xref: /titanic_54/usr/src/uts/common/fs/sockfs/socksyscalls.c (revision 5dbfd19ad5fcc2b779f40f80fa05c1bd28fd0b4e)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 1995, 2010, Oracle and/or its affiliates. All rights reserved.
24  */
25 
26 /* Copyright (c) 2013, OmniTI Computer Consulting, Inc. All rights reserved. */
27 
28 #include <sys/types.h>
29 #include <sys/t_lock.h>
30 #include <sys/param.h>
31 #include <sys/systm.h>
32 #include <sys/buf.h>
33 #include <sys/conf.h>
34 #include <sys/cred.h>
35 #include <sys/kmem.h>
36 #include <sys/sysmacros.h>
37 #include <sys/vfs.h>
38 #include <sys/vnode.h>
39 #include <sys/debug.h>
40 #include <sys/errno.h>
41 #include <sys/time.h>
42 #include <sys/file.h>
43 #include <sys/user.h>
44 #include <sys/stream.h>
45 #include <sys/strsubr.h>
46 #include <sys/strsun.h>
47 #include <sys/sunddi.h>
48 #include <sys/esunddi.h>
49 #include <sys/flock.h>
50 #include <sys/modctl.h>
51 #include <sys/cmn_err.h>
52 #include <sys/vmsystm.h>
53 #include <sys/policy.h>
54 
55 #include <sys/socket.h>
56 #include <sys/socketvar.h>
57 
58 #include <sys/isa_defs.h>
59 #include <sys/inttypes.h>
60 #include <sys/systm.h>
61 #include <sys/cpuvar.h>
62 #include <sys/filio.h>
63 #include <sys/sendfile.h>
64 #include <sys/ddi.h>
65 #include <vm/seg.h>
66 #include <vm/seg_map.h>
67 #include <vm/seg_kpm.h>
68 
69 #include <fs/sockfs/nl7c.h>
70 #include <fs/sockfs/sockcommon.h>
71 #include <fs/sockfs/sockfilter_impl.h>
72 #include <fs/sockfs/socktpi.h>
73 
74 #ifdef SOCK_TEST
75 int do_useracc = 1;		/* Controlled by setting SO_DEBUG to 4 */
76 #else
77 #define	do_useracc	1
78 #endif /* SOCK_TEST */
79 
80 extern int 	xnet_truncate_print;
81 
82 extern void	nl7c_init(void);
83 extern int	sockfs_defer_nl7c_init;
84 
85 /*
86  * Note: DEF_IOV_MAX is defined and used as it is in "fs/vncalls.c"
87  *	 as there isn't a formal definition of IOV_MAX ???
88  */
89 #define	MSG_MAXIOVLEN	16
90 
91 /*
92  * Kernel component of socket creation.
93  *
94  * The socket library determines which version number to use.
95  * First the library calls this with a NULL devpath. If this fails
96  * to find a transport (using solookup) the library will look in /etc/netconfig
97  * for the appropriate transport. If one is found it will pass in the
98  * devpath for the kernel to use.
99  */
100 int
101 so_socket(int family, int type_w_flags, int protocol, char *devpath,
102     int version)
103 {
104 	struct sonode *so;
105 	vnode_t *vp;
106 	struct file *fp;
107 	int fd;
108 	int error;
109 	int type;
110 
111 	type = type_w_flags & SOCK_TYPE_MASK;
112 	if (devpath != NULL) {
113 		char *buf;
114 		size_t kdevpathlen = 0;
115 
116 		buf = kmem_alloc(MAXPATHLEN, KM_SLEEP);
117 		if ((error = copyinstr(devpath, buf,
118 		    MAXPATHLEN, &kdevpathlen)) != 0) {
119 			kmem_free(buf, MAXPATHLEN);
120 			return (set_errno(error));
121 		}
122 		so = socket_create(family, type, protocol, buf, NULL,
123 		    SOCKET_SLEEP, version, CRED(), &error);
124 		kmem_free(buf, MAXPATHLEN);
125 	} else {
126 		so = socket_create(family, type, protocol, NULL, NULL,
127 		    SOCKET_SLEEP, version, CRED(), &error);
128 	}
129 	if (so == NULL)
130 		return (set_errno(error));
131 
132 	/* Allocate a file descriptor for the socket */
133 	vp = SOTOV(so);
134 	if (error = falloc(vp, FWRITE|FREAD, &fp, &fd)) {
135 		(void) socket_close(so, 0, CRED());
136 		socket_destroy(so);
137 		return (set_errno(error));
138 	}
139 
140 	/*
141 	 * Now fill in the entries that falloc reserved
142 	 */
143 	mutex_exit(&fp->f_tlock);
144 	setf(fd, fp);
145 	if ((type_w_flags & SOCK_CLOEXEC) != 0) {
146 		f_setfd(fd, FD_CLOEXEC);
147 	}
148 
149 	return (fd);
150 }
151 
152 /*
153  * Map from a file descriptor to a socket node.
154  * Returns with the file descriptor held i.e. the caller has to
155  * use releasef when done with the file descriptor.
156  */
157 struct sonode *
158 getsonode(int sock, int *errorp, file_t **fpp)
159 {
160 	file_t *fp;
161 	vnode_t *vp;
162 	struct sonode *so;
163 
164 	if ((fp = getf(sock)) == NULL) {
165 		*errorp = EBADF;
166 		eprintline(*errorp);
167 		return (NULL);
168 	}
169 	vp = fp->f_vnode;
170 	/* Check if it is a socket */
171 	if (vp->v_type != VSOCK) {
172 		releasef(sock);
173 		*errorp = ENOTSOCK;
174 		eprintline(*errorp);
175 		return (NULL);
176 	}
177 	/*
178 	 * Use the stream head to find the real socket vnode.
179 	 * This is needed when namefs sits above sockfs.
180 	 */
181 	if (vp->v_stream) {
182 		ASSERT(vp->v_stream->sd_vnode);
183 		vp = vp->v_stream->sd_vnode;
184 
185 		so = VTOSO(vp);
186 		if (so->so_version == SOV_STREAM) {
187 			releasef(sock);
188 			*errorp = ENOTSOCK;
189 			eprintsoline(so, *errorp);
190 			return (NULL);
191 		}
192 	} else {
193 		so = VTOSO(vp);
194 	}
195 	if (fpp)
196 		*fpp = fp;
197 	return (so);
198 }
199 
200 /*
201  * Allocate and copyin a sockaddr.
202  * Ensures NULL termination for AF_UNIX addresses by extending them
203  * with one NULL byte if need be. Verifies that the length is not
204  * excessive to prevent an application from consuming all of kernel
205  * memory. Returns NULL when an error occurred.
206  */
207 static struct sockaddr *
208 copyin_name(struct sonode *so, struct sockaddr *name, socklen_t *namelenp,
209 	    int *errorp)
210 {
211 	char	*faddr;
212 	size_t	namelen = (size_t)*namelenp;
213 
214 	ASSERT(namelen != 0);
215 	if (namelen > SO_MAXARGSIZE) {
216 		*errorp = EINVAL;
217 		eprintsoline(so, *errorp);
218 		return (NULL);
219 	}
220 
221 	faddr = (char *)kmem_alloc(namelen, KM_SLEEP);
222 	if (copyin(name, faddr, namelen)) {
223 		kmem_free(faddr, namelen);
224 		*errorp = EFAULT;
225 		eprintsoline(so, *errorp);
226 		return (NULL);
227 	}
228 
229 	/*
230 	 * Add space for NULL termination if needed.
231 	 * Do a quick check if the last byte is NUL.
232 	 */
233 	if (so->so_family == AF_UNIX && faddr[namelen - 1] != '\0') {
234 		/* Check if there is any NULL termination */
235 		size_t	i;
236 		int foundnull = 0;
237 
238 		for (i = sizeof (name->sa_family); i < namelen; i++) {
239 			if (faddr[i] == '\0') {
240 				foundnull = 1;
241 				break;
242 			}
243 		}
244 		if (!foundnull) {
245 			/* Add extra byte for NUL padding */
246 			char *nfaddr;
247 
248 			nfaddr = (char *)kmem_alloc(namelen + 1, KM_SLEEP);
249 			bcopy(faddr, nfaddr, namelen);
250 			kmem_free(faddr, namelen);
251 
252 			/* NUL terminate */
253 			nfaddr[namelen] = '\0';
254 			namelen++;
255 			ASSERT((socklen_t)namelen == namelen);
256 			*namelenp = (socklen_t)namelen;
257 			faddr = nfaddr;
258 		}
259 	}
260 	return ((struct sockaddr *)faddr);
261 }
262 
263 /*
264  * Copy from kaddr/klen to uaddr/ulen. Updates ulenp if non-NULL.
265  */
266 static int
267 copyout_arg(void *uaddr, socklen_t ulen, void *ulenp,
268 		void *kaddr, socklen_t klen)
269 {
270 	if (uaddr != NULL) {
271 		if (ulen > klen)
272 			ulen = klen;
273 
274 		if (ulen != 0) {
275 			if (copyout(kaddr, uaddr, ulen))
276 				return (EFAULT);
277 		}
278 	} else
279 		ulen = 0;
280 
281 	if (ulenp != NULL) {
282 		if (copyout(&ulen, ulenp, sizeof (ulen)))
283 			return (EFAULT);
284 	}
285 	return (0);
286 }
287 
288 /*
289  * Copy from kaddr/klen to uaddr/ulen. Updates ulenp if non-NULL.
290  * If klen is greater than ulen it still uses the non-truncated
291  * klen to update ulenp.
292  */
293 static int
294 copyout_name(void *uaddr, socklen_t ulen, void *ulenp,
295 		void *kaddr, socklen_t klen)
296 {
297 	if (uaddr != NULL) {
298 		if (ulen >= klen)
299 			ulen = klen;
300 		else if (ulen != 0 && xnet_truncate_print) {
301 			printf("sockfs: truncating copyout of address using "
302 			    "XNET semantics for pid = %d. Lengths %d, %d\n",
303 			    curproc->p_pid, klen, ulen);
304 		}
305 
306 		if (ulen != 0) {
307 			if (copyout(kaddr, uaddr, ulen))
308 				return (EFAULT);
309 		} else
310 			klen = 0;
311 	} else
312 		klen = 0;
313 
314 	if (ulenp != NULL) {
315 		if (copyout(&klen, ulenp, sizeof (klen)))
316 			return (EFAULT);
317 	}
318 	return (0);
319 }
320 
321 /*
322  * The socketpair() code in libsocket creates two sockets (using
323  * the /etc/netconfig fallback if needed) before calling this routine
324  * to connect the two sockets together.
325  *
326  * For a SOCK_STREAM socketpair a listener is needed - in that case this
327  * routine will create a new file descriptor as part of accepting the
328  * connection. The library socketpair() will check if svs[2] has changed
329  * in which case it will close the changed fd.
330  *
331  * Note that this code could use the TPI feature of accepting the connection
332  * on the listening endpoint. However, that would require significant changes
333  * to soaccept.
334  */
335 int
336 so_socketpair(int sv[2])
337 {
338 	int svs[2];
339 	struct sonode *so1, *so2;
340 	int error;
341 	int orig_flags;
342 	struct sockaddr_ux *name;
343 	size_t namelen;
344 	sotpi_info_t *sti1;
345 	sotpi_info_t *sti2;
346 
347 	dprint(1, ("so_socketpair(%p)\n", (void *)sv));
348 
349 	error = useracc(sv, sizeof (svs), B_WRITE);
350 	if (error && do_useracc)
351 		return (set_errno(EFAULT));
352 
353 	if (copyin(sv, svs, sizeof (svs)))
354 		return (set_errno(EFAULT));
355 
356 	if ((so1 = getsonode(svs[0], &error, NULL)) == NULL)
357 		return (set_errno(error));
358 
359 	if ((so2 = getsonode(svs[1], &error, NULL)) == NULL) {
360 		releasef(svs[0]);
361 		return (set_errno(error));
362 	}
363 
364 	if (so1->so_family != AF_UNIX || so2->so_family != AF_UNIX) {
365 		error = EOPNOTSUPP;
366 		goto done;
367 	}
368 
369 	sti1 = SOTOTPI(so1);
370 	sti2 = SOTOTPI(so2);
371 
372 	/*
373 	 * The code below makes assumptions about the "sockfs" implementation.
374 	 * So make sure that the correct implementation is really used.
375 	 */
376 	ASSERT(so1->so_ops == &sotpi_sonodeops);
377 	ASSERT(so2->so_ops == &sotpi_sonodeops);
378 
379 	if (so1->so_type == SOCK_DGRAM) {
380 		/*
381 		 * Bind both sockets and connect them with each other.
382 		 * Need to allocate name/namelen for soconnect.
383 		 */
384 		error = socket_bind(so1, NULL, 0, _SOBIND_UNSPEC, CRED());
385 		if (error) {
386 			eprintsoline(so1, error);
387 			goto done;
388 		}
389 		error = socket_bind(so2, NULL, 0, _SOBIND_UNSPEC, CRED());
390 		if (error) {
391 			eprintsoline(so2, error);
392 			goto done;
393 		}
394 		namelen = sizeof (struct sockaddr_ux);
395 		name = kmem_alloc(namelen, KM_SLEEP);
396 		name->sou_family = AF_UNIX;
397 		name->sou_addr = sti2->sti_ux_laddr;
398 		error = socket_connect(so1,
399 		    (struct sockaddr *)name,
400 		    (socklen_t)namelen,
401 		    0, _SOCONNECT_NOXLATE, CRED());
402 		if (error) {
403 			kmem_free(name, namelen);
404 			eprintsoline(so1, error);
405 			goto done;
406 		}
407 		name->sou_addr = sti1->sti_ux_laddr;
408 		error = socket_connect(so2,
409 		    (struct sockaddr *)name,
410 		    (socklen_t)namelen,
411 		    0, _SOCONNECT_NOXLATE, CRED());
412 		kmem_free(name, namelen);
413 		if (error) {
414 			eprintsoline(so2, error);
415 			goto done;
416 		}
417 		releasef(svs[0]);
418 		releasef(svs[1]);
419 	} else {
420 		/*
421 		 * Bind both sockets, with so1 being a listener.
422 		 * Connect so2 to so1 - nonblocking to avoid waiting for
423 		 * soaccept to complete.
424 		 * Accept a connection on so1. Pass out the new fd as sv[0].
425 		 * The library will detect the changed fd and close
426 		 * the original one.
427 		 */
428 		struct sonode *nso;
429 		struct vnode *nvp;
430 		struct file *nfp;
431 		int nfd;
432 
433 		/*
434 		 * We could simply call socket_listen() here (which would do the
435 		 * binding automatically) if the code didn't rely on passing
436 		 * _SOBIND_NOXLATE to the TPI implementation of socket_bind().
437 		 */
438 		error = socket_bind(so1, NULL, 0, _SOBIND_UNSPEC|
439 		    _SOBIND_NOXLATE|_SOBIND_LISTEN|_SOBIND_SOCKETPAIR,
440 		    CRED());
441 		if (error) {
442 			eprintsoline(so1, error);
443 			goto done;
444 		}
445 		error = socket_bind(so2, NULL, 0, _SOBIND_UNSPEC, CRED());
446 		if (error) {
447 			eprintsoline(so2, error);
448 			goto done;
449 		}
450 
451 		namelen = sizeof (struct sockaddr_ux);
452 		name = kmem_alloc(namelen, KM_SLEEP);
453 		name->sou_family = AF_UNIX;
454 		name->sou_addr = sti1->sti_ux_laddr;
455 		error = socket_connect(so2,
456 		    (struct sockaddr *)name,
457 		    (socklen_t)namelen,
458 		    FNONBLOCK, _SOCONNECT_NOXLATE, CRED());
459 		kmem_free(name, namelen);
460 		if (error) {
461 			if (error != EINPROGRESS) {
462 				eprintsoline(so2, error); goto done;
463 			}
464 		}
465 
466 		error = socket_accept(so1, 0, CRED(), &nso);
467 		if (error) {
468 			eprintsoline(so1, error);
469 			goto done;
470 		}
471 
472 		/* wait for so2 being SS_CONNECTED ignoring signals */
473 		mutex_enter(&so2->so_lock);
474 		error = sowaitconnected(so2, 0, 1);
475 		mutex_exit(&so2->so_lock);
476 		if (error != 0) {
477 			(void) socket_close(nso, 0, CRED());
478 			socket_destroy(nso);
479 			eprintsoline(so2, error);
480 			goto done;
481 		}
482 
483 		nvp = SOTOV(nso);
484 		if (error = falloc(nvp, FWRITE|FREAD, &nfp, &nfd)) {
485 			(void) socket_close(nso, 0, CRED());
486 			socket_destroy(nso);
487 			eprintsoline(nso, error);
488 			goto done;
489 		}
490 		/*
491 		 * fill in the entries that falloc reserved
492 		 */
493 		mutex_exit(&nfp->f_tlock);
494 		setf(nfd, nfp);
495 
496 		releasef(svs[0]);
497 		releasef(svs[1]);
498 
499 		/*
500 		 * If FD_CLOEXEC was set on the filedescriptor we're
501 		 * swapping out, we should set it on the new one too.
502 		 */
503 		VERIFY(f_getfd_error(svs[0], &orig_flags) == 0);
504 		if (orig_flags & FD_CLOEXEC) {
505 			f_setfd(nfd, FD_CLOEXEC);
506 		}
507 
508 		/*
509 		 * The socketpair library routine will close the original
510 		 * svs[0] when this code passes out a different file
511 		 * descriptor.
512 		 */
513 		svs[0] = nfd;
514 
515 		if (copyout(svs, sv, sizeof (svs))) {
516 			(void) closeandsetf(nfd, NULL);
517 			eprintline(EFAULT);
518 			return (set_errno(EFAULT));
519 		}
520 	}
521 	return (0);
522 
523 done:
524 	releasef(svs[0]);
525 	releasef(svs[1]);
526 	return (set_errno(error));
527 }
528 
529 int
530 bind(int sock, struct sockaddr *name, socklen_t namelen, int version)
531 {
532 	struct sonode *so;
533 	int error;
534 
535 	dprint(1, ("bind(%d, %p, %d)\n",
536 	    sock, (void *)name, namelen));
537 
538 	if ((so = getsonode(sock, &error, NULL)) == NULL)
539 		return (set_errno(error));
540 
541 	/* Allocate and copyin name */
542 	/*
543 	 * X/Open test does not expect EFAULT with NULL name and non-zero
544 	 * namelen.
545 	 */
546 	if (name != NULL && namelen != 0) {
547 		ASSERT(MUTEX_NOT_HELD(&so->so_lock));
548 		name = copyin_name(so, name, &namelen, &error);
549 		if (name == NULL) {
550 			releasef(sock);
551 			return (set_errno(error));
552 		}
553 	} else {
554 		name = NULL;
555 		namelen = 0;
556 	}
557 
558 	switch (version) {
559 	default:
560 		error = socket_bind(so, name, namelen, 0, CRED());
561 		break;
562 	case SOV_XPG4_2:
563 		error = socket_bind(so, name, namelen, _SOBIND_XPG4_2, CRED());
564 		break;
565 	case SOV_SOCKBSD:
566 		error = socket_bind(so, name, namelen, _SOBIND_SOCKBSD, CRED());
567 		break;
568 	}
569 done:
570 	releasef(sock);
571 	if (name != NULL)
572 		kmem_free(name, (size_t)namelen);
573 
574 	if (error)
575 		return (set_errno(error));
576 	return (0);
577 }
578 
579 /* ARGSUSED2 */
580 int
581 listen(int sock, int backlog, int version)
582 {
583 	struct sonode *so;
584 	int error;
585 
586 	dprint(1, ("listen(%d, %d)\n",
587 	    sock, backlog));
588 
589 	if ((so = getsonode(sock, &error, NULL)) == NULL)
590 		return (set_errno(error));
591 
592 	error = socket_listen(so, backlog, CRED());
593 
594 	releasef(sock);
595 	if (error)
596 		return (set_errno(error));
597 	return (0);
598 }
599 
600 /*ARGSUSED4*/
601 int
602 accept(int sock, struct sockaddr *name, socklen_t *namelenp, int version,
603     int flags)
604 {
605 	struct sonode *so;
606 	file_t *fp;
607 	int error;
608 	socklen_t namelen;
609 	struct sonode *nso;
610 	struct vnode *nvp;
611 	struct file *nfp;
612 	int nfd;
613 	int ssflags;
614 	struct sockaddr *addrp;
615 	socklen_t addrlen;
616 
617 	dprint(1, ("accept(%d, %p, %p)\n",
618 	    sock, (void *)name, (void *)namelenp));
619 
620 	if (flags & ~(SOCK_CLOEXEC|SOCK_NONBLOCK|SOCK_NDELAY)) {
621 		return (set_errno(EINVAL));
622 	}
623 
624 	/* Translate SOCK_ flags to their SS_ variant */
625 	ssflags = 0;
626 	if (flags & SOCK_NONBLOCK)
627 		ssflags |= SS_NONBLOCK;
628 	if (flags & SOCK_NDELAY)
629 		ssflags |= SS_NDELAY;
630 
631 	if ((so = getsonode(sock, &error, &fp)) == NULL)
632 		return (set_errno(error));
633 
634 	if (name != NULL) {
635 		ASSERT(MUTEX_NOT_HELD(&so->so_lock));
636 		if (copyin(namelenp, &namelen, sizeof (namelen))) {
637 			releasef(sock);
638 			return (set_errno(EFAULT));
639 		}
640 		if (namelen != 0) {
641 			error = useracc(name, (size_t)namelen, B_WRITE);
642 			if (error && do_useracc) {
643 				releasef(sock);
644 				return (set_errno(EFAULT));
645 			}
646 		} else
647 			name = NULL;
648 	} else {
649 		namelen = 0;
650 	}
651 
652 	/*
653 	 * Allocate the user fd before socket_accept() in order to
654 	 * catch EMFILE errors before calling socket_accept().
655 	 */
656 	if ((nfd = ufalloc(0)) == -1) {
657 		eprintsoline(so, EMFILE);
658 		releasef(sock);
659 		return (set_errno(EMFILE));
660 	}
661 	error = socket_accept(so, fp->f_flag, CRED(), &nso);
662 	if (error) {
663 		setf(nfd, NULL);
664 		releasef(sock);
665 		return (set_errno(error));
666 	}
667 
668 	nvp = SOTOV(nso);
669 
670 	ASSERT(MUTEX_NOT_HELD(&nso->so_lock));
671 	if (namelen != 0) {
672 		addrlen = so->so_max_addr_len;
673 		addrp = (struct sockaddr *)kmem_alloc(addrlen, KM_SLEEP);
674 
675 		if ((error = socket_getpeername(nso, (struct sockaddr *)addrp,
676 		    &addrlen, B_TRUE, CRED())) == 0) {
677 			error = copyout_name(name, namelen, namelenp,
678 			    addrp, addrlen);
679 		} else {
680 			ASSERT(error == EINVAL || error == ENOTCONN);
681 			error = ECONNABORTED;
682 		}
683 		kmem_free(addrp, so->so_max_addr_len);
684 	}
685 
686 	if (error) {
687 		setf(nfd, NULL);
688 		(void) socket_close(nso, 0, CRED());
689 		socket_destroy(nso);
690 		releasef(sock);
691 		return (set_errno(error));
692 	}
693 	if (error = falloc(NULL, FWRITE|FREAD, &nfp, NULL)) {
694 		setf(nfd, NULL);
695 		(void) socket_close(nso, 0, CRED());
696 		socket_destroy(nso);
697 		eprintsoline(so, error);
698 		releasef(sock);
699 		return (set_errno(error));
700 	}
701 	/*
702 	 * fill in the entries that falloc reserved
703 	 */
704 	nfp->f_vnode = nvp;
705 	mutex_exit(&nfp->f_tlock);
706 	setf(nfd, nfp);
707 
708 	/*
709 	 * Act on SOCK_CLOEXEC from flags
710 	 */
711 	if (flags & SOCK_CLOEXEC) {
712 		f_setfd(nfd, FD_CLOEXEC);
713 	}
714 
715 	/*
716 	 * Copy FNDELAY and FNONBLOCK from listener to acceptor
717 	 * and from ssflags
718 	 */
719 	if ((ssflags | so->so_state) & (SS_NDELAY|SS_NONBLOCK)) {
720 		uint_t oflag = nfp->f_flag;
721 		int arg = 0;
722 
723 		if ((ssflags | so->so_state) & SS_NONBLOCK)
724 			arg |= FNONBLOCK;
725 		else if ((ssflags | so->so_state) & SS_NDELAY)
726 			arg |= FNDELAY;
727 
728 		/*
729 		 * This code is a simplification of the F_SETFL code in fcntl()
730 		 * Ignore any errors from VOP_SETFL.
731 		 */
732 		if ((error = VOP_SETFL(nvp, oflag, arg, nfp->f_cred, NULL))
733 		    != 0) {
734 			eprintsoline(so, error);
735 			error = 0;
736 		} else {
737 			mutex_enter(&nfp->f_tlock);
738 			nfp->f_flag &= ~FMASK | (FREAD|FWRITE);
739 			nfp->f_flag |= arg;
740 			mutex_exit(&nfp->f_tlock);
741 		}
742 	}
743 	releasef(sock);
744 	return (nfd);
745 }
746 
747 int
748 connect(int sock, struct sockaddr *name, socklen_t namelen, int version)
749 {
750 	struct sonode *so;
751 	file_t *fp;
752 	int error;
753 
754 	dprint(1, ("connect(%d, %p, %d)\n",
755 	    sock, (void *)name, namelen));
756 
757 	if ((so = getsonode(sock, &error, &fp)) == NULL)
758 		return (set_errno(error));
759 
760 	/* Allocate and copyin name */
761 	if (namelen != 0) {
762 		ASSERT(MUTEX_NOT_HELD(&so->so_lock));
763 		name = copyin_name(so, name, &namelen, &error);
764 		if (name == NULL) {
765 			releasef(sock);
766 			return (set_errno(error));
767 		}
768 	} else
769 		name = NULL;
770 
771 	error = socket_connect(so, name, namelen, fp->f_flag,
772 	    (version != SOV_XPG4_2) ? 0 : _SOCONNECT_XPG4_2, CRED());
773 	releasef(sock);
774 	if (name)
775 		kmem_free(name, (size_t)namelen);
776 	if (error)
777 		return (set_errno(error));
778 	return (0);
779 }
780 
781 /*ARGSUSED2*/
782 int
783 shutdown(int sock, int how, int version)
784 {
785 	struct sonode *so;
786 	int error;
787 
788 	dprint(1, ("shutdown(%d, %d)\n",
789 	    sock, how));
790 
791 	if ((so = getsonode(sock, &error, NULL)) == NULL)
792 		return (set_errno(error));
793 
794 	error = socket_shutdown(so, how, CRED());
795 
796 	releasef(sock);
797 	if (error)
798 		return (set_errno(error));
799 	return (0);
800 }
801 
802 /*
803  * Common receive routine.
804  */
805 static ssize_t
806 recvit(int sock,
807 	struct nmsghdr *msg,
808 	struct uio *uiop,
809 	int flags,
810 	socklen_t *namelenp,
811 	socklen_t *controllenp,
812 	int *flagsp)
813 {
814 	struct sonode *so;
815 	file_t *fp;
816 	void *name;
817 	socklen_t namelen;
818 	void *control;
819 	socklen_t controllen;
820 	ssize_t len;
821 	int error;
822 
823 	if ((so = getsonode(sock, &error, &fp)) == NULL)
824 		return (set_errno(error));
825 
826 	len = uiop->uio_resid;
827 	uiop->uio_fmode = fp->f_flag;
828 	uiop->uio_extflg = UIO_COPY_CACHED;
829 
830 	name = msg->msg_name;
831 	namelen = msg->msg_namelen;
832 	control = msg->msg_control;
833 	controllen = msg->msg_controllen;
834 
835 	msg->msg_flags = flags & (MSG_OOB | MSG_PEEK | MSG_WAITALL |
836 	    MSG_DONTWAIT | MSG_XPG4_2);
837 
838 	error = socket_recvmsg(so, msg, uiop, CRED());
839 	if (error) {
840 		releasef(sock);
841 		return (set_errno(error));
842 	}
843 	lwp_stat_update(LWP_STAT_MSGRCV, 1);
844 	releasef(sock);
845 
846 	error = copyout_name(name, namelen, namelenp,
847 	    msg->msg_name, msg->msg_namelen);
848 	if (error)
849 		goto err;
850 
851 	if (flagsp != NULL) {
852 		/*
853 		 * Clear internal flag.
854 		 */
855 		msg->msg_flags &= ~MSG_XPG4_2;
856 
857 		/*
858 		 * Determine MSG_CTRUNC. sorecvmsg sets MSG_CTRUNC only
859 		 * when controllen is zero and there is control data to
860 		 * copy out.
861 		 */
862 		if (controllen != 0 &&
863 		    (msg->msg_controllen > controllen || control == NULL)) {
864 			dprint(1, ("recvit: CTRUNC %d %d %p\n",
865 			    msg->msg_controllen, controllen, control));
866 
867 			msg->msg_flags |= MSG_CTRUNC;
868 		}
869 		if (copyout(&msg->msg_flags, flagsp,
870 		    sizeof (msg->msg_flags))) {
871 			error = EFAULT;
872 			goto err;
873 		}
874 	}
875 	/*
876 	 * Note: This MUST be done last. There can be no "goto err" after this
877 	 * point since it could make so_closefds run twice on some part
878 	 * of the file descriptor array.
879 	 */
880 	if (controllen != 0) {
881 		if (!(flags & MSG_XPG4_2)) {
882 			/*
883 			 * Good old msg_accrights can only return a multiple
884 			 * of 4 bytes.
885 			 */
886 			controllen &= ~((int)sizeof (uint32_t) - 1);
887 		}
888 		error = copyout_arg(control, controllen, controllenp,
889 		    msg->msg_control, msg->msg_controllen);
890 		if (error)
891 			goto err;
892 
893 		if (msg->msg_controllen > controllen || control == NULL) {
894 			if (control == NULL)
895 				controllen = 0;
896 			so_closefds(msg->msg_control, msg->msg_controllen,
897 			    !(flags & MSG_XPG4_2), controllen);
898 		}
899 	}
900 	if (msg->msg_namelen != 0)
901 		kmem_free(msg->msg_name, (size_t)msg->msg_namelen);
902 	if (msg->msg_controllen != 0)
903 		kmem_free(msg->msg_control, (size_t)msg->msg_controllen);
904 	return (len - uiop->uio_resid);
905 
906 err:
907 	/*
908 	 * If we fail and the control part contains file descriptors
909 	 * we have to close the fd's.
910 	 */
911 	if (msg->msg_controllen != 0)
912 		so_closefds(msg->msg_control, msg->msg_controllen,
913 		    !(flags & MSG_XPG4_2), 0);
914 	if (msg->msg_namelen != 0)
915 		kmem_free(msg->msg_name, (size_t)msg->msg_namelen);
916 	if (msg->msg_controllen != 0)
917 		kmem_free(msg->msg_control, (size_t)msg->msg_controllen);
918 	return (set_errno(error));
919 }
920 
921 /*
922  * Native system call
923  */
924 ssize_t
925 recv(int sock, void *buffer, size_t len, int flags)
926 {
927 	struct nmsghdr lmsg;
928 	struct uio auio;
929 	struct iovec aiov[1];
930 
931 	dprint(1, ("recv(%d, %p, %ld, %d)\n",
932 	    sock, buffer, len, flags));
933 
934 	if ((ssize_t)len < 0) {
935 		return (set_errno(EINVAL));
936 	}
937 
938 	aiov[0].iov_base = buffer;
939 	aiov[0].iov_len = len;
940 	auio.uio_loffset = 0;
941 	auio.uio_iov = aiov;
942 	auio.uio_iovcnt = 1;
943 	auio.uio_resid = len;
944 	auio.uio_segflg = UIO_USERSPACE;
945 	auio.uio_limit = 0;
946 
947 	lmsg.msg_namelen = 0;
948 	lmsg.msg_controllen = 0;
949 	lmsg.msg_flags = 0;
950 	return (recvit(sock, &lmsg, &auio, flags, NULL, NULL, NULL));
951 }
952 
953 ssize_t
954 recvfrom(int sock, void *buffer, size_t len, int flags,
955 	struct sockaddr *name, socklen_t *namelenp)
956 {
957 	struct nmsghdr lmsg;
958 	struct uio auio;
959 	struct iovec aiov[1];
960 
961 	dprint(1, ("recvfrom(%d, %p, %ld, %d, %p, %p)\n",
962 	    sock, buffer, len, flags, (void *)name, (void *)namelenp));
963 
964 	if ((ssize_t)len < 0) {
965 		return (set_errno(EINVAL));
966 	}
967 
968 	aiov[0].iov_base = buffer;
969 	aiov[0].iov_len = len;
970 	auio.uio_loffset = 0;
971 	auio.uio_iov = aiov;
972 	auio.uio_iovcnt = 1;
973 	auio.uio_resid = len;
974 	auio.uio_segflg = UIO_USERSPACE;
975 	auio.uio_limit = 0;
976 
977 	lmsg.msg_name = (char *)name;
978 	if (namelenp != NULL) {
979 		if (copyin(namelenp, &lmsg.msg_namelen,
980 		    sizeof (lmsg.msg_namelen)))
981 			return (set_errno(EFAULT));
982 	} else {
983 		lmsg.msg_namelen = 0;
984 	}
985 	lmsg.msg_controllen = 0;
986 	lmsg.msg_flags = 0;
987 
988 	return (recvit(sock, &lmsg, &auio, flags, namelenp, NULL, NULL));
989 }
990 
991 /*
992  * Uses the MSG_XPG4_2 flag to determine if the caller is using
993  * struct omsghdr or struct nmsghdr.
994  */
995 ssize_t
996 recvmsg(int sock, struct nmsghdr *msg, int flags)
997 {
998 	STRUCT_DECL(nmsghdr, u_lmsg);
999 	STRUCT_HANDLE(nmsghdr, umsgptr);
1000 	struct nmsghdr lmsg;
1001 	struct uio auio;
1002 	struct iovec aiov[MSG_MAXIOVLEN];
1003 	int iovcnt;
1004 	ssize_t len;
1005 	int i;
1006 	int *flagsp;
1007 	model_t	model;
1008 
1009 	dprint(1, ("recvmsg(%d, %p, %d)\n",
1010 	    sock, (void *)msg, flags));
1011 
1012 	model = get_udatamodel();
1013 	STRUCT_INIT(u_lmsg, model);
1014 	STRUCT_SET_HANDLE(umsgptr, model, msg);
1015 
1016 	if (flags & MSG_XPG4_2) {
1017 		if (copyin(msg, STRUCT_BUF(u_lmsg), STRUCT_SIZE(u_lmsg)))
1018 			return (set_errno(EFAULT));
1019 		flagsp = STRUCT_FADDR(umsgptr, msg_flags);
1020 	} else {
1021 		/*
1022 		 * Assumes that nmsghdr and omsghdr are identically shaped
1023 		 * except for the added msg_flags field.
1024 		 */
1025 		if (copyin(msg, STRUCT_BUF(u_lmsg),
1026 		    SIZEOF_STRUCT(omsghdr, model)))
1027 			return (set_errno(EFAULT));
1028 		STRUCT_FSET(u_lmsg, msg_flags, 0);
1029 		flagsp = NULL;
1030 	}
1031 
1032 	/*
1033 	 * Code below us will kmem_alloc memory and hang it
1034 	 * off msg_control and msg_name fields. This forces
1035 	 * us to copy the structure to its native form.
1036 	 */
1037 	lmsg.msg_name = STRUCT_FGETP(u_lmsg, msg_name);
1038 	lmsg.msg_namelen = STRUCT_FGET(u_lmsg, msg_namelen);
1039 	lmsg.msg_iov = STRUCT_FGETP(u_lmsg, msg_iov);
1040 	lmsg.msg_iovlen = STRUCT_FGET(u_lmsg, msg_iovlen);
1041 	lmsg.msg_control = STRUCT_FGETP(u_lmsg, msg_control);
1042 	lmsg.msg_controllen = STRUCT_FGET(u_lmsg, msg_controllen);
1043 	lmsg.msg_flags = STRUCT_FGET(u_lmsg, msg_flags);
1044 
1045 	iovcnt = lmsg.msg_iovlen;
1046 
1047 	if (iovcnt <= 0 || iovcnt > MSG_MAXIOVLEN) {
1048 		return (set_errno(EMSGSIZE));
1049 	}
1050 
1051 #ifdef _SYSCALL32_IMPL
1052 	/*
1053 	 * 32-bit callers need to have their iovec expanded, while ensuring
1054 	 * that they can't move more than 2Gbytes of data in a single call.
1055 	 */
1056 	if (model == DATAMODEL_ILP32) {
1057 		struct iovec32 aiov32[MSG_MAXIOVLEN];
1058 		ssize32_t count32;
1059 
1060 		if (copyin((struct iovec32 *)lmsg.msg_iov, aiov32,
1061 		    iovcnt * sizeof (struct iovec32)))
1062 			return (set_errno(EFAULT));
1063 
1064 		count32 = 0;
1065 		for (i = 0; i < iovcnt; i++) {
1066 			ssize32_t iovlen32;
1067 
1068 			iovlen32 = aiov32[i].iov_len;
1069 			count32 += iovlen32;
1070 			if (iovlen32 < 0 || count32 < 0)
1071 				return (set_errno(EINVAL));
1072 			aiov[i].iov_len = iovlen32;
1073 			aiov[i].iov_base =
1074 			    (caddr_t)(uintptr_t)aiov32[i].iov_base;
1075 		}
1076 	} else
1077 #endif /* _SYSCALL32_IMPL */
1078 	if (copyin(lmsg.msg_iov, aiov, iovcnt * sizeof (struct iovec))) {
1079 		return (set_errno(EFAULT));
1080 	}
1081 	len = 0;
1082 	for (i = 0; i < iovcnt; i++) {
1083 		ssize_t iovlen = aiov[i].iov_len;
1084 		len += iovlen;
1085 		if (iovlen < 0 || len < 0) {
1086 			return (set_errno(EINVAL));
1087 		}
1088 	}
1089 	auio.uio_loffset = 0;
1090 	auio.uio_iov = aiov;
1091 	auio.uio_iovcnt = iovcnt;
1092 	auio.uio_resid = len;
1093 	auio.uio_segflg = UIO_USERSPACE;
1094 	auio.uio_limit = 0;
1095 
1096 	if (lmsg.msg_control != NULL &&
1097 	    (do_useracc == 0 ||
1098 	    useracc(lmsg.msg_control, lmsg.msg_controllen,
1099 	    B_WRITE) != 0)) {
1100 		return (set_errno(EFAULT));
1101 	}
1102 
1103 	return (recvit(sock, &lmsg, &auio, flags,
1104 	    STRUCT_FADDR(umsgptr, msg_namelen),
1105 	    STRUCT_FADDR(umsgptr, msg_controllen), flagsp));
1106 }
1107 
1108 /*
1109  * Common send function.
1110  */
1111 static ssize_t
1112 sendit(int sock, struct nmsghdr *msg, struct uio *uiop, int flags)
1113 {
1114 	struct sonode *so;
1115 	file_t *fp;
1116 	void *name;
1117 	socklen_t namelen;
1118 	void *control;
1119 	socklen_t controllen;
1120 	ssize_t len;
1121 	int error;
1122 
1123 	if ((so = getsonode(sock, &error, &fp)) == NULL)
1124 		return (set_errno(error));
1125 
1126 	uiop->uio_fmode = fp->f_flag;
1127 
1128 	if (so->so_family == AF_UNIX)
1129 		uiop->uio_extflg = UIO_COPY_CACHED;
1130 	else
1131 		uiop->uio_extflg = UIO_COPY_DEFAULT;
1132 
1133 	/* Allocate and copyin name and control */
1134 	name = msg->msg_name;
1135 	namelen = msg->msg_namelen;
1136 	if (name != NULL && namelen != 0) {
1137 		ASSERT(MUTEX_NOT_HELD(&so->so_lock));
1138 		name = copyin_name(so,
1139 		    (struct sockaddr *)name,
1140 		    &namelen, &error);
1141 		if (name == NULL)
1142 			goto done3;
1143 		/* copyin_name null terminates addresses for AF_UNIX */
1144 		msg->msg_namelen = namelen;
1145 		msg->msg_name = name;
1146 	} else {
1147 		msg->msg_name = name = NULL;
1148 		msg->msg_namelen = namelen = 0;
1149 	}
1150 
1151 	control = msg->msg_control;
1152 	controllen = msg->msg_controllen;
1153 	if ((control != NULL) && (controllen != 0)) {
1154 		/*
1155 		 * Verify that the length is not excessive to prevent
1156 		 * an application from consuming all of kernel memory.
1157 		 */
1158 		if (controllen > SO_MAXARGSIZE) {
1159 			error = EINVAL;
1160 			goto done2;
1161 		}
1162 		control = kmem_alloc(controllen, KM_SLEEP);
1163 
1164 		ASSERT(MUTEX_NOT_HELD(&so->so_lock));
1165 		if (copyin(msg->msg_control, control, controllen)) {
1166 			error = EFAULT;
1167 			goto done1;
1168 		}
1169 		msg->msg_control = control;
1170 	} else {
1171 		msg->msg_control = control = NULL;
1172 		msg->msg_controllen = controllen = 0;
1173 	}
1174 
1175 	len = uiop->uio_resid;
1176 	msg->msg_flags = flags;
1177 
1178 	error = socket_sendmsg(so, msg, uiop, CRED());
1179 done1:
1180 	if (control != NULL)
1181 		kmem_free(control, controllen);
1182 done2:
1183 	if (name != NULL)
1184 		kmem_free(name, namelen);
1185 done3:
1186 	if (error != 0) {
1187 		releasef(sock);
1188 		return (set_errno(error));
1189 	}
1190 	lwp_stat_update(LWP_STAT_MSGSND, 1);
1191 	releasef(sock);
1192 	return (len - uiop->uio_resid);
1193 }
1194 
1195 /*
1196  * Native system call
1197  */
1198 ssize_t
1199 send(int sock, void *buffer, size_t len, int flags)
1200 {
1201 	struct nmsghdr lmsg;
1202 	struct uio auio;
1203 	struct iovec aiov[1];
1204 
1205 	dprint(1, ("send(%d, %p, %ld, %d)\n",
1206 	    sock, buffer, len, flags));
1207 
1208 	if ((ssize_t)len < 0) {
1209 		return (set_errno(EINVAL));
1210 	}
1211 
1212 	aiov[0].iov_base = buffer;
1213 	aiov[0].iov_len = len;
1214 	auio.uio_loffset = 0;
1215 	auio.uio_iov = aiov;
1216 	auio.uio_iovcnt = 1;
1217 	auio.uio_resid = len;
1218 	auio.uio_segflg = UIO_USERSPACE;
1219 	auio.uio_limit = 0;
1220 
1221 	lmsg.msg_name = NULL;
1222 	lmsg.msg_control = NULL;
1223 	if (!(flags & MSG_XPG4_2)) {
1224 		/*
1225 		 * In order to be compatible with the libsocket/sockmod
1226 		 * implementation we set EOR for all send* calls.
1227 		 */
1228 		flags |= MSG_EOR;
1229 	}
1230 	return (sendit(sock, &lmsg, &auio, flags));
1231 }
1232 
1233 /*
1234  * Uses the MSG_XPG4_2 flag to determine if the caller is using
1235  * struct omsghdr or struct nmsghdr.
1236  */
1237 ssize_t
1238 sendmsg(int sock, struct nmsghdr *msg, int flags)
1239 {
1240 	struct nmsghdr lmsg;
1241 	STRUCT_DECL(nmsghdr, u_lmsg);
1242 	struct uio auio;
1243 	struct iovec aiov[MSG_MAXIOVLEN];
1244 	int iovcnt;
1245 	ssize_t len;
1246 	int i;
1247 	model_t	model;
1248 
1249 	dprint(1, ("sendmsg(%d, %p, %d)\n", sock, (void *)msg, flags));
1250 
1251 	model = get_udatamodel();
1252 	STRUCT_INIT(u_lmsg, model);
1253 
1254 	if (flags & MSG_XPG4_2) {
1255 		if (copyin(msg, (char *)STRUCT_BUF(u_lmsg),
1256 		    STRUCT_SIZE(u_lmsg)))
1257 			return (set_errno(EFAULT));
1258 	} else {
1259 		/*
1260 		 * Assumes that nmsghdr and omsghdr are identically shaped
1261 		 * except for the added msg_flags field.
1262 		 */
1263 		if (copyin(msg, (char *)STRUCT_BUF(u_lmsg),
1264 		    SIZEOF_STRUCT(omsghdr, model)))
1265 			return (set_errno(EFAULT));
1266 		/*
1267 		 * In order to be compatible with the libsocket/sockmod
1268 		 * implementation we set EOR for all send* calls.
1269 		 */
1270 		flags |= MSG_EOR;
1271 	}
1272 
1273 	/*
1274 	 * Code below us will kmem_alloc memory and hang it
1275 	 * off msg_control and msg_name fields. This forces
1276 	 * us to copy the structure to its native form.
1277 	 */
1278 	lmsg.msg_name = STRUCT_FGETP(u_lmsg, msg_name);
1279 	lmsg.msg_namelen = STRUCT_FGET(u_lmsg, msg_namelen);
1280 	lmsg.msg_iov = STRUCT_FGETP(u_lmsg, msg_iov);
1281 	lmsg.msg_iovlen = STRUCT_FGET(u_lmsg, msg_iovlen);
1282 	lmsg.msg_control = STRUCT_FGETP(u_lmsg, msg_control);
1283 	lmsg.msg_controllen = STRUCT_FGET(u_lmsg, msg_controllen);
1284 	lmsg.msg_flags = STRUCT_FGET(u_lmsg, msg_flags);
1285 
1286 	iovcnt = lmsg.msg_iovlen;
1287 
1288 	if (iovcnt <= 0 || iovcnt > MSG_MAXIOVLEN) {
1289 		/*
1290 		 * Unless this is XPG 4.2 we allow iovcnt == 0 to
1291 		 * be compatible with SunOS 4.X and 4.4BSD.
1292 		 */
1293 		if (iovcnt != 0 || (flags & MSG_XPG4_2))
1294 			return (set_errno(EMSGSIZE));
1295 	}
1296 
1297 #ifdef _SYSCALL32_IMPL
1298 	/*
1299 	 * 32-bit callers need to have their iovec expanded, while ensuring
1300 	 * that they can't move more than 2Gbytes of data in a single call.
1301 	 */
1302 	if (model == DATAMODEL_ILP32) {
1303 		struct iovec32 aiov32[MSG_MAXIOVLEN];
1304 		ssize32_t count32;
1305 
1306 		if (iovcnt != 0 &&
1307 		    copyin((struct iovec32 *)lmsg.msg_iov, aiov32,
1308 		    iovcnt * sizeof (struct iovec32)))
1309 			return (set_errno(EFAULT));
1310 
1311 		count32 = 0;
1312 		for (i = 0; i < iovcnt; i++) {
1313 			ssize32_t iovlen32;
1314 
1315 			iovlen32 = aiov32[i].iov_len;
1316 			count32 += iovlen32;
1317 			if (iovlen32 < 0 || count32 < 0)
1318 				return (set_errno(EINVAL));
1319 			aiov[i].iov_len = iovlen32;
1320 			aiov[i].iov_base =
1321 			    (caddr_t)(uintptr_t)aiov32[i].iov_base;
1322 		}
1323 	} else
1324 #endif /* _SYSCALL32_IMPL */
1325 	if (iovcnt != 0 &&
1326 	    copyin(lmsg.msg_iov, aiov,
1327 	    (unsigned)iovcnt * sizeof (struct iovec))) {
1328 		return (set_errno(EFAULT));
1329 	}
1330 	len = 0;
1331 	for (i = 0; i < iovcnt; i++) {
1332 		ssize_t iovlen = aiov[i].iov_len;
1333 		len += iovlen;
1334 		if (iovlen < 0 || len < 0) {
1335 			return (set_errno(EINVAL));
1336 		}
1337 	}
1338 	auio.uio_loffset = 0;
1339 	auio.uio_iov = aiov;
1340 	auio.uio_iovcnt = iovcnt;
1341 	auio.uio_resid = len;
1342 	auio.uio_segflg = UIO_USERSPACE;
1343 	auio.uio_limit = 0;
1344 
1345 	return (sendit(sock, &lmsg, &auio, flags));
1346 }
1347 
1348 ssize_t
1349 sendto(int sock, void *buffer, size_t len, int flags,
1350     struct sockaddr *name, socklen_t namelen)
1351 {
1352 	struct nmsghdr lmsg;
1353 	struct uio auio;
1354 	struct iovec aiov[1];
1355 
1356 	dprint(1, ("sendto(%d, %p, %ld, %d, %p, %d)\n",
1357 	    sock, buffer, len, flags, (void *)name, namelen));
1358 
1359 	if ((ssize_t)len < 0) {
1360 		return (set_errno(EINVAL));
1361 	}
1362 
1363 	aiov[0].iov_base = buffer;
1364 	aiov[0].iov_len = len;
1365 	auio.uio_loffset = 0;
1366 	auio.uio_iov = aiov;
1367 	auio.uio_iovcnt = 1;
1368 	auio.uio_resid = len;
1369 	auio.uio_segflg = UIO_USERSPACE;
1370 	auio.uio_limit = 0;
1371 
1372 	lmsg.msg_name = (char *)name;
1373 	lmsg.msg_namelen = namelen;
1374 	lmsg.msg_control = NULL;
1375 	if (!(flags & MSG_XPG4_2)) {
1376 		/*
1377 		 * In order to be compatible with the libsocket/sockmod
1378 		 * implementation we set EOR for all send* calls.
1379 		 */
1380 		flags |= MSG_EOR;
1381 	}
1382 	return (sendit(sock, &lmsg, &auio, flags));
1383 }
1384 
1385 /*ARGSUSED3*/
1386 int
1387 getpeername(int sock, struct sockaddr *name, socklen_t *namelenp, int version)
1388 {
1389 	struct sonode *so;
1390 	int error;
1391 	socklen_t namelen;
1392 	socklen_t sock_addrlen;
1393 	struct sockaddr *sock_addrp;
1394 
1395 	dprint(1, ("getpeername(%d, %p, %p)\n",
1396 	    sock, (void *)name, (void *)namelenp));
1397 
1398 	if ((so = getsonode(sock, &error, NULL)) == NULL)
1399 		goto bad;
1400 
1401 	ASSERT(MUTEX_NOT_HELD(&so->so_lock));
1402 	if (copyin(namelenp, &namelen, sizeof (namelen)) ||
1403 	    (name == NULL && namelen != 0)) {
1404 		error = EFAULT;
1405 		goto rel_out;
1406 	}
1407 	sock_addrlen = so->so_max_addr_len;
1408 	sock_addrp = (struct sockaddr *)kmem_alloc(sock_addrlen, KM_SLEEP);
1409 
1410 	if ((error = socket_getpeername(so, sock_addrp, &sock_addrlen,
1411 	    B_FALSE, CRED())) == 0) {
1412 		ASSERT(sock_addrlen <= so->so_max_addr_len);
1413 		error = copyout_name(name, namelen, namelenp,
1414 		    (void *)sock_addrp, sock_addrlen);
1415 	}
1416 	kmem_free(sock_addrp, so->so_max_addr_len);
1417 rel_out:
1418 	releasef(sock);
1419 bad:	return (error != 0 ? set_errno(error) : 0);
1420 }
1421 
1422 /*ARGSUSED3*/
1423 int
1424 getsockname(int sock, struct sockaddr *name,
1425 		socklen_t *namelenp, int version)
1426 {
1427 	struct sonode *so;
1428 	int error;
1429 	socklen_t namelen, sock_addrlen;
1430 	struct sockaddr *sock_addrp;
1431 
1432 	dprint(1, ("getsockname(%d, %p, %p)\n",
1433 	    sock, (void *)name, (void *)namelenp));
1434 
1435 	if ((so = getsonode(sock, &error, NULL)) == NULL)
1436 		goto bad;
1437 
1438 	ASSERT(MUTEX_NOT_HELD(&so->so_lock));
1439 	if (copyin(namelenp, &namelen, sizeof (namelen)) ||
1440 	    (name == NULL && namelen != 0)) {
1441 		error = EFAULT;
1442 		goto rel_out;
1443 	}
1444 
1445 	sock_addrlen = so->so_max_addr_len;
1446 	sock_addrp = (struct sockaddr *)kmem_alloc(sock_addrlen, KM_SLEEP);
1447 	if ((error = socket_getsockname(so, sock_addrp, &sock_addrlen,
1448 	    CRED())) == 0) {
1449 		ASSERT(MUTEX_NOT_HELD(&so->so_lock));
1450 		ASSERT(sock_addrlen <= so->so_max_addr_len);
1451 		error = copyout_name(name, namelen, namelenp,
1452 		    (void *)sock_addrp, sock_addrlen);
1453 	}
1454 	kmem_free(sock_addrp, so->so_max_addr_len);
1455 rel_out:
1456 	releasef(sock);
1457 bad:	return (error != 0 ? set_errno(error) : 0);
1458 }
1459 
1460 /*ARGSUSED5*/
1461 int
1462 getsockopt(int sock,
1463 	int level,
1464 	int option_name,
1465 	void *option_value,
1466 	socklen_t *option_lenp,
1467 	int version)
1468 {
1469 	struct sonode *so;
1470 	socklen_t optlen, optlen_res;
1471 	void *optval;
1472 	int error;
1473 
1474 	dprint(1, ("getsockopt(%d, %d, %d, %p, %p)\n",
1475 	    sock, level, option_name, option_value, (void *)option_lenp));
1476 
1477 	if ((so = getsonode(sock, &error, NULL)) == NULL)
1478 		return (set_errno(error));
1479 
1480 	ASSERT(MUTEX_NOT_HELD(&so->so_lock));
1481 	if (copyin(option_lenp, &optlen, sizeof (optlen))) {
1482 		releasef(sock);
1483 		return (set_errno(EFAULT));
1484 	}
1485 	/*
1486 	 * Verify that the length is not excessive to prevent
1487 	 * an application from consuming all of kernel memory.
1488 	 */
1489 	if (optlen > SO_MAXARGSIZE) {
1490 		error = EINVAL;
1491 		releasef(sock);
1492 		return (set_errno(error));
1493 	}
1494 	optval = kmem_alloc(optlen, KM_SLEEP);
1495 	optlen_res = optlen;
1496 	error = socket_getsockopt(so, level, option_name, optval,
1497 	    &optlen_res, (version != SOV_XPG4_2) ? 0 : _SOGETSOCKOPT_XPG4_2,
1498 	    CRED());
1499 	releasef(sock);
1500 	if (error) {
1501 		kmem_free(optval, optlen);
1502 		return (set_errno(error));
1503 	}
1504 	error = copyout_arg(option_value, optlen, option_lenp,
1505 	    optval, optlen_res);
1506 	kmem_free(optval, optlen);
1507 	if (error)
1508 		return (set_errno(error));
1509 	return (0);
1510 }
1511 
1512 /*ARGSUSED5*/
1513 int
1514 setsockopt(int sock,
1515 	int level,
1516 	int option_name,
1517 	void *option_value,
1518 	socklen_t option_len,
1519 	int version)
1520 {
1521 	struct sonode *so;
1522 	intptr_t buffer[2];
1523 	void *optval = NULL;
1524 	int error;
1525 
1526 	dprint(1, ("setsockopt(%d, %d, %d, %p, %d)\n",
1527 	    sock, level, option_name, option_value, option_len));
1528 
1529 	if ((so = getsonode(sock, &error, NULL)) == NULL)
1530 		return (set_errno(error));
1531 
1532 	if (option_value != NULL) {
1533 		if (option_len != 0) {
1534 			/*
1535 			 * Verify that the length is not excessive to prevent
1536 			 * an application from consuming all of kernel memory.
1537 			 */
1538 			if (option_len > SO_MAXARGSIZE) {
1539 				error = EINVAL;
1540 				goto done2;
1541 			}
1542 			optval = option_len <= sizeof (buffer) ?
1543 			    &buffer : kmem_alloc((size_t)option_len, KM_SLEEP);
1544 			ASSERT(MUTEX_NOT_HELD(&so->so_lock));
1545 			if (copyin(option_value, optval, (size_t)option_len)) {
1546 				error = EFAULT;
1547 				goto done1;
1548 			}
1549 		}
1550 	} else
1551 		option_len = 0;
1552 
1553 	error = socket_setsockopt(so, level, option_name, optval,
1554 	    (t_uscalar_t)option_len, CRED());
1555 done1:
1556 	if (optval != buffer)
1557 		kmem_free(optval, (size_t)option_len);
1558 done2:
1559 	releasef(sock);
1560 	if (error)
1561 		return (set_errno(error));
1562 	return (0);
1563 }
1564 
1565 static int
1566 sockconf_add_sock(int family, int type, int protocol, char *name)
1567 {
1568 	int error = 0;
1569 	char *kdevpath = NULL;
1570 	char *kmodule = NULL;
1571 	char *buf = NULL;
1572 	size_t pathlen = 0;
1573 	struct sockparams *sp;
1574 
1575 	if (name == NULL)
1576 		return (EINVAL);
1577 	/*
1578 	 * Copyin the name.
1579 	 * This also makes it possible to check for too long pathnames.
1580 	 * Compress the space needed for the name before passing it
1581 	 * to soconfig - soconfig will store the string until
1582 	 * the configuration is removed.
1583 	 */
1584 	buf = kmem_alloc(MAXPATHLEN, KM_SLEEP);
1585 	if ((error = copyinstr(name, buf, MAXPATHLEN, &pathlen)) != 0) {
1586 		kmem_free(buf, MAXPATHLEN);
1587 		return (error);
1588 	}
1589 	if (strncmp(buf, "/dev", strlen("/dev")) == 0) {
1590 		/* For device */
1591 
1592 		/*
1593 		 * Special handling for NCA:
1594 		 *
1595 		 * DEV_NCA is never opened even if an application
1596 		 * requests for AF_NCA. The device opened is instead a
1597 		 * predefined AF_INET transport (NCA_INET_DEV).
1598 		 *
1599 		 * Prior to Volo (PSARC/2007/587) NCA would determine
1600 		 * the device using a lookup, which worked then because
1601 		 * all protocols were based on TPI. Since TPI is no
1602 		 * longer the default, we have to explicitly state
1603 		 * which device to use.
1604 		 */
1605 		if (strcmp(buf, NCA_DEV) == 0) {
1606 			/* only support entry <28, 2, 0> */
1607 			if (family != AF_NCA || type != SOCK_STREAM ||
1608 			    protocol != 0) {
1609 				kmem_free(buf, MAXPATHLEN);
1610 				return (EINVAL);
1611 			}
1612 
1613 			pathlen = strlen(NCA_INET_DEV) + 1;
1614 			kdevpath = kmem_alloc(pathlen, KM_SLEEP);
1615 			bcopy(NCA_INET_DEV, kdevpath, pathlen);
1616 			kdevpath[pathlen - 1] = '\0';
1617 		} else {
1618 			kdevpath = kmem_alloc(pathlen, KM_SLEEP);
1619 			bcopy(buf, kdevpath, pathlen);
1620 			kdevpath[pathlen - 1] = '\0';
1621 		}
1622 	} else {
1623 		/* For socket module */
1624 		kmodule = kmem_alloc(pathlen, KM_SLEEP);
1625 		bcopy(buf, kmodule, pathlen);
1626 		kmodule[pathlen - 1] = '\0';
1627 		pathlen = 0;
1628 	}
1629 	kmem_free(buf, MAXPATHLEN);
1630 
1631 	/* sockparams_create frees mod name and devpath upon failure */
1632 	sp = sockparams_create(family, type, protocol, kmodule,
1633 	    kdevpath, pathlen, 0, KM_SLEEP, &error);
1634 	if (sp != NULL) {
1635 		error = sockparams_add(sp);
1636 		if (error != 0)
1637 			sockparams_destroy(sp);
1638 	}
1639 
1640 	return (error);
1641 }
1642 
1643 static int
1644 sockconf_remove_sock(int family, int type, int protocol)
1645 {
1646 	return (sockparams_delete(family, type, protocol));
1647 }
1648 
1649 static int
1650 sockconfig_remove_filter(const char *uname)
1651 {
1652 	char kname[SOF_MAXNAMELEN];
1653 	size_t len;
1654 	int error;
1655 	sof_entry_t *ent;
1656 
1657 	if ((error = copyinstr(uname, kname, SOF_MAXNAMELEN, &len)) != 0)
1658 		return (error);
1659 
1660 	ent = sof_entry_remove_by_name(kname);
1661 	if (ent == NULL)
1662 		return (ENXIO);
1663 
1664 	mutex_enter(&ent->sofe_lock);
1665 	ASSERT(!(ent->sofe_flags & SOFEF_CONDEMED));
1666 	if (ent->sofe_refcnt == 0) {
1667 		mutex_exit(&ent->sofe_lock);
1668 		sof_entry_free(ent);
1669 	} else {
1670 		/* let the last socket free the filter */
1671 		ent->sofe_flags |= SOFEF_CONDEMED;
1672 		mutex_exit(&ent->sofe_lock);
1673 	}
1674 
1675 	return (0);
1676 }
1677 
1678 static int
1679 sockconfig_add_filter(const char *uname, void *ufilpropp)
1680 {
1681 	struct sockconfig_filter_props filprop;
1682 	sof_entry_t *ent;
1683 	int error;
1684 	size_t tuplesz, len;
1685 	char hintbuf[SOF_MAXNAMELEN];
1686 
1687 	ent = kmem_zalloc(sizeof (sof_entry_t), KM_SLEEP);
1688 	mutex_init(&ent->sofe_lock, NULL, MUTEX_DEFAULT, NULL);
1689 
1690 	if ((error = copyinstr(uname, ent->sofe_name, SOF_MAXNAMELEN,
1691 	    &len)) != 0) {
1692 		sof_entry_free(ent);
1693 		return (error);
1694 	}
1695 
1696 	if (get_udatamodel() == DATAMODEL_NATIVE) {
1697 		if (copyin(ufilpropp, &filprop, sizeof (filprop)) != 0) {
1698 			sof_entry_free(ent);
1699 			return (EFAULT);
1700 		}
1701 	}
1702 #ifdef	_SYSCALL32_IMPL
1703 	else {
1704 		struct sockconfig_filter_props32 filprop32;
1705 
1706 		if (copyin(ufilpropp, &filprop32, sizeof (filprop32)) != 0) {
1707 			sof_entry_free(ent);
1708 			return (EFAULT);
1709 		}
1710 		filprop.sfp_modname = (char *)(uintptr_t)filprop32.sfp_modname;
1711 		filprop.sfp_autoattach = filprop32.sfp_autoattach;
1712 		filprop.sfp_hint = filprop32.sfp_hint;
1713 		filprop.sfp_hintarg = (char *)(uintptr_t)filprop32.sfp_hintarg;
1714 		filprop.sfp_socktuple_cnt = filprop32.sfp_socktuple_cnt;
1715 		filprop.sfp_socktuple =
1716 		    (sof_socktuple_t *)(uintptr_t)filprop32.sfp_socktuple;
1717 	}
1718 #endif	/* _SYSCALL32_IMPL */
1719 
1720 	if ((error = copyinstr(filprop.sfp_modname, ent->sofe_modname,
1721 	    sizeof (ent->sofe_modname), &len)) != 0) {
1722 		sof_entry_free(ent);
1723 		return (error);
1724 	}
1725 
1726 	/*
1727 	 * A filter must specify at least one socket tuple.
1728 	 */
1729 	if (filprop.sfp_socktuple_cnt == 0 ||
1730 	    filprop.sfp_socktuple_cnt > SOF_MAXSOCKTUPLECNT) {
1731 		sof_entry_free(ent);
1732 		return (EINVAL);
1733 	}
1734 	ent->sofe_flags = filprop.sfp_autoattach ? SOFEF_AUTO : SOFEF_PROG;
1735 	ent->sofe_hint = filprop.sfp_hint;
1736 
1737 	/*
1738 	 * Verify the hint, and copy in the hint argument, if necessary.
1739 	 */
1740 	switch (ent->sofe_hint) {
1741 	case SOF_HINT_BEFORE:
1742 	case SOF_HINT_AFTER:
1743 		if ((error = copyinstr(filprop.sfp_hintarg, hintbuf,
1744 		    sizeof (hintbuf), &len)) != 0) {
1745 			sof_entry_free(ent);
1746 			return (error);
1747 		}
1748 		ent->sofe_hintarg = kmem_alloc(len, KM_SLEEP);
1749 		bcopy(hintbuf, ent->sofe_hintarg, len);
1750 		/* FALLTHRU */
1751 	case SOF_HINT_TOP:
1752 	case SOF_HINT_BOTTOM:
1753 		/* hints cannot be used with programmatic filters */
1754 		if (ent->sofe_flags & SOFEF_PROG) {
1755 			sof_entry_free(ent);
1756 			return (EINVAL);
1757 		}
1758 		break;
1759 	case SOF_HINT_NONE:
1760 		break;
1761 	default:
1762 		/* bad hint value */
1763 		sof_entry_free(ent);
1764 		return (EINVAL);
1765 	}
1766 
1767 	ent->sofe_socktuple_cnt = filprop.sfp_socktuple_cnt;
1768 	tuplesz = sizeof (sof_socktuple_t) * ent->sofe_socktuple_cnt;
1769 	ent->sofe_socktuple = kmem_alloc(tuplesz, KM_SLEEP);
1770 
1771 	if (get_udatamodel() == DATAMODEL_NATIVE) {
1772 		if (copyin(filprop.sfp_socktuple, ent->sofe_socktuple,
1773 		    tuplesz)) {
1774 			sof_entry_free(ent);
1775 			return (EFAULT);
1776 		}
1777 	}
1778 #ifdef	_SYSCALL32_IMPL
1779 	else {
1780 		int i;
1781 		caddr_t data = (caddr_t)filprop.sfp_socktuple;
1782 		sof_socktuple_t	*tup = ent->sofe_socktuple;
1783 		sof_socktuple32_t tup32;
1784 
1785 		tup = ent->sofe_socktuple;
1786 		for (i = 0; i < ent->sofe_socktuple_cnt; i++, tup++) {
1787 			ASSERT(tup < ent->sofe_socktuple + tuplesz);
1788 
1789 			if (copyin(data, &tup32, sizeof (tup32)) != 0) {
1790 				sof_entry_free(ent);
1791 				return (EFAULT);
1792 			}
1793 			tup->sofst_family = tup32.sofst_family;
1794 			tup->sofst_type = tup32.sofst_type;
1795 			tup->sofst_protocol = tup32.sofst_protocol;
1796 
1797 			data += sizeof (tup32);
1798 		}
1799 	}
1800 #endif	/* _SYSCALL32_IMPL */
1801 
1802 	/* Sockets can start using the filter as soon as the filter is added */
1803 	if ((error = sof_entry_add(ent)) != 0)
1804 		sof_entry_free(ent);
1805 
1806 	return (error);
1807 }
1808 
1809 /*
1810  * Socket configuration system call. It is used to add and remove
1811  * socket types.
1812  */
1813 int
1814 sockconfig(int cmd, void *arg1, void *arg2, void *arg3, void *arg4)
1815 {
1816 	int error = 0;
1817 
1818 	if (secpolicy_net_config(CRED(), B_FALSE) != 0)
1819 		return (set_errno(EPERM));
1820 
1821 	if (sockfs_defer_nl7c_init) {
1822 		nl7c_init();
1823 		sockfs_defer_nl7c_init = 0;
1824 	}
1825 
1826 	switch (cmd) {
1827 	case SOCKCONFIG_ADD_SOCK:
1828 		error = sockconf_add_sock((int)(uintptr_t)arg1,
1829 		    (int)(uintptr_t)arg2, (int)(uintptr_t)arg3, arg4);
1830 		break;
1831 	case SOCKCONFIG_REMOVE_SOCK:
1832 		error = sockconf_remove_sock((int)(uintptr_t)arg1,
1833 		    (int)(uintptr_t)arg2, (int)(uintptr_t)arg3);
1834 		break;
1835 	case SOCKCONFIG_ADD_FILTER:
1836 		error = sockconfig_add_filter((const char *)arg1, arg2);
1837 		break;
1838 	case SOCKCONFIG_REMOVE_FILTER:
1839 		error = sockconfig_remove_filter((const char *)arg1);
1840 		break;
1841 	default:
1842 #ifdef	DEBUG
1843 		cmn_err(CE_NOTE, "sockconfig: unkonwn subcommand %d", cmd);
1844 #endif
1845 		error = EINVAL;
1846 		break;
1847 	}
1848 
1849 	if (error != 0) {
1850 		eprintline(error);
1851 		return (set_errno(error));
1852 	}
1853 	return (0);
1854 }
1855 
1856 
1857 /*
1858  * Sendfile is implemented through two schemes, direct I/O or by
1859  * caching in the filesystem page cache. We cache the input file by
1860  * default and use direct I/O only if sendfile_max_size is set
1861  * appropriately as explained below. Note that this logic is consistent
1862  * with other filesystems where caching is turned on by default
1863  * unless explicitly turned off by using the DIRECTIO ioctl.
1864  *
1865  * We choose a slightly different scheme here. One can turn off
1866  * caching by setting sendfile_max_size to 0. One can also enable
1867  * caching of files <= sendfile_max_size by setting sendfile_max_size
1868  * to an appropriate value. By default sendfile_max_size is set to the
1869  * maximum value so that all files are cached. In future, we may provide
1870  * better interfaces for caching the file.
1871  *
1872  * Sendfile through Direct I/O (Zero copy)
1873  * --------------------------------------
1874  *
1875  * As disks are normally slower than the network, we can't have a
1876  * single thread that reads the disk and writes to the network. We
1877  * need to have parallelism. This is done by having the sendfile
1878  * thread create another thread that reads from the filesystem
1879  * and queues it for network processing. In this scheme, the data
1880  * is never copied anywhere i.e it is zero copy unlike the other
1881  * scheme.
1882  *
1883  * We have a sendfile queue (snfq) where each sendfile
1884  * request (snf_req_t) is queued for processing by a thread. Number
1885  * of threads is dynamically allocated and they exit if they are idling
1886  * beyond a specified amount of time. When each request (snf_req_t) is
1887  * processed by a thread, it produces a number of mblk_t structures to
1888  * be consumed by the sendfile thread. snf_deque and snf_enque are
1889  * used for consuming and producing mblks. Size of the filesystem
1890  * read is determined by the tunable (sendfile_read_size). A single
1891  * mblk holds sendfile_read_size worth of data (except the last
1892  * read of the file) which is sent down as a whole to the network.
1893  * sendfile_read_size is set to 1 MB as this seems to be the optimal
1894  * value for the UFS filesystem backed by a striped storage array.
1895  *
1896  * Synchronisation between read (producer) and write (consumer) threads.
1897  * --------------------------------------------------------------------
1898  *
1899  * sr_lock protects sr_ib_head and sr_ib_tail. The lock is held while
1900  * adding and deleting items in this list. Error can happen anytime
1901  * during read or write. There could be unprocessed mblks in the
1902  * sr_ib_XXX list when a read or write error occurs. Whenever error
1903  * is encountered, we need two things to happen :
1904  *
1905  * a) One of the threads need to clean the mblks.
1906  * b) When one thread encounters an error, the other should stop.
1907  *
1908  * For (a), we don't want to penalize the reader thread as it could do
1909  * some useful work processing other requests. For (b), the error can
1910  * be detected by examining sr_read_error or sr_write_error.
1911  * sr_lock protects sr_read_error and sr_write_error. If both reader and
1912  * writer encounters error, we need to report the write error back to
1913  * the application as that's what would have happened if the operations
1914  * were done sequentially. With this in mind, following should work :
1915  *
1916  * 	- Check for errors before read or write.
1917  *	- If the reader encounters error, set the error in sr_read_error.
1918  *	  Check sr_write_error, if it is set, send cv_signal as it is
1919  *	  waiting for reader to complete. If it is not set, the writer
1920  *	  is either running sinking data to the network or blocked
1921  *        because of flow control. For handling the latter case, we
1922  *	  always send a signal. In any case, it will examine sr_read_error
1923  *	  and return. sr_read_error is marked with SR_READ_DONE to tell
1924  *	  the writer that the reader is done in all the cases.
1925  *	- If the writer encounters error, set the error in sr_write_error.
1926  *	  The reader thread is either blocked because of flow control or
1927  *	  running reading data from the disk. For the former, we need to
1928  *	  wakeup the thread. Again to keep it simple, we always wake up
1929  *	  the reader thread. Then, wait for the read thread to complete
1930  *	  if it is not done yet. Cleanup and return.
1931  *
1932  * High and low water marks for the read thread.
1933  * --------------------------------------------
1934  *
1935  * If sendfile() is used to send data over a slow network, we need to
1936  * make sure that the read thread does not produce data at a faster
1937  * rate than the network. This can happen if the disk is faster than
1938  * the network. In such a case, we don't want to build a very large queue.
1939  * But we would still like to get all of the network throughput possible.
1940  * This implies that network should never block waiting for data.
1941  * As there are lot of disk throughput/network throughput combinations
1942  * possible, it is difficult to come up with an accurate number.
1943  * A typical 10K RPM disk has a max seek latency 17ms and rotational
1944  * latency of 3ms for reading a disk block. Thus, the total latency to
1945  * initiate a new read, transfer data from the disk and queue for
1946  * transmission would take about a max of 25ms. Todays max transfer rate
1947  * for network is 100MB/sec. If the thread is blocked because of flow
1948  * control, it would take 25ms to get new data ready for transmission.
1949  * We have to make sure that network is not idling, while we are initiating
1950  * new transfers. So, at 100MB/sec, to keep network busy we would need
1951  * 2.5MB of data. Rounding off, we keep the low water mark to be 3MB of data.
1952  * We need to pick a high water mark so that the woken up thread would
1953  * do considerable work before blocking again to prevent thrashing. Currently,
1954  * we pick this to be 10 times that of the low water mark.
1955  *
1956  * Sendfile with segmap caching (One copy from page cache to mblks).
1957  * ----------------------------------------------------------------
1958  *
1959  * We use the segmap cache for caching the file, if the size of file
1960  * is <= sendfile_max_size. In this case we don't use threads as VM
1961  * is reasonably fast enough to keep up with the network. If the underlying
1962  * transport allows, we call segmap_getmapflt() to map MAXBSIZE (8K) worth
1963  * of data into segmap space, and use the virtual address from segmap
1964  * directly through desballoc() to avoid copy. Once the transport is done
1965  * with the data, the mapping will be released through segmap_release()
1966  * called by the call-back routine.
1967  *
1968  * If zero-copy is not allowed by the transport, we simply call VOP_READ()
1969  * to copy the data from the filesystem into our temporary network buffer.
1970  *
1971  * To disable caching, set sendfile_max_size to 0.
1972  */
1973 
1974 uint_t sendfile_read_size = 1024 * 1024;
1975 #define	SENDFILE_REQ_LOWAT	3 * 1024 * 1024
1976 uint_t sendfile_req_lowat = SENDFILE_REQ_LOWAT;
1977 uint_t sendfile_req_hiwat = 10 * SENDFILE_REQ_LOWAT;
1978 struct sendfile_stats sf_stats;
1979 struct sendfile_queue *snfq;
1980 clock_t snfq_timeout;
1981 off64_t sendfile_max_size;
1982 
1983 static void snf_enque(snf_req_t *, mblk_t *);
1984 static mblk_t *snf_deque(snf_req_t *);
1985 
1986 void
1987 sendfile_init(void)
1988 {
1989 	snfq = kmem_zalloc(sizeof (struct sendfile_queue), KM_SLEEP);
1990 
1991 	mutex_init(&snfq->snfq_lock, NULL, MUTEX_DEFAULT, NULL);
1992 	cv_init(&snfq->snfq_cv, NULL, CV_DEFAULT, NULL);
1993 	snfq->snfq_max_threads = max_ncpus;
1994 	snfq_timeout = SNFQ_TIMEOUT;
1995 	/* Cache all files by default. */
1996 	sendfile_max_size = MAXOFFSET_T;
1997 }
1998 
1999 /*
2000  * Queues a mblk_t for network processing.
2001  */
2002 static void
2003 snf_enque(snf_req_t *sr, mblk_t *mp)
2004 {
2005 	mp->b_next = NULL;
2006 	mutex_enter(&sr->sr_lock);
2007 	if (sr->sr_mp_head == NULL) {
2008 		sr->sr_mp_head = sr->sr_mp_tail = mp;
2009 		cv_signal(&sr->sr_cv);
2010 	} else {
2011 		sr->sr_mp_tail->b_next = mp;
2012 		sr->sr_mp_tail = mp;
2013 	}
2014 	sr->sr_qlen += MBLKL(mp);
2015 	while ((sr->sr_qlen > sr->sr_hiwat) &&
2016 	    (sr->sr_write_error == 0)) {
2017 		sf_stats.ss_full_waits++;
2018 		cv_wait(&sr->sr_cv, &sr->sr_lock);
2019 	}
2020 	mutex_exit(&sr->sr_lock);
2021 }
2022 
2023 /*
2024  * De-queues a mblk_t for network processing.
2025  */
2026 static mblk_t *
2027 snf_deque(snf_req_t *sr)
2028 {
2029 	mblk_t *mp;
2030 
2031 	mutex_enter(&sr->sr_lock);
2032 	/*
2033 	 * If we have encountered an error on read or read is
2034 	 * completed and no more mblks, return NULL.
2035 	 * We need to check for NULL sr_mp_head also as
2036 	 * the reads could have completed and there is
2037 	 * nothing more to come.
2038 	 */
2039 	if (((sr->sr_read_error & ~SR_READ_DONE) != 0) ||
2040 	    ((sr->sr_read_error & SR_READ_DONE) &&
2041 	    sr->sr_mp_head == NULL)) {
2042 		mutex_exit(&sr->sr_lock);
2043 		return (NULL);
2044 	}
2045 	/*
2046 	 * To start with neither SR_READ_DONE is marked nor
2047 	 * the error is set. When we wake up from cv_wait,
2048 	 * following are the possibilities :
2049 	 *
2050 	 *	a) sr_read_error is zero and mblks are queued.
2051 	 *	b) sr_read_error is set to SR_READ_DONE
2052 	 *	   and mblks are queued.
2053 	 *	c) sr_read_error is set to SR_READ_DONE
2054 	 *	   and no mblks.
2055 	 *	d) sr_read_error is set to some error other
2056 	 *	   than SR_READ_DONE.
2057 	 */
2058 
2059 	while ((sr->sr_read_error == 0) && (sr->sr_mp_head == NULL)) {
2060 		sf_stats.ss_empty_waits++;
2061 		cv_wait(&sr->sr_cv, &sr->sr_lock);
2062 	}
2063 	/* Handle (a) and (b) first  - the normal case. */
2064 	if (((sr->sr_read_error & ~SR_READ_DONE) == 0) &&
2065 	    (sr->sr_mp_head != NULL)) {
2066 		mp = sr->sr_mp_head;
2067 		sr->sr_mp_head = mp->b_next;
2068 		sr->sr_qlen -= MBLKL(mp);
2069 		if (sr->sr_qlen < sr->sr_lowat)
2070 			cv_signal(&sr->sr_cv);
2071 		mutex_exit(&sr->sr_lock);
2072 		mp->b_next = NULL;
2073 		return (mp);
2074 	}
2075 	/* Handle (c) and (d). */
2076 	mutex_exit(&sr->sr_lock);
2077 	return (NULL);
2078 }
2079 
2080 /*
2081  * Reads data from the filesystem and queues it for network processing.
2082  */
2083 void
2084 snf_async_read(snf_req_t *sr)
2085 {
2086 	size_t iosize;
2087 	u_offset_t fileoff;
2088 	u_offset_t size;
2089 	int ret_size;
2090 	int error;
2091 	file_t *fp;
2092 	mblk_t *mp;
2093 	struct vnode *vp;
2094 	int extra = 0;
2095 	int maxblk = 0;
2096 	int wroff = 0;
2097 	struct sonode *so;
2098 
2099 	fp = sr->sr_fp;
2100 	size = sr->sr_file_size;
2101 	fileoff = sr->sr_file_off;
2102 
2103 	/*
2104 	 * Ignore the error for filesystems that doesn't support DIRECTIO.
2105 	 */
2106 	(void) VOP_IOCTL(fp->f_vnode, _FIODIRECTIO, DIRECTIO_ON, 0,
2107 	    kcred, NULL, NULL);
2108 
2109 	vp = sr->sr_vp;
2110 	if (vp->v_type == VSOCK) {
2111 		stdata_t *stp;
2112 
2113 		/*
2114 		 * Get the extra space to insert a header and a trailer.
2115 		 */
2116 		so = VTOSO(vp);
2117 		stp = vp->v_stream;
2118 		if (stp == NULL) {
2119 			wroff = so->so_proto_props.sopp_wroff;
2120 			maxblk = so->so_proto_props.sopp_maxblk;
2121 			extra = wroff + so->so_proto_props.sopp_tail;
2122 		} else {
2123 			wroff = (int)(stp->sd_wroff);
2124 			maxblk = (int)(stp->sd_maxblk);
2125 			extra = wroff + (int)(stp->sd_tail);
2126 		}
2127 	}
2128 
2129 	while ((size != 0) && (sr->sr_write_error == 0)) {
2130 
2131 		iosize = (int)MIN(sr->sr_maxpsz, size);
2132 
2133 		/*
2134 		 * Socket filters can limit the mblk size,
2135 		 * so limit reads to maxblk if there are
2136 		 * filters present.
2137 		 */
2138 		if (vp->v_type == VSOCK &&
2139 		    so->so_filter_active > 0 && maxblk != INFPSZ)
2140 			iosize = (int)MIN(iosize, maxblk);
2141 
2142 		if (is_system_labeled()) {
2143 			mp = allocb_cred(iosize + extra, CRED(),
2144 			    curproc->p_pid);
2145 		} else {
2146 			mp = allocb(iosize + extra, BPRI_MED);
2147 		}
2148 		if (mp == NULL) {
2149 			error = EAGAIN;
2150 			break;
2151 		}
2152 
2153 		mp->b_rptr += wroff;
2154 
2155 		ret_size = soreadfile(fp, mp->b_rptr, fileoff, &error, iosize);
2156 
2157 		/* Error or Reached EOF ? */
2158 		if ((error != 0) || (ret_size == 0)) {
2159 			freeb(mp);
2160 			break;
2161 		}
2162 		mp->b_wptr = mp->b_rptr + ret_size;
2163 
2164 		snf_enque(sr, mp);
2165 		size -= ret_size;
2166 		fileoff += ret_size;
2167 	}
2168 	(void) VOP_IOCTL(fp->f_vnode, _FIODIRECTIO, DIRECTIO_OFF, 0,
2169 	    kcred, NULL, NULL);
2170 	mutex_enter(&sr->sr_lock);
2171 	sr->sr_read_error = error;
2172 	sr->sr_read_error |= SR_READ_DONE;
2173 	cv_signal(&sr->sr_cv);
2174 	mutex_exit(&sr->sr_lock);
2175 }
2176 
2177 void
2178 snf_async_thread(void)
2179 {
2180 	snf_req_t *sr;
2181 	callb_cpr_t cprinfo;
2182 	clock_t time_left = 1;
2183 
2184 	CALLB_CPR_INIT(&cprinfo, &snfq->snfq_lock, callb_generic_cpr, "snfq");
2185 
2186 	mutex_enter(&snfq->snfq_lock);
2187 	for (;;) {
2188 		/*
2189 		 * If we didn't find a entry, then block until woken up
2190 		 * again and then look through the queues again.
2191 		 */
2192 		while ((sr = snfq->snfq_req_head) == NULL) {
2193 			CALLB_CPR_SAFE_BEGIN(&cprinfo);
2194 			if (time_left <= 0) {
2195 				snfq->snfq_svc_threads--;
2196 				CALLB_CPR_EXIT(&cprinfo);
2197 				thread_exit();
2198 				/* NOTREACHED */
2199 			}
2200 			snfq->snfq_idle_cnt++;
2201 
2202 			time_left = cv_reltimedwait(&snfq->snfq_cv,
2203 			    &snfq->snfq_lock, snfq_timeout, TR_CLOCK_TICK);
2204 			snfq->snfq_idle_cnt--;
2205 
2206 			CALLB_CPR_SAFE_END(&cprinfo, &snfq->snfq_lock);
2207 		}
2208 		snfq->snfq_req_head = sr->sr_next;
2209 		snfq->snfq_req_cnt--;
2210 		mutex_exit(&snfq->snfq_lock);
2211 		snf_async_read(sr);
2212 		mutex_enter(&snfq->snfq_lock);
2213 	}
2214 }
2215 
2216 
2217 snf_req_t *
2218 create_thread(int operation, struct vnode *vp, file_t *fp,
2219     u_offset_t fileoff, u_offset_t size)
2220 {
2221 	snf_req_t *sr;
2222 	stdata_t *stp;
2223 
2224 	sr = (snf_req_t *)kmem_zalloc(sizeof (snf_req_t), KM_SLEEP);
2225 
2226 	sr->sr_vp = vp;
2227 	sr->sr_fp = fp;
2228 	stp = vp->v_stream;
2229 
2230 	/*
2231 	 * store sd_qn_maxpsz into sr_maxpsz while we have stream head.
2232 	 * stream might be closed before thread returns from snf_async_read.
2233 	 */
2234 	if (stp != NULL && stp->sd_qn_maxpsz > 0) {
2235 		sr->sr_maxpsz = MIN(MAXBSIZE, stp->sd_qn_maxpsz);
2236 	} else {
2237 		sr->sr_maxpsz = MAXBSIZE;
2238 	}
2239 
2240 	sr->sr_operation = operation;
2241 	sr->sr_file_off = fileoff;
2242 	sr->sr_file_size = size;
2243 	sr->sr_hiwat = sendfile_req_hiwat;
2244 	sr->sr_lowat = sendfile_req_lowat;
2245 	mutex_init(&sr->sr_lock, NULL, MUTEX_DEFAULT, NULL);
2246 	cv_init(&sr->sr_cv, NULL, CV_DEFAULT, NULL);
2247 	/*
2248 	 * See whether we need another thread for servicing this
2249 	 * request. If there are already enough requests queued
2250 	 * for the threads, create one if not exceeding
2251 	 * snfq_max_threads.
2252 	 */
2253 	mutex_enter(&snfq->snfq_lock);
2254 	if (snfq->snfq_req_cnt >= snfq->snfq_idle_cnt &&
2255 	    snfq->snfq_svc_threads < snfq->snfq_max_threads) {
2256 		(void) thread_create(NULL, 0, &snf_async_thread, 0, 0, &p0,
2257 		    TS_RUN, minclsyspri);
2258 		snfq->snfq_svc_threads++;
2259 	}
2260 	if (snfq->snfq_req_head == NULL) {
2261 		snfq->snfq_req_head = snfq->snfq_req_tail = sr;
2262 		cv_signal(&snfq->snfq_cv);
2263 	} else {
2264 		snfq->snfq_req_tail->sr_next = sr;
2265 		snfq->snfq_req_tail = sr;
2266 	}
2267 	snfq->snfq_req_cnt++;
2268 	mutex_exit(&snfq->snfq_lock);
2269 	return (sr);
2270 }
2271 
2272 int
2273 snf_direct_io(file_t *fp, file_t *rfp, u_offset_t fileoff, u_offset_t size,
2274     ssize_t *count)
2275 {
2276 	snf_req_t *sr;
2277 	mblk_t *mp;
2278 	int iosize;
2279 	int error = 0;
2280 	short fflag;
2281 	struct vnode *vp;
2282 	int ksize;
2283 	struct nmsghdr msg;
2284 
2285 	ksize = 0;
2286 	*count = 0;
2287 	bzero(&msg, sizeof (msg));
2288 
2289 	vp = fp->f_vnode;
2290 	fflag = fp->f_flag;
2291 	if ((sr = create_thread(READ_OP, vp, rfp, fileoff, size)) == NULL)
2292 		return (EAGAIN);
2293 
2294 	/*
2295 	 * We check for read error in snf_deque. It has to check
2296 	 * for successful READ_DONE and return NULL, and we might
2297 	 * as well make an additional check there.
2298 	 */
2299 	while ((mp = snf_deque(sr)) != NULL) {
2300 
2301 		if (ISSIG(curthread, JUSTLOOKING)) {
2302 			freeb(mp);
2303 			error = EINTR;
2304 			break;
2305 		}
2306 		iosize = MBLKL(mp);
2307 
2308 		error = socket_sendmblk(VTOSO(vp), &msg, fflag, CRED(), &mp);
2309 
2310 		if (error != 0) {
2311 			if (mp != NULL)
2312 				freeb(mp);
2313 			break;
2314 		}
2315 		ksize += iosize;
2316 	}
2317 	*count = ksize;
2318 
2319 	mutex_enter(&sr->sr_lock);
2320 	sr->sr_write_error = error;
2321 	/* Look at the big comments on why we cv_signal here. */
2322 	cv_signal(&sr->sr_cv);
2323 
2324 	/* Wait for the reader to complete always. */
2325 	while (!(sr->sr_read_error & SR_READ_DONE)) {
2326 		cv_wait(&sr->sr_cv, &sr->sr_lock);
2327 	}
2328 	/* If there is no write error, check for read error. */
2329 	if (error == 0)
2330 		error = (sr->sr_read_error & ~SR_READ_DONE);
2331 
2332 	if (error != 0) {
2333 		mblk_t *next_mp;
2334 
2335 		mp = sr->sr_mp_head;
2336 		while (mp != NULL) {
2337 			next_mp = mp->b_next;
2338 			mp->b_next = NULL;
2339 			freeb(mp);
2340 			mp = next_mp;
2341 		}
2342 	}
2343 	mutex_exit(&sr->sr_lock);
2344 	kmem_free(sr, sizeof (snf_req_t));
2345 	return (error);
2346 }
2347 
2348 /* Maximum no.of pages allocated by vpm for sendfile at a time */
2349 #define	SNF_VPMMAXPGS	(VPMMAXPGS/2)
2350 
2351 /*
2352  * Maximum no.of elements in the list returned by vpm, including
2353  * NULL for the last entry
2354  */
2355 #define	SNF_MAXVMAPS	(SNF_VPMMAXPGS + 1)
2356 
2357 typedef struct {
2358 	unsigned int	snfv_ref;
2359 	frtn_t		snfv_frtn;
2360 	vnode_t		*snfv_vp;
2361 	struct vmap	snfv_vml[SNF_MAXVMAPS];
2362 } snf_vmap_desbinfo;
2363 
2364 typedef struct {
2365 	frtn_t		snfi_frtn;
2366 	caddr_t		snfi_base;
2367 	uint_t		snfi_mapoff;
2368 	size_t		snfi_len;
2369 	vnode_t		*snfi_vp;
2370 } snf_smap_desbinfo;
2371 
2372 /*
2373  * The callback function used for vpm mapped mblks called when the last ref of
2374  * the mblk is dropped which normally occurs when TCP receives the ack. But it
2375  * can be the driver too due to lazy reclaim.
2376  */
2377 void
2378 snf_vmap_desbfree(snf_vmap_desbinfo *snfv)
2379 {
2380 	ASSERT(snfv->snfv_ref != 0);
2381 	if (atomic_add_32_nv(&snfv->snfv_ref, -1) == 0) {
2382 		vpm_unmap_pages(snfv->snfv_vml, S_READ);
2383 		VN_RELE(snfv->snfv_vp);
2384 		kmem_free(snfv, sizeof (snf_vmap_desbinfo));
2385 	}
2386 }
2387 
2388 /*
2389  * The callback function used for segmap'ped mblks called when the last ref of
2390  * the mblk is dropped which normally occurs when TCP receives the ack. But it
2391  * can be the driver too due to lazy reclaim.
2392  */
2393 void
2394 snf_smap_desbfree(snf_smap_desbinfo *snfi)
2395 {
2396 	if (! IS_KPM_ADDR(snfi->snfi_base)) {
2397 		/*
2398 		 * We don't need to call segmap_fault(F_SOFTUNLOCK) for
2399 		 * segmap_kpm as long as the latter never falls back to
2400 		 * "use_segmap_range". (See segmap_getmapflt().)
2401 		 *
2402 		 * Using S_OTHER saves an redundant hat_setref() in
2403 		 * segmap_unlock()
2404 		 */
2405 		(void) segmap_fault(kas.a_hat, segkmap,
2406 		    (caddr_t)(uintptr_t)(((uintptr_t)snfi->snfi_base +
2407 		    snfi->snfi_mapoff) & PAGEMASK), snfi->snfi_len,
2408 		    F_SOFTUNLOCK, S_OTHER);
2409 	}
2410 	(void) segmap_release(segkmap, snfi->snfi_base, SM_DONTNEED);
2411 	VN_RELE(snfi->snfi_vp);
2412 	kmem_free(snfi, sizeof (*snfi));
2413 }
2414 
2415 /*
2416  * Use segmap or vpm instead of bcopy to send down a desballoca'ed, mblk.
2417  * When segmap is used, the mblk contains a segmap slot of no more
2418  * than MAXBSIZE.
2419  *
2420  * With vpm, a maximum of SNF_MAXVMAPS page-sized mappings can be obtained
2421  * in each iteration and sent by socket_sendmblk until an error occurs or
2422  * the requested size has been transferred. An mblk is esballoca'ed from
2423  * each mapped page and a chain of these mblk is sent to the transport layer.
2424  * vpm will be called to unmap the pages when all mblks have been freed by
2425  * free_func.
2426  *
2427  * At the end of the whole sendfile() operation, we wait till the data from
2428  * the last mblk is ack'ed by the transport before returning so that the
2429  * caller of sendfile() can safely modify the file content.
2430  */
2431 int
2432 snf_segmap(file_t *fp, vnode_t *fvp, u_offset_t fileoff, u_offset_t total_size,
2433     ssize_t *count, boolean_t nowait)
2434 {
2435 	caddr_t base;
2436 	int mapoff;
2437 	vnode_t *vp;
2438 	mblk_t *mp = NULL;
2439 	int chain_size;
2440 	int error;
2441 	clock_t deadlk_wait;
2442 	short fflag;
2443 	int ksize;
2444 	struct vattr va;
2445 	boolean_t dowait = B_FALSE;
2446 	struct nmsghdr msg;
2447 
2448 	vp = fp->f_vnode;
2449 	fflag = fp->f_flag;
2450 	ksize = 0;
2451 	bzero(&msg, sizeof (msg));
2452 
2453 	for (;;) {
2454 		if (ISSIG(curthread, JUSTLOOKING)) {
2455 			error = EINTR;
2456 			break;
2457 		}
2458 
2459 		if (vpm_enable) {
2460 			snf_vmap_desbinfo *snfv;
2461 			mblk_t *nmp;
2462 			int mblk_size;
2463 			int maxsize;
2464 			int i;
2465 
2466 			mapoff = fileoff & PAGEOFFSET;
2467 			maxsize = MIN((SNF_VPMMAXPGS * PAGESIZE), total_size);
2468 
2469 			snfv = kmem_zalloc(sizeof (snf_vmap_desbinfo),
2470 			    KM_SLEEP);
2471 
2472 			/*
2473 			 * Get vpm mappings for maxsize with read access.
2474 			 * If the pages aren't available yet, we get
2475 			 * DEADLK, so wait and try again a little later using
2476 			 * an increasing wait. We might be here a long time.
2477 			 *
2478 			 * If delay_sig returns EINTR, be sure to exit and
2479 			 * pass it up to the caller.
2480 			 */
2481 			deadlk_wait = 0;
2482 			while ((error = vpm_map_pages(fvp, fileoff,
2483 			    (size_t)maxsize, (VPM_FETCHPAGE), snfv->snfv_vml,
2484 			    SNF_MAXVMAPS, NULL, S_READ)) == EDEADLK) {
2485 				deadlk_wait += (deadlk_wait < 5) ? 1 : 4;
2486 				if ((error = delay_sig(deadlk_wait)) != 0) {
2487 					break;
2488 				}
2489 			}
2490 			if (error != 0) {
2491 				kmem_free(snfv, sizeof (snf_vmap_desbinfo));
2492 				error = (error == EINTR) ? EINTR : EIO;
2493 				goto out;
2494 			}
2495 			snfv->snfv_frtn.free_func = snf_vmap_desbfree;
2496 			snfv->snfv_frtn.free_arg = (caddr_t)snfv;
2497 
2498 			/* Construct the mblk chain from the page mappings */
2499 			chain_size = 0;
2500 			for (i = 0; (snfv->snfv_vml[i].vs_addr != NULL) &&
2501 			    total_size > 0; i++) {
2502 				ASSERT(chain_size < maxsize);
2503 				mblk_size = MIN(snfv->snfv_vml[i].vs_len -
2504 				    mapoff, total_size);
2505 				nmp = esballoca(
2506 				    (uchar_t *)snfv->snfv_vml[i].vs_addr +
2507 				    mapoff, mblk_size, BPRI_HI,
2508 				    &snfv->snfv_frtn);
2509 
2510 				/*
2511 				 * We return EAGAIN after unmapping the pages
2512 				 * if we cannot allocate the the head of the
2513 				 * chain. Otherwise, we continue sending the
2514 				 * mblks constructed so far.
2515 				 */
2516 				if (nmp == NULL) {
2517 					if (i == 0) {
2518 						vpm_unmap_pages(snfv->snfv_vml,
2519 						    S_READ);
2520 						kmem_free(snfv,
2521 						    sizeof (snf_vmap_desbinfo));
2522 						error = EAGAIN;
2523 						goto out;
2524 					}
2525 					break;
2526 				}
2527 				/* Mark this dblk with the zero-copy flag */
2528 				nmp->b_datap->db_struioflag |= STRUIO_ZC;
2529 				nmp->b_wptr += mblk_size;
2530 				chain_size += mblk_size;
2531 				fileoff += mblk_size;
2532 				total_size -= mblk_size;
2533 				snfv->snfv_ref++;
2534 				mapoff = 0;
2535 				if (i > 0)
2536 					linkb(mp, nmp);
2537 				else
2538 					mp = nmp;
2539 			}
2540 			VN_HOLD(fvp);
2541 			snfv->snfv_vp = fvp;
2542 		} else {
2543 			/* vpm not supported. fallback to segmap */
2544 			snf_smap_desbinfo *snfi;
2545 
2546 			mapoff = fileoff & MAXBOFFSET;
2547 			chain_size = MAXBSIZE - mapoff;
2548 			if (chain_size > total_size)
2549 				chain_size = total_size;
2550 			/*
2551 			 * we don't forcefault because we'll call
2552 			 * segmap_fault(F_SOFTLOCK) next.
2553 			 *
2554 			 * S_READ will get the ref bit set (by either
2555 			 * segmap_getmapflt() or segmap_fault()) and page
2556 			 * shared locked.
2557 			 */
2558 			base = segmap_getmapflt(segkmap, fvp, fileoff,
2559 			    chain_size, segmap_kpm ? SM_FAULT : 0, S_READ);
2560 
2561 			snfi = kmem_alloc(sizeof (*snfi), KM_SLEEP);
2562 			snfi->snfi_len = (size_t)roundup(mapoff+chain_size,
2563 			    PAGESIZE)- (mapoff & PAGEMASK);
2564 			/*
2565 			 * We must call segmap_fault() even for segmap_kpm
2566 			 * because that's how error gets returned.
2567 			 * (segmap_getmapflt() never fails but segmap_fault()
2568 			 * does.)
2569 			 *
2570 			 * If the pages aren't available yet, we get
2571 			 * DEADLK, so wait and try again a little later using
2572 			 * an increasing wait. We might be here a long time.
2573 			 *
2574 			 * If delay_sig returns EINTR, be sure to exit and
2575 			 * pass it up to the caller.
2576 			 */
2577 			deadlk_wait = 0;
2578 			while ((error = FC_ERRNO(segmap_fault(kas.a_hat,
2579 			    segkmap, (caddr_t)(uintptr_t)(((uintptr_t)base +
2580 			    mapoff) & PAGEMASK), snfi->snfi_len, F_SOFTLOCK,
2581 			    S_READ))) == EDEADLK) {
2582 				deadlk_wait += (deadlk_wait < 5) ? 1 : 4;
2583 				if ((error = delay_sig(deadlk_wait)) != 0) {
2584 					break;
2585 				}
2586 			}
2587 			if (error != 0) {
2588 				(void) segmap_release(segkmap, base, 0);
2589 				kmem_free(snfi, sizeof (*snfi));
2590 				error = (error == EINTR) ? EINTR : EIO;
2591 				goto out;
2592 			}
2593 			snfi->snfi_frtn.free_func = snf_smap_desbfree;
2594 			snfi->snfi_frtn.free_arg = (caddr_t)snfi;
2595 			snfi->snfi_base = base;
2596 			snfi->snfi_mapoff = mapoff;
2597 			mp = esballoca((uchar_t *)base + mapoff, chain_size,
2598 			    BPRI_HI, &snfi->snfi_frtn);
2599 
2600 			if (mp == NULL) {
2601 				(void) segmap_fault(kas.a_hat, segkmap,
2602 				    (caddr_t)(uintptr_t)(((uintptr_t)base +
2603 				    mapoff) & PAGEMASK), snfi->snfi_len,
2604 				    F_SOFTUNLOCK, S_OTHER);
2605 				(void) segmap_release(segkmap, base, 0);
2606 				kmem_free(snfi, sizeof (*snfi));
2607 				freemsg(mp);
2608 				error = EAGAIN;
2609 				goto out;
2610 			}
2611 			VN_HOLD(fvp);
2612 			snfi->snfi_vp = fvp;
2613 			mp->b_wptr += chain_size;
2614 
2615 			/* Mark this dblk with the zero-copy flag */
2616 			mp->b_datap->db_struioflag |= STRUIO_ZC;
2617 			fileoff += chain_size;
2618 			total_size -= chain_size;
2619 		}
2620 
2621 		if (total_size == 0 && !nowait) {
2622 			ASSERT(!dowait);
2623 			dowait = B_TRUE;
2624 			mp->b_datap->db_struioflag |= STRUIO_ZCNOTIFY;
2625 		}
2626 		VOP_RWUNLOCK(fvp, V_WRITELOCK_FALSE, NULL);
2627 		error = socket_sendmblk(VTOSO(vp), &msg, fflag, CRED(), &mp);
2628 		if (error != 0) {
2629 			/*
2630 			 * mp contains the mblks that were not sent by
2631 			 * socket_sendmblk. Use its size to update *count
2632 			 */
2633 			*count = ksize + (chain_size - msgdsize(mp));
2634 			if (mp != NULL)
2635 				freemsg(mp);
2636 			return (error);
2637 		}
2638 		ksize += chain_size;
2639 		if (total_size == 0)
2640 			goto done;
2641 
2642 		(void) VOP_RWLOCK(fvp, V_WRITELOCK_FALSE, NULL);
2643 		va.va_mask = AT_SIZE;
2644 		error = VOP_GETATTR(fvp, &va, 0, kcred, NULL);
2645 		if (error)
2646 			break;
2647 		/* Read as much as possible. */
2648 		if (fileoff >= va.va_size)
2649 			break;
2650 		if (total_size + fileoff > va.va_size)
2651 			total_size = va.va_size - fileoff;
2652 	}
2653 out:
2654 	VOP_RWUNLOCK(fvp, V_WRITELOCK_FALSE, NULL);
2655 done:
2656 	*count = ksize;
2657 	if (dowait) {
2658 		stdata_t *stp;
2659 
2660 		stp = vp->v_stream;
2661 		if (stp == NULL) {
2662 			struct sonode *so;
2663 			so = VTOSO(vp);
2664 			error = so_zcopy_wait(so);
2665 		} else {
2666 			mutex_enter(&stp->sd_lock);
2667 			while (!(stp->sd_flag & STZCNOTIFY)) {
2668 				if (cv_wait_sig(&stp->sd_zcopy_wait,
2669 				    &stp->sd_lock) == 0) {
2670 					error = EINTR;
2671 					break;
2672 				}
2673 			}
2674 			stp->sd_flag &= ~STZCNOTIFY;
2675 			mutex_exit(&stp->sd_lock);
2676 		}
2677 	}
2678 	return (error);
2679 }
2680 
2681 int
2682 snf_cache(file_t *fp, vnode_t *fvp, u_offset_t fileoff, u_offset_t size,
2683     uint_t maxpsz, ssize_t *count)
2684 {
2685 	struct vnode *vp;
2686 	mblk_t *mp;
2687 	int iosize;
2688 	int extra = 0;
2689 	int error;
2690 	short fflag;
2691 	int ksize;
2692 	int ioflag;
2693 	struct uio auio;
2694 	struct iovec aiov;
2695 	struct vattr va;
2696 	int maxblk = 0;
2697 	int wroff = 0;
2698 	struct sonode *so;
2699 	struct nmsghdr msg;
2700 
2701 	vp = fp->f_vnode;
2702 	if (vp->v_type == VSOCK) {
2703 		stdata_t *stp;
2704 
2705 		/*
2706 		 * Get the extra space to insert a header and a trailer.
2707 		 */
2708 		so = VTOSO(vp);
2709 		stp = vp->v_stream;
2710 		if (stp == NULL) {
2711 			wroff = so->so_proto_props.sopp_wroff;
2712 			maxblk = so->so_proto_props.sopp_maxblk;
2713 			extra = wroff + so->so_proto_props.sopp_tail;
2714 		} else {
2715 			wroff = (int)(stp->sd_wroff);
2716 			maxblk = (int)(stp->sd_maxblk);
2717 			extra = wroff + (int)(stp->sd_tail);
2718 		}
2719 	}
2720 	bzero(&msg, sizeof (msg));
2721 	fflag = fp->f_flag;
2722 	ksize = 0;
2723 	auio.uio_iov = &aiov;
2724 	auio.uio_iovcnt = 1;
2725 	auio.uio_segflg = UIO_SYSSPACE;
2726 	auio.uio_llimit = MAXOFFSET_T;
2727 	auio.uio_fmode = fflag;
2728 	auio.uio_extflg = UIO_COPY_CACHED;
2729 	ioflag = auio.uio_fmode & (FSYNC|FDSYNC|FRSYNC);
2730 	/* If read sync is not asked for, filter sync flags */
2731 	if ((ioflag & FRSYNC) == 0)
2732 		ioflag &= ~(FSYNC|FDSYNC);
2733 	for (;;) {
2734 		if (ISSIG(curthread, JUSTLOOKING)) {
2735 			error = EINTR;
2736 			break;
2737 		}
2738 		iosize = (int)MIN(maxpsz, size);
2739 
2740 		/*
2741 		 * Socket filters can limit the mblk size,
2742 		 * so limit reads to maxblk if there are
2743 		 * filters present.
2744 		 */
2745 		if (vp->v_type == VSOCK &&
2746 		    so->so_filter_active > 0 && maxblk != INFPSZ)
2747 			iosize = (int)MIN(iosize, maxblk);
2748 
2749 		if (is_system_labeled()) {
2750 			mp = allocb_cred(iosize + extra, CRED(),
2751 			    curproc->p_pid);
2752 		} else {
2753 			mp = allocb(iosize + extra, BPRI_MED);
2754 		}
2755 		if (mp == NULL) {
2756 			error = EAGAIN;
2757 			break;
2758 		}
2759 
2760 		mp->b_rptr += wroff;
2761 
2762 		aiov.iov_base = (caddr_t)mp->b_rptr;
2763 		aiov.iov_len = iosize;
2764 		auio.uio_loffset = fileoff;
2765 		auio.uio_resid = iosize;
2766 
2767 		error = VOP_READ(fvp, &auio, ioflag, fp->f_cred, NULL);
2768 		iosize -= auio.uio_resid;
2769 
2770 		if (error == EINTR && iosize != 0)
2771 			error = 0;
2772 
2773 		if (error != 0 || iosize == 0) {
2774 			freeb(mp);
2775 			break;
2776 		}
2777 		mp->b_wptr = mp->b_rptr + iosize;
2778 
2779 		VOP_RWUNLOCK(fvp, V_WRITELOCK_FALSE, NULL);
2780 
2781 		error = socket_sendmblk(VTOSO(vp), &msg, fflag, CRED(), &mp);
2782 
2783 		if (error != 0) {
2784 			*count = ksize;
2785 			if (mp != NULL)
2786 				freeb(mp);
2787 			return (error);
2788 		}
2789 		ksize += iosize;
2790 		size -= iosize;
2791 		if (size == 0)
2792 			goto done;
2793 
2794 		fileoff += iosize;
2795 		(void) VOP_RWLOCK(fvp, V_WRITELOCK_FALSE, NULL);
2796 		va.va_mask = AT_SIZE;
2797 		error = VOP_GETATTR(fvp, &va, 0, kcred, NULL);
2798 		if (error)
2799 			break;
2800 		/* Read as much as possible. */
2801 		if (fileoff >= va.va_size)
2802 			size = 0;
2803 		else if (size + fileoff > va.va_size)
2804 			size = va.va_size - fileoff;
2805 	}
2806 	VOP_RWUNLOCK(fvp, V_WRITELOCK_FALSE, NULL);
2807 done:
2808 	*count = ksize;
2809 	return (error);
2810 }
2811 
2812 #if defined(_SYSCALL32_IMPL) || defined(_ILP32)
2813 /*
2814  * Largefile support for 32 bit applications only.
2815  */
2816 int
2817 sosendfile64(file_t *fp, file_t *rfp, const struct ksendfilevec64 *sfv,
2818     ssize32_t *count32)
2819 {
2820 	ssize32_t sfv_len;
2821 	u_offset_t sfv_off, va_size;
2822 	struct vnode *vp, *fvp, *realvp;
2823 	struct vattr va;
2824 	stdata_t *stp;
2825 	ssize_t count = 0;
2826 	int error = 0;
2827 	boolean_t dozcopy = B_FALSE;
2828 	uint_t maxpsz;
2829 
2830 	sfv_len = (ssize32_t)sfv->sfv_len;
2831 	if (sfv_len < 0) {
2832 		error = EINVAL;
2833 		goto out;
2834 	}
2835 
2836 	if (sfv_len == 0) goto out;
2837 
2838 	sfv_off = (u_offset_t)sfv->sfv_off;
2839 
2840 	/* Same checks as in pread */
2841 	if (sfv_off > MAXOFFSET_T) {
2842 		error = EINVAL;
2843 		goto out;
2844 	}
2845 	if (sfv_off + sfv_len > MAXOFFSET_T)
2846 		sfv_len = (ssize32_t)(MAXOFFSET_T - sfv_off);
2847 
2848 	/*
2849 	 * There are no more checks on sfv_len. So, we cast it to
2850 	 * u_offset_t and share the snf_direct_io/snf_cache code between
2851 	 * 32 bit and 64 bit.
2852 	 *
2853 	 * TODO: should do nbl_need_check() like read()?
2854 	 */
2855 	if (sfv_len > sendfile_max_size) {
2856 		sf_stats.ss_file_not_cached++;
2857 		error = snf_direct_io(fp, rfp, sfv_off, (u_offset_t)sfv_len,
2858 		    &count);
2859 		goto out;
2860 	}
2861 	fvp = rfp->f_vnode;
2862 	if (VOP_REALVP(fvp, &realvp, NULL) == 0)
2863 		fvp = realvp;
2864 	/*
2865 	 * Grab the lock as a reader to prevent the file size
2866 	 * from changing underneath.
2867 	 */
2868 	(void) VOP_RWLOCK(fvp, V_WRITELOCK_FALSE, NULL);
2869 	va.va_mask = AT_SIZE;
2870 	error = VOP_GETATTR(fvp, &va, 0, kcred, NULL);
2871 	va_size = va.va_size;
2872 	if ((error != 0) || (va_size == 0) || (sfv_off >= va_size)) {
2873 		VOP_RWUNLOCK(fvp, V_WRITELOCK_FALSE, NULL);
2874 		goto out;
2875 	}
2876 	/* Read as much as possible. */
2877 	if (sfv_off + sfv_len > va_size)
2878 		sfv_len = va_size - sfv_off;
2879 
2880 	vp = fp->f_vnode;
2881 	stp = vp->v_stream;
2882 	/*
2883 	 * When the NOWAIT flag is not set, we enable zero-copy only if the
2884 	 * transfer size is large enough. This prevents performance loss
2885 	 * when the caller sends the file piece by piece.
2886 	 */
2887 	if (sfv_len >= MAXBSIZE && (sfv_len >= (va_size >> 1) ||
2888 	    (sfv->sfv_flag & SFV_NOWAIT) || sfv_len >= 0x1000000) &&
2889 	    !vn_has_flocks(fvp) && !(fvp->v_flag & VNOMAP)) {
2890 		uint_t copyflag;
2891 		copyflag = stp != NULL ? stp->sd_copyflag :
2892 		    VTOSO(vp)->so_proto_props.sopp_zcopyflag;
2893 		if ((copyflag & (STZCVMSAFE|STZCVMUNSAFE)) == 0) {
2894 			int on = 1;
2895 
2896 			if (socket_setsockopt(VTOSO(vp), SOL_SOCKET,
2897 			    SO_SND_COPYAVOID, &on, sizeof (on), CRED()) == 0)
2898 				dozcopy = B_TRUE;
2899 		} else {
2900 			dozcopy = copyflag & STZCVMSAFE;
2901 		}
2902 	}
2903 	if (dozcopy) {
2904 		sf_stats.ss_file_segmap++;
2905 		error = snf_segmap(fp, fvp, sfv_off, (u_offset_t)sfv_len,
2906 		    &count, ((sfv->sfv_flag & SFV_NOWAIT) != 0));
2907 	} else {
2908 		if (vp->v_type == VSOCK && stp == NULL) {
2909 			sonode_t *so = VTOSO(vp);
2910 			maxpsz = so->so_proto_props.sopp_maxpsz;
2911 		} else if (stp != NULL) {
2912 			maxpsz = stp->sd_qn_maxpsz;
2913 		} else {
2914 			maxpsz = maxphys;
2915 		}
2916 
2917 		if (maxpsz == INFPSZ)
2918 			maxpsz = maxphys;
2919 		else
2920 			maxpsz = roundup(maxpsz, MAXBSIZE);
2921 		sf_stats.ss_file_cached++;
2922 		error = snf_cache(fp, fvp, sfv_off, (u_offset_t)sfv_len,
2923 		    maxpsz, &count);
2924 	}
2925 out:
2926 	releasef(sfv->sfv_fd);
2927 	*count32 = (ssize32_t)count;
2928 	return (error);
2929 }
2930 #endif
2931 
2932 #ifdef _SYSCALL32_IMPL
2933 /*
2934  * recv32(), recvfrom32(), send32(), sendto32(): intentionally return a
2935  * ssize_t rather than ssize32_t; see the comments above read32 for details.
2936  */
2937 
2938 ssize_t
2939 recv32(int32_t sock, caddr32_t buffer, size32_t len, int32_t flags)
2940 {
2941 	return (recv(sock, (void *)(uintptr_t)buffer, (ssize32_t)len, flags));
2942 }
2943 
2944 ssize_t
2945 recvfrom32(int32_t sock, caddr32_t buffer, size32_t len, int32_t flags,
2946 	caddr32_t name, caddr32_t namelenp)
2947 {
2948 	return (recvfrom(sock, (void *)(uintptr_t)buffer, (ssize32_t)len, flags,
2949 	    (void *)(uintptr_t)name, (void *)(uintptr_t)namelenp));
2950 }
2951 
2952 ssize_t
2953 send32(int32_t sock, caddr32_t buffer, size32_t len, int32_t flags)
2954 {
2955 	return (send(sock, (void *)(uintptr_t)buffer, (ssize32_t)len, flags));
2956 }
2957 
2958 ssize_t
2959 sendto32(int32_t sock, caddr32_t buffer, size32_t len, int32_t flags,
2960 	caddr32_t name, socklen_t namelen)
2961 {
2962 	return (sendto(sock, (void *)(uintptr_t)buffer, (ssize32_t)len, flags,
2963 	    (void *)(uintptr_t)name, namelen));
2964 }
2965 #endif	/* _SYSCALL32_IMPL */
2966 
2967 /*
2968  * Function wrappers (mostly around the sonode switch) for
2969  * backward compatibility.
2970  */
2971 
2972 int
2973 soaccept(struct sonode *so, int fflag, struct sonode **nsop)
2974 {
2975 	return (socket_accept(so, fflag, CRED(), nsop));
2976 }
2977 
2978 int
2979 sobind(struct sonode *so, struct sockaddr *name, socklen_t namelen,
2980     int backlog, int flags)
2981 {
2982 	int	error;
2983 
2984 	error = socket_bind(so, name, namelen, flags, CRED());
2985 	if (error == 0 && backlog != 0)
2986 		return (socket_listen(so, backlog, CRED()));
2987 
2988 	return (error);
2989 }
2990 
2991 int
2992 solisten(struct sonode *so, int backlog)
2993 {
2994 	return (socket_listen(so, backlog, CRED()));
2995 }
2996 
2997 int
2998 soconnect(struct sonode *so, struct sockaddr *name, socklen_t namelen,
2999     int fflag, int flags)
3000 {
3001 	return (socket_connect(so, name, namelen, fflag, flags, CRED()));
3002 }
3003 
3004 int
3005 sorecvmsg(struct sonode *so, struct nmsghdr *msg, struct uio *uiop)
3006 {
3007 	return (socket_recvmsg(so, msg, uiop, CRED()));
3008 }
3009 
3010 int
3011 sosendmsg(struct sonode *so, struct nmsghdr *msg, struct uio *uiop)
3012 {
3013 	return (socket_sendmsg(so, msg, uiop, CRED()));
3014 }
3015 
3016 int
3017 soshutdown(struct sonode *so, int how)
3018 {
3019 	return (socket_shutdown(so, how, CRED()));
3020 }
3021 
3022 int
3023 sogetsockopt(struct sonode *so, int level, int option_name, void *optval,
3024     socklen_t *optlenp, int flags)
3025 {
3026 	return (socket_getsockopt(so, level, option_name, optval, optlenp,
3027 	    flags, CRED()));
3028 }
3029 
3030 int
3031 sosetsockopt(struct sonode *so, int level, int option_name, const void *optval,
3032     t_uscalar_t optlen)
3033 {
3034 	return (socket_setsockopt(so, level, option_name, optval, optlen,
3035 	    CRED()));
3036 }
3037 
3038 /*
3039  * Because this is backward compatibility interface it only needs to be
3040  * able to handle the creation of TPI sockfs sockets.
3041  */
3042 struct sonode *
3043 socreate(struct sockparams *sp, int family, int type, int protocol, int version,
3044     int *errorp)
3045 {
3046 	struct sonode *so;
3047 
3048 	ASSERT(sp != NULL);
3049 
3050 	so = sp->sp_smod_info->smod_sock_create_func(sp, family, type, protocol,
3051 	    version, SOCKET_SLEEP, errorp, CRED());
3052 	if (so == NULL) {
3053 		SOCKPARAMS_DEC_REF(sp);
3054 	} else {
3055 		if ((*errorp = SOP_INIT(so, NULL, CRED(), SOCKET_SLEEP)) == 0) {
3056 			/* Cannot fail, only bumps so_count */
3057 			(void) VOP_OPEN(&SOTOV(so), FREAD|FWRITE, CRED(), NULL);
3058 		} else {
3059 			socket_destroy(so);
3060 			so = NULL;
3061 		}
3062 	}
3063 	return (so);
3064 }
3065