 3443 continue; 3444 if (state->regs[i].live & REG_LIVE_READ) { 3445 parent->regs[i].live |= REG_LIVE_READ; 3446 touched = true; 3447 } 3448 } 3449 /* ... and stack slots */ | 3596 ret = true; 3597out_free: 3598 kfree(idmap); 3599 return ret; 3600} 3601 3602/* A write screens off any subsequent reads; but write marks come from the 3603 * straight-line code between a state and its parent. When we arrive at a --- 19 unchanged lines hidden (view full) --- 3623 if (writes && (state->regs[i].live & REG_LIVE_WRITTEN)) 3624 continue; 3625 if (state->regs[i].live & REG_LIVE_READ) { 3626 parent->regs[i].live |= REG_LIVE_READ; 3627 touched = true; 3628 } 3629 } 3630 /* ... and stack slots */ |
3450 for (i = 0; i < MAX_BPF_STACK / BPF_REG_SIZE; i++) { 3451 if (parent->stack_slot_type[i * BPF_REG_SIZE] != STACK_SPILL) | 3631 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE && 3632 i < parent->allocated_stack / BPF_REG_SIZE; i++) { 3633 if (parent->stack[i].slot_type[0] != STACK_SPILL) |
3452 continue; | 3634 continue; |
3453 if (state->stack_slot_type[i * BPF_REG_SIZE] != STACK_SPILL) | 3635 if (state->stack[i].slot_type[0] != STACK_SPILL) |
3454 continue; | 3636 continue; |
3455 if (parent->spilled_regs[i].live & REG_LIVE_READ) | 3637 if (parent->stack[i].spilled_ptr.live & REG_LIVE_READ) |
3456 continue; | 3638 continue; |
3457 if (writes && (state->spilled_regs[i].live & REG_LIVE_WRITTEN)) | 3639 if (writes && 3640 (state->stack[i].spilled_ptr.live & REG_LIVE_WRITTEN)) |
3458 continue; | 3641 continue; |
3459 if (state->spilled_regs[i].live & REG_LIVE_READ) { 3460 parent->spilled_regs[i].live |= REG_LIVE_READ; | 3642 if (state->stack[i].spilled_ptr.live & REG_LIVE_READ) { 3643 parent->stack[i].spilled_ptr.live |= REG_LIVE_READ; |
3461 touched = true; 3462 } 3463 } 3464 return touched; 3465} 3466 3467/* "parent" is "a state from which we reach the current state", but initially 3468 * it is not the state->parent (i.e. "the state whose straight-line code leads --- 13 unchanged lines hidden (view full) --- 3482 parent = state->parent; 3483 } 3484} 3485 3486static int is_state_visited(struct bpf_verifier_env *env, int insn_idx) 3487{ 3488 struct bpf_verifier_state_list *new_sl; 3489 struct bpf_verifier_state_list *sl; | 3644 touched = true; 3645 } 3646 } 3647 return touched; 3648} 3649 3650/* "parent" is "a state from which we reach the current state", but initially 3651 * it is not the state->parent (i.e. "the state whose straight-line code leads --- 13 unchanged lines hidden (view full) --- 3665 parent = state->parent; 3666 } 3667} 3668 3669static int is_state_visited(struct bpf_verifier_env *env, int insn_idx) 3670{ 3671 struct bpf_verifier_state_list *new_sl; 3672 struct bpf_verifier_state_list *sl; |
3490 int i; | 3673 struct bpf_verifier_state *cur = env->cur_state; 3674 int i, err; |
3491 3492 sl = env->explored_states[insn_idx]; 3493 if (!sl) 3494 /* this 'insn_idx' instruction wasn't marked, so we will not 3495 * be doing state search here 3496 */ 3497 return 0; 3498 3499 while (sl != STATE_LIST_MARK) { | 3675 3676 sl = env->explored_states[insn_idx]; 3677 if (!sl) 3678 /* this 'insn_idx' instruction wasn't marked, so we will not 3679 * be doing state search here 3680 */ 3681 return 0; 3682 3683 while (sl != STATE_LIST_MARK) { |
3500 if (states_equal(env, &sl->state, &env->cur_state)) { | 3684 if (states_equal(env, &sl->state, cur)) { |
3501 /* reached equivalent register/stack state, 3502 * prune the search. 3503 * Registers read by the continuation are read by us. 3504 * If we have any write marks in env->cur_state, they 3505 * will prevent corresponding reads in the continuation 3506 * from reaching our parent (an explored_state). Our 3507 * own state will get the read marks recorded, but 3508 * they'll be immediately forgotten as we're pruning 3509 * this state and will pop a new one. 3510 */ | 3685 /* reached equivalent register/stack state, 3686 * prune the search. 3687 * Registers read by the continuation are read by us. 3688 * If we have any write marks in env->cur_state, they 3689 * will prevent corresponding reads in the continuation 3690 * from reaching our parent (an explored_state). Our 3691 * own state will get the read marks recorded, but 3692 * they'll be immediately forgotten as we're pruning 3693 * this state and will pop a new one. 3694 */ |
3511 propagate_liveness(&sl->state, &env->cur_state); | 3695 propagate_liveness(&sl->state, cur); |
3512 return 1; 3513 } 3514 sl = sl->next; 3515 } 3516 3517 /* there were no equivalent states, remember current one. 3518 * technically the current state is not proven to be safe yet, 3519 * but it will either reach bpf_exit (which means it's safe) or 3520 * it will be rejected. Since there are no loops, we won't be 3521 * seeing this 'insn_idx' instruction again on the way to bpf_exit 3522 */ | 3696 return 1; 3697 } 3698 sl = sl->next; 3699 } 3700 3701 /* there were no equivalent states, remember current one. 3702 * technically the current state is not proven to be safe yet, 3703 * but it will either reach bpf_exit (which means it's safe) or 3704 * it will be rejected. Since there are no loops, we won't be 3705 * seeing this 'insn_idx' instruction again on the way to bpf_exit 3706 */ |
3523 new_sl = kmalloc(sizeof(struct bpf_verifier_state_list), GFP_USER); | 3707 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL); |
3524 if (!new_sl) 3525 return -ENOMEM; 3526 3527 /* add new state to the head of linked list */ | 3708 if (!new_sl) 3709 return -ENOMEM; 3710 3711 /* add new state to the head of linked list */ |
3528 memcpy(&new_sl->state, &env->cur_state, sizeof(env->cur_state)); | 3712 err = copy_verifier_state(&new_sl->state, cur); 3713 if (err) { 3714 free_verifier_state(&new_sl->state, false); 3715 kfree(new_sl); 3716 return err; 3717 } |
3529 new_sl->next = env->explored_states[insn_idx]; 3530 env->explored_states[insn_idx] = new_sl; 3531 /* connect new state to parentage chain */ | 3718 new_sl->next = env->explored_states[insn_idx]; 3719 env->explored_states[insn_idx] = new_sl; 3720 /* connect new state to parentage chain */ |
3532 env->cur_state.parent = &new_sl->state; | 3721 cur->parent = &new_sl->state; |
3533 /* clear write marks in current state: the writes we did are not writes 3534 * our child did, so they don't screen off its reads from us. 3535 * (There are no read marks in current state, because reads always mark 3536 * their parent and current state never has children yet. Only 3537 * explored_states can get read marks.) 3538 */ 3539 for (i = 0; i < BPF_REG_FP; i++) | 3722 /* clear write marks in current state: the writes we did are not writes 3723 * our child did, so they don't screen off its reads from us. 3724 * (There are no read marks in current state, because reads always mark 3725 * their parent and current state never has children yet. Only 3726 * explored_states can get read marks.) 3727 */ 3728 for (i = 0; i < BPF_REG_FP; i++) |
3540 env->cur_state.regs[i].live = REG_LIVE_NONE; 3541 for (i = 0; i < MAX_BPF_STACK / BPF_REG_SIZE; i++) 3542 if (env->cur_state.stack_slot_type[i * BPF_REG_SIZE] == STACK_SPILL) 3543 env->cur_state.spilled_regs[i].live = REG_LIVE_NONE; | 3729 cur->regs[i].live = REG_LIVE_NONE; 3730 for (i = 0; i < cur->allocated_stack / BPF_REG_SIZE; i++) 3731 if (cur->stack[i].slot_type[0] == STACK_SPILL) 3732 cur->stack[i].spilled_ptr.live = REG_LIVE_NONE; |
3544 return 0; 3545} 3546 3547static int ext_analyzer_insn_hook(struct bpf_verifier_env *env, 3548 int insn_idx, int prev_insn_idx) 3549{ | 3733 return 0; 3734} 3735 3736static int ext_analyzer_insn_hook(struct bpf_verifier_env *env, 3737 int insn_idx, int prev_insn_idx) 3738{ |
3550 if (!env->analyzer_ops || !env->analyzer_ops->insn_hook) 3551 return 0; | 3739 if (env->analyzer_ops && env->analyzer_ops->insn_hook) 3740 return env->analyzer_ops->insn_hook(env, insn_idx, 3741 prev_insn_idx); 3742 if (env->dev_ops && env->dev_ops->insn_hook) 3743 return env->dev_ops->insn_hook(env, insn_idx, prev_insn_idx); |
3552 | 3744 |
3553 return env->analyzer_ops->insn_hook(env, insn_idx, prev_insn_idx); | 3745 return 0; |
3554} 3555 3556static int do_check(struct bpf_verifier_env *env) 3557{ | 3746} 3747 3748static int do_check(struct bpf_verifier_env *env) 3749{ |
3558 struct bpf_verifier_state *state = &env->cur_state; | 3750 struct bpf_verifier_state *state; |
3559 struct bpf_insn *insns = env->prog->insnsi; | 3751 struct bpf_insn *insns = env->prog->insnsi; |
3560 struct bpf_reg_state *regs = state->regs; | 3752 struct bpf_reg_state *regs; |
3561 int insn_cnt = env->prog->len; 3562 int insn_idx, prev_insn_idx = 0; 3563 int insn_processed = 0; 3564 bool do_print_state = false; 3565 | 3753 int insn_cnt = env->prog->len; 3754 int insn_idx, prev_insn_idx = 0; 3755 int insn_processed = 0; 3756 bool do_print_state = false; 3757 |
3566 init_reg_state(regs); | 3758 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL); 3759 if (!state) 3760 return -ENOMEM; 3761 env->cur_state = state; 3762 init_reg_state(env, state->regs); |
3567 state->parent = NULL; 3568 insn_idx = 0; 3569 for (;;) { 3570 struct bpf_insn *insn; 3571 u8 class; 3572 int err; 3573 3574 if (insn_idx >= insn_cnt) { | 3763 state->parent = NULL; 3764 insn_idx = 0; 3765 for (;;) { 3766 struct bpf_insn *insn; 3767 u8 class; 3768 int err; 3769 3770 if (insn_idx >= insn_cnt) { |
3575 verbose("invalid insn idx %d insn_cnt %d\n", | 3771 verbose(env, "invalid insn idx %d insn_cnt %d\n", |
3576 insn_idx, insn_cnt); 3577 return -EFAULT; 3578 } 3579 3580 insn = &insns[insn_idx]; 3581 class = BPF_CLASS(insn->code); 3582 3583 if (++insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) { | 3772 insn_idx, insn_cnt); 3773 return -EFAULT; 3774 } 3775 3776 insn = &insns[insn_idx]; 3777 class = BPF_CLASS(insn->code); 3778 3779 if (++insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) { |
3584 verbose("BPF program is too large. Processed %d insn\n", | 3780 verbose(env, 3781 "BPF program is too large. Processed %d insn\n", |
3585 insn_processed); 3586 return -E2BIG; 3587 } 3588 3589 err = is_state_visited(env, insn_idx); 3590 if (err < 0) 3591 return err; 3592 if (err == 1) { 3593 /* found equivalent state, can prune the search */ | 3782 insn_processed); 3783 return -E2BIG; 3784 } 3785 3786 err = is_state_visited(env, insn_idx); 3787 if (err < 0) 3788 return err; 3789 if (err == 1) { 3790 /* found equivalent state, can prune the search */ |
3594 if (log_level) { | 3791 if (env->log.level) { |
3595 if (do_print_state) | 3792 if (do_print_state) |
3596 verbose("\nfrom %d to %d: safe\n", | 3793 verbose(env, "\nfrom %d to %d: safe\n", |
3597 prev_insn_idx, insn_idx); 3598 else | 3794 prev_insn_idx, insn_idx); 3795 else |
3599 verbose("%d: safe\n", insn_idx); | 3796 verbose(env, "%d: safe\n", insn_idx); |
3600 } 3601 goto process_bpf_exit; 3602 } 3603 3604 if (need_resched()) 3605 cond_resched(); 3606 | 3797 } 3798 goto process_bpf_exit; 3799 } 3800 3801 if (need_resched()) 3802 cond_resched(); 3803 |
3607 if (log_level > 1 || (log_level && do_print_state)) { 3608 if (log_level > 1) 3609 verbose("%d:", insn_idx); | 3804 if (env->log.level > 1 || (env->log.level && do_print_state)) { 3805 if (env->log.level > 1) 3806 verbose(env, "%d:", insn_idx); |
3610 else | 3807 else |
3611 verbose("\nfrom %d to %d:", | 3808 verbose(env, "\nfrom %d to %d:", |
3612 prev_insn_idx, insn_idx); | 3809 prev_insn_idx, insn_idx); |
3613 print_verifier_state(&env->cur_state); | 3810 print_verifier_state(env, state); |
3614 do_print_state = false; 3615 } 3616 | 3811 do_print_state = false; 3812 } 3813 |
3617 if (log_level) { 3618 verbose("%d: ", insn_idx); 3619 print_bpf_insn(env, insn); | 3814 if (env->log.level) { 3815 verbose(env, "%d: ", insn_idx); 3816 print_bpf_insn(verbose, env, insn, 3817 env->allow_ptr_leaks); |
3620 } 3621 3622 err = ext_analyzer_insn_hook(env, insn_idx, prev_insn_idx); 3623 if (err) 3624 return err; 3625 | 3818 } 3819 3820 err = ext_analyzer_insn_hook(env, insn_idx, prev_insn_idx); 3821 if (err) 3822 return err; 3823 |
3824 regs = cur_regs(env); |
|
3626 if (class == BPF_ALU || class == BPF_ALU64) { 3627 err = check_alu_op(env, insn); 3628 if (err) 3629 return err; 3630 3631 } else if (class == BPF_LDX) { 3632 enum bpf_reg_type *prev_src_type, src_reg_type; 3633 --- 33 unchanged lines hidden (view full) --- 3667 *prev_src_type == PTR_TO_CTX)) { 3668 /* ABuser program is trying to use the same insn 3669 * dst_reg = *(u32*) (src_reg + off) 3670 * with different pointer types: 3671 * src_reg == ctx in one branch and 3672 * src_reg == stack|map in some other branch. 3673 * Reject it. 3674 */ | 3825 if (class == BPF_ALU || class == BPF_ALU64) { 3826 err = check_alu_op(env, insn); 3827 if (err) 3828 return err; 3829 3830 } else if (class == BPF_LDX) { 3831 enum bpf_reg_type *prev_src_type, src_reg_type; 3832 --- 33 unchanged lines hidden (view full) --- 3866 *prev_src_type == PTR_TO_CTX)) { 3867 /* ABuser program is trying to use the same insn 3868 * dst_reg = *(u32*) (src_reg + off) 3869 * with different pointer types: 3870 * src_reg == ctx in one branch and 3871 * src_reg == stack|map in some other branch. 3872 * Reject it. 3873 */ |
3675 verbose("same insn cannot be used with different pointers\n"); | 3874 verbose(env, "same insn cannot be used with different pointers\n"); |
3676 return -EINVAL; 3677 } 3678 3679 } else if (class == BPF_STX) { 3680 enum bpf_reg_type *prev_dst_type, dst_reg_type; 3681 3682 if (BPF_MODE(insn->code) == BPF_XADD) { 3683 err = check_xadd(env, insn_idx, insn); --- 23 unchanged lines hidden (view full) --- 3707 3708 prev_dst_type = &env->insn_aux_data[insn_idx].ptr_type; 3709 3710 if (*prev_dst_type == NOT_INIT) { 3711 *prev_dst_type = dst_reg_type; 3712 } else if (dst_reg_type != *prev_dst_type && 3713 (dst_reg_type == PTR_TO_CTX || 3714 *prev_dst_type == PTR_TO_CTX)) { | 3875 return -EINVAL; 3876 } 3877 3878 } else if (class == BPF_STX) { 3879 enum bpf_reg_type *prev_dst_type, dst_reg_type; 3880 3881 if (BPF_MODE(insn->code) == BPF_XADD) { 3882 err = check_xadd(env, insn_idx, insn); --- 23 unchanged lines hidden (view full) --- 3906 3907 prev_dst_type = &env->insn_aux_data[insn_idx].ptr_type; 3908 3909 if (*prev_dst_type == NOT_INIT) { 3910 *prev_dst_type = dst_reg_type; 3911 } else if (dst_reg_type != *prev_dst_type && 3912 (dst_reg_type == PTR_TO_CTX || 3913 *prev_dst_type == PTR_TO_CTX)) { |
3715 verbose("same insn cannot be used with different pointers\n"); | 3914 verbose(env, "same insn cannot be used with different pointers\n"); |
3716 return -EINVAL; 3717 } 3718 3719 } else if (class == BPF_ST) { 3720 if (BPF_MODE(insn->code) != BPF_MEM || 3721 insn->src_reg != BPF_REG_0) { | 3915 return -EINVAL; 3916 } 3917 3918 } else if (class == BPF_ST) { 3919 if (BPF_MODE(insn->code) != BPF_MEM || 3920 insn->src_reg != BPF_REG_0) { |
3722 verbose("BPF_ST uses reserved fields\n"); | 3921 verbose(env, "BPF_ST uses reserved fields\n"); |
3723 return -EINVAL; 3724 } 3725 /* check src operand */ 3726 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 3727 if (err) 3728 return err; 3729 3730 /* check that memory (dst_reg + off) is writeable */ --- 6 unchanged lines hidden (view full) --- 3737 } else if (class == BPF_JMP) { 3738 u8 opcode = BPF_OP(insn->code); 3739 3740 if (opcode == BPF_CALL) { 3741 if (BPF_SRC(insn->code) != BPF_K || 3742 insn->off != 0 || 3743 insn->src_reg != BPF_REG_0 || 3744 insn->dst_reg != BPF_REG_0) { | 3922 return -EINVAL; 3923 } 3924 /* check src operand */ 3925 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 3926 if (err) 3927 return err; 3928 3929 /* check that memory (dst_reg + off) is writeable */ --- 6 unchanged lines hidden (view full) --- 3936 } else if (class == BPF_JMP) { 3937 u8 opcode = BPF_OP(insn->code); 3938 3939 if (opcode == BPF_CALL) { 3940 if (BPF_SRC(insn->code) != BPF_K || 3941 insn->off != 0 || 3942 insn->src_reg != BPF_REG_0 || 3943 insn->dst_reg != BPF_REG_0) { |
3745 verbose("BPF_CALL uses reserved fields\n"); | 3944 verbose(env, "BPF_CALL uses reserved fields\n"); |
3746 return -EINVAL; 3747 } 3748 3749 err = check_call(env, insn->imm, insn_idx); 3750 if (err) 3751 return err; 3752 3753 } else if (opcode == BPF_JA) { 3754 if (BPF_SRC(insn->code) != BPF_K || 3755 insn->imm != 0 || 3756 insn->src_reg != BPF_REG_0 || 3757 insn->dst_reg != BPF_REG_0) { | 3945 return -EINVAL; 3946 } 3947 3948 err = check_call(env, insn->imm, insn_idx); 3949 if (err) 3950 return err; 3951 3952 } else if (opcode == BPF_JA) { 3953 if (BPF_SRC(insn->code) != BPF_K || 3954 insn->imm != 0 || 3955 insn->src_reg != BPF_REG_0 || 3956 insn->dst_reg != BPF_REG_0) { |
3758 verbose("BPF_JA uses reserved fields\n"); | 3957 verbose(env, "BPF_JA uses reserved fields\n"); |
3759 return -EINVAL; 3760 } 3761 3762 insn_idx += insn->off + 1; 3763 continue; 3764 3765 } else if (opcode == BPF_EXIT) { 3766 if (BPF_SRC(insn->code) != BPF_K || 3767 insn->imm != 0 || 3768 insn->src_reg != BPF_REG_0 || 3769 insn->dst_reg != BPF_REG_0) { | 3958 return -EINVAL; 3959 } 3960 3961 insn_idx += insn->off + 1; 3962 continue; 3963 3964 } else if (opcode == BPF_EXIT) { 3965 if (BPF_SRC(insn->code) != BPF_K || 3966 insn->imm != 0 || 3967 insn->src_reg != BPF_REG_0 || 3968 insn->dst_reg != BPF_REG_0) { |
3770 verbose("BPF_EXIT uses reserved fields\n"); | 3969 verbose(env, "BPF_EXIT uses reserved fields\n"); |
3771 return -EINVAL; 3772 } 3773 3774 /* eBPF calling convetion is such that R0 is used 3775 * to return the value from eBPF program. 3776 * Make sure that it's readable at this time 3777 * of bpf_exit, which means that program wrote 3778 * something into it earlier 3779 */ 3780 err = check_reg_arg(env, BPF_REG_0, SRC_OP); 3781 if (err) 3782 return err; 3783 3784 if (is_pointer_value(env, BPF_REG_0)) { | 3970 return -EINVAL; 3971 } 3972 3973 /* eBPF calling convetion is such that R0 is used 3974 * to return the value from eBPF program. 3975 * Make sure that it's readable at this time 3976 * of bpf_exit, which means that program wrote 3977 * something into it earlier 3978 */ 3979 err = check_reg_arg(env, BPF_REG_0, SRC_OP); 3980 if (err) 3981 return err; 3982 3983 if (is_pointer_value(env, BPF_REG_0)) { |
3785 verbose("R0 leaks addr as return value\n"); | 3984 verbose(env, "R0 leaks addr as return value\n"); |
3786 return -EACCES; 3787 } 3788 | 3985 return -EACCES; 3986 } 3987 |
3988 err = check_return_code(env); 3989 if (err) 3990 return err; |
|
3789process_bpf_exit: | 3991process_bpf_exit: |
3790 insn_idx = pop_stack(env, &prev_insn_idx); 3791 if (insn_idx < 0) { | 3992 err = pop_stack(env, &prev_insn_idx, &insn_idx); 3993 if (err < 0) { 3994 if (err != -ENOENT) 3995 return err; |
3792 break; 3793 } else { 3794 do_print_state = true; 3795 continue; 3796 } 3797 } else { 3798 err = check_cond_jmp_op(env, insn, &insn_idx); 3799 if (err) --- 9 unchanged lines hidden (view full) --- 3809 3810 } else if (mode == BPF_IMM) { 3811 err = check_ld_imm(env, insn); 3812 if (err) 3813 return err; 3814 3815 insn_idx++; 3816 } else { | 3996 break; 3997 } else { 3998 do_print_state = true; 3999 continue; 4000 } 4001 } else { 4002 err = check_cond_jmp_op(env, insn, &insn_idx); 4003 if (err) --- 9 unchanged lines hidden (view full) --- 4013 4014 } else if (mode == BPF_IMM) { 4015 err = check_ld_imm(env, insn); 4016 if (err) 4017 return err; 4018 4019 insn_idx++; 4020 } else { |
3817 verbose("invalid BPF_LD mode\n"); | 4021 verbose(env, "invalid BPF_LD mode\n"); |
3818 return -EINVAL; 3819 } 3820 } else { | 4022 return -EINVAL; 4023 } 4024 } else { |
3821 verbose("unknown insn class %d\n", class); | 4025 verbose(env, "unknown insn class %d\n", class); |
3822 return -EINVAL; 3823 } 3824 3825 insn_idx++; 3826 } 3827 | 4026 return -EINVAL; 4027 } 4028 4029 insn_idx++; 4030 } 4031 |
3828 verbose("processed %d insns, stack depth %d\n", 3829 insn_processed, env->prog->aux->stack_depth); | 4032 verbose(env, "processed %d insns, stack depth %d\n", insn_processed, 4033 env->prog->aux->stack_depth); |
3830 return 0; 3831} 3832 3833static int check_map_prealloc(struct bpf_map *map) 3834{ 3835 return (map->map_type != BPF_MAP_TYPE_HASH && 3836 map->map_type != BPF_MAP_TYPE_PERCPU_HASH && 3837 map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) || 3838 !(map->map_flags & BPF_F_NO_PREALLOC); 3839} 3840 | 4034 return 0; 4035} 4036 4037static int check_map_prealloc(struct bpf_map *map) 4038{ 4039 return (map->map_type != BPF_MAP_TYPE_HASH && 4040 map->map_type != BPF_MAP_TYPE_PERCPU_HASH && 4041 map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) || 4042 !(map->map_flags & BPF_F_NO_PREALLOC); 4043} 4044 |
3841static int check_map_prog_compatibility(struct bpf_map *map, | 4045static int check_map_prog_compatibility(struct bpf_verifier_env *env, 4046 struct bpf_map *map, |
3842 struct bpf_prog *prog) 3843 3844{ 3845 /* Make sure that BPF_PROG_TYPE_PERF_EVENT programs only use 3846 * preallocated hash maps, since doing memory allocation 3847 * in overflow_handler can crash depending on where nmi got 3848 * triggered. 3849 */ 3850 if (prog->type == BPF_PROG_TYPE_PERF_EVENT) { 3851 if (!check_map_prealloc(map)) { | 4047 struct bpf_prog *prog) 4048 4049{ 4050 /* Make sure that BPF_PROG_TYPE_PERF_EVENT programs only use 4051 * preallocated hash maps, since doing memory allocation 4052 * in overflow_handler can crash depending on where nmi got 4053 * triggered. 4054 */ 4055 if (prog->type == BPF_PROG_TYPE_PERF_EVENT) { 4056 if (!check_map_prealloc(map)) { |
3852 verbose("perf_event programs can only use preallocated hash map\n"); | 4057 verbose(env, "perf_event programs can only use preallocated hash map\n"); |
3853 return -EINVAL; 3854 } 3855 if (map->inner_map_meta && 3856 !check_map_prealloc(map->inner_map_meta)) { | 4058 return -EINVAL; 4059 } 4060 if (map->inner_map_meta && 4061 !check_map_prealloc(map->inner_map_meta)) { |
3857 verbose("perf_event programs can only use preallocated inner hash map\n"); | 4062 verbose(env, "perf_event programs can only use preallocated inner hash map\n"); |
3858 return -EINVAL; 3859 } 3860 } 3861 return 0; 3862} 3863 3864/* look for pseudo eBPF instructions that access map FDs and 3865 * replace them with actual map pointers --- 6 unchanged lines hidden (view full) --- 3872 3873 err = bpf_prog_calc_tag(env->prog); 3874 if (err) 3875 return err; 3876 3877 for (i = 0; i < insn_cnt; i++, insn++) { 3878 if (BPF_CLASS(insn->code) == BPF_LDX && 3879 (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) { | 4063 return -EINVAL; 4064 } 4065 } 4066 return 0; 4067} 4068 4069/* look for pseudo eBPF instructions that access map FDs and 4070 * replace them with actual map pointers --- 6 unchanged lines hidden (view full) --- 4077 4078 err = bpf_prog_calc_tag(env->prog); 4079 if (err) 4080 return err; 4081 4082 for (i = 0; i < insn_cnt; i++, insn++) { 4083 if (BPF_CLASS(insn->code) == BPF_LDX && 4084 (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) { |
3880 verbose("BPF_LDX uses reserved fields\n"); | 4085 verbose(env, "BPF_LDX uses reserved fields\n"); |
3881 return -EINVAL; 3882 } 3883 3884 if (BPF_CLASS(insn->code) == BPF_STX && 3885 ((BPF_MODE(insn->code) != BPF_MEM && 3886 BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) { | 4086 return -EINVAL; 4087 } 4088 4089 if (BPF_CLASS(insn->code) == BPF_STX && 4090 ((BPF_MODE(insn->code) != BPF_MEM && 4091 BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) { |
3887 verbose("BPF_STX uses reserved fields\n"); | 4092 verbose(env, "BPF_STX uses reserved fields\n"); |
3888 return -EINVAL; 3889 } 3890 3891 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) { 3892 struct bpf_map *map; 3893 struct fd f; 3894 3895 if (i == insn_cnt - 1 || insn[1].code != 0 || 3896 insn[1].dst_reg != 0 || insn[1].src_reg != 0 || 3897 insn[1].off != 0) { | 4093 return -EINVAL; 4094 } 4095 4096 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) { 4097 struct bpf_map *map; 4098 struct fd f; 4099 4100 if (i == insn_cnt - 1 || insn[1].code != 0 || 4101 insn[1].dst_reg != 0 || insn[1].src_reg != 0 || 4102 insn[1].off != 0) { |
3898 verbose("invalid bpf_ld_imm64 insn\n"); | 4103 verbose(env, "invalid bpf_ld_imm64 insn\n"); |
3899 return -EINVAL; 3900 } 3901 3902 if (insn->src_reg == 0) 3903 /* valid generic load 64-bit imm */ 3904 goto next_insn; 3905 3906 if (insn->src_reg != BPF_PSEUDO_MAP_FD) { | 4104 return -EINVAL; 4105 } 4106 4107 if (insn->src_reg == 0) 4108 /* valid generic load 64-bit imm */ 4109 goto next_insn; 4110 4111 if (insn->src_reg != BPF_PSEUDO_MAP_FD) { |
3907 verbose("unrecognized bpf_ld_imm64 insn\n"); | 4112 verbose(env, 4113 "unrecognized bpf_ld_imm64 insn\n"); |
3908 return -EINVAL; 3909 } 3910 3911 f = fdget(insn->imm); 3912 map = __bpf_map_get(f); 3913 if (IS_ERR(map)) { | 4114 return -EINVAL; 4115 } 4116 4117 f = fdget(insn->imm); 4118 map = __bpf_map_get(f); 4119 if (IS_ERR(map)) { |
3914 verbose("fd %d is not pointing to valid bpf_map\n", | 4120 verbose(env, "fd %d is not pointing to valid bpf_map\n", |
3915 insn->imm); 3916 return PTR_ERR(map); 3917 } 3918 | 4121 insn->imm); 4122 return PTR_ERR(map); 4123 } 4124 |
3919 err = check_map_prog_compatibility(map, env->prog); | 4125 err = check_map_prog_compatibility(env, map, env->prog); |
3920 if (err) { 3921 fdput(f); 3922 return err; 3923 } 3924 3925 /* store map pointer inside BPF_LD_IMM64 instruction */ 3926 insn[0].imm = (u32) (unsigned long) map; 3927 insn[1].imm = ((u64) (unsigned long) map) >> 32; --- 92 unchanged lines hidden (view full) --- 4020 return new_prog; 4021} 4022 4023/* convert load instructions that access fields of 'struct __sk_buff' 4024 * into sequence of instructions that access fields of 'struct sk_buff' 4025 */ 4026static int convert_ctx_accesses(struct bpf_verifier_env *env) 4027{ | 4126 if (err) { 4127 fdput(f); 4128 return err; 4129 } 4130 4131 /* store map pointer inside BPF_LD_IMM64 instruction */ 4132 insn[0].imm = (u32) (unsigned long) map; 4133 insn[1].imm = ((u64) (unsigned long) map) >> 32; --- 92 unchanged lines hidden (view full) --- 4226 return new_prog; 4227} 4228 4229/* convert load instructions that access fields of 'struct __sk_buff' 4230 * into sequence of instructions that access fields of 'struct sk_buff' 4231 */ 4232static int convert_ctx_accesses(struct bpf_verifier_env *env) 4233{ |
4028 const struct bpf_verifier_ops *ops = env->prog->aux->ops; | 4234 const struct bpf_verifier_ops *ops = env->ops; |
4029 int i, cnt, size, ctx_field_size, delta = 0; 4030 const int insn_cnt = env->prog->len; 4031 struct bpf_insn insn_buf[16], *insn; 4032 struct bpf_prog *new_prog; 4033 enum bpf_access_type type; 4034 bool is_narrower_load; 4035 u32 target_size; 4036 4037 if (ops->gen_prologue) { 4038 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write, 4039 env->prog); 4040 if (cnt >= ARRAY_SIZE(insn_buf)) { | 4235 int i, cnt, size, ctx_field_size, delta = 0; 4236 const int insn_cnt = env->prog->len; 4237 struct bpf_insn insn_buf[16], *insn; 4238 struct bpf_prog *new_prog; 4239 enum bpf_access_type type; 4240 bool is_narrower_load; 4241 u32 target_size; 4242 4243 if (ops->gen_prologue) { 4244 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write, 4245 env->prog); 4246 if (cnt >= ARRAY_SIZE(insn_buf)) { |
4041 verbose("bpf verifier is misconfigured\n"); | 4247 verbose(env, "bpf verifier is misconfigured\n"); |
4042 return -EINVAL; 4043 } else if (cnt) { 4044 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt); 4045 if (!new_prog) 4046 return -ENOMEM; 4047 4048 env->prog = new_prog; 4049 delta += cnt - 1; --- 31 unchanged lines hidden (view full) --- 4081 * we will apply proper mask to the result. 4082 */ 4083 is_narrower_load = size < ctx_field_size; 4084 if (is_narrower_load) { 4085 u32 off = insn->off; 4086 u8 size_code; 4087 4088 if (type == BPF_WRITE) { | 4248 return -EINVAL; 4249 } else if (cnt) { 4250 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt); 4251 if (!new_prog) 4252 return -ENOMEM; 4253 4254 env->prog = new_prog; 4255 delta += cnt - 1; --- 31 unchanged lines hidden (view full) --- 4287 * we will apply proper mask to the result. 4288 */ 4289 is_narrower_load = size < ctx_field_size; 4290 if (is_narrower_load) { 4291 u32 off = insn->off; 4292 u8 size_code; 4293 4294 if (type == BPF_WRITE) { |
4089 verbose("bpf verifier narrow ctx access misconfigured\n"); | 4295 verbose(env, "bpf verifier narrow ctx access misconfigured\n"); |
4090 return -EINVAL; 4091 } 4092 4093 size_code = BPF_H; 4094 if (ctx_field_size == 4) 4095 size_code = BPF_W; 4096 else if (ctx_field_size == 8) 4097 size_code = BPF_DW; 4098 4099 insn->off = off & ~(ctx_field_size - 1); 4100 insn->code = BPF_LDX | BPF_MEM | size_code; 4101 } 4102 4103 target_size = 0; 4104 cnt = ops->convert_ctx_access(type, insn, insn_buf, env->prog, 4105 &target_size); 4106 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) || 4107 (ctx_field_size && !target_size)) { | 4296 return -EINVAL; 4297 } 4298 4299 size_code = BPF_H; 4300 if (ctx_field_size == 4) 4301 size_code = BPF_W; 4302 else if (ctx_field_size == 8) 4303 size_code = BPF_DW; 4304 4305 insn->off = off & ~(ctx_field_size - 1); 4306 insn->code = BPF_LDX | BPF_MEM | size_code; 4307 } 4308 4309 target_size = 0; 4310 cnt = ops->convert_ctx_access(type, insn, insn_buf, env->prog, 4311 &target_size); 4312 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) || 4313 (ctx_field_size && !target_size)) { |
4108 verbose("bpf verifier is misconfigured\n"); | 4314 verbose(env, "bpf verifier is misconfigured\n"); |
4109 return -EINVAL; 4110 } 4111 4112 if (is_narrower_load && size < target_size) { 4113 if (ctx_field_size <= 4) 4114 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg, 4115 (1 << size * 8) - 1); 4116 else --- 65 unchanged lines hidden (view full) --- 4182 insn->imm == BPF_FUNC_map_lookup_elem) { 4183 map_ptr = env->insn_aux_data[i + delta].map_ptr; 4184 if (map_ptr == BPF_MAP_PTR_POISON || 4185 !map_ptr->ops->map_gen_lookup) 4186 goto patch_call_imm; 4187 4188 cnt = map_ptr->ops->map_gen_lookup(map_ptr, insn_buf); 4189 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) { | 4315 return -EINVAL; 4316 } 4317 4318 if (is_narrower_load && size < target_size) { 4319 if (ctx_field_size <= 4) 4320 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg, 4321 (1 << size * 8) - 1); 4322 else --- 65 unchanged lines hidden (view full) --- 4388 insn->imm == BPF_FUNC_map_lookup_elem) { 4389 map_ptr = env->insn_aux_data[i + delta].map_ptr; 4390 if (map_ptr == BPF_MAP_PTR_POISON || 4391 !map_ptr->ops->map_gen_lookup) 4392 goto patch_call_imm; 4393 4394 cnt = map_ptr->ops->map_gen_lookup(map_ptr, insn_buf); 4395 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) { |
4190 verbose("bpf verifier is misconfigured\n"); | 4396 verbose(env, "bpf verifier is misconfigured\n"); |
4191 return -EINVAL; 4192 } 4193 4194 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 4195 cnt); 4196 if (!new_prog) 4197 return -ENOMEM; 4198 --- 22 unchanged lines hidden (view full) --- 4221 if (!new_prog) 4222 return -ENOMEM; 4223 4224 delta += cnt - 1; 4225 env->prog = prog = new_prog; 4226 insn = new_prog->insnsi + i + delta; 4227 } 4228patch_call_imm: | 4397 return -EINVAL; 4398 } 4399 4400 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 4401 cnt); 4402 if (!new_prog) 4403 return -ENOMEM; 4404 --- 22 unchanged lines hidden (view full) --- 4427 if (!new_prog) 4428 return -ENOMEM; 4429 4430 delta += cnt - 1; 4431 env->prog = prog = new_prog; 4432 insn = new_prog->insnsi + i + delta; 4433 } 4434patch_call_imm: |
4229 fn = prog->aux->ops->get_func_proto(insn->imm); | 4435 fn = env->ops->get_func_proto(insn->imm); |
4230 /* all functions that have prototype and verifier allowed 4231 * programs to call them, must be real in-kernel functions 4232 */ 4233 if (!fn->func) { | 4436 /* all functions that have prototype and verifier allowed 4437 * programs to call them, must be real in-kernel functions 4438 */ 4439 if (!fn->func) { |
4234 verbose("kernel subsystem misconfigured func %s#%d\n", | 4440 verbose(env, 4441 "kernel subsystem misconfigured func %s#%d\n", |
4235 func_id_name(insn->imm), insn->imm); 4236 return -EFAULT; 4237 } 4238 insn->imm = fn->func - __bpf_call_base; 4239 } 4240 4241 return 0; 4242} --- 7 unchanged lines hidden (view full) --- 4250 return; 4251 4252 for (i = 0; i < env->prog->len; i++) { 4253 sl = env->explored_states[i]; 4254 4255 if (sl) 4256 while (sl != STATE_LIST_MARK) { 4257 sln = sl->next; | 4442 func_id_name(insn->imm), insn->imm); 4443 return -EFAULT; 4444 } 4445 insn->imm = fn->func - __bpf_call_base; 4446 } 4447 4448 return 0; 4449} --- 7 unchanged lines hidden (view full) --- 4457 return; 4458 4459 for (i = 0; i < env->prog->len; i++) { 4460 sl = env->explored_states[i]; 4461 4462 if (sl) 4463 while (sl != STATE_LIST_MARK) { 4464 sln = sl->next; |
4465 free_verifier_state(&sl->state, false); |
|
4258 kfree(sl); 4259 sl = sln; 4260 } 4261 } 4262 4263 kfree(env->explored_states); 4264} 4265 4266int bpf_check(struct bpf_prog **prog, union bpf_attr *attr) 4267{ | 4466 kfree(sl); 4467 sl = sln; 4468 } 4469 } 4470 4471 kfree(env->explored_states); 4472} 4473 4474int bpf_check(struct bpf_prog **prog, union bpf_attr *attr) 4475{ |
4268 char __user *log_ubuf = NULL; | |
4269 struct bpf_verifier_env *env; | 4476 struct bpf_verifier_env *env; |
4477 struct bpf_verifer_log *log; |
|
4270 int ret = -EINVAL; 4271 | 4478 int ret = -EINVAL; 4479 |
4480 /* no program is valid */ 4481 if (ARRAY_SIZE(bpf_verifier_ops) == 0) 4482 return -EINVAL; 4483 |
|
4272 /* 'struct bpf_verifier_env' can be global, but since it's not small, 4273 * allocate/free it every time bpf_check() is called 4274 */ 4275 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL); 4276 if (!env) 4277 return -ENOMEM; | 4484 /* 'struct bpf_verifier_env' can be global, but since it's not small, 4485 * allocate/free it every time bpf_check() is called 4486 */ 4487 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL); 4488 if (!env) 4489 return -ENOMEM; |
4490 log = &env->log; |
|
4278 4279 env->insn_aux_data = vzalloc(sizeof(struct bpf_insn_aux_data) * 4280 (*prog)->len); 4281 ret = -ENOMEM; 4282 if (!env->insn_aux_data) 4283 goto err_free_env; 4284 env->prog = *prog; | 4491 4492 env->insn_aux_data = vzalloc(sizeof(struct bpf_insn_aux_data) * 4493 (*prog)->len); 4494 ret = -ENOMEM; 4495 if (!env->insn_aux_data) 4496 goto err_free_env; 4497 env->prog = *prog; |
4498 env->ops = bpf_verifier_ops[env->prog->type]; |
|
4285 4286 /* grab the mutex to protect few globals used by verifier */ 4287 mutex_lock(&bpf_verifier_lock); 4288 4289 if (attr->log_level || attr->log_buf || attr->log_size) { 4290 /* user requested verbose verifier output 4291 * and supplied buffer to store the verification trace 4292 */ | 4499 4500 /* grab the mutex to protect few globals used by verifier */ 4501 mutex_lock(&bpf_verifier_lock); 4502 4503 if (attr->log_level || attr->log_buf || attr->log_size) { 4504 /* user requested verbose verifier output 4505 * and supplied buffer to store the verification trace 4506 */ |
4293 log_level = attr->log_level; 4294 log_ubuf = (char __user *) (unsigned long) attr->log_buf; 4295 log_size = attr->log_size; 4296 log_len = 0; | 4507 log->level = attr->log_level; 4508 log->ubuf = (char __user *) (unsigned long) attr->log_buf; 4509 log->len_total = attr->log_size; |
4297 4298 ret = -EINVAL; | 4510 4511 ret = -EINVAL; |
4299 /* log_* values have to be sane */ 4300 if (log_size < 128 || log_size > UINT_MAX >> 8 || 4301 log_level == 0 || log_ubuf == NULL) | 4512 /* log attributes have to be sane */ 4513 if (log->len_total < 128 || log->len_total > UINT_MAX >> 8 || 4514 !log->level || !log->ubuf) |
4302 goto err_unlock; | 4515 goto err_unlock; |
4303 4304 ret = -ENOMEM; 4305 log_buf = vmalloc(log_size); 4306 if (!log_buf) 4307 goto err_unlock; 4308 } else { 4309 log_level = 0; | |
4310 } 4311 4312 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT); 4313 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)) 4314 env->strict_alignment = true; 4315 | 4516 } 4517 4518 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT); 4519 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)) 4520 env->strict_alignment = true; 4521 |
4522 if (env->prog->aux->offload) { 4523 ret = bpf_prog_offload_verifier_prep(env); 4524 if (ret) 4525 goto err_unlock; 4526 } 4527 |
|
4316 ret = replace_map_fd_with_map_ptr(env); 4317 if (ret < 0) 4318 goto skip_full_check; 4319 4320 env->explored_states = kcalloc(env->prog->len, 4321 sizeof(struct bpf_verifier_state_list *), 4322 GFP_USER); 4323 ret = -ENOMEM; 4324 if (!env->explored_states) 4325 goto skip_full_check; 4326 4327 ret = check_cfg(env); 4328 if (ret < 0) 4329 goto skip_full_check; 4330 4331 env->allow_ptr_leaks = capable(CAP_SYS_ADMIN); 4332 4333 ret = do_check(env); | 4528 ret = replace_map_fd_with_map_ptr(env); 4529 if (ret < 0) 4530 goto skip_full_check; 4531 4532 env->explored_states = kcalloc(env->prog->len, 4533 sizeof(struct bpf_verifier_state_list *), 4534 GFP_USER); 4535 ret = -ENOMEM; 4536 if (!env->explored_states) 4537 goto skip_full_check; 4538 4539 ret = check_cfg(env); 4540 if (ret < 0) 4541 goto skip_full_check; 4542 4543 env->allow_ptr_leaks = capable(CAP_SYS_ADMIN); 4544 4545 ret = do_check(env); |
4546 if (env->cur_state) { 4547 free_verifier_state(env->cur_state, true); 4548 env->cur_state = NULL; 4549 } |
|
4334 4335skip_full_check: | 4550 4551skip_full_check: |
4336 while (pop_stack(env, NULL) >= 0); | 4552 while (!pop_stack(env, NULL, NULL)); |
4337 free_states(env); 4338 4339 if (ret == 0) 4340 /* program is valid, convert *(u32*)(ctx + off) accesses */ 4341 ret = convert_ctx_accesses(env); 4342 4343 if (ret == 0) 4344 ret = fixup_bpf_calls(env); 4345 | 4553 free_states(env); 4554 4555 if (ret == 0) 4556 /* program is valid, convert *(u32*)(ctx + off) accesses */ 4557 ret = convert_ctx_accesses(env); 4558 4559 if (ret == 0) 4560 ret = fixup_bpf_calls(env); 4561 |
4346 if (log_level && log_len >= log_size - 1) { 4347 BUG_ON(log_len >= log_size); 4348 /* verifier log exceeded user supplied buffer */ | 4562 if (log->level && bpf_verifier_log_full(log)) |
4349 ret = -ENOSPC; | 4563 ret = -ENOSPC; |
4350 /* fall through to return what was recorded */ 4351 } 4352 4353 /* copy verifier log back to user space including trailing zero */ 4354 if (log_level && copy_to_user(log_ubuf, log_buf, log_len + 1) != 0) { | 4564 if (log->level && !log->ubuf) { |
4355 ret = -EFAULT; | 4565 ret = -EFAULT; |
4356 goto free_log_buf; | 4566 goto err_release_maps; |
4357 } 4358 4359 if (ret == 0 && env->used_map_cnt) { 4360 /* if program passed verifier, update used_maps in bpf_prog_info */ 4361 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt, 4362 sizeof(env->used_maps[0]), 4363 GFP_KERNEL); 4364 4365 if (!env->prog->aux->used_maps) { 4366 ret = -ENOMEM; | 4567 } 4568 4569 if (ret == 0 && env->used_map_cnt) { 4570 /* if program passed verifier, update used_maps in bpf_prog_info */ 4571 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt, 4572 sizeof(env->used_maps[0]), 4573 GFP_KERNEL); 4574 4575 if (!env->prog->aux->used_maps) { 4576 ret = -ENOMEM; |
4367 goto free_log_buf; | 4577 goto err_release_maps; |
4368 } 4369 4370 memcpy(env->prog->aux->used_maps, env->used_maps, 4371 sizeof(env->used_maps[0]) * env->used_map_cnt); 4372 env->prog->aux->used_map_cnt = env->used_map_cnt; 4373 4374 /* program is valid. Convert pseudo bpf_ld_imm64 into generic 4375 * bpf_ld_imm64 instructions 4376 */ 4377 convert_pseudo_ld_imm64(env); 4378 } 4379 | 4578 } 4579 4580 memcpy(env->prog->aux->used_maps, env->used_maps, 4581 sizeof(env->used_maps[0]) * env->used_map_cnt); 4582 env->prog->aux->used_map_cnt = env->used_map_cnt; 4583 4584 /* program is valid. Convert pseudo bpf_ld_imm64 into generic 4585 * bpf_ld_imm64 instructions 4586 */ 4587 convert_pseudo_ld_imm64(env); 4588 } 4589 |
4380free_log_buf: 4381 if (log_level) 4382 vfree(log_buf); | 4590err_release_maps: |
4383 if (!env->prog->aux->used_maps) 4384 /* if we didn't copy map pointers into bpf_prog_info, release 4385 * them now. Otherwise free_bpf_prog_info() will release them. 4386 */ 4387 release_maps(env); 4388 *prog = env->prog; 4389err_unlock: 4390 mutex_unlock(&bpf_verifier_lock); 4391 vfree(env->insn_aux_data); 4392err_free_env: 4393 kfree(env); 4394 return ret; 4395} 4396 | 4591 if (!env->prog->aux->used_maps) 4592 /* if we didn't copy map pointers into bpf_prog_info, release 4593 * them now. Otherwise free_bpf_prog_info() will release them. 4594 */ 4595 release_maps(env); 4596 *prog = env->prog; 4597err_unlock: 4598 mutex_unlock(&bpf_verifier_lock); 4599 vfree(env->insn_aux_data); 4600err_free_env: 4601 kfree(env); 4602 return ret; 4603} 4604 |
4605static const struct bpf_verifier_ops * const bpf_analyzer_ops[] = { 4606#ifdef CONFIG_NET 4607 [BPF_PROG_TYPE_XDP] = &xdp_analyzer_ops, 4608 [BPF_PROG_TYPE_SCHED_CLS] = &tc_cls_act_analyzer_ops, 4609#endif 4610}; 4611 |
|
4397int bpf_analyzer(struct bpf_prog *prog, const struct bpf_ext_analyzer_ops *ops, 4398 void *priv) 4399{ 4400 struct bpf_verifier_env *env; 4401 int ret; 4402 | 4612int bpf_analyzer(struct bpf_prog *prog, const struct bpf_ext_analyzer_ops *ops, 4613 void *priv) 4614{ 4615 struct bpf_verifier_env *env; 4616 int ret; 4617 |
4618 if (prog->type >= ARRAY_SIZE(bpf_analyzer_ops) || 4619 !bpf_analyzer_ops[prog->type]) 4620 return -EOPNOTSUPP; 4621 |
|
4403 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL); 4404 if (!env) 4405 return -ENOMEM; 4406 4407 env->insn_aux_data = vzalloc(sizeof(struct bpf_insn_aux_data) * 4408 prog->len); 4409 ret = -ENOMEM; 4410 if (!env->insn_aux_data) 4411 goto err_free_env; 4412 env->prog = prog; | 4622 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL); 4623 if (!env) 4624 return -ENOMEM; 4625 4626 env->insn_aux_data = vzalloc(sizeof(struct bpf_insn_aux_data) * 4627 prog->len); 4628 ret = -ENOMEM; 4629 if (!env->insn_aux_data) 4630 goto err_free_env; 4631 env->prog = prog; |
4632 env->ops = bpf_analyzer_ops[env->prog->type]; |
|
4413 env->analyzer_ops = ops; 4414 env->analyzer_priv = priv; 4415 4416 /* grab the mutex to protect few globals used by verifier */ 4417 mutex_lock(&bpf_verifier_lock); 4418 | 4633 env->analyzer_ops = ops; 4634 env->analyzer_priv = priv; 4635 4636 /* grab the mutex to protect few globals used by verifier */ 4637 mutex_lock(&bpf_verifier_lock); 4638 |
4419 log_level = 0; 4420 | |
4421 env->strict_alignment = false; 4422 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)) 4423 env->strict_alignment = true; 4424 4425 env->explored_states = kcalloc(env->prog->len, 4426 sizeof(struct bpf_verifier_state_list *), 4427 GFP_KERNEL); 4428 ret = -ENOMEM; 4429 if (!env->explored_states) 4430 goto skip_full_check; 4431 4432 ret = check_cfg(env); 4433 if (ret < 0) 4434 goto skip_full_check; 4435 4436 env->allow_ptr_leaks = capable(CAP_SYS_ADMIN); 4437 4438 ret = do_check(env); | 4639 env->strict_alignment = false; 4640 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)) 4641 env->strict_alignment = true; 4642 4643 env->explored_states = kcalloc(env->prog->len, 4644 sizeof(struct bpf_verifier_state_list *), 4645 GFP_KERNEL); 4646 ret = -ENOMEM; 4647 if (!env->explored_states) 4648 goto skip_full_check; 4649 4650 ret = check_cfg(env); 4651 if (ret < 0) 4652 goto skip_full_check; 4653 4654 env->allow_ptr_leaks = capable(CAP_SYS_ADMIN); 4655 4656 ret = do_check(env); |
4657 if (env->cur_state) { 4658 free_verifier_state(env->cur_state, true); 4659 env->cur_state = NULL; 4660 } |
|
4439 4440skip_full_check: | 4661 4662skip_full_check: |
4441 while (pop_stack(env, NULL) >= 0); | 4663 while (!pop_stack(env, NULL, NULL)); |
4442 free_states(env); 4443 4444 mutex_unlock(&bpf_verifier_lock); 4445 vfree(env->insn_aux_data); 4446err_free_env: 4447 kfree(env); 4448 return ret; 4449} 4450EXPORT_SYMBOL_GPL(bpf_analyzer); | 4664 free_states(env); 4665 4666 mutex_unlock(&bpf_verifier_lock); 4667 vfree(env->insn_aux_data); 4668err_free_env: 4669 kfree(env); 4670 return ret; 4671} 4672EXPORT_SYMBOL_GPL(bpf_analyzer); |