mem_encrypt.c (8260b9820f7050461b8969305bbd8cb5654f0c74) | mem_encrypt.c (20f07a044a76aebaaa0603038857229b5c460d69) |
---|---|
1// SPDX-License-Identifier: GPL-2.0-only 2/* | 1// SPDX-License-Identifier: GPL-2.0-only 2/* |
3 * AMD Memory Encryption Support | 3 * Memory Encryption Support Common Code |
4 * 5 * Copyright (C) 2016 Advanced Micro Devices, Inc. 6 * 7 * Author: Tom Lendacky <thomas.lendacky@amd.com> 8 */ 9 | 4 * 5 * Copyright (C) 2016 Advanced Micro Devices, Inc. 6 * 7 * Author: Tom Lendacky <thomas.lendacky@amd.com> 8 */ 9 |
10#define DISABLE_BRANCH_PROFILING 11 12#include <linux/linkage.h> 13#include <linux/init.h> 14#include <linux/mm.h> | |
15#include <linux/dma-direct.h> | 10#include <linux/dma-direct.h> |
11#include <linux/dma-mapping.h> |
|
16#include <linux/swiotlb.h> | 12#include <linux/swiotlb.h> |
13#include <linux/cc_platform.h> |
|
17#include <linux/mem_encrypt.h> | 14#include <linux/mem_encrypt.h> |
18#include <linux/device.h> 19#include <linux/kernel.h> 20#include <linux/bitops.h> 21#include <linux/dma-mapping.h> | |
22#include <linux/virtio_config.h> | 15#include <linux/virtio_config.h> |
23#include <linux/cc_platform.h> | |
24 | 16 |
25#include <asm/tlbflush.h> 26#include <asm/fixmap.h> 27#include <asm/setup.h> 28#include <asm/bootparam.h> 29#include <asm/set_memory.h> 30#include <asm/cacheflush.h> 31#include <asm/processor-flags.h> 32#include <asm/msr.h> 33#include <asm/cmdline.h> 34 35#include "mm_internal.h" 36 37/* 38 * Since SME related variables are set early in the boot process they must 39 * reside in the .data section so as not to be zeroed out when the .bss 40 * section is later cleared. 41 */ 42u64 sme_me_mask __section(".data") = 0; 43u64 sev_status __section(".data") = 0; 44u64 sev_check_data __section(".data") = 0; 45EXPORT_SYMBOL(sme_me_mask); 46 47/* Buffer used for early in-place encryption by BSP, no locking needed */ 48static char sme_early_buffer[PAGE_SIZE] __initdata __aligned(PAGE_SIZE); 49 50/* 51 * This routine does not change the underlying encryption setting of the 52 * page(s) that map this memory. It assumes that eventually the memory is 53 * meant to be accessed as either encrypted or decrypted but the contents 54 * are currently not in the desired state. 55 * 56 * This routine follows the steps outlined in the AMD64 Architecture 57 * Programmer's Manual Volume 2, Section 7.10.8 Encrypt-in-Place. 58 */ 59static void __init __sme_early_enc_dec(resource_size_t paddr, 60 unsigned long size, bool enc) 61{ 62 void *src, *dst; 63 size_t len; 64 65 if (!sme_me_mask) 66 return; 67 68 wbinvd(); 69 70 /* 71 * There are limited number of early mapping slots, so map (at most) 72 * one page at time. 73 */ 74 while (size) { 75 len = min_t(size_t, sizeof(sme_early_buffer), size); 76 77 /* 78 * Create mappings for the current and desired format of 79 * the memory. Use a write-protected mapping for the source. 80 */ 81 src = enc ? early_memremap_decrypted_wp(paddr, len) : 82 early_memremap_encrypted_wp(paddr, len); 83 84 dst = enc ? early_memremap_encrypted(paddr, len) : 85 early_memremap_decrypted(paddr, len); 86 87 /* 88 * If a mapping can't be obtained to perform the operation, 89 * then eventual access of that area in the desired mode 90 * will cause a crash. 91 */ 92 BUG_ON(!src || !dst); 93 94 /* 95 * Use a temporary buffer, of cache-line multiple size, to 96 * avoid data corruption as documented in the APM. 97 */ 98 memcpy(sme_early_buffer, src, len); 99 memcpy(dst, sme_early_buffer, len); 100 101 early_memunmap(dst, len); 102 early_memunmap(src, len); 103 104 paddr += len; 105 size -= len; 106 } 107} 108 109void __init sme_early_encrypt(resource_size_t paddr, unsigned long size) 110{ 111 __sme_early_enc_dec(paddr, size, true); 112} 113 114void __init sme_early_decrypt(resource_size_t paddr, unsigned long size) 115{ 116 __sme_early_enc_dec(paddr, size, false); 117} 118 119static void __init __sme_early_map_unmap_mem(void *vaddr, unsigned long size, 120 bool map) 121{ 122 unsigned long paddr = (unsigned long)vaddr - __PAGE_OFFSET; 123 pmdval_t pmd_flags, pmd; 124 125 /* Use early_pmd_flags but remove the encryption mask */ 126 pmd_flags = __sme_clr(early_pmd_flags); 127 128 do { 129 pmd = map ? (paddr & PMD_MASK) + pmd_flags : 0; 130 __early_make_pgtable((unsigned long)vaddr, pmd); 131 132 vaddr += PMD_SIZE; 133 paddr += PMD_SIZE; 134 size = (size <= PMD_SIZE) ? 0 : size - PMD_SIZE; 135 } while (size); 136 137 flush_tlb_local(); 138} 139 140void __init sme_unmap_bootdata(char *real_mode_data) 141{ 142 struct boot_params *boot_data; 143 unsigned long cmdline_paddr; 144 145 if (!cc_platform_has(CC_ATTR_HOST_MEM_ENCRYPT)) 146 return; 147 148 /* Get the command line address before unmapping the real_mode_data */ 149 boot_data = (struct boot_params *)real_mode_data; 150 cmdline_paddr = boot_data->hdr.cmd_line_ptr | ((u64)boot_data->ext_cmd_line_ptr << 32); 151 152 __sme_early_map_unmap_mem(real_mode_data, sizeof(boot_params), false); 153 154 if (!cmdline_paddr) 155 return; 156 157 __sme_early_map_unmap_mem(__va(cmdline_paddr), COMMAND_LINE_SIZE, false); 158} 159 160void __init sme_map_bootdata(char *real_mode_data) 161{ 162 struct boot_params *boot_data; 163 unsigned long cmdline_paddr; 164 165 if (!cc_platform_has(CC_ATTR_HOST_MEM_ENCRYPT)) 166 return; 167 168 __sme_early_map_unmap_mem(real_mode_data, sizeof(boot_params), true); 169 170 /* Get the command line address after mapping the real_mode_data */ 171 boot_data = (struct boot_params *)real_mode_data; 172 cmdline_paddr = boot_data->hdr.cmd_line_ptr | ((u64)boot_data->ext_cmd_line_ptr << 32); 173 174 if (!cmdline_paddr) 175 return; 176 177 __sme_early_map_unmap_mem(__va(cmdline_paddr), COMMAND_LINE_SIZE, true); 178} 179 180void __init sme_early_init(void) 181{ 182 unsigned int i; 183 184 if (!sme_me_mask) 185 return; 186 187 early_pmd_flags = __sme_set(early_pmd_flags); 188 189 __supported_pte_mask = __sme_set(__supported_pte_mask); 190 191 /* Update the protection map with memory encryption mask */ 192 for (i = 0; i < ARRAY_SIZE(protection_map); i++) 193 protection_map[i] = pgprot_encrypted(protection_map[i]); 194 195 if (cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT)) 196 swiotlb_force = SWIOTLB_FORCE; 197} 198 199void __init sev_setup_arch(void) 200{ 201 phys_addr_t total_mem = memblock_phys_mem_size(); 202 unsigned long size; 203 204 if (!cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT)) 205 return; 206 207 /* 208 * For SEV, all DMA has to occur via shared/unencrypted pages. 209 * SEV uses SWIOTLB to make this happen without changing device 210 * drivers. However, depending on the workload being run, the 211 * default 64MB of SWIOTLB may not be enough and SWIOTLB may 212 * run out of buffers for DMA, resulting in I/O errors and/or 213 * performance degradation especially with high I/O workloads. 214 * 215 * Adjust the default size of SWIOTLB for SEV guests using 216 * a percentage of guest memory for SWIOTLB buffers. 217 * Also, as the SWIOTLB bounce buffer memory is allocated 218 * from low memory, ensure that the adjusted size is within 219 * the limits of low available memory. 220 * 221 * The percentage of guest memory used here for SWIOTLB buffers 222 * is more of an approximation of the static adjustment which 223 * 64MB for <1G, and ~128M to 256M for 1G-to-4G, i.e., the 6% 224 */ 225 size = total_mem * 6 / 100; 226 size = clamp_val(size, IO_TLB_DEFAULT_SIZE, SZ_1G); 227 swiotlb_adjust_size(size); 228} 229 230static unsigned long pg_level_to_pfn(int level, pte_t *kpte, pgprot_t *ret_prot) 231{ 232 unsigned long pfn = 0; 233 pgprot_t prot; 234 235 switch (level) { 236 case PG_LEVEL_4K: 237 pfn = pte_pfn(*kpte); 238 prot = pte_pgprot(*kpte); 239 break; 240 case PG_LEVEL_2M: 241 pfn = pmd_pfn(*(pmd_t *)kpte); 242 prot = pmd_pgprot(*(pmd_t *)kpte); 243 break; 244 case PG_LEVEL_1G: 245 pfn = pud_pfn(*(pud_t *)kpte); 246 prot = pud_pgprot(*(pud_t *)kpte); 247 break; 248 default: 249 WARN_ONCE(1, "Invalid level for kpte\n"); 250 return 0; 251 } 252 253 if (ret_prot) 254 *ret_prot = prot; 255 256 return pfn; 257} 258 259void notify_range_enc_status_changed(unsigned long vaddr, int npages, bool enc) 260{ 261#ifdef CONFIG_PARAVIRT 262 unsigned long sz = npages << PAGE_SHIFT; 263 unsigned long vaddr_end = vaddr + sz; 264 265 while (vaddr < vaddr_end) { 266 int psize, pmask, level; 267 unsigned long pfn; 268 pte_t *kpte; 269 270 kpte = lookup_address(vaddr, &level); 271 if (!kpte || pte_none(*kpte)) { 272 WARN_ONCE(1, "kpte lookup for vaddr\n"); 273 return; 274 } 275 276 pfn = pg_level_to_pfn(level, kpte, NULL); 277 if (!pfn) 278 continue; 279 280 psize = page_level_size(level); 281 pmask = page_level_mask(level); 282 283 notify_page_enc_status_changed(pfn, psize >> PAGE_SHIFT, enc); 284 285 vaddr = (vaddr & pmask) + psize; 286 } 287#endif 288} 289 290static void __init __set_clr_pte_enc(pte_t *kpte, int level, bool enc) 291{ 292 pgprot_t old_prot, new_prot; 293 unsigned long pfn, pa, size; 294 pte_t new_pte; 295 296 pfn = pg_level_to_pfn(level, kpte, &old_prot); 297 if (!pfn) 298 return; 299 300 new_prot = old_prot; 301 if (enc) 302 pgprot_val(new_prot) |= _PAGE_ENC; 303 else 304 pgprot_val(new_prot) &= ~_PAGE_ENC; 305 306 /* If prot is same then do nothing. */ 307 if (pgprot_val(old_prot) == pgprot_val(new_prot)) 308 return; 309 310 pa = pfn << PAGE_SHIFT; 311 size = page_level_size(level); 312 313 /* 314 * We are going to perform in-place en-/decryption and change the 315 * physical page attribute from C=1 to C=0 or vice versa. Flush the 316 * caches to ensure that data gets accessed with the correct C-bit. 317 */ 318 clflush_cache_range(__va(pa), size); 319 320 /* Encrypt/decrypt the contents in-place */ 321 if (enc) 322 sme_early_encrypt(pa, size); 323 else 324 sme_early_decrypt(pa, size); 325 326 /* Change the page encryption mask. */ 327 new_pte = pfn_pte(pfn, new_prot); 328 set_pte_atomic(kpte, new_pte); 329} 330 331static int __init early_set_memory_enc_dec(unsigned long vaddr, 332 unsigned long size, bool enc) 333{ 334 unsigned long vaddr_end, vaddr_next, start; 335 unsigned long psize, pmask; 336 int split_page_size_mask; 337 int level, ret; 338 pte_t *kpte; 339 340 start = vaddr; 341 vaddr_next = vaddr; 342 vaddr_end = vaddr + size; 343 344 for (; vaddr < vaddr_end; vaddr = vaddr_next) { 345 kpte = lookup_address(vaddr, &level); 346 if (!kpte || pte_none(*kpte)) { 347 ret = 1; 348 goto out; 349 } 350 351 if (level == PG_LEVEL_4K) { 352 __set_clr_pte_enc(kpte, level, enc); 353 vaddr_next = (vaddr & PAGE_MASK) + PAGE_SIZE; 354 continue; 355 } 356 357 psize = page_level_size(level); 358 pmask = page_level_mask(level); 359 360 /* 361 * Check whether we can change the large page in one go. 362 * We request a split when the address is not aligned and 363 * the number of pages to set/clear encryption bit is smaller 364 * than the number of pages in the large page. 365 */ 366 if (vaddr == (vaddr & pmask) && 367 ((vaddr_end - vaddr) >= psize)) { 368 __set_clr_pte_enc(kpte, level, enc); 369 vaddr_next = (vaddr & pmask) + psize; 370 continue; 371 } 372 373 /* 374 * The virtual address is part of a larger page, create the next 375 * level page table mapping (4K or 2M). If it is part of a 2M 376 * page then we request a split of the large page into 4K 377 * chunks. A 1GB large page is split into 2M pages, resp. 378 */ 379 if (level == PG_LEVEL_2M) 380 split_page_size_mask = 0; 381 else 382 split_page_size_mask = 1 << PG_LEVEL_2M; 383 384 /* 385 * kernel_physical_mapping_change() does not flush the TLBs, so 386 * a TLB flush is required after we exit from the for loop. 387 */ 388 kernel_physical_mapping_change(__pa(vaddr & pmask), 389 __pa((vaddr_end & pmask) + psize), 390 split_page_size_mask); 391 } 392 393 ret = 0; 394 395 notify_range_enc_status_changed(start, PAGE_ALIGN(size) >> PAGE_SHIFT, enc); 396out: 397 __flush_tlb_all(); 398 return ret; 399} 400 401int __init early_set_memory_decrypted(unsigned long vaddr, unsigned long size) 402{ 403 return early_set_memory_enc_dec(vaddr, size, false); 404} 405 406int __init early_set_memory_encrypted(unsigned long vaddr, unsigned long size) 407{ 408 return early_set_memory_enc_dec(vaddr, size, true); 409} 410 411void __init early_set_mem_enc_dec_hypercall(unsigned long vaddr, int npages, bool enc) 412{ 413 notify_range_enc_status_changed(vaddr, npages, enc); 414} 415 | |
416/* Override for DMA direct allocation check - ARCH_HAS_FORCE_DMA_UNENCRYPTED */ 417bool force_dma_unencrypted(struct device *dev) 418{ 419 /* 420 * For SEV, all DMA must be to unencrypted addresses. 421 */ 422 if (cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT)) 423 return true; --- 10 unchanged lines hidden (view full) --- 434 435 if (dma_dev_mask <= dma_enc_mask) 436 return true; 437 } 438 439 return false; 440} 441 | 17/* Override for DMA direct allocation check - ARCH_HAS_FORCE_DMA_UNENCRYPTED */ 18bool force_dma_unencrypted(struct device *dev) 19{ 20 /* 21 * For SEV, all DMA must be to unencrypted addresses. 22 */ 23 if (cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT)) 24 return true; --- 10 unchanged lines hidden (view full) --- 35 36 if (dma_dev_mask <= dma_enc_mask) 37 return true; 38 } 39 40 return false; 41} 42 |
442void __init mem_encrypt_free_decrypted_mem(void) 443{ 444 unsigned long vaddr, vaddr_end, npages; 445 int r; 446 447 vaddr = (unsigned long)__start_bss_decrypted_unused; 448 vaddr_end = (unsigned long)__end_bss_decrypted; 449 npages = (vaddr_end - vaddr) >> PAGE_SHIFT; 450 451 /* 452 * The unused memory range was mapped decrypted, change the encryption 453 * attribute from decrypted to encrypted before freeing it. 454 */ 455 if (cc_platform_has(CC_ATTR_MEM_ENCRYPT)) { 456 r = set_memory_encrypted(vaddr, npages); 457 if (r) { 458 pr_warn("failed to free unused decrypted pages\n"); 459 return; 460 } 461 } 462 463 free_init_pages("unused decrypted", vaddr, vaddr_end); 464} 465 | |
466static void print_mem_encrypt_feature_info(void) 467{ 468 pr_info("AMD Memory Encryption Features active:"); 469 470 /* Secure Memory Encryption */ 471 if (cc_platform_has(CC_ATTR_HOST_MEM_ENCRYPT)) { 472 /* 473 * SME is mutually exclusive with any of the SEV --- 12 unchanged lines hidden (view full) --- 486 pr_cont(" SEV-ES"); 487 488 pr_cont("\n"); 489} 490 491/* Architecture __weak replacement functions */ 492void __init mem_encrypt_init(void) 493{ | 43static void print_mem_encrypt_feature_info(void) 44{ 45 pr_info("AMD Memory Encryption Features active:"); 46 47 /* Secure Memory Encryption */ 48 if (cc_platform_has(CC_ATTR_HOST_MEM_ENCRYPT)) { 49 /* 50 * SME is mutually exclusive with any of the SEV --- 12 unchanged lines hidden (view full) --- 63 pr_cont(" SEV-ES"); 64 65 pr_cont("\n"); 66} 67 68/* Architecture __weak replacement functions */ 69void __init mem_encrypt_init(void) 70{ |
494 if (!sme_me_mask) | 71 if (!cc_platform_has(CC_ATTR_MEM_ENCRYPT)) |
495 return; 496 497 /* Call into SWIOTLB to update the SWIOTLB DMA buffers */ 498 swiotlb_update_mem_attributes(); 499 500 print_mem_encrypt_feature_info(); 501} 502 503int arch_has_restricted_virtio_memory_access(void) 504{ 505 return cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT); 506} 507EXPORT_SYMBOL_GPL(arch_has_restricted_virtio_memory_access); | 72 return; 73 74 /* Call into SWIOTLB to update the SWIOTLB DMA buffers */ 75 swiotlb_update_mem_attributes(); 76 77 print_mem_encrypt_feature_info(); 78} 79 80int arch_has_restricted_virtio_memory_access(void) 81{ 82 return cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT); 83} 84EXPORT_SYMBOL_GPL(arch_has_restricted_virtio_memory_access); |