1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2011, Joyent, Inc. All rights reserved. 25 */ 26 27 /* 28 * DTrace - Dynamic Tracing for Solaris 29 * 30 * This is the implementation of the Solaris Dynamic Tracing framework 31 * (DTrace). The user-visible interface to DTrace is described at length in 32 * the "Solaris Dynamic Tracing Guide". The interfaces between the libdtrace 33 * library, the in-kernel DTrace framework, and the DTrace providers are 34 * described in the block comments in the <sys/dtrace.h> header file. The 35 * internal architecture of DTrace is described in the block comments in the 36 * <sys/dtrace_impl.h> header file. The comments contained within the DTrace 37 * implementation very much assume mastery of all of these sources; if one has 38 * an unanswered question about the implementation, one should consult them 39 * first. 40 * 41 * The functions here are ordered roughly as follows: 42 * 43 * - Probe context functions 44 * - Probe hashing functions 45 * - Non-probe context utility functions 46 * - Matching functions 47 * - Provider-to-Framework API functions 48 * - Probe management functions 49 * - DIF object functions 50 * - Format functions 51 * - Predicate functions 52 * - ECB functions 53 * - Buffer functions 54 * - Enabling functions 55 * - DOF functions 56 * - Anonymous enabling functions 57 * - Consumer state functions 58 * - Helper functions 59 * - Hook functions 60 * - Driver cookbook functions 61 * 62 * Each group of functions begins with a block comment labelled the "DTrace 63 * [Group] Functions", allowing one to find each block by searching forward 64 * on capital-f functions. 65 */ 66 #include <sys/errno.h> 67 #include <sys/stat.h> 68 #include <sys/modctl.h> 69 #include <sys/conf.h> 70 #include <sys/systm.h> 71 #include <sys/ddi.h> 72 #include <sys/sunddi.h> 73 #include <sys/cpuvar.h> 74 #include <sys/kmem.h> 75 #include <sys/strsubr.h> 76 #include <sys/sysmacros.h> 77 #include <sys/dtrace_impl.h> 78 #include <sys/atomic.h> 79 #include <sys/cmn_err.h> 80 #include <sys/mutex_impl.h> 81 #include <sys/rwlock_impl.h> 82 #include <sys/ctf_api.h> 83 #include <sys/panic.h> 84 #include <sys/priv_impl.h> 85 #include <sys/policy.h> 86 #include <sys/cred_impl.h> 87 #include <sys/procfs_isa.h> 88 #include <sys/taskq.h> 89 #include <sys/mkdev.h> 90 #include <sys/kdi.h> 91 #include <sys/zone.h> 92 #include <sys/socket.h> 93 #include <netinet/in.h> 94 95 /* 96 * DTrace Tunable Variables 97 * 98 * The following variables may be tuned by adding a line to /etc/system that 99 * includes both the name of the DTrace module ("dtrace") and the name of the 100 * variable. For example: 101 * 102 * set dtrace:dtrace_destructive_disallow = 1 103 * 104 * In general, the only variables that one should be tuning this way are those 105 * that affect system-wide DTrace behavior, and for which the default behavior 106 * is undesirable. Most of these variables are tunable on a per-consumer 107 * basis using DTrace options, and need not be tuned on a system-wide basis. 108 * When tuning these variables, avoid pathological values; while some attempt 109 * is made to verify the integrity of these variables, they are not considered 110 * part of the supported interface to DTrace, and they are therefore not 111 * checked comprehensively. Further, these variables should not be tuned 112 * dynamically via "mdb -kw" or other means; they should only be tuned via 113 * /etc/system. 114 */ 115 int dtrace_destructive_disallow = 0; 116 dtrace_optval_t dtrace_nonroot_maxsize = (16 * 1024 * 1024); 117 size_t dtrace_difo_maxsize = (256 * 1024); 118 dtrace_optval_t dtrace_dof_maxsize = (256 * 1024); 119 size_t dtrace_global_maxsize = (16 * 1024); 120 size_t dtrace_actions_max = (16 * 1024); 121 size_t dtrace_retain_max = 1024; 122 dtrace_optval_t dtrace_helper_actions_max = 32; 123 dtrace_optval_t dtrace_helper_providers_max = 32; 124 dtrace_optval_t dtrace_dstate_defsize = (1 * 1024 * 1024); 125 size_t dtrace_strsize_default = 256; 126 dtrace_optval_t dtrace_cleanrate_default = 9900990; /* 101 hz */ 127 dtrace_optval_t dtrace_cleanrate_min = 200000; /* 5000 hz */ 128 dtrace_optval_t dtrace_cleanrate_max = (uint64_t)60 * NANOSEC; /* 1/minute */ 129 dtrace_optval_t dtrace_aggrate_default = NANOSEC; /* 1 hz */ 130 dtrace_optval_t dtrace_statusrate_default = NANOSEC; /* 1 hz */ 131 dtrace_optval_t dtrace_statusrate_max = (hrtime_t)10 * NANOSEC; /* 6/minute */ 132 dtrace_optval_t dtrace_switchrate_default = NANOSEC; /* 1 hz */ 133 dtrace_optval_t dtrace_nspec_default = 1; 134 dtrace_optval_t dtrace_specsize_default = 32 * 1024; 135 dtrace_optval_t dtrace_stackframes_default = 20; 136 dtrace_optval_t dtrace_ustackframes_default = 20; 137 dtrace_optval_t dtrace_jstackframes_default = 50; 138 dtrace_optval_t dtrace_jstackstrsize_default = 512; 139 int dtrace_msgdsize_max = 128; 140 hrtime_t dtrace_chill_max = 500 * (NANOSEC / MILLISEC); /* 500 ms */ 141 hrtime_t dtrace_chill_interval = NANOSEC; /* 1000 ms */ 142 int dtrace_devdepth_max = 32; 143 int dtrace_err_verbose; 144 hrtime_t dtrace_deadman_interval = NANOSEC; 145 hrtime_t dtrace_deadman_timeout = (hrtime_t)10 * NANOSEC; 146 hrtime_t dtrace_deadman_user = (hrtime_t)30 * NANOSEC; 147 hrtime_t dtrace_unregister_defunct_reap = (hrtime_t)60 * NANOSEC; 148 149 /* 150 * DTrace External Variables 151 * 152 * As dtrace(7D) is a kernel module, any DTrace variables are obviously 153 * available to DTrace consumers via the backtick (`) syntax. One of these, 154 * dtrace_zero, is made deliberately so: it is provided as a source of 155 * well-known, zero-filled memory. While this variable is not documented, 156 * it is used by some translators as an implementation detail. 157 */ 158 const char dtrace_zero[256] = { 0 }; /* zero-filled memory */ 159 160 /* 161 * DTrace Internal Variables 162 */ 163 static dev_info_t *dtrace_devi; /* device info */ 164 static vmem_t *dtrace_arena; /* probe ID arena */ 165 static vmem_t *dtrace_minor; /* minor number arena */ 166 static taskq_t *dtrace_taskq; /* task queue */ 167 static dtrace_probe_t **dtrace_probes; /* array of all probes */ 168 static int dtrace_nprobes; /* number of probes */ 169 static dtrace_provider_t *dtrace_provider; /* provider list */ 170 static dtrace_meta_t *dtrace_meta_pid; /* user-land meta provider */ 171 static int dtrace_opens; /* number of opens */ 172 static int dtrace_helpers; /* number of helpers */ 173 static void *dtrace_softstate; /* softstate pointer */ 174 static dtrace_hash_t *dtrace_bymod; /* probes hashed by module */ 175 static dtrace_hash_t *dtrace_byfunc; /* probes hashed by function */ 176 static dtrace_hash_t *dtrace_byname; /* probes hashed by name */ 177 static dtrace_toxrange_t *dtrace_toxrange; /* toxic range array */ 178 static int dtrace_toxranges; /* number of toxic ranges */ 179 static int dtrace_toxranges_max; /* size of toxic range array */ 180 static dtrace_anon_t dtrace_anon; /* anonymous enabling */ 181 static kmem_cache_t *dtrace_state_cache; /* cache for dynamic state */ 182 static uint64_t dtrace_vtime_references; /* number of vtimestamp refs */ 183 static kthread_t *dtrace_panicked; /* panicking thread */ 184 static dtrace_ecb_t *dtrace_ecb_create_cache; /* cached created ECB */ 185 static dtrace_genid_t dtrace_probegen; /* current probe generation */ 186 static dtrace_helpers_t *dtrace_deferred_pid; /* deferred helper list */ 187 static dtrace_enabling_t *dtrace_retained; /* list of retained enablings */ 188 static dtrace_genid_t dtrace_retained_gen; /* current retained enab gen */ 189 static dtrace_dynvar_t dtrace_dynhash_sink; /* end of dynamic hash chains */ 190 static int dtrace_dynvar_failclean; /* dynvars failed to clean */ 191 192 /* 193 * DTrace Locking 194 * DTrace is protected by three (relatively coarse-grained) locks: 195 * 196 * (1) dtrace_lock is required to manipulate essentially any DTrace state, 197 * including enabling state, probes, ECBs, consumer state, helper state, 198 * etc. Importantly, dtrace_lock is _not_ required when in probe context; 199 * probe context is lock-free -- synchronization is handled via the 200 * dtrace_sync() cross call mechanism. 201 * 202 * (2) dtrace_provider_lock is required when manipulating provider state, or 203 * when provider state must be held constant. 204 * 205 * (3) dtrace_meta_lock is required when manipulating meta provider state, or 206 * when meta provider state must be held constant. 207 * 208 * The lock ordering between these three locks is dtrace_meta_lock before 209 * dtrace_provider_lock before dtrace_lock. (In particular, there are 210 * several places where dtrace_provider_lock is held by the framework as it 211 * calls into the providers -- which then call back into the framework, 212 * grabbing dtrace_lock.) 213 * 214 * There are two other locks in the mix: mod_lock and cpu_lock. With respect 215 * to dtrace_provider_lock and dtrace_lock, cpu_lock continues its historical 216 * role as a coarse-grained lock; it is acquired before both of these locks. 217 * With respect to dtrace_meta_lock, its behavior is stranger: cpu_lock must 218 * be acquired _between_ dtrace_meta_lock and any other DTrace locks. 219 * mod_lock is similar with respect to dtrace_provider_lock in that it must be 220 * acquired _between_ dtrace_provider_lock and dtrace_lock. 221 */ 222 static kmutex_t dtrace_lock; /* probe state lock */ 223 static kmutex_t dtrace_provider_lock; /* provider state lock */ 224 static kmutex_t dtrace_meta_lock; /* meta-provider state lock */ 225 226 /* 227 * DTrace Provider Variables 228 * 229 * These are the variables relating to DTrace as a provider (that is, the 230 * provider of the BEGIN, END, and ERROR probes). 231 */ 232 static dtrace_pattr_t dtrace_provider_attr = { 233 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON }, 234 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN }, 235 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN }, 236 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON }, 237 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON }, 238 }; 239 240 static void 241 dtrace_nullop(void) 242 {} 243 244 static int 245 dtrace_enable_nullop(void) 246 { 247 return (0); 248 } 249 250 static dtrace_pops_t dtrace_provider_ops = { 251 (void (*)(void *, const dtrace_probedesc_t *))dtrace_nullop, 252 (void (*)(void *, struct modctl *))dtrace_nullop, 253 (int (*)(void *, dtrace_id_t, void *))dtrace_enable_nullop, 254 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop, 255 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop, 256 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop, 257 NULL, 258 NULL, 259 NULL, 260 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop 261 }; 262 263 static dtrace_id_t dtrace_probeid_begin; /* special BEGIN probe */ 264 static dtrace_id_t dtrace_probeid_end; /* special END probe */ 265 dtrace_id_t dtrace_probeid_error; /* special ERROR probe */ 266 267 /* 268 * DTrace Helper Tracing Variables 269 */ 270 uint32_t dtrace_helptrace_next = 0; 271 uint32_t dtrace_helptrace_nlocals; 272 char *dtrace_helptrace_buffer; 273 int dtrace_helptrace_bufsize = 512 * 1024; 274 275 #ifdef DEBUG 276 int dtrace_helptrace_enabled = 1; 277 #else 278 int dtrace_helptrace_enabled = 0; 279 #endif 280 281 /* 282 * DTrace Error Hashing 283 * 284 * On DEBUG kernels, DTrace will track the errors that has seen in a hash 285 * table. This is very useful for checking coverage of tests that are 286 * expected to induce DIF or DOF processing errors, and may be useful for 287 * debugging problems in the DIF code generator or in DOF generation . The 288 * error hash may be examined with the ::dtrace_errhash MDB dcmd. 289 */ 290 #ifdef DEBUG 291 static dtrace_errhash_t dtrace_errhash[DTRACE_ERRHASHSZ]; 292 static const char *dtrace_errlast; 293 static kthread_t *dtrace_errthread; 294 static kmutex_t dtrace_errlock; 295 #endif 296 297 /* 298 * DTrace Macros and Constants 299 * 300 * These are various macros that are useful in various spots in the 301 * implementation, along with a few random constants that have no meaning 302 * outside of the implementation. There is no real structure to this cpp 303 * mishmash -- but is there ever? 304 */ 305 #define DTRACE_HASHSTR(hash, probe) \ 306 dtrace_hash_str(*((char **)((uintptr_t)(probe) + (hash)->dth_stroffs))) 307 308 #define DTRACE_HASHNEXT(hash, probe) \ 309 (dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_nextoffs) 310 311 #define DTRACE_HASHPREV(hash, probe) \ 312 (dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_prevoffs) 313 314 #define DTRACE_HASHEQ(hash, lhs, rhs) \ 315 (strcmp(*((char **)((uintptr_t)(lhs) + (hash)->dth_stroffs)), \ 316 *((char **)((uintptr_t)(rhs) + (hash)->dth_stroffs))) == 0) 317 318 #define DTRACE_AGGHASHSIZE_SLEW 17 319 320 #define DTRACE_V4MAPPED_OFFSET (sizeof (uint32_t) * 3) 321 322 /* 323 * The key for a thread-local variable consists of the lower 61 bits of the 324 * t_did, plus the 3 bits of the highest active interrupt above LOCK_LEVEL. 325 * We add DIF_VARIABLE_MAX to t_did to assure that the thread key is never 326 * equal to a variable identifier. This is necessary (but not sufficient) to 327 * assure that global associative arrays never collide with thread-local 328 * variables. To guarantee that they cannot collide, we must also define the 329 * order for keying dynamic variables. That order is: 330 * 331 * [ key0 ] ... [ keyn ] [ variable-key ] [ tls-key ] 332 * 333 * Because the variable-key and the tls-key are in orthogonal spaces, there is 334 * no way for a global variable key signature to match a thread-local key 335 * signature. 336 */ 337 #define DTRACE_TLS_THRKEY(where) { \ 338 uint_t intr = 0; \ 339 uint_t actv = CPU->cpu_intr_actv >> (LOCK_LEVEL + 1); \ 340 for (; actv; actv >>= 1) \ 341 intr++; \ 342 ASSERT(intr < (1 << 3)); \ 343 (where) = ((curthread->t_did + DIF_VARIABLE_MAX) & \ 344 (((uint64_t)1 << 61) - 1)) | ((uint64_t)intr << 61); \ 345 } 346 347 #define DT_BSWAP_8(x) ((x) & 0xff) 348 #define DT_BSWAP_16(x) ((DT_BSWAP_8(x) << 8) | DT_BSWAP_8((x) >> 8)) 349 #define DT_BSWAP_32(x) ((DT_BSWAP_16(x) << 16) | DT_BSWAP_16((x) >> 16)) 350 #define DT_BSWAP_64(x) ((DT_BSWAP_32(x) << 32) | DT_BSWAP_32((x) >> 32)) 351 352 #define DT_MASK_LO 0x00000000FFFFFFFFULL 353 354 #define DTRACE_STORE(type, tomax, offset, what) \ 355 *((type *)((uintptr_t)(tomax) + (uintptr_t)offset)) = (type)(what); 356 357 #ifndef __i386 358 #define DTRACE_ALIGNCHECK(addr, size, flags) \ 359 if (addr & (size - 1)) { \ 360 *flags |= CPU_DTRACE_BADALIGN; \ 361 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = addr; \ 362 return (0); \ 363 } 364 #else 365 #define DTRACE_ALIGNCHECK(addr, size, flags) 366 #endif 367 368 /* 369 * Test whether a range of memory starting at testaddr of size testsz falls 370 * within the range of memory described by addr, sz. We take care to avoid 371 * problems with overflow and underflow of the unsigned quantities, and 372 * disallow all negative sizes. Ranges of size 0 are allowed. 373 */ 374 #define DTRACE_INRANGE(testaddr, testsz, baseaddr, basesz) \ 375 ((testaddr) - (baseaddr) < (basesz) && \ 376 (testaddr) + (testsz) - (baseaddr) <= (basesz) && \ 377 (testaddr) + (testsz) >= (testaddr)) 378 379 /* 380 * Test whether alloc_sz bytes will fit in the scratch region. We isolate 381 * alloc_sz on the righthand side of the comparison in order to avoid overflow 382 * or underflow in the comparison with it. This is simpler than the INRANGE 383 * check above, because we know that the dtms_scratch_ptr is valid in the 384 * range. Allocations of size zero are allowed. 385 */ 386 #define DTRACE_INSCRATCH(mstate, alloc_sz) \ 387 ((mstate)->dtms_scratch_base + (mstate)->dtms_scratch_size - \ 388 (mstate)->dtms_scratch_ptr >= (alloc_sz)) 389 390 #define DTRACE_LOADFUNC(bits) \ 391 /*CSTYLED*/ \ 392 uint##bits##_t \ 393 dtrace_load##bits(uintptr_t addr) \ 394 { \ 395 size_t size = bits / NBBY; \ 396 /*CSTYLED*/ \ 397 uint##bits##_t rval; \ 398 int i; \ 399 volatile uint16_t *flags = (volatile uint16_t *) \ 400 &cpu_core[CPU->cpu_id].cpuc_dtrace_flags; \ 401 \ 402 DTRACE_ALIGNCHECK(addr, size, flags); \ 403 \ 404 for (i = 0; i < dtrace_toxranges; i++) { \ 405 if (addr >= dtrace_toxrange[i].dtt_limit) \ 406 continue; \ 407 \ 408 if (addr + size <= dtrace_toxrange[i].dtt_base) \ 409 continue; \ 410 \ 411 /* \ 412 * This address falls within a toxic region; return 0. \ 413 */ \ 414 *flags |= CPU_DTRACE_BADADDR; \ 415 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = addr; \ 416 return (0); \ 417 } \ 418 \ 419 *flags |= CPU_DTRACE_NOFAULT; \ 420 /*CSTYLED*/ \ 421 rval = *((volatile uint##bits##_t *)addr); \ 422 *flags &= ~CPU_DTRACE_NOFAULT; \ 423 \ 424 return (!(*flags & CPU_DTRACE_FAULT) ? rval : 0); \ 425 } 426 427 #ifdef _LP64 428 #define dtrace_loadptr dtrace_load64 429 #else 430 #define dtrace_loadptr dtrace_load32 431 #endif 432 433 #define DTRACE_DYNHASH_FREE 0 434 #define DTRACE_DYNHASH_SINK 1 435 #define DTRACE_DYNHASH_VALID 2 436 437 #define DTRACE_MATCH_FAIL -1 438 #define DTRACE_MATCH_NEXT 0 439 #define DTRACE_MATCH_DONE 1 440 #define DTRACE_ANCHORED(probe) ((probe)->dtpr_func[0] != '\0') 441 #define DTRACE_STATE_ALIGN 64 442 443 #define DTRACE_FLAGS2FLT(flags) \ 444 (((flags) & CPU_DTRACE_BADADDR) ? DTRACEFLT_BADADDR : \ 445 ((flags) & CPU_DTRACE_ILLOP) ? DTRACEFLT_ILLOP : \ 446 ((flags) & CPU_DTRACE_DIVZERO) ? DTRACEFLT_DIVZERO : \ 447 ((flags) & CPU_DTRACE_KPRIV) ? DTRACEFLT_KPRIV : \ 448 ((flags) & CPU_DTRACE_UPRIV) ? DTRACEFLT_UPRIV : \ 449 ((flags) & CPU_DTRACE_TUPOFLOW) ? DTRACEFLT_TUPOFLOW : \ 450 ((flags) & CPU_DTRACE_BADALIGN) ? DTRACEFLT_BADALIGN : \ 451 ((flags) & CPU_DTRACE_NOSCRATCH) ? DTRACEFLT_NOSCRATCH : \ 452 ((flags) & CPU_DTRACE_BADSTACK) ? DTRACEFLT_BADSTACK : \ 453 DTRACEFLT_UNKNOWN) 454 455 #define DTRACEACT_ISSTRING(act) \ 456 ((act)->dta_kind == DTRACEACT_DIFEXPR && \ 457 (act)->dta_difo->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) 458 459 static size_t dtrace_strlen(const char *, size_t); 460 static dtrace_probe_t *dtrace_probe_lookup_id(dtrace_id_t id); 461 static void dtrace_enabling_provide(dtrace_provider_t *); 462 static int dtrace_enabling_match(dtrace_enabling_t *, int *); 463 static void dtrace_enabling_matchall(void); 464 static void dtrace_enabling_reap(void); 465 static dtrace_state_t *dtrace_anon_grab(void); 466 static uint64_t dtrace_helper(int, dtrace_mstate_t *, 467 dtrace_state_t *, uint64_t, uint64_t); 468 static dtrace_helpers_t *dtrace_helpers_create(proc_t *); 469 static void dtrace_buffer_drop(dtrace_buffer_t *); 470 static int dtrace_buffer_consumed(dtrace_buffer_t *, hrtime_t when); 471 static intptr_t dtrace_buffer_reserve(dtrace_buffer_t *, size_t, size_t, 472 dtrace_state_t *, dtrace_mstate_t *); 473 static int dtrace_state_option(dtrace_state_t *, dtrace_optid_t, 474 dtrace_optval_t); 475 static int dtrace_ecb_create_enable(dtrace_probe_t *, void *); 476 static void dtrace_helper_provider_destroy(dtrace_helper_provider_t *); 477 478 /* 479 * DTrace Probe Context Functions 480 * 481 * These functions are called from probe context. Because probe context is 482 * any context in which C may be called, arbitrarily locks may be held, 483 * interrupts may be disabled, we may be in arbitrary dispatched state, etc. 484 * As a result, functions called from probe context may only call other DTrace 485 * support functions -- they may not interact at all with the system at large. 486 * (Note that the ASSERT macro is made probe-context safe by redefining it in 487 * terms of dtrace_assfail(), a probe-context safe function.) If arbitrary 488 * loads are to be performed from probe context, they _must_ be in terms of 489 * the safe dtrace_load*() variants. 490 * 491 * Some functions in this block are not actually called from probe context; 492 * for these functions, there will be a comment above the function reading 493 * "Note: not called from probe context." 494 */ 495 void 496 dtrace_panic(const char *format, ...) 497 { 498 va_list alist; 499 500 va_start(alist, format); 501 dtrace_vpanic(format, alist); 502 va_end(alist); 503 } 504 505 int 506 dtrace_assfail(const char *a, const char *f, int l) 507 { 508 dtrace_panic("assertion failed: %s, file: %s, line: %d", a, f, l); 509 510 /* 511 * We just need something here that even the most clever compiler 512 * cannot optimize away. 513 */ 514 return (a[(uintptr_t)f]); 515 } 516 517 /* 518 * Atomically increment a specified error counter from probe context. 519 */ 520 static void 521 dtrace_error(uint32_t *counter) 522 { 523 /* 524 * Most counters stored to in probe context are per-CPU counters. 525 * However, there are some error conditions that are sufficiently 526 * arcane that they don't merit per-CPU storage. If these counters 527 * are incremented concurrently on different CPUs, scalability will be 528 * adversely affected -- but we don't expect them to be white-hot in a 529 * correctly constructed enabling... 530 */ 531 uint32_t oval, nval; 532 533 do { 534 oval = *counter; 535 536 if ((nval = oval + 1) == 0) { 537 /* 538 * If the counter would wrap, set it to 1 -- assuring 539 * that the counter is never zero when we have seen 540 * errors. (The counter must be 32-bits because we 541 * aren't guaranteed a 64-bit compare&swap operation.) 542 * To save this code both the infamy of being fingered 543 * by a priggish news story and the indignity of being 544 * the target of a neo-puritan witch trial, we're 545 * carefully avoiding any colorful description of the 546 * likelihood of this condition -- but suffice it to 547 * say that it is only slightly more likely than the 548 * overflow of predicate cache IDs, as discussed in 549 * dtrace_predicate_create(). 550 */ 551 nval = 1; 552 } 553 } while (dtrace_cas32(counter, oval, nval) != oval); 554 } 555 556 /* 557 * Use the DTRACE_LOADFUNC macro to define functions for each of loading a 558 * uint8_t, a uint16_t, a uint32_t and a uint64_t. 559 */ 560 DTRACE_LOADFUNC(8) 561 DTRACE_LOADFUNC(16) 562 DTRACE_LOADFUNC(32) 563 DTRACE_LOADFUNC(64) 564 565 static int 566 dtrace_inscratch(uintptr_t dest, size_t size, dtrace_mstate_t *mstate) 567 { 568 if (dest < mstate->dtms_scratch_base) 569 return (0); 570 571 if (dest + size < dest) 572 return (0); 573 574 if (dest + size > mstate->dtms_scratch_ptr) 575 return (0); 576 577 return (1); 578 } 579 580 static int 581 dtrace_canstore_statvar(uint64_t addr, size_t sz, 582 dtrace_statvar_t **svars, int nsvars) 583 { 584 int i; 585 586 for (i = 0; i < nsvars; i++) { 587 dtrace_statvar_t *svar = svars[i]; 588 589 if (svar == NULL || svar->dtsv_size == 0) 590 continue; 591 592 if (DTRACE_INRANGE(addr, sz, svar->dtsv_data, svar->dtsv_size)) 593 return (1); 594 } 595 596 return (0); 597 } 598 599 /* 600 * Check to see if the address is within a memory region to which a store may 601 * be issued. This includes the DTrace scratch areas, and any DTrace variable 602 * region. The caller of dtrace_canstore() is responsible for performing any 603 * alignment checks that are needed before stores are actually executed. 604 */ 605 static int 606 dtrace_canstore(uint64_t addr, size_t sz, dtrace_mstate_t *mstate, 607 dtrace_vstate_t *vstate) 608 { 609 /* 610 * First, check to see if the address is in scratch space... 611 */ 612 if (DTRACE_INRANGE(addr, sz, mstate->dtms_scratch_base, 613 mstate->dtms_scratch_size)) 614 return (1); 615 616 /* 617 * Now check to see if it's a dynamic variable. This check will pick 618 * up both thread-local variables and any global dynamically-allocated 619 * variables. 620 */ 621 if (DTRACE_INRANGE(addr, sz, (uintptr_t)vstate->dtvs_dynvars.dtds_base, 622 vstate->dtvs_dynvars.dtds_size)) { 623 dtrace_dstate_t *dstate = &vstate->dtvs_dynvars; 624 uintptr_t base = (uintptr_t)dstate->dtds_base + 625 (dstate->dtds_hashsize * sizeof (dtrace_dynhash_t)); 626 uintptr_t chunkoffs; 627 628 /* 629 * Before we assume that we can store here, we need to make 630 * sure that it isn't in our metadata -- storing to our 631 * dynamic variable metadata would corrupt our state. For 632 * the range to not include any dynamic variable metadata, 633 * it must: 634 * 635 * (1) Start above the hash table that is at the base of 636 * the dynamic variable space 637 * 638 * (2) Have a starting chunk offset that is beyond the 639 * dtrace_dynvar_t that is at the base of every chunk 640 * 641 * (3) Not span a chunk boundary 642 * 643 */ 644 if (addr < base) 645 return (0); 646 647 chunkoffs = (addr - base) % dstate->dtds_chunksize; 648 649 if (chunkoffs < sizeof (dtrace_dynvar_t)) 650 return (0); 651 652 if (chunkoffs + sz > dstate->dtds_chunksize) 653 return (0); 654 655 return (1); 656 } 657 658 /* 659 * Finally, check the static local and global variables. These checks 660 * take the longest, so we perform them last. 661 */ 662 if (dtrace_canstore_statvar(addr, sz, 663 vstate->dtvs_locals, vstate->dtvs_nlocals)) 664 return (1); 665 666 if (dtrace_canstore_statvar(addr, sz, 667 vstate->dtvs_globals, vstate->dtvs_nglobals)) 668 return (1); 669 670 return (0); 671 } 672 673 674 /* 675 * Convenience routine to check to see if the address is within a memory 676 * region in which a load may be issued given the user's privilege level; 677 * if not, it sets the appropriate error flags and loads 'addr' into the 678 * illegal value slot. 679 * 680 * DTrace subroutines (DIF_SUBR_*) should use this helper to implement 681 * appropriate memory access protection. 682 */ 683 static int 684 dtrace_canload(uint64_t addr, size_t sz, dtrace_mstate_t *mstate, 685 dtrace_vstate_t *vstate) 686 { 687 volatile uintptr_t *illval = &cpu_core[CPU->cpu_id].cpuc_dtrace_illval; 688 689 /* 690 * If we hold the privilege to read from kernel memory, then 691 * everything is readable. 692 */ 693 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) 694 return (1); 695 696 /* 697 * You can obviously read that which you can store. 698 */ 699 if (dtrace_canstore(addr, sz, mstate, vstate)) 700 return (1); 701 702 /* 703 * We're allowed to read from our own string table. 704 */ 705 if (DTRACE_INRANGE(addr, sz, (uintptr_t)mstate->dtms_difo->dtdo_strtab, 706 mstate->dtms_difo->dtdo_strlen)) 707 return (1); 708 709 DTRACE_CPUFLAG_SET(CPU_DTRACE_KPRIV); 710 *illval = addr; 711 return (0); 712 } 713 714 /* 715 * Convenience routine to check to see if a given string is within a memory 716 * region in which a load may be issued given the user's privilege level; 717 * this exists so that we don't need to issue unnecessary dtrace_strlen() 718 * calls in the event that the user has all privileges. 719 */ 720 static int 721 dtrace_strcanload(uint64_t addr, size_t sz, dtrace_mstate_t *mstate, 722 dtrace_vstate_t *vstate) 723 { 724 size_t strsz; 725 726 /* 727 * If we hold the privilege to read from kernel memory, then 728 * everything is readable. 729 */ 730 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) 731 return (1); 732 733 strsz = 1 + dtrace_strlen((char *)(uintptr_t)addr, sz); 734 if (dtrace_canload(addr, strsz, mstate, vstate)) 735 return (1); 736 737 return (0); 738 } 739 740 /* 741 * Convenience routine to check to see if a given variable is within a memory 742 * region in which a load may be issued given the user's privilege level. 743 */ 744 static int 745 dtrace_vcanload(void *src, dtrace_diftype_t *type, dtrace_mstate_t *mstate, 746 dtrace_vstate_t *vstate) 747 { 748 size_t sz; 749 ASSERT(type->dtdt_flags & DIF_TF_BYREF); 750 751 /* 752 * If we hold the privilege to read from kernel memory, then 753 * everything is readable. 754 */ 755 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) 756 return (1); 757 758 if (type->dtdt_kind == DIF_TYPE_STRING) 759 sz = dtrace_strlen(src, 760 vstate->dtvs_state->dts_options[DTRACEOPT_STRSIZE]) + 1; 761 else 762 sz = type->dtdt_size; 763 764 return (dtrace_canload((uintptr_t)src, sz, mstate, vstate)); 765 } 766 767 /* 768 * Compare two strings using safe loads. 769 */ 770 static int 771 dtrace_strncmp(char *s1, char *s2, size_t limit) 772 { 773 uint8_t c1, c2; 774 volatile uint16_t *flags; 775 776 if (s1 == s2 || limit == 0) 777 return (0); 778 779 flags = (volatile uint16_t *)&cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 780 781 do { 782 if (s1 == NULL) { 783 c1 = '\0'; 784 } else { 785 c1 = dtrace_load8((uintptr_t)s1++); 786 } 787 788 if (s2 == NULL) { 789 c2 = '\0'; 790 } else { 791 c2 = dtrace_load8((uintptr_t)s2++); 792 } 793 794 if (c1 != c2) 795 return (c1 - c2); 796 } while (--limit && c1 != '\0' && !(*flags & CPU_DTRACE_FAULT)); 797 798 return (0); 799 } 800 801 /* 802 * Compute strlen(s) for a string using safe memory accesses. The additional 803 * len parameter is used to specify a maximum length to ensure completion. 804 */ 805 static size_t 806 dtrace_strlen(const char *s, size_t lim) 807 { 808 uint_t len; 809 810 for (len = 0; len != lim; len++) { 811 if (dtrace_load8((uintptr_t)s++) == '\0') 812 break; 813 } 814 815 return (len); 816 } 817 818 /* 819 * Check if an address falls within a toxic region. 820 */ 821 static int 822 dtrace_istoxic(uintptr_t kaddr, size_t size) 823 { 824 uintptr_t taddr, tsize; 825 int i; 826 827 for (i = 0; i < dtrace_toxranges; i++) { 828 taddr = dtrace_toxrange[i].dtt_base; 829 tsize = dtrace_toxrange[i].dtt_limit - taddr; 830 831 if (kaddr - taddr < tsize) { 832 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); 833 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = kaddr; 834 return (1); 835 } 836 837 if (taddr - kaddr < size) { 838 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); 839 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = taddr; 840 return (1); 841 } 842 } 843 844 return (0); 845 } 846 847 /* 848 * Copy src to dst using safe memory accesses. The src is assumed to be unsafe 849 * memory specified by the DIF program. The dst is assumed to be safe memory 850 * that we can store to directly because it is managed by DTrace. As with 851 * standard bcopy, overlapping copies are handled properly. 852 */ 853 static void 854 dtrace_bcopy(const void *src, void *dst, size_t len) 855 { 856 if (len != 0) { 857 uint8_t *s1 = dst; 858 const uint8_t *s2 = src; 859 860 if (s1 <= s2) { 861 do { 862 *s1++ = dtrace_load8((uintptr_t)s2++); 863 } while (--len != 0); 864 } else { 865 s2 += len; 866 s1 += len; 867 868 do { 869 *--s1 = dtrace_load8((uintptr_t)--s2); 870 } while (--len != 0); 871 } 872 } 873 } 874 875 /* 876 * Copy src to dst using safe memory accesses, up to either the specified 877 * length, or the point that a nul byte is encountered. The src is assumed to 878 * be unsafe memory specified by the DIF program. The dst is assumed to be 879 * safe memory that we can store to directly because it is managed by DTrace. 880 * Unlike dtrace_bcopy(), overlapping regions are not handled. 881 */ 882 static void 883 dtrace_strcpy(const void *src, void *dst, size_t len) 884 { 885 if (len != 0) { 886 uint8_t *s1 = dst, c; 887 const uint8_t *s2 = src; 888 889 do { 890 *s1++ = c = dtrace_load8((uintptr_t)s2++); 891 } while (--len != 0 && c != '\0'); 892 } 893 } 894 895 /* 896 * Copy src to dst, deriving the size and type from the specified (BYREF) 897 * variable type. The src is assumed to be unsafe memory specified by the DIF 898 * program. The dst is assumed to be DTrace variable memory that is of the 899 * specified type; we assume that we can store to directly. 900 */ 901 static void 902 dtrace_vcopy(void *src, void *dst, dtrace_diftype_t *type) 903 { 904 ASSERT(type->dtdt_flags & DIF_TF_BYREF); 905 906 if (type->dtdt_kind == DIF_TYPE_STRING) { 907 dtrace_strcpy(src, dst, type->dtdt_size); 908 } else { 909 dtrace_bcopy(src, dst, type->dtdt_size); 910 } 911 } 912 913 /* 914 * Compare s1 to s2 using safe memory accesses. The s1 data is assumed to be 915 * unsafe memory specified by the DIF program. The s2 data is assumed to be 916 * safe memory that we can access directly because it is managed by DTrace. 917 */ 918 static int 919 dtrace_bcmp(const void *s1, const void *s2, size_t len) 920 { 921 volatile uint16_t *flags; 922 923 flags = (volatile uint16_t *)&cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 924 925 if (s1 == s2) 926 return (0); 927 928 if (s1 == NULL || s2 == NULL) 929 return (1); 930 931 if (s1 != s2 && len != 0) { 932 const uint8_t *ps1 = s1; 933 const uint8_t *ps2 = s2; 934 935 do { 936 if (dtrace_load8((uintptr_t)ps1++) != *ps2++) 937 return (1); 938 } while (--len != 0 && !(*flags & CPU_DTRACE_FAULT)); 939 } 940 return (0); 941 } 942 943 /* 944 * Zero the specified region using a simple byte-by-byte loop. Note that this 945 * is for safe DTrace-managed memory only. 946 */ 947 static void 948 dtrace_bzero(void *dst, size_t len) 949 { 950 uchar_t *cp; 951 952 for (cp = dst; len != 0; len--) 953 *cp++ = 0; 954 } 955 956 static void 957 dtrace_add_128(uint64_t *addend1, uint64_t *addend2, uint64_t *sum) 958 { 959 uint64_t result[2]; 960 961 result[0] = addend1[0] + addend2[0]; 962 result[1] = addend1[1] + addend2[1] + 963 (result[0] < addend1[0] || result[0] < addend2[0] ? 1 : 0); 964 965 sum[0] = result[0]; 966 sum[1] = result[1]; 967 } 968 969 /* 970 * Shift the 128-bit value in a by b. If b is positive, shift left. 971 * If b is negative, shift right. 972 */ 973 static void 974 dtrace_shift_128(uint64_t *a, int b) 975 { 976 uint64_t mask; 977 978 if (b == 0) 979 return; 980 981 if (b < 0) { 982 b = -b; 983 if (b >= 64) { 984 a[0] = a[1] >> (b - 64); 985 a[1] = 0; 986 } else { 987 a[0] >>= b; 988 mask = 1LL << (64 - b); 989 mask -= 1; 990 a[0] |= ((a[1] & mask) << (64 - b)); 991 a[1] >>= b; 992 } 993 } else { 994 if (b >= 64) { 995 a[1] = a[0] << (b - 64); 996 a[0] = 0; 997 } else { 998 a[1] <<= b; 999 mask = a[0] >> (64 - b); 1000 a[1] |= mask; 1001 a[0] <<= b; 1002 } 1003 } 1004 } 1005 1006 /* 1007 * The basic idea is to break the 2 64-bit values into 4 32-bit values, 1008 * use native multiplication on those, and then re-combine into the 1009 * resulting 128-bit value. 1010 * 1011 * (hi1 << 32 + lo1) * (hi2 << 32 + lo2) = 1012 * hi1 * hi2 << 64 + 1013 * hi1 * lo2 << 32 + 1014 * hi2 * lo1 << 32 + 1015 * lo1 * lo2 1016 */ 1017 static void 1018 dtrace_multiply_128(uint64_t factor1, uint64_t factor2, uint64_t *product) 1019 { 1020 uint64_t hi1, hi2, lo1, lo2; 1021 uint64_t tmp[2]; 1022 1023 hi1 = factor1 >> 32; 1024 hi2 = factor2 >> 32; 1025 1026 lo1 = factor1 & DT_MASK_LO; 1027 lo2 = factor2 & DT_MASK_LO; 1028 1029 product[0] = lo1 * lo2; 1030 product[1] = hi1 * hi2; 1031 1032 tmp[0] = hi1 * lo2; 1033 tmp[1] = 0; 1034 dtrace_shift_128(tmp, 32); 1035 dtrace_add_128(product, tmp, product); 1036 1037 tmp[0] = hi2 * lo1; 1038 tmp[1] = 0; 1039 dtrace_shift_128(tmp, 32); 1040 dtrace_add_128(product, tmp, product); 1041 } 1042 1043 /* 1044 * This privilege check should be used by actions and subroutines to 1045 * verify that the user credentials of the process that enabled the 1046 * invoking ECB match the target credentials 1047 */ 1048 static int 1049 dtrace_priv_proc_common_user(dtrace_state_t *state) 1050 { 1051 cred_t *cr, *s_cr = state->dts_cred.dcr_cred; 1052 1053 /* 1054 * We should always have a non-NULL state cred here, since if cred 1055 * is null (anonymous tracing), we fast-path bypass this routine. 1056 */ 1057 ASSERT(s_cr != NULL); 1058 1059 if ((cr = CRED()) != NULL && 1060 s_cr->cr_uid == cr->cr_uid && 1061 s_cr->cr_uid == cr->cr_ruid && 1062 s_cr->cr_uid == cr->cr_suid && 1063 s_cr->cr_gid == cr->cr_gid && 1064 s_cr->cr_gid == cr->cr_rgid && 1065 s_cr->cr_gid == cr->cr_sgid) 1066 return (1); 1067 1068 return (0); 1069 } 1070 1071 /* 1072 * This privilege check should be used by actions and subroutines to 1073 * verify that the zone of the process that enabled the invoking ECB 1074 * matches the target credentials 1075 */ 1076 static int 1077 dtrace_priv_proc_common_zone(dtrace_state_t *state) 1078 { 1079 cred_t *cr, *s_cr = state->dts_cred.dcr_cred; 1080 1081 /* 1082 * We should always have a non-NULL state cred here, since if cred 1083 * is null (anonymous tracing), we fast-path bypass this routine. 1084 */ 1085 ASSERT(s_cr != NULL); 1086 1087 if ((cr = CRED()) != NULL && 1088 s_cr->cr_zone == cr->cr_zone) 1089 return (1); 1090 1091 return (0); 1092 } 1093 1094 /* 1095 * This privilege check should be used by actions and subroutines to 1096 * verify that the process has not setuid or changed credentials. 1097 */ 1098 static int 1099 dtrace_priv_proc_common_nocd() 1100 { 1101 proc_t *proc; 1102 1103 if ((proc = ttoproc(curthread)) != NULL && 1104 !(proc->p_flag & SNOCD)) 1105 return (1); 1106 1107 return (0); 1108 } 1109 1110 static int 1111 dtrace_priv_proc_destructive(dtrace_state_t *state, dtrace_mstate_t *mstate) 1112 { 1113 int action = state->dts_cred.dcr_action; 1114 1115 if (!(mstate->dtms_access & DTRACE_ACCESS_PROC)) 1116 goto bad; 1117 1118 if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE) == 0) && 1119 dtrace_priv_proc_common_zone(state) == 0) 1120 goto bad; 1121 1122 if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER) == 0) && 1123 dtrace_priv_proc_common_user(state) == 0) 1124 goto bad; 1125 1126 if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG) == 0) && 1127 dtrace_priv_proc_common_nocd() == 0) 1128 goto bad; 1129 1130 return (1); 1131 1132 bad: 1133 cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV; 1134 1135 return (0); 1136 } 1137 1138 static int 1139 dtrace_priv_proc_control(dtrace_state_t *state, dtrace_mstate_t *mstate) 1140 { 1141 if (mstate->dtms_access & DTRACE_ACCESS_PROC) { 1142 if (state->dts_cred.dcr_action & DTRACE_CRA_PROC_CONTROL) 1143 return (1); 1144 1145 if (dtrace_priv_proc_common_zone(state) && 1146 dtrace_priv_proc_common_user(state) && 1147 dtrace_priv_proc_common_nocd()) 1148 return (1); 1149 } 1150 1151 cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV; 1152 1153 return (0); 1154 } 1155 1156 static int 1157 dtrace_priv_proc(dtrace_state_t *state, dtrace_mstate_t *mstate) 1158 { 1159 if ((mstate->dtms_access & DTRACE_ACCESS_PROC) && 1160 (state->dts_cred.dcr_action & DTRACE_CRA_PROC)) 1161 return (1); 1162 1163 cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV; 1164 1165 return (0); 1166 } 1167 1168 static int 1169 dtrace_priv_kernel(dtrace_state_t *state) 1170 { 1171 if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL) 1172 return (1); 1173 1174 cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV; 1175 1176 return (0); 1177 } 1178 1179 static int 1180 dtrace_priv_kernel_destructive(dtrace_state_t *state) 1181 { 1182 if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL_DESTRUCTIVE) 1183 return (1); 1184 1185 cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV; 1186 1187 return (0); 1188 } 1189 1190 /* 1191 * Determine if the dte_cond of the specified ECB allows for processing of 1192 * the current probe to continue. Note that this routine may allow continued 1193 * processing, but with access(es) stripped from the mstate's dtms_access 1194 * field. 1195 */ 1196 static int 1197 dtrace_priv_probe(dtrace_state_t *state, dtrace_mstate_t *mstate, 1198 dtrace_ecb_t *ecb) 1199 { 1200 dtrace_probe_t *probe = ecb->dte_probe; 1201 dtrace_provider_t *prov = probe->dtpr_provider; 1202 dtrace_pops_t *pops = &prov->dtpv_pops; 1203 int mode = DTRACE_MODE_NOPRIV_DROP; 1204 1205 ASSERT(ecb->dte_cond); 1206 1207 if (pops->dtps_mode != NULL) { 1208 mode = pops->dtps_mode(prov->dtpv_arg, 1209 probe->dtpr_id, probe->dtpr_arg); 1210 1211 ASSERT((mode & DTRACE_MODE_USER) || 1212 (mode & DTRACE_MODE_KERNEL)); 1213 ASSERT((mode & DTRACE_MODE_NOPRIV_RESTRICT) || 1214 (mode & DTRACE_MODE_NOPRIV_DROP)); 1215 } 1216 1217 /* 1218 * If the dte_cond bits indicate that this consumer is only allowed to 1219 * see user-mode firings of this probe, call the provider's dtps_mode() 1220 * entry point to check that the probe was fired while in a user 1221 * context. If that's not the case, use the policy specified by the 1222 * provider to determine if we drop the probe or merely restrict 1223 * operation. 1224 */ 1225 if (ecb->dte_cond & DTRACE_COND_USERMODE) { 1226 ASSERT(mode != DTRACE_MODE_NOPRIV_DROP); 1227 1228 if (!(mode & DTRACE_MODE_USER)) { 1229 if (mode & DTRACE_MODE_NOPRIV_DROP) 1230 return (0); 1231 1232 mstate->dtms_access &= ~DTRACE_ACCESS_ARGS; 1233 } 1234 } 1235 1236 /* 1237 * This is more subtle than it looks. We have to be absolutely certain 1238 * that CRED() isn't going to change out from under us so it's only 1239 * legit to examine that structure if we're in constrained situations. 1240 * Currently, the only times we'll this check is if a non-super-user 1241 * has enabled the profile or syscall providers -- providers that 1242 * allow visibility of all processes. For the profile case, the check 1243 * above will ensure that we're examining a user context. 1244 */ 1245 if (ecb->dte_cond & DTRACE_COND_OWNER) { 1246 cred_t *cr; 1247 cred_t *s_cr = state->dts_cred.dcr_cred; 1248 proc_t *proc; 1249 1250 ASSERT(s_cr != NULL); 1251 1252 if ((cr = CRED()) == NULL || 1253 s_cr->cr_uid != cr->cr_uid || 1254 s_cr->cr_uid != cr->cr_ruid || 1255 s_cr->cr_uid != cr->cr_suid || 1256 s_cr->cr_gid != cr->cr_gid || 1257 s_cr->cr_gid != cr->cr_rgid || 1258 s_cr->cr_gid != cr->cr_sgid || 1259 (proc = ttoproc(curthread)) == NULL || 1260 (proc->p_flag & SNOCD)) { 1261 if (mode & DTRACE_MODE_NOPRIV_DROP) 1262 return (0); 1263 1264 mstate->dtms_access &= ~DTRACE_ACCESS_PROC; 1265 } 1266 } 1267 1268 /* 1269 * If our dte_cond is set to DTRACE_COND_ZONEOWNER and we are not 1270 * in our zone, check to see if our mode policy is to restrict rather 1271 * than to drop; if to restrict, strip away both DTRACE_ACCESS_PROC 1272 * and DTRACE_ACCESS_ARGS 1273 */ 1274 if (ecb->dte_cond & DTRACE_COND_ZONEOWNER) { 1275 cred_t *cr; 1276 cred_t *s_cr = state->dts_cred.dcr_cred; 1277 1278 ASSERT(s_cr != NULL); 1279 1280 if ((cr = CRED()) == NULL || 1281 s_cr->cr_zone->zone_id != cr->cr_zone->zone_id) { 1282 if (mode & DTRACE_MODE_NOPRIV_DROP) 1283 return (0); 1284 1285 mstate->dtms_access &= 1286 ~(DTRACE_ACCESS_PROC | DTRACE_ACCESS_ARGS); 1287 } 1288 } 1289 1290 return (1); 1291 } 1292 1293 /* 1294 * Note: not called from probe context. This function is called 1295 * asynchronously (and at a regular interval) from outside of probe context to 1296 * clean the dirty dynamic variable lists on all CPUs. Dynamic variable 1297 * cleaning is explained in detail in <sys/dtrace_impl.h>. 1298 */ 1299 void 1300 dtrace_dynvar_clean(dtrace_dstate_t *dstate) 1301 { 1302 dtrace_dynvar_t *dirty; 1303 dtrace_dstate_percpu_t *dcpu; 1304 dtrace_dynvar_t **rinsep; 1305 int i, j, work = 0; 1306 1307 for (i = 0; i < NCPU; i++) { 1308 dcpu = &dstate->dtds_percpu[i]; 1309 rinsep = &dcpu->dtdsc_rinsing; 1310 1311 /* 1312 * If the dirty list is NULL, there is no dirty work to do. 1313 */ 1314 if (dcpu->dtdsc_dirty == NULL) 1315 continue; 1316 1317 if (dcpu->dtdsc_rinsing != NULL) { 1318 /* 1319 * If the rinsing list is non-NULL, then it is because 1320 * this CPU was selected to accept another CPU's 1321 * dirty list -- and since that time, dirty buffers 1322 * have accumulated. This is a highly unlikely 1323 * condition, but we choose to ignore the dirty 1324 * buffers -- they'll be picked up a future cleanse. 1325 */ 1326 continue; 1327 } 1328 1329 if (dcpu->dtdsc_clean != NULL) { 1330 /* 1331 * If the clean list is non-NULL, then we're in a 1332 * situation where a CPU has done deallocations (we 1333 * have a non-NULL dirty list) but no allocations (we 1334 * also have a non-NULL clean list). We can't simply 1335 * move the dirty list into the clean list on this 1336 * CPU, yet we also don't want to allow this condition 1337 * to persist, lest a short clean list prevent a 1338 * massive dirty list from being cleaned (which in 1339 * turn could lead to otherwise avoidable dynamic 1340 * drops). To deal with this, we look for some CPU 1341 * with a NULL clean list, NULL dirty list, and NULL 1342 * rinsing list -- and then we borrow this CPU to 1343 * rinse our dirty list. 1344 */ 1345 for (j = 0; j < NCPU; j++) { 1346 dtrace_dstate_percpu_t *rinser; 1347 1348 rinser = &dstate->dtds_percpu[j]; 1349 1350 if (rinser->dtdsc_rinsing != NULL) 1351 continue; 1352 1353 if (rinser->dtdsc_dirty != NULL) 1354 continue; 1355 1356 if (rinser->dtdsc_clean != NULL) 1357 continue; 1358 1359 rinsep = &rinser->dtdsc_rinsing; 1360 break; 1361 } 1362 1363 if (j == NCPU) { 1364 /* 1365 * We were unable to find another CPU that 1366 * could accept this dirty list -- we are 1367 * therefore unable to clean it now. 1368 */ 1369 dtrace_dynvar_failclean++; 1370 continue; 1371 } 1372 } 1373 1374 work = 1; 1375 1376 /* 1377 * Atomically move the dirty list aside. 1378 */ 1379 do { 1380 dirty = dcpu->dtdsc_dirty; 1381 1382 /* 1383 * Before we zap the dirty list, set the rinsing list. 1384 * (This allows for a potential assertion in 1385 * dtrace_dynvar(): if a free dynamic variable appears 1386 * on a hash chain, either the dirty list or the 1387 * rinsing list for some CPU must be non-NULL.) 1388 */ 1389 *rinsep = dirty; 1390 dtrace_membar_producer(); 1391 } while (dtrace_casptr(&dcpu->dtdsc_dirty, 1392 dirty, NULL) != dirty); 1393 } 1394 1395 if (!work) { 1396 /* 1397 * We have no work to do; we can simply return. 1398 */ 1399 return; 1400 } 1401 1402 dtrace_sync(); 1403 1404 for (i = 0; i < NCPU; i++) { 1405 dcpu = &dstate->dtds_percpu[i]; 1406 1407 if (dcpu->dtdsc_rinsing == NULL) 1408 continue; 1409 1410 /* 1411 * We are now guaranteed that no hash chain contains a pointer 1412 * into this dirty list; we can make it clean. 1413 */ 1414 ASSERT(dcpu->dtdsc_clean == NULL); 1415 dcpu->dtdsc_clean = dcpu->dtdsc_rinsing; 1416 dcpu->dtdsc_rinsing = NULL; 1417 } 1418 1419 /* 1420 * Before we actually set the state to be DTRACE_DSTATE_CLEAN, make 1421 * sure that all CPUs have seen all of the dtdsc_clean pointers. 1422 * This prevents a race whereby a CPU incorrectly decides that 1423 * the state should be something other than DTRACE_DSTATE_CLEAN 1424 * after dtrace_dynvar_clean() has completed. 1425 */ 1426 dtrace_sync(); 1427 1428 dstate->dtds_state = DTRACE_DSTATE_CLEAN; 1429 } 1430 1431 /* 1432 * Depending on the value of the op parameter, this function looks-up, 1433 * allocates or deallocates an arbitrarily-keyed dynamic variable. If an 1434 * allocation is requested, this function will return a pointer to a 1435 * dtrace_dynvar_t corresponding to the allocated variable -- or NULL if no 1436 * variable can be allocated. If NULL is returned, the appropriate counter 1437 * will be incremented. 1438 */ 1439 dtrace_dynvar_t * 1440 dtrace_dynvar(dtrace_dstate_t *dstate, uint_t nkeys, 1441 dtrace_key_t *key, size_t dsize, dtrace_dynvar_op_t op, 1442 dtrace_mstate_t *mstate, dtrace_vstate_t *vstate) 1443 { 1444 uint64_t hashval = DTRACE_DYNHASH_VALID; 1445 dtrace_dynhash_t *hash = dstate->dtds_hash; 1446 dtrace_dynvar_t *free, *new_free, *next, *dvar, *start, *prev = NULL; 1447 processorid_t me = CPU->cpu_id, cpu = me; 1448 dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[me]; 1449 size_t bucket, ksize; 1450 size_t chunksize = dstate->dtds_chunksize; 1451 uintptr_t kdata, lock, nstate; 1452 uint_t i; 1453 1454 ASSERT(nkeys != 0); 1455 1456 /* 1457 * Hash the key. As with aggregations, we use Jenkins' "One-at-a-time" 1458 * algorithm. For the by-value portions, we perform the algorithm in 1459 * 16-bit chunks (as opposed to 8-bit chunks). This speeds things up a 1460 * bit, and seems to have only a minute effect on distribution. For 1461 * the by-reference data, we perform "One-at-a-time" iterating (safely) 1462 * over each referenced byte. It's painful to do this, but it's much 1463 * better than pathological hash distribution. The efficacy of the 1464 * hashing algorithm (and a comparison with other algorithms) may be 1465 * found by running the ::dtrace_dynstat MDB dcmd. 1466 */ 1467 for (i = 0; i < nkeys; i++) { 1468 if (key[i].dttk_size == 0) { 1469 uint64_t val = key[i].dttk_value; 1470 1471 hashval += (val >> 48) & 0xffff; 1472 hashval += (hashval << 10); 1473 hashval ^= (hashval >> 6); 1474 1475 hashval += (val >> 32) & 0xffff; 1476 hashval += (hashval << 10); 1477 hashval ^= (hashval >> 6); 1478 1479 hashval += (val >> 16) & 0xffff; 1480 hashval += (hashval << 10); 1481 hashval ^= (hashval >> 6); 1482 1483 hashval += val & 0xffff; 1484 hashval += (hashval << 10); 1485 hashval ^= (hashval >> 6); 1486 } else { 1487 /* 1488 * This is incredibly painful, but it beats the hell 1489 * out of the alternative. 1490 */ 1491 uint64_t j, size = key[i].dttk_size; 1492 uintptr_t base = (uintptr_t)key[i].dttk_value; 1493 1494 if (!dtrace_canload(base, size, mstate, vstate)) 1495 break; 1496 1497 for (j = 0; j < size; j++) { 1498 hashval += dtrace_load8(base + j); 1499 hashval += (hashval << 10); 1500 hashval ^= (hashval >> 6); 1501 } 1502 } 1503 } 1504 1505 if (DTRACE_CPUFLAG_ISSET(CPU_DTRACE_FAULT)) 1506 return (NULL); 1507 1508 hashval += (hashval << 3); 1509 hashval ^= (hashval >> 11); 1510 hashval += (hashval << 15); 1511 1512 /* 1513 * There is a remote chance (ideally, 1 in 2^31) that our hashval 1514 * comes out to be one of our two sentinel hash values. If this 1515 * actually happens, we set the hashval to be a value known to be a 1516 * non-sentinel value. 1517 */ 1518 if (hashval == DTRACE_DYNHASH_FREE || hashval == DTRACE_DYNHASH_SINK) 1519 hashval = DTRACE_DYNHASH_VALID; 1520 1521 /* 1522 * Yes, it's painful to do a divide here. If the cycle count becomes 1523 * important here, tricks can be pulled to reduce it. (However, it's 1524 * critical that hash collisions be kept to an absolute minimum; 1525 * they're much more painful than a divide.) It's better to have a 1526 * solution that generates few collisions and still keeps things 1527 * relatively simple. 1528 */ 1529 bucket = hashval % dstate->dtds_hashsize; 1530 1531 if (op == DTRACE_DYNVAR_DEALLOC) { 1532 volatile uintptr_t *lockp = &hash[bucket].dtdh_lock; 1533 1534 for (;;) { 1535 while ((lock = *lockp) & 1) 1536 continue; 1537 1538 if (dtrace_casptr((void *)lockp, 1539 (void *)lock, (void *)(lock + 1)) == (void *)lock) 1540 break; 1541 } 1542 1543 dtrace_membar_producer(); 1544 } 1545 1546 top: 1547 prev = NULL; 1548 lock = hash[bucket].dtdh_lock; 1549 1550 dtrace_membar_consumer(); 1551 1552 start = hash[bucket].dtdh_chain; 1553 ASSERT(start != NULL && (start->dtdv_hashval == DTRACE_DYNHASH_SINK || 1554 start->dtdv_hashval != DTRACE_DYNHASH_FREE || 1555 op != DTRACE_DYNVAR_DEALLOC)); 1556 1557 for (dvar = start; dvar != NULL; dvar = dvar->dtdv_next) { 1558 dtrace_tuple_t *dtuple = &dvar->dtdv_tuple; 1559 dtrace_key_t *dkey = &dtuple->dtt_key[0]; 1560 1561 if (dvar->dtdv_hashval != hashval) { 1562 if (dvar->dtdv_hashval == DTRACE_DYNHASH_SINK) { 1563 /* 1564 * We've reached the sink, and therefore the 1565 * end of the hash chain; we can kick out of 1566 * the loop knowing that we have seen a valid 1567 * snapshot of state. 1568 */ 1569 ASSERT(dvar->dtdv_next == NULL); 1570 ASSERT(dvar == &dtrace_dynhash_sink); 1571 break; 1572 } 1573 1574 if (dvar->dtdv_hashval == DTRACE_DYNHASH_FREE) { 1575 /* 1576 * We've gone off the rails: somewhere along 1577 * the line, one of the members of this hash 1578 * chain was deleted. Note that we could also 1579 * detect this by simply letting this loop run 1580 * to completion, as we would eventually hit 1581 * the end of the dirty list. However, we 1582 * want to avoid running the length of the 1583 * dirty list unnecessarily (it might be quite 1584 * long), so we catch this as early as 1585 * possible by detecting the hash marker. In 1586 * this case, we simply set dvar to NULL and 1587 * break; the conditional after the loop will 1588 * send us back to top. 1589 */ 1590 dvar = NULL; 1591 break; 1592 } 1593 1594 goto next; 1595 } 1596 1597 if (dtuple->dtt_nkeys != nkeys) 1598 goto next; 1599 1600 for (i = 0; i < nkeys; i++, dkey++) { 1601 if (dkey->dttk_size != key[i].dttk_size) 1602 goto next; /* size or type mismatch */ 1603 1604 if (dkey->dttk_size != 0) { 1605 if (dtrace_bcmp( 1606 (void *)(uintptr_t)key[i].dttk_value, 1607 (void *)(uintptr_t)dkey->dttk_value, 1608 dkey->dttk_size)) 1609 goto next; 1610 } else { 1611 if (dkey->dttk_value != key[i].dttk_value) 1612 goto next; 1613 } 1614 } 1615 1616 if (op != DTRACE_DYNVAR_DEALLOC) 1617 return (dvar); 1618 1619 ASSERT(dvar->dtdv_next == NULL || 1620 dvar->dtdv_next->dtdv_hashval != DTRACE_DYNHASH_FREE); 1621 1622 if (prev != NULL) { 1623 ASSERT(hash[bucket].dtdh_chain != dvar); 1624 ASSERT(start != dvar); 1625 ASSERT(prev->dtdv_next == dvar); 1626 prev->dtdv_next = dvar->dtdv_next; 1627 } else { 1628 if (dtrace_casptr(&hash[bucket].dtdh_chain, 1629 start, dvar->dtdv_next) != start) { 1630 /* 1631 * We have failed to atomically swing the 1632 * hash table head pointer, presumably because 1633 * of a conflicting allocation on another CPU. 1634 * We need to reread the hash chain and try 1635 * again. 1636 */ 1637 goto top; 1638 } 1639 } 1640 1641 dtrace_membar_producer(); 1642 1643 /* 1644 * Now set the hash value to indicate that it's free. 1645 */ 1646 ASSERT(hash[bucket].dtdh_chain != dvar); 1647 dvar->dtdv_hashval = DTRACE_DYNHASH_FREE; 1648 1649 dtrace_membar_producer(); 1650 1651 /* 1652 * Set the next pointer to point at the dirty list, and 1653 * atomically swing the dirty pointer to the newly freed dvar. 1654 */ 1655 do { 1656 next = dcpu->dtdsc_dirty; 1657 dvar->dtdv_next = next; 1658 } while (dtrace_casptr(&dcpu->dtdsc_dirty, next, dvar) != next); 1659 1660 /* 1661 * Finally, unlock this hash bucket. 1662 */ 1663 ASSERT(hash[bucket].dtdh_lock == lock); 1664 ASSERT(lock & 1); 1665 hash[bucket].dtdh_lock++; 1666 1667 return (NULL); 1668 next: 1669 prev = dvar; 1670 continue; 1671 } 1672 1673 if (dvar == NULL) { 1674 /* 1675 * If dvar is NULL, it is because we went off the rails: 1676 * one of the elements that we traversed in the hash chain 1677 * was deleted while we were traversing it. In this case, 1678 * we assert that we aren't doing a dealloc (deallocs lock 1679 * the hash bucket to prevent themselves from racing with 1680 * one another), and retry the hash chain traversal. 1681 */ 1682 ASSERT(op != DTRACE_DYNVAR_DEALLOC); 1683 goto top; 1684 } 1685 1686 if (op != DTRACE_DYNVAR_ALLOC) { 1687 /* 1688 * If we are not to allocate a new variable, we want to 1689 * return NULL now. Before we return, check that the value 1690 * of the lock word hasn't changed. If it has, we may have 1691 * seen an inconsistent snapshot. 1692 */ 1693 if (op == DTRACE_DYNVAR_NOALLOC) { 1694 if (hash[bucket].dtdh_lock != lock) 1695 goto top; 1696 } else { 1697 ASSERT(op == DTRACE_DYNVAR_DEALLOC); 1698 ASSERT(hash[bucket].dtdh_lock == lock); 1699 ASSERT(lock & 1); 1700 hash[bucket].dtdh_lock++; 1701 } 1702 1703 return (NULL); 1704 } 1705 1706 /* 1707 * We need to allocate a new dynamic variable. The size we need is the 1708 * size of dtrace_dynvar plus the size of nkeys dtrace_key_t's plus the 1709 * size of any auxiliary key data (rounded up to 8-byte alignment) plus 1710 * the size of any referred-to data (dsize). We then round the final 1711 * size up to the chunksize for allocation. 1712 */ 1713 for (ksize = 0, i = 0; i < nkeys; i++) 1714 ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t)); 1715 1716 /* 1717 * This should be pretty much impossible, but could happen if, say, 1718 * strange DIF specified the tuple. Ideally, this should be an 1719 * assertion and not an error condition -- but that requires that the 1720 * chunksize calculation in dtrace_difo_chunksize() be absolutely 1721 * bullet-proof. (That is, it must not be able to be fooled by 1722 * malicious DIF.) Given the lack of backwards branches in DIF, 1723 * solving this would presumably not amount to solving the Halting 1724 * Problem -- but it still seems awfully hard. 1725 */ 1726 if (sizeof (dtrace_dynvar_t) + sizeof (dtrace_key_t) * (nkeys - 1) + 1727 ksize + dsize > chunksize) { 1728 dcpu->dtdsc_drops++; 1729 return (NULL); 1730 } 1731 1732 nstate = DTRACE_DSTATE_EMPTY; 1733 1734 do { 1735 retry: 1736 free = dcpu->dtdsc_free; 1737 1738 if (free == NULL) { 1739 dtrace_dynvar_t *clean = dcpu->dtdsc_clean; 1740 void *rval; 1741 1742 if (clean == NULL) { 1743 /* 1744 * We're out of dynamic variable space on 1745 * this CPU. Unless we have tried all CPUs, 1746 * we'll try to allocate from a different 1747 * CPU. 1748 */ 1749 switch (dstate->dtds_state) { 1750 case DTRACE_DSTATE_CLEAN: { 1751 void *sp = &dstate->dtds_state; 1752 1753 if (++cpu >= NCPU) 1754 cpu = 0; 1755 1756 if (dcpu->dtdsc_dirty != NULL && 1757 nstate == DTRACE_DSTATE_EMPTY) 1758 nstate = DTRACE_DSTATE_DIRTY; 1759 1760 if (dcpu->dtdsc_rinsing != NULL) 1761 nstate = DTRACE_DSTATE_RINSING; 1762 1763 dcpu = &dstate->dtds_percpu[cpu]; 1764 1765 if (cpu != me) 1766 goto retry; 1767 1768 (void) dtrace_cas32(sp, 1769 DTRACE_DSTATE_CLEAN, nstate); 1770 1771 /* 1772 * To increment the correct bean 1773 * counter, take another lap. 1774 */ 1775 goto retry; 1776 } 1777 1778 case DTRACE_DSTATE_DIRTY: 1779 dcpu->dtdsc_dirty_drops++; 1780 break; 1781 1782 case DTRACE_DSTATE_RINSING: 1783 dcpu->dtdsc_rinsing_drops++; 1784 break; 1785 1786 case DTRACE_DSTATE_EMPTY: 1787 dcpu->dtdsc_drops++; 1788 break; 1789 } 1790 1791 DTRACE_CPUFLAG_SET(CPU_DTRACE_DROP); 1792 return (NULL); 1793 } 1794 1795 /* 1796 * The clean list appears to be non-empty. We want to 1797 * move the clean list to the free list; we start by 1798 * moving the clean pointer aside. 1799 */ 1800 if (dtrace_casptr(&dcpu->dtdsc_clean, 1801 clean, NULL) != clean) { 1802 /* 1803 * We are in one of two situations: 1804 * 1805 * (a) The clean list was switched to the 1806 * free list by another CPU. 1807 * 1808 * (b) The clean list was added to by the 1809 * cleansing cyclic. 1810 * 1811 * In either of these situations, we can 1812 * just reattempt the free list allocation. 1813 */ 1814 goto retry; 1815 } 1816 1817 ASSERT(clean->dtdv_hashval == DTRACE_DYNHASH_FREE); 1818 1819 /* 1820 * Now we'll move the clean list to our free list. 1821 * It's impossible for this to fail: the only way 1822 * the free list can be updated is through this 1823 * code path, and only one CPU can own the clean list. 1824 * Thus, it would only be possible for this to fail if 1825 * this code were racing with dtrace_dynvar_clean(). 1826 * (That is, if dtrace_dynvar_clean() updated the clean 1827 * list, and we ended up racing to update the free 1828 * list.) This race is prevented by the dtrace_sync() 1829 * in dtrace_dynvar_clean() -- which flushes the 1830 * owners of the clean lists out before resetting 1831 * the clean lists. 1832 */ 1833 dcpu = &dstate->dtds_percpu[me]; 1834 rval = dtrace_casptr(&dcpu->dtdsc_free, NULL, clean); 1835 ASSERT(rval == NULL); 1836 goto retry; 1837 } 1838 1839 dvar = free; 1840 new_free = dvar->dtdv_next; 1841 } while (dtrace_casptr(&dcpu->dtdsc_free, free, new_free) != free); 1842 1843 /* 1844 * We have now allocated a new chunk. We copy the tuple keys into the 1845 * tuple array and copy any referenced key data into the data space 1846 * following the tuple array. As we do this, we relocate dttk_value 1847 * in the final tuple to point to the key data address in the chunk. 1848 */ 1849 kdata = (uintptr_t)&dvar->dtdv_tuple.dtt_key[nkeys]; 1850 dvar->dtdv_data = (void *)(kdata + ksize); 1851 dvar->dtdv_tuple.dtt_nkeys = nkeys; 1852 1853 for (i = 0; i < nkeys; i++) { 1854 dtrace_key_t *dkey = &dvar->dtdv_tuple.dtt_key[i]; 1855 size_t kesize = key[i].dttk_size; 1856 1857 if (kesize != 0) { 1858 dtrace_bcopy( 1859 (const void *)(uintptr_t)key[i].dttk_value, 1860 (void *)kdata, kesize); 1861 dkey->dttk_value = kdata; 1862 kdata += P2ROUNDUP(kesize, sizeof (uint64_t)); 1863 } else { 1864 dkey->dttk_value = key[i].dttk_value; 1865 } 1866 1867 dkey->dttk_size = kesize; 1868 } 1869 1870 ASSERT(dvar->dtdv_hashval == DTRACE_DYNHASH_FREE); 1871 dvar->dtdv_hashval = hashval; 1872 dvar->dtdv_next = start; 1873 1874 if (dtrace_casptr(&hash[bucket].dtdh_chain, start, dvar) == start) 1875 return (dvar); 1876 1877 /* 1878 * The cas has failed. Either another CPU is adding an element to 1879 * this hash chain, or another CPU is deleting an element from this 1880 * hash chain. The simplest way to deal with both of these cases 1881 * (though not necessarily the most efficient) is to free our 1882 * allocated block and tail-call ourselves. Note that the free is 1883 * to the dirty list and _not_ to the free list. This is to prevent 1884 * races with allocators, above. 1885 */ 1886 dvar->dtdv_hashval = DTRACE_DYNHASH_FREE; 1887 1888 dtrace_membar_producer(); 1889 1890 do { 1891 free = dcpu->dtdsc_dirty; 1892 dvar->dtdv_next = free; 1893 } while (dtrace_casptr(&dcpu->dtdsc_dirty, free, dvar) != free); 1894 1895 return (dtrace_dynvar(dstate, nkeys, key, dsize, op, mstate, vstate)); 1896 } 1897 1898 /*ARGSUSED*/ 1899 static void 1900 dtrace_aggregate_min(uint64_t *oval, uint64_t nval, uint64_t arg) 1901 { 1902 if ((int64_t)nval < (int64_t)*oval) 1903 *oval = nval; 1904 } 1905 1906 /*ARGSUSED*/ 1907 static void 1908 dtrace_aggregate_max(uint64_t *oval, uint64_t nval, uint64_t arg) 1909 { 1910 if ((int64_t)nval > (int64_t)*oval) 1911 *oval = nval; 1912 } 1913 1914 static void 1915 dtrace_aggregate_quantize(uint64_t *quanta, uint64_t nval, uint64_t incr) 1916 { 1917 int i, zero = DTRACE_QUANTIZE_ZEROBUCKET; 1918 int64_t val = (int64_t)nval; 1919 1920 if (val < 0) { 1921 for (i = 0; i < zero; i++) { 1922 if (val <= DTRACE_QUANTIZE_BUCKETVAL(i)) { 1923 quanta[i] += incr; 1924 return; 1925 } 1926 } 1927 } else { 1928 for (i = zero + 1; i < DTRACE_QUANTIZE_NBUCKETS; i++) { 1929 if (val < DTRACE_QUANTIZE_BUCKETVAL(i)) { 1930 quanta[i - 1] += incr; 1931 return; 1932 } 1933 } 1934 1935 quanta[DTRACE_QUANTIZE_NBUCKETS - 1] += incr; 1936 return; 1937 } 1938 1939 ASSERT(0); 1940 } 1941 1942 static void 1943 dtrace_aggregate_lquantize(uint64_t *lquanta, uint64_t nval, uint64_t incr) 1944 { 1945 uint64_t arg = *lquanta++; 1946 int32_t base = DTRACE_LQUANTIZE_BASE(arg); 1947 uint16_t step = DTRACE_LQUANTIZE_STEP(arg); 1948 uint16_t levels = DTRACE_LQUANTIZE_LEVELS(arg); 1949 int32_t val = (int32_t)nval, level; 1950 1951 ASSERT(step != 0); 1952 ASSERT(levels != 0); 1953 1954 if (val < base) { 1955 /* 1956 * This is an underflow. 1957 */ 1958 lquanta[0] += incr; 1959 return; 1960 } 1961 1962 level = (val - base) / step; 1963 1964 if (level < levels) { 1965 lquanta[level + 1] += incr; 1966 return; 1967 } 1968 1969 /* 1970 * This is an overflow. 1971 */ 1972 lquanta[levels + 1] += incr; 1973 } 1974 1975 static int 1976 dtrace_aggregate_llquantize_bucket(uint16_t factor, uint16_t low, 1977 uint16_t high, uint16_t nsteps, int64_t value) 1978 { 1979 int64_t this = 1, last, next; 1980 int base = 1, order; 1981 1982 ASSERT(factor <= nsteps); 1983 ASSERT(nsteps % factor == 0); 1984 1985 for (order = 0; order < low; order++) 1986 this *= factor; 1987 1988 /* 1989 * If our value is less than our factor taken to the power of the 1990 * low order of magnitude, it goes into the zeroth bucket. 1991 */ 1992 if (value < (last = this)) 1993 return (0); 1994 1995 for (this *= factor; order <= high; order++) { 1996 int nbuckets = this > nsteps ? nsteps : this; 1997 1998 if ((next = this * factor) < this) { 1999 /* 2000 * We should not generally get log/linear quantizations 2001 * with a high magnitude that allows 64-bits to 2002 * overflow, but we nonetheless protect against this 2003 * by explicitly checking for overflow, and clamping 2004 * our value accordingly. 2005 */ 2006 value = this - 1; 2007 } 2008 2009 if (value < this) { 2010 /* 2011 * If our value lies within this order of magnitude, 2012 * determine its position by taking the offset within 2013 * the order of magnitude, dividing by the bucket 2014 * width, and adding to our (accumulated) base. 2015 */ 2016 return (base + (value - last) / (this / nbuckets)); 2017 } 2018 2019 base += nbuckets - (nbuckets / factor); 2020 last = this; 2021 this = next; 2022 } 2023 2024 /* 2025 * Our value is greater than or equal to our factor taken to the 2026 * power of one plus the high magnitude -- return the top bucket. 2027 */ 2028 return (base); 2029 } 2030 2031 static void 2032 dtrace_aggregate_llquantize(uint64_t *llquanta, uint64_t nval, uint64_t incr) 2033 { 2034 uint64_t arg = *llquanta++; 2035 uint16_t factor = DTRACE_LLQUANTIZE_FACTOR(arg); 2036 uint16_t low = DTRACE_LLQUANTIZE_LOW(arg); 2037 uint16_t high = DTRACE_LLQUANTIZE_HIGH(arg); 2038 uint16_t nsteps = DTRACE_LLQUANTIZE_NSTEP(arg); 2039 2040 llquanta[dtrace_aggregate_llquantize_bucket(factor, 2041 low, high, nsteps, nval)] += incr; 2042 } 2043 2044 /*ARGSUSED*/ 2045 static void 2046 dtrace_aggregate_avg(uint64_t *data, uint64_t nval, uint64_t arg) 2047 { 2048 data[0]++; 2049 data[1] += nval; 2050 } 2051 2052 /*ARGSUSED*/ 2053 static void 2054 dtrace_aggregate_stddev(uint64_t *data, uint64_t nval, uint64_t arg) 2055 { 2056 int64_t snval = (int64_t)nval; 2057 uint64_t tmp[2]; 2058 2059 data[0]++; 2060 data[1] += nval; 2061 2062 /* 2063 * What we want to say here is: 2064 * 2065 * data[2] += nval * nval; 2066 * 2067 * But given that nval is 64-bit, we could easily overflow, so 2068 * we do this as 128-bit arithmetic. 2069 */ 2070 if (snval < 0) 2071 snval = -snval; 2072 2073 dtrace_multiply_128((uint64_t)snval, (uint64_t)snval, tmp); 2074 dtrace_add_128(data + 2, tmp, data + 2); 2075 } 2076 2077 /*ARGSUSED*/ 2078 static void 2079 dtrace_aggregate_count(uint64_t *oval, uint64_t nval, uint64_t arg) 2080 { 2081 *oval = *oval + 1; 2082 } 2083 2084 /*ARGSUSED*/ 2085 static void 2086 dtrace_aggregate_sum(uint64_t *oval, uint64_t nval, uint64_t arg) 2087 { 2088 *oval += nval; 2089 } 2090 2091 /* 2092 * Aggregate given the tuple in the principal data buffer, and the aggregating 2093 * action denoted by the specified dtrace_aggregation_t. The aggregation 2094 * buffer is specified as the buf parameter. This routine does not return 2095 * failure; if there is no space in the aggregation buffer, the data will be 2096 * dropped, and a corresponding counter incremented. 2097 */ 2098 static void 2099 dtrace_aggregate(dtrace_aggregation_t *agg, dtrace_buffer_t *dbuf, 2100 intptr_t offset, dtrace_buffer_t *buf, uint64_t expr, uint64_t arg) 2101 { 2102 dtrace_recdesc_t *rec = &agg->dtag_action.dta_rec; 2103 uint32_t i, ndx, size, fsize; 2104 uint32_t align = sizeof (uint64_t) - 1; 2105 dtrace_aggbuffer_t *agb; 2106 dtrace_aggkey_t *key; 2107 uint32_t hashval = 0, limit, isstr; 2108 caddr_t tomax, data, kdata; 2109 dtrace_actkind_t action; 2110 dtrace_action_t *act; 2111 uintptr_t offs; 2112 2113 if (buf == NULL) 2114 return; 2115 2116 if (!agg->dtag_hasarg) { 2117 /* 2118 * Currently, only quantize() and lquantize() take additional 2119 * arguments, and they have the same semantics: an increment 2120 * value that defaults to 1 when not present. If additional 2121 * aggregating actions take arguments, the setting of the 2122 * default argument value will presumably have to become more 2123 * sophisticated... 2124 */ 2125 arg = 1; 2126 } 2127 2128 action = agg->dtag_action.dta_kind - DTRACEACT_AGGREGATION; 2129 size = rec->dtrd_offset - agg->dtag_base; 2130 fsize = size + rec->dtrd_size; 2131 2132 ASSERT(dbuf->dtb_tomax != NULL); 2133 data = dbuf->dtb_tomax + offset + agg->dtag_base; 2134 2135 if ((tomax = buf->dtb_tomax) == NULL) { 2136 dtrace_buffer_drop(buf); 2137 return; 2138 } 2139 2140 /* 2141 * The metastructure is always at the bottom of the buffer. 2142 */ 2143 agb = (dtrace_aggbuffer_t *)(tomax + buf->dtb_size - 2144 sizeof (dtrace_aggbuffer_t)); 2145 2146 if (buf->dtb_offset == 0) { 2147 /* 2148 * We just kludge up approximately 1/8th of the size to be 2149 * buckets. If this guess ends up being routinely 2150 * off-the-mark, we may need to dynamically readjust this 2151 * based on past performance. 2152 */ 2153 uintptr_t hashsize = (buf->dtb_size >> 3) / sizeof (uintptr_t); 2154 2155 if ((uintptr_t)agb - hashsize * sizeof (dtrace_aggkey_t *) < 2156 (uintptr_t)tomax || hashsize == 0) { 2157 /* 2158 * We've been given a ludicrously small buffer; 2159 * increment our drop count and leave. 2160 */ 2161 dtrace_buffer_drop(buf); 2162 return; 2163 } 2164 2165 /* 2166 * And now, a pathetic attempt to try to get a an odd (or 2167 * perchance, a prime) hash size for better hash distribution. 2168 */ 2169 if (hashsize > (DTRACE_AGGHASHSIZE_SLEW << 3)) 2170 hashsize -= DTRACE_AGGHASHSIZE_SLEW; 2171 2172 agb->dtagb_hashsize = hashsize; 2173 agb->dtagb_hash = (dtrace_aggkey_t **)((uintptr_t)agb - 2174 agb->dtagb_hashsize * sizeof (dtrace_aggkey_t *)); 2175 agb->dtagb_free = (uintptr_t)agb->dtagb_hash; 2176 2177 for (i = 0; i < agb->dtagb_hashsize; i++) 2178 agb->dtagb_hash[i] = NULL; 2179 } 2180 2181 ASSERT(agg->dtag_first != NULL); 2182 ASSERT(agg->dtag_first->dta_intuple); 2183 2184 /* 2185 * Calculate the hash value based on the key. Note that we _don't_ 2186 * include the aggid in the hashing (but we will store it as part of 2187 * the key). The hashing algorithm is Bob Jenkins' "One-at-a-time" 2188 * algorithm: a simple, quick algorithm that has no known funnels, and 2189 * gets good distribution in practice. The efficacy of the hashing 2190 * algorithm (and a comparison with other algorithms) may be found by 2191 * running the ::dtrace_aggstat MDB dcmd. 2192 */ 2193 for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) { 2194 i = act->dta_rec.dtrd_offset - agg->dtag_base; 2195 limit = i + act->dta_rec.dtrd_size; 2196 ASSERT(limit <= size); 2197 isstr = DTRACEACT_ISSTRING(act); 2198 2199 for (; i < limit; i++) { 2200 hashval += data[i]; 2201 hashval += (hashval << 10); 2202 hashval ^= (hashval >> 6); 2203 2204 if (isstr && data[i] == '\0') 2205 break; 2206 } 2207 } 2208 2209 hashval += (hashval << 3); 2210 hashval ^= (hashval >> 11); 2211 hashval += (hashval << 15); 2212 2213 /* 2214 * Yes, the divide here is expensive -- but it's generally the least 2215 * of the performance issues given the amount of data that we iterate 2216 * over to compute hash values, compare data, etc. 2217 */ 2218 ndx = hashval % agb->dtagb_hashsize; 2219 2220 for (key = agb->dtagb_hash[ndx]; key != NULL; key = key->dtak_next) { 2221 ASSERT((caddr_t)key >= tomax); 2222 ASSERT((caddr_t)key < tomax + buf->dtb_size); 2223 2224 if (hashval != key->dtak_hashval || key->dtak_size != size) 2225 continue; 2226 2227 kdata = key->dtak_data; 2228 ASSERT(kdata >= tomax && kdata < tomax + buf->dtb_size); 2229 2230 for (act = agg->dtag_first; act->dta_intuple; 2231 act = act->dta_next) { 2232 i = act->dta_rec.dtrd_offset - agg->dtag_base; 2233 limit = i + act->dta_rec.dtrd_size; 2234 ASSERT(limit <= size); 2235 isstr = DTRACEACT_ISSTRING(act); 2236 2237 for (; i < limit; i++) { 2238 if (kdata[i] != data[i]) 2239 goto next; 2240 2241 if (isstr && data[i] == '\0') 2242 break; 2243 } 2244 } 2245 2246 if (action != key->dtak_action) { 2247 /* 2248 * We are aggregating on the same value in the same 2249 * aggregation with two different aggregating actions. 2250 * (This should have been picked up in the compiler, 2251 * so we may be dealing with errant or devious DIF.) 2252 * This is an error condition; we indicate as much, 2253 * and return. 2254 */ 2255 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); 2256 return; 2257 } 2258 2259 /* 2260 * This is a hit: we need to apply the aggregator to 2261 * the value at this key. 2262 */ 2263 agg->dtag_aggregate((uint64_t *)(kdata + size), expr, arg); 2264 return; 2265 next: 2266 continue; 2267 } 2268 2269 /* 2270 * We didn't find it. We need to allocate some zero-filled space, 2271 * link it into the hash table appropriately, and apply the aggregator 2272 * to the (zero-filled) value. 2273 */ 2274 offs = buf->dtb_offset; 2275 while (offs & (align - 1)) 2276 offs += sizeof (uint32_t); 2277 2278 /* 2279 * If we don't have enough room to both allocate a new key _and_ 2280 * its associated data, increment the drop count and return. 2281 */ 2282 if ((uintptr_t)tomax + offs + fsize > 2283 agb->dtagb_free - sizeof (dtrace_aggkey_t)) { 2284 dtrace_buffer_drop(buf); 2285 return; 2286 } 2287 2288 /*CONSTCOND*/ 2289 ASSERT(!(sizeof (dtrace_aggkey_t) & (sizeof (uintptr_t) - 1))); 2290 key = (dtrace_aggkey_t *)(agb->dtagb_free - sizeof (dtrace_aggkey_t)); 2291 agb->dtagb_free -= sizeof (dtrace_aggkey_t); 2292 2293 key->dtak_data = kdata = tomax + offs; 2294 buf->dtb_offset = offs + fsize; 2295 2296 /* 2297 * Now copy the data across. 2298 */ 2299 *((dtrace_aggid_t *)kdata) = agg->dtag_id; 2300 2301 for (i = sizeof (dtrace_aggid_t); i < size; i++) 2302 kdata[i] = data[i]; 2303 2304 /* 2305 * Because strings are not zeroed out by default, we need to iterate 2306 * looking for actions that store strings, and we need to explicitly 2307 * pad these strings out with zeroes. 2308 */ 2309 for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) { 2310 int nul; 2311 2312 if (!DTRACEACT_ISSTRING(act)) 2313 continue; 2314 2315 i = act->dta_rec.dtrd_offset - agg->dtag_base; 2316 limit = i + act->dta_rec.dtrd_size; 2317 ASSERT(limit <= size); 2318 2319 for (nul = 0; i < limit; i++) { 2320 if (nul) { 2321 kdata[i] = '\0'; 2322 continue; 2323 } 2324 2325 if (data[i] != '\0') 2326 continue; 2327 2328 nul = 1; 2329 } 2330 } 2331 2332 for (i = size; i < fsize; i++) 2333 kdata[i] = 0; 2334 2335 key->dtak_hashval = hashval; 2336 key->dtak_size = size; 2337 key->dtak_action = action; 2338 key->dtak_next = agb->dtagb_hash[ndx]; 2339 agb->dtagb_hash[ndx] = key; 2340 2341 /* 2342 * Finally, apply the aggregator. 2343 */ 2344 *((uint64_t *)(key->dtak_data + size)) = agg->dtag_initial; 2345 agg->dtag_aggregate((uint64_t *)(key->dtak_data + size), expr, arg); 2346 } 2347 2348 /* 2349 * Given consumer state, this routine finds a speculation in the INACTIVE 2350 * state and transitions it into the ACTIVE state. If there is no speculation 2351 * in the INACTIVE state, 0 is returned. In this case, no error counter is 2352 * incremented -- it is up to the caller to take appropriate action. 2353 */ 2354 static int 2355 dtrace_speculation(dtrace_state_t *state) 2356 { 2357 int i = 0; 2358 dtrace_speculation_state_t current; 2359 uint32_t *stat = &state->dts_speculations_unavail, count; 2360 2361 while (i < state->dts_nspeculations) { 2362 dtrace_speculation_t *spec = &state->dts_speculations[i]; 2363 2364 current = spec->dtsp_state; 2365 2366 if (current != DTRACESPEC_INACTIVE) { 2367 if (current == DTRACESPEC_COMMITTINGMANY || 2368 current == DTRACESPEC_COMMITTING || 2369 current == DTRACESPEC_DISCARDING) 2370 stat = &state->dts_speculations_busy; 2371 i++; 2372 continue; 2373 } 2374 2375 if (dtrace_cas32((uint32_t *)&spec->dtsp_state, 2376 current, DTRACESPEC_ACTIVE) == current) 2377 return (i + 1); 2378 } 2379 2380 /* 2381 * We couldn't find a speculation. If we found as much as a single 2382 * busy speculation buffer, we'll attribute this failure as "busy" 2383 * instead of "unavail". 2384 */ 2385 do { 2386 count = *stat; 2387 } while (dtrace_cas32(stat, count, count + 1) != count); 2388 2389 return (0); 2390 } 2391 2392 /* 2393 * This routine commits an active speculation. If the specified speculation 2394 * is not in a valid state to perform a commit(), this routine will silently do 2395 * nothing. The state of the specified speculation is transitioned according 2396 * to the state transition diagram outlined in <sys/dtrace_impl.h> 2397 */ 2398 static void 2399 dtrace_speculation_commit(dtrace_state_t *state, processorid_t cpu, 2400 dtrace_specid_t which) 2401 { 2402 dtrace_speculation_t *spec; 2403 dtrace_buffer_t *src, *dest; 2404 uintptr_t daddr, saddr, dlimit; 2405 dtrace_speculation_state_t current, new; 2406 intptr_t offs; 2407 2408 if (which == 0) 2409 return; 2410 2411 if (which > state->dts_nspeculations) { 2412 cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP; 2413 return; 2414 } 2415 2416 spec = &state->dts_speculations[which - 1]; 2417 src = &spec->dtsp_buffer[cpu]; 2418 dest = &state->dts_buffer[cpu]; 2419 2420 do { 2421 current = spec->dtsp_state; 2422 2423 if (current == DTRACESPEC_COMMITTINGMANY) 2424 break; 2425 2426 switch (current) { 2427 case DTRACESPEC_INACTIVE: 2428 case DTRACESPEC_DISCARDING: 2429 return; 2430 2431 case DTRACESPEC_COMMITTING: 2432 /* 2433 * This is only possible if we are (a) commit()'ing 2434 * without having done a prior speculate() on this CPU 2435 * and (b) racing with another commit() on a different 2436 * CPU. There's nothing to do -- we just assert that 2437 * our offset is 0. 2438 */ 2439 ASSERT(src->dtb_offset == 0); 2440 return; 2441 2442 case DTRACESPEC_ACTIVE: 2443 new = DTRACESPEC_COMMITTING; 2444 break; 2445 2446 case DTRACESPEC_ACTIVEONE: 2447 /* 2448 * This speculation is active on one CPU. If our 2449 * buffer offset is non-zero, we know that the one CPU 2450 * must be us. Otherwise, we are committing on a 2451 * different CPU from the speculate(), and we must 2452 * rely on being asynchronously cleaned. 2453 */ 2454 if (src->dtb_offset != 0) { 2455 new = DTRACESPEC_COMMITTING; 2456 break; 2457 } 2458 /*FALLTHROUGH*/ 2459 2460 case DTRACESPEC_ACTIVEMANY: 2461 new = DTRACESPEC_COMMITTINGMANY; 2462 break; 2463 2464 default: 2465 ASSERT(0); 2466 } 2467 } while (dtrace_cas32((uint32_t *)&spec->dtsp_state, 2468 current, new) != current); 2469 2470 /* 2471 * We have set the state to indicate that we are committing this 2472 * speculation. Now reserve the necessary space in the destination 2473 * buffer. 2474 */ 2475 if ((offs = dtrace_buffer_reserve(dest, src->dtb_offset, 2476 sizeof (uint64_t), state, NULL)) < 0) { 2477 dtrace_buffer_drop(dest); 2478 goto out; 2479 } 2480 2481 /* 2482 * We have the space; copy the buffer across. (Note that this is a 2483 * highly subobtimal bcopy(); in the unlikely event that this becomes 2484 * a serious performance issue, a high-performance DTrace-specific 2485 * bcopy() should obviously be invented.) 2486 */ 2487 daddr = (uintptr_t)dest->dtb_tomax + offs; 2488 dlimit = daddr + src->dtb_offset; 2489 saddr = (uintptr_t)src->dtb_tomax; 2490 2491 /* 2492 * First, the aligned portion. 2493 */ 2494 while (dlimit - daddr >= sizeof (uint64_t)) { 2495 *((uint64_t *)daddr) = *((uint64_t *)saddr); 2496 2497 daddr += sizeof (uint64_t); 2498 saddr += sizeof (uint64_t); 2499 } 2500 2501 /* 2502 * Now any left-over bit... 2503 */ 2504 while (dlimit - daddr) 2505 *((uint8_t *)daddr++) = *((uint8_t *)saddr++); 2506 2507 /* 2508 * Finally, commit the reserved space in the destination buffer. 2509 */ 2510 dest->dtb_offset = offs + src->dtb_offset; 2511 2512 out: 2513 /* 2514 * If we're lucky enough to be the only active CPU on this speculation 2515 * buffer, we can just set the state back to DTRACESPEC_INACTIVE. 2516 */ 2517 if (current == DTRACESPEC_ACTIVE || 2518 (current == DTRACESPEC_ACTIVEONE && new == DTRACESPEC_COMMITTING)) { 2519 uint32_t rval = dtrace_cas32((uint32_t *)&spec->dtsp_state, 2520 DTRACESPEC_COMMITTING, DTRACESPEC_INACTIVE); 2521 2522 ASSERT(rval == DTRACESPEC_COMMITTING); 2523 } 2524 2525 src->dtb_offset = 0; 2526 src->dtb_xamot_drops += src->dtb_drops; 2527 src->dtb_drops = 0; 2528 } 2529 2530 /* 2531 * This routine discards an active speculation. If the specified speculation 2532 * is not in a valid state to perform a discard(), this routine will silently 2533 * do nothing. The state of the specified speculation is transitioned 2534 * according to the state transition diagram outlined in <sys/dtrace_impl.h> 2535 */ 2536 static void 2537 dtrace_speculation_discard(dtrace_state_t *state, processorid_t cpu, 2538 dtrace_specid_t which) 2539 { 2540 dtrace_speculation_t *spec; 2541 dtrace_speculation_state_t current, new; 2542 dtrace_buffer_t *buf; 2543 2544 if (which == 0) 2545 return; 2546 2547 if (which > state->dts_nspeculations) { 2548 cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP; 2549 return; 2550 } 2551 2552 spec = &state->dts_speculations[which - 1]; 2553 buf = &spec->dtsp_buffer[cpu]; 2554 2555 do { 2556 current = spec->dtsp_state; 2557 2558 switch (current) { 2559 case DTRACESPEC_INACTIVE: 2560 case DTRACESPEC_COMMITTINGMANY: 2561 case DTRACESPEC_COMMITTING: 2562 case DTRACESPEC_DISCARDING: 2563 return; 2564 2565 case DTRACESPEC_ACTIVE: 2566 case DTRACESPEC_ACTIVEMANY: 2567 new = DTRACESPEC_DISCARDING; 2568 break; 2569 2570 case DTRACESPEC_ACTIVEONE: 2571 if (buf->dtb_offset != 0) { 2572 new = DTRACESPEC_INACTIVE; 2573 } else { 2574 new = DTRACESPEC_DISCARDING; 2575 } 2576 break; 2577 2578 default: 2579 ASSERT(0); 2580 } 2581 } while (dtrace_cas32((uint32_t *)&spec->dtsp_state, 2582 current, new) != current); 2583 2584 buf->dtb_offset = 0; 2585 buf->dtb_drops = 0; 2586 } 2587 2588 /* 2589 * Note: not called from probe context. This function is called 2590 * asynchronously from cross call context to clean any speculations that are 2591 * in the COMMITTINGMANY or DISCARDING states. These speculations may not be 2592 * transitioned back to the INACTIVE state until all CPUs have cleaned the 2593 * speculation. 2594 */ 2595 static void 2596 dtrace_speculation_clean_here(dtrace_state_t *state) 2597 { 2598 dtrace_icookie_t cookie; 2599 processorid_t cpu = CPU->cpu_id; 2600 dtrace_buffer_t *dest = &state->dts_buffer[cpu]; 2601 dtrace_specid_t i; 2602 2603 cookie = dtrace_interrupt_disable(); 2604 2605 if (dest->dtb_tomax == NULL) { 2606 dtrace_interrupt_enable(cookie); 2607 return; 2608 } 2609 2610 for (i = 0; i < state->dts_nspeculations; i++) { 2611 dtrace_speculation_t *spec = &state->dts_speculations[i]; 2612 dtrace_buffer_t *src = &spec->dtsp_buffer[cpu]; 2613 2614 if (src->dtb_tomax == NULL) 2615 continue; 2616 2617 if (spec->dtsp_state == DTRACESPEC_DISCARDING) { 2618 src->dtb_offset = 0; 2619 continue; 2620 } 2621 2622 if (spec->dtsp_state != DTRACESPEC_COMMITTINGMANY) 2623 continue; 2624 2625 if (src->dtb_offset == 0) 2626 continue; 2627 2628 dtrace_speculation_commit(state, cpu, i + 1); 2629 } 2630 2631 dtrace_interrupt_enable(cookie); 2632 } 2633 2634 /* 2635 * Note: not called from probe context. This function is called 2636 * asynchronously (and at a regular interval) to clean any speculations that 2637 * are in the COMMITTINGMANY or DISCARDING states. If it discovers that there 2638 * is work to be done, it cross calls all CPUs to perform that work; 2639 * COMMITMANY and DISCARDING speculations may not be transitioned back to the 2640 * INACTIVE state until they have been cleaned by all CPUs. 2641 */ 2642 static void 2643 dtrace_speculation_clean(dtrace_state_t *state) 2644 { 2645 int work = 0, rv; 2646 dtrace_specid_t i; 2647 2648 for (i = 0; i < state->dts_nspeculations; i++) { 2649 dtrace_speculation_t *spec = &state->dts_speculations[i]; 2650 2651 ASSERT(!spec->dtsp_cleaning); 2652 2653 if (spec->dtsp_state != DTRACESPEC_DISCARDING && 2654 spec->dtsp_state != DTRACESPEC_COMMITTINGMANY) 2655 continue; 2656 2657 work++; 2658 spec->dtsp_cleaning = 1; 2659 } 2660 2661 if (!work) 2662 return; 2663 2664 dtrace_xcall(DTRACE_CPUALL, 2665 (dtrace_xcall_t)dtrace_speculation_clean_here, state); 2666 2667 /* 2668 * We now know that all CPUs have committed or discarded their 2669 * speculation buffers, as appropriate. We can now set the state 2670 * to inactive. 2671 */ 2672 for (i = 0; i < state->dts_nspeculations; i++) { 2673 dtrace_speculation_t *spec = &state->dts_speculations[i]; 2674 dtrace_speculation_state_t current, new; 2675 2676 if (!spec->dtsp_cleaning) 2677 continue; 2678 2679 current = spec->dtsp_state; 2680 ASSERT(current == DTRACESPEC_DISCARDING || 2681 current == DTRACESPEC_COMMITTINGMANY); 2682 2683 new = DTRACESPEC_INACTIVE; 2684 2685 rv = dtrace_cas32((uint32_t *)&spec->dtsp_state, current, new); 2686 ASSERT(rv == current); 2687 spec->dtsp_cleaning = 0; 2688 } 2689 } 2690 2691 /* 2692 * Called as part of a speculate() to get the speculative buffer associated 2693 * with a given speculation. Returns NULL if the specified speculation is not 2694 * in an ACTIVE state. If the speculation is in the ACTIVEONE state -- and 2695 * the active CPU is not the specified CPU -- the speculation will be 2696 * atomically transitioned into the ACTIVEMANY state. 2697 */ 2698 static dtrace_buffer_t * 2699 dtrace_speculation_buffer(dtrace_state_t *state, processorid_t cpuid, 2700 dtrace_specid_t which) 2701 { 2702 dtrace_speculation_t *spec; 2703 dtrace_speculation_state_t current, new; 2704 dtrace_buffer_t *buf; 2705 2706 if (which == 0) 2707 return (NULL); 2708 2709 if (which > state->dts_nspeculations) { 2710 cpu_core[cpuid].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP; 2711 return (NULL); 2712 } 2713 2714 spec = &state->dts_speculations[which - 1]; 2715 buf = &spec->dtsp_buffer[cpuid]; 2716 2717 do { 2718 current = spec->dtsp_state; 2719 2720 switch (current) { 2721 case DTRACESPEC_INACTIVE: 2722 case DTRACESPEC_COMMITTINGMANY: 2723 case DTRACESPEC_DISCARDING: 2724 return (NULL); 2725 2726 case DTRACESPEC_COMMITTING: 2727 ASSERT(buf->dtb_offset == 0); 2728 return (NULL); 2729 2730 case DTRACESPEC_ACTIVEONE: 2731 /* 2732 * This speculation is currently active on one CPU. 2733 * Check the offset in the buffer; if it's non-zero, 2734 * that CPU must be us (and we leave the state alone). 2735 * If it's zero, assume that we're starting on a new 2736 * CPU -- and change the state to indicate that the 2737 * speculation is active on more than one CPU. 2738 */ 2739 if (buf->dtb_offset != 0) 2740 return (buf); 2741 2742 new = DTRACESPEC_ACTIVEMANY; 2743 break; 2744 2745 case DTRACESPEC_ACTIVEMANY: 2746 return (buf); 2747 2748 case DTRACESPEC_ACTIVE: 2749 new = DTRACESPEC_ACTIVEONE; 2750 break; 2751 2752 default: 2753 ASSERT(0); 2754 } 2755 } while (dtrace_cas32((uint32_t *)&spec->dtsp_state, 2756 current, new) != current); 2757 2758 ASSERT(new == DTRACESPEC_ACTIVEONE || new == DTRACESPEC_ACTIVEMANY); 2759 return (buf); 2760 } 2761 2762 /* 2763 * Return a string. In the event that the user lacks the privilege to access 2764 * arbitrary kernel memory, we copy the string out to scratch memory so that we 2765 * don't fail access checking. 2766 * 2767 * dtrace_dif_variable() uses this routine as a helper for various 2768 * builtin values such as 'execname' and 'probefunc.' 2769 */ 2770 uintptr_t 2771 dtrace_dif_varstr(uintptr_t addr, dtrace_state_t *state, 2772 dtrace_mstate_t *mstate) 2773 { 2774 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 2775 uintptr_t ret; 2776 size_t strsz; 2777 2778 /* 2779 * The easy case: this probe is allowed to read all of memory, so 2780 * we can just return this as a vanilla pointer. 2781 */ 2782 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) 2783 return (addr); 2784 2785 /* 2786 * This is the tougher case: we copy the string in question from 2787 * kernel memory into scratch memory and return it that way: this 2788 * ensures that we won't trip up when access checking tests the 2789 * BYREF return value. 2790 */ 2791 strsz = dtrace_strlen((char *)addr, size) + 1; 2792 2793 if (mstate->dtms_scratch_ptr + strsz > 2794 mstate->dtms_scratch_base + mstate->dtms_scratch_size) { 2795 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 2796 return (NULL); 2797 } 2798 2799 dtrace_strcpy((const void *)addr, (void *)mstate->dtms_scratch_ptr, 2800 strsz); 2801 ret = mstate->dtms_scratch_ptr; 2802 mstate->dtms_scratch_ptr += strsz; 2803 return (ret); 2804 } 2805 2806 /* 2807 * This function implements the DIF emulator's variable lookups. The emulator 2808 * passes a reserved variable identifier and optional built-in array index. 2809 */ 2810 static uint64_t 2811 dtrace_dif_variable(dtrace_mstate_t *mstate, dtrace_state_t *state, uint64_t v, 2812 uint64_t ndx) 2813 { 2814 /* 2815 * If we're accessing one of the uncached arguments, we'll turn this 2816 * into a reference in the args array. 2817 */ 2818 if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9) { 2819 ndx = v - DIF_VAR_ARG0; 2820 v = DIF_VAR_ARGS; 2821 } 2822 2823 switch (v) { 2824 case DIF_VAR_ARGS: 2825 if (!(mstate->dtms_access & DTRACE_ACCESS_ARGS)) { 2826 cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= 2827 CPU_DTRACE_KPRIV; 2828 return (0); 2829 } 2830 2831 ASSERT(mstate->dtms_present & DTRACE_MSTATE_ARGS); 2832 if (ndx >= sizeof (mstate->dtms_arg) / 2833 sizeof (mstate->dtms_arg[0])) { 2834 int aframes = mstate->dtms_probe->dtpr_aframes + 2; 2835 dtrace_provider_t *pv; 2836 uint64_t val; 2837 2838 pv = mstate->dtms_probe->dtpr_provider; 2839 if (pv->dtpv_pops.dtps_getargval != NULL) 2840 val = pv->dtpv_pops.dtps_getargval(pv->dtpv_arg, 2841 mstate->dtms_probe->dtpr_id, 2842 mstate->dtms_probe->dtpr_arg, ndx, aframes); 2843 else 2844 val = dtrace_getarg(ndx, aframes); 2845 2846 /* 2847 * This is regrettably required to keep the compiler 2848 * from tail-optimizing the call to dtrace_getarg(). 2849 * The condition always evaluates to true, but the 2850 * compiler has no way of figuring that out a priori. 2851 * (None of this would be necessary if the compiler 2852 * could be relied upon to _always_ tail-optimize 2853 * the call to dtrace_getarg() -- but it can't.) 2854 */ 2855 if (mstate->dtms_probe != NULL) 2856 return (val); 2857 2858 ASSERT(0); 2859 } 2860 2861 return (mstate->dtms_arg[ndx]); 2862 2863 case DIF_VAR_UREGS: { 2864 klwp_t *lwp; 2865 2866 if (!dtrace_priv_proc(state, mstate)) 2867 return (0); 2868 2869 if ((lwp = curthread->t_lwp) == NULL) { 2870 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); 2871 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = NULL; 2872 return (0); 2873 } 2874 2875 return (dtrace_getreg(lwp->lwp_regs, ndx)); 2876 } 2877 2878 case DIF_VAR_VMREGS: { 2879 uint64_t rval; 2880 2881 if (!dtrace_priv_kernel(state)) 2882 return (0); 2883 2884 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 2885 2886 rval = dtrace_getvmreg(ndx, 2887 &cpu_core[CPU->cpu_id].cpuc_dtrace_flags); 2888 2889 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 2890 2891 return (rval); 2892 } 2893 2894 case DIF_VAR_CURTHREAD: 2895 if (!dtrace_priv_kernel(state)) 2896 return (0); 2897 return ((uint64_t)(uintptr_t)curthread); 2898 2899 case DIF_VAR_TIMESTAMP: 2900 if (!(mstate->dtms_present & DTRACE_MSTATE_TIMESTAMP)) { 2901 mstate->dtms_timestamp = dtrace_gethrtime(); 2902 mstate->dtms_present |= DTRACE_MSTATE_TIMESTAMP; 2903 } 2904 return (mstate->dtms_timestamp); 2905 2906 case DIF_VAR_VTIMESTAMP: 2907 ASSERT(dtrace_vtime_references != 0); 2908 return (curthread->t_dtrace_vtime); 2909 2910 case DIF_VAR_WALLTIMESTAMP: 2911 if (!(mstate->dtms_present & DTRACE_MSTATE_WALLTIMESTAMP)) { 2912 mstate->dtms_walltimestamp = dtrace_gethrestime(); 2913 mstate->dtms_present |= DTRACE_MSTATE_WALLTIMESTAMP; 2914 } 2915 return (mstate->dtms_walltimestamp); 2916 2917 case DIF_VAR_IPL: 2918 if (!dtrace_priv_kernel(state)) 2919 return (0); 2920 if (!(mstate->dtms_present & DTRACE_MSTATE_IPL)) { 2921 mstate->dtms_ipl = dtrace_getipl(); 2922 mstate->dtms_present |= DTRACE_MSTATE_IPL; 2923 } 2924 return (mstate->dtms_ipl); 2925 2926 case DIF_VAR_EPID: 2927 ASSERT(mstate->dtms_present & DTRACE_MSTATE_EPID); 2928 return (mstate->dtms_epid); 2929 2930 case DIF_VAR_ID: 2931 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); 2932 return (mstate->dtms_probe->dtpr_id); 2933 2934 case DIF_VAR_STACKDEPTH: 2935 if (!dtrace_priv_kernel(state)) 2936 return (0); 2937 if (!(mstate->dtms_present & DTRACE_MSTATE_STACKDEPTH)) { 2938 int aframes = mstate->dtms_probe->dtpr_aframes + 2; 2939 2940 mstate->dtms_stackdepth = dtrace_getstackdepth(aframes); 2941 mstate->dtms_present |= DTRACE_MSTATE_STACKDEPTH; 2942 } 2943 return (mstate->dtms_stackdepth); 2944 2945 case DIF_VAR_USTACKDEPTH: 2946 if (!dtrace_priv_proc(state, mstate)) 2947 return (0); 2948 if (!(mstate->dtms_present & DTRACE_MSTATE_USTACKDEPTH)) { 2949 /* 2950 * See comment in DIF_VAR_PID. 2951 */ 2952 if (DTRACE_ANCHORED(mstate->dtms_probe) && 2953 CPU_ON_INTR(CPU)) { 2954 mstate->dtms_ustackdepth = 0; 2955 } else { 2956 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 2957 mstate->dtms_ustackdepth = 2958 dtrace_getustackdepth(); 2959 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 2960 } 2961 mstate->dtms_present |= DTRACE_MSTATE_USTACKDEPTH; 2962 } 2963 return (mstate->dtms_ustackdepth); 2964 2965 case DIF_VAR_CALLER: 2966 if (!dtrace_priv_kernel(state)) 2967 return (0); 2968 if (!(mstate->dtms_present & DTRACE_MSTATE_CALLER)) { 2969 int aframes = mstate->dtms_probe->dtpr_aframes + 2; 2970 2971 if (!DTRACE_ANCHORED(mstate->dtms_probe)) { 2972 /* 2973 * If this is an unanchored probe, we are 2974 * required to go through the slow path: 2975 * dtrace_caller() only guarantees correct 2976 * results for anchored probes. 2977 */ 2978 pc_t caller[2]; 2979 2980 dtrace_getpcstack(caller, 2, aframes, 2981 (uint32_t *)(uintptr_t)mstate->dtms_arg[0]); 2982 mstate->dtms_caller = caller[1]; 2983 } else if ((mstate->dtms_caller = 2984 dtrace_caller(aframes)) == -1) { 2985 /* 2986 * We have failed to do this the quick way; 2987 * we must resort to the slower approach of 2988 * calling dtrace_getpcstack(). 2989 */ 2990 pc_t caller; 2991 2992 dtrace_getpcstack(&caller, 1, aframes, NULL); 2993 mstate->dtms_caller = caller; 2994 } 2995 2996 mstate->dtms_present |= DTRACE_MSTATE_CALLER; 2997 } 2998 return (mstate->dtms_caller); 2999 3000 case DIF_VAR_UCALLER: 3001 if (!dtrace_priv_proc(state, mstate)) 3002 return (0); 3003 3004 if (!(mstate->dtms_present & DTRACE_MSTATE_UCALLER)) { 3005 uint64_t ustack[3]; 3006 3007 /* 3008 * dtrace_getupcstack() fills in the first uint64_t 3009 * with the current PID. The second uint64_t will 3010 * be the program counter at user-level. The third 3011 * uint64_t will contain the caller, which is what 3012 * we're after. 3013 */ 3014 ustack[2] = NULL; 3015 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 3016 dtrace_getupcstack(ustack, 3); 3017 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 3018 mstate->dtms_ucaller = ustack[2]; 3019 mstate->dtms_present |= DTRACE_MSTATE_UCALLER; 3020 } 3021 3022 return (mstate->dtms_ucaller); 3023 3024 case DIF_VAR_PROBEPROV: 3025 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); 3026 return (dtrace_dif_varstr( 3027 (uintptr_t)mstate->dtms_probe->dtpr_provider->dtpv_name, 3028 state, mstate)); 3029 3030 case DIF_VAR_PROBEMOD: 3031 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); 3032 return (dtrace_dif_varstr( 3033 (uintptr_t)mstate->dtms_probe->dtpr_mod, 3034 state, mstate)); 3035 3036 case DIF_VAR_PROBEFUNC: 3037 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); 3038 return (dtrace_dif_varstr( 3039 (uintptr_t)mstate->dtms_probe->dtpr_func, 3040 state, mstate)); 3041 3042 case DIF_VAR_PROBENAME: 3043 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); 3044 return (dtrace_dif_varstr( 3045 (uintptr_t)mstate->dtms_probe->dtpr_name, 3046 state, mstate)); 3047 3048 case DIF_VAR_PID: 3049 if (!dtrace_priv_proc(state, mstate)) 3050 return (0); 3051 3052 /* 3053 * Note that we are assuming that an unanchored probe is 3054 * always due to a high-level interrupt. (And we're assuming 3055 * that there is only a single high level interrupt.) 3056 */ 3057 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3058 return (pid0.pid_id); 3059 3060 /* 3061 * It is always safe to dereference one's own t_procp pointer: 3062 * it always points to a valid, allocated proc structure. 3063 * Further, it is always safe to dereference the p_pidp member 3064 * of one's own proc structure. (These are truisms becuase 3065 * threads and processes don't clean up their own state -- 3066 * they leave that task to whomever reaps them.) 3067 */ 3068 return ((uint64_t)curthread->t_procp->p_pidp->pid_id); 3069 3070 case DIF_VAR_PPID: 3071 if (!dtrace_priv_proc(state, mstate)) 3072 return (0); 3073 3074 /* 3075 * See comment in DIF_VAR_PID. 3076 */ 3077 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3078 return (pid0.pid_id); 3079 3080 /* 3081 * It is always safe to dereference one's own t_procp pointer: 3082 * it always points to a valid, allocated proc structure. 3083 * (This is true because threads don't clean up their own 3084 * state -- they leave that task to whomever reaps them.) 3085 */ 3086 return ((uint64_t)curthread->t_procp->p_ppid); 3087 3088 case DIF_VAR_TID: 3089 /* 3090 * See comment in DIF_VAR_PID. 3091 */ 3092 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3093 return (0); 3094 3095 return ((uint64_t)curthread->t_tid); 3096 3097 case DIF_VAR_EXECNAME: 3098 if (!dtrace_priv_proc(state, mstate)) 3099 return (0); 3100 3101 /* 3102 * See comment in DIF_VAR_PID. 3103 */ 3104 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3105 return ((uint64_t)(uintptr_t)p0.p_user.u_comm); 3106 3107 /* 3108 * It is always safe to dereference one's own t_procp pointer: 3109 * it always points to a valid, allocated proc structure. 3110 * (This is true because threads don't clean up their own 3111 * state -- they leave that task to whomever reaps them.) 3112 */ 3113 return (dtrace_dif_varstr( 3114 (uintptr_t)curthread->t_procp->p_user.u_comm, 3115 state, mstate)); 3116 3117 case DIF_VAR_ZONENAME: 3118 if (!dtrace_priv_proc(state, mstate)) 3119 return (0); 3120 3121 /* 3122 * See comment in DIF_VAR_PID. 3123 */ 3124 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3125 return ((uint64_t)(uintptr_t)p0.p_zone->zone_name); 3126 3127 /* 3128 * It is always safe to dereference one's own t_procp pointer: 3129 * it always points to a valid, allocated proc structure. 3130 * (This is true because threads don't clean up their own 3131 * state -- they leave that task to whomever reaps them.) 3132 */ 3133 return (dtrace_dif_varstr( 3134 (uintptr_t)curthread->t_procp->p_zone->zone_name, 3135 state, mstate)); 3136 3137 case DIF_VAR_UID: 3138 if (!dtrace_priv_proc(state, mstate)) 3139 return (0); 3140 3141 /* 3142 * See comment in DIF_VAR_PID. 3143 */ 3144 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3145 return ((uint64_t)p0.p_cred->cr_uid); 3146 3147 /* 3148 * It is always safe to dereference one's own t_procp pointer: 3149 * it always points to a valid, allocated proc structure. 3150 * (This is true because threads don't clean up their own 3151 * state -- they leave that task to whomever reaps them.) 3152 * 3153 * Additionally, it is safe to dereference one's own process 3154 * credential, since this is never NULL after process birth. 3155 */ 3156 return ((uint64_t)curthread->t_procp->p_cred->cr_uid); 3157 3158 case DIF_VAR_GID: 3159 if (!dtrace_priv_proc(state, mstate)) 3160 return (0); 3161 3162 /* 3163 * See comment in DIF_VAR_PID. 3164 */ 3165 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3166 return ((uint64_t)p0.p_cred->cr_gid); 3167 3168 /* 3169 * It is always safe to dereference one's own t_procp pointer: 3170 * it always points to a valid, allocated proc structure. 3171 * (This is true because threads don't clean up their own 3172 * state -- they leave that task to whomever reaps them.) 3173 * 3174 * Additionally, it is safe to dereference one's own process 3175 * credential, since this is never NULL after process birth. 3176 */ 3177 return ((uint64_t)curthread->t_procp->p_cred->cr_gid); 3178 3179 case DIF_VAR_ERRNO: { 3180 klwp_t *lwp; 3181 if (!dtrace_priv_proc(state, mstate)) 3182 return (0); 3183 3184 /* 3185 * See comment in DIF_VAR_PID. 3186 */ 3187 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3188 return (0); 3189 3190 /* 3191 * It is always safe to dereference one's own t_lwp pointer in 3192 * the event that this pointer is non-NULL. (This is true 3193 * because threads and lwps don't clean up their own state -- 3194 * they leave that task to whomever reaps them.) 3195 */ 3196 if ((lwp = curthread->t_lwp) == NULL) 3197 return (0); 3198 3199 return ((uint64_t)lwp->lwp_errno); 3200 } 3201 default: 3202 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); 3203 return (0); 3204 } 3205 } 3206 3207 /* 3208 * Emulate the execution of DTrace ID subroutines invoked by the call opcode. 3209 * Notice that we don't bother validating the proper number of arguments or 3210 * their types in the tuple stack. This isn't needed because all argument 3211 * interpretation is safe because of our load safety -- the worst that can 3212 * happen is that a bogus program can obtain bogus results. 3213 */ 3214 static void 3215 dtrace_dif_subr(uint_t subr, uint_t rd, uint64_t *regs, 3216 dtrace_key_t *tupregs, int nargs, 3217 dtrace_mstate_t *mstate, dtrace_state_t *state) 3218 { 3219 volatile uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 3220 volatile uintptr_t *illval = &cpu_core[CPU->cpu_id].cpuc_dtrace_illval; 3221 dtrace_vstate_t *vstate = &state->dts_vstate; 3222 3223 union { 3224 mutex_impl_t mi; 3225 uint64_t mx; 3226 } m; 3227 3228 union { 3229 krwlock_t ri; 3230 uintptr_t rw; 3231 } r; 3232 3233 switch (subr) { 3234 case DIF_SUBR_RAND: 3235 regs[rd] = (dtrace_gethrtime() * 2416 + 374441) % 1771875; 3236 break; 3237 3238 case DIF_SUBR_MUTEX_OWNED: 3239 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t), 3240 mstate, vstate)) { 3241 regs[rd] = NULL; 3242 break; 3243 } 3244 3245 m.mx = dtrace_load64(tupregs[0].dttk_value); 3246 if (MUTEX_TYPE_ADAPTIVE(&m.mi)) 3247 regs[rd] = MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER; 3248 else 3249 regs[rd] = LOCK_HELD(&m.mi.m_spin.m_spinlock); 3250 break; 3251 3252 case DIF_SUBR_MUTEX_OWNER: 3253 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t), 3254 mstate, vstate)) { 3255 regs[rd] = NULL; 3256 break; 3257 } 3258 3259 m.mx = dtrace_load64(tupregs[0].dttk_value); 3260 if (MUTEX_TYPE_ADAPTIVE(&m.mi) && 3261 MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER) 3262 regs[rd] = (uintptr_t)MUTEX_OWNER(&m.mi); 3263 else 3264 regs[rd] = 0; 3265 break; 3266 3267 case DIF_SUBR_MUTEX_TYPE_ADAPTIVE: 3268 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t), 3269 mstate, vstate)) { 3270 regs[rd] = NULL; 3271 break; 3272 } 3273 3274 m.mx = dtrace_load64(tupregs[0].dttk_value); 3275 regs[rd] = MUTEX_TYPE_ADAPTIVE(&m.mi); 3276 break; 3277 3278 case DIF_SUBR_MUTEX_TYPE_SPIN: 3279 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t), 3280 mstate, vstate)) { 3281 regs[rd] = NULL; 3282 break; 3283 } 3284 3285 m.mx = dtrace_load64(tupregs[0].dttk_value); 3286 regs[rd] = MUTEX_TYPE_SPIN(&m.mi); 3287 break; 3288 3289 case DIF_SUBR_RW_READ_HELD: { 3290 uintptr_t tmp; 3291 3292 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t), 3293 mstate, vstate)) { 3294 regs[rd] = NULL; 3295 break; 3296 } 3297 3298 r.rw = dtrace_loadptr(tupregs[0].dttk_value); 3299 regs[rd] = _RW_READ_HELD(&r.ri, tmp); 3300 break; 3301 } 3302 3303 case DIF_SUBR_RW_WRITE_HELD: 3304 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t), 3305 mstate, vstate)) { 3306 regs[rd] = NULL; 3307 break; 3308 } 3309 3310 r.rw = dtrace_loadptr(tupregs[0].dttk_value); 3311 regs[rd] = _RW_WRITE_HELD(&r.ri); 3312 break; 3313 3314 case DIF_SUBR_RW_ISWRITER: 3315 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t), 3316 mstate, vstate)) { 3317 regs[rd] = NULL; 3318 break; 3319 } 3320 3321 r.rw = dtrace_loadptr(tupregs[0].dttk_value); 3322 regs[rd] = _RW_ISWRITER(&r.ri); 3323 break; 3324 3325 case DIF_SUBR_BCOPY: { 3326 /* 3327 * We need to be sure that the destination is in the scratch 3328 * region -- no other region is allowed. 3329 */ 3330 uintptr_t src = tupregs[0].dttk_value; 3331 uintptr_t dest = tupregs[1].dttk_value; 3332 size_t size = tupregs[2].dttk_value; 3333 3334 if (!dtrace_inscratch(dest, size, mstate)) { 3335 *flags |= CPU_DTRACE_BADADDR; 3336 *illval = regs[rd]; 3337 break; 3338 } 3339 3340 if (!dtrace_canload(src, size, mstate, vstate)) { 3341 regs[rd] = NULL; 3342 break; 3343 } 3344 3345 dtrace_bcopy((void *)src, (void *)dest, size); 3346 break; 3347 } 3348 3349 case DIF_SUBR_ALLOCA: 3350 case DIF_SUBR_COPYIN: { 3351 uintptr_t dest = P2ROUNDUP(mstate->dtms_scratch_ptr, 8); 3352 uint64_t size = 3353 tupregs[subr == DIF_SUBR_ALLOCA ? 0 : 1].dttk_value; 3354 size_t scratch_size = (dest - mstate->dtms_scratch_ptr) + size; 3355 3356 /* 3357 * This action doesn't require any credential checks since 3358 * probes will not activate in user contexts to which the 3359 * enabling user does not have permissions. 3360 */ 3361 3362 /* 3363 * Rounding up the user allocation size could have overflowed 3364 * a large, bogus allocation (like -1ULL) to 0. 3365 */ 3366 if (scratch_size < size || 3367 !DTRACE_INSCRATCH(mstate, scratch_size)) { 3368 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 3369 regs[rd] = NULL; 3370 break; 3371 } 3372 3373 if (subr == DIF_SUBR_COPYIN) { 3374 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 3375 dtrace_copyin(tupregs[0].dttk_value, dest, size, flags); 3376 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 3377 } 3378 3379 mstate->dtms_scratch_ptr += scratch_size; 3380 regs[rd] = dest; 3381 break; 3382 } 3383 3384 case DIF_SUBR_COPYINTO: { 3385 uint64_t size = tupregs[1].dttk_value; 3386 uintptr_t dest = tupregs[2].dttk_value; 3387 3388 /* 3389 * This action doesn't require any credential checks since 3390 * probes will not activate in user contexts to which the 3391 * enabling user does not have permissions. 3392 */ 3393 if (!dtrace_inscratch(dest, size, mstate)) { 3394 *flags |= CPU_DTRACE_BADADDR; 3395 *illval = regs[rd]; 3396 break; 3397 } 3398 3399 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 3400 dtrace_copyin(tupregs[0].dttk_value, dest, size, flags); 3401 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 3402 break; 3403 } 3404 3405 case DIF_SUBR_COPYINSTR: { 3406 uintptr_t dest = mstate->dtms_scratch_ptr; 3407 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 3408 3409 if (nargs > 1 && tupregs[1].dttk_value < size) 3410 size = tupregs[1].dttk_value + 1; 3411 3412 /* 3413 * This action doesn't require any credential checks since 3414 * probes will not activate in user contexts to which the 3415 * enabling user does not have permissions. 3416 */ 3417 if (!DTRACE_INSCRATCH(mstate, size)) { 3418 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 3419 regs[rd] = NULL; 3420 break; 3421 } 3422 3423 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 3424 dtrace_copyinstr(tupregs[0].dttk_value, dest, size, flags); 3425 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 3426 3427 ((char *)dest)[size - 1] = '\0'; 3428 mstate->dtms_scratch_ptr += size; 3429 regs[rd] = dest; 3430 break; 3431 } 3432 3433 case DIF_SUBR_MSGSIZE: 3434 case DIF_SUBR_MSGDSIZE: { 3435 uintptr_t baddr = tupregs[0].dttk_value, daddr; 3436 uintptr_t wptr, rptr; 3437 size_t count = 0; 3438 int cont = 0; 3439 3440 while (baddr != NULL && !(*flags & CPU_DTRACE_FAULT)) { 3441 3442 if (!dtrace_canload(baddr, sizeof (mblk_t), mstate, 3443 vstate)) { 3444 regs[rd] = NULL; 3445 break; 3446 } 3447 3448 wptr = dtrace_loadptr(baddr + 3449 offsetof(mblk_t, b_wptr)); 3450 3451 rptr = dtrace_loadptr(baddr + 3452 offsetof(mblk_t, b_rptr)); 3453 3454 if (wptr < rptr) { 3455 *flags |= CPU_DTRACE_BADADDR; 3456 *illval = tupregs[0].dttk_value; 3457 break; 3458 } 3459 3460 daddr = dtrace_loadptr(baddr + 3461 offsetof(mblk_t, b_datap)); 3462 3463 baddr = dtrace_loadptr(baddr + 3464 offsetof(mblk_t, b_cont)); 3465 3466 /* 3467 * We want to prevent against denial-of-service here, 3468 * so we're only going to search the list for 3469 * dtrace_msgdsize_max mblks. 3470 */ 3471 if (cont++ > dtrace_msgdsize_max) { 3472 *flags |= CPU_DTRACE_ILLOP; 3473 break; 3474 } 3475 3476 if (subr == DIF_SUBR_MSGDSIZE) { 3477 if (dtrace_load8(daddr + 3478 offsetof(dblk_t, db_type)) != M_DATA) 3479 continue; 3480 } 3481 3482 count += wptr - rptr; 3483 } 3484 3485 if (!(*flags & CPU_DTRACE_FAULT)) 3486 regs[rd] = count; 3487 3488 break; 3489 } 3490 3491 case DIF_SUBR_PROGENYOF: { 3492 pid_t pid = tupregs[0].dttk_value; 3493 proc_t *p; 3494 int rval = 0; 3495 3496 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 3497 3498 for (p = curthread->t_procp; p != NULL; p = p->p_parent) { 3499 if (p->p_pidp->pid_id == pid) { 3500 rval = 1; 3501 break; 3502 } 3503 } 3504 3505 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 3506 3507 regs[rd] = rval; 3508 break; 3509 } 3510 3511 case DIF_SUBR_SPECULATION: 3512 regs[rd] = dtrace_speculation(state); 3513 break; 3514 3515 case DIF_SUBR_COPYOUT: { 3516 uintptr_t kaddr = tupregs[0].dttk_value; 3517 uintptr_t uaddr = tupregs[1].dttk_value; 3518 uint64_t size = tupregs[2].dttk_value; 3519 3520 if (!dtrace_destructive_disallow && 3521 dtrace_priv_proc_control(state, mstate) && 3522 !dtrace_istoxic(kaddr, size)) { 3523 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 3524 dtrace_copyout(kaddr, uaddr, size, flags); 3525 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 3526 } 3527 break; 3528 } 3529 3530 case DIF_SUBR_COPYOUTSTR: { 3531 uintptr_t kaddr = tupregs[0].dttk_value; 3532 uintptr_t uaddr = tupregs[1].dttk_value; 3533 uint64_t size = tupregs[2].dttk_value; 3534 3535 if (!dtrace_destructive_disallow && 3536 dtrace_priv_proc_control(state, mstate) && 3537 !dtrace_istoxic(kaddr, size)) { 3538 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 3539 dtrace_copyoutstr(kaddr, uaddr, size, flags); 3540 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 3541 } 3542 break; 3543 } 3544 3545 case DIF_SUBR_STRLEN: { 3546 size_t sz; 3547 uintptr_t addr = (uintptr_t)tupregs[0].dttk_value; 3548 sz = dtrace_strlen((char *)addr, 3549 state->dts_options[DTRACEOPT_STRSIZE]); 3550 3551 if (!dtrace_canload(addr, sz + 1, mstate, vstate)) { 3552 regs[rd] = NULL; 3553 break; 3554 } 3555 3556 regs[rd] = sz; 3557 3558 break; 3559 } 3560 3561 case DIF_SUBR_STRCHR: 3562 case DIF_SUBR_STRRCHR: { 3563 /* 3564 * We're going to iterate over the string looking for the 3565 * specified character. We will iterate until we have reached 3566 * the string length or we have found the character. If this 3567 * is DIF_SUBR_STRRCHR, we will look for the last occurrence 3568 * of the specified character instead of the first. 3569 */ 3570 uintptr_t saddr = tupregs[0].dttk_value; 3571 uintptr_t addr = tupregs[0].dttk_value; 3572 uintptr_t limit = addr + state->dts_options[DTRACEOPT_STRSIZE]; 3573 char c, target = (char)tupregs[1].dttk_value; 3574 3575 for (regs[rd] = NULL; addr < limit; addr++) { 3576 if ((c = dtrace_load8(addr)) == target) { 3577 regs[rd] = addr; 3578 3579 if (subr == DIF_SUBR_STRCHR) 3580 break; 3581 } 3582 3583 if (c == '\0') 3584 break; 3585 } 3586 3587 if (!dtrace_canload(saddr, addr - saddr, mstate, vstate)) { 3588 regs[rd] = NULL; 3589 break; 3590 } 3591 3592 break; 3593 } 3594 3595 case DIF_SUBR_STRSTR: 3596 case DIF_SUBR_INDEX: 3597 case DIF_SUBR_RINDEX: { 3598 /* 3599 * We're going to iterate over the string looking for the 3600 * specified string. We will iterate until we have reached 3601 * the string length or we have found the string. (Yes, this 3602 * is done in the most naive way possible -- but considering 3603 * that the string we're searching for is likely to be 3604 * relatively short, the complexity of Rabin-Karp or similar 3605 * hardly seems merited.) 3606 */ 3607 char *addr = (char *)(uintptr_t)tupregs[0].dttk_value; 3608 char *substr = (char *)(uintptr_t)tupregs[1].dttk_value; 3609 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 3610 size_t len = dtrace_strlen(addr, size); 3611 size_t sublen = dtrace_strlen(substr, size); 3612 char *limit = addr + len, *orig = addr; 3613 int notfound = subr == DIF_SUBR_STRSTR ? 0 : -1; 3614 int inc = 1; 3615 3616 regs[rd] = notfound; 3617 3618 if (!dtrace_canload((uintptr_t)addr, len + 1, mstate, vstate)) { 3619 regs[rd] = NULL; 3620 break; 3621 } 3622 3623 if (!dtrace_canload((uintptr_t)substr, sublen + 1, mstate, 3624 vstate)) { 3625 regs[rd] = NULL; 3626 break; 3627 } 3628 3629 /* 3630 * strstr() and index()/rindex() have similar semantics if 3631 * both strings are the empty string: strstr() returns a 3632 * pointer to the (empty) string, and index() and rindex() 3633 * both return index 0 (regardless of any position argument). 3634 */ 3635 if (sublen == 0 && len == 0) { 3636 if (subr == DIF_SUBR_STRSTR) 3637 regs[rd] = (uintptr_t)addr; 3638 else 3639 regs[rd] = 0; 3640 break; 3641 } 3642 3643 if (subr != DIF_SUBR_STRSTR) { 3644 if (subr == DIF_SUBR_RINDEX) { 3645 limit = orig - 1; 3646 addr += len; 3647 inc = -1; 3648 } 3649 3650 /* 3651 * Both index() and rindex() take an optional position 3652 * argument that denotes the starting position. 3653 */ 3654 if (nargs == 3) { 3655 int64_t pos = (int64_t)tupregs[2].dttk_value; 3656 3657 /* 3658 * If the position argument to index() is 3659 * negative, Perl implicitly clamps it at 3660 * zero. This semantic is a little surprising 3661 * given the special meaning of negative 3662 * positions to similar Perl functions like 3663 * substr(), but it appears to reflect a 3664 * notion that index() can start from a 3665 * negative index and increment its way up to 3666 * the string. Given this notion, Perl's 3667 * rindex() is at least self-consistent in 3668 * that it implicitly clamps positions greater 3669 * than the string length to be the string 3670 * length. Where Perl completely loses 3671 * coherence, however, is when the specified 3672 * substring is the empty string (""). In 3673 * this case, even if the position is 3674 * negative, rindex() returns 0 -- and even if 3675 * the position is greater than the length, 3676 * index() returns the string length. These 3677 * semantics violate the notion that index() 3678 * should never return a value less than the 3679 * specified position and that rindex() should 3680 * never return a value greater than the 3681 * specified position. (One assumes that 3682 * these semantics are artifacts of Perl's 3683 * implementation and not the results of 3684 * deliberate design -- it beggars belief that 3685 * even Larry Wall could desire such oddness.) 3686 * While in the abstract one would wish for 3687 * consistent position semantics across 3688 * substr(), index() and rindex() -- or at the 3689 * very least self-consistent position 3690 * semantics for index() and rindex() -- we 3691 * instead opt to keep with the extant Perl 3692 * semantics, in all their broken glory. (Do 3693 * we have more desire to maintain Perl's 3694 * semantics than Perl does? Probably.) 3695 */ 3696 if (subr == DIF_SUBR_RINDEX) { 3697 if (pos < 0) { 3698 if (sublen == 0) 3699 regs[rd] = 0; 3700 break; 3701 } 3702 3703 if (pos > len) 3704 pos = len; 3705 } else { 3706 if (pos < 0) 3707 pos = 0; 3708 3709 if (pos >= len) { 3710 if (sublen == 0) 3711 regs[rd] = len; 3712 break; 3713 } 3714 } 3715 3716 addr = orig + pos; 3717 } 3718 } 3719 3720 for (regs[rd] = notfound; addr != limit; addr += inc) { 3721 if (dtrace_strncmp(addr, substr, sublen) == 0) { 3722 if (subr != DIF_SUBR_STRSTR) { 3723 /* 3724 * As D index() and rindex() are 3725 * modeled on Perl (and not on awk), 3726 * we return a zero-based (and not a 3727 * one-based) index. (For you Perl 3728 * weenies: no, we're not going to add 3729 * $[ -- and shouldn't you be at a con 3730 * or something?) 3731 */ 3732 regs[rd] = (uintptr_t)(addr - orig); 3733 break; 3734 } 3735 3736 ASSERT(subr == DIF_SUBR_STRSTR); 3737 regs[rd] = (uintptr_t)addr; 3738 break; 3739 } 3740 } 3741 3742 break; 3743 } 3744 3745 case DIF_SUBR_STRTOK: { 3746 uintptr_t addr = tupregs[0].dttk_value; 3747 uintptr_t tokaddr = tupregs[1].dttk_value; 3748 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 3749 uintptr_t limit, toklimit = tokaddr + size; 3750 uint8_t c, tokmap[32]; /* 256 / 8 */ 3751 char *dest = (char *)mstate->dtms_scratch_ptr; 3752 int i; 3753 3754 /* 3755 * Check both the token buffer and (later) the input buffer, 3756 * since both could be non-scratch addresses. 3757 */ 3758 if (!dtrace_strcanload(tokaddr, size, mstate, vstate)) { 3759 regs[rd] = NULL; 3760 break; 3761 } 3762 3763 if (!DTRACE_INSCRATCH(mstate, size)) { 3764 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 3765 regs[rd] = NULL; 3766 break; 3767 } 3768 3769 if (addr == NULL) { 3770 /* 3771 * If the address specified is NULL, we use our saved 3772 * strtok pointer from the mstate. Note that this 3773 * means that the saved strtok pointer is _only_ 3774 * valid within multiple enablings of the same probe -- 3775 * it behaves like an implicit clause-local variable. 3776 */ 3777 addr = mstate->dtms_strtok; 3778 } else { 3779 /* 3780 * If the user-specified address is non-NULL we must 3781 * access check it. This is the only time we have 3782 * a chance to do so, since this address may reside 3783 * in the string table of this clause-- future calls 3784 * (when we fetch addr from mstate->dtms_strtok) 3785 * would fail this access check. 3786 */ 3787 if (!dtrace_strcanload(addr, size, mstate, vstate)) { 3788 regs[rd] = NULL; 3789 break; 3790 } 3791 } 3792 3793 /* 3794 * First, zero the token map, and then process the token 3795 * string -- setting a bit in the map for every character 3796 * found in the token string. 3797 */ 3798 for (i = 0; i < sizeof (tokmap); i++) 3799 tokmap[i] = 0; 3800 3801 for (; tokaddr < toklimit; tokaddr++) { 3802 if ((c = dtrace_load8(tokaddr)) == '\0') 3803 break; 3804 3805 ASSERT((c >> 3) < sizeof (tokmap)); 3806 tokmap[c >> 3] |= (1 << (c & 0x7)); 3807 } 3808 3809 for (limit = addr + size; addr < limit; addr++) { 3810 /* 3811 * We're looking for a character that is _not_ contained 3812 * in the token string. 3813 */ 3814 if ((c = dtrace_load8(addr)) == '\0') 3815 break; 3816 3817 if (!(tokmap[c >> 3] & (1 << (c & 0x7)))) 3818 break; 3819 } 3820 3821 if (c == '\0') { 3822 /* 3823 * We reached the end of the string without finding 3824 * any character that was not in the token string. 3825 * We return NULL in this case, and we set the saved 3826 * address to NULL as well. 3827 */ 3828 regs[rd] = NULL; 3829 mstate->dtms_strtok = NULL; 3830 break; 3831 } 3832 3833 /* 3834 * From here on, we're copying into the destination string. 3835 */ 3836 for (i = 0; addr < limit && i < size - 1; addr++) { 3837 if ((c = dtrace_load8(addr)) == '\0') 3838 break; 3839 3840 if (tokmap[c >> 3] & (1 << (c & 0x7))) 3841 break; 3842 3843 ASSERT(i < size); 3844 dest[i++] = c; 3845 } 3846 3847 ASSERT(i < size); 3848 dest[i] = '\0'; 3849 regs[rd] = (uintptr_t)dest; 3850 mstate->dtms_scratch_ptr += size; 3851 mstate->dtms_strtok = addr; 3852 break; 3853 } 3854 3855 case DIF_SUBR_SUBSTR: { 3856 uintptr_t s = tupregs[0].dttk_value; 3857 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 3858 char *d = (char *)mstate->dtms_scratch_ptr; 3859 int64_t index = (int64_t)tupregs[1].dttk_value; 3860 int64_t remaining = (int64_t)tupregs[2].dttk_value; 3861 size_t len = dtrace_strlen((char *)s, size); 3862 int64_t i; 3863 3864 if (!dtrace_canload(s, len + 1, mstate, vstate)) { 3865 regs[rd] = NULL; 3866 break; 3867 } 3868 3869 if (!DTRACE_INSCRATCH(mstate, size)) { 3870 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 3871 regs[rd] = NULL; 3872 break; 3873 } 3874 3875 if (nargs <= 2) 3876 remaining = (int64_t)size; 3877 3878 if (index < 0) { 3879 index += len; 3880 3881 if (index < 0 && index + remaining > 0) { 3882 remaining += index; 3883 index = 0; 3884 } 3885 } 3886 3887 if (index >= len || index < 0) { 3888 remaining = 0; 3889 } else if (remaining < 0) { 3890 remaining += len - index; 3891 } else if (index + remaining > size) { 3892 remaining = size - index; 3893 } 3894 3895 for (i = 0; i < remaining; i++) { 3896 if ((d[i] = dtrace_load8(s + index + i)) == '\0') 3897 break; 3898 } 3899 3900 d[i] = '\0'; 3901 3902 mstate->dtms_scratch_ptr += size; 3903 regs[rd] = (uintptr_t)d; 3904 break; 3905 } 3906 3907 case DIF_SUBR_GETMAJOR: 3908 #ifdef _LP64 3909 regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR64) & MAXMAJ64; 3910 #else 3911 regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR) & MAXMAJ; 3912 #endif 3913 break; 3914 3915 case DIF_SUBR_GETMINOR: 3916 #ifdef _LP64 3917 regs[rd] = tupregs[0].dttk_value & MAXMIN64; 3918 #else 3919 regs[rd] = tupregs[0].dttk_value & MAXMIN; 3920 #endif 3921 break; 3922 3923 case DIF_SUBR_DDI_PATHNAME: { 3924 /* 3925 * This one is a galactic mess. We are going to roughly 3926 * emulate ddi_pathname(), but it's made more complicated 3927 * by the fact that we (a) want to include the minor name and 3928 * (b) must proceed iteratively instead of recursively. 3929 */ 3930 uintptr_t dest = mstate->dtms_scratch_ptr; 3931 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 3932 char *start = (char *)dest, *end = start + size - 1; 3933 uintptr_t daddr = tupregs[0].dttk_value; 3934 int64_t minor = (int64_t)tupregs[1].dttk_value; 3935 char *s; 3936 int i, len, depth = 0; 3937 3938 /* 3939 * Due to all the pointer jumping we do and context we must 3940 * rely upon, we just mandate that the user must have kernel 3941 * read privileges to use this routine. 3942 */ 3943 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) == 0) { 3944 *flags |= CPU_DTRACE_KPRIV; 3945 *illval = daddr; 3946 regs[rd] = NULL; 3947 } 3948 3949 if (!DTRACE_INSCRATCH(mstate, size)) { 3950 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 3951 regs[rd] = NULL; 3952 break; 3953 } 3954 3955 *end = '\0'; 3956 3957 /* 3958 * We want to have a name for the minor. In order to do this, 3959 * we need to walk the minor list from the devinfo. We want 3960 * to be sure that we don't infinitely walk a circular list, 3961 * so we check for circularity by sending a scout pointer 3962 * ahead two elements for every element that we iterate over; 3963 * if the list is circular, these will ultimately point to the 3964 * same element. You may recognize this little trick as the 3965 * answer to a stupid interview question -- one that always 3966 * seems to be asked by those who had to have it laboriously 3967 * explained to them, and who can't even concisely describe 3968 * the conditions under which one would be forced to resort to 3969 * this technique. Needless to say, those conditions are 3970 * found here -- and probably only here. Is this the only use 3971 * of this infamous trick in shipping, production code? If it 3972 * isn't, it probably should be... 3973 */ 3974 if (minor != -1) { 3975 uintptr_t maddr = dtrace_loadptr(daddr + 3976 offsetof(struct dev_info, devi_minor)); 3977 3978 uintptr_t next = offsetof(struct ddi_minor_data, next); 3979 uintptr_t name = offsetof(struct ddi_minor_data, 3980 d_minor) + offsetof(struct ddi_minor, name); 3981 uintptr_t dev = offsetof(struct ddi_minor_data, 3982 d_minor) + offsetof(struct ddi_minor, dev); 3983 uintptr_t scout; 3984 3985 if (maddr != NULL) 3986 scout = dtrace_loadptr(maddr + next); 3987 3988 while (maddr != NULL && !(*flags & CPU_DTRACE_FAULT)) { 3989 uint64_t m; 3990 #ifdef _LP64 3991 m = dtrace_load64(maddr + dev) & MAXMIN64; 3992 #else 3993 m = dtrace_load32(maddr + dev) & MAXMIN; 3994 #endif 3995 if (m != minor) { 3996 maddr = dtrace_loadptr(maddr + next); 3997 3998 if (scout == NULL) 3999 continue; 4000 4001 scout = dtrace_loadptr(scout + next); 4002 4003 if (scout == NULL) 4004 continue; 4005 4006 scout = dtrace_loadptr(scout + next); 4007 4008 if (scout == NULL) 4009 continue; 4010 4011 if (scout == maddr) { 4012 *flags |= CPU_DTRACE_ILLOP; 4013 break; 4014 } 4015 4016 continue; 4017 } 4018 4019 /* 4020 * We have the minor data. Now we need to 4021 * copy the minor's name into the end of the 4022 * pathname. 4023 */ 4024 s = (char *)dtrace_loadptr(maddr + name); 4025 len = dtrace_strlen(s, size); 4026 4027 if (*flags & CPU_DTRACE_FAULT) 4028 break; 4029 4030 if (len != 0) { 4031 if ((end -= (len + 1)) < start) 4032 break; 4033 4034 *end = ':'; 4035 } 4036 4037 for (i = 1; i <= len; i++) 4038 end[i] = dtrace_load8((uintptr_t)s++); 4039 break; 4040 } 4041 } 4042 4043 while (daddr != NULL && !(*flags & CPU_DTRACE_FAULT)) { 4044 ddi_node_state_t devi_state; 4045 4046 devi_state = dtrace_load32(daddr + 4047 offsetof(struct dev_info, devi_node_state)); 4048 4049 if (*flags & CPU_DTRACE_FAULT) 4050 break; 4051 4052 if (devi_state >= DS_INITIALIZED) { 4053 s = (char *)dtrace_loadptr(daddr + 4054 offsetof(struct dev_info, devi_addr)); 4055 len = dtrace_strlen(s, size); 4056 4057 if (*flags & CPU_DTRACE_FAULT) 4058 break; 4059 4060 if (len != 0) { 4061 if ((end -= (len + 1)) < start) 4062 break; 4063 4064 *end = '@'; 4065 } 4066 4067 for (i = 1; i <= len; i++) 4068 end[i] = dtrace_load8((uintptr_t)s++); 4069 } 4070 4071 /* 4072 * Now for the node name... 4073 */ 4074 s = (char *)dtrace_loadptr(daddr + 4075 offsetof(struct dev_info, devi_node_name)); 4076 4077 daddr = dtrace_loadptr(daddr + 4078 offsetof(struct dev_info, devi_parent)); 4079 4080 /* 4081 * If our parent is NULL (that is, if we're the root 4082 * node), we're going to use the special path 4083 * "devices". 4084 */ 4085 if (daddr == NULL) 4086 s = "devices"; 4087 4088 len = dtrace_strlen(s, size); 4089 if (*flags & CPU_DTRACE_FAULT) 4090 break; 4091 4092 if ((end -= (len + 1)) < start) 4093 break; 4094 4095 for (i = 1; i <= len; i++) 4096 end[i] = dtrace_load8((uintptr_t)s++); 4097 *end = '/'; 4098 4099 if (depth++ > dtrace_devdepth_max) { 4100 *flags |= CPU_DTRACE_ILLOP; 4101 break; 4102 } 4103 } 4104 4105 if (end < start) 4106 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4107 4108 if (daddr == NULL) { 4109 regs[rd] = (uintptr_t)end; 4110 mstate->dtms_scratch_ptr += size; 4111 } 4112 4113 break; 4114 } 4115 4116 case DIF_SUBR_STRJOIN: { 4117 char *d = (char *)mstate->dtms_scratch_ptr; 4118 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 4119 uintptr_t s1 = tupregs[0].dttk_value; 4120 uintptr_t s2 = tupregs[1].dttk_value; 4121 int i = 0; 4122 4123 if (!dtrace_strcanload(s1, size, mstate, vstate) || 4124 !dtrace_strcanload(s2, size, mstate, vstate)) { 4125 regs[rd] = NULL; 4126 break; 4127 } 4128 4129 if (!DTRACE_INSCRATCH(mstate, size)) { 4130 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4131 regs[rd] = NULL; 4132 break; 4133 } 4134 4135 for (;;) { 4136 if (i >= size) { 4137 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4138 regs[rd] = NULL; 4139 break; 4140 } 4141 4142 if ((d[i++] = dtrace_load8(s1++)) == '\0') { 4143 i--; 4144 break; 4145 } 4146 } 4147 4148 for (;;) { 4149 if (i >= size) { 4150 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4151 regs[rd] = NULL; 4152 break; 4153 } 4154 4155 if ((d[i++] = dtrace_load8(s2++)) == '\0') 4156 break; 4157 } 4158 4159 if (i < size) { 4160 mstate->dtms_scratch_ptr += i; 4161 regs[rd] = (uintptr_t)d; 4162 } 4163 4164 break; 4165 } 4166 4167 case DIF_SUBR_LLTOSTR: { 4168 int64_t i = (int64_t)tupregs[0].dttk_value; 4169 int64_t val = i < 0 ? i * -1 : i; 4170 uint64_t size = 22; /* enough room for 2^64 in decimal */ 4171 char *end = (char *)mstate->dtms_scratch_ptr + size - 1; 4172 4173 if (!DTRACE_INSCRATCH(mstate, size)) { 4174 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4175 regs[rd] = NULL; 4176 break; 4177 } 4178 4179 for (*end-- = '\0'; val; val /= 10) 4180 *end-- = '0' + (val % 10); 4181 4182 if (i == 0) 4183 *end-- = '0'; 4184 4185 if (i < 0) 4186 *end-- = '-'; 4187 4188 regs[rd] = (uintptr_t)end + 1; 4189 mstate->dtms_scratch_ptr += size; 4190 break; 4191 } 4192 4193 case DIF_SUBR_HTONS: 4194 case DIF_SUBR_NTOHS: 4195 #ifdef _BIG_ENDIAN 4196 regs[rd] = (uint16_t)tupregs[0].dttk_value; 4197 #else 4198 regs[rd] = DT_BSWAP_16((uint16_t)tupregs[0].dttk_value); 4199 #endif 4200 break; 4201 4202 4203 case DIF_SUBR_HTONL: 4204 case DIF_SUBR_NTOHL: 4205 #ifdef _BIG_ENDIAN 4206 regs[rd] = (uint32_t)tupregs[0].dttk_value; 4207 #else 4208 regs[rd] = DT_BSWAP_32((uint32_t)tupregs[0].dttk_value); 4209 #endif 4210 break; 4211 4212 4213 case DIF_SUBR_HTONLL: 4214 case DIF_SUBR_NTOHLL: 4215 #ifdef _BIG_ENDIAN 4216 regs[rd] = (uint64_t)tupregs[0].dttk_value; 4217 #else 4218 regs[rd] = DT_BSWAP_64((uint64_t)tupregs[0].dttk_value); 4219 #endif 4220 break; 4221 4222 4223 case DIF_SUBR_DIRNAME: 4224 case DIF_SUBR_BASENAME: { 4225 char *dest = (char *)mstate->dtms_scratch_ptr; 4226 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 4227 uintptr_t src = tupregs[0].dttk_value; 4228 int i, j, len = dtrace_strlen((char *)src, size); 4229 int lastbase = -1, firstbase = -1, lastdir = -1; 4230 int start, end; 4231 4232 if (!dtrace_canload(src, len + 1, mstate, vstate)) { 4233 regs[rd] = NULL; 4234 break; 4235 } 4236 4237 if (!DTRACE_INSCRATCH(mstate, size)) { 4238 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4239 regs[rd] = NULL; 4240 break; 4241 } 4242 4243 /* 4244 * The basename and dirname for a zero-length string is 4245 * defined to be "." 4246 */ 4247 if (len == 0) { 4248 len = 1; 4249 src = (uintptr_t)"."; 4250 } 4251 4252 /* 4253 * Start from the back of the string, moving back toward the 4254 * front until we see a character that isn't a slash. That 4255 * character is the last character in the basename. 4256 */ 4257 for (i = len - 1; i >= 0; i--) { 4258 if (dtrace_load8(src + i) != '/') 4259 break; 4260 } 4261 4262 if (i >= 0) 4263 lastbase = i; 4264 4265 /* 4266 * Starting from the last character in the basename, move 4267 * towards the front until we find a slash. The character 4268 * that we processed immediately before that is the first 4269 * character in the basename. 4270 */ 4271 for (; i >= 0; i--) { 4272 if (dtrace_load8(src + i) == '/') 4273 break; 4274 } 4275 4276 if (i >= 0) 4277 firstbase = i + 1; 4278 4279 /* 4280 * Now keep going until we find a non-slash character. That 4281 * character is the last character in the dirname. 4282 */ 4283 for (; i >= 0; i--) { 4284 if (dtrace_load8(src + i) != '/') 4285 break; 4286 } 4287 4288 if (i >= 0) 4289 lastdir = i; 4290 4291 ASSERT(!(lastbase == -1 && firstbase != -1)); 4292 ASSERT(!(firstbase == -1 && lastdir != -1)); 4293 4294 if (lastbase == -1) { 4295 /* 4296 * We didn't find a non-slash character. We know that 4297 * the length is non-zero, so the whole string must be 4298 * slashes. In either the dirname or the basename 4299 * case, we return '/'. 4300 */ 4301 ASSERT(firstbase == -1); 4302 firstbase = lastbase = lastdir = 0; 4303 } 4304 4305 if (firstbase == -1) { 4306 /* 4307 * The entire string consists only of a basename 4308 * component. If we're looking for dirname, we need 4309 * to change our string to be just "."; if we're 4310 * looking for a basename, we'll just set the first 4311 * character of the basename to be 0. 4312 */ 4313 if (subr == DIF_SUBR_DIRNAME) { 4314 ASSERT(lastdir == -1); 4315 src = (uintptr_t)"."; 4316 lastdir = 0; 4317 } else { 4318 firstbase = 0; 4319 } 4320 } 4321 4322 if (subr == DIF_SUBR_DIRNAME) { 4323 if (lastdir == -1) { 4324 /* 4325 * We know that we have a slash in the name -- 4326 * or lastdir would be set to 0, above. And 4327 * because lastdir is -1, we know that this 4328 * slash must be the first character. (That 4329 * is, the full string must be of the form 4330 * "/basename".) In this case, the last 4331 * character of the directory name is 0. 4332 */ 4333 lastdir = 0; 4334 } 4335 4336 start = 0; 4337 end = lastdir; 4338 } else { 4339 ASSERT(subr == DIF_SUBR_BASENAME); 4340 ASSERT(firstbase != -1 && lastbase != -1); 4341 start = firstbase; 4342 end = lastbase; 4343 } 4344 4345 for (i = start, j = 0; i <= end && j < size - 1; i++, j++) 4346 dest[j] = dtrace_load8(src + i); 4347 4348 dest[j] = '\0'; 4349 regs[rd] = (uintptr_t)dest; 4350 mstate->dtms_scratch_ptr += size; 4351 break; 4352 } 4353 4354 case DIF_SUBR_CLEANPATH: { 4355 char *dest = (char *)mstate->dtms_scratch_ptr, c; 4356 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 4357 uintptr_t src = tupregs[0].dttk_value; 4358 int i = 0, j = 0; 4359 4360 if (!dtrace_strcanload(src, size, mstate, vstate)) { 4361 regs[rd] = NULL; 4362 break; 4363 } 4364 4365 if (!DTRACE_INSCRATCH(mstate, size)) { 4366 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4367 regs[rd] = NULL; 4368 break; 4369 } 4370 4371 /* 4372 * Move forward, loading each character. 4373 */ 4374 do { 4375 c = dtrace_load8(src + i++); 4376 next: 4377 if (j + 5 >= size) /* 5 = strlen("/..c\0") */ 4378 break; 4379 4380 if (c != '/') { 4381 dest[j++] = c; 4382 continue; 4383 } 4384 4385 c = dtrace_load8(src + i++); 4386 4387 if (c == '/') { 4388 /* 4389 * We have two slashes -- we can just advance 4390 * to the next character. 4391 */ 4392 goto next; 4393 } 4394 4395 if (c != '.') { 4396 /* 4397 * This is not "." and it's not ".." -- we can 4398 * just store the "/" and this character and 4399 * drive on. 4400 */ 4401 dest[j++] = '/'; 4402 dest[j++] = c; 4403 continue; 4404 } 4405 4406 c = dtrace_load8(src + i++); 4407 4408 if (c == '/') { 4409 /* 4410 * This is a "/./" component. We're not going 4411 * to store anything in the destination buffer; 4412 * we're just going to go to the next component. 4413 */ 4414 goto next; 4415 } 4416 4417 if (c != '.') { 4418 /* 4419 * This is not ".." -- we can just store the 4420 * "/." and this character and continue 4421 * processing. 4422 */ 4423 dest[j++] = '/'; 4424 dest[j++] = '.'; 4425 dest[j++] = c; 4426 continue; 4427 } 4428 4429 c = dtrace_load8(src + i++); 4430 4431 if (c != '/' && c != '\0') { 4432 /* 4433 * This is not ".." -- it's "..[mumble]". 4434 * We'll store the "/.." and this character 4435 * and continue processing. 4436 */ 4437 dest[j++] = '/'; 4438 dest[j++] = '.'; 4439 dest[j++] = '.'; 4440 dest[j++] = c; 4441 continue; 4442 } 4443 4444 /* 4445 * This is "/../" or "/..\0". We need to back up 4446 * our destination pointer until we find a "/". 4447 */ 4448 i--; 4449 while (j != 0 && dest[--j] != '/') 4450 continue; 4451 4452 if (c == '\0') 4453 dest[++j] = '/'; 4454 } while (c != '\0'); 4455 4456 dest[j] = '\0'; 4457 regs[rd] = (uintptr_t)dest; 4458 mstate->dtms_scratch_ptr += size; 4459 break; 4460 } 4461 4462 case DIF_SUBR_INET_NTOA: 4463 case DIF_SUBR_INET_NTOA6: 4464 case DIF_SUBR_INET_NTOP: { 4465 size_t size; 4466 int af, argi, i; 4467 char *base, *end; 4468 4469 if (subr == DIF_SUBR_INET_NTOP) { 4470 af = (int)tupregs[0].dttk_value; 4471 argi = 1; 4472 } else { 4473 af = subr == DIF_SUBR_INET_NTOA ? AF_INET: AF_INET6; 4474 argi = 0; 4475 } 4476 4477 if (af == AF_INET) { 4478 ipaddr_t ip4; 4479 uint8_t *ptr8, val; 4480 4481 /* 4482 * Safely load the IPv4 address. 4483 */ 4484 ip4 = dtrace_load32(tupregs[argi].dttk_value); 4485 4486 /* 4487 * Check an IPv4 string will fit in scratch. 4488 */ 4489 size = INET_ADDRSTRLEN; 4490 if (!DTRACE_INSCRATCH(mstate, size)) { 4491 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4492 regs[rd] = NULL; 4493 break; 4494 } 4495 base = (char *)mstate->dtms_scratch_ptr; 4496 end = (char *)mstate->dtms_scratch_ptr + size - 1; 4497 4498 /* 4499 * Stringify as a dotted decimal quad. 4500 */ 4501 *end-- = '\0'; 4502 ptr8 = (uint8_t *)&ip4; 4503 for (i = 3; i >= 0; i--) { 4504 val = ptr8[i]; 4505 4506 if (val == 0) { 4507 *end-- = '0'; 4508 } else { 4509 for (; val; val /= 10) { 4510 *end-- = '0' + (val % 10); 4511 } 4512 } 4513 4514 if (i > 0) 4515 *end-- = '.'; 4516 } 4517 ASSERT(end + 1 >= base); 4518 4519 } else if (af == AF_INET6) { 4520 struct in6_addr ip6; 4521 int firstzero, tryzero, numzero, v6end; 4522 uint16_t val; 4523 const char digits[] = "0123456789abcdef"; 4524 4525 /* 4526 * Stringify using RFC 1884 convention 2 - 16 bit 4527 * hexadecimal values with a zero-run compression. 4528 * Lower case hexadecimal digits are used. 4529 * eg, fe80::214:4fff:fe0b:76c8. 4530 * The IPv4 embedded form is returned for inet_ntop, 4531 * just the IPv4 string is returned for inet_ntoa6. 4532 */ 4533 4534 /* 4535 * Safely load the IPv6 address. 4536 */ 4537 dtrace_bcopy( 4538 (void *)(uintptr_t)tupregs[argi].dttk_value, 4539 (void *)(uintptr_t)&ip6, sizeof (struct in6_addr)); 4540 4541 /* 4542 * Check an IPv6 string will fit in scratch. 4543 */ 4544 size = INET6_ADDRSTRLEN; 4545 if (!DTRACE_INSCRATCH(mstate, size)) { 4546 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4547 regs[rd] = NULL; 4548 break; 4549 } 4550 base = (char *)mstate->dtms_scratch_ptr; 4551 end = (char *)mstate->dtms_scratch_ptr + size - 1; 4552 *end-- = '\0'; 4553 4554 /* 4555 * Find the longest run of 16 bit zero values 4556 * for the single allowed zero compression - "::". 4557 */ 4558 firstzero = -1; 4559 tryzero = -1; 4560 numzero = 1; 4561 for (i = 0; i < sizeof (struct in6_addr); i++) { 4562 if (ip6._S6_un._S6_u8[i] == 0 && 4563 tryzero == -1 && i % 2 == 0) { 4564 tryzero = i; 4565 continue; 4566 } 4567 4568 if (tryzero != -1 && 4569 (ip6._S6_un._S6_u8[i] != 0 || 4570 i == sizeof (struct in6_addr) - 1)) { 4571 4572 if (i - tryzero <= numzero) { 4573 tryzero = -1; 4574 continue; 4575 } 4576 4577 firstzero = tryzero; 4578 numzero = i - i % 2 - tryzero; 4579 tryzero = -1; 4580 4581 if (ip6._S6_un._S6_u8[i] == 0 && 4582 i == sizeof (struct in6_addr) - 1) 4583 numzero += 2; 4584 } 4585 } 4586 ASSERT(firstzero + numzero <= sizeof (struct in6_addr)); 4587 4588 /* 4589 * Check for an IPv4 embedded address. 4590 */ 4591 v6end = sizeof (struct in6_addr) - 2; 4592 if (IN6_IS_ADDR_V4MAPPED(&ip6) || 4593 IN6_IS_ADDR_V4COMPAT(&ip6)) { 4594 for (i = sizeof (struct in6_addr) - 1; 4595 i >= DTRACE_V4MAPPED_OFFSET; i--) { 4596 ASSERT(end >= base); 4597 4598 val = ip6._S6_un._S6_u8[i]; 4599 4600 if (val == 0) { 4601 *end-- = '0'; 4602 } else { 4603 for (; val; val /= 10) { 4604 *end-- = '0' + val % 10; 4605 } 4606 } 4607 4608 if (i > DTRACE_V4MAPPED_OFFSET) 4609 *end-- = '.'; 4610 } 4611 4612 if (subr == DIF_SUBR_INET_NTOA6) 4613 goto inetout; 4614 4615 /* 4616 * Set v6end to skip the IPv4 address that 4617 * we have already stringified. 4618 */ 4619 v6end = 10; 4620 } 4621 4622 /* 4623 * Build the IPv6 string by working through the 4624 * address in reverse. 4625 */ 4626 for (i = v6end; i >= 0; i -= 2) { 4627 ASSERT(end >= base); 4628 4629 if (i == firstzero + numzero - 2) { 4630 *end-- = ':'; 4631 *end-- = ':'; 4632 i -= numzero - 2; 4633 continue; 4634 } 4635 4636 if (i < 14 && i != firstzero - 2) 4637 *end-- = ':'; 4638 4639 val = (ip6._S6_un._S6_u8[i] << 8) + 4640 ip6._S6_un._S6_u8[i + 1]; 4641 4642 if (val == 0) { 4643 *end-- = '0'; 4644 } else { 4645 for (; val; val /= 16) { 4646 *end-- = digits[val % 16]; 4647 } 4648 } 4649 } 4650 ASSERT(end + 1 >= base); 4651 4652 } else { 4653 /* 4654 * The user didn't use AH_INET or AH_INET6. 4655 */ 4656 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); 4657 regs[rd] = NULL; 4658 break; 4659 } 4660 4661 inetout: regs[rd] = (uintptr_t)end + 1; 4662 mstate->dtms_scratch_ptr += size; 4663 break; 4664 } 4665 4666 } 4667 } 4668 4669 /* 4670 * Emulate the execution of DTrace IR instructions specified by the given 4671 * DIF object. This function is deliberately void of assertions as all of 4672 * the necessary checks are handled by a call to dtrace_difo_validate(). 4673 */ 4674 static uint64_t 4675 dtrace_dif_emulate(dtrace_difo_t *difo, dtrace_mstate_t *mstate, 4676 dtrace_vstate_t *vstate, dtrace_state_t *state) 4677 { 4678 const dif_instr_t *text = difo->dtdo_buf; 4679 const uint_t textlen = difo->dtdo_len; 4680 const char *strtab = difo->dtdo_strtab; 4681 const uint64_t *inttab = difo->dtdo_inttab; 4682 4683 uint64_t rval = 0; 4684 dtrace_statvar_t *svar; 4685 dtrace_dstate_t *dstate = &vstate->dtvs_dynvars; 4686 dtrace_difv_t *v; 4687 volatile uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 4688 volatile uintptr_t *illval = &cpu_core[CPU->cpu_id].cpuc_dtrace_illval; 4689 4690 dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */ 4691 uint64_t regs[DIF_DIR_NREGS]; 4692 uint64_t *tmp; 4693 4694 uint8_t cc_n = 0, cc_z = 0, cc_v = 0, cc_c = 0; 4695 int64_t cc_r; 4696 uint_t pc = 0, id, opc; 4697 uint8_t ttop = 0; 4698 dif_instr_t instr; 4699 uint_t r1, r2, rd; 4700 4701 /* 4702 * We stash the current DIF object into the machine state: we need it 4703 * for subsequent access checking. 4704 */ 4705 mstate->dtms_difo = difo; 4706 4707 regs[DIF_REG_R0] = 0; /* %r0 is fixed at zero */ 4708 4709 while (pc < textlen && !(*flags & CPU_DTRACE_FAULT)) { 4710 opc = pc; 4711 4712 instr = text[pc++]; 4713 r1 = DIF_INSTR_R1(instr); 4714 r2 = DIF_INSTR_R2(instr); 4715 rd = DIF_INSTR_RD(instr); 4716 4717 switch (DIF_INSTR_OP(instr)) { 4718 case DIF_OP_OR: 4719 regs[rd] = regs[r1] | regs[r2]; 4720 break; 4721 case DIF_OP_XOR: 4722 regs[rd] = regs[r1] ^ regs[r2]; 4723 break; 4724 case DIF_OP_AND: 4725 regs[rd] = regs[r1] & regs[r2]; 4726 break; 4727 case DIF_OP_SLL: 4728 regs[rd] = regs[r1] << regs[r2]; 4729 break; 4730 case DIF_OP_SRL: 4731 regs[rd] = regs[r1] >> regs[r2]; 4732 break; 4733 case DIF_OP_SUB: 4734 regs[rd] = regs[r1] - regs[r2]; 4735 break; 4736 case DIF_OP_ADD: 4737 regs[rd] = regs[r1] + regs[r2]; 4738 break; 4739 case DIF_OP_MUL: 4740 regs[rd] = regs[r1] * regs[r2]; 4741 break; 4742 case DIF_OP_SDIV: 4743 if (regs[r2] == 0) { 4744 regs[rd] = 0; 4745 *flags |= CPU_DTRACE_DIVZERO; 4746 } else { 4747 regs[rd] = (int64_t)regs[r1] / 4748 (int64_t)regs[r2]; 4749 } 4750 break; 4751 4752 case DIF_OP_UDIV: 4753 if (regs[r2] == 0) { 4754 regs[rd] = 0; 4755 *flags |= CPU_DTRACE_DIVZERO; 4756 } else { 4757 regs[rd] = regs[r1] / regs[r2]; 4758 } 4759 break; 4760 4761 case DIF_OP_SREM: 4762 if (regs[r2] == 0) { 4763 regs[rd] = 0; 4764 *flags |= CPU_DTRACE_DIVZERO; 4765 } else { 4766 regs[rd] = (int64_t)regs[r1] % 4767 (int64_t)regs[r2]; 4768 } 4769 break; 4770 4771 case DIF_OP_UREM: 4772 if (regs[r2] == 0) { 4773 regs[rd] = 0; 4774 *flags |= CPU_DTRACE_DIVZERO; 4775 } else { 4776 regs[rd] = regs[r1] % regs[r2]; 4777 } 4778 break; 4779 4780 case DIF_OP_NOT: 4781 regs[rd] = ~regs[r1]; 4782 break; 4783 case DIF_OP_MOV: 4784 regs[rd] = regs[r1]; 4785 break; 4786 case DIF_OP_CMP: 4787 cc_r = regs[r1] - regs[r2]; 4788 cc_n = cc_r < 0; 4789 cc_z = cc_r == 0; 4790 cc_v = 0; 4791 cc_c = regs[r1] < regs[r2]; 4792 break; 4793 case DIF_OP_TST: 4794 cc_n = cc_v = cc_c = 0; 4795 cc_z = regs[r1] == 0; 4796 break; 4797 case DIF_OP_BA: 4798 pc = DIF_INSTR_LABEL(instr); 4799 break; 4800 case DIF_OP_BE: 4801 if (cc_z) 4802 pc = DIF_INSTR_LABEL(instr); 4803 break; 4804 case DIF_OP_BNE: 4805 if (cc_z == 0) 4806 pc = DIF_INSTR_LABEL(instr); 4807 break; 4808 case DIF_OP_BG: 4809 if ((cc_z | (cc_n ^ cc_v)) == 0) 4810 pc = DIF_INSTR_LABEL(instr); 4811 break; 4812 case DIF_OP_BGU: 4813 if ((cc_c | cc_z) == 0) 4814 pc = DIF_INSTR_LABEL(instr); 4815 break; 4816 case DIF_OP_BGE: 4817 if ((cc_n ^ cc_v) == 0) 4818 pc = DIF_INSTR_LABEL(instr); 4819 break; 4820 case DIF_OP_BGEU: 4821 if (cc_c == 0) 4822 pc = DIF_INSTR_LABEL(instr); 4823 break; 4824 case DIF_OP_BL: 4825 if (cc_n ^ cc_v) 4826 pc = DIF_INSTR_LABEL(instr); 4827 break; 4828 case DIF_OP_BLU: 4829 if (cc_c) 4830 pc = DIF_INSTR_LABEL(instr); 4831 break; 4832 case DIF_OP_BLE: 4833 if (cc_z | (cc_n ^ cc_v)) 4834 pc = DIF_INSTR_LABEL(instr); 4835 break; 4836 case DIF_OP_BLEU: 4837 if (cc_c | cc_z) 4838 pc = DIF_INSTR_LABEL(instr); 4839 break; 4840 case DIF_OP_RLDSB: 4841 if (!dtrace_canstore(regs[r1], 1, mstate, vstate)) { 4842 *flags |= CPU_DTRACE_KPRIV; 4843 *illval = regs[r1]; 4844 break; 4845 } 4846 /*FALLTHROUGH*/ 4847 case DIF_OP_LDSB: 4848 regs[rd] = (int8_t)dtrace_load8(regs[r1]); 4849 break; 4850 case DIF_OP_RLDSH: 4851 if (!dtrace_canstore(regs[r1], 2, mstate, vstate)) { 4852 *flags |= CPU_DTRACE_KPRIV; 4853 *illval = regs[r1]; 4854 break; 4855 } 4856 /*FALLTHROUGH*/ 4857 case DIF_OP_LDSH: 4858 regs[rd] = (int16_t)dtrace_load16(regs[r1]); 4859 break; 4860 case DIF_OP_RLDSW: 4861 if (!dtrace_canstore(regs[r1], 4, mstate, vstate)) { 4862 *flags |= CPU_DTRACE_KPRIV; 4863 *illval = regs[r1]; 4864 break; 4865 } 4866 /*FALLTHROUGH*/ 4867 case DIF_OP_LDSW: 4868 regs[rd] = (int32_t)dtrace_load32(regs[r1]); 4869 break; 4870 case DIF_OP_RLDUB: 4871 if (!dtrace_canstore(regs[r1], 1, mstate, vstate)) { 4872 *flags |= CPU_DTRACE_KPRIV; 4873 *illval = regs[r1]; 4874 break; 4875 } 4876 /*FALLTHROUGH*/ 4877 case DIF_OP_LDUB: 4878 regs[rd] = dtrace_load8(regs[r1]); 4879 break; 4880 case DIF_OP_RLDUH: 4881 if (!dtrace_canstore(regs[r1], 2, mstate, vstate)) { 4882 *flags |= CPU_DTRACE_KPRIV; 4883 *illval = regs[r1]; 4884 break; 4885 } 4886 /*FALLTHROUGH*/ 4887 case DIF_OP_LDUH: 4888 regs[rd] = dtrace_load16(regs[r1]); 4889 break; 4890 case DIF_OP_RLDUW: 4891 if (!dtrace_canstore(regs[r1], 4, mstate, vstate)) { 4892 *flags |= CPU_DTRACE_KPRIV; 4893 *illval = regs[r1]; 4894 break; 4895 } 4896 /*FALLTHROUGH*/ 4897 case DIF_OP_LDUW: 4898 regs[rd] = dtrace_load32(regs[r1]); 4899 break; 4900 case DIF_OP_RLDX: 4901 if (!dtrace_canstore(regs[r1], 8, mstate, vstate)) { 4902 *flags |= CPU_DTRACE_KPRIV; 4903 *illval = regs[r1]; 4904 break; 4905 } 4906 /*FALLTHROUGH*/ 4907 case DIF_OP_LDX: 4908 regs[rd] = dtrace_load64(regs[r1]); 4909 break; 4910 case DIF_OP_ULDSB: 4911 regs[rd] = (int8_t) 4912 dtrace_fuword8((void *)(uintptr_t)regs[r1]); 4913 break; 4914 case DIF_OP_ULDSH: 4915 regs[rd] = (int16_t) 4916 dtrace_fuword16((void *)(uintptr_t)regs[r1]); 4917 break; 4918 case DIF_OP_ULDSW: 4919 regs[rd] = (int32_t) 4920 dtrace_fuword32((void *)(uintptr_t)regs[r1]); 4921 break; 4922 case DIF_OP_ULDUB: 4923 regs[rd] = 4924 dtrace_fuword8((void *)(uintptr_t)regs[r1]); 4925 break; 4926 case DIF_OP_ULDUH: 4927 regs[rd] = 4928 dtrace_fuword16((void *)(uintptr_t)regs[r1]); 4929 break; 4930 case DIF_OP_ULDUW: 4931 regs[rd] = 4932 dtrace_fuword32((void *)(uintptr_t)regs[r1]); 4933 break; 4934 case DIF_OP_ULDX: 4935 regs[rd] = 4936 dtrace_fuword64((void *)(uintptr_t)regs[r1]); 4937 break; 4938 case DIF_OP_RET: 4939 rval = regs[rd]; 4940 pc = textlen; 4941 break; 4942 case DIF_OP_NOP: 4943 break; 4944 case DIF_OP_SETX: 4945 regs[rd] = inttab[DIF_INSTR_INTEGER(instr)]; 4946 break; 4947 case DIF_OP_SETS: 4948 regs[rd] = (uint64_t)(uintptr_t) 4949 (strtab + DIF_INSTR_STRING(instr)); 4950 break; 4951 case DIF_OP_SCMP: { 4952 size_t sz = state->dts_options[DTRACEOPT_STRSIZE]; 4953 uintptr_t s1 = regs[r1]; 4954 uintptr_t s2 = regs[r2]; 4955 4956 if (s1 != NULL && 4957 !dtrace_strcanload(s1, sz, mstate, vstate)) 4958 break; 4959 if (s2 != NULL && 4960 !dtrace_strcanload(s2, sz, mstate, vstate)) 4961 break; 4962 4963 cc_r = dtrace_strncmp((char *)s1, (char *)s2, sz); 4964 4965 cc_n = cc_r < 0; 4966 cc_z = cc_r == 0; 4967 cc_v = cc_c = 0; 4968 break; 4969 } 4970 case DIF_OP_LDGA: 4971 regs[rd] = dtrace_dif_variable(mstate, state, 4972 r1, regs[r2]); 4973 break; 4974 case DIF_OP_LDGS: 4975 id = DIF_INSTR_VAR(instr); 4976 4977 if (id >= DIF_VAR_OTHER_UBASE) { 4978 uintptr_t a; 4979 4980 id -= DIF_VAR_OTHER_UBASE; 4981 svar = vstate->dtvs_globals[id]; 4982 ASSERT(svar != NULL); 4983 v = &svar->dtsv_var; 4984 4985 if (!(v->dtdv_type.dtdt_flags & DIF_TF_BYREF)) { 4986 regs[rd] = svar->dtsv_data; 4987 break; 4988 } 4989 4990 a = (uintptr_t)svar->dtsv_data; 4991 4992 if (*(uint8_t *)a == UINT8_MAX) { 4993 /* 4994 * If the 0th byte is set to UINT8_MAX 4995 * then this is to be treated as a 4996 * reference to a NULL variable. 4997 */ 4998 regs[rd] = NULL; 4999 } else { 5000 regs[rd] = a + sizeof (uint64_t); 5001 } 5002 5003 break; 5004 } 5005 5006 regs[rd] = dtrace_dif_variable(mstate, state, id, 0); 5007 break; 5008 5009 case DIF_OP_STGS: 5010 id = DIF_INSTR_VAR(instr); 5011 5012 ASSERT(id >= DIF_VAR_OTHER_UBASE); 5013 id -= DIF_VAR_OTHER_UBASE; 5014 5015 svar = vstate->dtvs_globals[id]; 5016 ASSERT(svar != NULL); 5017 v = &svar->dtsv_var; 5018 5019 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 5020 uintptr_t a = (uintptr_t)svar->dtsv_data; 5021 5022 ASSERT(a != NULL); 5023 ASSERT(svar->dtsv_size != 0); 5024 5025 if (regs[rd] == NULL) { 5026 *(uint8_t *)a = UINT8_MAX; 5027 break; 5028 } else { 5029 *(uint8_t *)a = 0; 5030 a += sizeof (uint64_t); 5031 } 5032 if (!dtrace_vcanload( 5033 (void *)(uintptr_t)regs[rd], &v->dtdv_type, 5034 mstate, vstate)) 5035 break; 5036 5037 dtrace_vcopy((void *)(uintptr_t)regs[rd], 5038 (void *)a, &v->dtdv_type); 5039 break; 5040 } 5041 5042 svar->dtsv_data = regs[rd]; 5043 break; 5044 5045 case DIF_OP_LDTA: 5046 /* 5047 * There are no DTrace built-in thread-local arrays at 5048 * present. This opcode is saved for future work. 5049 */ 5050 *flags |= CPU_DTRACE_ILLOP; 5051 regs[rd] = 0; 5052 break; 5053 5054 case DIF_OP_LDLS: 5055 id = DIF_INSTR_VAR(instr); 5056 5057 if (id < DIF_VAR_OTHER_UBASE) { 5058 /* 5059 * For now, this has no meaning. 5060 */ 5061 regs[rd] = 0; 5062 break; 5063 } 5064 5065 id -= DIF_VAR_OTHER_UBASE; 5066 5067 ASSERT(id < vstate->dtvs_nlocals); 5068 ASSERT(vstate->dtvs_locals != NULL); 5069 5070 svar = vstate->dtvs_locals[id]; 5071 ASSERT(svar != NULL); 5072 v = &svar->dtsv_var; 5073 5074 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 5075 uintptr_t a = (uintptr_t)svar->dtsv_data; 5076 size_t sz = v->dtdv_type.dtdt_size; 5077 5078 sz += sizeof (uint64_t); 5079 ASSERT(svar->dtsv_size == NCPU * sz); 5080 a += CPU->cpu_id * sz; 5081 5082 if (*(uint8_t *)a == UINT8_MAX) { 5083 /* 5084 * If the 0th byte is set to UINT8_MAX 5085 * then this is to be treated as a 5086 * reference to a NULL variable. 5087 */ 5088 regs[rd] = NULL; 5089 } else { 5090 regs[rd] = a + sizeof (uint64_t); 5091 } 5092 5093 break; 5094 } 5095 5096 ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t)); 5097 tmp = (uint64_t *)(uintptr_t)svar->dtsv_data; 5098 regs[rd] = tmp[CPU->cpu_id]; 5099 break; 5100 5101 case DIF_OP_STLS: 5102 id = DIF_INSTR_VAR(instr); 5103 5104 ASSERT(id >= DIF_VAR_OTHER_UBASE); 5105 id -= DIF_VAR_OTHER_UBASE; 5106 ASSERT(id < vstate->dtvs_nlocals); 5107 5108 ASSERT(vstate->dtvs_locals != NULL); 5109 svar = vstate->dtvs_locals[id]; 5110 ASSERT(svar != NULL); 5111 v = &svar->dtsv_var; 5112 5113 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 5114 uintptr_t a = (uintptr_t)svar->dtsv_data; 5115 size_t sz = v->dtdv_type.dtdt_size; 5116 5117 sz += sizeof (uint64_t); 5118 ASSERT(svar->dtsv_size == NCPU * sz); 5119 a += CPU->cpu_id * sz; 5120 5121 if (regs[rd] == NULL) { 5122 *(uint8_t *)a = UINT8_MAX; 5123 break; 5124 } else { 5125 *(uint8_t *)a = 0; 5126 a += sizeof (uint64_t); 5127 } 5128 5129 if (!dtrace_vcanload( 5130 (void *)(uintptr_t)regs[rd], &v->dtdv_type, 5131 mstate, vstate)) 5132 break; 5133 5134 dtrace_vcopy((void *)(uintptr_t)regs[rd], 5135 (void *)a, &v->dtdv_type); 5136 break; 5137 } 5138 5139 ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t)); 5140 tmp = (uint64_t *)(uintptr_t)svar->dtsv_data; 5141 tmp[CPU->cpu_id] = regs[rd]; 5142 break; 5143 5144 case DIF_OP_LDTS: { 5145 dtrace_dynvar_t *dvar; 5146 dtrace_key_t *key; 5147 5148 id = DIF_INSTR_VAR(instr); 5149 ASSERT(id >= DIF_VAR_OTHER_UBASE); 5150 id -= DIF_VAR_OTHER_UBASE; 5151 v = &vstate->dtvs_tlocals[id]; 5152 5153 key = &tupregs[DIF_DTR_NREGS]; 5154 key[0].dttk_value = (uint64_t)id; 5155 key[0].dttk_size = 0; 5156 DTRACE_TLS_THRKEY(key[1].dttk_value); 5157 key[1].dttk_size = 0; 5158 5159 dvar = dtrace_dynvar(dstate, 2, key, 5160 sizeof (uint64_t), DTRACE_DYNVAR_NOALLOC, 5161 mstate, vstate); 5162 5163 if (dvar == NULL) { 5164 regs[rd] = 0; 5165 break; 5166 } 5167 5168 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 5169 regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data; 5170 } else { 5171 regs[rd] = *((uint64_t *)dvar->dtdv_data); 5172 } 5173 5174 break; 5175 } 5176 5177 case DIF_OP_STTS: { 5178 dtrace_dynvar_t *dvar; 5179 dtrace_key_t *key; 5180 5181 id = DIF_INSTR_VAR(instr); 5182 ASSERT(id >= DIF_VAR_OTHER_UBASE); 5183 id -= DIF_VAR_OTHER_UBASE; 5184 5185 key = &tupregs[DIF_DTR_NREGS]; 5186 key[0].dttk_value = (uint64_t)id; 5187 key[0].dttk_size = 0; 5188 DTRACE_TLS_THRKEY(key[1].dttk_value); 5189 key[1].dttk_size = 0; 5190 v = &vstate->dtvs_tlocals[id]; 5191 5192 dvar = dtrace_dynvar(dstate, 2, key, 5193 v->dtdv_type.dtdt_size > sizeof (uint64_t) ? 5194 v->dtdv_type.dtdt_size : sizeof (uint64_t), 5195 regs[rd] ? DTRACE_DYNVAR_ALLOC : 5196 DTRACE_DYNVAR_DEALLOC, mstate, vstate); 5197 5198 /* 5199 * Given that we're storing to thread-local data, 5200 * we need to flush our predicate cache. 5201 */ 5202 curthread->t_predcache = NULL; 5203 5204 if (dvar == NULL) 5205 break; 5206 5207 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 5208 if (!dtrace_vcanload( 5209 (void *)(uintptr_t)regs[rd], 5210 &v->dtdv_type, mstate, vstate)) 5211 break; 5212 5213 dtrace_vcopy((void *)(uintptr_t)regs[rd], 5214 dvar->dtdv_data, &v->dtdv_type); 5215 } else { 5216 *((uint64_t *)dvar->dtdv_data) = regs[rd]; 5217 } 5218 5219 break; 5220 } 5221 5222 case DIF_OP_SRA: 5223 regs[rd] = (int64_t)regs[r1] >> regs[r2]; 5224 break; 5225 5226 case DIF_OP_CALL: 5227 dtrace_dif_subr(DIF_INSTR_SUBR(instr), rd, 5228 regs, tupregs, ttop, mstate, state); 5229 break; 5230 5231 case DIF_OP_PUSHTR: 5232 if (ttop == DIF_DTR_NREGS) { 5233 *flags |= CPU_DTRACE_TUPOFLOW; 5234 break; 5235 } 5236 5237 if (r1 == DIF_TYPE_STRING) { 5238 /* 5239 * If this is a string type and the size is 0, 5240 * we'll use the system-wide default string 5241 * size. Note that we are _not_ looking at 5242 * the value of the DTRACEOPT_STRSIZE option; 5243 * had this been set, we would expect to have 5244 * a non-zero size value in the "pushtr". 5245 */ 5246 tupregs[ttop].dttk_size = 5247 dtrace_strlen((char *)(uintptr_t)regs[rd], 5248 regs[r2] ? regs[r2] : 5249 dtrace_strsize_default) + 1; 5250 } else { 5251 tupregs[ttop].dttk_size = regs[r2]; 5252 } 5253 5254 tupregs[ttop++].dttk_value = regs[rd]; 5255 break; 5256 5257 case DIF_OP_PUSHTV: 5258 if (ttop == DIF_DTR_NREGS) { 5259 *flags |= CPU_DTRACE_TUPOFLOW; 5260 break; 5261 } 5262 5263 tupregs[ttop].dttk_value = regs[rd]; 5264 tupregs[ttop++].dttk_size = 0; 5265 break; 5266 5267 case DIF_OP_POPTS: 5268 if (ttop != 0) 5269 ttop--; 5270 break; 5271 5272 case DIF_OP_FLUSHTS: 5273 ttop = 0; 5274 break; 5275 5276 case DIF_OP_LDGAA: 5277 case DIF_OP_LDTAA: { 5278 dtrace_dynvar_t *dvar; 5279 dtrace_key_t *key = tupregs; 5280 uint_t nkeys = ttop; 5281 5282 id = DIF_INSTR_VAR(instr); 5283 ASSERT(id >= DIF_VAR_OTHER_UBASE); 5284 id -= DIF_VAR_OTHER_UBASE; 5285 5286 key[nkeys].dttk_value = (uint64_t)id; 5287 key[nkeys++].dttk_size = 0; 5288 5289 if (DIF_INSTR_OP(instr) == DIF_OP_LDTAA) { 5290 DTRACE_TLS_THRKEY(key[nkeys].dttk_value); 5291 key[nkeys++].dttk_size = 0; 5292 v = &vstate->dtvs_tlocals[id]; 5293 } else { 5294 v = &vstate->dtvs_globals[id]->dtsv_var; 5295 } 5296 5297 dvar = dtrace_dynvar(dstate, nkeys, key, 5298 v->dtdv_type.dtdt_size > sizeof (uint64_t) ? 5299 v->dtdv_type.dtdt_size : sizeof (uint64_t), 5300 DTRACE_DYNVAR_NOALLOC, mstate, vstate); 5301 5302 if (dvar == NULL) { 5303 regs[rd] = 0; 5304 break; 5305 } 5306 5307 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 5308 regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data; 5309 } else { 5310 regs[rd] = *((uint64_t *)dvar->dtdv_data); 5311 } 5312 5313 break; 5314 } 5315 5316 case DIF_OP_STGAA: 5317 case DIF_OP_STTAA: { 5318 dtrace_dynvar_t *dvar; 5319 dtrace_key_t *key = tupregs; 5320 uint_t nkeys = ttop; 5321 5322 id = DIF_INSTR_VAR(instr); 5323 ASSERT(id >= DIF_VAR_OTHER_UBASE); 5324 id -= DIF_VAR_OTHER_UBASE; 5325 5326 key[nkeys].dttk_value = (uint64_t)id; 5327 key[nkeys++].dttk_size = 0; 5328 5329 if (DIF_INSTR_OP(instr) == DIF_OP_STTAA) { 5330 DTRACE_TLS_THRKEY(key[nkeys].dttk_value); 5331 key[nkeys++].dttk_size = 0; 5332 v = &vstate->dtvs_tlocals[id]; 5333 } else { 5334 v = &vstate->dtvs_globals[id]->dtsv_var; 5335 } 5336 5337 dvar = dtrace_dynvar(dstate, nkeys, key, 5338 v->dtdv_type.dtdt_size > sizeof (uint64_t) ? 5339 v->dtdv_type.dtdt_size : sizeof (uint64_t), 5340 regs[rd] ? DTRACE_DYNVAR_ALLOC : 5341 DTRACE_DYNVAR_DEALLOC, mstate, vstate); 5342 5343 if (dvar == NULL) 5344 break; 5345 5346 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 5347 if (!dtrace_vcanload( 5348 (void *)(uintptr_t)regs[rd], &v->dtdv_type, 5349 mstate, vstate)) 5350 break; 5351 5352 dtrace_vcopy((void *)(uintptr_t)regs[rd], 5353 dvar->dtdv_data, &v->dtdv_type); 5354 } else { 5355 *((uint64_t *)dvar->dtdv_data) = regs[rd]; 5356 } 5357 5358 break; 5359 } 5360 5361 case DIF_OP_ALLOCS: { 5362 uintptr_t ptr = P2ROUNDUP(mstate->dtms_scratch_ptr, 8); 5363 size_t size = ptr - mstate->dtms_scratch_ptr + regs[r1]; 5364 5365 /* 5366 * Rounding up the user allocation size could have 5367 * overflowed large, bogus allocations (like -1ULL) to 5368 * 0. 5369 */ 5370 if (size < regs[r1] || 5371 !DTRACE_INSCRATCH(mstate, size)) { 5372 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5373 regs[rd] = NULL; 5374 break; 5375 } 5376 5377 dtrace_bzero((void *) mstate->dtms_scratch_ptr, size); 5378 mstate->dtms_scratch_ptr += size; 5379 regs[rd] = ptr; 5380 break; 5381 } 5382 5383 case DIF_OP_COPYS: 5384 if (!dtrace_canstore(regs[rd], regs[r2], 5385 mstate, vstate)) { 5386 *flags |= CPU_DTRACE_BADADDR; 5387 *illval = regs[rd]; 5388 break; 5389 } 5390 5391 if (!dtrace_canload(regs[r1], regs[r2], mstate, vstate)) 5392 break; 5393 5394 dtrace_bcopy((void *)(uintptr_t)regs[r1], 5395 (void *)(uintptr_t)regs[rd], (size_t)regs[r2]); 5396 break; 5397 5398 case DIF_OP_STB: 5399 if (!dtrace_canstore(regs[rd], 1, mstate, vstate)) { 5400 *flags |= CPU_DTRACE_BADADDR; 5401 *illval = regs[rd]; 5402 break; 5403 } 5404 *((uint8_t *)(uintptr_t)regs[rd]) = (uint8_t)regs[r1]; 5405 break; 5406 5407 case DIF_OP_STH: 5408 if (!dtrace_canstore(regs[rd], 2, mstate, vstate)) { 5409 *flags |= CPU_DTRACE_BADADDR; 5410 *illval = regs[rd]; 5411 break; 5412 } 5413 if (regs[rd] & 1) { 5414 *flags |= CPU_DTRACE_BADALIGN; 5415 *illval = regs[rd]; 5416 break; 5417 } 5418 *((uint16_t *)(uintptr_t)regs[rd]) = (uint16_t)regs[r1]; 5419 break; 5420 5421 case DIF_OP_STW: 5422 if (!dtrace_canstore(regs[rd], 4, mstate, vstate)) { 5423 *flags |= CPU_DTRACE_BADADDR; 5424 *illval = regs[rd]; 5425 break; 5426 } 5427 if (regs[rd] & 3) { 5428 *flags |= CPU_DTRACE_BADALIGN; 5429 *illval = regs[rd]; 5430 break; 5431 } 5432 *((uint32_t *)(uintptr_t)regs[rd]) = (uint32_t)regs[r1]; 5433 break; 5434 5435 case DIF_OP_STX: 5436 if (!dtrace_canstore(regs[rd], 8, mstate, vstate)) { 5437 *flags |= CPU_DTRACE_BADADDR; 5438 *illval = regs[rd]; 5439 break; 5440 } 5441 if (regs[rd] & 7) { 5442 *flags |= CPU_DTRACE_BADALIGN; 5443 *illval = regs[rd]; 5444 break; 5445 } 5446 *((uint64_t *)(uintptr_t)regs[rd]) = regs[r1]; 5447 break; 5448 } 5449 } 5450 5451 if (!(*flags & CPU_DTRACE_FAULT)) 5452 return (rval); 5453 5454 mstate->dtms_fltoffs = opc * sizeof (dif_instr_t); 5455 mstate->dtms_present |= DTRACE_MSTATE_FLTOFFS; 5456 5457 return (0); 5458 } 5459 5460 static void 5461 dtrace_action_breakpoint(dtrace_ecb_t *ecb) 5462 { 5463 dtrace_probe_t *probe = ecb->dte_probe; 5464 dtrace_provider_t *prov = probe->dtpr_provider; 5465 char c[DTRACE_FULLNAMELEN + 80], *str; 5466 char *msg = "dtrace: breakpoint action at probe "; 5467 char *ecbmsg = " (ecb "; 5468 uintptr_t mask = (0xf << (sizeof (uintptr_t) * NBBY / 4)); 5469 uintptr_t val = (uintptr_t)ecb; 5470 int shift = (sizeof (uintptr_t) * NBBY) - 4, i = 0; 5471 5472 if (dtrace_destructive_disallow) 5473 return; 5474 5475 /* 5476 * It's impossible to be taking action on the NULL probe. 5477 */ 5478 ASSERT(probe != NULL); 5479 5480 /* 5481 * This is a poor man's (destitute man's?) sprintf(): we want to 5482 * print the provider name, module name, function name and name of 5483 * the probe, along with the hex address of the ECB with the breakpoint 5484 * action -- all of which we must place in the character buffer by 5485 * hand. 5486 */ 5487 while (*msg != '\0') 5488 c[i++] = *msg++; 5489 5490 for (str = prov->dtpv_name; *str != '\0'; str++) 5491 c[i++] = *str; 5492 c[i++] = ':'; 5493 5494 for (str = probe->dtpr_mod; *str != '\0'; str++) 5495 c[i++] = *str; 5496 c[i++] = ':'; 5497 5498 for (str = probe->dtpr_func; *str != '\0'; str++) 5499 c[i++] = *str; 5500 c[i++] = ':'; 5501 5502 for (str = probe->dtpr_name; *str != '\0'; str++) 5503 c[i++] = *str; 5504 5505 while (*ecbmsg != '\0') 5506 c[i++] = *ecbmsg++; 5507 5508 while (shift >= 0) { 5509 mask = (uintptr_t)0xf << shift; 5510 5511 if (val >= ((uintptr_t)1 << shift)) 5512 c[i++] = "0123456789abcdef"[(val & mask) >> shift]; 5513 shift -= 4; 5514 } 5515 5516 c[i++] = ')'; 5517 c[i] = '\0'; 5518 5519 debug_enter(c); 5520 } 5521 5522 static void 5523 dtrace_action_panic(dtrace_ecb_t *ecb) 5524 { 5525 dtrace_probe_t *probe = ecb->dte_probe; 5526 5527 /* 5528 * It's impossible to be taking action on the NULL probe. 5529 */ 5530 ASSERT(probe != NULL); 5531 5532 if (dtrace_destructive_disallow) 5533 return; 5534 5535 if (dtrace_panicked != NULL) 5536 return; 5537 5538 if (dtrace_casptr(&dtrace_panicked, NULL, curthread) != NULL) 5539 return; 5540 5541 /* 5542 * We won the right to panic. (We want to be sure that only one 5543 * thread calls panic() from dtrace_probe(), and that panic() is 5544 * called exactly once.) 5545 */ 5546 dtrace_panic("dtrace: panic action at probe %s:%s:%s:%s (ecb %p)", 5547 probe->dtpr_provider->dtpv_name, probe->dtpr_mod, 5548 probe->dtpr_func, probe->dtpr_name, (void *)ecb); 5549 } 5550 5551 static void 5552 dtrace_action_raise(uint64_t sig) 5553 { 5554 if (dtrace_destructive_disallow) 5555 return; 5556 5557 if (sig >= NSIG) { 5558 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); 5559 return; 5560 } 5561 5562 /* 5563 * raise() has a queue depth of 1 -- we ignore all subsequent 5564 * invocations of the raise() action. 5565 */ 5566 if (curthread->t_dtrace_sig == 0) 5567 curthread->t_dtrace_sig = (uint8_t)sig; 5568 5569 curthread->t_sig_check = 1; 5570 aston(curthread); 5571 } 5572 5573 static void 5574 dtrace_action_stop(void) 5575 { 5576 if (dtrace_destructive_disallow) 5577 return; 5578 5579 if (!curthread->t_dtrace_stop) { 5580 curthread->t_dtrace_stop = 1; 5581 curthread->t_sig_check = 1; 5582 aston(curthread); 5583 } 5584 } 5585 5586 static void 5587 dtrace_action_chill(dtrace_mstate_t *mstate, hrtime_t val) 5588 { 5589 hrtime_t now; 5590 volatile uint16_t *flags; 5591 cpu_t *cpu = CPU; 5592 5593 if (dtrace_destructive_disallow) 5594 return; 5595 5596 flags = (volatile uint16_t *)&cpu_core[cpu->cpu_id].cpuc_dtrace_flags; 5597 5598 now = dtrace_gethrtime(); 5599 5600 if (now - cpu->cpu_dtrace_chillmark > dtrace_chill_interval) { 5601 /* 5602 * We need to advance the mark to the current time. 5603 */ 5604 cpu->cpu_dtrace_chillmark = now; 5605 cpu->cpu_dtrace_chilled = 0; 5606 } 5607 5608 /* 5609 * Now check to see if the requested chill time would take us over 5610 * the maximum amount of time allowed in the chill interval. (Or 5611 * worse, if the calculation itself induces overflow.) 5612 */ 5613 if (cpu->cpu_dtrace_chilled + val > dtrace_chill_max || 5614 cpu->cpu_dtrace_chilled + val < cpu->cpu_dtrace_chilled) { 5615 *flags |= CPU_DTRACE_ILLOP; 5616 return; 5617 } 5618 5619 while (dtrace_gethrtime() - now < val) 5620 continue; 5621 5622 /* 5623 * Normally, we assure that the value of the variable "timestamp" does 5624 * not change within an ECB. The presence of chill() represents an 5625 * exception to this rule, however. 5626 */ 5627 mstate->dtms_present &= ~DTRACE_MSTATE_TIMESTAMP; 5628 cpu->cpu_dtrace_chilled += val; 5629 } 5630 5631 static void 5632 dtrace_action_ustack(dtrace_mstate_t *mstate, dtrace_state_t *state, 5633 uint64_t *buf, uint64_t arg) 5634 { 5635 int nframes = DTRACE_USTACK_NFRAMES(arg); 5636 int strsize = DTRACE_USTACK_STRSIZE(arg); 5637 uint64_t *pcs = &buf[1], *fps; 5638 char *str = (char *)&pcs[nframes]; 5639 int size, offs = 0, i, j; 5640 uintptr_t old = mstate->dtms_scratch_ptr, saved; 5641 uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 5642 char *sym; 5643 5644 /* 5645 * Should be taking a faster path if string space has not been 5646 * allocated. 5647 */ 5648 ASSERT(strsize != 0); 5649 5650 /* 5651 * We will first allocate some temporary space for the frame pointers. 5652 */ 5653 fps = (uint64_t *)P2ROUNDUP(mstate->dtms_scratch_ptr, 8); 5654 size = (uintptr_t)fps - mstate->dtms_scratch_ptr + 5655 (nframes * sizeof (uint64_t)); 5656 5657 if (!DTRACE_INSCRATCH(mstate, size)) { 5658 /* 5659 * Not enough room for our frame pointers -- need to indicate 5660 * that we ran out of scratch space. 5661 */ 5662 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5663 return; 5664 } 5665 5666 mstate->dtms_scratch_ptr += size; 5667 saved = mstate->dtms_scratch_ptr; 5668 5669 /* 5670 * Now get a stack with both program counters and frame pointers. 5671 */ 5672 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 5673 dtrace_getufpstack(buf, fps, nframes + 1); 5674 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 5675 5676 /* 5677 * If that faulted, we're cooked. 5678 */ 5679 if (*flags & CPU_DTRACE_FAULT) 5680 goto out; 5681 5682 /* 5683 * Now we want to walk up the stack, calling the USTACK helper. For 5684 * each iteration, we restore the scratch pointer. 5685 */ 5686 for (i = 0; i < nframes; i++) { 5687 mstate->dtms_scratch_ptr = saved; 5688 5689 if (offs >= strsize) 5690 break; 5691 5692 sym = (char *)(uintptr_t)dtrace_helper( 5693 DTRACE_HELPER_ACTION_USTACK, 5694 mstate, state, pcs[i], fps[i]); 5695 5696 /* 5697 * If we faulted while running the helper, we're going to 5698 * clear the fault and null out the corresponding string. 5699 */ 5700 if (*flags & CPU_DTRACE_FAULT) { 5701 *flags &= ~CPU_DTRACE_FAULT; 5702 str[offs++] = '\0'; 5703 continue; 5704 } 5705 5706 if (sym == NULL) { 5707 str[offs++] = '\0'; 5708 continue; 5709 } 5710 5711 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 5712 5713 /* 5714 * Now copy in the string that the helper returned to us. 5715 */ 5716 for (j = 0; offs + j < strsize; j++) { 5717 if ((str[offs + j] = sym[j]) == '\0') 5718 break; 5719 } 5720 5721 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 5722 5723 offs += j + 1; 5724 } 5725 5726 if (offs >= strsize) { 5727 /* 5728 * If we didn't have room for all of the strings, we don't 5729 * abort processing -- this needn't be a fatal error -- but we 5730 * still want to increment a counter (dts_stkstroverflows) to 5731 * allow this condition to be warned about. (If this is from 5732 * a jstack() action, it is easily tuned via jstackstrsize.) 5733 */ 5734 dtrace_error(&state->dts_stkstroverflows); 5735 } 5736 5737 while (offs < strsize) 5738 str[offs++] = '\0'; 5739 5740 out: 5741 mstate->dtms_scratch_ptr = old; 5742 } 5743 5744 /* 5745 * If you're looking for the epicenter of DTrace, you just found it. This 5746 * is the function called by the provider to fire a probe -- from which all 5747 * subsequent probe-context DTrace activity emanates. 5748 */ 5749 void 5750 dtrace_probe(dtrace_id_t id, uintptr_t arg0, uintptr_t arg1, 5751 uintptr_t arg2, uintptr_t arg3, uintptr_t arg4) 5752 { 5753 processorid_t cpuid; 5754 dtrace_icookie_t cookie; 5755 dtrace_probe_t *probe; 5756 dtrace_mstate_t mstate; 5757 dtrace_ecb_t *ecb; 5758 dtrace_action_t *act; 5759 intptr_t offs; 5760 size_t size; 5761 int vtime, onintr; 5762 volatile uint16_t *flags; 5763 hrtime_t now; 5764 5765 /* 5766 * Kick out immediately if this CPU is still being born (in which case 5767 * curthread will be set to -1) or the current thread can't allow 5768 * probes in its current context. 5769 */ 5770 if (((uintptr_t)curthread & 1) || (curthread->t_flag & T_DONTDTRACE)) 5771 return; 5772 5773 cookie = dtrace_interrupt_disable(); 5774 probe = dtrace_probes[id - 1]; 5775 cpuid = CPU->cpu_id; 5776 onintr = CPU_ON_INTR(CPU); 5777 5778 if (!onintr && probe->dtpr_predcache != DTRACE_CACHEIDNONE && 5779 probe->dtpr_predcache == curthread->t_predcache) { 5780 /* 5781 * We have hit in the predicate cache; we know that 5782 * this predicate would evaluate to be false. 5783 */ 5784 dtrace_interrupt_enable(cookie); 5785 return; 5786 } 5787 5788 if (panic_quiesce) { 5789 /* 5790 * We don't trace anything if we're panicking. 5791 */ 5792 dtrace_interrupt_enable(cookie); 5793 return; 5794 } 5795 5796 now = dtrace_gethrtime(); 5797 vtime = dtrace_vtime_references != 0; 5798 5799 if (vtime && curthread->t_dtrace_start) 5800 curthread->t_dtrace_vtime += now - curthread->t_dtrace_start; 5801 5802 mstate.dtms_difo = NULL; 5803 mstate.dtms_probe = probe; 5804 mstate.dtms_strtok = NULL; 5805 mstate.dtms_arg[0] = arg0; 5806 mstate.dtms_arg[1] = arg1; 5807 mstate.dtms_arg[2] = arg2; 5808 mstate.dtms_arg[3] = arg3; 5809 mstate.dtms_arg[4] = arg4; 5810 5811 flags = (volatile uint16_t *)&cpu_core[cpuid].cpuc_dtrace_flags; 5812 5813 for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) { 5814 dtrace_predicate_t *pred = ecb->dte_predicate; 5815 dtrace_state_t *state = ecb->dte_state; 5816 dtrace_buffer_t *buf = &state->dts_buffer[cpuid]; 5817 dtrace_buffer_t *aggbuf = &state->dts_aggbuffer[cpuid]; 5818 dtrace_vstate_t *vstate = &state->dts_vstate; 5819 dtrace_provider_t *prov = probe->dtpr_provider; 5820 uint64_t tracememsize = 0; 5821 int committed = 0; 5822 caddr_t tomax; 5823 5824 /* 5825 * A little subtlety with the following (seemingly innocuous) 5826 * declaration of the automatic 'val': by looking at the 5827 * code, you might think that it could be declared in the 5828 * action processing loop, below. (That is, it's only used in 5829 * the action processing loop.) However, it must be declared 5830 * out of that scope because in the case of DIF expression 5831 * arguments to aggregating actions, one iteration of the 5832 * action loop will use the last iteration's value. 5833 */ 5834 #ifdef lint 5835 uint64_t val = 0; 5836 #else 5837 uint64_t val; 5838 #endif 5839 5840 mstate.dtms_present = DTRACE_MSTATE_ARGS | DTRACE_MSTATE_PROBE; 5841 mstate.dtms_access = DTRACE_ACCESS_ARGS | DTRACE_ACCESS_PROC; 5842 *flags &= ~CPU_DTRACE_ERROR; 5843 5844 if (prov == dtrace_provider) { 5845 /* 5846 * If dtrace itself is the provider of this probe, 5847 * we're only going to continue processing the ECB if 5848 * arg0 (the dtrace_state_t) is equal to the ECB's 5849 * creating state. (This prevents disjoint consumers 5850 * from seeing one another's metaprobes.) 5851 */ 5852 if (arg0 != (uint64_t)(uintptr_t)state) 5853 continue; 5854 } 5855 5856 if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE) { 5857 /* 5858 * We're not currently active. If our provider isn't 5859 * the dtrace pseudo provider, we're not interested. 5860 */ 5861 if (prov != dtrace_provider) 5862 continue; 5863 5864 /* 5865 * Now we must further check if we are in the BEGIN 5866 * probe. If we are, we will only continue processing 5867 * if we're still in WARMUP -- if one BEGIN enabling 5868 * has invoked the exit() action, we don't want to 5869 * evaluate subsequent BEGIN enablings. 5870 */ 5871 if (probe->dtpr_id == dtrace_probeid_begin && 5872 state->dts_activity != DTRACE_ACTIVITY_WARMUP) { 5873 ASSERT(state->dts_activity == 5874 DTRACE_ACTIVITY_DRAINING); 5875 continue; 5876 } 5877 } 5878 5879 if (ecb->dte_cond && !dtrace_priv_probe(state, &mstate, ecb)) 5880 continue; 5881 5882 if (now - state->dts_alive > dtrace_deadman_timeout) { 5883 /* 5884 * We seem to be dead. Unless we (a) have kernel 5885 * destructive permissions (b) have expicitly enabled 5886 * destructive actions and (c) destructive actions have 5887 * not been disabled, we're going to transition into 5888 * the KILLED state, from which no further processing 5889 * on this state will be performed. 5890 */ 5891 if (!dtrace_priv_kernel_destructive(state) || 5892 !state->dts_cred.dcr_destructive || 5893 dtrace_destructive_disallow) { 5894 void *activity = &state->dts_activity; 5895 dtrace_activity_t current; 5896 5897 do { 5898 current = state->dts_activity; 5899 } while (dtrace_cas32(activity, current, 5900 DTRACE_ACTIVITY_KILLED) != current); 5901 5902 continue; 5903 } 5904 } 5905 5906 if ((offs = dtrace_buffer_reserve(buf, ecb->dte_needed, 5907 ecb->dte_alignment, state, &mstate)) < 0) 5908 continue; 5909 5910 tomax = buf->dtb_tomax; 5911 ASSERT(tomax != NULL); 5912 5913 if (ecb->dte_size != 0) 5914 DTRACE_STORE(uint32_t, tomax, offs, ecb->dte_epid); 5915 5916 mstate.dtms_epid = ecb->dte_epid; 5917 mstate.dtms_present |= DTRACE_MSTATE_EPID; 5918 5919 if (state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) 5920 mstate.dtms_access |= DTRACE_ACCESS_KERNEL; 5921 5922 if (pred != NULL) { 5923 dtrace_difo_t *dp = pred->dtp_difo; 5924 int rval; 5925 5926 rval = dtrace_dif_emulate(dp, &mstate, vstate, state); 5927 5928 if (!(*flags & CPU_DTRACE_ERROR) && !rval) { 5929 dtrace_cacheid_t cid = probe->dtpr_predcache; 5930 5931 if (cid != DTRACE_CACHEIDNONE && !onintr) { 5932 /* 5933 * Update the predicate cache... 5934 */ 5935 ASSERT(cid == pred->dtp_cacheid); 5936 curthread->t_predcache = cid; 5937 } 5938 5939 continue; 5940 } 5941 } 5942 5943 for (act = ecb->dte_action; !(*flags & CPU_DTRACE_ERROR) && 5944 act != NULL; act = act->dta_next) { 5945 size_t valoffs; 5946 dtrace_difo_t *dp; 5947 dtrace_recdesc_t *rec = &act->dta_rec; 5948 5949 size = rec->dtrd_size; 5950 valoffs = offs + rec->dtrd_offset; 5951 5952 if (DTRACEACT_ISAGG(act->dta_kind)) { 5953 uint64_t v = 0xbad; 5954 dtrace_aggregation_t *agg; 5955 5956 agg = (dtrace_aggregation_t *)act; 5957 5958 if ((dp = act->dta_difo) != NULL) 5959 v = dtrace_dif_emulate(dp, 5960 &mstate, vstate, state); 5961 5962 if (*flags & CPU_DTRACE_ERROR) 5963 continue; 5964 5965 /* 5966 * Note that we always pass the expression 5967 * value from the previous iteration of the 5968 * action loop. This value will only be used 5969 * if there is an expression argument to the 5970 * aggregating action, denoted by the 5971 * dtag_hasarg field. 5972 */ 5973 dtrace_aggregate(agg, buf, 5974 offs, aggbuf, v, val); 5975 continue; 5976 } 5977 5978 switch (act->dta_kind) { 5979 case DTRACEACT_STOP: 5980 if (dtrace_priv_proc_destructive(state, 5981 &mstate)) 5982 dtrace_action_stop(); 5983 continue; 5984 5985 case DTRACEACT_BREAKPOINT: 5986 if (dtrace_priv_kernel_destructive(state)) 5987 dtrace_action_breakpoint(ecb); 5988 continue; 5989 5990 case DTRACEACT_PANIC: 5991 if (dtrace_priv_kernel_destructive(state)) 5992 dtrace_action_panic(ecb); 5993 continue; 5994 5995 case DTRACEACT_STACK: 5996 if (!dtrace_priv_kernel(state)) 5997 continue; 5998 5999 dtrace_getpcstack((pc_t *)(tomax + valoffs), 6000 size / sizeof (pc_t), probe->dtpr_aframes, 6001 DTRACE_ANCHORED(probe) ? NULL : 6002 (uint32_t *)arg0); 6003 6004 continue; 6005 6006 case DTRACEACT_JSTACK: 6007 case DTRACEACT_USTACK: 6008 if (!dtrace_priv_proc(state, &mstate)) 6009 continue; 6010 6011 /* 6012 * See comment in DIF_VAR_PID. 6013 */ 6014 if (DTRACE_ANCHORED(mstate.dtms_probe) && 6015 CPU_ON_INTR(CPU)) { 6016 int depth = DTRACE_USTACK_NFRAMES( 6017 rec->dtrd_arg) + 1; 6018 6019 dtrace_bzero((void *)(tomax + valoffs), 6020 DTRACE_USTACK_STRSIZE(rec->dtrd_arg) 6021 + depth * sizeof (uint64_t)); 6022 6023 continue; 6024 } 6025 6026 if (DTRACE_USTACK_STRSIZE(rec->dtrd_arg) != 0 && 6027 curproc->p_dtrace_helpers != NULL) { 6028 /* 6029 * This is the slow path -- we have 6030 * allocated string space, and we're 6031 * getting the stack of a process that 6032 * has helpers. Call into a separate 6033 * routine to perform this processing. 6034 */ 6035 dtrace_action_ustack(&mstate, state, 6036 (uint64_t *)(tomax + valoffs), 6037 rec->dtrd_arg); 6038 continue; 6039 } 6040 6041 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 6042 dtrace_getupcstack((uint64_t *) 6043 (tomax + valoffs), 6044 DTRACE_USTACK_NFRAMES(rec->dtrd_arg) + 1); 6045 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 6046 continue; 6047 6048 default: 6049 break; 6050 } 6051 6052 dp = act->dta_difo; 6053 ASSERT(dp != NULL); 6054 6055 val = dtrace_dif_emulate(dp, &mstate, vstate, state); 6056 6057 if (*flags & CPU_DTRACE_ERROR) 6058 continue; 6059 6060 switch (act->dta_kind) { 6061 case DTRACEACT_SPECULATE: 6062 ASSERT(buf == &state->dts_buffer[cpuid]); 6063 buf = dtrace_speculation_buffer(state, 6064 cpuid, val); 6065 6066 if (buf == NULL) { 6067 *flags |= CPU_DTRACE_DROP; 6068 continue; 6069 } 6070 6071 offs = dtrace_buffer_reserve(buf, 6072 ecb->dte_needed, ecb->dte_alignment, 6073 state, NULL); 6074 6075 if (offs < 0) { 6076 *flags |= CPU_DTRACE_DROP; 6077 continue; 6078 } 6079 6080 tomax = buf->dtb_tomax; 6081 ASSERT(tomax != NULL); 6082 6083 if (ecb->dte_size != 0) 6084 DTRACE_STORE(uint32_t, tomax, offs, 6085 ecb->dte_epid); 6086 continue; 6087 6088 case DTRACEACT_CHILL: 6089 if (dtrace_priv_kernel_destructive(state)) 6090 dtrace_action_chill(&mstate, val); 6091 continue; 6092 6093 case DTRACEACT_RAISE: 6094 if (dtrace_priv_proc_destructive(state, 6095 &mstate)) 6096 dtrace_action_raise(val); 6097 continue; 6098 6099 case DTRACEACT_COMMIT: 6100 ASSERT(!committed); 6101 6102 /* 6103 * We need to commit our buffer state. 6104 */ 6105 if (ecb->dte_size) 6106 buf->dtb_offset = offs + ecb->dte_size; 6107 buf = &state->dts_buffer[cpuid]; 6108 dtrace_speculation_commit(state, cpuid, val); 6109 committed = 1; 6110 continue; 6111 6112 case DTRACEACT_DISCARD: 6113 dtrace_speculation_discard(state, cpuid, val); 6114 continue; 6115 6116 case DTRACEACT_DIFEXPR: 6117 case DTRACEACT_LIBACT: 6118 case DTRACEACT_PRINTF: 6119 case DTRACEACT_PRINTA: 6120 case DTRACEACT_SYSTEM: 6121 case DTRACEACT_FREOPEN: 6122 case DTRACEACT_TRACEMEM: 6123 break; 6124 6125 case DTRACEACT_TRACEMEM_DYNSIZE: 6126 tracememsize = val; 6127 break; 6128 6129 case DTRACEACT_SYM: 6130 case DTRACEACT_MOD: 6131 if (!dtrace_priv_kernel(state)) 6132 continue; 6133 break; 6134 6135 case DTRACEACT_USYM: 6136 case DTRACEACT_UMOD: 6137 case DTRACEACT_UADDR: { 6138 struct pid *pid = curthread->t_procp->p_pidp; 6139 6140 if (!dtrace_priv_proc(state, &mstate)) 6141 continue; 6142 6143 DTRACE_STORE(uint64_t, tomax, 6144 valoffs, (uint64_t)pid->pid_id); 6145 DTRACE_STORE(uint64_t, tomax, 6146 valoffs + sizeof (uint64_t), val); 6147 6148 continue; 6149 } 6150 6151 case DTRACEACT_EXIT: { 6152 /* 6153 * For the exit action, we are going to attempt 6154 * to atomically set our activity to be 6155 * draining. If this fails (either because 6156 * another CPU has beat us to the exit action, 6157 * or because our current activity is something 6158 * other than ACTIVE or WARMUP), we will 6159 * continue. This assures that the exit action 6160 * can be successfully recorded at most once 6161 * when we're in the ACTIVE state. If we're 6162 * encountering the exit() action while in 6163 * COOLDOWN, however, we want to honor the new 6164 * status code. (We know that we're the only 6165 * thread in COOLDOWN, so there is no race.) 6166 */ 6167 void *activity = &state->dts_activity; 6168 dtrace_activity_t current = state->dts_activity; 6169 6170 if (current == DTRACE_ACTIVITY_COOLDOWN) 6171 break; 6172 6173 if (current != DTRACE_ACTIVITY_WARMUP) 6174 current = DTRACE_ACTIVITY_ACTIVE; 6175 6176 if (dtrace_cas32(activity, current, 6177 DTRACE_ACTIVITY_DRAINING) != current) { 6178 *flags |= CPU_DTRACE_DROP; 6179 continue; 6180 } 6181 6182 break; 6183 } 6184 6185 default: 6186 ASSERT(0); 6187 } 6188 6189 if (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF) { 6190 uintptr_t end = valoffs + size; 6191 6192 if (tracememsize != 0 && 6193 valoffs + tracememsize < end) { 6194 end = valoffs + tracememsize; 6195 tracememsize = 0; 6196 } 6197 6198 if (!dtrace_vcanload((void *)(uintptr_t)val, 6199 &dp->dtdo_rtype, &mstate, vstate)) 6200 continue; 6201 6202 /* 6203 * If this is a string, we're going to only 6204 * load until we find the zero byte -- after 6205 * which we'll store zero bytes. 6206 */ 6207 if (dp->dtdo_rtype.dtdt_kind == 6208 DIF_TYPE_STRING) { 6209 char c = '\0' + 1; 6210 int intuple = act->dta_intuple; 6211 size_t s; 6212 6213 for (s = 0; s < size; s++) { 6214 if (c != '\0') 6215 c = dtrace_load8(val++); 6216 6217 DTRACE_STORE(uint8_t, tomax, 6218 valoffs++, c); 6219 6220 if (c == '\0' && intuple) 6221 break; 6222 } 6223 6224 continue; 6225 } 6226 6227 while (valoffs < end) { 6228 DTRACE_STORE(uint8_t, tomax, valoffs++, 6229 dtrace_load8(val++)); 6230 } 6231 6232 continue; 6233 } 6234 6235 switch (size) { 6236 case 0: 6237 break; 6238 6239 case sizeof (uint8_t): 6240 DTRACE_STORE(uint8_t, tomax, valoffs, val); 6241 break; 6242 case sizeof (uint16_t): 6243 DTRACE_STORE(uint16_t, tomax, valoffs, val); 6244 break; 6245 case sizeof (uint32_t): 6246 DTRACE_STORE(uint32_t, tomax, valoffs, val); 6247 break; 6248 case sizeof (uint64_t): 6249 DTRACE_STORE(uint64_t, tomax, valoffs, val); 6250 break; 6251 default: 6252 /* 6253 * Any other size should have been returned by 6254 * reference, not by value. 6255 */ 6256 ASSERT(0); 6257 break; 6258 } 6259 } 6260 6261 if (*flags & CPU_DTRACE_DROP) 6262 continue; 6263 6264 if (*flags & CPU_DTRACE_FAULT) { 6265 int ndx; 6266 dtrace_action_t *err; 6267 6268 buf->dtb_errors++; 6269 6270 if (probe->dtpr_id == dtrace_probeid_error) { 6271 /* 6272 * There's nothing we can do -- we had an 6273 * error on the error probe. We bump an 6274 * error counter to at least indicate that 6275 * this condition happened. 6276 */ 6277 dtrace_error(&state->dts_dblerrors); 6278 continue; 6279 } 6280 6281 if (vtime) { 6282 /* 6283 * Before recursing on dtrace_probe(), we 6284 * need to explicitly clear out our start 6285 * time to prevent it from being accumulated 6286 * into t_dtrace_vtime. 6287 */ 6288 curthread->t_dtrace_start = 0; 6289 } 6290 6291 /* 6292 * Iterate over the actions to figure out which action 6293 * we were processing when we experienced the error. 6294 * Note that act points _past_ the faulting action; if 6295 * act is ecb->dte_action, the fault was in the 6296 * predicate, if it's ecb->dte_action->dta_next it's 6297 * in action #1, and so on. 6298 */ 6299 for (err = ecb->dte_action, ndx = 0; 6300 err != act; err = err->dta_next, ndx++) 6301 continue; 6302 6303 dtrace_probe_error(state, ecb->dte_epid, ndx, 6304 (mstate.dtms_present & DTRACE_MSTATE_FLTOFFS) ? 6305 mstate.dtms_fltoffs : -1, DTRACE_FLAGS2FLT(*flags), 6306 cpu_core[cpuid].cpuc_dtrace_illval); 6307 6308 continue; 6309 } 6310 6311 if (!committed) 6312 buf->dtb_offset = offs + ecb->dte_size; 6313 } 6314 6315 if (vtime) 6316 curthread->t_dtrace_start = dtrace_gethrtime(); 6317 6318 dtrace_interrupt_enable(cookie); 6319 } 6320 6321 /* 6322 * DTrace Probe Hashing Functions 6323 * 6324 * The functions in this section (and indeed, the functions in remaining 6325 * sections) are not _called_ from probe context. (Any exceptions to this are 6326 * marked with a "Note:".) Rather, they are called from elsewhere in the 6327 * DTrace framework to look-up probes in, add probes to and remove probes from 6328 * the DTrace probe hashes. (Each probe is hashed by each element of the 6329 * probe tuple -- allowing for fast lookups, regardless of what was 6330 * specified.) 6331 */ 6332 static uint_t 6333 dtrace_hash_str(char *p) 6334 { 6335 unsigned int g; 6336 uint_t hval = 0; 6337 6338 while (*p) { 6339 hval = (hval << 4) + *p++; 6340 if ((g = (hval & 0xf0000000)) != 0) 6341 hval ^= g >> 24; 6342 hval &= ~g; 6343 } 6344 return (hval); 6345 } 6346 6347 static dtrace_hash_t * 6348 dtrace_hash_create(uintptr_t stroffs, uintptr_t nextoffs, uintptr_t prevoffs) 6349 { 6350 dtrace_hash_t *hash = kmem_zalloc(sizeof (dtrace_hash_t), KM_SLEEP); 6351 6352 hash->dth_stroffs = stroffs; 6353 hash->dth_nextoffs = nextoffs; 6354 hash->dth_prevoffs = prevoffs; 6355 6356 hash->dth_size = 1; 6357 hash->dth_mask = hash->dth_size - 1; 6358 6359 hash->dth_tab = kmem_zalloc(hash->dth_size * 6360 sizeof (dtrace_hashbucket_t *), KM_SLEEP); 6361 6362 return (hash); 6363 } 6364 6365 static void 6366 dtrace_hash_destroy(dtrace_hash_t *hash) 6367 { 6368 #ifdef DEBUG 6369 int i; 6370 6371 for (i = 0; i < hash->dth_size; i++) 6372 ASSERT(hash->dth_tab[i] == NULL); 6373 #endif 6374 6375 kmem_free(hash->dth_tab, 6376 hash->dth_size * sizeof (dtrace_hashbucket_t *)); 6377 kmem_free(hash, sizeof (dtrace_hash_t)); 6378 } 6379 6380 static void 6381 dtrace_hash_resize(dtrace_hash_t *hash) 6382 { 6383 int size = hash->dth_size, i, ndx; 6384 int new_size = hash->dth_size << 1; 6385 int new_mask = new_size - 1; 6386 dtrace_hashbucket_t **new_tab, *bucket, *next; 6387 6388 ASSERT((new_size & new_mask) == 0); 6389 6390 new_tab = kmem_zalloc(new_size * sizeof (void *), KM_SLEEP); 6391 6392 for (i = 0; i < size; i++) { 6393 for (bucket = hash->dth_tab[i]; bucket != NULL; bucket = next) { 6394 dtrace_probe_t *probe = bucket->dthb_chain; 6395 6396 ASSERT(probe != NULL); 6397 ndx = DTRACE_HASHSTR(hash, probe) & new_mask; 6398 6399 next = bucket->dthb_next; 6400 bucket->dthb_next = new_tab[ndx]; 6401 new_tab[ndx] = bucket; 6402 } 6403 } 6404 6405 kmem_free(hash->dth_tab, hash->dth_size * sizeof (void *)); 6406 hash->dth_tab = new_tab; 6407 hash->dth_size = new_size; 6408 hash->dth_mask = new_mask; 6409 } 6410 6411 static void 6412 dtrace_hash_add(dtrace_hash_t *hash, dtrace_probe_t *new) 6413 { 6414 int hashval = DTRACE_HASHSTR(hash, new); 6415 int ndx = hashval & hash->dth_mask; 6416 dtrace_hashbucket_t *bucket = hash->dth_tab[ndx]; 6417 dtrace_probe_t **nextp, **prevp; 6418 6419 for (; bucket != NULL; bucket = bucket->dthb_next) { 6420 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, new)) 6421 goto add; 6422 } 6423 6424 if ((hash->dth_nbuckets >> 1) > hash->dth_size) { 6425 dtrace_hash_resize(hash); 6426 dtrace_hash_add(hash, new); 6427 return; 6428 } 6429 6430 bucket = kmem_zalloc(sizeof (dtrace_hashbucket_t), KM_SLEEP); 6431 bucket->dthb_next = hash->dth_tab[ndx]; 6432 hash->dth_tab[ndx] = bucket; 6433 hash->dth_nbuckets++; 6434 6435 add: 6436 nextp = DTRACE_HASHNEXT(hash, new); 6437 ASSERT(*nextp == NULL && *(DTRACE_HASHPREV(hash, new)) == NULL); 6438 *nextp = bucket->dthb_chain; 6439 6440 if (bucket->dthb_chain != NULL) { 6441 prevp = DTRACE_HASHPREV(hash, bucket->dthb_chain); 6442 ASSERT(*prevp == NULL); 6443 *prevp = new; 6444 } 6445 6446 bucket->dthb_chain = new; 6447 bucket->dthb_len++; 6448 } 6449 6450 static dtrace_probe_t * 6451 dtrace_hash_lookup(dtrace_hash_t *hash, dtrace_probe_t *template) 6452 { 6453 int hashval = DTRACE_HASHSTR(hash, template); 6454 int ndx = hashval & hash->dth_mask; 6455 dtrace_hashbucket_t *bucket = hash->dth_tab[ndx]; 6456 6457 for (; bucket != NULL; bucket = bucket->dthb_next) { 6458 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template)) 6459 return (bucket->dthb_chain); 6460 } 6461 6462 return (NULL); 6463 } 6464 6465 static int 6466 dtrace_hash_collisions(dtrace_hash_t *hash, dtrace_probe_t *template) 6467 { 6468 int hashval = DTRACE_HASHSTR(hash, template); 6469 int ndx = hashval & hash->dth_mask; 6470 dtrace_hashbucket_t *bucket = hash->dth_tab[ndx]; 6471 6472 for (; bucket != NULL; bucket = bucket->dthb_next) { 6473 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template)) 6474 return (bucket->dthb_len); 6475 } 6476 6477 return (NULL); 6478 } 6479 6480 static void 6481 dtrace_hash_remove(dtrace_hash_t *hash, dtrace_probe_t *probe) 6482 { 6483 int ndx = DTRACE_HASHSTR(hash, probe) & hash->dth_mask; 6484 dtrace_hashbucket_t *bucket = hash->dth_tab[ndx]; 6485 6486 dtrace_probe_t **prevp = DTRACE_HASHPREV(hash, probe); 6487 dtrace_probe_t **nextp = DTRACE_HASHNEXT(hash, probe); 6488 6489 /* 6490 * Find the bucket that we're removing this probe from. 6491 */ 6492 for (; bucket != NULL; bucket = bucket->dthb_next) { 6493 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, probe)) 6494 break; 6495 } 6496 6497 ASSERT(bucket != NULL); 6498 6499 if (*prevp == NULL) { 6500 if (*nextp == NULL) { 6501 /* 6502 * The removed probe was the only probe on this 6503 * bucket; we need to remove the bucket. 6504 */ 6505 dtrace_hashbucket_t *b = hash->dth_tab[ndx]; 6506 6507 ASSERT(bucket->dthb_chain == probe); 6508 ASSERT(b != NULL); 6509 6510 if (b == bucket) { 6511 hash->dth_tab[ndx] = bucket->dthb_next; 6512 } else { 6513 while (b->dthb_next != bucket) 6514 b = b->dthb_next; 6515 b->dthb_next = bucket->dthb_next; 6516 } 6517 6518 ASSERT(hash->dth_nbuckets > 0); 6519 hash->dth_nbuckets--; 6520 kmem_free(bucket, sizeof (dtrace_hashbucket_t)); 6521 return; 6522 } 6523 6524 bucket->dthb_chain = *nextp; 6525 } else { 6526 *(DTRACE_HASHNEXT(hash, *prevp)) = *nextp; 6527 } 6528 6529 if (*nextp != NULL) 6530 *(DTRACE_HASHPREV(hash, *nextp)) = *prevp; 6531 } 6532 6533 /* 6534 * DTrace Utility Functions 6535 * 6536 * These are random utility functions that are _not_ called from probe context. 6537 */ 6538 static int 6539 dtrace_badattr(const dtrace_attribute_t *a) 6540 { 6541 return (a->dtat_name > DTRACE_STABILITY_MAX || 6542 a->dtat_data > DTRACE_STABILITY_MAX || 6543 a->dtat_class > DTRACE_CLASS_MAX); 6544 } 6545 6546 /* 6547 * Return a duplicate copy of a string. If the specified string is NULL, 6548 * this function returns a zero-length string. 6549 */ 6550 static char * 6551 dtrace_strdup(const char *str) 6552 { 6553 char *new = kmem_zalloc((str != NULL ? strlen(str) : 0) + 1, KM_SLEEP); 6554 6555 if (str != NULL) 6556 (void) strcpy(new, str); 6557 6558 return (new); 6559 } 6560 6561 #define DTRACE_ISALPHA(c) \ 6562 (((c) >= 'a' && (c) <= 'z') || ((c) >= 'A' && (c) <= 'Z')) 6563 6564 static int 6565 dtrace_badname(const char *s) 6566 { 6567 char c; 6568 6569 if (s == NULL || (c = *s++) == '\0') 6570 return (0); 6571 6572 if (!DTRACE_ISALPHA(c) && c != '-' && c != '_' && c != '.') 6573 return (1); 6574 6575 while ((c = *s++) != '\0') { 6576 if (!DTRACE_ISALPHA(c) && (c < '0' || c > '9') && 6577 c != '-' && c != '_' && c != '.' && c != '`') 6578 return (1); 6579 } 6580 6581 return (0); 6582 } 6583 6584 static void 6585 dtrace_cred2priv(cred_t *cr, uint32_t *privp, uid_t *uidp, zoneid_t *zoneidp) 6586 { 6587 uint32_t priv; 6588 6589 if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) { 6590 /* 6591 * For DTRACE_PRIV_ALL, the uid and zoneid don't matter. 6592 */ 6593 priv = DTRACE_PRIV_ALL; 6594 } else { 6595 *uidp = crgetuid(cr); 6596 *zoneidp = crgetzoneid(cr); 6597 6598 priv = 0; 6599 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE)) 6600 priv |= DTRACE_PRIV_KERNEL | DTRACE_PRIV_USER; 6601 else if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE)) 6602 priv |= DTRACE_PRIV_USER; 6603 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) 6604 priv |= DTRACE_PRIV_PROC; 6605 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) 6606 priv |= DTRACE_PRIV_OWNER; 6607 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) 6608 priv |= DTRACE_PRIV_ZONEOWNER; 6609 } 6610 6611 *privp = priv; 6612 } 6613 6614 #ifdef DTRACE_ERRDEBUG 6615 static void 6616 dtrace_errdebug(const char *str) 6617 { 6618 int hval = dtrace_hash_str((char *)str) % DTRACE_ERRHASHSZ; 6619 int occupied = 0; 6620 6621 mutex_enter(&dtrace_errlock); 6622 dtrace_errlast = str; 6623 dtrace_errthread = curthread; 6624 6625 while (occupied++ < DTRACE_ERRHASHSZ) { 6626 if (dtrace_errhash[hval].dter_msg == str) { 6627 dtrace_errhash[hval].dter_count++; 6628 goto out; 6629 } 6630 6631 if (dtrace_errhash[hval].dter_msg != NULL) { 6632 hval = (hval + 1) % DTRACE_ERRHASHSZ; 6633 continue; 6634 } 6635 6636 dtrace_errhash[hval].dter_msg = str; 6637 dtrace_errhash[hval].dter_count = 1; 6638 goto out; 6639 } 6640 6641 panic("dtrace: undersized error hash"); 6642 out: 6643 mutex_exit(&dtrace_errlock); 6644 } 6645 #endif 6646 6647 /* 6648 * DTrace Matching Functions 6649 * 6650 * These functions are used to match groups of probes, given some elements of 6651 * a probe tuple, or some globbed expressions for elements of a probe tuple. 6652 */ 6653 static int 6654 dtrace_match_priv(const dtrace_probe_t *prp, uint32_t priv, uid_t uid, 6655 zoneid_t zoneid) 6656 { 6657 if (priv != DTRACE_PRIV_ALL) { 6658 uint32_t ppriv = prp->dtpr_provider->dtpv_priv.dtpp_flags; 6659 uint32_t match = priv & ppriv; 6660 6661 /* 6662 * No PRIV_DTRACE_* privileges... 6663 */ 6664 if ((priv & (DTRACE_PRIV_PROC | DTRACE_PRIV_USER | 6665 DTRACE_PRIV_KERNEL)) == 0) 6666 return (0); 6667 6668 /* 6669 * No matching bits, but there were bits to match... 6670 */ 6671 if (match == 0 && ppriv != 0) 6672 return (0); 6673 6674 /* 6675 * Need to have permissions to the process, but don't... 6676 */ 6677 if (((ppriv & ~match) & DTRACE_PRIV_OWNER) != 0 && 6678 uid != prp->dtpr_provider->dtpv_priv.dtpp_uid) { 6679 return (0); 6680 } 6681 6682 /* 6683 * Need to be in the same zone unless we possess the 6684 * privilege to examine all zones. 6685 */ 6686 if (((ppriv & ~match) & DTRACE_PRIV_ZONEOWNER) != 0 && 6687 zoneid != prp->dtpr_provider->dtpv_priv.dtpp_zoneid) { 6688 return (0); 6689 } 6690 } 6691 6692 return (1); 6693 } 6694 6695 /* 6696 * dtrace_match_probe compares a dtrace_probe_t to a pre-compiled key, which 6697 * consists of input pattern strings and an ops-vector to evaluate them. 6698 * This function returns >0 for match, 0 for no match, and <0 for error. 6699 */ 6700 static int 6701 dtrace_match_probe(const dtrace_probe_t *prp, const dtrace_probekey_t *pkp, 6702 uint32_t priv, uid_t uid, zoneid_t zoneid) 6703 { 6704 dtrace_provider_t *pvp = prp->dtpr_provider; 6705 int rv; 6706 6707 if (pvp->dtpv_defunct) 6708 return (0); 6709 6710 if ((rv = pkp->dtpk_pmatch(pvp->dtpv_name, pkp->dtpk_prov, 0)) <= 0) 6711 return (rv); 6712 6713 if ((rv = pkp->dtpk_mmatch(prp->dtpr_mod, pkp->dtpk_mod, 0)) <= 0) 6714 return (rv); 6715 6716 if ((rv = pkp->dtpk_fmatch(prp->dtpr_func, pkp->dtpk_func, 0)) <= 0) 6717 return (rv); 6718 6719 if ((rv = pkp->dtpk_nmatch(prp->dtpr_name, pkp->dtpk_name, 0)) <= 0) 6720 return (rv); 6721 6722 if (dtrace_match_priv(prp, priv, uid, zoneid) == 0) 6723 return (0); 6724 6725 return (rv); 6726 } 6727 6728 /* 6729 * dtrace_match_glob() is a safe kernel implementation of the gmatch(3GEN) 6730 * interface for matching a glob pattern 'p' to an input string 's'. Unlike 6731 * libc's version, the kernel version only applies to 8-bit ASCII strings. 6732 * In addition, all of the recursion cases except for '*' matching have been 6733 * unwound. For '*', we still implement recursive evaluation, but a depth 6734 * counter is maintained and matching is aborted if we recurse too deep. 6735 * The function returns 0 if no match, >0 if match, and <0 if recursion error. 6736 */ 6737 static int 6738 dtrace_match_glob(const char *s, const char *p, int depth) 6739 { 6740 const char *olds; 6741 char s1, c; 6742 int gs; 6743 6744 if (depth > DTRACE_PROBEKEY_MAXDEPTH) 6745 return (-1); 6746 6747 if (s == NULL) 6748 s = ""; /* treat NULL as empty string */ 6749 6750 top: 6751 olds = s; 6752 s1 = *s++; 6753 6754 if (p == NULL) 6755 return (0); 6756 6757 if ((c = *p++) == '\0') 6758 return (s1 == '\0'); 6759 6760 switch (c) { 6761 case '[': { 6762 int ok = 0, notflag = 0; 6763 char lc = '\0'; 6764 6765 if (s1 == '\0') 6766 return (0); 6767 6768 if (*p == '!') { 6769 notflag = 1; 6770 p++; 6771 } 6772 6773 if ((c = *p++) == '\0') 6774 return (0); 6775 6776 do { 6777 if (c == '-' && lc != '\0' && *p != ']') { 6778 if ((c = *p++) == '\0') 6779 return (0); 6780 if (c == '\\' && (c = *p++) == '\0') 6781 return (0); 6782 6783 if (notflag) { 6784 if (s1 < lc || s1 > c) 6785 ok++; 6786 else 6787 return (0); 6788 } else if (lc <= s1 && s1 <= c) 6789 ok++; 6790 6791 } else if (c == '\\' && (c = *p++) == '\0') 6792 return (0); 6793 6794 lc = c; /* save left-hand 'c' for next iteration */ 6795 6796 if (notflag) { 6797 if (s1 != c) 6798 ok++; 6799 else 6800 return (0); 6801 } else if (s1 == c) 6802 ok++; 6803 6804 if ((c = *p++) == '\0') 6805 return (0); 6806 6807 } while (c != ']'); 6808 6809 if (ok) 6810 goto top; 6811 6812 return (0); 6813 } 6814 6815 case '\\': 6816 if ((c = *p++) == '\0') 6817 return (0); 6818 /*FALLTHRU*/ 6819 6820 default: 6821 if (c != s1) 6822 return (0); 6823 /*FALLTHRU*/ 6824 6825 case '?': 6826 if (s1 != '\0') 6827 goto top; 6828 return (0); 6829 6830 case '*': 6831 while (*p == '*') 6832 p++; /* consecutive *'s are identical to a single one */ 6833 6834 if (*p == '\0') 6835 return (1); 6836 6837 for (s = olds; *s != '\0'; s++) { 6838 if ((gs = dtrace_match_glob(s, p, depth + 1)) != 0) 6839 return (gs); 6840 } 6841 6842 return (0); 6843 } 6844 } 6845 6846 /*ARGSUSED*/ 6847 static int 6848 dtrace_match_string(const char *s, const char *p, int depth) 6849 { 6850 return (s != NULL && strcmp(s, p) == 0); 6851 } 6852 6853 /*ARGSUSED*/ 6854 static int 6855 dtrace_match_nul(const char *s, const char *p, int depth) 6856 { 6857 return (1); /* always match the empty pattern */ 6858 } 6859 6860 /*ARGSUSED*/ 6861 static int 6862 dtrace_match_nonzero(const char *s, const char *p, int depth) 6863 { 6864 return (s != NULL && s[0] != '\0'); 6865 } 6866 6867 static int 6868 dtrace_match(const dtrace_probekey_t *pkp, uint32_t priv, uid_t uid, 6869 zoneid_t zoneid, int (*matched)(dtrace_probe_t *, void *), void *arg) 6870 { 6871 dtrace_probe_t template, *probe; 6872 dtrace_hash_t *hash = NULL; 6873 int len, rc, best = INT_MAX, nmatched = 0; 6874 dtrace_id_t i; 6875 6876 ASSERT(MUTEX_HELD(&dtrace_lock)); 6877 6878 /* 6879 * If the probe ID is specified in the key, just lookup by ID and 6880 * invoke the match callback once if a matching probe is found. 6881 */ 6882 if (pkp->dtpk_id != DTRACE_IDNONE) { 6883 if ((probe = dtrace_probe_lookup_id(pkp->dtpk_id)) != NULL && 6884 dtrace_match_probe(probe, pkp, priv, uid, zoneid) > 0) { 6885 if ((*matched)(probe, arg) == DTRACE_MATCH_FAIL) 6886 return (DTRACE_MATCH_FAIL); 6887 nmatched++; 6888 } 6889 return (nmatched); 6890 } 6891 6892 template.dtpr_mod = (char *)pkp->dtpk_mod; 6893 template.dtpr_func = (char *)pkp->dtpk_func; 6894 template.dtpr_name = (char *)pkp->dtpk_name; 6895 6896 /* 6897 * We want to find the most distinct of the module name, function 6898 * name, and name. So for each one that is not a glob pattern or 6899 * empty string, we perform a lookup in the corresponding hash and 6900 * use the hash table with the fewest collisions to do our search. 6901 */ 6902 if (pkp->dtpk_mmatch == &dtrace_match_string && 6903 (len = dtrace_hash_collisions(dtrace_bymod, &template)) < best) { 6904 best = len; 6905 hash = dtrace_bymod; 6906 } 6907 6908 if (pkp->dtpk_fmatch == &dtrace_match_string && 6909 (len = dtrace_hash_collisions(dtrace_byfunc, &template)) < best) { 6910 best = len; 6911 hash = dtrace_byfunc; 6912 } 6913 6914 if (pkp->dtpk_nmatch == &dtrace_match_string && 6915 (len = dtrace_hash_collisions(dtrace_byname, &template)) < best) { 6916 best = len; 6917 hash = dtrace_byname; 6918 } 6919 6920 /* 6921 * If we did not select a hash table, iterate over every probe and 6922 * invoke our callback for each one that matches our input probe key. 6923 */ 6924 if (hash == NULL) { 6925 for (i = 0; i < dtrace_nprobes; i++) { 6926 if ((probe = dtrace_probes[i]) == NULL || 6927 dtrace_match_probe(probe, pkp, priv, uid, 6928 zoneid) <= 0) 6929 continue; 6930 6931 nmatched++; 6932 6933 if ((rc = (*matched)(probe, arg)) != 6934 DTRACE_MATCH_NEXT) { 6935 if (rc == DTRACE_MATCH_FAIL) 6936 return (DTRACE_MATCH_FAIL); 6937 break; 6938 } 6939 } 6940 6941 return (nmatched); 6942 } 6943 6944 /* 6945 * If we selected a hash table, iterate over each probe of the same key 6946 * name and invoke the callback for every probe that matches the other 6947 * attributes of our input probe key. 6948 */ 6949 for (probe = dtrace_hash_lookup(hash, &template); probe != NULL; 6950 probe = *(DTRACE_HASHNEXT(hash, probe))) { 6951 6952 if (dtrace_match_probe(probe, pkp, priv, uid, zoneid) <= 0) 6953 continue; 6954 6955 nmatched++; 6956 6957 if ((rc = (*matched)(probe, arg)) != DTRACE_MATCH_NEXT) { 6958 if (rc == DTRACE_MATCH_FAIL) 6959 return (DTRACE_MATCH_FAIL); 6960 break; 6961 } 6962 } 6963 6964 return (nmatched); 6965 } 6966 6967 /* 6968 * Return the function pointer dtrace_probecmp() should use to compare the 6969 * specified pattern with a string. For NULL or empty patterns, we select 6970 * dtrace_match_nul(). For glob pattern strings, we use dtrace_match_glob(). 6971 * For non-empty non-glob strings, we use dtrace_match_string(). 6972 */ 6973 static dtrace_probekey_f * 6974 dtrace_probekey_func(const char *p) 6975 { 6976 char c; 6977 6978 if (p == NULL || *p == '\0') 6979 return (&dtrace_match_nul); 6980 6981 while ((c = *p++) != '\0') { 6982 if (c == '[' || c == '?' || c == '*' || c == '\\') 6983 return (&dtrace_match_glob); 6984 } 6985 6986 return (&dtrace_match_string); 6987 } 6988 6989 /* 6990 * Build a probe comparison key for use with dtrace_match_probe() from the 6991 * given probe description. By convention, a null key only matches anchored 6992 * probes: if each field is the empty string, reset dtpk_fmatch to 6993 * dtrace_match_nonzero(). 6994 */ 6995 static void 6996 dtrace_probekey(const dtrace_probedesc_t *pdp, dtrace_probekey_t *pkp) 6997 { 6998 pkp->dtpk_prov = pdp->dtpd_provider; 6999 pkp->dtpk_pmatch = dtrace_probekey_func(pdp->dtpd_provider); 7000 7001 pkp->dtpk_mod = pdp->dtpd_mod; 7002 pkp->dtpk_mmatch = dtrace_probekey_func(pdp->dtpd_mod); 7003 7004 pkp->dtpk_func = pdp->dtpd_func; 7005 pkp->dtpk_fmatch = dtrace_probekey_func(pdp->dtpd_func); 7006 7007 pkp->dtpk_name = pdp->dtpd_name; 7008 pkp->dtpk_nmatch = dtrace_probekey_func(pdp->dtpd_name); 7009 7010 pkp->dtpk_id = pdp->dtpd_id; 7011 7012 if (pkp->dtpk_id == DTRACE_IDNONE && 7013 pkp->dtpk_pmatch == &dtrace_match_nul && 7014 pkp->dtpk_mmatch == &dtrace_match_nul && 7015 pkp->dtpk_fmatch == &dtrace_match_nul && 7016 pkp->dtpk_nmatch == &dtrace_match_nul) 7017 pkp->dtpk_fmatch = &dtrace_match_nonzero; 7018 } 7019 7020 /* 7021 * DTrace Provider-to-Framework API Functions 7022 * 7023 * These functions implement much of the Provider-to-Framework API, as 7024 * described in <sys/dtrace.h>. The parts of the API not in this section are 7025 * the functions in the API for probe management (found below), and 7026 * dtrace_probe() itself (found above). 7027 */ 7028 7029 /* 7030 * Register the calling provider with the DTrace framework. This should 7031 * generally be called by DTrace providers in their attach(9E) entry point. 7032 */ 7033 int 7034 dtrace_register(const char *name, const dtrace_pattr_t *pap, uint32_t priv, 7035 cred_t *cr, const dtrace_pops_t *pops, void *arg, dtrace_provider_id_t *idp) 7036 { 7037 dtrace_provider_t *provider; 7038 7039 if (name == NULL || pap == NULL || pops == NULL || idp == NULL) { 7040 cmn_err(CE_WARN, "failed to register provider '%s': invalid " 7041 "arguments", name ? name : "<NULL>"); 7042 return (EINVAL); 7043 } 7044 7045 if (name[0] == '\0' || dtrace_badname(name)) { 7046 cmn_err(CE_WARN, "failed to register provider '%s': invalid " 7047 "provider name", name); 7048 return (EINVAL); 7049 } 7050 7051 if ((pops->dtps_provide == NULL && pops->dtps_provide_module == NULL) || 7052 pops->dtps_enable == NULL || pops->dtps_disable == NULL || 7053 pops->dtps_destroy == NULL || 7054 ((pops->dtps_resume == NULL) != (pops->dtps_suspend == NULL))) { 7055 cmn_err(CE_WARN, "failed to register provider '%s': invalid " 7056 "provider ops", name); 7057 return (EINVAL); 7058 } 7059 7060 if (dtrace_badattr(&pap->dtpa_provider) || 7061 dtrace_badattr(&pap->dtpa_mod) || 7062 dtrace_badattr(&pap->dtpa_func) || 7063 dtrace_badattr(&pap->dtpa_name) || 7064 dtrace_badattr(&pap->dtpa_args)) { 7065 cmn_err(CE_WARN, "failed to register provider '%s': invalid " 7066 "provider attributes", name); 7067 return (EINVAL); 7068 } 7069 7070 if (priv & ~DTRACE_PRIV_ALL) { 7071 cmn_err(CE_WARN, "failed to register provider '%s': invalid " 7072 "privilege attributes", name); 7073 return (EINVAL); 7074 } 7075 7076 if ((priv & DTRACE_PRIV_KERNEL) && 7077 (priv & (DTRACE_PRIV_USER | DTRACE_PRIV_OWNER)) && 7078 pops->dtps_mode == NULL) { 7079 cmn_err(CE_WARN, "failed to register provider '%s': need " 7080 "dtps_mode() op for given privilege attributes", name); 7081 return (EINVAL); 7082 } 7083 7084 provider = kmem_zalloc(sizeof (dtrace_provider_t), KM_SLEEP); 7085 provider->dtpv_name = kmem_alloc(strlen(name) + 1, KM_SLEEP); 7086 (void) strcpy(provider->dtpv_name, name); 7087 7088 provider->dtpv_attr = *pap; 7089 provider->dtpv_priv.dtpp_flags = priv; 7090 if (cr != NULL) { 7091 provider->dtpv_priv.dtpp_uid = crgetuid(cr); 7092 provider->dtpv_priv.dtpp_zoneid = crgetzoneid(cr); 7093 } 7094 provider->dtpv_pops = *pops; 7095 7096 if (pops->dtps_provide == NULL) { 7097 ASSERT(pops->dtps_provide_module != NULL); 7098 provider->dtpv_pops.dtps_provide = 7099 (void (*)(void *, const dtrace_probedesc_t *))dtrace_nullop; 7100 } 7101 7102 if (pops->dtps_provide_module == NULL) { 7103 ASSERT(pops->dtps_provide != NULL); 7104 provider->dtpv_pops.dtps_provide_module = 7105 (void (*)(void *, struct modctl *))dtrace_nullop; 7106 } 7107 7108 if (pops->dtps_suspend == NULL) { 7109 ASSERT(pops->dtps_resume == NULL); 7110 provider->dtpv_pops.dtps_suspend = 7111 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop; 7112 provider->dtpv_pops.dtps_resume = 7113 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop; 7114 } 7115 7116 provider->dtpv_arg = arg; 7117 *idp = (dtrace_provider_id_t)provider; 7118 7119 if (pops == &dtrace_provider_ops) { 7120 ASSERT(MUTEX_HELD(&dtrace_provider_lock)); 7121 ASSERT(MUTEX_HELD(&dtrace_lock)); 7122 ASSERT(dtrace_anon.dta_enabling == NULL); 7123 7124 /* 7125 * We make sure that the DTrace provider is at the head of 7126 * the provider chain. 7127 */ 7128 provider->dtpv_next = dtrace_provider; 7129 dtrace_provider = provider; 7130 return (0); 7131 } 7132 7133 mutex_enter(&dtrace_provider_lock); 7134 mutex_enter(&dtrace_lock); 7135 7136 /* 7137 * If there is at least one provider registered, we'll add this 7138 * provider after the first provider. 7139 */ 7140 if (dtrace_provider != NULL) { 7141 provider->dtpv_next = dtrace_provider->dtpv_next; 7142 dtrace_provider->dtpv_next = provider; 7143 } else { 7144 dtrace_provider = provider; 7145 } 7146 7147 if (dtrace_retained != NULL) { 7148 dtrace_enabling_provide(provider); 7149 7150 /* 7151 * Now we need to call dtrace_enabling_matchall() -- which 7152 * will acquire cpu_lock and dtrace_lock. We therefore need 7153 * to drop all of our locks before calling into it... 7154 */ 7155 mutex_exit(&dtrace_lock); 7156 mutex_exit(&dtrace_provider_lock); 7157 dtrace_enabling_matchall(); 7158 7159 return (0); 7160 } 7161 7162 mutex_exit(&dtrace_lock); 7163 mutex_exit(&dtrace_provider_lock); 7164 7165 return (0); 7166 } 7167 7168 /* 7169 * Unregister the specified provider from the DTrace framework. This should 7170 * generally be called by DTrace providers in their detach(9E) entry point. 7171 */ 7172 int 7173 dtrace_unregister(dtrace_provider_id_t id) 7174 { 7175 dtrace_provider_t *old = (dtrace_provider_t *)id; 7176 dtrace_provider_t *prev = NULL; 7177 int i, self = 0, noreap = 0; 7178 dtrace_probe_t *probe, *first = NULL; 7179 7180 if (old->dtpv_pops.dtps_enable == 7181 (int (*)(void *, dtrace_id_t, void *))dtrace_enable_nullop) { 7182 /* 7183 * If DTrace itself is the provider, we're called with locks 7184 * already held. 7185 */ 7186 ASSERT(old == dtrace_provider); 7187 ASSERT(dtrace_devi != NULL); 7188 ASSERT(MUTEX_HELD(&dtrace_provider_lock)); 7189 ASSERT(MUTEX_HELD(&dtrace_lock)); 7190 self = 1; 7191 7192 if (dtrace_provider->dtpv_next != NULL) { 7193 /* 7194 * There's another provider here; return failure. 7195 */ 7196 return (EBUSY); 7197 } 7198 } else { 7199 mutex_enter(&dtrace_provider_lock); 7200 mutex_enter(&mod_lock); 7201 mutex_enter(&dtrace_lock); 7202 } 7203 7204 /* 7205 * If anyone has /dev/dtrace open, or if there are anonymous enabled 7206 * probes, we refuse to let providers slither away, unless this 7207 * provider has already been explicitly invalidated. 7208 */ 7209 if (!old->dtpv_defunct && 7210 (dtrace_opens || (dtrace_anon.dta_state != NULL && 7211 dtrace_anon.dta_state->dts_necbs > 0))) { 7212 if (!self) { 7213 mutex_exit(&dtrace_lock); 7214 mutex_exit(&mod_lock); 7215 mutex_exit(&dtrace_provider_lock); 7216 } 7217 return (EBUSY); 7218 } 7219 7220 /* 7221 * Attempt to destroy the probes associated with this provider. 7222 */ 7223 for (i = 0; i < dtrace_nprobes; i++) { 7224 if ((probe = dtrace_probes[i]) == NULL) 7225 continue; 7226 7227 if (probe->dtpr_provider != old) 7228 continue; 7229 7230 if (probe->dtpr_ecb == NULL) 7231 continue; 7232 7233 /* 7234 * If we are trying to unregister a defunct provider, and the 7235 * provider was made defunct within the interval dictated by 7236 * dtrace_unregister_defunct_reap, we'll (asynchronously) 7237 * attempt to reap our enablings. To denote that the provider 7238 * should reattempt to unregister itself at some point in the 7239 * future, we will return a differentiable error code (EAGAIN 7240 * instead of EBUSY) in this case. 7241 */ 7242 if (dtrace_gethrtime() - old->dtpv_defunct > 7243 dtrace_unregister_defunct_reap) 7244 noreap = 1; 7245 7246 if (!self) { 7247 mutex_exit(&dtrace_lock); 7248 mutex_exit(&mod_lock); 7249 mutex_exit(&dtrace_provider_lock); 7250 } 7251 7252 if (noreap) 7253 return (EBUSY); 7254 7255 (void) taskq_dispatch(dtrace_taskq, 7256 (task_func_t *)dtrace_enabling_reap, NULL, TQ_SLEEP); 7257 7258 return (EAGAIN); 7259 } 7260 7261 /* 7262 * All of the probes for this provider are disabled; we can safely 7263 * remove all of them from their hash chains and from the probe array. 7264 */ 7265 for (i = 0; i < dtrace_nprobes; i++) { 7266 if ((probe = dtrace_probes[i]) == NULL) 7267 continue; 7268 7269 if (probe->dtpr_provider != old) 7270 continue; 7271 7272 dtrace_probes[i] = NULL; 7273 7274 dtrace_hash_remove(dtrace_bymod, probe); 7275 dtrace_hash_remove(dtrace_byfunc, probe); 7276 dtrace_hash_remove(dtrace_byname, probe); 7277 7278 if (first == NULL) { 7279 first = probe; 7280 probe->dtpr_nextmod = NULL; 7281 } else { 7282 probe->dtpr_nextmod = first; 7283 first = probe; 7284 } 7285 } 7286 7287 /* 7288 * The provider's probes have been removed from the hash chains and 7289 * from the probe array. Now issue a dtrace_sync() to be sure that 7290 * everyone has cleared out from any probe array processing. 7291 */ 7292 dtrace_sync(); 7293 7294 for (probe = first; probe != NULL; probe = first) { 7295 first = probe->dtpr_nextmod; 7296 7297 old->dtpv_pops.dtps_destroy(old->dtpv_arg, probe->dtpr_id, 7298 probe->dtpr_arg); 7299 kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1); 7300 kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1); 7301 kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1); 7302 vmem_free(dtrace_arena, (void *)(uintptr_t)(probe->dtpr_id), 1); 7303 kmem_free(probe, sizeof (dtrace_probe_t)); 7304 } 7305 7306 if ((prev = dtrace_provider) == old) { 7307 ASSERT(self || dtrace_devi == NULL); 7308 ASSERT(old->dtpv_next == NULL || dtrace_devi == NULL); 7309 dtrace_provider = old->dtpv_next; 7310 } else { 7311 while (prev != NULL && prev->dtpv_next != old) 7312 prev = prev->dtpv_next; 7313 7314 if (prev == NULL) { 7315 panic("attempt to unregister non-existent " 7316 "dtrace provider %p\n", (void *)id); 7317 } 7318 7319 prev->dtpv_next = old->dtpv_next; 7320 } 7321 7322 if (!self) { 7323 mutex_exit(&dtrace_lock); 7324 mutex_exit(&mod_lock); 7325 mutex_exit(&dtrace_provider_lock); 7326 } 7327 7328 kmem_free(old->dtpv_name, strlen(old->dtpv_name) + 1); 7329 kmem_free(old, sizeof (dtrace_provider_t)); 7330 7331 return (0); 7332 } 7333 7334 /* 7335 * Invalidate the specified provider. All subsequent probe lookups for the 7336 * specified provider will fail, but its probes will not be removed. 7337 */ 7338 void 7339 dtrace_invalidate(dtrace_provider_id_t id) 7340 { 7341 dtrace_provider_t *pvp = (dtrace_provider_t *)id; 7342 7343 ASSERT(pvp->dtpv_pops.dtps_enable != 7344 (int (*)(void *, dtrace_id_t, void *))dtrace_enable_nullop); 7345 7346 mutex_enter(&dtrace_provider_lock); 7347 mutex_enter(&dtrace_lock); 7348 7349 pvp->dtpv_defunct = dtrace_gethrtime(); 7350 7351 mutex_exit(&dtrace_lock); 7352 mutex_exit(&dtrace_provider_lock); 7353 } 7354 7355 /* 7356 * Indicate whether or not DTrace has attached. 7357 */ 7358 int 7359 dtrace_attached(void) 7360 { 7361 /* 7362 * dtrace_provider will be non-NULL iff the DTrace driver has 7363 * attached. (It's non-NULL because DTrace is always itself a 7364 * provider.) 7365 */ 7366 return (dtrace_provider != NULL); 7367 } 7368 7369 /* 7370 * Remove all the unenabled probes for the given provider. This function is 7371 * not unlike dtrace_unregister(), except that it doesn't remove the provider 7372 * -- just as many of its associated probes as it can. 7373 */ 7374 int 7375 dtrace_condense(dtrace_provider_id_t id) 7376 { 7377 dtrace_provider_t *prov = (dtrace_provider_t *)id; 7378 int i; 7379 dtrace_probe_t *probe; 7380 7381 /* 7382 * Make sure this isn't the dtrace provider itself. 7383 */ 7384 ASSERT(prov->dtpv_pops.dtps_enable != 7385 (int (*)(void *, dtrace_id_t, void *))dtrace_enable_nullop); 7386 7387 mutex_enter(&dtrace_provider_lock); 7388 mutex_enter(&dtrace_lock); 7389 7390 /* 7391 * Attempt to destroy the probes associated with this provider. 7392 */ 7393 for (i = 0; i < dtrace_nprobes; i++) { 7394 if ((probe = dtrace_probes[i]) == NULL) 7395 continue; 7396 7397 if (probe->dtpr_provider != prov) 7398 continue; 7399 7400 if (probe->dtpr_ecb != NULL) 7401 continue; 7402 7403 dtrace_probes[i] = NULL; 7404 7405 dtrace_hash_remove(dtrace_bymod, probe); 7406 dtrace_hash_remove(dtrace_byfunc, probe); 7407 dtrace_hash_remove(dtrace_byname, probe); 7408 7409 prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, i + 1, 7410 probe->dtpr_arg); 7411 kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1); 7412 kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1); 7413 kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1); 7414 kmem_free(probe, sizeof (dtrace_probe_t)); 7415 vmem_free(dtrace_arena, (void *)((uintptr_t)i + 1), 1); 7416 } 7417 7418 mutex_exit(&dtrace_lock); 7419 mutex_exit(&dtrace_provider_lock); 7420 7421 return (0); 7422 } 7423 7424 /* 7425 * DTrace Probe Management Functions 7426 * 7427 * The functions in this section perform the DTrace probe management, 7428 * including functions to create probes, look-up probes, and call into the 7429 * providers to request that probes be provided. Some of these functions are 7430 * in the Provider-to-Framework API; these functions can be identified by the 7431 * fact that they are not declared "static". 7432 */ 7433 7434 /* 7435 * Create a probe with the specified module name, function name, and name. 7436 */ 7437 dtrace_id_t 7438 dtrace_probe_create(dtrace_provider_id_t prov, const char *mod, 7439 const char *func, const char *name, int aframes, void *arg) 7440 { 7441 dtrace_probe_t *probe, **probes; 7442 dtrace_provider_t *provider = (dtrace_provider_t *)prov; 7443 dtrace_id_t id; 7444 7445 if (provider == dtrace_provider) { 7446 ASSERT(MUTEX_HELD(&dtrace_lock)); 7447 } else { 7448 mutex_enter(&dtrace_lock); 7449 } 7450 7451 id = (dtrace_id_t)(uintptr_t)vmem_alloc(dtrace_arena, 1, 7452 VM_BESTFIT | VM_SLEEP); 7453 probe = kmem_zalloc(sizeof (dtrace_probe_t), KM_SLEEP); 7454 7455 probe->dtpr_id = id; 7456 probe->dtpr_gen = dtrace_probegen++; 7457 probe->dtpr_mod = dtrace_strdup(mod); 7458 probe->dtpr_func = dtrace_strdup(func); 7459 probe->dtpr_name = dtrace_strdup(name); 7460 probe->dtpr_arg = arg; 7461 probe->dtpr_aframes = aframes; 7462 probe->dtpr_provider = provider; 7463 7464 dtrace_hash_add(dtrace_bymod, probe); 7465 dtrace_hash_add(dtrace_byfunc, probe); 7466 dtrace_hash_add(dtrace_byname, probe); 7467 7468 if (id - 1 >= dtrace_nprobes) { 7469 size_t osize = dtrace_nprobes * sizeof (dtrace_probe_t *); 7470 size_t nsize = osize << 1; 7471 7472 if (nsize == 0) { 7473 ASSERT(osize == 0); 7474 ASSERT(dtrace_probes == NULL); 7475 nsize = sizeof (dtrace_probe_t *); 7476 } 7477 7478 probes = kmem_zalloc(nsize, KM_SLEEP); 7479 7480 if (dtrace_probes == NULL) { 7481 ASSERT(osize == 0); 7482 dtrace_probes = probes; 7483 dtrace_nprobes = 1; 7484 } else { 7485 dtrace_probe_t **oprobes = dtrace_probes; 7486 7487 bcopy(oprobes, probes, osize); 7488 dtrace_membar_producer(); 7489 dtrace_probes = probes; 7490 7491 dtrace_sync(); 7492 7493 /* 7494 * All CPUs are now seeing the new probes array; we can 7495 * safely free the old array. 7496 */ 7497 kmem_free(oprobes, osize); 7498 dtrace_nprobes <<= 1; 7499 } 7500 7501 ASSERT(id - 1 < dtrace_nprobes); 7502 } 7503 7504 ASSERT(dtrace_probes[id - 1] == NULL); 7505 dtrace_probes[id - 1] = probe; 7506 7507 if (provider != dtrace_provider) 7508 mutex_exit(&dtrace_lock); 7509 7510 return (id); 7511 } 7512 7513 static dtrace_probe_t * 7514 dtrace_probe_lookup_id(dtrace_id_t id) 7515 { 7516 ASSERT(MUTEX_HELD(&dtrace_lock)); 7517 7518 if (id == 0 || id > dtrace_nprobes) 7519 return (NULL); 7520 7521 return (dtrace_probes[id - 1]); 7522 } 7523 7524 static int 7525 dtrace_probe_lookup_match(dtrace_probe_t *probe, void *arg) 7526 { 7527 *((dtrace_id_t *)arg) = probe->dtpr_id; 7528 7529 return (DTRACE_MATCH_DONE); 7530 } 7531 7532 /* 7533 * Look up a probe based on provider and one or more of module name, function 7534 * name and probe name. 7535 */ 7536 dtrace_id_t 7537 dtrace_probe_lookup(dtrace_provider_id_t prid, const char *mod, 7538 const char *func, const char *name) 7539 { 7540 dtrace_probekey_t pkey; 7541 dtrace_id_t id; 7542 int match; 7543 7544 pkey.dtpk_prov = ((dtrace_provider_t *)prid)->dtpv_name; 7545 pkey.dtpk_pmatch = &dtrace_match_string; 7546 pkey.dtpk_mod = mod; 7547 pkey.dtpk_mmatch = mod ? &dtrace_match_string : &dtrace_match_nul; 7548 pkey.dtpk_func = func; 7549 pkey.dtpk_fmatch = func ? &dtrace_match_string : &dtrace_match_nul; 7550 pkey.dtpk_name = name; 7551 pkey.dtpk_nmatch = name ? &dtrace_match_string : &dtrace_match_nul; 7552 pkey.dtpk_id = DTRACE_IDNONE; 7553 7554 mutex_enter(&dtrace_lock); 7555 match = dtrace_match(&pkey, DTRACE_PRIV_ALL, 0, 0, 7556 dtrace_probe_lookup_match, &id); 7557 mutex_exit(&dtrace_lock); 7558 7559 ASSERT(match == 1 || match == 0); 7560 return (match ? id : 0); 7561 } 7562 7563 /* 7564 * Returns the probe argument associated with the specified probe. 7565 */ 7566 void * 7567 dtrace_probe_arg(dtrace_provider_id_t id, dtrace_id_t pid) 7568 { 7569 dtrace_probe_t *probe; 7570 void *rval = NULL; 7571 7572 mutex_enter(&dtrace_lock); 7573 7574 if ((probe = dtrace_probe_lookup_id(pid)) != NULL && 7575 probe->dtpr_provider == (dtrace_provider_t *)id) 7576 rval = probe->dtpr_arg; 7577 7578 mutex_exit(&dtrace_lock); 7579 7580 return (rval); 7581 } 7582 7583 /* 7584 * Copy a probe into a probe description. 7585 */ 7586 static void 7587 dtrace_probe_description(const dtrace_probe_t *prp, dtrace_probedesc_t *pdp) 7588 { 7589 bzero(pdp, sizeof (dtrace_probedesc_t)); 7590 pdp->dtpd_id = prp->dtpr_id; 7591 7592 (void) strncpy(pdp->dtpd_provider, 7593 prp->dtpr_provider->dtpv_name, DTRACE_PROVNAMELEN - 1); 7594 7595 (void) strncpy(pdp->dtpd_mod, prp->dtpr_mod, DTRACE_MODNAMELEN - 1); 7596 (void) strncpy(pdp->dtpd_func, prp->dtpr_func, DTRACE_FUNCNAMELEN - 1); 7597 (void) strncpy(pdp->dtpd_name, prp->dtpr_name, DTRACE_NAMELEN - 1); 7598 } 7599 7600 /* 7601 * Called to indicate that a probe -- or probes -- should be provided by a 7602 * specfied provider. If the specified description is NULL, the provider will 7603 * be told to provide all of its probes. (This is done whenever a new 7604 * consumer comes along, or whenever a retained enabling is to be matched.) If 7605 * the specified description is non-NULL, the provider is given the 7606 * opportunity to dynamically provide the specified probe, allowing providers 7607 * to support the creation of probes on-the-fly. (So-called _autocreated_ 7608 * probes.) If the provider is NULL, the operations will be applied to all 7609 * providers; if the provider is non-NULL the operations will only be applied 7610 * to the specified provider. The dtrace_provider_lock must be held, and the 7611 * dtrace_lock must _not_ be held -- the provider's dtps_provide() operation 7612 * will need to grab the dtrace_lock when it reenters the framework through 7613 * dtrace_probe_lookup(), dtrace_probe_create(), etc. 7614 */ 7615 static void 7616 dtrace_probe_provide(dtrace_probedesc_t *desc, dtrace_provider_t *prv) 7617 { 7618 struct modctl *ctl; 7619 int all = 0; 7620 7621 ASSERT(MUTEX_HELD(&dtrace_provider_lock)); 7622 7623 if (prv == NULL) { 7624 all = 1; 7625 prv = dtrace_provider; 7626 } 7627 7628 do { 7629 /* 7630 * First, call the blanket provide operation. 7631 */ 7632 prv->dtpv_pops.dtps_provide(prv->dtpv_arg, desc); 7633 7634 /* 7635 * Now call the per-module provide operation. We will grab 7636 * mod_lock to prevent the list from being modified. Note 7637 * that this also prevents the mod_busy bits from changing. 7638 * (mod_busy can only be changed with mod_lock held.) 7639 */ 7640 mutex_enter(&mod_lock); 7641 7642 ctl = &modules; 7643 do { 7644 if (ctl->mod_busy || ctl->mod_mp == NULL) 7645 continue; 7646 7647 prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl); 7648 7649 } while ((ctl = ctl->mod_next) != &modules); 7650 7651 mutex_exit(&mod_lock); 7652 } while (all && (prv = prv->dtpv_next) != NULL); 7653 } 7654 7655 /* 7656 * Iterate over each probe, and call the Framework-to-Provider API function 7657 * denoted by offs. 7658 */ 7659 static void 7660 dtrace_probe_foreach(uintptr_t offs) 7661 { 7662 dtrace_provider_t *prov; 7663 void (*func)(void *, dtrace_id_t, void *); 7664 dtrace_probe_t *probe; 7665 dtrace_icookie_t cookie; 7666 int i; 7667 7668 /* 7669 * We disable interrupts to walk through the probe array. This is 7670 * safe -- the dtrace_sync() in dtrace_unregister() assures that we 7671 * won't see stale data. 7672 */ 7673 cookie = dtrace_interrupt_disable(); 7674 7675 for (i = 0; i < dtrace_nprobes; i++) { 7676 if ((probe = dtrace_probes[i]) == NULL) 7677 continue; 7678 7679 if (probe->dtpr_ecb == NULL) { 7680 /* 7681 * This probe isn't enabled -- don't call the function. 7682 */ 7683 continue; 7684 } 7685 7686 prov = probe->dtpr_provider; 7687 func = *((void(**)(void *, dtrace_id_t, void *)) 7688 ((uintptr_t)&prov->dtpv_pops + offs)); 7689 7690 func(prov->dtpv_arg, i + 1, probe->dtpr_arg); 7691 } 7692 7693 dtrace_interrupt_enable(cookie); 7694 } 7695 7696 static int 7697 dtrace_probe_enable(const dtrace_probedesc_t *desc, dtrace_enabling_t *enab) 7698 { 7699 dtrace_probekey_t pkey; 7700 uint32_t priv; 7701 uid_t uid; 7702 zoneid_t zoneid; 7703 7704 ASSERT(MUTEX_HELD(&dtrace_lock)); 7705 dtrace_ecb_create_cache = NULL; 7706 7707 if (desc == NULL) { 7708 /* 7709 * If we're passed a NULL description, we're being asked to 7710 * create an ECB with a NULL probe. 7711 */ 7712 (void) dtrace_ecb_create_enable(NULL, enab); 7713 return (0); 7714 } 7715 7716 dtrace_probekey(desc, &pkey); 7717 dtrace_cred2priv(enab->dten_vstate->dtvs_state->dts_cred.dcr_cred, 7718 &priv, &uid, &zoneid); 7719 7720 return (dtrace_match(&pkey, priv, uid, zoneid, dtrace_ecb_create_enable, 7721 enab)); 7722 } 7723 7724 /* 7725 * DTrace Helper Provider Functions 7726 */ 7727 static void 7728 dtrace_dofattr2attr(dtrace_attribute_t *attr, const dof_attr_t dofattr) 7729 { 7730 attr->dtat_name = DOF_ATTR_NAME(dofattr); 7731 attr->dtat_data = DOF_ATTR_DATA(dofattr); 7732 attr->dtat_class = DOF_ATTR_CLASS(dofattr); 7733 } 7734 7735 static void 7736 dtrace_dofprov2hprov(dtrace_helper_provdesc_t *hprov, 7737 const dof_provider_t *dofprov, char *strtab) 7738 { 7739 hprov->dthpv_provname = strtab + dofprov->dofpv_name; 7740 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_provider, 7741 dofprov->dofpv_provattr); 7742 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_mod, 7743 dofprov->dofpv_modattr); 7744 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_func, 7745 dofprov->dofpv_funcattr); 7746 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_name, 7747 dofprov->dofpv_nameattr); 7748 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_args, 7749 dofprov->dofpv_argsattr); 7750 } 7751 7752 static void 7753 dtrace_helper_provide_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid) 7754 { 7755 uintptr_t daddr = (uintptr_t)dhp->dofhp_dof; 7756 dof_hdr_t *dof = (dof_hdr_t *)daddr; 7757 dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec; 7758 dof_provider_t *provider; 7759 dof_probe_t *probe; 7760 uint32_t *off, *enoff; 7761 uint8_t *arg; 7762 char *strtab; 7763 uint_t i, nprobes; 7764 dtrace_helper_provdesc_t dhpv; 7765 dtrace_helper_probedesc_t dhpb; 7766 dtrace_meta_t *meta = dtrace_meta_pid; 7767 dtrace_mops_t *mops = &meta->dtm_mops; 7768 void *parg; 7769 7770 provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset); 7771 str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 7772 provider->dofpv_strtab * dof->dofh_secsize); 7773 prb_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 7774 provider->dofpv_probes * dof->dofh_secsize); 7775 arg_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 7776 provider->dofpv_prargs * dof->dofh_secsize); 7777 off_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 7778 provider->dofpv_proffs * dof->dofh_secsize); 7779 7780 strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset); 7781 off = (uint32_t *)(uintptr_t)(daddr + off_sec->dofs_offset); 7782 arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset); 7783 enoff = NULL; 7784 7785 /* 7786 * See dtrace_helper_provider_validate(). 7787 */ 7788 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 && 7789 provider->dofpv_prenoffs != DOF_SECT_NONE) { 7790 enoff_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 7791 provider->dofpv_prenoffs * dof->dofh_secsize); 7792 enoff = (uint32_t *)(uintptr_t)(daddr + enoff_sec->dofs_offset); 7793 } 7794 7795 nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize; 7796 7797 /* 7798 * Create the provider. 7799 */ 7800 dtrace_dofprov2hprov(&dhpv, provider, strtab); 7801 7802 if ((parg = mops->dtms_provide_pid(meta->dtm_arg, &dhpv, pid)) == NULL) 7803 return; 7804 7805 meta->dtm_count++; 7806 7807 /* 7808 * Create the probes. 7809 */ 7810 for (i = 0; i < nprobes; i++) { 7811 probe = (dof_probe_t *)(uintptr_t)(daddr + 7812 prb_sec->dofs_offset + i * prb_sec->dofs_entsize); 7813 7814 dhpb.dthpb_mod = dhp->dofhp_mod; 7815 dhpb.dthpb_func = strtab + probe->dofpr_func; 7816 dhpb.dthpb_name = strtab + probe->dofpr_name; 7817 dhpb.dthpb_base = probe->dofpr_addr; 7818 dhpb.dthpb_offs = off + probe->dofpr_offidx; 7819 dhpb.dthpb_noffs = probe->dofpr_noffs; 7820 if (enoff != NULL) { 7821 dhpb.dthpb_enoffs = enoff + probe->dofpr_enoffidx; 7822 dhpb.dthpb_nenoffs = probe->dofpr_nenoffs; 7823 } else { 7824 dhpb.dthpb_enoffs = NULL; 7825 dhpb.dthpb_nenoffs = 0; 7826 } 7827 dhpb.dthpb_args = arg + probe->dofpr_argidx; 7828 dhpb.dthpb_nargc = probe->dofpr_nargc; 7829 dhpb.dthpb_xargc = probe->dofpr_xargc; 7830 dhpb.dthpb_ntypes = strtab + probe->dofpr_nargv; 7831 dhpb.dthpb_xtypes = strtab + probe->dofpr_xargv; 7832 7833 mops->dtms_create_probe(meta->dtm_arg, parg, &dhpb); 7834 } 7835 } 7836 7837 static void 7838 dtrace_helper_provide(dof_helper_t *dhp, pid_t pid) 7839 { 7840 uintptr_t daddr = (uintptr_t)dhp->dofhp_dof; 7841 dof_hdr_t *dof = (dof_hdr_t *)daddr; 7842 int i; 7843 7844 ASSERT(MUTEX_HELD(&dtrace_meta_lock)); 7845 7846 for (i = 0; i < dof->dofh_secnum; i++) { 7847 dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr + 7848 dof->dofh_secoff + i * dof->dofh_secsize); 7849 7850 if (sec->dofs_type != DOF_SECT_PROVIDER) 7851 continue; 7852 7853 dtrace_helper_provide_one(dhp, sec, pid); 7854 } 7855 7856 /* 7857 * We may have just created probes, so we must now rematch against 7858 * any retained enablings. Note that this call will acquire both 7859 * cpu_lock and dtrace_lock; the fact that we are holding 7860 * dtrace_meta_lock now is what defines the ordering with respect to 7861 * these three locks. 7862 */ 7863 dtrace_enabling_matchall(); 7864 } 7865 7866 static void 7867 dtrace_helper_provider_remove_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid) 7868 { 7869 uintptr_t daddr = (uintptr_t)dhp->dofhp_dof; 7870 dof_hdr_t *dof = (dof_hdr_t *)daddr; 7871 dof_sec_t *str_sec; 7872 dof_provider_t *provider; 7873 char *strtab; 7874 dtrace_helper_provdesc_t dhpv; 7875 dtrace_meta_t *meta = dtrace_meta_pid; 7876 dtrace_mops_t *mops = &meta->dtm_mops; 7877 7878 provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset); 7879 str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 7880 provider->dofpv_strtab * dof->dofh_secsize); 7881 7882 strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset); 7883 7884 /* 7885 * Create the provider. 7886 */ 7887 dtrace_dofprov2hprov(&dhpv, provider, strtab); 7888 7889 mops->dtms_remove_pid(meta->dtm_arg, &dhpv, pid); 7890 7891 meta->dtm_count--; 7892 } 7893 7894 static void 7895 dtrace_helper_provider_remove(dof_helper_t *dhp, pid_t pid) 7896 { 7897 uintptr_t daddr = (uintptr_t)dhp->dofhp_dof; 7898 dof_hdr_t *dof = (dof_hdr_t *)daddr; 7899 int i; 7900 7901 ASSERT(MUTEX_HELD(&dtrace_meta_lock)); 7902 7903 for (i = 0; i < dof->dofh_secnum; i++) { 7904 dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr + 7905 dof->dofh_secoff + i * dof->dofh_secsize); 7906 7907 if (sec->dofs_type != DOF_SECT_PROVIDER) 7908 continue; 7909 7910 dtrace_helper_provider_remove_one(dhp, sec, pid); 7911 } 7912 } 7913 7914 /* 7915 * DTrace Meta Provider-to-Framework API Functions 7916 * 7917 * These functions implement the Meta Provider-to-Framework API, as described 7918 * in <sys/dtrace.h>. 7919 */ 7920 int 7921 dtrace_meta_register(const char *name, const dtrace_mops_t *mops, void *arg, 7922 dtrace_meta_provider_id_t *idp) 7923 { 7924 dtrace_meta_t *meta; 7925 dtrace_helpers_t *help, *next; 7926 int i; 7927 7928 *idp = DTRACE_METAPROVNONE; 7929 7930 /* 7931 * We strictly don't need the name, but we hold onto it for 7932 * debuggability. All hail error queues! 7933 */ 7934 if (name == NULL) { 7935 cmn_err(CE_WARN, "failed to register meta-provider: " 7936 "invalid name"); 7937 return (EINVAL); 7938 } 7939 7940 if (mops == NULL || 7941 mops->dtms_create_probe == NULL || 7942 mops->dtms_provide_pid == NULL || 7943 mops->dtms_remove_pid == NULL) { 7944 cmn_err(CE_WARN, "failed to register meta-register %s: " 7945 "invalid ops", name); 7946 return (EINVAL); 7947 } 7948 7949 meta = kmem_zalloc(sizeof (dtrace_meta_t), KM_SLEEP); 7950 meta->dtm_mops = *mops; 7951 meta->dtm_name = kmem_alloc(strlen(name) + 1, KM_SLEEP); 7952 (void) strcpy(meta->dtm_name, name); 7953 meta->dtm_arg = arg; 7954 7955 mutex_enter(&dtrace_meta_lock); 7956 mutex_enter(&dtrace_lock); 7957 7958 if (dtrace_meta_pid != NULL) { 7959 mutex_exit(&dtrace_lock); 7960 mutex_exit(&dtrace_meta_lock); 7961 cmn_err(CE_WARN, "failed to register meta-register %s: " 7962 "user-land meta-provider exists", name); 7963 kmem_free(meta->dtm_name, strlen(meta->dtm_name) + 1); 7964 kmem_free(meta, sizeof (dtrace_meta_t)); 7965 return (EINVAL); 7966 } 7967 7968 dtrace_meta_pid = meta; 7969 *idp = (dtrace_meta_provider_id_t)meta; 7970 7971 /* 7972 * If there are providers and probes ready to go, pass them 7973 * off to the new meta provider now. 7974 */ 7975 7976 help = dtrace_deferred_pid; 7977 dtrace_deferred_pid = NULL; 7978 7979 mutex_exit(&dtrace_lock); 7980 7981 while (help != NULL) { 7982 for (i = 0; i < help->dthps_nprovs; i++) { 7983 dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov, 7984 help->dthps_pid); 7985 } 7986 7987 next = help->dthps_next; 7988 help->dthps_next = NULL; 7989 help->dthps_prev = NULL; 7990 help->dthps_deferred = 0; 7991 help = next; 7992 } 7993 7994 mutex_exit(&dtrace_meta_lock); 7995 7996 return (0); 7997 } 7998 7999 int 8000 dtrace_meta_unregister(dtrace_meta_provider_id_t id) 8001 { 8002 dtrace_meta_t **pp, *old = (dtrace_meta_t *)id; 8003 8004 mutex_enter(&dtrace_meta_lock); 8005 mutex_enter(&dtrace_lock); 8006 8007 if (old == dtrace_meta_pid) { 8008 pp = &dtrace_meta_pid; 8009 } else { 8010 panic("attempt to unregister non-existent " 8011 "dtrace meta-provider %p\n", (void *)old); 8012 } 8013 8014 if (old->dtm_count != 0) { 8015 mutex_exit(&dtrace_lock); 8016 mutex_exit(&dtrace_meta_lock); 8017 return (EBUSY); 8018 } 8019 8020 *pp = NULL; 8021 8022 mutex_exit(&dtrace_lock); 8023 mutex_exit(&dtrace_meta_lock); 8024 8025 kmem_free(old->dtm_name, strlen(old->dtm_name) + 1); 8026 kmem_free(old, sizeof (dtrace_meta_t)); 8027 8028 return (0); 8029 } 8030 8031 8032 /* 8033 * DTrace DIF Object Functions 8034 */ 8035 static int 8036 dtrace_difo_err(uint_t pc, const char *format, ...) 8037 { 8038 if (dtrace_err_verbose) { 8039 va_list alist; 8040 8041 (void) uprintf("dtrace DIF object error: [%u]: ", pc); 8042 va_start(alist, format); 8043 (void) vuprintf(format, alist); 8044 va_end(alist); 8045 } 8046 8047 #ifdef DTRACE_ERRDEBUG 8048 dtrace_errdebug(format); 8049 #endif 8050 return (1); 8051 } 8052 8053 /* 8054 * Validate a DTrace DIF object by checking the IR instructions. The following 8055 * rules are currently enforced by dtrace_difo_validate(): 8056 * 8057 * 1. Each instruction must have a valid opcode 8058 * 2. Each register, string, variable, or subroutine reference must be valid 8059 * 3. No instruction can modify register %r0 (must be zero) 8060 * 4. All instruction reserved bits must be set to zero 8061 * 5. The last instruction must be a "ret" instruction 8062 * 6. All branch targets must reference a valid instruction _after_ the branch 8063 */ 8064 static int 8065 dtrace_difo_validate(dtrace_difo_t *dp, dtrace_vstate_t *vstate, uint_t nregs, 8066 cred_t *cr) 8067 { 8068 int err = 0, i; 8069 int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err; 8070 int kcheckload; 8071 uint_t pc; 8072 8073 kcheckload = cr == NULL || 8074 (vstate->dtvs_state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) == 0; 8075 8076 dp->dtdo_destructive = 0; 8077 8078 for (pc = 0; pc < dp->dtdo_len && err == 0; pc++) { 8079 dif_instr_t instr = dp->dtdo_buf[pc]; 8080 8081 uint_t r1 = DIF_INSTR_R1(instr); 8082 uint_t r2 = DIF_INSTR_R2(instr); 8083 uint_t rd = DIF_INSTR_RD(instr); 8084 uint_t rs = DIF_INSTR_RS(instr); 8085 uint_t label = DIF_INSTR_LABEL(instr); 8086 uint_t v = DIF_INSTR_VAR(instr); 8087 uint_t subr = DIF_INSTR_SUBR(instr); 8088 uint_t type = DIF_INSTR_TYPE(instr); 8089 uint_t op = DIF_INSTR_OP(instr); 8090 8091 switch (op) { 8092 case DIF_OP_OR: 8093 case DIF_OP_XOR: 8094 case DIF_OP_AND: 8095 case DIF_OP_SLL: 8096 case DIF_OP_SRL: 8097 case DIF_OP_SRA: 8098 case DIF_OP_SUB: 8099 case DIF_OP_ADD: 8100 case DIF_OP_MUL: 8101 case DIF_OP_SDIV: 8102 case DIF_OP_UDIV: 8103 case DIF_OP_SREM: 8104 case DIF_OP_UREM: 8105 case DIF_OP_COPYS: 8106 if (r1 >= nregs) 8107 err += efunc(pc, "invalid register %u\n", r1); 8108 if (r2 >= nregs) 8109 err += efunc(pc, "invalid register %u\n", r2); 8110 if (rd >= nregs) 8111 err += efunc(pc, "invalid register %u\n", rd); 8112 if (rd == 0) 8113 err += efunc(pc, "cannot write to %r0\n"); 8114 break; 8115 case DIF_OP_NOT: 8116 case DIF_OP_MOV: 8117 case DIF_OP_ALLOCS: 8118 if (r1 >= nregs) 8119 err += efunc(pc, "invalid register %u\n", r1); 8120 if (r2 != 0) 8121 err += efunc(pc, "non-zero reserved bits\n"); 8122 if (rd >= nregs) 8123 err += efunc(pc, "invalid register %u\n", rd); 8124 if (rd == 0) 8125 err += efunc(pc, "cannot write to %r0\n"); 8126 break; 8127 case DIF_OP_LDSB: 8128 case DIF_OP_LDSH: 8129 case DIF_OP_LDSW: 8130 case DIF_OP_LDUB: 8131 case DIF_OP_LDUH: 8132 case DIF_OP_LDUW: 8133 case DIF_OP_LDX: 8134 if (r1 >= nregs) 8135 err += efunc(pc, "invalid register %u\n", r1); 8136 if (r2 != 0) 8137 err += efunc(pc, "non-zero reserved bits\n"); 8138 if (rd >= nregs) 8139 err += efunc(pc, "invalid register %u\n", rd); 8140 if (rd == 0) 8141 err += efunc(pc, "cannot write to %r0\n"); 8142 if (kcheckload) 8143 dp->dtdo_buf[pc] = DIF_INSTR_LOAD(op + 8144 DIF_OP_RLDSB - DIF_OP_LDSB, r1, rd); 8145 break; 8146 case DIF_OP_RLDSB: 8147 case DIF_OP_RLDSH: 8148 case DIF_OP_RLDSW: 8149 case DIF_OP_RLDUB: 8150 case DIF_OP_RLDUH: 8151 case DIF_OP_RLDUW: 8152 case DIF_OP_RLDX: 8153 if (r1 >= nregs) 8154 err += efunc(pc, "invalid register %u\n", r1); 8155 if (r2 != 0) 8156 err += efunc(pc, "non-zero reserved bits\n"); 8157 if (rd >= nregs) 8158 err += efunc(pc, "invalid register %u\n", rd); 8159 if (rd == 0) 8160 err += efunc(pc, "cannot write to %r0\n"); 8161 break; 8162 case DIF_OP_ULDSB: 8163 case DIF_OP_ULDSH: 8164 case DIF_OP_ULDSW: 8165 case DIF_OP_ULDUB: 8166 case DIF_OP_ULDUH: 8167 case DIF_OP_ULDUW: 8168 case DIF_OP_ULDX: 8169 if (r1 >= nregs) 8170 err += efunc(pc, "invalid register %u\n", r1); 8171 if (r2 != 0) 8172 err += efunc(pc, "non-zero reserved bits\n"); 8173 if (rd >= nregs) 8174 err += efunc(pc, "invalid register %u\n", rd); 8175 if (rd == 0) 8176 err += efunc(pc, "cannot write to %r0\n"); 8177 break; 8178 case DIF_OP_STB: 8179 case DIF_OP_STH: 8180 case DIF_OP_STW: 8181 case DIF_OP_STX: 8182 if (r1 >= nregs) 8183 err += efunc(pc, "invalid register %u\n", r1); 8184 if (r2 != 0) 8185 err += efunc(pc, "non-zero reserved bits\n"); 8186 if (rd >= nregs) 8187 err += efunc(pc, "invalid register %u\n", rd); 8188 if (rd == 0) 8189 err += efunc(pc, "cannot write to 0 address\n"); 8190 break; 8191 case DIF_OP_CMP: 8192 case DIF_OP_SCMP: 8193 if (r1 >= nregs) 8194 err += efunc(pc, "invalid register %u\n", r1); 8195 if (r2 >= nregs) 8196 err += efunc(pc, "invalid register %u\n", r2); 8197 if (rd != 0) 8198 err += efunc(pc, "non-zero reserved bits\n"); 8199 break; 8200 case DIF_OP_TST: 8201 if (r1 >= nregs) 8202 err += efunc(pc, "invalid register %u\n", r1); 8203 if (r2 != 0 || rd != 0) 8204 err += efunc(pc, "non-zero reserved bits\n"); 8205 break; 8206 case DIF_OP_BA: 8207 case DIF_OP_BE: 8208 case DIF_OP_BNE: 8209 case DIF_OP_BG: 8210 case DIF_OP_BGU: 8211 case DIF_OP_BGE: 8212 case DIF_OP_BGEU: 8213 case DIF_OP_BL: 8214 case DIF_OP_BLU: 8215 case DIF_OP_BLE: 8216 case DIF_OP_BLEU: 8217 if (label >= dp->dtdo_len) { 8218 err += efunc(pc, "invalid branch target %u\n", 8219 label); 8220 } 8221 if (label <= pc) { 8222 err += efunc(pc, "backward branch to %u\n", 8223 label); 8224 } 8225 break; 8226 case DIF_OP_RET: 8227 if (r1 != 0 || r2 != 0) 8228 err += efunc(pc, "non-zero reserved bits\n"); 8229 if (rd >= nregs) 8230 err += efunc(pc, "invalid register %u\n", rd); 8231 break; 8232 case DIF_OP_NOP: 8233 case DIF_OP_POPTS: 8234 case DIF_OP_FLUSHTS: 8235 if (r1 != 0 || r2 != 0 || rd != 0) 8236 err += efunc(pc, "non-zero reserved bits\n"); 8237 break; 8238 case DIF_OP_SETX: 8239 if (DIF_INSTR_INTEGER(instr) >= dp->dtdo_intlen) { 8240 err += efunc(pc, "invalid integer ref %u\n", 8241 DIF_INSTR_INTEGER(instr)); 8242 } 8243 if (rd >= nregs) 8244 err += efunc(pc, "invalid register %u\n", rd); 8245 if (rd == 0) 8246 err += efunc(pc, "cannot write to %r0\n"); 8247 break; 8248 case DIF_OP_SETS: 8249 if (DIF_INSTR_STRING(instr) >= dp->dtdo_strlen) { 8250 err += efunc(pc, "invalid string ref %u\n", 8251 DIF_INSTR_STRING(instr)); 8252 } 8253 if (rd >= nregs) 8254 err += efunc(pc, "invalid register %u\n", rd); 8255 if (rd == 0) 8256 err += efunc(pc, "cannot write to %r0\n"); 8257 break; 8258 case DIF_OP_LDGA: 8259 case DIF_OP_LDTA: 8260 if (r1 > DIF_VAR_ARRAY_MAX) 8261 err += efunc(pc, "invalid array %u\n", r1); 8262 if (r2 >= nregs) 8263 err += efunc(pc, "invalid register %u\n", r2); 8264 if (rd >= nregs) 8265 err += efunc(pc, "invalid register %u\n", rd); 8266 if (rd == 0) 8267 err += efunc(pc, "cannot write to %r0\n"); 8268 break; 8269 case DIF_OP_LDGS: 8270 case DIF_OP_LDTS: 8271 case DIF_OP_LDLS: 8272 case DIF_OP_LDGAA: 8273 case DIF_OP_LDTAA: 8274 if (v < DIF_VAR_OTHER_MIN || v > DIF_VAR_OTHER_MAX) 8275 err += efunc(pc, "invalid variable %u\n", v); 8276 if (rd >= nregs) 8277 err += efunc(pc, "invalid register %u\n", rd); 8278 if (rd == 0) 8279 err += efunc(pc, "cannot write to %r0\n"); 8280 break; 8281 case DIF_OP_STGS: 8282 case DIF_OP_STTS: 8283 case DIF_OP_STLS: 8284 case DIF_OP_STGAA: 8285 case DIF_OP_STTAA: 8286 if (v < DIF_VAR_OTHER_UBASE || v > DIF_VAR_OTHER_MAX) 8287 err += efunc(pc, "invalid variable %u\n", v); 8288 if (rs >= nregs) 8289 err += efunc(pc, "invalid register %u\n", rd); 8290 break; 8291 case DIF_OP_CALL: 8292 if (subr > DIF_SUBR_MAX) 8293 err += efunc(pc, "invalid subr %u\n", subr); 8294 if (rd >= nregs) 8295 err += efunc(pc, "invalid register %u\n", rd); 8296 if (rd == 0) 8297 err += efunc(pc, "cannot write to %r0\n"); 8298 8299 if (subr == DIF_SUBR_COPYOUT || 8300 subr == DIF_SUBR_COPYOUTSTR) { 8301 dp->dtdo_destructive = 1; 8302 } 8303 break; 8304 case DIF_OP_PUSHTR: 8305 if (type != DIF_TYPE_STRING && type != DIF_TYPE_CTF) 8306 err += efunc(pc, "invalid ref type %u\n", type); 8307 if (r2 >= nregs) 8308 err += efunc(pc, "invalid register %u\n", r2); 8309 if (rs >= nregs) 8310 err += efunc(pc, "invalid register %u\n", rs); 8311 break; 8312 case DIF_OP_PUSHTV: 8313 if (type != DIF_TYPE_CTF) 8314 err += efunc(pc, "invalid val type %u\n", type); 8315 if (r2 >= nregs) 8316 err += efunc(pc, "invalid register %u\n", r2); 8317 if (rs >= nregs) 8318 err += efunc(pc, "invalid register %u\n", rs); 8319 break; 8320 default: 8321 err += efunc(pc, "invalid opcode %u\n", 8322 DIF_INSTR_OP(instr)); 8323 } 8324 } 8325 8326 if (dp->dtdo_len != 0 && 8327 DIF_INSTR_OP(dp->dtdo_buf[dp->dtdo_len - 1]) != DIF_OP_RET) { 8328 err += efunc(dp->dtdo_len - 1, 8329 "expected 'ret' as last DIF instruction\n"); 8330 } 8331 8332 if (!(dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) { 8333 /* 8334 * If we're not returning by reference, the size must be either 8335 * 0 or the size of one of the base types. 8336 */ 8337 switch (dp->dtdo_rtype.dtdt_size) { 8338 case 0: 8339 case sizeof (uint8_t): 8340 case sizeof (uint16_t): 8341 case sizeof (uint32_t): 8342 case sizeof (uint64_t): 8343 break; 8344 8345 default: 8346 err += efunc(dp->dtdo_len - 1, "bad return size\n"); 8347 } 8348 } 8349 8350 for (i = 0; i < dp->dtdo_varlen && err == 0; i++) { 8351 dtrace_difv_t *v = &dp->dtdo_vartab[i], *existing = NULL; 8352 dtrace_diftype_t *vt, *et; 8353 uint_t id, ndx; 8354 8355 if (v->dtdv_scope != DIFV_SCOPE_GLOBAL && 8356 v->dtdv_scope != DIFV_SCOPE_THREAD && 8357 v->dtdv_scope != DIFV_SCOPE_LOCAL) { 8358 err += efunc(i, "unrecognized variable scope %d\n", 8359 v->dtdv_scope); 8360 break; 8361 } 8362 8363 if (v->dtdv_kind != DIFV_KIND_ARRAY && 8364 v->dtdv_kind != DIFV_KIND_SCALAR) { 8365 err += efunc(i, "unrecognized variable type %d\n", 8366 v->dtdv_kind); 8367 break; 8368 } 8369 8370 if ((id = v->dtdv_id) > DIF_VARIABLE_MAX) { 8371 err += efunc(i, "%d exceeds variable id limit\n", id); 8372 break; 8373 } 8374 8375 if (id < DIF_VAR_OTHER_UBASE) 8376 continue; 8377 8378 /* 8379 * For user-defined variables, we need to check that this 8380 * definition is identical to any previous definition that we 8381 * encountered. 8382 */ 8383 ndx = id - DIF_VAR_OTHER_UBASE; 8384 8385 switch (v->dtdv_scope) { 8386 case DIFV_SCOPE_GLOBAL: 8387 if (ndx < vstate->dtvs_nglobals) { 8388 dtrace_statvar_t *svar; 8389 8390 if ((svar = vstate->dtvs_globals[ndx]) != NULL) 8391 existing = &svar->dtsv_var; 8392 } 8393 8394 break; 8395 8396 case DIFV_SCOPE_THREAD: 8397 if (ndx < vstate->dtvs_ntlocals) 8398 existing = &vstate->dtvs_tlocals[ndx]; 8399 break; 8400 8401 case DIFV_SCOPE_LOCAL: 8402 if (ndx < vstate->dtvs_nlocals) { 8403 dtrace_statvar_t *svar; 8404 8405 if ((svar = vstate->dtvs_locals[ndx]) != NULL) 8406 existing = &svar->dtsv_var; 8407 } 8408 8409 break; 8410 } 8411 8412 vt = &v->dtdv_type; 8413 8414 if (vt->dtdt_flags & DIF_TF_BYREF) { 8415 if (vt->dtdt_size == 0) { 8416 err += efunc(i, "zero-sized variable\n"); 8417 break; 8418 } 8419 8420 if (v->dtdv_scope == DIFV_SCOPE_GLOBAL && 8421 vt->dtdt_size > dtrace_global_maxsize) { 8422 err += efunc(i, "oversized by-ref global\n"); 8423 break; 8424 } 8425 } 8426 8427 if (existing == NULL || existing->dtdv_id == 0) 8428 continue; 8429 8430 ASSERT(existing->dtdv_id == v->dtdv_id); 8431 ASSERT(existing->dtdv_scope == v->dtdv_scope); 8432 8433 if (existing->dtdv_kind != v->dtdv_kind) 8434 err += efunc(i, "%d changed variable kind\n", id); 8435 8436 et = &existing->dtdv_type; 8437 8438 if (vt->dtdt_flags != et->dtdt_flags) { 8439 err += efunc(i, "%d changed variable type flags\n", id); 8440 break; 8441 } 8442 8443 if (vt->dtdt_size != 0 && vt->dtdt_size != et->dtdt_size) { 8444 err += efunc(i, "%d changed variable type size\n", id); 8445 break; 8446 } 8447 } 8448 8449 return (err); 8450 } 8451 8452 /* 8453 * Validate a DTrace DIF object that it is to be used as a helper. Helpers 8454 * are much more constrained than normal DIFOs. Specifically, they may 8455 * not: 8456 * 8457 * 1. Make calls to subroutines other than copyin(), copyinstr() or 8458 * miscellaneous string routines 8459 * 2. Access DTrace variables other than the args[] array, and the 8460 * curthread, pid, ppid, tid, execname, zonename, uid and gid variables. 8461 * 3. Have thread-local variables. 8462 * 4. Have dynamic variables. 8463 */ 8464 static int 8465 dtrace_difo_validate_helper(dtrace_difo_t *dp) 8466 { 8467 int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err; 8468 int err = 0; 8469 uint_t pc; 8470 8471 for (pc = 0; pc < dp->dtdo_len; pc++) { 8472 dif_instr_t instr = dp->dtdo_buf[pc]; 8473 8474 uint_t v = DIF_INSTR_VAR(instr); 8475 uint_t subr = DIF_INSTR_SUBR(instr); 8476 uint_t op = DIF_INSTR_OP(instr); 8477 8478 switch (op) { 8479 case DIF_OP_OR: 8480 case DIF_OP_XOR: 8481 case DIF_OP_AND: 8482 case DIF_OP_SLL: 8483 case DIF_OP_SRL: 8484 case DIF_OP_SRA: 8485 case DIF_OP_SUB: 8486 case DIF_OP_ADD: 8487 case DIF_OP_MUL: 8488 case DIF_OP_SDIV: 8489 case DIF_OP_UDIV: 8490 case DIF_OP_SREM: 8491 case DIF_OP_UREM: 8492 case DIF_OP_COPYS: 8493 case DIF_OP_NOT: 8494 case DIF_OP_MOV: 8495 case DIF_OP_RLDSB: 8496 case DIF_OP_RLDSH: 8497 case DIF_OP_RLDSW: 8498 case DIF_OP_RLDUB: 8499 case DIF_OP_RLDUH: 8500 case DIF_OP_RLDUW: 8501 case DIF_OP_RLDX: 8502 case DIF_OP_ULDSB: 8503 case DIF_OP_ULDSH: 8504 case DIF_OP_ULDSW: 8505 case DIF_OP_ULDUB: 8506 case DIF_OP_ULDUH: 8507 case DIF_OP_ULDUW: 8508 case DIF_OP_ULDX: 8509 case DIF_OP_STB: 8510 case DIF_OP_STH: 8511 case DIF_OP_STW: 8512 case DIF_OP_STX: 8513 case DIF_OP_ALLOCS: 8514 case DIF_OP_CMP: 8515 case DIF_OP_SCMP: 8516 case DIF_OP_TST: 8517 case DIF_OP_BA: 8518 case DIF_OP_BE: 8519 case DIF_OP_BNE: 8520 case DIF_OP_BG: 8521 case DIF_OP_BGU: 8522 case DIF_OP_BGE: 8523 case DIF_OP_BGEU: 8524 case DIF_OP_BL: 8525 case DIF_OP_BLU: 8526 case DIF_OP_BLE: 8527 case DIF_OP_BLEU: 8528 case DIF_OP_RET: 8529 case DIF_OP_NOP: 8530 case DIF_OP_POPTS: 8531 case DIF_OP_FLUSHTS: 8532 case DIF_OP_SETX: 8533 case DIF_OP_SETS: 8534 case DIF_OP_LDGA: 8535 case DIF_OP_LDLS: 8536 case DIF_OP_STGS: 8537 case DIF_OP_STLS: 8538 case DIF_OP_PUSHTR: 8539 case DIF_OP_PUSHTV: 8540 break; 8541 8542 case DIF_OP_LDGS: 8543 if (v >= DIF_VAR_OTHER_UBASE) 8544 break; 8545 8546 if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9) 8547 break; 8548 8549 if (v == DIF_VAR_CURTHREAD || v == DIF_VAR_PID || 8550 v == DIF_VAR_PPID || v == DIF_VAR_TID || 8551 v == DIF_VAR_EXECNAME || v == DIF_VAR_ZONENAME || 8552 v == DIF_VAR_UID || v == DIF_VAR_GID) 8553 break; 8554 8555 err += efunc(pc, "illegal variable %u\n", v); 8556 break; 8557 8558 case DIF_OP_LDTA: 8559 case DIF_OP_LDTS: 8560 case DIF_OP_LDGAA: 8561 case DIF_OP_LDTAA: 8562 err += efunc(pc, "illegal dynamic variable load\n"); 8563 break; 8564 8565 case DIF_OP_STTS: 8566 case DIF_OP_STGAA: 8567 case DIF_OP_STTAA: 8568 err += efunc(pc, "illegal dynamic variable store\n"); 8569 break; 8570 8571 case DIF_OP_CALL: 8572 if (subr == DIF_SUBR_ALLOCA || 8573 subr == DIF_SUBR_BCOPY || 8574 subr == DIF_SUBR_COPYIN || 8575 subr == DIF_SUBR_COPYINTO || 8576 subr == DIF_SUBR_COPYINSTR || 8577 subr == DIF_SUBR_INDEX || 8578 subr == DIF_SUBR_INET_NTOA || 8579 subr == DIF_SUBR_INET_NTOA6 || 8580 subr == DIF_SUBR_INET_NTOP || 8581 subr == DIF_SUBR_LLTOSTR || 8582 subr == DIF_SUBR_RINDEX || 8583 subr == DIF_SUBR_STRCHR || 8584 subr == DIF_SUBR_STRJOIN || 8585 subr == DIF_SUBR_STRRCHR || 8586 subr == DIF_SUBR_STRSTR || 8587 subr == DIF_SUBR_HTONS || 8588 subr == DIF_SUBR_HTONL || 8589 subr == DIF_SUBR_HTONLL || 8590 subr == DIF_SUBR_NTOHS || 8591 subr == DIF_SUBR_NTOHL || 8592 subr == DIF_SUBR_NTOHLL) 8593 break; 8594 8595 err += efunc(pc, "invalid subr %u\n", subr); 8596 break; 8597 8598 default: 8599 err += efunc(pc, "invalid opcode %u\n", 8600 DIF_INSTR_OP(instr)); 8601 } 8602 } 8603 8604 return (err); 8605 } 8606 8607 /* 8608 * Returns 1 if the expression in the DIF object can be cached on a per-thread 8609 * basis; 0 if not. 8610 */ 8611 static int 8612 dtrace_difo_cacheable(dtrace_difo_t *dp) 8613 { 8614 int i; 8615 8616 if (dp == NULL) 8617 return (0); 8618 8619 for (i = 0; i < dp->dtdo_varlen; i++) { 8620 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 8621 8622 if (v->dtdv_scope != DIFV_SCOPE_GLOBAL) 8623 continue; 8624 8625 switch (v->dtdv_id) { 8626 case DIF_VAR_CURTHREAD: 8627 case DIF_VAR_PID: 8628 case DIF_VAR_TID: 8629 case DIF_VAR_EXECNAME: 8630 case DIF_VAR_ZONENAME: 8631 break; 8632 8633 default: 8634 return (0); 8635 } 8636 } 8637 8638 /* 8639 * This DIF object may be cacheable. Now we need to look for any 8640 * array loading instructions, any memory loading instructions, or 8641 * any stores to thread-local variables. 8642 */ 8643 for (i = 0; i < dp->dtdo_len; i++) { 8644 uint_t op = DIF_INSTR_OP(dp->dtdo_buf[i]); 8645 8646 if ((op >= DIF_OP_LDSB && op <= DIF_OP_LDX) || 8647 (op >= DIF_OP_ULDSB && op <= DIF_OP_ULDX) || 8648 (op >= DIF_OP_RLDSB && op <= DIF_OP_RLDX) || 8649 op == DIF_OP_LDGA || op == DIF_OP_STTS) 8650 return (0); 8651 } 8652 8653 return (1); 8654 } 8655 8656 static void 8657 dtrace_difo_hold(dtrace_difo_t *dp) 8658 { 8659 int i; 8660 8661 ASSERT(MUTEX_HELD(&dtrace_lock)); 8662 8663 dp->dtdo_refcnt++; 8664 ASSERT(dp->dtdo_refcnt != 0); 8665 8666 /* 8667 * We need to check this DIF object for references to the variable 8668 * DIF_VAR_VTIMESTAMP. 8669 */ 8670 for (i = 0; i < dp->dtdo_varlen; i++) { 8671 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 8672 8673 if (v->dtdv_id != DIF_VAR_VTIMESTAMP) 8674 continue; 8675 8676 if (dtrace_vtime_references++ == 0) 8677 dtrace_vtime_enable(); 8678 } 8679 } 8680 8681 /* 8682 * This routine calculates the dynamic variable chunksize for a given DIF 8683 * object. The calculation is not fool-proof, and can probably be tricked by 8684 * malicious DIF -- but it works for all compiler-generated DIF. Because this 8685 * calculation is likely imperfect, dtrace_dynvar() is able to gracefully fail 8686 * if a dynamic variable size exceeds the chunksize. 8687 */ 8688 static void 8689 dtrace_difo_chunksize(dtrace_difo_t *dp, dtrace_vstate_t *vstate) 8690 { 8691 uint64_t sval; 8692 dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */ 8693 const dif_instr_t *text = dp->dtdo_buf; 8694 uint_t pc, srd = 0; 8695 uint_t ttop = 0; 8696 size_t size, ksize; 8697 uint_t id, i; 8698 8699 for (pc = 0; pc < dp->dtdo_len; pc++) { 8700 dif_instr_t instr = text[pc]; 8701 uint_t op = DIF_INSTR_OP(instr); 8702 uint_t rd = DIF_INSTR_RD(instr); 8703 uint_t r1 = DIF_INSTR_R1(instr); 8704 uint_t nkeys = 0; 8705 uchar_t scope; 8706 8707 dtrace_key_t *key = tupregs; 8708 8709 switch (op) { 8710 case DIF_OP_SETX: 8711 sval = dp->dtdo_inttab[DIF_INSTR_INTEGER(instr)]; 8712 srd = rd; 8713 continue; 8714 8715 case DIF_OP_STTS: 8716 key = &tupregs[DIF_DTR_NREGS]; 8717 key[0].dttk_size = 0; 8718 key[1].dttk_size = 0; 8719 nkeys = 2; 8720 scope = DIFV_SCOPE_THREAD; 8721 break; 8722 8723 case DIF_OP_STGAA: 8724 case DIF_OP_STTAA: 8725 nkeys = ttop; 8726 8727 if (DIF_INSTR_OP(instr) == DIF_OP_STTAA) 8728 key[nkeys++].dttk_size = 0; 8729 8730 key[nkeys++].dttk_size = 0; 8731 8732 if (op == DIF_OP_STTAA) { 8733 scope = DIFV_SCOPE_THREAD; 8734 } else { 8735 scope = DIFV_SCOPE_GLOBAL; 8736 } 8737 8738 break; 8739 8740 case DIF_OP_PUSHTR: 8741 if (ttop == DIF_DTR_NREGS) 8742 return; 8743 8744 if ((srd == 0 || sval == 0) && r1 == DIF_TYPE_STRING) { 8745 /* 8746 * If the register for the size of the "pushtr" 8747 * is %r0 (or the value is 0) and the type is 8748 * a string, we'll use the system-wide default 8749 * string size. 8750 */ 8751 tupregs[ttop++].dttk_size = 8752 dtrace_strsize_default; 8753 } else { 8754 if (srd == 0) 8755 return; 8756 8757 tupregs[ttop++].dttk_size = sval; 8758 } 8759 8760 break; 8761 8762 case DIF_OP_PUSHTV: 8763 if (ttop == DIF_DTR_NREGS) 8764 return; 8765 8766 tupregs[ttop++].dttk_size = 0; 8767 break; 8768 8769 case DIF_OP_FLUSHTS: 8770 ttop = 0; 8771 break; 8772 8773 case DIF_OP_POPTS: 8774 if (ttop != 0) 8775 ttop--; 8776 break; 8777 } 8778 8779 sval = 0; 8780 srd = 0; 8781 8782 if (nkeys == 0) 8783 continue; 8784 8785 /* 8786 * We have a dynamic variable allocation; calculate its size. 8787 */ 8788 for (ksize = 0, i = 0; i < nkeys; i++) 8789 ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t)); 8790 8791 size = sizeof (dtrace_dynvar_t); 8792 size += sizeof (dtrace_key_t) * (nkeys - 1); 8793 size += ksize; 8794 8795 /* 8796 * Now we need to determine the size of the stored data. 8797 */ 8798 id = DIF_INSTR_VAR(instr); 8799 8800 for (i = 0; i < dp->dtdo_varlen; i++) { 8801 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 8802 8803 if (v->dtdv_id == id && v->dtdv_scope == scope) { 8804 size += v->dtdv_type.dtdt_size; 8805 break; 8806 } 8807 } 8808 8809 if (i == dp->dtdo_varlen) 8810 return; 8811 8812 /* 8813 * We have the size. If this is larger than the chunk size 8814 * for our dynamic variable state, reset the chunk size. 8815 */ 8816 size = P2ROUNDUP(size, sizeof (uint64_t)); 8817 8818 if (size > vstate->dtvs_dynvars.dtds_chunksize) 8819 vstate->dtvs_dynvars.dtds_chunksize = size; 8820 } 8821 } 8822 8823 static void 8824 dtrace_difo_init(dtrace_difo_t *dp, dtrace_vstate_t *vstate) 8825 { 8826 int i, oldsvars, osz, nsz, otlocals, ntlocals; 8827 uint_t id; 8828 8829 ASSERT(MUTEX_HELD(&dtrace_lock)); 8830 ASSERT(dp->dtdo_buf != NULL && dp->dtdo_len != 0); 8831 8832 for (i = 0; i < dp->dtdo_varlen; i++) { 8833 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 8834 dtrace_statvar_t *svar, ***svarp; 8835 size_t dsize = 0; 8836 uint8_t scope = v->dtdv_scope; 8837 int *np; 8838 8839 if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE) 8840 continue; 8841 8842 id -= DIF_VAR_OTHER_UBASE; 8843 8844 switch (scope) { 8845 case DIFV_SCOPE_THREAD: 8846 while (id >= (otlocals = vstate->dtvs_ntlocals)) { 8847 dtrace_difv_t *tlocals; 8848 8849 if ((ntlocals = (otlocals << 1)) == 0) 8850 ntlocals = 1; 8851 8852 osz = otlocals * sizeof (dtrace_difv_t); 8853 nsz = ntlocals * sizeof (dtrace_difv_t); 8854 8855 tlocals = kmem_zalloc(nsz, KM_SLEEP); 8856 8857 if (osz != 0) { 8858 bcopy(vstate->dtvs_tlocals, 8859 tlocals, osz); 8860 kmem_free(vstate->dtvs_tlocals, osz); 8861 } 8862 8863 vstate->dtvs_tlocals = tlocals; 8864 vstate->dtvs_ntlocals = ntlocals; 8865 } 8866 8867 vstate->dtvs_tlocals[id] = *v; 8868 continue; 8869 8870 case DIFV_SCOPE_LOCAL: 8871 np = &vstate->dtvs_nlocals; 8872 svarp = &vstate->dtvs_locals; 8873 8874 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) 8875 dsize = NCPU * (v->dtdv_type.dtdt_size + 8876 sizeof (uint64_t)); 8877 else 8878 dsize = NCPU * sizeof (uint64_t); 8879 8880 break; 8881 8882 case DIFV_SCOPE_GLOBAL: 8883 np = &vstate->dtvs_nglobals; 8884 svarp = &vstate->dtvs_globals; 8885 8886 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) 8887 dsize = v->dtdv_type.dtdt_size + 8888 sizeof (uint64_t); 8889 8890 break; 8891 8892 default: 8893 ASSERT(0); 8894 } 8895 8896 while (id >= (oldsvars = *np)) { 8897 dtrace_statvar_t **statics; 8898 int newsvars, oldsize, newsize; 8899 8900 if ((newsvars = (oldsvars << 1)) == 0) 8901 newsvars = 1; 8902 8903 oldsize = oldsvars * sizeof (dtrace_statvar_t *); 8904 newsize = newsvars * sizeof (dtrace_statvar_t *); 8905 8906 statics = kmem_zalloc(newsize, KM_SLEEP); 8907 8908 if (oldsize != 0) { 8909 bcopy(*svarp, statics, oldsize); 8910 kmem_free(*svarp, oldsize); 8911 } 8912 8913 *svarp = statics; 8914 *np = newsvars; 8915 } 8916 8917 if ((svar = (*svarp)[id]) == NULL) { 8918 svar = kmem_zalloc(sizeof (dtrace_statvar_t), KM_SLEEP); 8919 svar->dtsv_var = *v; 8920 8921 if ((svar->dtsv_size = dsize) != 0) { 8922 svar->dtsv_data = (uint64_t)(uintptr_t) 8923 kmem_zalloc(dsize, KM_SLEEP); 8924 } 8925 8926 (*svarp)[id] = svar; 8927 } 8928 8929 svar->dtsv_refcnt++; 8930 } 8931 8932 dtrace_difo_chunksize(dp, vstate); 8933 dtrace_difo_hold(dp); 8934 } 8935 8936 static dtrace_difo_t * 8937 dtrace_difo_duplicate(dtrace_difo_t *dp, dtrace_vstate_t *vstate) 8938 { 8939 dtrace_difo_t *new; 8940 size_t sz; 8941 8942 ASSERT(dp->dtdo_buf != NULL); 8943 ASSERT(dp->dtdo_refcnt != 0); 8944 8945 new = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP); 8946 8947 ASSERT(dp->dtdo_buf != NULL); 8948 sz = dp->dtdo_len * sizeof (dif_instr_t); 8949 new->dtdo_buf = kmem_alloc(sz, KM_SLEEP); 8950 bcopy(dp->dtdo_buf, new->dtdo_buf, sz); 8951 new->dtdo_len = dp->dtdo_len; 8952 8953 if (dp->dtdo_strtab != NULL) { 8954 ASSERT(dp->dtdo_strlen != 0); 8955 new->dtdo_strtab = kmem_alloc(dp->dtdo_strlen, KM_SLEEP); 8956 bcopy(dp->dtdo_strtab, new->dtdo_strtab, dp->dtdo_strlen); 8957 new->dtdo_strlen = dp->dtdo_strlen; 8958 } 8959 8960 if (dp->dtdo_inttab != NULL) { 8961 ASSERT(dp->dtdo_intlen != 0); 8962 sz = dp->dtdo_intlen * sizeof (uint64_t); 8963 new->dtdo_inttab = kmem_alloc(sz, KM_SLEEP); 8964 bcopy(dp->dtdo_inttab, new->dtdo_inttab, sz); 8965 new->dtdo_intlen = dp->dtdo_intlen; 8966 } 8967 8968 if (dp->dtdo_vartab != NULL) { 8969 ASSERT(dp->dtdo_varlen != 0); 8970 sz = dp->dtdo_varlen * sizeof (dtrace_difv_t); 8971 new->dtdo_vartab = kmem_alloc(sz, KM_SLEEP); 8972 bcopy(dp->dtdo_vartab, new->dtdo_vartab, sz); 8973 new->dtdo_varlen = dp->dtdo_varlen; 8974 } 8975 8976 dtrace_difo_init(new, vstate); 8977 return (new); 8978 } 8979 8980 static void 8981 dtrace_difo_destroy(dtrace_difo_t *dp, dtrace_vstate_t *vstate) 8982 { 8983 int i; 8984 8985 ASSERT(dp->dtdo_refcnt == 0); 8986 8987 for (i = 0; i < dp->dtdo_varlen; i++) { 8988 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 8989 dtrace_statvar_t *svar, **svarp; 8990 uint_t id; 8991 uint8_t scope = v->dtdv_scope; 8992 int *np; 8993 8994 switch (scope) { 8995 case DIFV_SCOPE_THREAD: 8996 continue; 8997 8998 case DIFV_SCOPE_LOCAL: 8999 np = &vstate->dtvs_nlocals; 9000 svarp = vstate->dtvs_locals; 9001 break; 9002 9003 case DIFV_SCOPE_GLOBAL: 9004 np = &vstate->dtvs_nglobals; 9005 svarp = vstate->dtvs_globals; 9006 break; 9007 9008 default: 9009 ASSERT(0); 9010 } 9011 9012 if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE) 9013 continue; 9014 9015 id -= DIF_VAR_OTHER_UBASE; 9016 ASSERT(id < *np); 9017 9018 svar = svarp[id]; 9019 ASSERT(svar != NULL); 9020 ASSERT(svar->dtsv_refcnt > 0); 9021 9022 if (--svar->dtsv_refcnt > 0) 9023 continue; 9024 9025 if (svar->dtsv_size != 0) { 9026 ASSERT(svar->dtsv_data != NULL); 9027 kmem_free((void *)(uintptr_t)svar->dtsv_data, 9028 svar->dtsv_size); 9029 } 9030 9031 kmem_free(svar, sizeof (dtrace_statvar_t)); 9032 svarp[id] = NULL; 9033 } 9034 9035 kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t)); 9036 kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t)); 9037 kmem_free(dp->dtdo_strtab, dp->dtdo_strlen); 9038 kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t)); 9039 9040 kmem_free(dp, sizeof (dtrace_difo_t)); 9041 } 9042 9043 static void 9044 dtrace_difo_release(dtrace_difo_t *dp, dtrace_vstate_t *vstate) 9045 { 9046 int i; 9047 9048 ASSERT(MUTEX_HELD(&dtrace_lock)); 9049 ASSERT(dp->dtdo_refcnt != 0); 9050 9051 for (i = 0; i < dp->dtdo_varlen; i++) { 9052 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 9053 9054 if (v->dtdv_id != DIF_VAR_VTIMESTAMP) 9055 continue; 9056 9057 ASSERT(dtrace_vtime_references > 0); 9058 if (--dtrace_vtime_references == 0) 9059 dtrace_vtime_disable(); 9060 } 9061 9062 if (--dp->dtdo_refcnt == 0) 9063 dtrace_difo_destroy(dp, vstate); 9064 } 9065 9066 /* 9067 * DTrace Format Functions 9068 */ 9069 static uint16_t 9070 dtrace_format_add(dtrace_state_t *state, char *str) 9071 { 9072 char *fmt, **new; 9073 uint16_t ndx, len = strlen(str) + 1; 9074 9075 fmt = kmem_zalloc(len, KM_SLEEP); 9076 bcopy(str, fmt, len); 9077 9078 for (ndx = 0; ndx < state->dts_nformats; ndx++) { 9079 if (state->dts_formats[ndx] == NULL) { 9080 state->dts_formats[ndx] = fmt; 9081 return (ndx + 1); 9082 } 9083 } 9084 9085 if (state->dts_nformats == USHRT_MAX) { 9086 /* 9087 * This is only likely if a denial-of-service attack is being 9088 * attempted. As such, it's okay to fail silently here. 9089 */ 9090 kmem_free(fmt, len); 9091 return (0); 9092 } 9093 9094 /* 9095 * For simplicity, we always resize the formats array to be exactly the 9096 * number of formats. 9097 */ 9098 ndx = state->dts_nformats++; 9099 new = kmem_alloc((ndx + 1) * sizeof (char *), KM_SLEEP); 9100 9101 if (state->dts_formats != NULL) { 9102 ASSERT(ndx != 0); 9103 bcopy(state->dts_formats, new, ndx * sizeof (char *)); 9104 kmem_free(state->dts_formats, ndx * sizeof (char *)); 9105 } 9106 9107 state->dts_formats = new; 9108 state->dts_formats[ndx] = fmt; 9109 9110 return (ndx + 1); 9111 } 9112 9113 static void 9114 dtrace_format_remove(dtrace_state_t *state, uint16_t format) 9115 { 9116 char *fmt; 9117 9118 ASSERT(state->dts_formats != NULL); 9119 ASSERT(format <= state->dts_nformats); 9120 ASSERT(state->dts_formats[format - 1] != NULL); 9121 9122 fmt = state->dts_formats[format - 1]; 9123 kmem_free(fmt, strlen(fmt) + 1); 9124 state->dts_formats[format - 1] = NULL; 9125 } 9126 9127 static void 9128 dtrace_format_destroy(dtrace_state_t *state) 9129 { 9130 int i; 9131 9132 if (state->dts_nformats == 0) { 9133 ASSERT(state->dts_formats == NULL); 9134 return; 9135 } 9136 9137 ASSERT(state->dts_formats != NULL); 9138 9139 for (i = 0; i < state->dts_nformats; i++) { 9140 char *fmt = state->dts_formats[i]; 9141 9142 if (fmt == NULL) 9143 continue; 9144 9145 kmem_free(fmt, strlen(fmt) + 1); 9146 } 9147 9148 kmem_free(state->dts_formats, state->dts_nformats * sizeof (char *)); 9149 state->dts_nformats = 0; 9150 state->dts_formats = NULL; 9151 } 9152 9153 /* 9154 * DTrace Predicate Functions 9155 */ 9156 static dtrace_predicate_t * 9157 dtrace_predicate_create(dtrace_difo_t *dp) 9158 { 9159 dtrace_predicate_t *pred; 9160 9161 ASSERT(MUTEX_HELD(&dtrace_lock)); 9162 ASSERT(dp->dtdo_refcnt != 0); 9163 9164 pred = kmem_zalloc(sizeof (dtrace_predicate_t), KM_SLEEP); 9165 pred->dtp_difo = dp; 9166 pred->dtp_refcnt = 1; 9167 9168 if (!dtrace_difo_cacheable(dp)) 9169 return (pred); 9170 9171 if (dtrace_predcache_id == DTRACE_CACHEIDNONE) { 9172 /* 9173 * This is only theoretically possible -- we have had 2^32 9174 * cacheable predicates on this machine. We cannot allow any 9175 * more predicates to become cacheable: as unlikely as it is, 9176 * there may be a thread caching a (now stale) predicate cache 9177 * ID. (N.B.: the temptation is being successfully resisted to 9178 * have this cmn_err() "Holy shit -- we executed this code!") 9179 */ 9180 return (pred); 9181 } 9182 9183 pred->dtp_cacheid = dtrace_predcache_id++; 9184 9185 return (pred); 9186 } 9187 9188 static void 9189 dtrace_predicate_hold(dtrace_predicate_t *pred) 9190 { 9191 ASSERT(MUTEX_HELD(&dtrace_lock)); 9192 ASSERT(pred->dtp_difo != NULL && pred->dtp_difo->dtdo_refcnt != 0); 9193 ASSERT(pred->dtp_refcnt > 0); 9194 9195 pred->dtp_refcnt++; 9196 } 9197 9198 static void 9199 dtrace_predicate_release(dtrace_predicate_t *pred, dtrace_vstate_t *vstate) 9200 { 9201 dtrace_difo_t *dp = pred->dtp_difo; 9202 9203 ASSERT(MUTEX_HELD(&dtrace_lock)); 9204 ASSERT(dp != NULL && dp->dtdo_refcnt != 0); 9205 ASSERT(pred->dtp_refcnt > 0); 9206 9207 if (--pred->dtp_refcnt == 0) { 9208 dtrace_difo_release(pred->dtp_difo, vstate); 9209 kmem_free(pred, sizeof (dtrace_predicate_t)); 9210 } 9211 } 9212 9213 /* 9214 * DTrace Action Description Functions 9215 */ 9216 static dtrace_actdesc_t * 9217 dtrace_actdesc_create(dtrace_actkind_t kind, uint32_t ntuple, 9218 uint64_t uarg, uint64_t arg) 9219 { 9220 dtrace_actdesc_t *act; 9221 9222 ASSERT(!DTRACEACT_ISPRINTFLIKE(kind) || (arg != NULL && 9223 arg >= KERNELBASE) || (arg == NULL && kind == DTRACEACT_PRINTA)); 9224 9225 act = kmem_zalloc(sizeof (dtrace_actdesc_t), KM_SLEEP); 9226 act->dtad_kind = kind; 9227 act->dtad_ntuple = ntuple; 9228 act->dtad_uarg = uarg; 9229 act->dtad_arg = arg; 9230 act->dtad_refcnt = 1; 9231 9232 return (act); 9233 } 9234 9235 static void 9236 dtrace_actdesc_hold(dtrace_actdesc_t *act) 9237 { 9238 ASSERT(act->dtad_refcnt >= 1); 9239 act->dtad_refcnt++; 9240 } 9241 9242 static void 9243 dtrace_actdesc_release(dtrace_actdesc_t *act, dtrace_vstate_t *vstate) 9244 { 9245 dtrace_actkind_t kind = act->dtad_kind; 9246 dtrace_difo_t *dp; 9247 9248 ASSERT(act->dtad_refcnt >= 1); 9249 9250 if (--act->dtad_refcnt != 0) 9251 return; 9252 9253 if ((dp = act->dtad_difo) != NULL) 9254 dtrace_difo_release(dp, vstate); 9255 9256 if (DTRACEACT_ISPRINTFLIKE(kind)) { 9257 char *str = (char *)(uintptr_t)act->dtad_arg; 9258 9259 ASSERT((str != NULL && (uintptr_t)str >= KERNELBASE) || 9260 (str == NULL && act->dtad_kind == DTRACEACT_PRINTA)); 9261 9262 if (str != NULL) 9263 kmem_free(str, strlen(str) + 1); 9264 } 9265 9266 kmem_free(act, sizeof (dtrace_actdesc_t)); 9267 } 9268 9269 /* 9270 * DTrace ECB Functions 9271 */ 9272 static dtrace_ecb_t * 9273 dtrace_ecb_add(dtrace_state_t *state, dtrace_probe_t *probe) 9274 { 9275 dtrace_ecb_t *ecb; 9276 dtrace_epid_t epid; 9277 9278 ASSERT(MUTEX_HELD(&dtrace_lock)); 9279 9280 ecb = kmem_zalloc(sizeof (dtrace_ecb_t), KM_SLEEP); 9281 ecb->dte_predicate = NULL; 9282 ecb->dte_probe = probe; 9283 9284 /* 9285 * The default size is the size of the default action: recording 9286 * the epid. 9287 */ 9288 ecb->dte_size = ecb->dte_needed = sizeof (dtrace_epid_t); 9289 ecb->dte_alignment = sizeof (dtrace_epid_t); 9290 9291 epid = state->dts_epid++; 9292 9293 if (epid - 1 >= state->dts_necbs) { 9294 dtrace_ecb_t **oecbs = state->dts_ecbs, **ecbs; 9295 int necbs = state->dts_necbs << 1; 9296 9297 ASSERT(epid == state->dts_necbs + 1); 9298 9299 if (necbs == 0) { 9300 ASSERT(oecbs == NULL); 9301 necbs = 1; 9302 } 9303 9304 ecbs = kmem_zalloc(necbs * sizeof (*ecbs), KM_SLEEP); 9305 9306 if (oecbs != NULL) 9307 bcopy(oecbs, ecbs, state->dts_necbs * sizeof (*ecbs)); 9308 9309 dtrace_membar_producer(); 9310 state->dts_ecbs = ecbs; 9311 9312 if (oecbs != NULL) { 9313 /* 9314 * If this state is active, we must dtrace_sync() 9315 * before we can free the old dts_ecbs array: we're 9316 * coming in hot, and there may be active ring 9317 * buffer processing (which indexes into the dts_ecbs 9318 * array) on another CPU. 9319 */ 9320 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) 9321 dtrace_sync(); 9322 9323 kmem_free(oecbs, state->dts_necbs * sizeof (*ecbs)); 9324 } 9325 9326 dtrace_membar_producer(); 9327 state->dts_necbs = necbs; 9328 } 9329 9330 ecb->dte_state = state; 9331 9332 ASSERT(state->dts_ecbs[epid - 1] == NULL); 9333 dtrace_membar_producer(); 9334 state->dts_ecbs[(ecb->dte_epid = epid) - 1] = ecb; 9335 9336 return (ecb); 9337 } 9338 9339 static int 9340 dtrace_ecb_enable(dtrace_ecb_t *ecb) 9341 { 9342 dtrace_probe_t *probe = ecb->dte_probe; 9343 9344 ASSERT(MUTEX_HELD(&cpu_lock)); 9345 ASSERT(MUTEX_HELD(&dtrace_lock)); 9346 ASSERT(ecb->dte_next == NULL); 9347 9348 if (probe == NULL) { 9349 /* 9350 * This is the NULL probe -- there's nothing to do. 9351 */ 9352 return (0); 9353 } 9354 9355 if (probe->dtpr_ecb == NULL) { 9356 dtrace_provider_t *prov = probe->dtpr_provider; 9357 9358 /* 9359 * We're the first ECB on this probe. 9360 */ 9361 probe->dtpr_ecb = probe->dtpr_ecb_last = ecb; 9362 9363 if (ecb->dte_predicate != NULL) 9364 probe->dtpr_predcache = ecb->dte_predicate->dtp_cacheid; 9365 9366 return (prov->dtpv_pops.dtps_enable(prov->dtpv_arg, 9367 probe->dtpr_id, probe->dtpr_arg)); 9368 } else { 9369 /* 9370 * This probe is already active. Swing the last pointer to 9371 * point to the new ECB, and issue a dtrace_sync() to assure 9372 * that all CPUs have seen the change. 9373 */ 9374 ASSERT(probe->dtpr_ecb_last != NULL); 9375 probe->dtpr_ecb_last->dte_next = ecb; 9376 probe->dtpr_ecb_last = ecb; 9377 probe->dtpr_predcache = 0; 9378 9379 dtrace_sync(); 9380 return (0); 9381 } 9382 } 9383 9384 static void 9385 dtrace_ecb_resize(dtrace_ecb_t *ecb) 9386 { 9387 uint32_t maxalign = sizeof (dtrace_epid_t); 9388 uint32_t align = sizeof (uint8_t), offs, diff; 9389 dtrace_action_t *act; 9390 int wastuple = 0; 9391 uint32_t aggbase = UINT32_MAX; 9392 dtrace_state_t *state = ecb->dte_state; 9393 9394 /* 9395 * If we record anything, we always record the epid. (And we always 9396 * record it first.) 9397 */ 9398 offs = sizeof (dtrace_epid_t); 9399 ecb->dte_size = ecb->dte_needed = sizeof (dtrace_epid_t); 9400 9401 for (act = ecb->dte_action; act != NULL; act = act->dta_next) { 9402 dtrace_recdesc_t *rec = &act->dta_rec; 9403 9404 if ((align = rec->dtrd_alignment) > maxalign) 9405 maxalign = align; 9406 9407 if (!wastuple && act->dta_intuple) { 9408 /* 9409 * This is the first record in a tuple. Align the 9410 * offset to be at offset 4 in an 8-byte aligned 9411 * block. 9412 */ 9413 diff = offs + sizeof (dtrace_aggid_t); 9414 9415 if (diff = (diff & (sizeof (uint64_t) - 1))) 9416 offs += sizeof (uint64_t) - diff; 9417 9418 aggbase = offs - sizeof (dtrace_aggid_t); 9419 ASSERT(!(aggbase & (sizeof (uint64_t) - 1))); 9420 } 9421 9422 /*LINTED*/ 9423 if (rec->dtrd_size != 0 && (diff = (offs & (align - 1)))) { 9424 /* 9425 * The current offset is not properly aligned; align it. 9426 */ 9427 offs += align - diff; 9428 } 9429 9430 rec->dtrd_offset = offs; 9431 9432 if (offs + rec->dtrd_size > ecb->dte_needed) { 9433 ecb->dte_needed = offs + rec->dtrd_size; 9434 9435 if (ecb->dte_needed > state->dts_needed) 9436 state->dts_needed = ecb->dte_needed; 9437 } 9438 9439 if (DTRACEACT_ISAGG(act->dta_kind)) { 9440 dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act; 9441 dtrace_action_t *first = agg->dtag_first, *prev; 9442 9443 ASSERT(rec->dtrd_size != 0 && first != NULL); 9444 ASSERT(wastuple); 9445 ASSERT(aggbase != UINT32_MAX); 9446 9447 agg->dtag_base = aggbase; 9448 9449 while ((prev = first->dta_prev) != NULL && 9450 DTRACEACT_ISAGG(prev->dta_kind)) { 9451 agg = (dtrace_aggregation_t *)prev; 9452 first = agg->dtag_first; 9453 } 9454 9455 if (prev != NULL) { 9456 offs = prev->dta_rec.dtrd_offset + 9457 prev->dta_rec.dtrd_size; 9458 } else { 9459 offs = sizeof (dtrace_epid_t); 9460 } 9461 wastuple = 0; 9462 } else { 9463 if (!act->dta_intuple) 9464 ecb->dte_size = offs + rec->dtrd_size; 9465 9466 offs += rec->dtrd_size; 9467 } 9468 9469 wastuple = act->dta_intuple; 9470 } 9471 9472 if ((act = ecb->dte_action) != NULL && 9473 !(act->dta_kind == DTRACEACT_SPECULATE && act->dta_next == NULL) && 9474 ecb->dte_size == sizeof (dtrace_epid_t)) { 9475 /* 9476 * If the size is still sizeof (dtrace_epid_t), then all 9477 * actions store no data; set the size to 0. 9478 */ 9479 ecb->dte_alignment = maxalign; 9480 ecb->dte_size = 0; 9481 9482 /* 9483 * If the needed space is still sizeof (dtrace_epid_t), then 9484 * all actions need no additional space; set the needed 9485 * size to 0. 9486 */ 9487 if (ecb->dte_needed == sizeof (dtrace_epid_t)) 9488 ecb->dte_needed = 0; 9489 9490 return; 9491 } 9492 9493 /* 9494 * Set our alignment, and make sure that the dte_size and dte_needed 9495 * are aligned to the size of an EPID. 9496 */ 9497 ecb->dte_alignment = maxalign; 9498 ecb->dte_size = (ecb->dte_size + (sizeof (dtrace_epid_t) - 1)) & 9499 ~(sizeof (dtrace_epid_t) - 1); 9500 ecb->dte_needed = (ecb->dte_needed + (sizeof (dtrace_epid_t) - 1)) & 9501 ~(sizeof (dtrace_epid_t) - 1); 9502 ASSERT(ecb->dte_size <= ecb->dte_needed); 9503 } 9504 9505 static dtrace_action_t * 9506 dtrace_ecb_aggregation_create(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc) 9507 { 9508 dtrace_aggregation_t *agg; 9509 size_t size = sizeof (uint64_t); 9510 int ntuple = desc->dtad_ntuple; 9511 dtrace_action_t *act; 9512 dtrace_recdesc_t *frec; 9513 dtrace_aggid_t aggid; 9514 dtrace_state_t *state = ecb->dte_state; 9515 9516 agg = kmem_zalloc(sizeof (dtrace_aggregation_t), KM_SLEEP); 9517 agg->dtag_ecb = ecb; 9518 9519 ASSERT(DTRACEACT_ISAGG(desc->dtad_kind)); 9520 9521 switch (desc->dtad_kind) { 9522 case DTRACEAGG_MIN: 9523 agg->dtag_initial = INT64_MAX; 9524 agg->dtag_aggregate = dtrace_aggregate_min; 9525 break; 9526 9527 case DTRACEAGG_MAX: 9528 agg->dtag_initial = INT64_MIN; 9529 agg->dtag_aggregate = dtrace_aggregate_max; 9530 break; 9531 9532 case DTRACEAGG_COUNT: 9533 agg->dtag_aggregate = dtrace_aggregate_count; 9534 break; 9535 9536 case DTRACEAGG_QUANTIZE: 9537 agg->dtag_aggregate = dtrace_aggregate_quantize; 9538 size = (((sizeof (uint64_t) * NBBY) - 1) * 2 + 1) * 9539 sizeof (uint64_t); 9540 break; 9541 9542 case DTRACEAGG_LQUANTIZE: { 9543 uint16_t step = DTRACE_LQUANTIZE_STEP(desc->dtad_arg); 9544 uint16_t levels = DTRACE_LQUANTIZE_LEVELS(desc->dtad_arg); 9545 9546 agg->dtag_initial = desc->dtad_arg; 9547 agg->dtag_aggregate = dtrace_aggregate_lquantize; 9548 9549 if (step == 0 || levels == 0) 9550 goto err; 9551 9552 size = levels * sizeof (uint64_t) + 3 * sizeof (uint64_t); 9553 break; 9554 } 9555 9556 case DTRACEAGG_LLQUANTIZE: { 9557 uint16_t factor = DTRACE_LLQUANTIZE_FACTOR(desc->dtad_arg); 9558 uint16_t low = DTRACE_LLQUANTIZE_LOW(desc->dtad_arg); 9559 uint16_t high = DTRACE_LLQUANTIZE_HIGH(desc->dtad_arg); 9560 uint16_t nsteps = DTRACE_LLQUANTIZE_NSTEP(desc->dtad_arg); 9561 int64_t v; 9562 9563 agg->dtag_initial = desc->dtad_arg; 9564 agg->dtag_aggregate = dtrace_aggregate_llquantize; 9565 9566 if (factor < 2 || low >= high || nsteps < factor) 9567 goto err; 9568 9569 /* 9570 * Now check that the number of steps evenly divides a power 9571 * of the factor. (This assures both integer bucket size and 9572 * linearity within each magnitude.) 9573 */ 9574 for (v = factor; v < nsteps; v *= factor) 9575 continue; 9576 9577 if ((v % nsteps) || (nsteps % factor)) 9578 goto err; 9579 9580 size = (dtrace_aggregate_llquantize_bucket(factor, 9581 low, high, nsteps, INT64_MAX) + 2) * sizeof (uint64_t); 9582 break; 9583 } 9584 9585 case DTRACEAGG_AVG: 9586 agg->dtag_aggregate = dtrace_aggregate_avg; 9587 size = sizeof (uint64_t) * 2; 9588 break; 9589 9590 case DTRACEAGG_STDDEV: 9591 agg->dtag_aggregate = dtrace_aggregate_stddev; 9592 size = sizeof (uint64_t) * 4; 9593 break; 9594 9595 case DTRACEAGG_SUM: 9596 agg->dtag_aggregate = dtrace_aggregate_sum; 9597 break; 9598 9599 default: 9600 goto err; 9601 } 9602 9603 agg->dtag_action.dta_rec.dtrd_size = size; 9604 9605 if (ntuple == 0) 9606 goto err; 9607 9608 /* 9609 * We must make sure that we have enough actions for the n-tuple. 9610 */ 9611 for (act = ecb->dte_action_last; act != NULL; act = act->dta_prev) { 9612 if (DTRACEACT_ISAGG(act->dta_kind)) 9613 break; 9614 9615 if (--ntuple == 0) { 9616 /* 9617 * This is the action with which our n-tuple begins. 9618 */ 9619 agg->dtag_first = act; 9620 goto success; 9621 } 9622 } 9623 9624 /* 9625 * This n-tuple is short by ntuple elements. Return failure. 9626 */ 9627 ASSERT(ntuple != 0); 9628 err: 9629 kmem_free(agg, sizeof (dtrace_aggregation_t)); 9630 return (NULL); 9631 9632 success: 9633 /* 9634 * If the last action in the tuple has a size of zero, it's actually 9635 * an expression argument for the aggregating action. 9636 */ 9637 ASSERT(ecb->dte_action_last != NULL); 9638 act = ecb->dte_action_last; 9639 9640 if (act->dta_kind == DTRACEACT_DIFEXPR) { 9641 ASSERT(act->dta_difo != NULL); 9642 9643 if (act->dta_difo->dtdo_rtype.dtdt_size == 0) 9644 agg->dtag_hasarg = 1; 9645 } 9646 9647 /* 9648 * We need to allocate an id for this aggregation. 9649 */ 9650 aggid = (dtrace_aggid_t)(uintptr_t)vmem_alloc(state->dts_aggid_arena, 1, 9651 VM_BESTFIT | VM_SLEEP); 9652 9653 if (aggid - 1 >= state->dts_naggregations) { 9654 dtrace_aggregation_t **oaggs = state->dts_aggregations; 9655 dtrace_aggregation_t **aggs; 9656 int naggs = state->dts_naggregations << 1; 9657 int onaggs = state->dts_naggregations; 9658 9659 ASSERT(aggid == state->dts_naggregations + 1); 9660 9661 if (naggs == 0) { 9662 ASSERT(oaggs == NULL); 9663 naggs = 1; 9664 } 9665 9666 aggs = kmem_zalloc(naggs * sizeof (*aggs), KM_SLEEP); 9667 9668 if (oaggs != NULL) { 9669 bcopy(oaggs, aggs, onaggs * sizeof (*aggs)); 9670 kmem_free(oaggs, onaggs * sizeof (*aggs)); 9671 } 9672 9673 state->dts_aggregations = aggs; 9674 state->dts_naggregations = naggs; 9675 } 9676 9677 ASSERT(state->dts_aggregations[aggid - 1] == NULL); 9678 state->dts_aggregations[(agg->dtag_id = aggid) - 1] = agg; 9679 9680 frec = &agg->dtag_first->dta_rec; 9681 if (frec->dtrd_alignment < sizeof (dtrace_aggid_t)) 9682 frec->dtrd_alignment = sizeof (dtrace_aggid_t); 9683 9684 for (act = agg->dtag_first; act != NULL; act = act->dta_next) { 9685 ASSERT(!act->dta_intuple); 9686 act->dta_intuple = 1; 9687 } 9688 9689 return (&agg->dtag_action); 9690 } 9691 9692 static void 9693 dtrace_ecb_aggregation_destroy(dtrace_ecb_t *ecb, dtrace_action_t *act) 9694 { 9695 dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act; 9696 dtrace_state_t *state = ecb->dte_state; 9697 dtrace_aggid_t aggid = agg->dtag_id; 9698 9699 ASSERT(DTRACEACT_ISAGG(act->dta_kind)); 9700 vmem_free(state->dts_aggid_arena, (void *)(uintptr_t)aggid, 1); 9701 9702 ASSERT(state->dts_aggregations[aggid - 1] == agg); 9703 state->dts_aggregations[aggid - 1] = NULL; 9704 9705 kmem_free(agg, sizeof (dtrace_aggregation_t)); 9706 } 9707 9708 static int 9709 dtrace_ecb_action_add(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc) 9710 { 9711 dtrace_action_t *action, *last; 9712 dtrace_difo_t *dp = desc->dtad_difo; 9713 uint32_t size = 0, align = sizeof (uint8_t), mask; 9714 uint16_t format = 0; 9715 dtrace_recdesc_t *rec; 9716 dtrace_state_t *state = ecb->dte_state; 9717 dtrace_optval_t *opt = state->dts_options, nframes, strsize; 9718 uint64_t arg = desc->dtad_arg; 9719 9720 ASSERT(MUTEX_HELD(&dtrace_lock)); 9721 ASSERT(ecb->dte_action == NULL || ecb->dte_action->dta_refcnt == 1); 9722 9723 if (DTRACEACT_ISAGG(desc->dtad_kind)) { 9724 /* 9725 * If this is an aggregating action, there must be neither 9726 * a speculate nor a commit on the action chain. 9727 */ 9728 dtrace_action_t *act; 9729 9730 for (act = ecb->dte_action; act != NULL; act = act->dta_next) { 9731 if (act->dta_kind == DTRACEACT_COMMIT) 9732 return (EINVAL); 9733 9734 if (act->dta_kind == DTRACEACT_SPECULATE) 9735 return (EINVAL); 9736 } 9737 9738 action = dtrace_ecb_aggregation_create(ecb, desc); 9739 9740 if (action == NULL) 9741 return (EINVAL); 9742 } else { 9743 if (DTRACEACT_ISDESTRUCTIVE(desc->dtad_kind) || 9744 (desc->dtad_kind == DTRACEACT_DIFEXPR && 9745 dp != NULL && dp->dtdo_destructive)) { 9746 state->dts_destructive = 1; 9747 } 9748 9749 switch (desc->dtad_kind) { 9750 case DTRACEACT_PRINTF: 9751 case DTRACEACT_PRINTA: 9752 case DTRACEACT_SYSTEM: 9753 case DTRACEACT_FREOPEN: 9754 /* 9755 * We know that our arg is a string -- turn it into a 9756 * format. 9757 */ 9758 if (arg == NULL) { 9759 ASSERT(desc->dtad_kind == DTRACEACT_PRINTA); 9760 format = 0; 9761 } else { 9762 ASSERT(arg != NULL); 9763 ASSERT(arg > KERNELBASE); 9764 format = dtrace_format_add(state, 9765 (char *)(uintptr_t)arg); 9766 } 9767 9768 /*FALLTHROUGH*/ 9769 case DTRACEACT_LIBACT: 9770 case DTRACEACT_DIFEXPR: 9771 case DTRACEACT_TRACEMEM: 9772 case DTRACEACT_TRACEMEM_DYNSIZE: 9773 if (dp == NULL) 9774 return (EINVAL); 9775 9776 if ((size = dp->dtdo_rtype.dtdt_size) != 0) 9777 break; 9778 9779 if (dp->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) { 9780 if (!(dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) 9781 return (EINVAL); 9782 9783 size = opt[DTRACEOPT_STRSIZE]; 9784 } 9785 9786 break; 9787 9788 case DTRACEACT_STACK: 9789 if ((nframes = arg) == 0) { 9790 nframes = opt[DTRACEOPT_STACKFRAMES]; 9791 ASSERT(nframes > 0); 9792 arg = nframes; 9793 } 9794 9795 size = nframes * sizeof (pc_t); 9796 break; 9797 9798 case DTRACEACT_JSTACK: 9799 if ((strsize = DTRACE_USTACK_STRSIZE(arg)) == 0) 9800 strsize = opt[DTRACEOPT_JSTACKSTRSIZE]; 9801 9802 if ((nframes = DTRACE_USTACK_NFRAMES(arg)) == 0) 9803 nframes = opt[DTRACEOPT_JSTACKFRAMES]; 9804 9805 arg = DTRACE_USTACK_ARG(nframes, strsize); 9806 9807 /*FALLTHROUGH*/ 9808 case DTRACEACT_USTACK: 9809 if (desc->dtad_kind != DTRACEACT_JSTACK && 9810 (nframes = DTRACE_USTACK_NFRAMES(arg)) == 0) { 9811 strsize = DTRACE_USTACK_STRSIZE(arg); 9812 nframes = opt[DTRACEOPT_USTACKFRAMES]; 9813 ASSERT(nframes > 0); 9814 arg = DTRACE_USTACK_ARG(nframes, strsize); 9815 } 9816 9817 /* 9818 * Save a slot for the pid. 9819 */ 9820 size = (nframes + 1) * sizeof (uint64_t); 9821 size += DTRACE_USTACK_STRSIZE(arg); 9822 size = P2ROUNDUP(size, (uint32_t)(sizeof (uintptr_t))); 9823 9824 break; 9825 9826 case DTRACEACT_SYM: 9827 case DTRACEACT_MOD: 9828 if (dp == NULL || ((size = dp->dtdo_rtype.dtdt_size) != 9829 sizeof (uint64_t)) || 9830 (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) 9831 return (EINVAL); 9832 break; 9833 9834 case DTRACEACT_USYM: 9835 case DTRACEACT_UMOD: 9836 case DTRACEACT_UADDR: 9837 if (dp == NULL || 9838 (dp->dtdo_rtype.dtdt_size != sizeof (uint64_t)) || 9839 (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) 9840 return (EINVAL); 9841 9842 /* 9843 * We have a slot for the pid, plus a slot for the 9844 * argument. To keep things simple (aligned with 9845 * bitness-neutral sizing), we store each as a 64-bit 9846 * quantity. 9847 */ 9848 size = 2 * sizeof (uint64_t); 9849 break; 9850 9851 case DTRACEACT_STOP: 9852 case DTRACEACT_BREAKPOINT: 9853 case DTRACEACT_PANIC: 9854 break; 9855 9856 case DTRACEACT_CHILL: 9857 case DTRACEACT_DISCARD: 9858 case DTRACEACT_RAISE: 9859 if (dp == NULL) 9860 return (EINVAL); 9861 break; 9862 9863 case DTRACEACT_EXIT: 9864 if (dp == NULL || 9865 (size = dp->dtdo_rtype.dtdt_size) != sizeof (int) || 9866 (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) 9867 return (EINVAL); 9868 break; 9869 9870 case DTRACEACT_SPECULATE: 9871 if (ecb->dte_size > sizeof (dtrace_epid_t)) 9872 return (EINVAL); 9873 9874 if (dp == NULL) 9875 return (EINVAL); 9876 9877 state->dts_speculates = 1; 9878 break; 9879 9880 case DTRACEACT_COMMIT: { 9881 dtrace_action_t *act = ecb->dte_action; 9882 9883 for (; act != NULL; act = act->dta_next) { 9884 if (act->dta_kind == DTRACEACT_COMMIT) 9885 return (EINVAL); 9886 } 9887 9888 if (dp == NULL) 9889 return (EINVAL); 9890 break; 9891 } 9892 9893 default: 9894 return (EINVAL); 9895 } 9896 9897 if (size != 0 || desc->dtad_kind == DTRACEACT_SPECULATE) { 9898 /* 9899 * If this is a data-storing action or a speculate, 9900 * we must be sure that there isn't a commit on the 9901 * action chain. 9902 */ 9903 dtrace_action_t *act = ecb->dte_action; 9904 9905 for (; act != NULL; act = act->dta_next) { 9906 if (act->dta_kind == DTRACEACT_COMMIT) 9907 return (EINVAL); 9908 } 9909 } 9910 9911 action = kmem_zalloc(sizeof (dtrace_action_t), KM_SLEEP); 9912 action->dta_rec.dtrd_size = size; 9913 } 9914 9915 action->dta_refcnt = 1; 9916 rec = &action->dta_rec; 9917 size = rec->dtrd_size; 9918 9919 for (mask = sizeof (uint64_t) - 1; size != 0 && mask > 0; mask >>= 1) { 9920 if (!(size & mask)) { 9921 align = mask + 1; 9922 break; 9923 } 9924 } 9925 9926 action->dta_kind = desc->dtad_kind; 9927 9928 if ((action->dta_difo = dp) != NULL) 9929 dtrace_difo_hold(dp); 9930 9931 rec->dtrd_action = action->dta_kind; 9932 rec->dtrd_arg = arg; 9933 rec->dtrd_uarg = desc->dtad_uarg; 9934 rec->dtrd_alignment = (uint16_t)align; 9935 rec->dtrd_format = format; 9936 9937 if ((last = ecb->dte_action_last) != NULL) { 9938 ASSERT(ecb->dte_action != NULL); 9939 action->dta_prev = last; 9940 last->dta_next = action; 9941 } else { 9942 ASSERT(ecb->dte_action == NULL); 9943 ecb->dte_action = action; 9944 } 9945 9946 ecb->dte_action_last = action; 9947 9948 return (0); 9949 } 9950 9951 static void 9952 dtrace_ecb_action_remove(dtrace_ecb_t *ecb) 9953 { 9954 dtrace_action_t *act = ecb->dte_action, *next; 9955 dtrace_vstate_t *vstate = &ecb->dte_state->dts_vstate; 9956 dtrace_difo_t *dp; 9957 uint16_t format; 9958 9959 if (act != NULL && act->dta_refcnt > 1) { 9960 ASSERT(act->dta_next == NULL || act->dta_next->dta_refcnt == 1); 9961 act->dta_refcnt--; 9962 } else { 9963 for (; act != NULL; act = next) { 9964 next = act->dta_next; 9965 ASSERT(next != NULL || act == ecb->dte_action_last); 9966 ASSERT(act->dta_refcnt == 1); 9967 9968 if ((format = act->dta_rec.dtrd_format) != 0) 9969 dtrace_format_remove(ecb->dte_state, format); 9970 9971 if ((dp = act->dta_difo) != NULL) 9972 dtrace_difo_release(dp, vstate); 9973 9974 if (DTRACEACT_ISAGG(act->dta_kind)) { 9975 dtrace_ecb_aggregation_destroy(ecb, act); 9976 } else { 9977 kmem_free(act, sizeof (dtrace_action_t)); 9978 } 9979 } 9980 } 9981 9982 ecb->dte_action = NULL; 9983 ecb->dte_action_last = NULL; 9984 ecb->dte_size = sizeof (dtrace_epid_t); 9985 } 9986 9987 static void 9988 dtrace_ecb_disable(dtrace_ecb_t *ecb) 9989 { 9990 /* 9991 * We disable the ECB by removing it from its probe. 9992 */ 9993 dtrace_ecb_t *pecb, *prev = NULL; 9994 dtrace_probe_t *probe = ecb->dte_probe; 9995 9996 ASSERT(MUTEX_HELD(&dtrace_lock)); 9997 9998 if (probe == NULL) { 9999 /* 10000 * This is the NULL probe; there is nothing to disable. 10001 */ 10002 return; 10003 } 10004 10005 for (pecb = probe->dtpr_ecb; pecb != NULL; pecb = pecb->dte_next) { 10006 if (pecb == ecb) 10007 break; 10008 prev = pecb; 10009 } 10010 10011 ASSERT(pecb != NULL); 10012 10013 if (prev == NULL) { 10014 probe->dtpr_ecb = ecb->dte_next; 10015 } else { 10016 prev->dte_next = ecb->dte_next; 10017 } 10018 10019 if (ecb == probe->dtpr_ecb_last) { 10020 ASSERT(ecb->dte_next == NULL); 10021 probe->dtpr_ecb_last = prev; 10022 } 10023 10024 /* 10025 * The ECB has been disconnected from the probe; now sync to assure 10026 * that all CPUs have seen the change before returning. 10027 */ 10028 dtrace_sync(); 10029 10030 if (probe->dtpr_ecb == NULL) { 10031 /* 10032 * That was the last ECB on the probe; clear the predicate 10033 * cache ID for the probe, disable it and sync one more time 10034 * to assure that we'll never hit it again. 10035 */ 10036 dtrace_provider_t *prov = probe->dtpr_provider; 10037 10038 ASSERT(ecb->dte_next == NULL); 10039 ASSERT(probe->dtpr_ecb_last == NULL); 10040 probe->dtpr_predcache = DTRACE_CACHEIDNONE; 10041 prov->dtpv_pops.dtps_disable(prov->dtpv_arg, 10042 probe->dtpr_id, probe->dtpr_arg); 10043 dtrace_sync(); 10044 } else { 10045 /* 10046 * There is at least one ECB remaining on the probe. If there 10047 * is _exactly_ one, set the probe's predicate cache ID to be 10048 * the predicate cache ID of the remaining ECB. 10049 */ 10050 ASSERT(probe->dtpr_ecb_last != NULL); 10051 ASSERT(probe->dtpr_predcache == DTRACE_CACHEIDNONE); 10052 10053 if (probe->dtpr_ecb == probe->dtpr_ecb_last) { 10054 dtrace_predicate_t *p = probe->dtpr_ecb->dte_predicate; 10055 10056 ASSERT(probe->dtpr_ecb->dte_next == NULL); 10057 10058 if (p != NULL) 10059 probe->dtpr_predcache = p->dtp_cacheid; 10060 } 10061 10062 ecb->dte_next = NULL; 10063 } 10064 } 10065 10066 static void 10067 dtrace_ecb_destroy(dtrace_ecb_t *ecb) 10068 { 10069 dtrace_state_t *state = ecb->dte_state; 10070 dtrace_vstate_t *vstate = &state->dts_vstate; 10071 dtrace_predicate_t *pred; 10072 dtrace_epid_t epid = ecb->dte_epid; 10073 10074 ASSERT(MUTEX_HELD(&dtrace_lock)); 10075 ASSERT(ecb->dte_next == NULL); 10076 ASSERT(ecb->dte_probe == NULL || ecb->dte_probe->dtpr_ecb != ecb); 10077 10078 if ((pred = ecb->dte_predicate) != NULL) 10079 dtrace_predicate_release(pred, vstate); 10080 10081 dtrace_ecb_action_remove(ecb); 10082 10083 ASSERT(state->dts_ecbs[epid - 1] == ecb); 10084 state->dts_ecbs[epid - 1] = NULL; 10085 10086 kmem_free(ecb, sizeof (dtrace_ecb_t)); 10087 } 10088 10089 static dtrace_ecb_t * 10090 dtrace_ecb_create(dtrace_state_t *state, dtrace_probe_t *probe, 10091 dtrace_enabling_t *enab) 10092 { 10093 dtrace_ecb_t *ecb; 10094 dtrace_predicate_t *pred; 10095 dtrace_actdesc_t *act; 10096 dtrace_provider_t *prov; 10097 dtrace_ecbdesc_t *desc = enab->dten_current; 10098 10099 ASSERT(MUTEX_HELD(&dtrace_lock)); 10100 ASSERT(state != NULL); 10101 10102 ecb = dtrace_ecb_add(state, probe); 10103 ecb->dte_uarg = desc->dted_uarg; 10104 10105 if ((pred = desc->dted_pred.dtpdd_predicate) != NULL) { 10106 dtrace_predicate_hold(pred); 10107 ecb->dte_predicate = pred; 10108 } 10109 10110 if (probe != NULL) { 10111 /* 10112 * If the provider shows more leg than the consumer is old 10113 * enough to see, we need to enable the appropriate implicit 10114 * predicate bits to prevent the ecb from activating at 10115 * revealing times. 10116 * 10117 * Providers specifying DTRACE_PRIV_USER at register time 10118 * are stating that they need the /proc-style privilege 10119 * model to be enforced, and this is what DTRACE_COND_OWNER 10120 * and DTRACE_COND_ZONEOWNER will then do at probe time. 10121 */ 10122 prov = probe->dtpr_provider; 10123 if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLPROC) && 10124 (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER)) 10125 ecb->dte_cond |= DTRACE_COND_OWNER; 10126 10127 if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLZONE) && 10128 (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER)) 10129 ecb->dte_cond |= DTRACE_COND_ZONEOWNER; 10130 10131 /* 10132 * If the provider shows us kernel innards and the user 10133 * is lacking sufficient privilege, enable the 10134 * DTRACE_COND_USERMODE implicit predicate. 10135 */ 10136 if (!(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) && 10137 (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_KERNEL)) 10138 ecb->dte_cond |= DTRACE_COND_USERMODE; 10139 } 10140 10141 if (dtrace_ecb_create_cache != NULL) { 10142 /* 10143 * If we have a cached ecb, we'll use its action list instead 10144 * of creating our own (saving both time and space). 10145 */ 10146 dtrace_ecb_t *cached = dtrace_ecb_create_cache; 10147 dtrace_action_t *act = cached->dte_action; 10148 10149 if (act != NULL) { 10150 ASSERT(act->dta_refcnt > 0); 10151 act->dta_refcnt++; 10152 ecb->dte_action = act; 10153 ecb->dte_action_last = cached->dte_action_last; 10154 ecb->dte_needed = cached->dte_needed; 10155 ecb->dte_size = cached->dte_size; 10156 ecb->dte_alignment = cached->dte_alignment; 10157 } 10158 10159 return (ecb); 10160 } 10161 10162 for (act = desc->dted_action; act != NULL; act = act->dtad_next) { 10163 if ((enab->dten_error = dtrace_ecb_action_add(ecb, act)) != 0) { 10164 dtrace_ecb_destroy(ecb); 10165 return (NULL); 10166 } 10167 } 10168 10169 dtrace_ecb_resize(ecb); 10170 10171 return (dtrace_ecb_create_cache = ecb); 10172 } 10173 10174 static int 10175 dtrace_ecb_create_enable(dtrace_probe_t *probe, void *arg) 10176 { 10177 dtrace_ecb_t *ecb; 10178 dtrace_enabling_t *enab = arg; 10179 dtrace_state_t *state = enab->dten_vstate->dtvs_state; 10180 10181 ASSERT(state != NULL); 10182 10183 if (probe != NULL && probe->dtpr_gen < enab->dten_probegen) { 10184 /* 10185 * This probe was created in a generation for which this 10186 * enabling has previously created ECBs; we don't want to 10187 * enable it again, so just kick out. 10188 */ 10189 return (DTRACE_MATCH_NEXT); 10190 } 10191 10192 if ((ecb = dtrace_ecb_create(state, probe, enab)) == NULL) 10193 return (DTRACE_MATCH_DONE); 10194 10195 if (dtrace_ecb_enable(ecb) < 0) 10196 return (DTRACE_MATCH_FAIL); 10197 10198 return (DTRACE_MATCH_NEXT); 10199 } 10200 10201 static dtrace_ecb_t * 10202 dtrace_epid2ecb(dtrace_state_t *state, dtrace_epid_t id) 10203 { 10204 dtrace_ecb_t *ecb; 10205 10206 ASSERT(MUTEX_HELD(&dtrace_lock)); 10207 10208 if (id == 0 || id > state->dts_necbs) 10209 return (NULL); 10210 10211 ASSERT(state->dts_necbs > 0 && state->dts_ecbs != NULL); 10212 ASSERT((ecb = state->dts_ecbs[id - 1]) == NULL || ecb->dte_epid == id); 10213 10214 return (state->dts_ecbs[id - 1]); 10215 } 10216 10217 static dtrace_aggregation_t * 10218 dtrace_aggid2agg(dtrace_state_t *state, dtrace_aggid_t id) 10219 { 10220 dtrace_aggregation_t *agg; 10221 10222 ASSERT(MUTEX_HELD(&dtrace_lock)); 10223 10224 if (id == 0 || id > state->dts_naggregations) 10225 return (NULL); 10226 10227 ASSERT(state->dts_naggregations > 0 && state->dts_aggregations != NULL); 10228 ASSERT((agg = state->dts_aggregations[id - 1]) == NULL || 10229 agg->dtag_id == id); 10230 10231 return (state->dts_aggregations[id - 1]); 10232 } 10233 10234 /* 10235 * DTrace Buffer Functions 10236 * 10237 * The following functions manipulate DTrace buffers. Most of these functions 10238 * are called in the context of establishing or processing consumer state; 10239 * exceptions are explicitly noted. 10240 */ 10241 10242 /* 10243 * Note: called from cross call context. This function switches the two 10244 * buffers on a given CPU. The atomicity of this operation is assured by 10245 * disabling interrupts while the actual switch takes place; the disabling of 10246 * interrupts serializes the execution with any execution of dtrace_probe() on 10247 * the same CPU. 10248 */ 10249 static void 10250 dtrace_buffer_switch(dtrace_buffer_t *buf) 10251 { 10252 caddr_t tomax = buf->dtb_tomax; 10253 caddr_t xamot = buf->dtb_xamot; 10254 dtrace_icookie_t cookie; 10255 hrtime_t now = dtrace_gethrtime(); 10256 10257 ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH)); 10258 ASSERT(!(buf->dtb_flags & DTRACEBUF_RING)); 10259 10260 cookie = dtrace_interrupt_disable(); 10261 buf->dtb_tomax = xamot; 10262 buf->dtb_xamot = tomax; 10263 buf->dtb_xamot_drops = buf->dtb_drops; 10264 buf->dtb_xamot_offset = buf->dtb_offset; 10265 buf->dtb_xamot_errors = buf->dtb_errors; 10266 buf->dtb_xamot_flags = buf->dtb_flags; 10267 buf->dtb_offset = 0; 10268 buf->dtb_drops = 0; 10269 buf->dtb_errors = 0; 10270 buf->dtb_flags &= ~(DTRACEBUF_ERROR | DTRACEBUF_DROPPED); 10271 buf->dtb_interval = now - buf->dtb_switched; 10272 buf->dtb_switched = now; 10273 dtrace_interrupt_enable(cookie); 10274 } 10275 10276 /* 10277 * Note: called from cross call context. This function activates a buffer 10278 * on a CPU. As with dtrace_buffer_switch(), the atomicity of the operation 10279 * is guaranteed by the disabling of interrupts. 10280 */ 10281 static void 10282 dtrace_buffer_activate(dtrace_state_t *state) 10283 { 10284 dtrace_buffer_t *buf; 10285 dtrace_icookie_t cookie = dtrace_interrupt_disable(); 10286 10287 buf = &state->dts_buffer[CPU->cpu_id]; 10288 10289 if (buf->dtb_tomax != NULL) { 10290 /* 10291 * We might like to assert that the buffer is marked inactive, 10292 * but this isn't necessarily true: the buffer for the CPU 10293 * that processes the BEGIN probe has its buffer activated 10294 * manually. In this case, we take the (harmless) action 10295 * re-clearing the bit INACTIVE bit. 10296 */ 10297 buf->dtb_flags &= ~DTRACEBUF_INACTIVE; 10298 } 10299 10300 dtrace_interrupt_enable(cookie); 10301 } 10302 10303 static int 10304 dtrace_buffer_alloc(dtrace_buffer_t *bufs, size_t size, int flags, 10305 processorid_t cpu, int *factor) 10306 { 10307 cpu_t *cp; 10308 dtrace_buffer_t *buf; 10309 int allocated = 0, desired = 0; 10310 10311 ASSERT(MUTEX_HELD(&cpu_lock)); 10312 ASSERT(MUTEX_HELD(&dtrace_lock)); 10313 10314 *factor = 1; 10315 10316 if (size > dtrace_nonroot_maxsize && 10317 !PRIV_POLICY_CHOICE(CRED(), PRIV_ALL, B_FALSE)) 10318 return (EFBIG); 10319 10320 cp = cpu_list; 10321 10322 do { 10323 if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id) 10324 continue; 10325 10326 buf = &bufs[cp->cpu_id]; 10327 10328 /* 10329 * If there is already a buffer allocated for this CPU, it 10330 * is only possible that this is a DR event. In this case, 10331 * the buffer size must match our specified size. 10332 */ 10333 if (buf->dtb_tomax != NULL) { 10334 ASSERT(buf->dtb_size == size); 10335 continue; 10336 } 10337 10338 ASSERT(buf->dtb_xamot == NULL); 10339 10340 if ((buf->dtb_tomax = kmem_zalloc(size, 10341 KM_NOSLEEP | KM_NORMALPRI)) == NULL) 10342 goto err; 10343 10344 buf->dtb_size = size; 10345 buf->dtb_flags = flags; 10346 buf->dtb_offset = 0; 10347 buf->dtb_drops = 0; 10348 10349 if (flags & DTRACEBUF_NOSWITCH) 10350 continue; 10351 10352 if ((buf->dtb_xamot = kmem_zalloc(size, 10353 KM_NOSLEEP | KM_NORMALPRI)) == NULL) 10354 goto err; 10355 } while ((cp = cp->cpu_next) != cpu_list); 10356 10357 return (0); 10358 10359 err: 10360 cp = cpu_list; 10361 10362 do { 10363 if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id) 10364 continue; 10365 10366 buf = &bufs[cp->cpu_id]; 10367 desired += 2; 10368 10369 if (buf->dtb_xamot != NULL) { 10370 ASSERT(buf->dtb_tomax != NULL); 10371 ASSERT(buf->dtb_size == size); 10372 kmem_free(buf->dtb_xamot, size); 10373 allocated++; 10374 } 10375 10376 if (buf->dtb_tomax != NULL) { 10377 ASSERT(buf->dtb_size == size); 10378 kmem_free(buf->dtb_tomax, size); 10379 allocated++; 10380 } 10381 10382 buf->dtb_tomax = NULL; 10383 buf->dtb_xamot = NULL; 10384 buf->dtb_size = 0; 10385 } while ((cp = cp->cpu_next) != cpu_list); 10386 10387 *factor = desired / (allocated > 0 ? allocated : 1); 10388 10389 return (ENOMEM); 10390 } 10391 10392 /* 10393 * Note: called from probe context. This function just increments the drop 10394 * count on a buffer. It has been made a function to allow for the 10395 * possibility of understanding the source of mysterious drop counts. (A 10396 * problem for which one may be particularly disappointed that DTrace cannot 10397 * be used to understand DTrace.) 10398 */ 10399 static void 10400 dtrace_buffer_drop(dtrace_buffer_t *buf) 10401 { 10402 buf->dtb_drops++; 10403 } 10404 10405 /* 10406 * Note: called from probe context. This function is called to reserve space 10407 * in a buffer. If mstate is non-NULL, sets the scratch base and size in the 10408 * mstate. Returns the new offset in the buffer, or a negative value if an 10409 * error has occurred. 10410 */ 10411 static intptr_t 10412 dtrace_buffer_reserve(dtrace_buffer_t *buf, size_t needed, size_t align, 10413 dtrace_state_t *state, dtrace_mstate_t *mstate) 10414 { 10415 intptr_t offs = buf->dtb_offset, soffs; 10416 intptr_t woffs; 10417 caddr_t tomax; 10418 size_t total; 10419 10420 if (buf->dtb_flags & DTRACEBUF_INACTIVE) 10421 return (-1); 10422 10423 if ((tomax = buf->dtb_tomax) == NULL) { 10424 dtrace_buffer_drop(buf); 10425 return (-1); 10426 } 10427 10428 if (!(buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL))) { 10429 while (offs & (align - 1)) { 10430 /* 10431 * Assert that our alignment is off by a number which 10432 * is itself sizeof (uint32_t) aligned. 10433 */ 10434 ASSERT(!((align - (offs & (align - 1))) & 10435 (sizeof (uint32_t) - 1))); 10436 DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE); 10437 offs += sizeof (uint32_t); 10438 } 10439 10440 if ((soffs = offs + needed) > buf->dtb_size) { 10441 dtrace_buffer_drop(buf); 10442 return (-1); 10443 } 10444 10445 if (mstate == NULL) 10446 return (offs); 10447 10448 mstate->dtms_scratch_base = (uintptr_t)tomax + soffs; 10449 mstate->dtms_scratch_size = buf->dtb_size - soffs; 10450 mstate->dtms_scratch_ptr = mstate->dtms_scratch_base; 10451 10452 return (offs); 10453 } 10454 10455 if (buf->dtb_flags & DTRACEBUF_FILL) { 10456 if (state->dts_activity != DTRACE_ACTIVITY_COOLDOWN && 10457 (buf->dtb_flags & DTRACEBUF_FULL)) 10458 return (-1); 10459 goto out; 10460 } 10461 10462 total = needed + (offs & (align - 1)); 10463 10464 /* 10465 * For a ring buffer, life is quite a bit more complicated. Before 10466 * we can store any padding, we need to adjust our wrapping offset. 10467 * (If we've never before wrapped or we're not about to, no adjustment 10468 * is required.) 10469 */ 10470 if ((buf->dtb_flags & DTRACEBUF_WRAPPED) || 10471 offs + total > buf->dtb_size) { 10472 woffs = buf->dtb_xamot_offset; 10473 10474 if (offs + total > buf->dtb_size) { 10475 /* 10476 * We can't fit in the end of the buffer. First, a 10477 * sanity check that we can fit in the buffer at all. 10478 */ 10479 if (total > buf->dtb_size) { 10480 dtrace_buffer_drop(buf); 10481 return (-1); 10482 } 10483 10484 /* 10485 * We're going to be storing at the top of the buffer, 10486 * so now we need to deal with the wrapped offset. We 10487 * only reset our wrapped offset to 0 if it is 10488 * currently greater than the current offset. If it 10489 * is less than the current offset, it is because a 10490 * previous allocation induced a wrap -- but the 10491 * allocation didn't subsequently take the space due 10492 * to an error or false predicate evaluation. In this 10493 * case, we'll just leave the wrapped offset alone: if 10494 * the wrapped offset hasn't been advanced far enough 10495 * for this allocation, it will be adjusted in the 10496 * lower loop. 10497 */ 10498 if (buf->dtb_flags & DTRACEBUF_WRAPPED) { 10499 if (woffs >= offs) 10500 woffs = 0; 10501 } else { 10502 woffs = 0; 10503 } 10504 10505 /* 10506 * Now we know that we're going to be storing to the 10507 * top of the buffer and that there is room for us 10508 * there. We need to clear the buffer from the current 10509 * offset to the end (there may be old gunk there). 10510 */ 10511 while (offs < buf->dtb_size) 10512 tomax[offs++] = 0; 10513 10514 /* 10515 * We need to set our offset to zero. And because we 10516 * are wrapping, we need to set the bit indicating as 10517 * much. We can also adjust our needed space back 10518 * down to the space required by the ECB -- we know 10519 * that the top of the buffer is aligned. 10520 */ 10521 offs = 0; 10522 total = needed; 10523 buf->dtb_flags |= DTRACEBUF_WRAPPED; 10524 } else { 10525 /* 10526 * There is room for us in the buffer, so we simply 10527 * need to check the wrapped offset. 10528 */ 10529 if (woffs < offs) { 10530 /* 10531 * The wrapped offset is less than the offset. 10532 * This can happen if we allocated buffer space 10533 * that induced a wrap, but then we didn't 10534 * subsequently take the space due to an error 10535 * or false predicate evaluation. This is 10536 * okay; we know that _this_ allocation isn't 10537 * going to induce a wrap. We still can't 10538 * reset the wrapped offset to be zero, 10539 * however: the space may have been trashed in 10540 * the previous failed probe attempt. But at 10541 * least the wrapped offset doesn't need to 10542 * be adjusted at all... 10543 */ 10544 goto out; 10545 } 10546 } 10547 10548 while (offs + total > woffs) { 10549 dtrace_epid_t epid = *(uint32_t *)(tomax + woffs); 10550 size_t size; 10551 10552 if (epid == DTRACE_EPIDNONE) { 10553 size = sizeof (uint32_t); 10554 } else { 10555 ASSERT(epid <= state->dts_necbs); 10556 ASSERT(state->dts_ecbs[epid - 1] != NULL); 10557 10558 size = state->dts_ecbs[epid - 1]->dte_size; 10559 } 10560 10561 ASSERT(woffs + size <= buf->dtb_size); 10562 ASSERT(size != 0); 10563 10564 if (woffs + size == buf->dtb_size) { 10565 /* 10566 * We've reached the end of the buffer; we want 10567 * to set the wrapped offset to 0 and break 10568 * out. However, if the offs is 0, then we're 10569 * in a strange edge-condition: the amount of 10570 * space that we want to reserve plus the size 10571 * of the record that we're overwriting is 10572 * greater than the size of the buffer. This 10573 * is problematic because if we reserve the 10574 * space but subsequently don't consume it (due 10575 * to a failed predicate or error) the wrapped 10576 * offset will be 0 -- yet the EPID at offset 0 10577 * will not be committed. This situation is 10578 * relatively easy to deal with: if we're in 10579 * this case, the buffer is indistinguishable 10580 * from one that hasn't wrapped; we need only 10581 * finish the job by clearing the wrapped bit, 10582 * explicitly setting the offset to be 0, and 10583 * zero'ing out the old data in the buffer. 10584 */ 10585 if (offs == 0) { 10586 buf->dtb_flags &= ~DTRACEBUF_WRAPPED; 10587 buf->dtb_offset = 0; 10588 woffs = total; 10589 10590 while (woffs < buf->dtb_size) 10591 tomax[woffs++] = 0; 10592 } 10593 10594 woffs = 0; 10595 break; 10596 } 10597 10598 woffs += size; 10599 } 10600 10601 /* 10602 * We have a wrapped offset. It may be that the wrapped offset 10603 * has become zero -- that's okay. 10604 */ 10605 buf->dtb_xamot_offset = woffs; 10606 } 10607 10608 out: 10609 /* 10610 * Now we can plow the buffer with any necessary padding. 10611 */ 10612 while (offs & (align - 1)) { 10613 /* 10614 * Assert that our alignment is off by a number which 10615 * is itself sizeof (uint32_t) aligned. 10616 */ 10617 ASSERT(!((align - (offs & (align - 1))) & 10618 (sizeof (uint32_t) - 1))); 10619 DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE); 10620 offs += sizeof (uint32_t); 10621 } 10622 10623 if (buf->dtb_flags & DTRACEBUF_FILL) { 10624 if (offs + needed > buf->dtb_size - state->dts_reserve) { 10625 buf->dtb_flags |= DTRACEBUF_FULL; 10626 return (-1); 10627 } 10628 } 10629 10630 if (mstate == NULL) 10631 return (offs); 10632 10633 /* 10634 * For ring buffers and fill buffers, the scratch space is always 10635 * the inactive buffer. 10636 */ 10637 mstate->dtms_scratch_base = (uintptr_t)buf->dtb_xamot; 10638 mstate->dtms_scratch_size = buf->dtb_size; 10639 mstate->dtms_scratch_ptr = mstate->dtms_scratch_base; 10640 10641 return (offs); 10642 } 10643 10644 static void 10645 dtrace_buffer_polish(dtrace_buffer_t *buf) 10646 { 10647 ASSERT(buf->dtb_flags & DTRACEBUF_RING); 10648 ASSERT(MUTEX_HELD(&dtrace_lock)); 10649 10650 if (!(buf->dtb_flags & DTRACEBUF_WRAPPED)) 10651 return; 10652 10653 /* 10654 * We need to polish the ring buffer. There are three cases: 10655 * 10656 * - The first (and presumably most common) is that there is no gap 10657 * between the buffer offset and the wrapped offset. In this case, 10658 * there is nothing in the buffer that isn't valid data; we can 10659 * mark the buffer as polished and return. 10660 * 10661 * - The second (less common than the first but still more common 10662 * than the third) is that there is a gap between the buffer offset 10663 * and the wrapped offset, and the wrapped offset is larger than the 10664 * buffer offset. This can happen because of an alignment issue, or 10665 * can happen because of a call to dtrace_buffer_reserve() that 10666 * didn't subsequently consume the buffer space. In this case, 10667 * we need to zero the data from the buffer offset to the wrapped 10668 * offset. 10669 * 10670 * - The third (and least common) is that there is a gap between the 10671 * buffer offset and the wrapped offset, but the wrapped offset is 10672 * _less_ than the buffer offset. This can only happen because a 10673 * call to dtrace_buffer_reserve() induced a wrap, but the space 10674 * was not subsequently consumed. In this case, we need to zero the 10675 * space from the offset to the end of the buffer _and_ from the 10676 * top of the buffer to the wrapped offset. 10677 */ 10678 if (buf->dtb_offset < buf->dtb_xamot_offset) { 10679 bzero(buf->dtb_tomax + buf->dtb_offset, 10680 buf->dtb_xamot_offset - buf->dtb_offset); 10681 } 10682 10683 if (buf->dtb_offset > buf->dtb_xamot_offset) { 10684 bzero(buf->dtb_tomax + buf->dtb_offset, 10685 buf->dtb_size - buf->dtb_offset); 10686 bzero(buf->dtb_tomax, buf->dtb_xamot_offset); 10687 } 10688 } 10689 10690 /* 10691 * This routine determines if data generated at the specified time has likely 10692 * been entirely consumed at user-level. This routine is called to determine 10693 * if an ECB on a defunct probe (but for an active enabling) can be safely 10694 * disabled and destroyed. 10695 */ 10696 static int 10697 dtrace_buffer_consumed(dtrace_buffer_t *bufs, hrtime_t when) 10698 { 10699 int i; 10700 10701 for (i = 0; i < NCPU; i++) { 10702 dtrace_buffer_t *buf = &bufs[i]; 10703 10704 if (buf->dtb_size == 0) 10705 continue; 10706 10707 if (buf->dtb_flags & DTRACEBUF_RING) 10708 return (0); 10709 10710 if (!buf->dtb_switched && buf->dtb_offset != 0) 10711 return (0); 10712 10713 if (buf->dtb_switched - buf->dtb_interval < when) 10714 return (0); 10715 } 10716 10717 return (1); 10718 } 10719 10720 static void 10721 dtrace_buffer_free(dtrace_buffer_t *bufs) 10722 { 10723 int i; 10724 10725 for (i = 0; i < NCPU; i++) { 10726 dtrace_buffer_t *buf = &bufs[i]; 10727 10728 if (buf->dtb_tomax == NULL) { 10729 ASSERT(buf->dtb_xamot == NULL); 10730 ASSERT(buf->dtb_size == 0); 10731 continue; 10732 } 10733 10734 if (buf->dtb_xamot != NULL) { 10735 ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH)); 10736 kmem_free(buf->dtb_xamot, buf->dtb_size); 10737 } 10738 10739 kmem_free(buf->dtb_tomax, buf->dtb_size); 10740 buf->dtb_size = 0; 10741 buf->dtb_tomax = NULL; 10742 buf->dtb_xamot = NULL; 10743 } 10744 } 10745 10746 /* 10747 * DTrace Enabling Functions 10748 */ 10749 static dtrace_enabling_t * 10750 dtrace_enabling_create(dtrace_vstate_t *vstate) 10751 { 10752 dtrace_enabling_t *enab; 10753 10754 enab = kmem_zalloc(sizeof (dtrace_enabling_t), KM_SLEEP); 10755 enab->dten_vstate = vstate; 10756 10757 return (enab); 10758 } 10759 10760 static void 10761 dtrace_enabling_add(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb) 10762 { 10763 dtrace_ecbdesc_t **ndesc; 10764 size_t osize, nsize; 10765 10766 /* 10767 * We can't add to enablings after we've enabled them, or after we've 10768 * retained them. 10769 */ 10770 ASSERT(enab->dten_probegen == 0); 10771 ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL); 10772 10773 if (enab->dten_ndesc < enab->dten_maxdesc) { 10774 enab->dten_desc[enab->dten_ndesc++] = ecb; 10775 return; 10776 } 10777 10778 osize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *); 10779 10780 if (enab->dten_maxdesc == 0) { 10781 enab->dten_maxdesc = 1; 10782 } else { 10783 enab->dten_maxdesc <<= 1; 10784 } 10785 10786 ASSERT(enab->dten_ndesc < enab->dten_maxdesc); 10787 10788 nsize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *); 10789 ndesc = kmem_zalloc(nsize, KM_SLEEP); 10790 bcopy(enab->dten_desc, ndesc, osize); 10791 kmem_free(enab->dten_desc, osize); 10792 10793 enab->dten_desc = ndesc; 10794 enab->dten_desc[enab->dten_ndesc++] = ecb; 10795 } 10796 10797 static void 10798 dtrace_enabling_addlike(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb, 10799 dtrace_probedesc_t *pd) 10800 { 10801 dtrace_ecbdesc_t *new; 10802 dtrace_predicate_t *pred; 10803 dtrace_actdesc_t *act; 10804 10805 /* 10806 * We're going to create a new ECB description that matches the 10807 * specified ECB in every way, but has the specified probe description. 10808 */ 10809 new = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP); 10810 10811 if ((pred = ecb->dted_pred.dtpdd_predicate) != NULL) 10812 dtrace_predicate_hold(pred); 10813 10814 for (act = ecb->dted_action; act != NULL; act = act->dtad_next) 10815 dtrace_actdesc_hold(act); 10816 10817 new->dted_action = ecb->dted_action; 10818 new->dted_pred = ecb->dted_pred; 10819 new->dted_probe = *pd; 10820 new->dted_uarg = ecb->dted_uarg; 10821 10822 dtrace_enabling_add(enab, new); 10823 } 10824 10825 static void 10826 dtrace_enabling_dump(dtrace_enabling_t *enab) 10827 { 10828 int i; 10829 10830 for (i = 0; i < enab->dten_ndesc; i++) { 10831 dtrace_probedesc_t *desc = &enab->dten_desc[i]->dted_probe; 10832 10833 cmn_err(CE_NOTE, "enabling probe %d (%s:%s:%s:%s)", i, 10834 desc->dtpd_provider, desc->dtpd_mod, 10835 desc->dtpd_func, desc->dtpd_name); 10836 } 10837 } 10838 10839 static void 10840 dtrace_enabling_destroy(dtrace_enabling_t *enab) 10841 { 10842 int i; 10843 dtrace_ecbdesc_t *ep; 10844 dtrace_vstate_t *vstate = enab->dten_vstate; 10845 10846 ASSERT(MUTEX_HELD(&dtrace_lock)); 10847 10848 for (i = 0; i < enab->dten_ndesc; i++) { 10849 dtrace_actdesc_t *act, *next; 10850 dtrace_predicate_t *pred; 10851 10852 ep = enab->dten_desc[i]; 10853 10854 if ((pred = ep->dted_pred.dtpdd_predicate) != NULL) 10855 dtrace_predicate_release(pred, vstate); 10856 10857 for (act = ep->dted_action; act != NULL; act = next) { 10858 next = act->dtad_next; 10859 dtrace_actdesc_release(act, vstate); 10860 } 10861 10862 kmem_free(ep, sizeof (dtrace_ecbdesc_t)); 10863 } 10864 10865 kmem_free(enab->dten_desc, 10866 enab->dten_maxdesc * sizeof (dtrace_enabling_t *)); 10867 10868 /* 10869 * If this was a retained enabling, decrement the dts_nretained count 10870 * and take it off of the dtrace_retained list. 10871 */ 10872 if (enab->dten_prev != NULL || enab->dten_next != NULL || 10873 dtrace_retained == enab) { 10874 ASSERT(enab->dten_vstate->dtvs_state != NULL); 10875 ASSERT(enab->dten_vstate->dtvs_state->dts_nretained > 0); 10876 enab->dten_vstate->dtvs_state->dts_nretained--; 10877 dtrace_retained_gen++; 10878 } 10879 10880 if (enab->dten_prev == NULL) { 10881 if (dtrace_retained == enab) { 10882 dtrace_retained = enab->dten_next; 10883 10884 if (dtrace_retained != NULL) 10885 dtrace_retained->dten_prev = NULL; 10886 } 10887 } else { 10888 ASSERT(enab != dtrace_retained); 10889 ASSERT(dtrace_retained != NULL); 10890 enab->dten_prev->dten_next = enab->dten_next; 10891 } 10892 10893 if (enab->dten_next != NULL) { 10894 ASSERT(dtrace_retained != NULL); 10895 enab->dten_next->dten_prev = enab->dten_prev; 10896 } 10897 10898 kmem_free(enab, sizeof (dtrace_enabling_t)); 10899 } 10900 10901 static int 10902 dtrace_enabling_retain(dtrace_enabling_t *enab) 10903 { 10904 dtrace_state_t *state; 10905 10906 ASSERT(MUTEX_HELD(&dtrace_lock)); 10907 ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL); 10908 ASSERT(enab->dten_vstate != NULL); 10909 10910 state = enab->dten_vstate->dtvs_state; 10911 ASSERT(state != NULL); 10912 10913 /* 10914 * We only allow each state to retain dtrace_retain_max enablings. 10915 */ 10916 if (state->dts_nretained >= dtrace_retain_max) 10917 return (ENOSPC); 10918 10919 state->dts_nretained++; 10920 dtrace_retained_gen++; 10921 10922 if (dtrace_retained == NULL) { 10923 dtrace_retained = enab; 10924 return (0); 10925 } 10926 10927 enab->dten_next = dtrace_retained; 10928 dtrace_retained->dten_prev = enab; 10929 dtrace_retained = enab; 10930 10931 return (0); 10932 } 10933 10934 static int 10935 dtrace_enabling_replicate(dtrace_state_t *state, dtrace_probedesc_t *match, 10936 dtrace_probedesc_t *create) 10937 { 10938 dtrace_enabling_t *new, *enab; 10939 int found = 0, err = ENOENT; 10940 10941 ASSERT(MUTEX_HELD(&dtrace_lock)); 10942 ASSERT(strlen(match->dtpd_provider) < DTRACE_PROVNAMELEN); 10943 ASSERT(strlen(match->dtpd_mod) < DTRACE_MODNAMELEN); 10944 ASSERT(strlen(match->dtpd_func) < DTRACE_FUNCNAMELEN); 10945 ASSERT(strlen(match->dtpd_name) < DTRACE_NAMELEN); 10946 10947 new = dtrace_enabling_create(&state->dts_vstate); 10948 10949 /* 10950 * Iterate over all retained enablings, looking for enablings that 10951 * match the specified state. 10952 */ 10953 for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) { 10954 int i; 10955 10956 /* 10957 * dtvs_state can only be NULL for helper enablings -- and 10958 * helper enablings can't be retained. 10959 */ 10960 ASSERT(enab->dten_vstate->dtvs_state != NULL); 10961 10962 if (enab->dten_vstate->dtvs_state != state) 10963 continue; 10964 10965 /* 10966 * Now iterate over each probe description; we're looking for 10967 * an exact match to the specified probe description. 10968 */ 10969 for (i = 0; i < enab->dten_ndesc; i++) { 10970 dtrace_ecbdesc_t *ep = enab->dten_desc[i]; 10971 dtrace_probedesc_t *pd = &ep->dted_probe; 10972 10973 if (strcmp(pd->dtpd_provider, match->dtpd_provider)) 10974 continue; 10975 10976 if (strcmp(pd->dtpd_mod, match->dtpd_mod)) 10977 continue; 10978 10979 if (strcmp(pd->dtpd_func, match->dtpd_func)) 10980 continue; 10981 10982 if (strcmp(pd->dtpd_name, match->dtpd_name)) 10983 continue; 10984 10985 /* 10986 * We have a winning probe! Add it to our growing 10987 * enabling. 10988 */ 10989 found = 1; 10990 dtrace_enabling_addlike(new, ep, create); 10991 } 10992 } 10993 10994 if (!found || (err = dtrace_enabling_retain(new)) != 0) { 10995 dtrace_enabling_destroy(new); 10996 return (err); 10997 } 10998 10999 return (0); 11000 } 11001 11002 static void 11003 dtrace_enabling_retract(dtrace_state_t *state) 11004 { 11005 dtrace_enabling_t *enab, *next; 11006 11007 ASSERT(MUTEX_HELD(&dtrace_lock)); 11008 11009 /* 11010 * Iterate over all retained enablings, destroy the enablings retained 11011 * for the specified state. 11012 */ 11013 for (enab = dtrace_retained; enab != NULL; enab = next) { 11014 next = enab->dten_next; 11015 11016 /* 11017 * dtvs_state can only be NULL for helper enablings -- and 11018 * helper enablings can't be retained. 11019 */ 11020 ASSERT(enab->dten_vstate->dtvs_state != NULL); 11021 11022 if (enab->dten_vstate->dtvs_state == state) { 11023 ASSERT(state->dts_nretained > 0); 11024 dtrace_enabling_destroy(enab); 11025 } 11026 } 11027 11028 ASSERT(state->dts_nretained == 0); 11029 } 11030 11031 static int 11032 dtrace_enabling_match(dtrace_enabling_t *enab, int *nmatched) 11033 { 11034 int i = 0; 11035 int total_matched = 0, matched = 0; 11036 11037 ASSERT(MUTEX_HELD(&cpu_lock)); 11038 ASSERT(MUTEX_HELD(&dtrace_lock)); 11039 11040 for (i = 0; i < enab->dten_ndesc; i++) { 11041 dtrace_ecbdesc_t *ep = enab->dten_desc[i]; 11042 11043 enab->dten_current = ep; 11044 enab->dten_error = 0; 11045 11046 /* 11047 * If a provider failed to enable a probe then get out and 11048 * let the consumer know we failed. 11049 */ 11050 if ((matched = dtrace_probe_enable(&ep->dted_probe, enab)) < 0) 11051 return (EBUSY); 11052 11053 total_matched += matched; 11054 11055 if (enab->dten_error != 0) { 11056 /* 11057 * If we get an error half-way through enabling the 11058 * probes, we kick out -- perhaps with some number of 11059 * them enabled. Leaving enabled probes enabled may 11060 * be slightly confusing for user-level, but we expect 11061 * that no one will attempt to actually drive on in 11062 * the face of such errors. If this is an anonymous 11063 * enabling (indicated with a NULL nmatched pointer), 11064 * we cmn_err() a message. We aren't expecting to 11065 * get such an error -- such as it can exist at all, 11066 * it would be a result of corrupted DOF in the driver 11067 * properties. 11068 */ 11069 if (nmatched == NULL) { 11070 cmn_err(CE_WARN, "dtrace_enabling_match() " 11071 "error on %p: %d", (void *)ep, 11072 enab->dten_error); 11073 } 11074 11075 return (enab->dten_error); 11076 } 11077 } 11078 11079 enab->dten_probegen = dtrace_probegen; 11080 if (nmatched != NULL) 11081 *nmatched = total_matched; 11082 11083 return (0); 11084 } 11085 11086 static void 11087 dtrace_enabling_matchall(void) 11088 { 11089 dtrace_enabling_t *enab; 11090 11091 mutex_enter(&cpu_lock); 11092 mutex_enter(&dtrace_lock); 11093 11094 /* 11095 * Iterate over all retained enablings to see if any probes match 11096 * against them. We only perform this operation on enablings for which 11097 * we have sufficient permissions by virtue of being in the global zone 11098 * or in the same zone as the DTrace client. Because we can be called 11099 * after dtrace_detach() has been called, we cannot assert that there 11100 * are retained enablings. We can safely load from dtrace_retained, 11101 * however: the taskq_destroy() at the end of dtrace_detach() will 11102 * block pending our completion. 11103 */ 11104 for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) { 11105 dtrace_cred_t *dcr = &enab->dten_vstate->dtvs_state->dts_cred; 11106 cred_t *cr = dcr->dcr_cred; 11107 zoneid_t zone = cr != NULL ? crgetzoneid(cr) : 0; 11108 11109 if ((dcr->dcr_visible & DTRACE_CRV_ALLZONE) || (cr != NULL && 11110 (zone == GLOBAL_ZONEID || getzoneid() == zone))) 11111 (void) dtrace_enabling_match(enab, NULL); 11112 } 11113 11114 mutex_exit(&dtrace_lock); 11115 mutex_exit(&cpu_lock); 11116 } 11117 11118 /* 11119 * If an enabling is to be enabled without having matched probes (that is, if 11120 * dtrace_state_go() is to be called on the underlying dtrace_state_t), the 11121 * enabling must be _primed_ by creating an ECB for every ECB description. 11122 * This must be done to assure that we know the number of speculations, the 11123 * number of aggregations, the minimum buffer size needed, etc. before we 11124 * transition out of DTRACE_ACTIVITY_INACTIVE. To do this without actually 11125 * enabling any probes, we create ECBs for every ECB decription, but with a 11126 * NULL probe -- which is exactly what this function does. 11127 */ 11128 static void 11129 dtrace_enabling_prime(dtrace_state_t *state) 11130 { 11131 dtrace_enabling_t *enab; 11132 int i; 11133 11134 for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) { 11135 ASSERT(enab->dten_vstate->dtvs_state != NULL); 11136 11137 if (enab->dten_vstate->dtvs_state != state) 11138 continue; 11139 11140 /* 11141 * We don't want to prime an enabling more than once, lest 11142 * we allow a malicious user to induce resource exhaustion. 11143 * (The ECBs that result from priming an enabling aren't 11144 * leaked -- but they also aren't deallocated until the 11145 * consumer state is destroyed.) 11146 */ 11147 if (enab->dten_primed) 11148 continue; 11149 11150 for (i = 0; i < enab->dten_ndesc; i++) { 11151 enab->dten_current = enab->dten_desc[i]; 11152 (void) dtrace_probe_enable(NULL, enab); 11153 } 11154 11155 enab->dten_primed = 1; 11156 } 11157 } 11158 11159 /* 11160 * Called to indicate that probes should be provided due to retained 11161 * enablings. This is implemented in terms of dtrace_probe_provide(), but it 11162 * must take an initial lap through the enabling calling the dtps_provide() 11163 * entry point explicitly to allow for autocreated probes. 11164 */ 11165 static void 11166 dtrace_enabling_provide(dtrace_provider_t *prv) 11167 { 11168 int i, all = 0; 11169 dtrace_probedesc_t desc; 11170 dtrace_genid_t gen; 11171 11172 ASSERT(MUTEX_HELD(&dtrace_lock)); 11173 ASSERT(MUTEX_HELD(&dtrace_provider_lock)); 11174 11175 if (prv == NULL) { 11176 all = 1; 11177 prv = dtrace_provider; 11178 } 11179 11180 do { 11181 dtrace_enabling_t *enab; 11182 void *parg = prv->dtpv_arg; 11183 11184 retry: 11185 gen = dtrace_retained_gen; 11186 for (enab = dtrace_retained; enab != NULL; 11187 enab = enab->dten_next) { 11188 for (i = 0; i < enab->dten_ndesc; i++) { 11189 desc = enab->dten_desc[i]->dted_probe; 11190 mutex_exit(&dtrace_lock); 11191 prv->dtpv_pops.dtps_provide(parg, &desc); 11192 mutex_enter(&dtrace_lock); 11193 /* 11194 * Process the retained enablings again if 11195 * they have changed while we weren't holding 11196 * dtrace_lock. 11197 */ 11198 if (gen != dtrace_retained_gen) 11199 goto retry; 11200 } 11201 } 11202 } while (all && (prv = prv->dtpv_next) != NULL); 11203 11204 mutex_exit(&dtrace_lock); 11205 dtrace_probe_provide(NULL, all ? NULL : prv); 11206 mutex_enter(&dtrace_lock); 11207 } 11208 11209 /* 11210 * Called to reap ECBs that are attached to probes from defunct providers. 11211 */ 11212 static void 11213 dtrace_enabling_reap(void) 11214 { 11215 dtrace_provider_t *prov; 11216 dtrace_probe_t *probe; 11217 dtrace_ecb_t *ecb; 11218 hrtime_t when; 11219 int i; 11220 11221 mutex_enter(&cpu_lock); 11222 mutex_enter(&dtrace_lock); 11223 11224 for (i = 0; i < dtrace_nprobes; i++) { 11225 if ((probe = dtrace_probes[i]) == NULL) 11226 continue; 11227 11228 if (probe->dtpr_ecb == NULL) 11229 continue; 11230 11231 prov = probe->dtpr_provider; 11232 11233 if ((when = prov->dtpv_defunct) == 0) 11234 continue; 11235 11236 /* 11237 * We have ECBs on a defunct provider: we want to reap these 11238 * ECBs to allow the provider to unregister. The destruction 11239 * of these ECBs must be done carefully: if we destroy the ECB 11240 * and the consumer later wishes to consume an EPID that 11241 * corresponds to the destroyed ECB (and if the EPID metadata 11242 * has not been previously consumed), the consumer will abort 11243 * processing on the unknown EPID. To reduce (but not, sadly, 11244 * eliminate) the possibility of this, we will only destroy an 11245 * ECB for a defunct provider if, for the state that 11246 * corresponds to the ECB: 11247 * 11248 * (a) There is no speculative tracing (which can effectively 11249 * cache an EPID for an arbitrary amount of time). 11250 * 11251 * (b) The principal buffers have been switched twice since the 11252 * provider became defunct. 11253 * 11254 * (c) The aggregation buffers are of zero size or have been 11255 * switched twice since the provider became defunct. 11256 * 11257 * We use dts_speculates to determine (a) and call a function 11258 * (dtrace_buffer_consumed()) to determine (b) and (c). Note 11259 * that as soon as we've been unable to destroy one of the ECBs 11260 * associated with the probe, we quit trying -- reaping is only 11261 * fruitful in as much as we can destroy all ECBs associated 11262 * with the defunct provider's probes. 11263 */ 11264 while ((ecb = probe->dtpr_ecb) != NULL) { 11265 dtrace_state_t *state = ecb->dte_state; 11266 dtrace_buffer_t *buf = state->dts_buffer; 11267 dtrace_buffer_t *aggbuf = state->dts_aggbuffer; 11268 11269 if (state->dts_speculates) 11270 break; 11271 11272 if (!dtrace_buffer_consumed(buf, when)) 11273 break; 11274 11275 if (!dtrace_buffer_consumed(aggbuf, when)) 11276 break; 11277 11278 dtrace_ecb_disable(ecb); 11279 ASSERT(probe->dtpr_ecb != ecb); 11280 dtrace_ecb_destroy(ecb); 11281 } 11282 } 11283 11284 mutex_exit(&dtrace_lock); 11285 mutex_exit(&cpu_lock); 11286 } 11287 11288 /* 11289 * DTrace DOF Functions 11290 */ 11291 /*ARGSUSED*/ 11292 static void 11293 dtrace_dof_error(dof_hdr_t *dof, const char *str) 11294 { 11295 if (dtrace_err_verbose) 11296 cmn_err(CE_WARN, "failed to process DOF: %s", str); 11297 11298 #ifdef DTRACE_ERRDEBUG 11299 dtrace_errdebug(str); 11300 #endif 11301 } 11302 11303 /* 11304 * Create DOF out of a currently enabled state. Right now, we only create 11305 * DOF containing the run-time options -- but this could be expanded to create 11306 * complete DOF representing the enabled state. 11307 */ 11308 static dof_hdr_t * 11309 dtrace_dof_create(dtrace_state_t *state) 11310 { 11311 dof_hdr_t *dof; 11312 dof_sec_t *sec; 11313 dof_optdesc_t *opt; 11314 int i, len = sizeof (dof_hdr_t) + 11315 roundup(sizeof (dof_sec_t), sizeof (uint64_t)) + 11316 sizeof (dof_optdesc_t) * DTRACEOPT_MAX; 11317 11318 ASSERT(MUTEX_HELD(&dtrace_lock)); 11319 11320 dof = kmem_zalloc(len, KM_SLEEP); 11321 dof->dofh_ident[DOF_ID_MAG0] = DOF_MAG_MAG0; 11322 dof->dofh_ident[DOF_ID_MAG1] = DOF_MAG_MAG1; 11323 dof->dofh_ident[DOF_ID_MAG2] = DOF_MAG_MAG2; 11324 dof->dofh_ident[DOF_ID_MAG3] = DOF_MAG_MAG3; 11325 11326 dof->dofh_ident[DOF_ID_MODEL] = DOF_MODEL_NATIVE; 11327 dof->dofh_ident[DOF_ID_ENCODING] = DOF_ENCODE_NATIVE; 11328 dof->dofh_ident[DOF_ID_VERSION] = DOF_VERSION; 11329 dof->dofh_ident[DOF_ID_DIFVERS] = DIF_VERSION; 11330 dof->dofh_ident[DOF_ID_DIFIREG] = DIF_DIR_NREGS; 11331 dof->dofh_ident[DOF_ID_DIFTREG] = DIF_DTR_NREGS; 11332 11333 dof->dofh_flags = 0; 11334 dof->dofh_hdrsize = sizeof (dof_hdr_t); 11335 dof->dofh_secsize = sizeof (dof_sec_t); 11336 dof->dofh_secnum = 1; /* only DOF_SECT_OPTDESC */ 11337 dof->dofh_secoff = sizeof (dof_hdr_t); 11338 dof->dofh_loadsz = len; 11339 dof->dofh_filesz = len; 11340 dof->dofh_pad = 0; 11341 11342 /* 11343 * Fill in the option section header... 11344 */ 11345 sec = (dof_sec_t *)((uintptr_t)dof + sizeof (dof_hdr_t)); 11346 sec->dofs_type = DOF_SECT_OPTDESC; 11347 sec->dofs_align = sizeof (uint64_t); 11348 sec->dofs_flags = DOF_SECF_LOAD; 11349 sec->dofs_entsize = sizeof (dof_optdesc_t); 11350 11351 opt = (dof_optdesc_t *)((uintptr_t)sec + 11352 roundup(sizeof (dof_sec_t), sizeof (uint64_t))); 11353 11354 sec->dofs_offset = (uintptr_t)opt - (uintptr_t)dof; 11355 sec->dofs_size = sizeof (dof_optdesc_t) * DTRACEOPT_MAX; 11356 11357 for (i = 0; i < DTRACEOPT_MAX; i++) { 11358 opt[i].dofo_option = i; 11359 opt[i].dofo_strtab = DOF_SECIDX_NONE; 11360 opt[i].dofo_value = state->dts_options[i]; 11361 } 11362 11363 return (dof); 11364 } 11365 11366 static dof_hdr_t * 11367 dtrace_dof_copyin(uintptr_t uarg, int *errp) 11368 { 11369 dof_hdr_t hdr, *dof; 11370 11371 ASSERT(!MUTEX_HELD(&dtrace_lock)); 11372 11373 /* 11374 * First, we're going to copyin() the sizeof (dof_hdr_t). 11375 */ 11376 if (copyin((void *)uarg, &hdr, sizeof (hdr)) != 0) { 11377 dtrace_dof_error(NULL, "failed to copyin DOF header"); 11378 *errp = EFAULT; 11379 return (NULL); 11380 } 11381 11382 /* 11383 * Now we'll allocate the entire DOF and copy it in -- provided 11384 * that the length isn't outrageous. 11385 */ 11386 if (hdr.dofh_loadsz >= dtrace_dof_maxsize) { 11387 dtrace_dof_error(&hdr, "load size exceeds maximum"); 11388 *errp = E2BIG; 11389 return (NULL); 11390 } 11391 11392 if (hdr.dofh_loadsz < sizeof (hdr)) { 11393 dtrace_dof_error(&hdr, "invalid load size"); 11394 *errp = EINVAL; 11395 return (NULL); 11396 } 11397 11398 dof = kmem_alloc(hdr.dofh_loadsz, KM_SLEEP); 11399 11400 if (copyin((void *)uarg, dof, hdr.dofh_loadsz) != 0 || 11401 dof->dofh_loadsz != hdr.dofh_loadsz) { 11402 kmem_free(dof, hdr.dofh_loadsz); 11403 *errp = EFAULT; 11404 return (NULL); 11405 } 11406 11407 return (dof); 11408 } 11409 11410 static dof_hdr_t * 11411 dtrace_dof_property(const char *name) 11412 { 11413 uchar_t *buf; 11414 uint64_t loadsz; 11415 unsigned int len, i; 11416 dof_hdr_t *dof; 11417 11418 /* 11419 * Unfortunately, array of values in .conf files are always (and 11420 * only) interpreted to be integer arrays. We must read our DOF 11421 * as an integer array, and then squeeze it into a byte array. 11422 */ 11423 if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, dtrace_devi, 0, 11424 (char *)name, (int **)&buf, &len) != DDI_PROP_SUCCESS) 11425 return (NULL); 11426 11427 for (i = 0; i < len; i++) 11428 buf[i] = (uchar_t)(((int *)buf)[i]); 11429 11430 if (len < sizeof (dof_hdr_t)) { 11431 ddi_prop_free(buf); 11432 dtrace_dof_error(NULL, "truncated header"); 11433 return (NULL); 11434 } 11435 11436 if (len < (loadsz = ((dof_hdr_t *)buf)->dofh_loadsz)) { 11437 ddi_prop_free(buf); 11438 dtrace_dof_error(NULL, "truncated DOF"); 11439 return (NULL); 11440 } 11441 11442 if (loadsz >= dtrace_dof_maxsize) { 11443 ddi_prop_free(buf); 11444 dtrace_dof_error(NULL, "oversized DOF"); 11445 return (NULL); 11446 } 11447 11448 dof = kmem_alloc(loadsz, KM_SLEEP); 11449 bcopy(buf, dof, loadsz); 11450 ddi_prop_free(buf); 11451 11452 return (dof); 11453 } 11454 11455 static void 11456 dtrace_dof_destroy(dof_hdr_t *dof) 11457 { 11458 kmem_free(dof, dof->dofh_loadsz); 11459 } 11460 11461 /* 11462 * Return the dof_sec_t pointer corresponding to a given section index. If the 11463 * index is not valid, dtrace_dof_error() is called and NULL is returned. If 11464 * a type other than DOF_SECT_NONE is specified, the header is checked against 11465 * this type and NULL is returned if the types do not match. 11466 */ 11467 static dof_sec_t * 11468 dtrace_dof_sect(dof_hdr_t *dof, uint32_t type, dof_secidx_t i) 11469 { 11470 dof_sec_t *sec = (dof_sec_t *)(uintptr_t) 11471 ((uintptr_t)dof + dof->dofh_secoff + i * dof->dofh_secsize); 11472 11473 if (i >= dof->dofh_secnum) { 11474 dtrace_dof_error(dof, "referenced section index is invalid"); 11475 return (NULL); 11476 } 11477 11478 if (!(sec->dofs_flags & DOF_SECF_LOAD)) { 11479 dtrace_dof_error(dof, "referenced section is not loadable"); 11480 return (NULL); 11481 } 11482 11483 if (type != DOF_SECT_NONE && type != sec->dofs_type) { 11484 dtrace_dof_error(dof, "referenced section is the wrong type"); 11485 return (NULL); 11486 } 11487 11488 return (sec); 11489 } 11490 11491 static dtrace_probedesc_t * 11492 dtrace_dof_probedesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_probedesc_t *desc) 11493 { 11494 dof_probedesc_t *probe; 11495 dof_sec_t *strtab; 11496 uintptr_t daddr = (uintptr_t)dof; 11497 uintptr_t str; 11498 size_t size; 11499 11500 if (sec->dofs_type != DOF_SECT_PROBEDESC) { 11501 dtrace_dof_error(dof, "invalid probe section"); 11502 return (NULL); 11503 } 11504 11505 if (sec->dofs_align != sizeof (dof_secidx_t)) { 11506 dtrace_dof_error(dof, "bad alignment in probe description"); 11507 return (NULL); 11508 } 11509 11510 if (sec->dofs_offset + sizeof (dof_probedesc_t) > dof->dofh_loadsz) { 11511 dtrace_dof_error(dof, "truncated probe description"); 11512 return (NULL); 11513 } 11514 11515 probe = (dof_probedesc_t *)(uintptr_t)(daddr + sec->dofs_offset); 11516 strtab = dtrace_dof_sect(dof, DOF_SECT_STRTAB, probe->dofp_strtab); 11517 11518 if (strtab == NULL) 11519 return (NULL); 11520 11521 str = daddr + strtab->dofs_offset; 11522 size = strtab->dofs_size; 11523 11524 if (probe->dofp_provider >= strtab->dofs_size) { 11525 dtrace_dof_error(dof, "corrupt probe provider"); 11526 return (NULL); 11527 } 11528 11529 (void) strncpy(desc->dtpd_provider, 11530 (char *)(str + probe->dofp_provider), 11531 MIN(DTRACE_PROVNAMELEN - 1, size - probe->dofp_provider)); 11532 11533 if (probe->dofp_mod >= strtab->dofs_size) { 11534 dtrace_dof_error(dof, "corrupt probe module"); 11535 return (NULL); 11536 } 11537 11538 (void) strncpy(desc->dtpd_mod, (char *)(str + probe->dofp_mod), 11539 MIN(DTRACE_MODNAMELEN - 1, size - probe->dofp_mod)); 11540 11541 if (probe->dofp_func >= strtab->dofs_size) { 11542 dtrace_dof_error(dof, "corrupt probe function"); 11543 return (NULL); 11544 } 11545 11546 (void) strncpy(desc->dtpd_func, (char *)(str + probe->dofp_func), 11547 MIN(DTRACE_FUNCNAMELEN - 1, size - probe->dofp_func)); 11548 11549 if (probe->dofp_name >= strtab->dofs_size) { 11550 dtrace_dof_error(dof, "corrupt probe name"); 11551 return (NULL); 11552 } 11553 11554 (void) strncpy(desc->dtpd_name, (char *)(str + probe->dofp_name), 11555 MIN(DTRACE_NAMELEN - 1, size - probe->dofp_name)); 11556 11557 return (desc); 11558 } 11559 11560 static dtrace_difo_t * 11561 dtrace_dof_difo(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate, 11562 cred_t *cr) 11563 { 11564 dtrace_difo_t *dp; 11565 size_t ttl = 0; 11566 dof_difohdr_t *dofd; 11567 uintptr_t daddr = (uintptr_t)dof; 11568 size_t max = dtrace_difo_maxsize; 11569 int i, l, n; 11570 11571 static const struct { 11572 int section; 11573 int bufoffs; 11574 int lenoffs; 11575 int entsize; 11576 int align; 11577 const char *msg; 11578 } difo[] = { 11579 { DOF_SECT_DIF, offsetof(dtrace_difo_t, dtdo_buf), 11580 offsetof(dtrace_difo_t, dtdo_len), sizeof (dif_instr_t), 11581 sizeof (dif_instr_t), "multiple DIF sections" }, 11582 11583 { DOF_SECT_INTTAB, offsetof(dtrace_difo_t, dtdo_inttab), 11584 offsetof(dtrace_difo_t, dtdo_intlen), sizeof (uint64_t), 11585 sizeof (uint64_t), "multiple integer tables" }, 11586 11587 { DOF_SECT_STRTAB, offsetof(dtrace_difo_t, dtdo_strtab), 11588 offsetof(dtrace_difo_t, dtdo_strlen), 0, 11589 sizeof (char), "multiple string tables" }, 11590 11591 { DOF_SECT_VARTAB, offsetof(dtrace_difo_t, dtdo_vartab), 11592 offsetof(dtrace_difo_t, dtdo_varlen), sizeof (dtrace_difv_t), 11593 sizeof (uint_t), "multiple variable tables" }, 11594 11595 { DOF_SECT_NONE, 0, 0, 0, NULL } 11596 }; 11597 11598 if (sec->dofs_type != DOF_SECT_DIFOHDR) { 11599 dtrace_dof_error(dof, "invalid DIFO header section"); 11600 return (NULL); 11601 } 11602 11603 if (sec->dofs_align != sizeof (dof_secidx_t)) { 11604 dtrace_dof_error(dof, "bad alignment in DIFO header"); 11605 return (NULL); 11606 } 11607 11608 if (sec->dofs_size < sizeof (dof_difohdr_t) || 11609 sec->dofs_size % sizeof (dof_secidx_t)) { 11610 dtrace_dof_error(dof, "bad size in DIFO header"); 11611 return (NULL); 11612 } 11613 11614 dofd = (dof_difohdr_t *)(uintptr_t)(daddr + sec->dofs_offset); 11615 n = (sec->dofs_size - sizeof (*dofd)) / sizeof (dof_secidx_t) + 1; 11616 11617 dp = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP); 11618 dp->dtdo_rtype = dofd->dofd_rtype; 11619 11620 for (l = 0; l < n; l++) { 11621 dof_sec_t *subsec; 11622 void **bufp; 11623 uint32_t *lenp; 11624 11625 if ((subsec = dtrace_dof_sect(dof, DOF_SECT_NONE, 11626 dofd->dofd_links[l])) == NULL) 11627 goto err; /* invalid section link */ 11628 11629 if (ttl + subsec->dofs_size > max) { 11630 dtrace_dof_error(dof, "exceeds maximum size"); 11631 goto err; 11632 } 11633 11634 ttl += subsec->dofs_size; 11635 11636 for (i = 0; difo[i].section != DOF_SECT_NONE; i++) { 11637 if (subsec->dofs_type != difo[i].section) 11638 continue; 11639 11640 if (!(subsec->dofs_flags & DOF_SECF_LOAD)) { 11641 dtrace_dof_error(dof, "section not loaded"); 11642 goto err; 11643 } 11644 11645 if (subsec->dofs_align != difo[i].align) { 11646 dtrace_dof_error(dof, "bad alignment"); 11647 goto err; 11648 } 11649 11650 bufp = (void **)((uintptr_t)dp + difo[i].bufoffs); 11651 lenp = (uint32_t *)((uintptr_t)dp + difo[i].lenoffs); 11652 11653 if (*bufp != NULL) { 11654 dtrace_dof_error(dof, difo[i].msg); 11655 goto err; 11656 } 11657 11658 if (difo[i].entsize != subsec->dofs_entsize) { 11659 dtrace_dof_error(dof, "entry size mismatch"); 11660 goto err; 11661 } 11662 11663 if (subsec->dofs_entsize != 0 && 11664 (subsec->dofs_size % subsec->dofs_entsize) != 0) { 11665 dtrace_dof_error(dof, "corrupt entry size"); 11666 goto err; 11667 } 11668 11669 *lenp = subsec->dofs_size; 11670 *bufp = kmem_alloc(subsec->dofs_size, KM_SLEEP); 11671 bcopy((char *)(uintptr_t)(daddr + subsec->dofs_offset), 11672 *bufp, subsec->dofs_size); 11673 11674 if (subsec->dofs_entsize != 0) 11675 *lenp /= subsec->dofs_entsize; 11676 11677 break; 11678 } 11679 11680 /* 11681 * If we encounter a loadable DIFO sub-section that is not 11682 * known to us, assume this is a broken program and fail. 11683 */ 11684 if (difo[i].section == DOF_SECT_NONE && 11685 (subsec->dofs_flags & DOF_SECF_LOAD)) { 11686 dtrace_dof_error(dof, "unrecognized DIFO subsection"); 11687 goto err; 11688 } 11689 } 11690 11691 if (dp->dtdo_buf == NULL) { 11692 /* 11693 * We can't have a DIF object without DIF text. 11694 */ 11695 dtrace_dof_error(dof, "missing DIF text"); 11696 goto err; 11697 } 11698 11699 /* 11700 * Before we validate the DIF object, run through the variable table 11701 * looking for the strings -- if any of their size are under, we'll set 11702 * their size to be the system-wide default string size. Note that 11703 * this should _not_ happen if the "strsize" option has been set -- 11704 * in this case, the compiler should have set the size to reflect the 11705 * setting of the option. 11706 */ 11707 for (i = 0; i < dp->dtdo_varlen; i++) { 11708 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 11709 dtrace_diftype_t *t = &v->dtdv_type; 11710 11711 if (v->dtdv_id < DIF_VAR_OTHER_UBASE) 11712 continue; 11713 11714 if (t->dtdt_kind == DIF_TYPE_STRING && t->dtdt_size == 0) 11715 t->dtdt_size = dtrace_strsize_default; 11716 } 11717 11718 if (dtrace_difo_validate(dp, vstate, DIF_DIR_NREGS, cr) != 0) 11719 goto err; 11720 11721 dtrace_difo_init(dp, vstate); 11722 return (dp); 11723 11724 err: 11725 kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t)); 11726 kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t)); 11727 kmem_free(dp->dtdo_strtab, dp->dtdo_strlen); 11728 kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t)); 11729 11730 kmem_free(dp, sizeof (dtrace_difo_t)); 11731 return (NULL); 11732 } 11733 11734 static dtrace_predicate_t * 11735 dtrace_dof_predicate(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate, 11736 cred_t *cr) 11737 { 11738 dtrace_difo_t *dp; 11739 11740 if ((dp = dtrace_dof_difo(dof, sec, vstate, cr)) == NULL) 11741 return (NULL); 11742 11743 return (dtrace_predicate_create(dp)); 11744 } 11745 11746 static dtrace_actdesc_t * 11747 dtrace_dof_actdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate, 11748 cred_t *cr) 11749 { 11750 dtrace_actdesc_t *act, *first = NULL, *last = NULL, *next; 11751 dof_actdesc_t *desc; 11752 dof_sec_t *difosec; 11753 size_t offs; 11754 uintptr_t daddr = (uintptr_t)dof; 11755 uint64_t arg; 11756 dtrace_actkind_t kind; 11757 11758 if (sec->dofs_type != DOF_SECT_ACTDESC) { 11759 dtrace_dof_error(dof, "invalid action section"); 11760 return (NULL); 11761 } 11762 11763 if (sec->dofs_offset + sizeof (dof_actdesc_t) > dof->dofh_loadsz) { 11764 dtrace_dof_error(dof, "truncated action description"); 11765 return (NULL); 11766 } 11767 11768 if (sec->dofs_align != sizeof (uint64_t)) { 11769 dtrace_dof_error(dof, "bad alignment in action description"); 11770 return (NULL); 11771 } 11772 11773 if (sec->dofs_size < sec->dofs_entsize) { 11774 dtrace_dof_error(dof, "section entry size exceeds total size"); 11775 return (NULL); 11776 } 11777 11778 if (sec->dofs_entsize != sizeof (dof_actdesc_t)) { 11779 dtrace_dof_error(dof, "bad entry size in action description"); 11780 return (NULL); 11781 } 11782 11783 if (sec->dofs_size / sec->dofs_entsize > dtrace_actions_max) { 11784 dtrace_dof_error(dof, "actions exceed dtrace_actions_max"); 11785 return (NULL); 11786 } 11787 11788 for (offs = 0; offs < sec->dofs_size; offs += sec->dofs_entsize) { 11789 desc = (dof_actdesc_t *)(daddr + 11790 (uintptr_t)sec->dofs_offset + offs); 11791 kind = (dtrace_actkind_t)desc->dofa_kind; 11792 11793 if (DTRACEACT_ISPRINTFLIKE(kind) && 11794 (kind != DTRACEACT_PRINTA || 11795 desc->dofa_strtab != DOF_SECIDX_NONE)) { 11796 dof_sec_t *strtab; 11797 char *str, *fmt; 11798 uint64_t i; 11799 11800 /* 11801 * printf()-like actions must have a format string. 11802 */ 11803 if ((strtab = dtrace_dof_sect(dof, 11804 DOF_SECT_STRTAB, desc->dofa_strtab)) == NULL) 11805 goto err; 11806 11807 str = (char *)((uintptr_t)dof + 11808 (uintptr_t)strtab->dofs_offset); 11809 11810 for (i = desc->dofa_arg; i < strtab->dofs_size; i++) { 11811 if (str[i] == '\0') 11812 break; 11813 } 11814 11815 if (i >= strtab->dofs_size) { 11816 dtrace_dof_error(dof, "bogus format string"); 11817 goto err; 11818 } 11819 11820 if (i == desc->dofa_arg) { 11821 dtrace_dof_error(dof, "empty format string"); 11822 goto err; 11823 } 11824 11825 i -= desc->dofa_arg; 11826 fmt = kmem_alloc(i + 1, KM_SLEEP); 11827 bcopy(&str[desc->dofa_arg], fmt, i + 1); 11828 arg = (uint64_t)(uintptr_t)fmt; 11829 } else { 11830 if (kind == DTRACEACT_PRINTA) { 11831 ASSERT(desc->dofa_strtab == DOF_SECIDX_NONE); 11832 arg = 0; 11833 } else { 11834 arg = desc->dofa_arg; 11835 } 11836 } 11837 11838 act = dtrace_actdesc_create(kind, desc->dofa_ntuple, 11839 desc->dofa_uarg, arg); 11840 11841 if (last != NULL) { 11842 last->dtad_next = act; 11843 } else { 11844 first = act; 11845 } 11846 11847 last = act; 11848 11849 if (desc->dofa_difo == DOF_SECIDX_NONE) 11850 continue; 11851 11852 if ((difosec = dtrace_dof_sect(dof, 11853 DOF_SECT_DIFOHDR, desc->dofa_difo)) == NULL) 11854 goto err; 11855 11856 act->dtad_difo = dtrace_dof_difo(dof, difosec, vstate, cr); 11857 11858 if (act->dtad_difo == NULL) 11859 goto err; 11860 } 11861 11862 ASSERT(first != NULL); 11863 return (first); 11864 11865 err: 11866 for (act = first; act != NULL; act = next) { 11867 next = act->dtad_next; 11868 dtrace_actdesc_release(act, vstate); 11869 } 11870 11871 return (NULL); 11872 } 11873 11874 static dtrace_ecbdesc_t * 11875 dtrace_dof_ecbdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate, 11876 cred_t *cr) 11877 { 11878 dtrace_ecbdesc_t *ep; 11879 dof_ecbdesc_t *ecb; 11880 dtrace_probedesc_t *desc; 11881 dtrace_predicate_t *pred = NULL; 11882 11883 if (sec->dofs_size < sizeof (dof_ecbdesc_t)) { 11884 dtrace_dof_error(dof, "truncated ECB description"); 11885 return (NULL); 11886 } 11887 11888 if (sec->dofs_align != sizeof (uint64_t)) { 11889 dtrace_dof_error(dof, "bad alignment in ECB description"); 11890 return (NULL); 11891 } 11892 11893 ecb = (dof_ecbdesc_t *)((uintptr_t)dof + (uintptr_t)sec->dofs_offset); 11894 sec = dtrace_dof_sect(dof, DOF_SECT_PROBEDESC, ecb->dofe_probes); 11895 11896 if (sec == NULL) 11897 return (NULL); 11898 11899 ep = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP); 11900 ep->dted_uarg = ecb->dofe_uarg; 11901 desc = &ep->dted_probe; 11902 11903 if (dtrace_dof_probedesc(dof, sec, desc) == NULL) 11904 goto err; 11905 11906 if (ecb->dofe_pred != DOF_SECIDX_NONE) { 11907 if ((sec = dtrace_dof_sect(dof, 11908 DOF_SECT_DIFOHDR, ecb->dofe_pred)) == NULL) 11909 goto err; 11910 11911 if ((pred = dtrace_dof_predicate(dof, sec, vstate, cr)) == NULL) 11912 goto err; 11913 11914 ep->dted_pred.dtpdd_predicate = pred; 11915 } 11916 11917 if (ecb->dofe_actions != DOF_SECIDX_NONE) { 11918 if ((sec = dtrace_dof_sect(dof, 11919 DOF_SECT_ACTDESC, ecb->dofe_actions)) == NULL) 11920 goto err; 11921 11922 ep->dted_action = dtrace_dof_actdesc(dof, sec, vstate, cr); 11923 11924 if (ep->dted_action == NULL) 11925 goto err; 11926 } 11927 11928 return (ep); 11929 11930 err: 11931 if (pred != NULL) 11932 dtrace_predicate_release(pred, vstate); 11933 kmem_free(ep, sizeof (dtrace_ecbdesc_t)); 11934 return (NULL); 11935 } 11936 11937 /* 11938 * Apply the relocations from the specified 'sec' (a DOF_SECT_URELHDR) to the 11939 * specified DOF. At present, this amounts to simply adding 'ubase' to the 11940 * site of any user SETX relocations to account for load object base address. 11941 * In the future, if we need other relocations, this function can be extended. 11942 */ 11943 static int 11944 dtrace_dof_relocate(dof_hdr_t *dof, dof_sec_t *sec, uint64_t ubase) 11945 { 11946 uintptr_t daddr = (uintptr_t)dof; 11947 dof_relohdr_t *dofr = 11948 (dof_relohdr_t *)(uintptr_t)(daddr + sec->dofs_offset); 11949 dof_sec_t *ss, *rs, *ts; 11950 dof_relodesc_t *r; 11951 uint_t i, n; 11952 11953 if (sec->dofs_size < sizeof (dof_relohdr_t) || 11954 sec->dofs_align != sizeof (dof_secidx_t)) { 11955 dtrace_dof_error(dof, "invalid relocation header"); 11956 return (-1); 11957 } 11958 11959 ss = dtrace_dof_sect(dof, DOF_SECT_STRTAB, dofr->dofr_strtab); 11960 rs = dtrace_dof_sect(dof, DOF_SECT_RELTAB, dofr->dofr_relsec); 11961 ts = dtrace_dof_sect(dof, DOF_SECT_NONE, dofr->dofr_tgtsec); 11962 11963 if (ss == NULL || rs == NULL || ts == NULL) 11964 return (-1); /* dtrace_dof_error() has been called already */ 11965 11966 if (rs->dofs_entsize < sizeof (dof_relodesc_t) || 11967 rs->dofs_align != sizeof (uint64_t)) { 11968 dtrace_dof_error(dof, "invalid relocation section"); 11969 return (-1); 11970 } 11971 11972 r = (dof_relodesc_t *)(uintptr_t)(daddr + rs->dofs_offset); 11973 n = rs->dofs_size / rs->dofs_entsize; 11974 11975 for (i = 0; i < n; i++) { 11976 uintptr_t taddr = daddr + ts->dofs_offset + r->dofr_offset; 11977 11978 switch (r->dofr_type) { 11979 case DOF_RELO_NONE: 11980 break; 11981 case DOF_RELO_SETX: 11982 if (r->dofr_offset >= ts->dofs_size || r->dofr_offset + 11983 sizeof (uint64_t) > ts->dofs_size) { 11984 dtrace_dof_error(dof, "bad relocation offset"); 11985 return (-1); 11986 } 11987 11988 if (!IS_P2ALIGNED(taddr, sizeof (uint64_t))) { 11989 dtrace_dof_error(dof, "misaligned setx relo"); 11990 return (-1); 11991 } 11992 11993 *(uint64_t *)taddr += ubase; 11994 break; 11995 default: 11996 dtrace_dof_error(dof, "invalid relocation type"); 11997 return (-1); 11998 } 11999 12000 r = (dof_relodesc_t *)((uintptr_t)r + rs->dofs_entsize); 12001 } 12002 12003 return (0); 12004 } 12005 12006 /* 12007 * The dof_hdr_t passed to dtrace_dof_slurp() should be a partially validated 12008 * header: it should be at the front of a memory region that is at least 12009 * sizeof (dof_hdr_t) in size -- and then at least dof_hdr.dofh_loadsz in 12010 * size. It need not be validated in any other way. 12011 */ 12012 static int 12013 dtrace_dof_slurp(dof_hdr_t *dof, dtrace_vstate_t *vstate, cred_t *cr, 12014 dtrace_enabling_t **enabp, uint64_t ubase, int noprobes) 12015 { 12016 uint64_t len = dof->dofh_loadsz, seclen; 12017 uintptr_t daddr = (uintptr_t)dof; 12018 dtrace_ecbdesc_t *ep; 12019 dtrace_enabling_t *enab; 12020 uint_t i; 12021 12022 ASSERT(MUTEX_HELD(&dtrace_lock)); 12023 ASSERT(dof->dofh_loadsz >= sizeof (dof_hdr_t)); 12024 12025 /* 12026 * Check the DOF header identification bytes. In addition to checking 12027 * valid settings, we also verify that unused bits/bytes are zeroed so 12028 * we can use them later without fear of regressing existing binaries. 12029 */ 12030 if (bcmp(&dof->dofh_ident[DOF_ID_MAG0], 12031 DOF_MAG_STRING, DOF_MAG_STRLEN) != 0) { 12032 dtrace_dof_error(dof, "DOF magic string mismatch"); 12033 return (-1); 12034 } 12035 12036 if (dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_ILP32 && 12037 dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_LP64) { 12038 dtrace_dof_error(dof, "DOF has invalid data model"); 12039 return (-1); 12040 } 12041 12042 if (dof->dofh_ident[DOF_ID_ENCODING] != DOF_ENCODE_NATIVE) { 12043 dtrace_dof_error(dof, "DOF encoding mismatch"); 12044 return (-1); 12045 } 12046 12047 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 && 12048 dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_2) { 12049 dtrace_dof_error(dof, "DOF version mismatch"); 12050 return (-1); 12051 } 12052 12053 if (dof->dofh_ident[DOF_ID_DIFVERS] != DIF_VERSION_2) { 12054 dtrace_dof_error(dof, "DOF uses unsupported instruction set"); 12055 return (-1); 12056 } 12057 12058 if (dof->dofh_ident[DOF_ID_DIFIREG] > DIF_DIR_NREGS) { 12059 dtrace_dof_error(dof, "DOF uses too many integer registers"); 12060 return (-1); 12061 } 12062 12063 if (dof->dofh_ident[DOF_ID_DIFTREG] > DIF_DTR_NREGS) { 12064 dtrace_dof_error(dof, "DOF uses too many tuple registers"); 12065 return (-1); 12066 } 12067 12068 for (i = DOF_ID_PAD; i < DOF_ID_SIZE; i++) { 12069 if (dof->dofh_ident[i] != 0) { 12070 dtrace_dof_error(dof, "DOF has invalid ident byte set"); 12071 return (-1); 12072 } 12073 } 12074 12075 if (dof->dofh_flags & ~DOF_FL_VALID) { 12076 dtrace_dof_error(dof, "DOF has invalid flag bits set"); 12077 return (-1); 12078 } 12079 12080 if (dof->dofh_secsize == 0) { 12081 dtrace_dof_error(dof, "zero section header size"); 12082 return (-1); 12083 } 12084 12085 /* 12086 * Check that the section headers don't exceed the amount of DOF 12087 * data. Note that we cast the section size and number of sections 12088 * to uint64_t's to prevent possible overflow in the multiplication. 12089 */ 12090 seclen = (uint64_t)dof->dofh_secnum * (uint64_t)dof->dofh_secsize; 12091 12092 if (dof->dofh_secoff > len || seclen > len || 12093 dof->dofh_secoff + seclen > len) { 12094 dtrace_dof_error(dof, "truncated section headers"); 12095 return (-1); 12096 } 12097 12098 if (!IS_P2ALIGNED(dof->dofh_secoff, sizeof (uint64_t))) { 12099 dtrace_dof_error(dof, "misaligned section headers"); 12100 return (-1); 12101 } 12102 12103 if (!IS_P2ALIGNED(dof->dofh_secsize, sizeof (uint64_t))) { 12104 dtrace_dof_error(dof, "misaligned section size"); 12105 return (-1); 12106 } 12107 12108 /* 12109 * Take an initial pass through the section headers to be sure that 12110 * the headers don't have stray offsets. If the 'noprobes' flag is 12111 * set, do not permit sections relating to providers, probes, or args. 12112 */ 12113 for (i = 0; i < dof->dofh_secnum; i++) { 12114 dof_sec_t *sec = (dof_sec_t *)(daddr + 12115 (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize); 12116 12117 if (noprobes) { 12118 switch (sec->dofs_type) { 12119 case DOF_SECT_PROVIDER: 12120 case DOF_SECT_PROBES: 12121 case DOF_SECT_PRARGS: 12122 case DOF_SECT_PROFFS: 12123 dtrace_dof_error(dof, "illegal sections " 12124 "for enabling"); 12125 return (-1); 12126 } 12127 } 12128 12129 if (DOF_SEC_ISLOADABLE(sec->dofs_type) && 12130 !(sec->dofs_flags & DOF_SECF_LOAD)) { 12131 dtrace_dof_error(dof, "loadable section with load " 12132 "flag unset"); 12133 return (-1); 12134 } 12135 12136 if (!(sec->dofs_flags & DOF_SECF_LOAD)) 12137 continue; /* just ignore non-loadable sections */ 12138 12139 if (sec->dofs_align & (sec->dofs_align - 1)) { 12140 dtrace_dof_error(dof, "bad section alignment"); 12141 return (-1); 12142 } 12143 12144 if (sec->dofs_offset & (sec->dofs_align - 1)) { 12145 dtrace_dof_error(dof, "misaligned section"); 12146 return (-1); 12147 } 12148 12149 if (sec->dofs_offset > len || sec->dofs_size > len || 12150 sec->dofs_offset + sec->dofs_size > len) { 12151 dtrace_dof_error(dof, "corrupt section header"); 12152 return (-1); 12153 } 12154 12155 if (sec->dofs_type == DOF_SECT_STRTAB && *((char *)daddr + 12156 sec->dofs_offset + sec->dofs_size - 1) != '\0') { 12157 dtrace_dof_error(dof, "non-terminating string table"); 12158 return (-1); 12159 } 12160 } 12161 12162 /* 12163 * Take a second pass through the sections and locate and perform any 12164 * relocations that are present. We do this after the first pass to 12165 * be sure that all sections have had their headers validated. 12166 */ 12167 for (i = 0; i < dof->dofh_secnum; i++) { 12168 dof_sec_t *sec = (dof_sec_t *)(daddr + 12169 (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize); 12170 12171 if (!(sec->dofs_flags & DOF_SECF_LOAD)) 12172 continue; /* skip sections that are not loadable */ 12173 12174 switch (sec->dofs_type) { 12175 case DOF_SECT_URELHDR: 12176 if (dtrace_dof_relocate(dof, sec, ubase) != 0) 12177 return (-1); 12178 break; 12179 } 12180 } 12181 12182 if ((enab = *enabp) == NULL) 12183 enab = *enabp = dtrace_enabling_create(vstate); 12184 12185 for (i = 0; i < dof->dofh_secnum; i++) { 12186 dof_sec_t *sec = (dof_sec_t *)(daddr + 12187 (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize); 12188 12189 if (sec->dofs_type != DOF_SECT_ECBDESC) 12190 continue; 12191 12192 if ((ep = dtrace_dof_ecbdesc(dof, sec, vstate, cr)) == NULL) { 12193 dtrace_enabling_destroy(enab); 12194 *enabp = NULL; 12195 return (-1); 12196 } 12197 12198 dtrace_enabling_add(enab, ep); 12199 } 12200 12201 return (0); 12202 } 12203 12204 /* 12205 * Process DOF for any options. This routine assumes that the DOF has been 12206 * at least processed by dtrace_dof_slurp(). 12207 */ 12208 static int 12209 dtrace_dof_options(dof_hdr_t *dof, dtrace_state_t *state) 12210 { 12211 int i, rval; 12212 uint32_t entsize; 12213 size_t offs; 12214 dof_optdesc_t *desc; 12215 12216 for (i = 0; i < dof->dofh_secnum; i++) { 12217 dof_sec_t *sec = (dof_sec_t *)((uintptr_t)dof + 12218 (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize); 12219 12220 if (sec->dofs_type != DOF_SECT_OPTDESC) 12221 continue; 12222 12223 if (sec->dofs_align != sizeof (uint64_t)) { 12224 dtrace_dof_error(dof, "bad alignment in " 12225 "option description"); 12226 return (EINVAL); 12227 } 12228 12229 if ((entsize = sec->dofs_entsize) == 0) { 12230 dtrace_dof_error(dof, "zeroed option entry size"); 12231 return (EINVAL); 12232 } 12233 12234 if (entsize < sizeof (dof_optdesc_t)) { 12235 dtrace_dof_error(dof, "bad option entry size"); 12236 return (EINVAL); 12237 } 12238 12239 for (offs = 0; offs < sec->dofs_size; offs += entsize) { 12240 desc = (dof_optdesc_t *)((uintptr_t)dof + 12241 (uintptr_t)sec->dofs_offset + offs); 12242 12243 if (desc->dofo_strtab != DOF_SECIDX_NONE) { 12244 dtrace_dof_error(dof, "non-zero option string"); 12245 return (EINVAL); 12246 } 12247 12248 if (desc->dofo_value == DTRACEOPT_UNSET) { 12249 dtrace_dof_error(dof, "unset option"); 12250 return (EINVAL); 12251 } 12252 12253 if ((rval = dtrace_state_option(state, 12254 desc->dofo_option, desc->dofo_value)) != 0) { 12255 dtrace_dof_error(dof, "rejected option"); 12256 return (rval); 12257 } 12258 } 12259 } 12260 12261 return (0); 12262 } 12263 12264 /* 12265 * DTrace Consumer State Functions 12266 */ 12267 int 12268 dtrace_dstate_init(dtrace_dstate_t *dstate, size_t size) 12269 { 12270 size_t hashsize, maxper, min, chunksize = dstate->dtds_chunksize; 12271 void *base; 12272 uintptr_t limit; 12273 dtrace_dynvar_t *dvar, *next, *start; 12274 int i; 12275 12276 ASSERT(MUTEX_HELD(&dtrace_lock)); 12277 ASSERT(dstate->dtds_base == NULL && dstate->dtds_percpu == NULL); 12278 12279 bzero(dstate, sizeof (dtrace_dstate_t)); 12280 12281 if ((dstate->dtds_chunksize = chunksize) == 0) 12282 dstate->dtds_chunksize = DTRACE_DYNVAR_CHUNKSIZE; 12283 12284 if (size < (min = dstate->dtds_chunksize + sizeof (dtrace_dynhash_t))) 12285 size = min; 12286 12287 if ((base = kmem_zalloc(size, KM_NOSLEEP | KM_NORMALPRI)) == NULL) 12288 return (ENOMEM); 12289 12290 dstate->dtds_size = size; 12291 dstate->dtds_base = base; 12292 dstate->dtds_percpu = kmem_cache_alloc(dtrace_state_cache, KM_SLEEP); 12293 bzero(dstate->dtds_percpu, NCPU * sizeof (dtrace_dstate_percpu_t)); 12294 12295 hashsize = size / (dstate->dtds_chunksize + sizeof (dtrace_dynhash_t)); 12296 12297 if (hashsize != 1 && (hashsize & 1)) 12298 hashsize--; 12299 12300 dstate->dtds_hashsize = hashsize; 12301 dstate->dtds_hash = dstate->dtds_base; 12302 12303 /* 12304 * Set all of our hash buckets to point to the single sink, and (if 12305 * it hasn't already been set), set the sink's hash value to be the 12306 * sink sentinel value. The sink is needed for dynamic variable 12307 * lookups to know that they have iterated over an entire, valid hash 12308 * chain. 12309 */ 12310 for (i = 0; i < hashsize; i++) 12311 dstate->dtds_hash[i].dtdh_chain = &dtrace_dynhash_sink; 12312 12313 if (dtrace_dynhash_sink.dtdv_hashval != DTRACE_DYNHASH_SINK) 12314 dtrace_dynhash_sink.dtdv_hashval = DTRACE_DYNHASH_SINK; 12315 12316 /* 12317 * Determine number of active CPUs. Divide free list evenly among 12318 * active CPUs. 12319 */ 12320 start = (dtrace_dynvar_t *) 12321 ((uintptr_t)base + hashsize * sizeof (dtrace_dynhash_t)); 12322 limit = (uintptr_t)base + size; 12323 12324 maxper = (limit - (uintptr_t)start) / NCPU; 12325 maxper = (maxper / dstate->dtds_chunksize) * dstate->dtds_chunksize; 12326 12327 for (i = 0; i < NCPU; i++) { 12328 dstate->dtds_percpu[i].dtdsc_free = dvar = start; 12329 12330 /* 12331 * If we don't even have enough chunks to make it once through 12332 * NCPUs, we're just going to allocate everything to the first 12333 * CPU. And if we're on the last CPU, we're going to allocate 12334 * whatever is left over. In either case, we set the limit to 12335 * be the limit of the dynamic variable space. 12336 */ 12337 if (maxper == 0 || i == NCPU - 1) { 12338 limit = (uintptr_t)base + size; 12339 start = NULL; 12340 } else { 12341 limit = (uintptr_t)start + maxper; 12342 start = (dtrace_dynvar_t *)limit; 12343 } 12344 12345 ASSERT(limit <= (uintptr_t)base + size); 12346 12347 for (;;) { 12348 next = (dtrace_dynvar_t *)((uintptr_t)dvar + 12349 dstate->dtds_chunksize); 12350 12351 if ((uintptr_t)next + dstate->dtds_chunksize >= limit) 12352 break; 12353 12354 dvar->dtdv_next = next; 12355 dvar = next; 12356 } 12357 12358 if (maxper == 0) 12359 break; 12360 } 12361 12362 return (0); 12363 } 12364 12365 void 12366 dtrace_dstate_fini(dtrace_dstate_t *dstate) 12367 { 12368 ASSERT(MUTEX_HELD(&cpu_lock)); 12369 12370 if (dstate->dtds_base == NULL) 12371 return; 12372 12373 kmem_free(dstate->dtds_base, dstate->dtds_size); 12374 kmem_cache_free(dtrace_state_cache, dstate->dtds_percpu); 12375 } 12376 12377 static void 12378 dtrace_vstate_fini(dtrace_vstate_t *vstate) 12379 { 12380 /* 12381 * Logical XOR, where are you? 12382 */ 12383 ASSERT((vstate->dtvs_nglobals == 0) ^ (vstate->dtvs_globals != NULL)); 12384 12385 if (vstate->dtvs_nglobals > 0) { 12386 kmem_free(vstate->dtvs_globals, vstate->dtvs_nglobals * 12387 sizeof (dtrace_statvar_t *)); 12388 } 12389 12390 if (vstate->dtvs_ntlocals > 0) { 12391 kmem_free(vstate->dtvs_tlocals, vstate->dtvs_ntlocals * 12392 sizeof (dtrace_difv_t)); 12393 } 12394 12395 ASSERT((vstate->dtvs_nlocals == 0) ^ (vstate->dtvs_locals != NULL)); 12396 12397 if (vstate->dtvs_nlocals > 0) { 12398 kmem_free(vstate->dtvs_locals, vstate->dtvs_nlocals * 12399 sizeof (dtrace_statvar_t *)); 12400 } 12401 } 12402 12403 static void 12404 dtrace_state_clean(dtrace_state_t *state) 12405 { 12406 if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE) 12407 return; 12408 12409 dtrace_dynvar_clean(&state->dts_vstate.dtvs_dynvars); 12410 dtrace_speculation_clean(state); 12411 } 12412 12413 static void 12414 dtrace_state_deadman(dtrace_state_t *state) 12415 { 12416 hrtime_t now; 12417 12418 dtrace_sync(); 12419 12420 now = dtrace_gethrtime(); 12421 12422 if (state != dtrace_anon.dta_state && 12423 now - state->dts_laststatus >= dtrace_deadman_user) 12424 return; 12425 12426 /* 12427 * We must be sure that dts_alive never appears to be less than the 12428 * value upon entry to dtrace_state_deadman(), and because we lack a 12429 * dtrace_cas64(), we cannot store to it atomically. We thus instead 12430 * store INT64_MAX to it, followed by a memory barrier, followed by 12431 * the new value. This assures that dts_alive never appears to be 12432 * less than its true value, regardless of the order in which the 12433 * stores to the underlying storage are issued. 12434 */ 12435 state->dts_alive = INT64_MAX; 12436 dtrace_membar_producer(); 12437 state->dts_alive = now; 12438 } 12439 12440 dtrace_state_t * 12441 dtrace_state_create(dev_t *devp, cred_t *cr) 12442 { 12443 minor_t minor; 12444 major_t major; 12445 char c[30]; 12446 dtrace_state_t *state; 12447 dtrace_optval_t *opt; 12448 int bufsize = NCPU * sizeof (dtrace_buffer_t), i; 12449 12450 ASSERT(MUTEX_HELD(&dtrace_lock)); 12451 ASSERT(MUTEX_HELD(&cpu_lock)); 12452 12453 minor = (minor_t)(uintptr_t)vmem_alloc(dtrace_minor, 1, 12454 VM_BESTFIT | VM_SLEEP); 12455 12456 if (ddi_soft_state_zalloc(dtrace_softstate, minor) != DDI_SUCCESS) { 12457 vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1); 12458 return (NULL); 12459 } 12460 12461 state = ddi_get_soft_state(dtrace_softstate, minor); 12462 state->dts_epid = DTRACE_EPIDNONE + 1; 12463 12464 (void) snprintf(c, sizeof (c), "dtrace_aggid_%d", minor); 12465 state->dts_aggid_arena = vmem_create(c, (void *)1, UINT32_MAX, 1, 12466 NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER); 12467 12468 if (devp != NULL) { 12469 major = getemajor(*devp); 12470 } else { 12471 major = ddi_driver_major(dtrace_devi); 12472 } 12473 12474 state->dts_dev = makedevice(major, minor); 12475 12476 if (devp != NULL) 12477 *devp = state->dts_dev; 12478 12479 /* 12480 * We allocate NCPU buffers. On the one hand, this can be quite 12481 * a bit of memory per instance (nearly 36K on a Starcat). On the 12482 * other hand, it saves an additional memory reference in the probe 12483 * path. 12484 */ 12485 state->dts_buffer = kmem_zalloc(bufsize, KM_SLEEP); 12486 state->dts_aggbuffer = kmem_zalloc(bufsize, KM_SLEEP); 12487 state->dts_cleaner = CYCLIC_NONE; 12488 state->dts_deadman = CYCLIC_NONE; 12489 state->dts_vstate.dtvs_state = state; 12490 12491 for (i = 0; i < DTRACEOPT_MAX; i++) 12492 state->dts_options[i] = DTRACEOPT_UNSET; 12493 12494 /* 12495 * Set the default options. 12496 */ 12497 opt = state->dts_options; 12498 opt[DTRACEOPT_BUFPOLICY] = DTRACEOPT_BUFPOLICY_SWITCH; 12499 opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_AUTO; 12500 opt[DTRACEOPT_NSPEC] = dtrace_nspec_default; 12501 opt[DTRACEOPT_SPECSIZE] = dtrace_specsize_default; 12502 opt[DTRACEOPT_CPU] = (dtrace_optval_t)DTRACE_CPUALL; 12503 opt[DTRACEOPT_STRSIZE] = dtrace_strsize_default; 12504 opt[DTRACEOPT_STACKFRAMES] = dtrace_stackframes_default; 12505 opt[DTRACEOPT_USTACKFRAMES] = dtrace_ustackframes_default; 12506 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_default; 12507 opt[DTRACEOPT_AGGRATE] = dtrace_aggrate_default; 12508 opt[DTRACEOPT_SWITCHRATE] = dtrace_switchrate_default; 12509 opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_default; 12510 opt[DTRACEOPT_JSTACKFRAMES] = dtrace_jstackframes_default; 12511 opt[DTRACEOPT_JSTACKSTRSIZE] = dtrace_jstackstrsize_default; 12512 12513 state->dts_activity = DTRACE_ACTIVITY_INACTIVE; 12514 12515 /* 12516 * Depending on the user credentials, we set flag bits which alter probe 12517 * visibility or the amount of destructiveness allowed. In the case of 12518 * actual anonymous tracing, or the possession of all privileges, all of 12519 * the normal checks are bypassed. 12520 */ 12521 if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) { 12522 state->dts_cred.dcr_visible = DTRACE_CRV_ALL; 12523 state->dts_cred.dcr_action = DTRACE_CRA_ALL; 12524 } else { 12525 /* 12526 * Set up the credentials for this instantiation. We take a 12527 * hold on the credential to prevent it from disappearing on 12528 * us; this in turn prevents the zone_t referenced by this 12529 * credential from disappearing. This means that we can 12530 * examine the credential and the zone from probe context. 12531 */ 12532 crhold(cr); 12533 state->dts_cred.dcr_cred = cr; 12534 12535 /* 12536 * CRA_PROC means "we have *some* privilege for dtrace" and 12537 * unlocks the use of variables like pid, zonename, etc. 12538 */ 12539 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE) || 12540 PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) { 12541 state->dts_cred.dcr_action |= DTRACE_CRA_PROC; 12542 } 12543 12544 /* 12545 * dtrace_user allows use of syscall and profile providers. 12546 * If the user also has proc_owner and/or proc_zone, we 12547 * extend the scope to include additional visibility and 12548 * destructive power. 12549 */ 12550 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE)) { 12551 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) { 12552 state->dts_cred.dcr_visible |= 12553 DTRACE_CRV_ALLPROC; 12554 12555 state->dts_cred.dcr_action |= 12556 DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER; 12557 } 12558 12559 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) { 12560 state->dts_cred.dcr_visible |= 12561 DTRACE_CRV_ALLZONE; 12562 12563 state->dts_cred.dcr_action |= 12564 DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE; 12565 } 12566 12567 /* 12568 * If we have all privs in whatever zone this is, 12569 * we can do destructive things to processes which 12570 * have altered credentials. 12571 */ 12572 if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE), 12573 cr->cr_zone->zone_privset)) { 12574 state->dts_cred.dcr_action |= 12575 DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG; 12576 } 12577 } 12578 12579 /* 12580 * Holding the dtrace_kernel privilege also implies that 12581 * the user has the dtrace_user privilege from a visibility 12582 * perspective. But without further privileges, some 12583 * destructive actions are not available. 12584 */ 12585 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE)) { 12586 /* 12587 * Make all probes in all zones visible. However, 12588 * this doesn't mean that all actions become available 12589 * to all zones. 12590 */ 12591 state->dts_cred.dcr_visible |= DTRACE_CRV_KERNEL | 12592 DTRACE_CRV_ALLPROC | DTRACE_CRV_ALLZONE; 12593 12594 state->dts_cred.dcr_action |= DTRACE_CRA_KERNEL | 12595 DTRACE_CRA_PROC; 12596 /* 12597 * Holding proc_owner means that destructive actions 12598 * for *this* zone are allowed. 12599 */ 12600 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) 12601 state->dts_cred.dcr_action |= 12602 DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER; 12603 12604 /* 12605 * Holding proc_zone means that destructive actions 12606 * for this user/group ID in all zones is allowed. 12607 */ 12608 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) 12609 state->dts_cred.dcr_action |= 12610 DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE; 12611 12612 /* 12613 * If we have all privs in whatever zone this is, 12614 * we can do destructive things to processes which 12615 * have altered credentials. 12616 */ 12617 if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE), 12618 cr->cr_zone->zone_privset)) { 12619 state->dts_cred.dcr_action |= 12620 DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG; 12621 } 12622 } 12623 12624 /* 12625 * Holding the dtrace_proc privilege gives control over fasttrap 12626 * and pid providers. We need to grant wider destructive 12627 * privileges in the event that the user has proc_owner and/or 12628 * proc_zone. 12629 */ 12630 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) { 12631 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) 12632 state->dts_cred.dcr_action |= 12633 DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER; 12634 12635 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) 12636 state->dts_cred.dcr_action |= 12637 DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE; 12638 } 12639 } 12640 12641 return (state); 12642 } 12643 12644 static int 12645 dtrace_state_buffer(dtrace_state_t *state, dtrace_buffer_t *buf, int which) 12646 { 12647 dtrace_optval_t *opt = state->dts_options, size; 12648 processorid_t cpu; 12649 int flags = 0, rval, factor, divisor = 1; 12650 12651 ASSERT(MUTEX_HELD(&dtrace_lock)); 12652 ASSERT(MUTEX_HELD(&cpu_lock)); 12653 ASSERT(which < DTRACEOPT_MAX); 12654 ASSERT(state->dts_activity == DTRACE_ACTIVITY_INACTIVE || 12655 (state == dtrace_anon.dta_state && 12656 state->dts_activity == DTRACE_ACTIVITY_ACTIVE)); 12657 12658 if (opt[which] == DTRACEOPT_UNSET || opt[which] == 0) 12659 return (0); 12660 12661 if (opt[DTRACEOPT_CPU] != DTRACEOPT_UNSET) 12662 cpu = opt[DTRACEOPT_CPU]; 12663 12664 if (which == DTRACEOPT_SPECSIZE) 12665 flags |= DTRACEBUF_NOSWITCH; 12666 12667 if (which == DTRACEOPT_BUFSIZE) { 12668 if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_RING) 12669 flags |= DTRACEBUF_RING; 12670 12671 if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_FILL) 12672 flags |= DTRACEBUF_FILL; 12673 12674 if (state != dtrace_anon.dta_state || 12675 state->dts_activity != DTRACE_ACTIVITY_ACTIVE) 12676 flags |= DTRACEBUF_INACTIVE; 12677 } 12678 12679 for (size = opt[which]; size >= sizeof (uint64_t); size /= divisor) { 12680 /* 12681 * The size must be 8-byte aligned. If the size is not 8-byte 12682 * aligned, drop it down by the difference. 12683 */ 12684 if (size & (sizeof (uint64_t) - 1)) 12685 size -= size & (sizeof (uint64_t) - 1); 12686 12687 if (size < state->dts_reserve) { 12688 /* 12689 * Buffers always must be large enough to accommodate 12690 * their prereserved space. We return E2BIG instead 12691 * of ENOMEM in this case to allow for user-level 12692 * software to differentiate the cases. 12693 */ 12694 return (E2BIG); 12695 } 12696 12697 rval = dtrace_buffer_alloc(buf, size, flags, cpu, &factor); 12698 12699 if (rval != ENOMEM) { 12700 opt[which] = size; 12701 return (rval); 12702 } 12703 12704 if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL) 12705 return (rval); 12706 12707 for (divisor = 2; divisor < factor; divisor <<= 1) 12708 continue; 12709 } 12710 12711 return (ENOMEM); 12712 } 12713 12714 static int 12715 dtrace_state_buffers(dtrace_state_t *state) 12716 { 12717 dtrace_speculation_t *spec = state->dts_speculations; 12718 int rval, i; 12719 12720 if ((rval = dtrace_state_buffer(state, state->dts_buffer, 12721 DTRACEOPT_BUFSIZE)) != 0) 12722 return (rval); 12723 12724 if ((rval = dtrace_state_buffer(state, state->dts_aggbuffer, 12725 DTRACEOPT_AGGSIZE)) != 0) 12726 return (rval); 12727 12728 for (i = 0; i < state->dts_nspeculations; i++) { 12729 if ((rval = dtrace_state_buffer(state, 12730 spec[i].dtsp_buffer, DTRACEOPT_SPECSIZE)) != 0) 12731 return (rval); 12732 } 12733 12734 return (0); 12735 } 12736 12737 static void 12738 dtrace_state_prereserve(dtrace_state_t *state) 12739 { 12740 dtrace_ecb_t *ecb; 12741 dtrace_probe_t *probe; 12742 12743 state->dts_reserve = 0; 12744 12745 if (state->dts_options[DTRACEOPT_BUFPOLICY] != DTRACEOPT_BUFPOLICY_FILL) 12746 return; 12747 12748 /* 12749 * If our buffer policy is a "fill" buffer policy, we need to set the 12750 * prereserved space to be the space required by the END probes. 12751 */ 12752 probe = dtrace_probes[dtrace_probeid_end - 1]; 12753 ASSERT(probe != NULL); 12754 12755 for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) { 12756 if (ecb->dte_state != state) 12757 continue; 12758 12759 state->dts_reserve += ecb->dte_needed + ecb->dte_alignment; 12760 } 12761 } 12762 12763 static int 12764 dtrace_state_go(dtrace_state_t *state, processorid_t *cpu) 12765 { 12766 dtrace_optval_t *opt = state->dts_options, sz, nspec; 12767 dtrace_speculation_t *spec; 12768 dtrace_buffer_t *buf; 12769 cyc_handler_t hdlr; 12770 cyc_time_t when; 12771 int rval = 0, i, bufsize = NCPU * sizeof (dtrace_buffer_t); 12772 dtrace_icookie_t cookie; 12773 12774 mutex_enter(&cpu_lock); 12775 mutex_enter(&dtrace_lock); 12776 12777 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) { 12778 rval = EBUSY; 12779 goto out; 12780 } 12781 12782 /* 12783 * Before we can perform any checks, we must prime all of the 12784 * retained enablings that correspond to this state. 12785 */ 12786 dtrace_enabling_prime(state); 12787 12788 if (state->dts_destructive && !state->dts_cred.dcr_destructive) { 12789 rval = EACCES; 12790 goto out; 12791 } 12792 12793 dtrace_state_prereserve(state); 12794 12795 /* 12796 * Now we want to do is try to allocate our speculations. 12797 * We do not automatically resize the number of speculations; if 12798 * this fails, we will fail the operation. 12799 */ 12800 nspec = opt[DTRACEOPT_NSPEC]; 12801 ASSERT(nspec != DTRACEOPT_UNSET); 12802 12803 if (nspec > INT_MAX) { 12804 rval = ENOMEM; 12805 goto out; 12806 } 12807 12808 spec = kmem_zalloc(nspec * sizeof (dtrace_speculation_t), 12809 KM_NOSLEEP | KM_NORMALPRI); 12810 12811 if (spec == NULL) { 12812 rval = ENOMEM; 12813 goto out; 12814 } 12815 12816 state->dts_speculations = spec; 12817 state->dts_nspeculations = (int)nspec; 12818 12819 for (i = 0; i < nspec; i++) { 12820 if ((buf = kmem_zalloc(bufsize, 12821 KM_NOSLEEP | KM_NORMALPRI)) == NULL) { 12822 rval = ENOMEM; 12823 goto err; 12824 } 12825 12826 spec[i].dtsp_buffer = buf; 12827 } 12828 12829 if (opt[DTRACEOPT_GRABANON] != DTRACEOPT_UNSET) { 12830 if (dtrace_anon.dta_state == NULL) { 12831 rval = ENOENT; 12832 goto out; 12833 } 12834 12835 if (state->dts_necbs != 0) { 12836 rval = EALREADY; 12837 goto out; 12838 } 12839 12840 state->dts_anon = dtrace_anon_grab(); 12841 ASSERT(state->dts_anon != NULL); 12842 state = state->dts_anon; 12843 12844 /* 12845 * We want "grabanon" to be set in the grabbed state, so we'll 12846 * copy that option value from the grabbing state into the 12847 * grabbed state. 12848 */ 12849 state->dts_options[DTRACEOPT_GRABANON] = 12850 opt[DTRACEOPT_GRABANON]; 12851 12852 *cpu = dtrace_anon.dta_beganon; 12853 12854 /* 12855 * If the anonymous state is active (as it almost certainly 12856 * is if the anonymous enabling ultimately matched anything), 12857 * we don't allow any further option processing -- but we 12858 * don't return failure. 12859 */ 12860 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) 12861 goto out; 12862 } 12863 12864 if (opt[DTRACEOPT_AGGSIZE] != DTRACEOPT_UNSET && 12865 opt[DTRACEOPT_AGGSIZE] != 0) { 12866 if (state->dts_aggregations == NULL) { 12867 /* 12868 * We're not going to create an aggregation buffer 12869 * because we don't have any ECBs that contain 12870 * aggregations -- set this option to 0. 12871 */ 12872 opt[DTRACEOPT_AGGSIZE] = 0; 12873 } else { 12874 /* 12875 * If we have an aggregation buffer, we must also have 12876 * a buffer to use as scratch. 12877 */ 12878 if (opt[DTRACEOPT_BUFSIZE] == DTRACEOPT_UNSET || 12879 opt[DTRACEOPT_BUFSIZE] < state->dts_needed) { 12880 opt[DTRACEOPT_BUFSIZE] = state->dts_needed; 12881 } 12882 } 12883 } 12884 12885 if (opt[DTRACEOPT_SPECSIZE] != DTRACEOPT_UNSET && 12886 opt[DTRACEOPT_SPECSIZE] != 0) { 12887 if (!state->dts_speculates) { 12888 /* 12889 * We're not going to create speculation buffers 12890 * because we don't have any ECBs that actually 12891 * speculate -- set the speculation size to 0. 12892 */ 12893 opt[DTRACEOPT_SPECSIZE] = 0; 12894 } 12895 } 12896 12897 /* 12898 * The bare minimum size for any buffer that we're actually going to 12899 * do anything to is sizeof (uint64_t). 12900 */ 12901 sz = sizeof (uint64_t); 12902 12903 if ((state->dts_needed != 0 && opt[DTRACEOPT_BUFSIZE] < sz) || 12904 (state->dts_speculates && opt[DTRACEOPT_SPECSIZE] < sz) || 12905 (state->dts_aggregations != NULL && opt[DTRACEOPT_AGGSIZE] < sz)) { 12906 /* 12907 * A buffer size has been explicitly set to 0 (or to a size 12908 * that will be adjusted to 0) and we need the space -- we 12909 * need to return failure. We return ENOSPC to differentiate 12910 * it from failing to allocate a buffer due to failure to meet 12911 * the reserve (for which we return E2BIG). 12912 */ 12913 rval = ENOSPC; 12914 goto out; 12915 } 12916 12917 if ((rval = dtrace_state_buffers(state)) != 0) 12918 goto err; 12919 12920 if ((sz = opt[DTRACEOPT_DYNVARSIZE]) == DTRACEOPT_UNSET) 12921 sz = dtrace_dstate_defsize; 12922 12923 do { 12924 rval = dtrace_dstate_init(&state->dts_vstate.dtvs_dynvars, sz); 12925 12926 if (rval == 0) 12927 break; 12928 12929 if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL) 12930 goto err; 12931 } while (sz >>= 1); 12932 12933 opt[DTRACEOPT_DYNVARSIZE] = sz; 12934 12935 if (rval != 0) 12936 goto err; 12937 12938 if (opt[DTRACEOPT_STATUSRATE] > dtrace_statusrate_max) 12939 opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_max; 12940 12941 if (opt[DTRACEOPT_CLEANRATE] == 0) 12942 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max; 12943 12944 if (opt[DTRACEOPT_CLEANRATE] < dtrace_cleanrate_min) 12945 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_min; 12946 12947 if (opt[DTRACEOPT_CLEANRATE] > dtrace_cleanrate_max) 12948 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max; 12949 12950 hdlr.cyh_func = (cyc_func_t)dtrace_state_clean; 12951 hdlr.cyh_arg = state; 12952 hdlr.cyh_level = CY_LOW_LEVEL; 12953 12954 when.cyt_when = 0; 12955 when.cyt_interval = opt[DTRACEOPT_CLEANRATE]; 12956 12957 state->dts_cleaner = cyclic_add(&hdlr, &when); 12958 12959 hdlr.cyh_func = (cyc_func_t)dtrace_state_deadman; 12960 hdlr.cyh_arg = state; 12961 hdlr.cyh_level = CY_LOW_LEVEL; 12962 12963 when.cyt_when = 0; 12964 when.cyt_interval = dtrace_deadman_interval; 12965 12966 state->dts_alive = state->dts_laststatus = dtrace_gethrtime(); 12967 state->dts_deadman = cyclic_add(&hdlr, &when); 12968 12969 state->dts_activity = DTRACE_ACTIVITY_WARMUP; 12970 12971 /* 12972 * Now it's time to actually fire the BEGIN probe. We need to disable 12973 * interrupts here both to record the CPU on which we fired the BEGIN 12974 * probe (the data from this CPU will be processed first at user 12975 * level) and to manually activate the buffer for this CPU. 12976 */ 12977 cookie = dtrace_interrupt_disable(); 12978 *cpu = CPU->cpu_id; 12979 ASSERT(state->dts_buffer[*cpu].dtb_flags & DTRACEBUF_INACTIVE); 12980 state->dts_buffer[*cpu].dtb_flags &= ~DTRACEBUF_INACTIVE; 12981 12982 dtrace_probe(dtrace_probeid_begin, 12983 (uint64_t)(uintptr_t)state, 0, 0, 0, 0); 12984 dtrace_interrupt_enable(cookie); 12985 /* 12986 * We may have had an exit action from a BEGIN probe; only change our 12987 * state to ACTIVE if we're still in WARMUP. 12988 */ 12989 ASSERT(state->dts_activity == DTRACE_ACTIVITY_WARMUP || 12990 state->dts_activity == DTRACE_ACTIVITY_DRAINING); 12991 12992 if (state->dts_activity == DTRACE_ACTIVITY_WARMUP) 12993 state->dts_activity = DTRACE_ACTIVITY_ACTIVE; 12994 12995 /* 12996 * Regardless of whether or not now we're in ACTIVE or DRAINING, we 12997 * want each CPU to transition its principal buffer out of the 12998 * INACTIVE state. Doing this assures that no CPU will suddenly begin 12999 * processing an ECB halfway down a probe's ECB chain; all CPUs will 13000 * atomically transition from processing none of a state's ECBs to 13001 * processing all of them. 13002 */ 13003 dtrace_xcall(DTRACE_CPUALL, 13004 (dtrace_xcall_t)dtrace_buffer_activate, state); 13005 goto out; 13006 13007 err: 13008 dtrace_buffer_free(state->dts_buffer); 13009 dtrace_buffer_free(state->dts_aggbuffer); 13010 13011 if ((nspec = state->dts_nspeculations) == 0) { 13012 ASSERT(state->dts_speculations == NULL); 13013 goto out; 13014 } 13015 13016 spec = state->dts_speculations; 13017 ASSERT(spec != NULL); 13018 13019 for (i = 0; i < state->dts_nspeculations; i++) { 13020 if ((buf = spec[i].dtsp_buffer) == NULL) 13021 break; 13022 13023 dtrace_buffer_free(buf); 13024 kmem_free(buf, bufsize); 13025 } 13026 13027 kmem_free(spec, nspec * sizeof (dtrace_speculation_t)); 13028 state->dts_nspeculations = 0; 13029 state->dts_speculations = NULL; 13030 13031 out: 13032 mutex_exit(&dtrace_lock); 13033 mutex_exit(&cpu_lock); 13034 13035 return (rval); 13036 } 13037 13038 static int 13039 dtrace_state_stop(dtrace_state_t *state, processorid_t *cpu) 13040 { 13041 dtrace_icookie_t cookie; 13042 13043 ASSERT(MUTEX_HELD(&dtrace_lock)); 13044 13045 if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE && 13046 state->dts_activity != DTRACE_ACTIVITY_DRAINING) 13047 return (EINVAL); 13048 13049 /* 13050 * We'll set the activity to DTRACE_ACTIVITY_DRAINING, and issue a sync 13051 * to be sure that every CPU has seen it. See below for the details 13052 * on why this is done. 13053 */ 13054 state->dts_activity = DTRACE_ACTIVITY_DRAINING; 13055 dtrace_sync(); 13056 13057 /* 13058 * By this point, it is impossible for any CPU to be still processing 13059 * with DTRACE_ACTIVITY_ACTIVE. We can thus set our activity to 13060 * DTRACE_ACTIVITY_COOLDOWN and know that we're not racing with any 13061 * other CPU in dtrace_buffer_reserve(). This allows dtrace_probe() 13062 * and callees to know that the activity is DTRACE_ACTIVITY_COOLDOWN 13063 * iff we're in the END probe. 13064 */ 13065 state->dts_activity = DTRACE_ACTIVITY_COOLDOWN; 13066 dtrace_sync(); 13067 ASSERT(state->dts_activity == DTRACE_ACTIVITY_COOLDOWN); 13068 13069 /* 13070 * Finally, we can release the reserve and call the END probe. We 13071 * disable interrupts across calling the END probe to allow us to 13072 * return the CPU on which we actually called the END probe. This 13073 * allows user-land to be sure that this CPU's principal buffer is 13074 * processed last. 13075 */ 13076 state->dts_reserve = 0; 13077 13078 cookie = dtrace_interrupt_disable(); 13079 *cpu = CPU->cpu_id; 13080 dtrace_probe(dtrace_probeid_end, 13081 (uint64_t)(uintptr_t)state, 0, 0, 0, 0); 13082 dtrace_interrupt_enable(cookie); 13083 13084 state->dts_activity = DTRACE_ACTIVITY_STOPPED; 13085 dtrace_sync(); 13086 13087 return (0); 13088 } 13089 13090 static int 13091 dtrace_state_option(dtrace_state_t *state, dtrace_optid_t option, 13092 dtrace_optval_t val) 13093 { 13094 ASSERT(MUTEX_HELD(&dtrace_lock)); 13095 13096 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) 13097 return (EBUSY); 13098 13099 if (option >= DTRACEOPT_MAX) 13100 return (EINVAL); 13101 13102 if (option != DTRACEOPT_CPU && val < 0) 13103 return (EINVAL); 13104 13105 switch (option) { 13106 case DTRACEOPT_DESTRUCTIVE: 13107 if (dtrace_destructive_disallow) 13108 return (EACCES); 13109 13110 state->dts_cred.dcr_destructive = 1; 13111 break; 13112 13113 case DTRACEOPT_BUFSIZE: 13114 case DTRACEOPT_DYNVARSIZE: 13115 case DTRACEOPT_AGGSIZE: 13116 case DTRACEOPT_SPECSIZE: 13117 case DTRACEOPT_STRSIZE: 13118 if (val < 0) 13119 return (EINVAL); 13120 13121 if (val >= LONG_MAX) { 13122 /* 13123 * If this is an otherwise negative value, set it to 13124 * the highest multiple of 128m less than LONG_MAX. 13125 * Technically, we're adjusting the size without 13126 * regard to the buffer resizing policy, but in fact, 13127 * this has no effect -- if we set the buffer size to 13128 * ~LONG_MAX and the buffer policy is ultimately set to 13129 * be "manual", the buffer allocation is guaranteed to 13130 * fail, if only because the allocation requires two 13131 * buffers. (We set the the size to the highest 13132 * multiple of 128m because it ensures that the size 13133 * will remain a multiple of a megabyte when 13134 * repeatedly halved -- all the way down to 15m.) 13135 */ 13136 val = LONG_MAX - (1 << 27) + 1; 13137 } 13138 } 13139 13140 state->dts_options[option] = val; 13141 13142 return (0); 13143 } 13144 13145 static void 13146 dtrace_state_destroy(dtrace_state_t *state) 13147 { 13148 dtrace_ecb_t *ecb; 13149 dtrace_vstate_t *vstate = &state->dts_vstate; 13150 minor_t minor = getminor(state->dts_dev); 13151 int i, bufsize = NCPU * sizeof (dtrace_buffer_t); 13152 dtrace_speculation_t *spec = state->dts_speculations; 13153 int nspec = state->dts_nspeculations; 13154 uint32_t match; 13155 13156 ASSERT(MUTEX_HELD(&dtrace_lock)); 13157 ASSERT(MUTEX_HELD(&cpu_lock)); 13158 13159 /* 13160 * First, retract any retained enablings for this state. 13161 */ 13162 dtrace_enabling_retract(state); 13163 ASSERT(state->dts_nretained == 0); 13164 13165 if (state->dts_activity == DTRACE_ACTIVITY_ACTIVE || 13166 state->dts_activity == DTRACE_ACTIVITY_DRAINING) { 13167 /* 13168 * We have managed to come into dtrace_state_destroy() on a 13169 * hot enabling -- almost certainly because of a disorderly 13170 * shutdown of a consumer. (That is, a consumer that is 13171 * exiting without having called dtrace_stop().) In this case, 13172 * we're going to set our activity to be KILLED, and then 13173 * issue a sync to be sure that everyone is out of probe 13174 * context before we start blowing away ECBs. 13175 */ 13176 state->dts_activity = DTRACE_ACTIVITY_KILLED; 13177 dtrace_sync(); 13178 } 13179 13180 /* 13181 * Release the credential hold we took in dtrace_state_create(). 13182 */ 13183 if (state->dts_cred.dcr_cred != NULL) 13184 crfree(state->dts_cred.dcr_cred); 13185 13186 /* 13187 * Now we can safely disable and destroy any enabled probes. Because 13188 * any DTRACE_PRIV_KERNEL probes may actually be slowing our progress 13189 * (especially if they're all enabled), we take two passes through the 13190 * ECBs: in the first, we disable just DTRACE_PRIV_KERNEL probes, and 13191 * in the second we disable whatever is left over. 13192 */ 13193 for (match = DTRACE_PRIV_KERNEL; ; match = 0) { 13194 for (i = 0; i < state->dts_necbs; i++) { 13195 if ((ecb = state->dts_ecbs[i]) == NULL) 13196 continue; 13197 13198 if (match && ecb->dte_probe != NULL) { 13199 dtrace_probe_t *probe = ecb->dte_probe; 13200 dtrace_provider_t *prov = probe->dtpr_provider; 13201 13202 if (!(prov->dtpv_priv.dtpp_flags & match)) 13203 continue; 13204 } 13205 13206 dtrace_ecb_disable(ecb); 13207 dtrace_ecb_destroy(ecb); 13208 } 13209 13210 if (!match) 13211 break; 13212 } 13213 13214 /* 13215 * Before we free the buffers, perform one more sync to assure that 13216 * every CPU is out of probe context. 13217 */ 13218 dtrace_sync(); 13219 13220 dtrace_buffer_free(state->dts_buffer); 13221 dtrace_buffer_free(state->dts_aggbuffer); 13222 13223 for (i = 0; i < nspec; i++) 13224 dtrace_buffer_free(spec[i].dtsp_buffer); 13225 13226 if (state->dts_cleaner != CYCLIC_NONE) 13227 cyclic_remove(state->dts_cleaner); 13228 13229 if (state->dts_deadman != CYCLIC_NONE) 13230 cyclic_remove(state->dts_deadman); 13231 13232 dtrace_dstate_fini(&vstate->dtvs_dynvars); 13233 dtrace_vstate_fini(vstate); 13234 kmem_free(state->dts_ecbs, state->dts_necbs * sizeof (dtrace_ecb_t *)); 13235 13236 if (state->dts_aggregations != NULL) { 13237 #ifdef DEBUG 13238 for (i = 0; i < state->dts_naggregations; i++) 13239 ASSERT(state->dts_aggregations[i] == NULL); 13240 #endif 13241 ASSERT(state->dts_naggregations > 0); 13242 kmem_free(state->dts_aggregations, 13243 state->dts_naggregations * sizeof (dtrace_aggregation_t *)); 13244 } 13245 13246 kmem_free(state->dts_buffer, bufsize); 13247 kmem_free(state->dts_aggbuffer, bufsize); 13248 13249 for (i = 0; i < nspec; i++) 13250 kmem_free(spec[i].dtsp_buffer, bufsize); 13251 13252 kmem_free(spec, nspec * sizeof (dtrace_speculation_t)); 13253 13254 dtrace_format_destroy(state); 13255 13256 vmem_destroy(state->dts_aggid_arena); 13257 ddi_soft_state_free(dtrace_softstate, minor); 13258 vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1); 13259 } 13260 13261 /* 13262 * DTrace Anonymous Enabling Functions 13263 */ 13264 static dtrace_state_t * 13265 dtrace_anon_grab(void) 13266 { 13267 dtrace_state_t *state; 13268 13269 ASSERT(MUTEX_HELD(&dtrace_lock)); 13270 13271 if ((state = dtrace_anon.dta_state) == NULL) { 13272 ASSERT(dtrace_anon.dta_enabling == NULL); 13273 return (NULL); 13274 } 13275 13276 ASSERT(dtrace_anon.dta_enabling != NULL); 13277 ASSERT(dtrace_retained != NULL); 13278 13279 dtrace_enabling_destroy(dtrace_anon.dta_enabling); 13280 dtrace_anon.dta_enabling = NULL; 13281 dtrace_anon.dta_state = NULL; 13282 13283 return (state); 13284 } 13285 13286 static void 13287 dtrace_anon_property(void) 13288 { 13289 int i, rv; 13290 dtrace_state_t *state; 13291 dof_hdr_t *dof; 13292 char c[32]; /* enough for "dof-data-" + digits */ 13293 13294 ASSERT(MUTEX_HELD(&dtrace_lock)); 13295 ASSERT(MUTEX_HELD(&cpu_lock)); 13296 13297 for (i = 0; ; i++) { 13298 (void) snprintf(c, sizeof (c), "dof-data-%d", i); 13299 13300 dtrace_err_verbose = 1; 13301 13302 if ((dof = dtrace_dof_property(c)) == NULL) { 13303 dtrace_err_verbose = 0; 13304 break; 13305 } 13306 13307 /* 13308 * We want to create anonymous state, so we need to transition 13309 * the kernel debugger to indicate that DTrace is active. If 13310 * this fails (e.g. because the debugger has modified text in 13311 * some way), we won't continue with the processing. 13312 */ 13313 if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) { 13314 cmn_err(CE_NOTE, "kernel debugger active; anonymous " 13315 "enabling ignored."); 13316 dtrace_dof_destroy(dof); 13317 break; 13318 } 13319 13320 /* 13321 * If we haven't allocated an anonymous state, we'll do so now. 13322 */ 13323 if ((state = dtrace_anon.dta_state) == NULL) { 13324 state = dtrace_state_create(NULL, NULL); 13325 dtrace_anon.dta_state = state; 13326 13327 if (state == NULL) { 13328 /* 13329 * This basically shouldn't happen: the only 13330 * failure mode from dtrace_state_create() is a 13331 * failure of ddi_soft_state_zalloc() that 13332 * itself should never happen. Still, the 13333 * interface allows for a failure mode, and 13334 * we want to fail as gracefully as possible: 13335 * we'll emit an error message and cease 13336 * processing anonymous state in this case. 13337 */ 13338 cmn_err(CE_WARN, "failed to create " 13339 "anonymous state"); 13340 dtrace_dof_destroy(dof); 13341 break; 13342 } 13343 } 13344 13345 rv = dtrace_dof_slurp(dof, &state->dts_vstate, CRED(), 13346 &dtrace_anon.dta_enabling, 0, B_TRUE); 13347 13348 if (rv == 0) 13349 rv = dtrace_dof_options(dof, state); 13350 13351 dtrace_err_verbose = 0; 13352 dtrace_dof_destroy(dof); 13353 13354 if (rv != 0) { 13355 /* 13356 * This is malformed DOF; chuck any anonymous state 13357 * that we created. 13358 */ 13359 ASSERT(dtrace_anon.dta_enabling == NULL); 13360 dtrace_state_destroy(state); 13361 dtrace_anon.dta_state = NULL; 13362 break; 13363 } 13364 13365 ASSERT(dtrace_anon.dta_enabling != NULL); 13366 } 13367 13368 if (dtrace_anon.dta_enabling != NULL) { 13369 int rval; 13370 13371 /* 13372 * dtrace_enabling_retain() can only fail because we are 13373 * trying to retain more enablings than are allowed -- but 13374 * we only have one anonymous enabling, and we are guaranteed 13375 * to be allowed at least one retained enabling; we assert 13376 * that dtrace_enabling_retain() returns success. 13377 */ 13378 rval = dtrace_enabling_retain(dtrace_anon.dta_enabling); 13379 ASSERT(rval == 0); 13380 13381 dtrace_enabling_dump(dtrace_anon.dta_enabling); 13382 } 13383 } 13384 13385 /* 13386 * DTrace Helper Functions 13387 */ 13388 static void 13389 dtrace_helper_trace(dtrace_helper_action_t *helper, 13390 dtrace_mstate_t *mstate, dtrace_vstate_t *vstate, int where) 13391 { 13392 uint32_t size, next, nnext, i; 13393 dtrace_helptrace_t *ent; 13394 uint16_t flags = cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 13395 13396 if (!dtrace_helptrace_enabled) 13397 return; 13398 13399 ASSERT(vstate->dtvs_nlocals <= dtrace_helptrace_nlocals); 13400 13401 /* 13402 * What would a tracing framework be without its own tracing 13403 * framework? (Well, a hell of a lot simpler, for starters...) 13404 */ 13405 size = sizeof (dtrace_helptrace_t) + dtrace_helptrace_nlocals * 13406 sizeof (uint64_t) - sizeof (uint64_t); 13407 13408 /* 13409 * Iterate until we can allocate a slot in the trace buffer. 13410 */ 13411 do { 13412 next = dtrace_helptrace_next; 13413 13414 if (next + size < dtrace_helptrace_bufsize) { 13415 nnext = next + size; 13416 } else { 13417 nnext = size; 13418 } 13419 } while (dtrace_cas32(&dtrace_helptrace_next, next, nnext) != next); 13420 13421 /* 13422 * We have our slot; fill it in. 13423 */ 13424 if (nnext == size) 13425 next = 0; 13426 13427 ent = (dtrace_helptrace_t *)&dtrace_helptrace_buffer[next]; 13428 ent->dtht_helper = helper; 13429 ent->dtht_where = where; 13430 ent->dtht_nlocals = vstate->dtvs_nlocals; 13431 13432 ent->dtht_fltoffs = (mstate->dtms_present & DTRACE_MSTATE_FLTOFFS) ? 13433 mstate->dtms_fltoffs : -1; 13434 ent->dtht_fault = DTRACE_FLAGS2FLT(flags); 13435 ent->dtht_illval = cpu_core[CPU->cpu_id].cpuc_dtrace_illval; 13436 13437 for (i = 0; i < vstate->dtvs_nlocals; i++) { 13438 dtrace_statvar_t *svar; 13439 13440 if ((svar = vstate->dtvs_locals[i]) == NULL) 13441 continue; 13442 13443 ASSERT(svar->dtsv_size >= NCPU * sizeof (uint64_t)); 13444 ent->dtht_locals[i] = 13445 ((uint64_t *)(uintptr_t)svar->dtsv_data)[CPU->cpu_id]; 13446 } 13447 } 13448 13449 static uint64_t 13450 dtrace_helper(int which, dtrace_mstate_t *mstate, 13451 dtrace_state_t *state, uint64_t arg0, uint64_t arg1) 13452 { 13453 uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 13454 uint64_t sarg0 = mstate->dtms_arg[0]; 13455 uint64_t sarg1 = mstate->dtms_arg[1]; 13456 uint64_t rval; 13457 dtrace_helpers_t *helpers = curproc->p_dtrace_helpers; 13458 dtrace_helper_action_t *helper; 13459 dtrace_vstate_t *vstate; 13460 dtrace_difo_t *pred; 13461 int i, trace = dtrace_helptrace_enabled; 13462 13463 ASSERT(which >= 0 && which < DTRACE_NHELPER_ACTIONS); 13464 13465 if (helpers == NULL) 13466 return (0); 13467 13468 if ((helper = helpers->dthps_actions[which]) == NULL) 13469 return (0); 13470 13471 vstate = &helpers->dthps_vstate; 13472 mstate->dtms_arg[0] = arg0; 13473 mstate->dtms_arg[1] = arg1; 13474 13475 /* 13476 * Now iterate over each helper. If its predicate evaluates to 'true', 13477 * we'll call the corresponding actions. Note that the below calls 13478 * to dtrace_dif_emulate() may set faults in machine state. This is 13479 * okay: our caller (the outer dtrace_dif_emulate()) will simply plow 13480 * the stored DIF offset with its own (which is the desired behavior). 13481 * Also, note the calls to dtrace_dif_emulate() may allocate scratch 13482 * from machine state; this is okay, too. 13483 */ 13484 for (; helper != NULL; helper = helper->dtha_next) { 13485 if ((pred = helper->dtha_predicate) != NULL) { 13486 if (trace) 13487 dtrace_helper_trace(helper, mstate, vstate, 0); 13488 13489 if (!dtrace_dif_emulate(pred, mstate, vstate, state)) 13490 goto next; 13491 13492 if (*flags & CPU_DTRACE_FAULT) 13493 goto err; 13494 } 13495 13496 for (i = 0; i < helper->dtha_nactions; i++) { 13497 if (trace) 13498 dtrace_helper_trace(helper, 13499 mstate, vstate, i + 1); 13500 13501 rval = dtrace_dif_emulate(helper->dtha_actions[i], 13502 mstate, vstate, state); 13503 13504 if (*flags & CPU_DTRACE_FAULT) 13505 goto err; 13506 } 13507 13508 next: 13509 if (trace) 13510 dtrace_helper_trace(helper, mstate, vstate, 13511 DTRACE_HELPTRACE_NEXT); 13512 } 13513 13514 if (trace) 13515 dtrace_helper_trace(helper, mstate, vstate, 13516 DTRACE_HELPTRACE_DONE); 13517 13518 /* 13519 * Restore the arg0 that we saved upon entry. 13520 */ 13521 mstate->dtms_arg[0] = sarg0; 13522 mstate->dtms_arg[1] = sarg1; 13523 13524 return (rval); 13525 13526 err: 13527 if (trace) 13528 dtrace_helper_trace(helper, mstate, vstate, 13529 DTRACE_HELPTRACE_ERR); 13530 13531 /* 13532 * Restore the arg0 that we saved upon entry. 13533 */ 13534 mstate->dtms_arg[0] = sarg0; 13535 mstate->dtms_arg[1] = sarg1; 13536 13537 return (NULL); 13538 } 13539 13540 static void 13541 dtrace_helper_action_destroy(dtrace_helper_action_t *helper, 13542 dtrace_vstate_t *vstate) 13543 { 13544 int i; 13545 13546 if (helper->dtha_predicate != NULL) 13547 dtrace_difo_release(helper->dtha_predicate, vstate); 13548 13549 for (i = 0; i < helper->dtha_nactions; i++) { 13550 ASSERT(helper->dtha_actions[i] != NULL); 13551 dtrace_difo_release(helper->dtha_actions[i], vstate); 13552 } 13553 13554 kmem_free(helper->dtha_actions, 13555 helper->dtha_nactions * sizeof (dtrace_difo_t *)); 13556 kmem_free(helper, sizeof (dtrace_helper_action_t)); 13557 } 13558 13559 static int 13560 dtrace_helper_destroygen(int gen) 13561 { 13562 proc_t *p = curproc; 13563 dtrace_helpers_t *help = p->p_dtrace_helpers; 13564 dtrace_vstate_t *vstate; 13565 int i; 13566 13567 ASSERT(MUTEX_HELD(&dtrace_lock)); 13568 13569 if (help == NULL || gen > help->dthps_generation) 13570 return (EINVAL); 13571 13572 vstate = &help->dthps_vstate; 13573 13574 for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) { 13575 dtrace_helper_action_t *last = NULL, *h, *next; 13576 13577 for (h = help->dthps_actions[i]; h != NULL; h = next) { 13578 next = h->dtha_next; 13579 13580 if (h->dtha_generation == gen) { 13581 if (last != NULL) { 13582 last->dtha_next = next; 13583 } else { 13584 help->dthps_actions[i] = next; 13585 } 13586 13587 dtrace_helper_action_destroy(h, vstate); 13588 } else { 13589 last = h; 13590 } 13591 } 13592 } 13593 13594 /* 13595 * Interate until we've cleared out all helper providers with the 13596 * given generation number. 13597 */ 13598 for (;;) { 13599 dtrace_helper_provider_t *prov; 13600 13601 /* 13602 * Look for a helper provider with the right generation. We 13603 * have to start back at the beginning of the list each time 13604 * because we drop dtrace_lock. It's unlikely that we'll make 13605 * more than two passes. 13606 */ 13607 for (i = 0; i < help->dthps_nprovs; i++) { 13608 prov = help->dthps_provs[i]; 13609 13610 if (prov->dthp_generation == gen) 13611 break; 13612 } 13613 13614 /* 13615 * If there were no matches, we're done. 13616 */ 13617 if (i == help->dthps_nprovs) 13618 break; 13619 13620 /* 13621 * Move the last helper provider into this slot. 13622 */ 13623 help->dthps_nprovs--; 13624 help->dthps_provs[i] = help->dthps_provs[help->dthps_nprovs]; 13625 help->dthps_provs[help->dthps_nprovs] = NULL; 13626 13627 mutex_exit(&dtrace_lock); 13628 13629 /* 13630 * If we have a meta provider, remove this helper provider. 13631 */ 13632 mutex_enter(&dtrace_meta_lock); 13633 if (dtrace_meta_pid != NULL) { 13634 ASSERT(dtrace_deferred_pid == NULL); 13635 dtrace_helper_provider_remove(&prov->dthp_prov, 13636 p->p_pid); 13637 } 13638 mutex_exit(&dtrace_meta_lock); 13639 13640 dtrace_helper_provider_destroy(prov); 13641 13642 mutex_enter(&dtrace_lock); 13643 } 13644 13645 return (0); 13646 } 13647 13648 static int 13649 dtrace_helper_validate(dtrace_helper_action_t *helper) 13650 { 13651 int err = 0, i; 13652 dtrace_difo_t *dp; 13653 13654 if ((dp = helper->dtha_predicate) != NULL) 13655 err += dtrace_difo_validate_helper(dp); 13656 13657 for (i = 0; i < helper->dtha_nactions; i++) 13658 err += dtrace_difo_validate_helper(helper->dtha_actions[i]); 13659 13660 return (err == 0); 13661 } 13662 13663 static int 13664 dtrace_helper_action_add(int which, dtrace_ecbdesc_t *ep) 13665 { 13666 dtrace_helpers_t *help; 13667 dtrace_helper_action_t *helper, *last; 13668 dtrace_actdesc_t *act; 13669 dtrace_vstate_t *vstate; 13670 dtrace_predicate_t *pred; 13671 int count = 0, nactions = 0, i; 13672 13673 if (which < 0 || which >= DTRACE_NHELPER_ACTIONS) 13674 return (EINVAL); 13675 13676 help = curproc->p_dtrace_helpers; 13677 last = help->dthps_actions[which]; 13678 vstate = &help->dthps_vstate; 13679 13680 for (count = 0; last != NULL; last = last->dtha_next) { 13681 count++; 13682 if (last->dtha_next == NULL) 13683 break; 13684 } 13685 13686 /* 13687 * If we already have dtrace_helper_actions_max helper actions for this 13688 * helper action type, we'll refuse to add a new one. 13689 */ 13690 if (count >= dtrace_helper_actions_max) 13691 return (ENOSPC); 13692 13693 helper = kmem_zalloc(sizeof (dtrace_helper_action_t), KM_SLEEP); 13694 helper->dtha_generation = help->dthps_generation; 13695 13696 if ((pred = ep->dted_pred.dtpdd_predicate) != NULL) { 13697 ASSERT(pred->dtp_difo != NULL); 13698 dtrace_difo_hold(pred->dtp_difo); 13699 helper->dtha_predicate = pred->dtp_difo; 13700 } 13701 13702 for (act = ep->dted_action; act != NULL; act = act->dtad_next) { 13703 if (act->dtad_kind != DTRACEACT_DIFEXPR) 13704 goto err; 13705 13706 if (act->dtad_difo == NULL) 13707 goto err; 13708 13709 nactions++; 13710 } 13711 13712 helper->dtha_actions = kmem_zalloc(sizeof (dtrace_difo_t *) * 13713 (helper->dtha_nactions = nactions), KM_SLEEP); 13714 13715 for (act = ep->dted_action, i = 0; act != NULL; act = act->dtad_next) { 13716 dtrace_difo_hold(act->dtad_difo); 13717 helper->dtha_actions[i++] = act->dtad_difo; 13718 } 13719 13720 if (!dtrace_helper_validate(helper)) 13721 goto err; 13722 13723 if (last == NULL) { 13724 help->dthps_actions[which] = helper; 13725 } else { 13726 last->dtha_next = helper; 13727 } 13728 13729 if (vstate->dtvs_nlocals > dtrace_helptrace_nlocals) { 13730 dtrace_helptrace_nlocals = vstate->dtvs_nlocals; 13731 dtrace_helptrace_next = 0; 13732 } 13733 13734 return (0); 13735 err: 13736 dtrace_helper_action_destroy(helper, vstate); 13737 return (EINVAL); 13738 } 13739 13740 static void 13741 dtrace_helper_provider_register(proc_t *p, dtrace_helpers_t *help, 13742 dof_helper_t *dofhp) 13743 { 13744 ASSERT(MUTEX_NOT_HELD(&dtrace_lock)); 13745 13746 mutex_enter(&dtrace_meta_lock); 13747 mutex_enter(&dtrace_lock); 13748 13749 if (!dtrace_attached() || dtrace_meta_pid == NULL) { 13750 /* 13751 * If the dtrace module is loaded but not attached, or if 13752 * there aren't isn't a meta provider registered to deal with 13753 * these provider descriptions, we need to postpone creating 13754 * the actual providers until later. 13755 */ 13756 13757 if (help->dthps_next == NULL && help->dthps_prev == NULL && 13758 dtrace_deferred_pid != help) { 13759 help->dthps_deferred = 1; 13760 help->dthps_pid = p->p_pid; 13761 help->dthps_next = dtrace_deferred_pid; 13762 help->dthps_prev = NULL; 13763 if (dtrace_deferred_pid != NULL) 13764 dtrace_deferred_pid->dthps_prev = help; 13765 dtrace_deferred_pid = help; 13766 } 13767 13768 mutex_exit(&dtrace_lock); 13769 13770 } else if (dofhp != NULL) { 13771 /* 13772 * If the dtrace module is loaded and we have a particular 13773 * helper provider description, pass that off to the 13774 * meta provider. 13775 */ 13776 13777 mutex_exit(&dtrace_lock); 13778 13779 dtrace_helper_provide(dofhp, p->p_pid); 13780 13781 } else { 13782 /* 13783 * Otherwise, just pass all the helper provider descriptions 13784 * off to the meta provider. 13785 */ 13786 13787 int i; 13788 mutex_exit(&dtrace_lock); 13789 13790 for (i = 0; i < help->dthps_nprovs; i++) { 13791 dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov, 13792 p->p_pid); 13793 } 13794 } 13795 13796 mutex_exit(&dtrace_meta_lock); 13797 } 13798 13799 static int 13800 dtrace_helper_provider_add(dof_helper_t *dofhp, int gen) 13801 { 13802 dtrace_helpers_t *help; 13803 dtrace_helper_provider_t *hprov, **tmp_provs; 13804 uint_t tmp_maxprovs, i; 13805 13806 ASSERT(MUTEX_HELD(&dtrace_lock)); 13807 13808 help = curproc->p_dtrace_helpers; 13809 ASSERT(help != NULL); 13810 13811 /* 13812 * If we already have dtrace_helper_providers_max helper providers, 13813 * we're refuse to add a new one. 13814 */ 13815 if (help->dthps_nprovs >= dtrace_helper_providers_max) 13816 return (ENOSPC); 13817 13818 /* 13819 * Check to make sure this isn't a duplicate. 13820 */ 13821 for (i = 0; i < help->dthps_nprovs; i++) { 13822 if (dofhp->dofhp_addr == 13823 help->dthps_provs[i]->dthp_prov.dofhp_addr) 13824 return (EALREADY); 13825 } 13826 13827 hprov = kmem_zalloc(sizeof (dtrace_helper_provider_t), KM_SLEEP); 13828 hprov->dthp_prov = *dofhp; 13829 hprov->dthp_ref = 1; 13830 hprov->dthp_generation = gen; 13831 13832 /* 13833 * Allocate a bigger table for helper providers if it's already full. 13834 */ 13835 if (help->dthps_maxprovs == help->dthps_nprovs) { 13836 tmp_maxprovs = help->dthps_maxprovs; 13837 tmp_provs = help->dthps_provs; 13838 13839 if (help->dthps_maxprovs == 0) 13840 help->dthps_maxprovs = 2; 13841 else 13842 help->dthps_maxprovs *= 2; 13843 if (help->dthps_maxprovs > dtrace_helper_providers_max) 13844 help->dthps_maxprovs = dtrace_helper_providers_max; 13845 13846 ASSERT(tmp_maxprovs < help->dthps_maxprovs); 13847 13848 help->dthps_provs = kmem_zalloc(help->dthps_maxprovs * 13849 sizeof (dtrace_helper_provider_t *), KM_SLEEP); 13850 13851 if (tmp_provs != NULL) { 13852 bcopy(tmp_provs, help->dthps_provs, tmp_maxprovs * 13853 sizeof (dtrace_helper_provider_t *)); 13854 kmem_free(tmp_provs, tmp_maxprovs * 13855 sizeof (dtrace_helper_provider_t *)); 13856 } 13857 } 13858 13859 help->dthps_provs[help->dthps_nprovs] = hprov; 13860 help->dthps_nprovs++; 13861 13862 return (0); 13863 } 13864 13865 static void 13866 dtrace_helper_provider_destroy(dtrace_helper_provider_t *hprov) 13867 { 13868 mutex_enter(&dtrace_lock); 13869 13870 if (--hprov->dthp_ref == 0) { 13871 dof_hdr_t *dof; 13872 mutex_exit(&dtrace_lock); 13873 dof = (dof_hdr_t *)(uintptr_t)hprov->dthp_prov.dofhp_dof; 13874 dtrace_dof_destroy(dof); 13875 kmem_free(hprov, sizeof (dtrace_helper_provider_t)); 13876 } else { 13877 mutex_exit(&dtrace_lock); 13878 } 13879 } 13880 13881 static int 13882 dtrace_helper_provider_validate(dof_hdr_t *dof, dof_sec_t *sec) 13883 { 13884 uintptr_t daddr = (uintptr_t)dof; 13885 dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec; 13886 dof_provider_t *provider; 13887 dof_probe_t *probe; 13888 uint8_t *arg; 13889 char *strtab, *typestr; 13890 dof_stridx_t typeidx; 13891 size_t typesz; 13892 uint_t nprobes, j, k; 13893 13894 ASSERT(sec->dofs_type == DOF_SECT_PROVIDER); 13895 13896 if (sec->dofs_offset & (sizeof (uint_t) - 1)) { 13897 dtrace_dof_error(dof, "misaligned section offset"); 13898 return (-1); 13899 } 13900 13901 /* 13902 * The section needs to be large enough to contain the DOF provider 13903 * structure appropriate for the given version. 13904 */ 13905 if (sec->dofs_size < 13906 ((dof->dofh_ident[DOF_ID_VERSION] == DOF_VERSION_1) ? 13907 offsetof(dof_provider_t, dofpv_prenoffs) : 13908 sizeof (dof_provider_t))) { 13909 dtrace_dof_error(dof, "provider section too small"); 13910 return (-1); 13911 } 13912 13913 provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset); 13914 str_sec = dtrace_dof_sect(dof, DOF_SECT_STRTAB, provider->dofpv_strtab); 13915 prb_sec = dtrace_dof_sect(dof, DOF_SECT_PROBES, provider->dofpv_probes); 13916 arg_sec = dtrace_dof_sect(dof, DOF_SECT_PRARGS, provider->dofpv_prargs); 13917 off_sec = dtrace_dof_sect(dof, DOF_SECT_PROFFS, provider->dofpv_proffs); 13918 13919 if (str_sec == NULL || prb_sec == NULL || 13920 arg_sec == NULL || off_sec == NULL) 13921 return (-1); 13922 13923 enoff_sec = NULL; 13924 13925 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 && 13926 provider->dofpv_prenoffs != DOF_SECT_NONE && 13927 (enoff_sec = dtrace_dof_sect(dof, DOF_SECT_PRENOFFS, 13928 provider->dofpv_prenoffs)) == NULL) 13929 return (-1); 13930 13931 strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset); 13932 13933 if (provider->dofpv_name >= str_sec->dofs_size || 13934 strlen(strtab + provider->dofpv_name) >= DTRACE_PROVNAMELEN) { 13935 dtrace_dof_error(dof, "invalid provider name"); 13936 return (-1); 13937 } 13938 13939 if (prb_sec->dofs_entsize == 0 || 13940 prb_sec->dofs_entsize > prb_sec->dofs_size) { 13941 dtrace_dof_error(dof, "invalid entry size"); 13942 return (-1); 13943 } 13944 13945 if (prb_sec->dofs_entsize & (sizeof (uintptr_t) - 1)) { 13946 dtrace_dof_error(dof, "misaligned entry size"); 13947 return (-1); 13948 } 13949 13950 if (off_sec->dofs_entsize != sizeof (uint32_t)) { 13951 dtrace_dof_error(dof, "invalid entry size"); 13952 return (-1); 13953 } 13954 13955 if (off_sec->dofs_offset & (sizeof (uint32_t) - 1)) { 13956 dtrace_dof_error(dof, "misaligned section offset"); 13957 return (-1); 13958 } 13959 13960 if (arg_sec->dofs_entsize != sizeof (uint8_t)) { 13961 dtrace_dof_error(dof, "invalid entry size"); 13962 return (-1); 13963 } 13964 13965 arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset); 13966 13967 nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize; 13968 13969 /* 13970 * Take a pass through the probes to check for errors. 13971 */ 13972 for (j = 0; j < nprobes; j++) { 13973 probe = (dof_probe_t *)(uintptr_t)(daddr + 13974 prb_sec->dofs_offset + j * prb_sec->dofs_entsize); 13975 13976 if (probe->dofpr_func >= str_sec->dofs_size) { 13977 dtrace_dof_error(dof, "invalid function name"); 13978 return (-1); 13979 } 13980 13981 if (strlen(strtab + probe->dofpr_func) >= DTRACE_FUNCNAMELEN) { 13982 dtrace_dof_error(dof, "function name too long"); 13983 return (-1); 13984 } 13985 13986 if (probe->dofpr_name >= str_sec->dofs_size || 13987 strlen(strtab + probe->dofpr_name) >= DTRACE_NAMELEN) { 13988 dtrace_dof_error(dof, "invalid probe name"); 13989 return (-1); 13990 } 13991 13992 /* 13993 * The offset count must not wrap the index, and the offsets 13994 * must also not overflow the section's data. 13995 */ 13996 if (probe->dofpr_offidx + probe->dofpr_noffs < 13997 probe->dofpr_offidx || 13998 (probe->dofpr_offidx + probe->dofpr_noffs) * 13999 off_sec->dofs_entsize > off_sec->dofs_size) { 14000 dtrace_dof_error(dof, "invalid probe offset"); 14001 return (-1); 14002 } 14003 14004 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1) { 14005 /* 14006 * If there's no is-enabled offset section, make sure 14007 * there aren't any is-enabled offsets. Otherwise 14008 * perform the same checks as for probe offsets 14009 * (immediately above). 14010 */ 14011 if (enoff_sec == NULL) { 14012 if (probe->dofpr_enoffidx != 0 || 14013 probe->dofpr_nenoffs != 0) { 14014 dtrace_dof_error(dof, "is-enabled " 14015 "offsets with null section"); 14016 return (-1); 14017 } 14018 } else if (probe->dofpr_enoffidx + 14019 probe->dofpr_nenoffs < probe->dofpr_enoffidx || 14020 (probe->dofpr_enoffidx + probe->dofpr_nenoffs) * 14021 enoff_sec->dofs_entsize > enoff_sec->dofs_size) { 14022 dtrace_dof_error(dof, "invalid is-enabled " 14023 "offset"); 14024 return (-1); 14025 } 14026 14027 if (probe->dofpr_noffs + probe->dofpr_nenoffs == 0) { 14028 dtrace_dof_error(dof, "zero probe and " 14029 "is-enabled offsets"); 14030 return (-1); 14031 } 14032 } else if (probe->dofpr_noffs == 0) { 14033 dtrace_dof_error(dof, "zero probe offsets"); 14034 return (-1); 14035 } 14036 14037 if (probe->dofpr_argidx + probe->dofpr_xargc < 14038 probe->dofpr_argidx || 14039 (probe->dofpr_argidx + probe->dofpr_xargc) * 14040 arg_sec->dofs_entsize > arg_sec->dofs_size) { 14041 dtrace_dof_error(dof, "invalid args"); 14042 return (-1); 14043 } 14044 14045 typeidx = probe->dofpr_nargv; 14046 typestr = strtab + probe->dofpr_nargv; 14047 for (k = 0; k < probe->dofpr_nargc; k++) { 14048 if (typeidx >= str_sec->dofs_size) { 14049 dtrace_dof_error(dof, "bad " 14050 "native argument type"); 14051 return (-1); 14052 } 14053 14054 typesz = strlen(typestr) + 1; 14055 if (typesz > DTRACE_ARGTYPELEN) { 14056 dtrace_dof_error(dof, "native " 14057 "argument type too long"); 14058 return (-1); 14059 } 14060 typeidx += typesz; 14061 typestr += typesz; 14062 } 14063 14064 typeidx = probe->dofpr_xargv; 14065 typestr = strtab + probe->dofpr_xargv; 14066 for (k = 0; k < probe->dofpr_xargc; k++) { 14067 if (arg[probe->dofpr_argidx + k] > probe->dofpr_nargc) { 14068 dtrace_dof_error(dof, "bad " 14069 "native argument index"); 14070 return (-1); 14071 } 14072 14073 if (typeidx >= str_sec->dofs_size) { 14074 dtrace_dof_error(dof, "bad " 14075 "translated argument type"); 14076 return (-1); 14077 } 14078 14079 typesz = strlen(typestr) + 1; 14080 if (typesz > DTRACE_ARGTYPELEN) { 14081 dtrace_dof_error(dof, "translated argument " 14082 "type too long"); 14083 return (-1); 14084 } 14085 14086 typeidx += typesz; 14087 typestr += typesz; 14088 } 14089 } 14090 14091 return (0); 14092 } 14093 14094 static int 14095 dtrace_helper_slurp(dof_hdr_t *dof, dof_helper_t *dhp) 14096 { 14097 dtrace_helpers_t *help; 14098 dtrace_vstate_t *vstate; 14099 dtrace_enabling_t *enab = NULL; 14100 int i, gen, rv, nhelpers = 0, nprovs = 0, destroy = 1; 14101 uintptr_t daddr = (uintptr_t)dof; 14102 14103 ASSERT(MUTEX_HELD(&dtrace_lock)); 14104 14105 if ((help = curproc->p_dtrace_helpers) == NULL) 14106 help = dtrace_helpers_create(curproc); 14107 14108 vstate = &help->dthps_vstate; 14109 14110 if ((rv = dtrace_dof_slurp(dof, vstate, NULL, &enab, 14111 dhp != NULL ? dhp->dofhp_addr : 0, B_FALSE)) != 0) { 14112 dtrace_dof_destroy(dof); 14113 return (rv); 14114 } 14115 14116 /* 14117 * Look for helper providers and validate their descriptions. 14118 */ 14119 if (dhp != NULL) { 14120 for (i = 0; i < dof->dofh_secnum; i++) { 14121 dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr + 14122 dof->dofh_secoff + i * dof->dofh_secsize); 14123 14124 if (sec->dofs_type != DOF_SECT_PROVIDER) 14125 continue; 14126 14127 if (dtrace_helper_provider_validate(dof, sec) != 0) { 14128 dtrace_enabling_destroy(enab); 14129 dtrace_dof_destroy(dof); 14130 return (-1); 14131 } 14132 14133 nprovs++; 14134 } 14135 } 14136 14137 /* 14138 * Now we need to walk through the ECB descriptions in the enabling. 14139 */ 14140 for (i = 0; i < enab->dten_ndesc; i++) { 14141 dtrace_ecbdesc_t *ep = enab->dten_desc[i]; 14142 dtrace_probedesc_t *desc = &ep->dted_probe; 14143 14144 if (strcmp(desc->dtpd_provider, "dtrace") != 0) 14145 continue; 14146 14147 if (strcmp(desc->dtpd_mod, "helper") != 0) 14148 continue; 14149 14150 if (strcmp(desc->dtpd_func, "ustack") != 0) 14151 continue; 14152 14153 if ((rv = dtrace_helper_action_add(DTRACE_HELPER_ACTION_USTACK, 14154 ep)) != 0) { 14155 /* 14156 * Adding this helper action failed -- we are now going 14157 * to rip out the entire generation and return failure. 14158 */ 14159 (void) dtrace_helper_destroygen(help->dthps_generation); 14160 dtrace_enabling_destroy(enab); 14161 dtrace_dof_destroy(dof); 14162 return (-1); 14163 } 14164 14165 nhelpers++; 14166 } 14167 14168 if (nhelpers < enab->dten_ndesc) 14169 dtrace_dof_error(dof, "unmatched helpers"); 14170 14171 gen = help->dthps_generation++; 14172 dtrace_enabling_destroy(enab); 14173 14174 if (dhp != NULL && nprovs > 0) { 14175 dhp->dofhp_dof = (uint64_t)(uintptr_t)dof; 14176 if (dtrace_helper_provider_add(dhp, gen) == 0) { 14177 mutex_exit(&dtrace_lock); 14178 dtrace_helper_provider_register(curproc, help, dhp); 14179 mutex_enter(&dtrace_lock); 14180 14181 destroy = 0; 14182 } 14183 } 14184 14185 if (destroy) 14186 dtrace_dof_destroy(dof); 14187 14188 return (gen); 14189 } 14190 14191 static dtrace_helpers_t * 14192 dtrace_helpers_create(proc_t *p) 14193 { 14194 dtrace_helpers_t *help; 14195 14196 ASSERT(MUTEX_HELD(&dtrace_lock)); 14197 ASSERT(p->p_dtrace_helpers == NULL); 14198 14199 help = kmem_zalloc(sizeof (dtrace_helpers_t), KM_SLEEP); 14200 help->dthps_actions = kmem_zalloc(sizeof (dtrace_helper_action_t *) * 14201 DTRACE_NHELPER_ACTIONS, KM_SLEEP); 14202 14203 p->p_dtrace_helpers = help; 14204 dtrace_helpers++; 14205 14206 return (help); 14207 } 14208 14209 static void 14210 dtrace_helpers_destroy(void) 14211 { 14212 dtrace_helpers_t *help; 14213 dtrace_vstate_t *vstate; 14214 proc_t *p = curproc; 14215 int i; 14216 14217 mutex_enter(&dtrace_lock); 14218 14219 ASSERT(p->p_dtrace_helpers != NULL); 14220 ASSERT(dtrace_helpers > 0); 14221 14222 help = p->p_dtrace_helpers; 14223 vstate = &help->dthps_vstate; 14224 14225 /* 14226 * We're now going to lose the help from this process. 14227 */ 14228 p->p_dtrace_helpers = NULL; 14229 dtrace_sync(); 14230 14231 /* 14232 * Destory the helper actions. 14233 */ 14234 for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) { 14235 dtrace_helper_action_t *h, *next; 14236 14237 for (h = help->dthps_actions[i]; h != NULL; h = next) { 14238 next = h->dtha_next; 14239 dtrace_helper_action_destroy(h, vstate); 14240 h = next; 14241 } 14242 } 14243 14244 mutex_exit(&dtrace_lock); 14245 14246 /* 14247 * Destroy the helper providers. 14248 */ 14249 if (help->dthps_maxprovs > 0) { 14250 mutex_enter(&dtrace_meta_lock); 14251 if (dtrace_meta_pid != NULL) { 14252 ASSERT(dtrace_deferred_pid == NULL); 14253 14254 for (i = 0; i < help->dthps_nprovs; i++) { 14255 dtrace_helper_provider_remove( 14256 &help->dthps_provs[i]->dthp_prov, p->p_pid); 14257 } 14258 } else { 14259 mutex_enter(&dtrace_lock); 14260 ASSERT(help->dthps_deferred == 0 || 14261 help->dthps_next != NULL || 14262 help->dthps_prev != NULL || 14263 help == dtrace_deferred_pid); 14264 14265 /* 14266 * Remove the helper from the deferred list. 14267 */ 14268 if (help->dthps_next != NULL) 14269 help->dthps_next->dthps_prev = help->dthps_prev; 14270 if (help->dthps_prev != NULL) 14271 help->dthps_prev->dthps_next = help->dthps_next; 14272 if (dtrace_deferred_pid == help) { 14273 dtrace_deferred_pid = help->dthps_next; 14274 ASSERT(help->dthps_prev == NULL); 14275 } 14276 14277 mutex_exit(&dtrace_lock); 14278 } 14279 14280 mutex_exit(&dtrace_meta_lock); 14281 14282 for (i = 0; i < help->dthps_nprovs; i++) { 14283 dtrace_helper_provider_destroy(help->dthps_provs[i]); 14284 } 14285 14286 kmem_free(help->dthps_provs, help->dthps_maxprovs * 14287 sizeof (dtrace_helper_provider_t *)); 14288 } 14289 14290 mutex_enter(&dtrace_lock); 14291 14292 dtrace_vstate_fini(&help->dthps_vstate); 14293 kmem_free(help->dthps_actions, 14294 sizeof (dtrace_helper_action_t *) * DTRACE_NHELPER_ACTIONS); 14295 kmem_free(help, sizeof (dtrace_helpers_t)); 14296 14297 --dtrace_helpers; 14298 mutex_exit(&dtrace_lock); 14299 } 14300 14301 static void 14302 dtrace_helpers_duplicate(proc_t *from, proc_t *to) 14303 { 14304 dtrace_helpers_t *help, *newhelp; 14305 dtrace_helper_action_t *helper, *new, *last; 14306 dtrace_difo_t *dp; 14307 dtrace_vstate_t *vstate; 14308 int i, j, sz, hasprovs = 0; 14309 14310 mutex_enter(&dtrace_lock); 14311 ASSERT(from->p_dtrace_helpers != NULL); 14312 ASSERT(dtrace_helpers > 0); 14313 14314 help = from->p_dtrace_helpers; 14315 newhelp = dtrace_helpers_create(to); 14316 ASSERT(to->p_dtrace_helpers != NULL); 14317 14318 newhelp->dthps_generation = help->dthps_generation; 14319 vstate = &newhelp->dthps_vstate; 14320 14321 /* 14322 * Duplicate the helper actions. 14323 */ 14324 for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) { 14325 if ((helper = help->dthps_actions[i]) == NULL) 14326 continue; 14327 14328 for (last = NULL; helper != NULL; helper = helper->dtha_next) { 14329 new = kmem_zalloc(sizeof (dtrace_helper_action_t), 14330 KM_SLEEP); 14331 new->dtha_generation = helper->dtha_generation; 14332 14333 if ((dp = helper->dtha_predicate) != NULL) { 14334 dp = dtrace_difo_duplicate(dp, vstate); 14335 new->dtha_predicate = dp; 14336 } 14337 14338 new->dtha_nactions = helper->dtha_nactions; 14339 sz = sizeof (dtrace_difo_t *) * new->dtha_nactions; 14340 new->dtha_actions = kmem_alloc(sz, KM_SLEEP); 14341 14342 for (j = 0; j < new->dtha_nactions; j++) { 14343 dtrace_difo_t *dp = helper->dtha_actions[j]; 14344 14345 ASSERT(dp != NULL); 14346 dp = dtrace_difo_duplicate(dp, vstate); 14347 new->dtha_actions[j] = dp; 14348 } 14349 14350 if (last != NULL) { 14351 last->dtha_next = new; 14352 } else { 14353 newhelp->dthps_actions[i] = new; 14354 } 14355 14356 last = new; 14357 } 14358 } 14359 14360 /* 14361 * Duplicate the helper providers and register them with the 14362 * DTrace framework. 14363 */ 14364 if (help->dthps_nprovs > 0) { 14365 newhelp->dthps_nprovs = help->dthps_nprovs; 14366 newhelp->dthps_maxprovs = help->dthps_nprovs; 14367 newhelp->dthps_provs = kmem_alloc(newhelp->dthps_nprovs * 14368 sizeof (dtrace_helper_provider_t *), KM_SLEEP); 14369 for (i = 0; i < newhelp->dthps_nprovs; i++) { 14370 newhelp->dthps_provs[i] = help->dthps_provs[i]; 14371 newhelp->dthps_provs[i]->dthp_ref++; 14372 } 14373 14374 hasprovs = 1; 14375 } 14376 14377 mutex_exit(&dtrace_lock); 14378 14379 if (hasprovs) 14380 dtrace_helper_provider_register(to, newhelp, NULL); 14381 } 14382 14383 /* 14384 * DTrace Hook Functions 14385 */ 14386 static void 14387 dtrace_module_loaded(struct modctl *ctl) 14388 { 14389 dtrace_provider_t *prv; 14390 14391 mutex_enter(&dtrace_provider_lock); 14392 mutex_enter(&mod_lock); 14393 14394 ASSERT(ctl->mod_busy); 14395 14396 /* 14397 * We're going to call each providers per-module provide operation 14398 * specifying only this module. 14399 */ 14400 for (prv = dtrace_provider; prv != NULL; prv = prv->dtpv_next) 14401 prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl); 14402 14403 mutex_exit(&mod_lock); 14404 mutex_exit(&dtrace_provider_lock); 14405 14406 /* 14407 * If we have any retained enablings, we need to match against them. 14408 * Enabling probes requires that cpu_lock be held, and we cannot hold 14409 * cpu_lock here -- it is legal for cpu_lock to be held when loading a 14410 * module. (In particular, this happens when loading scheduling 14411 * classes.) So if we have any retained enablings, we need to dispatch 14412 * our task queue to do the match for us. 14413 */ 14414 mutex_enter(&dtrace_lock); 14415 14416 if (dtrace_retained == NULL) { 14417 mutex_exit(&dtrace_lock); 14418 return; 14419 } 14420 14421 (void) taskq_dispatch(dtrace_taskq, 14422 (task_func_t *)dtrace_enabling_matchall, NULL, TQ_SLEEP); 14423 14424 mutex_exit(&dtrace_lock); 14425 14426 /* 14427 * And now, for a little heuristic sleaze: in general, we want to 14428 * match modules as soon as they load. However, we cannot guarantee 14429 * this, because it would lead us to the lock ordering violation 14430 * outlined above. The common case, of course, is that cpu_lock is 14431 * _not_ held -- so we delay here for a clock tick, hoping that that's 14432 * long enough for the task queue to do its work. If it's not, it's 14433 * not a serious problem -- it just means that the module that we 14434 * just loaded may not be immediately instrumentable. 14435 */ 14436 delay(1); 14437 } 14438 14439 static void 14440 dtrace_module_unloaded(struct modctl *ctl) 14441 { 14442 dtrace_probe_t template, *probe, *first, *next; 14443 dtrace_provider_t *prov; 14444 14445 template.dtpr_mod = ctl->mod_modname; 14446 14447 mutex_enter(&dtrace_provider_lock); 14448 mutex_enter(&mod_lock); 14449 mutex_enter(&dtrace_lock); 14450 14451 if (dtrace_bymod == NULL) { 14452 /* 14453 * The DTrace module is loaded (obviously) but not attached; 14454 * we don't have any work to do. 14455 */ 14456 mutex_exit(&dtrace_provider_lock); 14457 mutex_exit(&mod_lock); 14458 mutex_exit(&dtrace_lock); 14459 return; 14460 } 14461 14462 for (probe = first = dtrace_hash_lookup(dtrace_bymod, &template); 14463 probe != NULL; probe = probe->dtpr_nextmod) { 14464 if (probe->dtpr_ecb != NULL) { 14465 mutex_exit(&dtrace_provider_lock); 14466 mutex_exit(&mod_lock); 14467 mutex_exit(&dtrace_lock); 14468 14469 /* 14470 * This shouldn't _actually_ be possible -- we're 14471 * unloading a module that has an enabled probe in it. 14472 * (It's normally up to the provider to make sure that 14473 * this can't happen.) However, because dtps_enable() 14474 * doesn't have a failure mode, there can be an 14475 * enable/unload race. Upshot: we don't want to 14476 * assert, but we're not going to disable the 14477 * probe, either. 14478 */ 14479 if (dtrace_err_verbose) { 14480 cmn_err(CE_WARN, "unloaded module '%s' had " 14481 "enabled probes", ctl->mod_modname); 14482 } 14483 14484 return; 14485 } 14486 } 14487 14488 probe = first; 14489 14490 for (first = NULL; probe != NULL; probe = next) { 14491 ASSERT(dtrace_probes[probe->dtpr_id - 1] == probe); 14492 14493 dtrace_probes[probe->dtpr_id - 1] = NULL; 14494 14495 next = probe->dtpr_nextmod; 14496 dtrace_hash_remove(dtrace_bymod, probe); 14497 dtrace_hash_remove(dtrace_byfunc, probe); 14498 dtrace_hash_remove(dtrace_byname, probe); 14499 14500 if (first == NULL) { 14501 first = probe; 14502 probe->dtpr_nextmod = NULL; 14503 } else { 14504 probe->dtpr_nextmod = first; 14505 first = probe; 14506 } 14507 } 14508 14509 /* 14510 * We've removed all of the module's probes from the hash chains and 14511 * from the probe array. Now issue a dtrace_sync() to be sure that 14512 * everyone has cleared out from any probe array processing. 14513 */ 14514 dtrace_sync(); 14515 14516 for (probe = first; probe != NULL; probe = first) { 14517 first = probe->dtpr_nextmod; 14518 prov = probe->dtpr_provider; 14519 prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, probe->dtpr_id, 14520 probe->dtpr_arg); 14521 kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1); 14522 kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1); 14523 kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1); 14524 vmem_free(dtrace_arena, (void *)(uintptr_t)probe->dtpr_id, 1); 14525 kmem_free(probe, sizeof (dtrace_probe_t)); 14526 } 14527 14528 mutex_exit(&dtrace_lock); 14529 mutex_exit(&mod_lock); 14530 mutex_exit(&dtrace_provider_lock); 14531 } 14532 14533 void 14534 dtrace_suspend(void) 14535 { 14536 dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_suspend)); 14537 } 14538 14539 void 14540 dtrace_resume(void) 14541 { 14542 dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_resume)); 14543 } 14544 14545 static int 14546 dtrace_cpu_setup(cpu_setup_t what, processorid_t cpu) 14547 { 14548 ASSERT(MUTEX_HELD(&cpu_lock)); 14549 mutex_enter(&dtrace_lock); 14550 14551 switch (what) { 14552 case CPU_CONFIG: { 14553 dtrace_state_t *state; 14554 dtrace_optval_t *opt, rs, c; 14555 14556 /* 14557 * For now, we only allocate a new buffer for anonymous state. 14558 */ 14559 if ((state = dtrace_anon.dta_state) == NULL) 14560 break; 14561 14562 if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE) 14563 break; 14564 14565 opt = state->dts_options; 14566 c = opt[DTRACEOPT_CPU]; 14567 14568 if (c != DTRACE_CPUALL && c != DTRACEOPT_UNSET && c != cpu) 14569 break; 14570 14571 /* 14572 * Regardless of what the actual policy is, we're going to 14573 * temporarily set our resize policy to be manual. We're 14574 * also going to temporarily set our CPU option to denote 14575 * the newly configured CPU. 14576 */ 14577 rs = opt[DTRACEOPT_BUFRESIZE]; 14578 opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_MANUAL; 14579 opt[DTRACEOPT_CPU] = (dtrace_optval_t)cpu; 14580 14581 (void) dtrace_state_buffers(state); 14582 14583 opt[DTRACEOPT_BUFRESIZE] = rs; 14584 opt[DTRACEOPT_CPU] = c; 14585 14586 break; 14587 } 14588 14589 case CPU_UNCONFIG: 14590 /* 14591 * We don't free the buffer in the CPU_UNCONFIG case. (The 14592 * buffer will be freed when the consumer exits.) 14593 */ 14594 break; 14595 14596 default: 14597 break; 14598 } 14599 14600 mutex_exit(&dtrace_lock); 14601 return (0); 14602 } 14603 14604 static void 14605 dtrace_cpu_setup_initial(processorid_t cpu) 14606 { 14607 (void) dtrace_cpu_setup(CPU_CONFIG, cpu); 14608 } 14609 14610 static void 14611 dtrace_toxrange_add(uintptr_t base, uintptr_t limit) 14612 { 14613 if (dtrace_toxranges >= dtrace_toxranges_max) { 14614 int osize, nsize; 14615 dtrace_toxrange_t *range; 14616 14617 osize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t); 14618 14619 if (osize == 0) { 14620 ASSERT(dtrace_toxrange == NULL); 14621 ASSERT(dtrace_toxranges_max == 0); 14622 dtrace_toxranges_max = 1; 14623 } else { 14624 dtrace_toxranges_max <<= 1; 14625 } 14626 14627 nsize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t); 14628 range = kmem_zalloc(nsize, KM_SLEEP); 14629 14630 if (dtrace_toxrange != NULL) { 14631 ASSERT(osize != 0); 14632 bcopy(dtrace_toxrange, range, osize); 14633 kmem_free(dtrace_toxrange, osize); 14634 } 14635 14636 dtrace_toxrange = range; 14637 } 14638 14639 ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_base == NULL); 14640 ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_limit == NULL); 14641 14642 dtrace_toxrange[dtrace_toxranges].dtt_base = base; 14643 dtrace_toxrange[dtrace_toxranges].dtt_limit = limit; 14644 dtrace_toxranges++; 14645 } 14646 14647 /* 14648 * DTrace Driver Cookbook Functions 14649 */ 14650 /*ARGSUSED*/ 14651 static int 14652 dtrace_attach(dev_info_t *devi, ddi_attach_cmd_t cmd) 14653 { 14654 dtrace_provider_id_t id; 14655 dtrace_state_t *state = NULL; 14656 dtrace_enabling_t *enab; 14657 14658 mutex_enter(&cpu_lock); 14659 mutex_enter(&dtrace_provider_lock); 14660 mutex_enter(&dtrace_lock); 14661 14662 if (ddi_soft_state_init(&dtrace_softstate, 14663 sizeof (dtrace_state_t), 0) != 0) { 14664 cmn_err(CE_NOTE, "/dev/dtrace failed to initialize soft state"); 14665 mutex_exit(&cpu_lock); 14666 mutex_exit(&dtrace_provider_lock); 14667 mutex_exit(&dtrace_lock); 14668 return (DDI_FAILURE); 14669 } 14670 14671 if (ddi_create_minor_node(devi, DTRACEMNR_DTRACE, S_IFCHR, 14672 DTRACEMNRN_DTRACE, DDI_PSEUDO, NULL) == DDI_FAILURE || 14673 ddi_create_minor_node(devi, DTRACEMNR_HELPER, S_IFCHR, 14674 DTRACEMNRN_HELPER, DDI_PSEUDO, NULL) == DDI_FAILURE) { 14675 cmn_err(CE_NOTE, "/dev/dtrace couldn't create minor nodes"); 14676 ddi_remove_minor_node(devi, NULL); 14677 ddi_soft_state_fini(&dtrace_softstate); 14678 mutex_exit(&cpu_lock); 14679 mutex_exit(&dtrace_provider_lock); 14680 mutex_exit(&dtrace_lock); 14681 return (DDI_FAILURE); 14682 } 14683 14684 ddi_report_dev(devi); 14685 dtrace_devi = devi; 14686 14687 dtrace_modload = dtrace_module_loaded; 14688 dtrace_modunload = dtrace_module_unloaded; 14689 dtrace_cpu_init = dtrace_cpu_setup_initial; 14690 dtrace_helpers_cleanup = dtrace_helpers_destroy; 14691 dtrace_helpers_fork = dtrace_helpers_duplicate; 14692 dtrace_cpustart_init = dtrace_suspend; 14693 dtrace_cpustart_fini = dtrace_resume; 14694 dtrace_debugger_init = dtrace_suspend; 14695 dtrace_debugger_fini = dtrace_resume; 14696 14697 register_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL); 14698 14699 ASSERT(MUTEX_HELD(&cpu_lock)); 14700 14701 dtrace_arena = vmem_create("dtrace", (void *)1, UINT32_MAX, 1, 14702 NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER); 14703 dtrace_minor = vmem_create("dtrace_minor", (void *)DTRACEMNRN_CLONE, 14704 UINT32_MAX - DTRACEMNRN_CLONE, 1, NULL, NULL, NULL, 0, 14705 VM_SLEEP | VMC_IDENTIFIER); 14706 dtrace_taskq = taskq_create("dtrace_taskq", 1, maxclsyspri, 14707 1, INT_MAX, 0); 14708 14709 dtrace_state_cache = kmem_cache_create("dtrace_state_cache", 14710 sizeof (dtrace_dstate_percpu_t) * NCPU, DTRACE_STATE_ALIGN, 14711 NULL, NULL, NULL, NULL, NULL, 0); 14712 14713 ASSERT(MUTEX_HELD(&cpu_lock)); 14714 dtrace_bymod = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_mod), 14715 offsetof(dtrace_probe_t, dtpr_nextmod), 14716 offsetof(dtrace_probe_t, dtpr_prevmod)); 14717 14718 dtrace_byfunc = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_func), 14719 offsetof(dtrace_probe_t, dtpr_nextfunc), 14720 offsetof(dtrace_probe_t, dtpr_prevfunc)); 14721 14722 dtrace_byname = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_name), 14723 offsetof(dtrace_probe_t, dtpr_nextname), 14724 offsetof(dtrace_probe_t, dtpr_prevname)); 14725 14726 if (dtrace_retain_max < 1) { 14727 cmn_err(CE_WARN, "illegal value (%lu) for dtrace_retain_max; " 14728 "setting to 1", dtrace_retain_max); 14729 dtrace_retain_max = 1; 14730 } 14731 14732 /* 14733 * Now discover our toxic ranges. 14734 */ 14735 dtrace_toxic_ranges(dtrace_toxrange_add); 14736 14737 /* 14738 * Before we register ourselves as a provider to our own framework, 14739 * we would like to assert that dtrace_provider is NULL -- but that's 14740 * not true if we were loaded as a dependency of a DTrace provider. 14741 * Once we've registered, we can assert that dtrace_provider is our 14742 * pseudo provider. 14743 */ 14744 (void) dtrace_register("dtrace", &dtrace_provider_attr, 14745 DTRACE_PRIV_NONE, 0, &dtrace_provider_ops, NULL, &id); 14746 14747 ASSERT(dtrace_provider != NULL); 14748 ASSERT((dtrace_provider_id_t)dtrace_provider == id); 14749 14750 dtrace_probeid_begin = dtrace_probe_create((dtrace_provider_id_t) 14751 dtrace_provider, NULL, NULL, "BEGIN", 0, NULL); 14752 dtrace_probeid_end = dtrace_probe_create((dtrace_provider_id_t) 14753 dtrace_provider, NULL, NULL, "END", 0, NULL); 14754 dtrace_probeid_error = dtrace_probe_create((dtrace_provider_id_t) 14755 dtrace_provider, NULL, NULL, "ERROR", 1, NULL); 14756 14757 dtrace_anon_property(); 14758 mutex_exit(&cpu_lock); 14759 14760 /* 14761 * If DTrace helper tracing is enabled, we need to allocate the 14762 * trace buffer and initialize the values. 14763 */ 14764 if (dtrace_helptrace_enabled) { 14765 ASSERT(dtrace_helptrace_buffer == NULL); 14766 dtrace_helptrace_buffer = 14767 kmem_zalloc(dtrace_helptrace_bufsize, KM_SLEEP); 14768 dtrace_helptrace_next = 0; 14769 } 14770 14771 /* 14772 * If there are already providers, we must ask them to provide their 14773 * probes, and then match any anonymous enabling against them. Note 14774 * that there should be no other retained enablings at this time: 14775 * the only retained enablings at this time should be the anonymous 14776 * enabling. 14777 */ 14778 if (dtrace_anon.dta_enabling != NULL) { 14779 ASSERT(dtrace_retained == dtrace_anon.dta_enabling); 14780 14781 dtrace_enabling_provide(NULL); 14782 state = dtrace_anon.dta_state; 14783 14784 /* 14785 * We couldn't hold cpu_lock across the above call to 14786 * dtrace_enabling_provide(), but we must hold it to actually 14787 * enable the probes. We have to drop all of our locks, pick 14788 * up cpu_lock, and regain our locks before matching the 14789 * retained anonymous enabling. 14790 */ 14791 mutex_exit(&dtrace_lock); 14792 mutex_exit(&dtrace_provider_lock); 14793 14794 mutex_enter(&cpu_lock); 14795 mutex_enter(&dtrace_provider_lock); 14796 mutex_enter(&dtrace_lock); 14797 14798 if ((enab = dtrace_anon.dta_enabling) != NULL) 14799 (void) dtrace_enabling_match(enab, NULL); 14800 14801 mutex_exit(&cpu_lock); 14802 } 14803 14804 mutex_exit(&dtrace_lock); 14805 mutex_exit(&dtrace_provider_lock); 14806 14807 if (state != NULL) { 14808 /* 14809 * If we created any anonymous state, set it going now. 14810 */ 14811 (void) dtrace_state_go(state, &dtrace_anon.dta_beganon); 14812 } 14813 14814 return (DDI_SUCCESS); 14815 } 14816 14817 /*ARGSUSED*/ 14818 static int 14819 dtrace_open(dev_t *devp, int flag, int otyp, cred_t *cred_p) 14820 { 14821 dtrace_state_t *state; 14822 uint32_t priv; 14823 uid_t uid; 14824 zoneid_t zoneid; 14825 14826 if (getminor(*devp) == DTRACEMNRN_HELPER) 14827 return (0); 14828 14829 /* 14830 * If this wasn't an open with the "helper" minor, then it must be 14831 * the "dtrace" minor. 14832 */ 14833 if (getminor(*devp) != DTRACEMNRN_DTRACE) 14834 return (ENXIO); 14835 14836 /* 14837 * If no DTRACE_PRIV_* bits are set in the credential, then the 14838 * caller lacks sufficient permission to do anything with DTrace. 14839 */ 14840 dtrace_cred2priv(cred_p, &priv, &uid, &zoneid); 14841 if (priv == DTRACE_PRIV_NONE) 14842 return (EACCES); 14843 14844 /* 14845 * Ask all providers to provide all their probes. 14846 */ 14847 mutex_enter(&dtrace_provider_lock); 14848 dtrace_probe_provide(NULL, NULL); 14849 mutex_exit(&dtrace_provider_lock); 14850 14851 mutex_enter(&cpu_lock); 14852 mutex_enter(&dtrace_lock); 14853 dtrace_opens++; 14854 dtrace_membar_producer(); 14855 14856 /* 14857 * If the kernel debugger is active (that is, if the kernel debugger 14858 * modified text in some way), we won't allow the open. 14859 */ 14860 if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) { 14861 dtrace_opens--; 14862 mutex_exit(&cpu_lock); 14863 mutex_exit(&dtrace_lock); 14864 return (EBUSY); 14865 } 14866 14867 state = dtrace_state_create(devp, cred_p); 14868 mutex_exit(&cpu_lock); 14869 14870 if (state == NULL) { 14871 if (--dtrace_opens == 0 && dtrace_anon.dta_enabling == NULL) 14872 (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE); 14873 mutex_exit(&dtrace_lock); 14874 return (EAGAIN); 14875 } 14876 14877 mutex_exit(&dtrace_lock); 14878 14879 return (0); 14880 } 14881 14882 /*ARGSUSED*/ 14883 static int 14884 dtrace_close(dev_t dev, int flag, int otyp, cred_t *cred_p) 14885 { 14886 minor_t minor = getminor(dev); 14887 dtrace_state_t *state; 14888 14889 if (minor == DTRACEMNRN_HELPER) 14890 return (0); 14891 14892 state = ddi_get_soft_state(dtrace_softstate, minor); 14893 14894 mutex_enter(&cpu_lock); 14895 mutex_enter(&dtrace_lock); 14896 14897 if (state->dts_anon) { 14898 /* 14899 * There is anonymous state. Destroy that first. 14900 */ 14901 ASSERT(dtrace_anon.dta_state == NULL); 14902 dtrace_state_destroy(state->dts_anon); 14903 } 14904 14905 dtrace_state_destroy(state); 14906 ASSERT(dtrace_opens > 0); 14907 14908 /* 14909 * Only relinquish control of the kernel debugger interface when there 14910 * are no consumers and no anonymous enablings. 14911 */ 14912 if (--dtrace_opens == 0 && dtrace_anon.dta_enabling == NULL) 14913 (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE); 14914 14915 mutex_exit(&dtrace_lock); 14916 mutex_exit(&cpu_lock); 14917 14918 return (0); 14919 } 14920 14921 /*ARGSUSED*/ 14922 static int 14923 dtrace_ioctl_helper(int cmd, intptr_t arg, int *rv) 14924 { 14925 int rval; 14926 dof_helper_t help, *dhp = NULL; 14927 14928 switch (cmd) { 14929 case DTRACEHIOC_ADDDOF: 14930 if (copyin((void *)arg, &help, sizeof (help)) != 0) { 14931 dtrace_dof_error(NULL, "failed to copyin DOF helper"); 14932 return (EFAULT); 14933 } 14934 14935 dhp = &help; 14936 arg = (intptr_t)help.dofhp_dof; 14937 /*FALLTHROUGH*/ 14938 14939 case DTRACEHIOC_ADD: { 14940 dof_hdr_t *dof = dtrace_dof_copyin(arg, &rval); 14941 14942 if (dof == NULL) 14943 return (rval); 14944 14945 mutex_enter(&dtrace_lock); 14946 14947 /* 14948 * dtrace_helper_slurp() takes responsibility for the dof -- 14949 * it may free it now or it may save it and free it later. 14950 */ 14951 if ((rval = dtrace_helper_slurp(dof, dhp)) != -1) { 14952 *rv = rval; 14953 rval = 0; 14954 } else { 14955 rval = EINVAL; 14956 } 14957 14958 mutex_exit(&dtrace_lock); 14959 return (rval); 14960 } 14961 14962 case DTRACEHIOC_REMOVE: { 14963 mutex_enter(&dtrace_lock); 14964 rval = dtrace_helper_destroygen(arg); 14965 mutex_exit(&dtrace_lock); 14966 14967 return (rval); 14968 } 14969 14970 default: 14971 break; 14972 } 14973 14974 return (ENOTTY); 14975 } 14976 14977 /*ARGSUSED*/ 14978 static int 14979 dtrace_ioctl(dev_t dev, int cmd, intptr_t arg, int md, cred_t *cr, int *rv) 14980 { 14981 minor_t minor = getminor(dev); 14982 dtrace_state_t *state; 14983 int rval; 14984 14985 if (minor == DTRACEMNRN_HELPER) 14986 return (dtrace_ioctl_helper(cmd, arg, rv)); 14987 14988 state = ddi_get_soft_state(dtrace_softstate, minor); 14989 14990 if (state->dts_anon) { 14991 ASSERT(dtrace_anon.dta_state == NULL); 14992 state = state->dts_anon; 14993 } 14994 14995 switch (cmd) { 14996 case DTRACEIOC_PROVIDER: { 14997 dtrace_providerdesc_t pvd; 14998 dtrace_provider_t *pvp; 14999 15000 if (copyin((void *)arg, &pvd, sizeof (pvd)) != 0) 15001 return (EFAULT); 15002 15003 pvd.dtvd_name[DTRACE_PROVNAMELEN - 1] = '\0'; 15004 mutex_enter(&dtrace_provider_lock); 15005 15006 for (pvp = dtrace_provider; pvp != NULL; pvp = pvp->dtpv_next) { 15007 if (strcmp(pvp->dtpv_name, pvd.dtvd_name) == 0) 15008 break; 15009 } 15010 15011 mutex_exit(&dtrace_provider_lock); 15012 15013 if (pvp == NULL) 15014 return (ESRCH); 15015 15016 bcopy(&pvp->dtpv_priv, &pvd.dtvd_priv, sizeof (dtrace_ppriv_t)); 15017 bcopy(&pvp->dtpv_attr, &pvd.dtvd_attr, sizeof (dtrace_pattr_t)); 15018 if (copyout(&pvd, (void *)arg, sizeof (pvd)) != 0) 15019 return (EFAULT); 15020 15021 return (0); 15022 } 15023 15024 case DTRACEIOC_EPROBE: { 15025 dtrace_eprobedesc_t epdesc; 15026 dtrace_ecb_t *ecb; 15027 dtrace_action_t *act; 15028 void *buf; 15029 size_t size; 15030 uintptr_t dest; 15031 int nrecs; 15032 15033 if (copyin((void *)arg, &epdesc, sizeof (epdesc)) != 0) 15034 return (EFAULT); 15035 15036 mutex_enter(&dtrace_lock); 15037 15038 if ((ecb = dtrace_epid2ecb(state, epdesc.dtepd_epid)) == NULL) { 15039 mutex_exit(&dtrace_lock); 15040 return (EINVAL); 15041 } 15042 15043 if (ecb->dte_probe == NULL) { 15044 mutex_exit(&dtrace_lock); 15045 return (EINVAL); 15046 } 15047 15048 epdesc.dtepd_probeid = ecb->dte_probe->dtpr_id; 15049 epdesc.dtepd_uarg = ecb->dte_uarg; 15050 epdesc.dtepd_size = ecb->dte_size; 15051 15052 nrecs = epdesc.dtepd_nrecs; 15053 epdesc.dtepd_nrecs = 0; 15054 for (act = ecb->dte_action; act != NULL; act = act->dta_next) { 15055 if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple) 15056 continue; 15057 15058 epdesc.dtepd_nrecs++; 15059 } 15060 15061 /* 15062 * Now that we have the size, we need to allocate a temporary 15063 * buffer in which to store the complete description. We need 15064 * the temporary buffer to be able to drop dtrace_lock() 15065 * across the copyout(), below. 15066 */ 15067 size = sizeof (dtrace_eprobedesc_t) + 15068 (epdesc.dtepd_nrecs * sizeof (dtrace_recdesc_t)); 15069 15070 buf = kmem_alloc(size, KM_SLEEP); 15071 dest = (uintptr_t)buf; 15072 15073 bcopy(&epdesc, (void *)dest, sizeof (epdesc)); 15074 dest += offsetof(dtrace_eprobedesc_t, dtepd_rec[0]); 15075 15076 for (act = ecb->dte_action; act != NULL; act = act->dta_next) { 15077 if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple) 15078 continue; 15079 15080 if (nrecs-- == 0) 15081 break; 15082 15083 bcopy(&act->dta_rec, (void *)dest, 15084 sizeof (dtrace_recdesc_t)); 15085 dest += sizeof (dtrace_recdesc_t); 15086 } 15087 15088 mutex_exit(&dtrace_lock); 15089 15090 if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) { 15091 kmem_free(buf, size); 15092 return (EFAULT); 15093 } 15094 15095 kmem_free(buf, size); 15096 return (0); 15097 } 15098 15099 case DTRACEIOC_AGGDESC: { 15100 dtrace_aggdesc_t aggdesc; 15101 dtrace_action_t *act; 15102 dtrace_aggregation_t *agg; 15103 int nrecs; 15104 uint32_t offs; 15105 dtrace_recdesc_t *lrec; 15106 void *buf; 15107 size_t size; 15108 uintptr_t dest; 15109 15110 if (copyin((void *)arg, &aggdesc, sizeof (aggdesc)) != 0) 15111 return (EFAULT); 15112 15113 mutex_enter(&dtrace_lock); 15114 15115 if ((agg = dtrace_aggid2agg(state, aggdesc.dtagd_id)) == NULL) { 15116 mutex_exit(&dtrace_lock); 15117 return (EINVAL); 15118 } 15119 15120 aggdesc.dtagd_epid = agg->dtag_ecb->dte_epid; 15121 15122 nrecs = aggdesc.dtagd_nrecs; 15123 aggdesc.dtagd_nrecs = 0; 15124 15125 offs = agg->dtag_base; 15126 lrec = &agg->dtag_action.dta_rec; 15127 aggdesc.dtagd_size = lrec->dtrd_offset + lrec->dtrd_size - offs; 15128 15129 for (act = agg->dtag_first; ; act = act->dta_next) { 15130 ASSERT(act->dta_intuple || 15131 DTRACEACT_ISAGG(act->dta_kind)); 15132 15133 /* 15134 * If this action has a record size of zero, it 15135 * denotes an argument to the aggregating action. 15136 * Because the presence of this record doesn't (or 15137 * shouldn't) affect the way the data is interpreted, 15138 * we don't copy it out to save user-level the 15139 * confusion of dealing with a zero-length record. 15140 */ 15141 if (act->dta_rec.dtrd_size == 0) { 15142 ASSERT(agg->dtag_hasarg); 15143 continue; 15144 } 15145 15146 aggdesc.dtagd_nrecs++; 15147 15148 if (act == &agg->dtag_action) 15149 break; 15150 } 15151 15152 /* 15153 * Now that we have the size, we need to allocate a temporary 15154 * buffer in which to store the complete description. We need 15155 * the temporary buffer to be able to drop dtrace_lock() 15156 * across the copyout(), below. 15157 */ 15158 size = sizeof (dtrace_aggdesc_t) + 15159 (aggdesc.dtagd_nrecs * sizeof (dtrace_recdesc_t)); 15160 15161 buf = kmem_alloc(size, KM_SLEEP); 15162 dest = (uintptr_t)buf; 15163 15164 bcopy(&aggdesc, (void *)dest, sizeof (aggdesc)); 15165 dest += offsetof(dtrace_aggdesc_t, dtagd_rec[0]); 15166 15167 for (act = agg->dtag_first; ; act = act->dta_next) { 15168 dtrace_recdesc_t rec = act->dta_rec; 15169 15170 /* 15171 * See the comment in the above loop for why we pass 15172 * over zero-length records. 15173 */ 15174 if (rec.dtrd_size == 0) { 15175 ASSERT(agg->dtag_hasarg); 15176 continue; 15177 } 15178 15179 if (nrecs-- == 0) 15180 break; 15181 15182 rec.dtrd_offset -= offs; 15183 bcopy(&rec, (void *)dest, sizeof (rec)); 15184 dest += sizeof (dtrace_recdesc_t); 15185 15186 if (act == &agg->dtag_action) 15187 break; 15188 } 15189 15190 mutex_exit(&dtrace_lock); 15191 15192 if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) { 15193 kmem_free(buf, size); 15194 return (EFAULT); 15195 } 15196 15197 kmem_free(buf, size); 15198 return (0); 15199 } 15200 15201 case DTRACEIOC_ENABLE: { 15202 dof_hdr_t *dof; 15203 dtrace_enabling_t *enab = NULL; 15204 dtrace_vstate_t *vstate; 15205 int err = 0; 15206 15207 *rv = 0; 15208 15209 /* 15210 * If a NULL argument has been passed, we take this as our 15211 * cue to reevaluate our enablings. 15212 */ 15213 if (arg == NULL) { 15214 dtrace_enabling_matchall(); 15215 15216 return (0); 15217 } 15218 15219 if ((dof = dtrace_dof_copyin(arg, &rval)) == NULL) 15220 return (rval); 15221 15222 mutex_enter(&cpu_lock); 15223 mutex_enter(&dtrace_lock); 15224 vstate = &state->dts_vstate; 15225 15226 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) { 15227 mutex_exit(&dtrace_lock); 15228 mutex_exit(&cpu_lock); 15229 dtrace_dof_destroy(dof); 15230 return (EBUSY); 15231 } 15232 15233 if (dtrace_dof_slurp(dof, vstate, cr, &enab, 0, B_TRUE) != 0) { 15234 mutex_exit(&dtrace_lock); 15235 mutex_exit(&cpu_lock); 15236 dtrace_dof_destroy(dof); 15237 return (EINVAL); 15238 } 15239 15240 if ((rval = dtrace_dof_options(dof, state)) != 0) { 15241 dtrace_enabling_destroy(enab); 15242 mutex_exit(&dtrace_lock); 15243 mutex_exit(&cpu_lock); 15244 dtrace_dof_destroy(dof); 15245 return (rval); 15246 } 15247 15248 if ((err = dtrace_enabling_match(enab, rv)) == 0) { 15249 err = dtrace_enabling_retain(enab); 15250 } else { 15251 dtrace_enabling_destroy(enab); 15252 } 15253 15254 mutex_exit(&cpu_lock); 15255 mutex_exit(&dtrace_lock); 15256 dtrace_dof_destroy(dof); 15257 15258 return (err); 15259 } 15260 15261 case DTRACEIOC_REPLICATE: { 15262 dtrace_repldesc_t desc; 15263 dtrace_probedesc_t *match = &desc.dtrpd_match; 15264 dtrace_probedesc_t *create = &desc.dtrpd_create; 15265 int err; 15266 15267 if (copyin((void *)arg, &desc, sizeof (desc)) != 0) 15268 return (EFAULT); 15269 15270 match->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0'; 15271 match->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0'; 15272 match->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0'; 15273 match->dtpd_name[DTRACE_NAMELEN - 1] = '\0'; 15274 15275 create->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0'; 15276 create->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0'; 15277 create->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0'; 15278 create->dtpd_name[DTRACE_NAMELEN - 1] = '\0'; 15279 15280 mutex_enter(&dtrace_lock); 15281 err = dtrace_enabling_replicate(state, match, create); 15282 mutex_exit(&dtrace_lock); 15283 15284 return (err); 15285 } 15286 15287 case DTRACEIOC_PROBEMATCH: 15288 case DTRACEIOC_PROBES: { 15289 dtrace_probe_t *probe = NULL; 15290 dtrace_probedesc_t desc; 15291 dtrace_probekey_t pkey; 15292 dtrace_id_t i; 15293 int m = 0; 15294 uint32_t priv; 15295 uid_t uid; 15296 zoneid_t zoneid; 15297 15298 if (copyin((void *)arg, &desc, sizeof (desc)) != 0) 15299 return (EFAULT); 15300 15301 desc.dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0'; 15302 desc.dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0'; 15303 desc.dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0'; 15304 desc.dtpd_name[DTRACE_NAMELEN - 1] = '\0'; 15305 15306 /* 15307 * Before we attempt to match this probe, we want to give 15308 * all providers the opportunity to provide it. 15309 */ 15310 if (desc.dtpd_id == DTRACE_IDNONE) { 15311 mutex_enter(&dtrace_provider_lock); 15312 dtrace_probe_provide(&desc, NULL); 15313 mutex_exit(&dtrace_provider_lock); 15314 desc.dtpd_id++; 15315 } 15316 15317 if (cmd == DTRACEIOC_PROBEMATCH) { 15318 dtrace_probekey(&desc, &pkey); 15319 pkey.dtpk_id = DTRACE_IDNONE; 15320 } 15321 15322 dtrace_cred2priv(cr, &priv, &uid, &zoneid); 15323 15324 mutex_enter(&dtrace_lock); 15325 15326 if (cmd == DTRACEIOC_PROBEMATCH) { 15327 for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) { 15328 if ((probe = dtrace_probes[i - 1]) != NULL && 15329 (m = dtrace_match_probe(probe, &pkey, 15330 priv, uid, zoneid)) != 0) 15331 break; 15332 } 15333 15334 if (m < 0) { 15335 mutex_exit(&dtrace_lock); 15336 return (EINVAL); 15337 } 15338 15339 } else { 15340 for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) { 15341 if ((probe = dtrace_probes[i - 1]) != NULL && 15342 dtrace_match_priv(probe, priv, uid, zoneid)) 15343 break; 15344 } 15345 } 15346 15347 if (probe == NULL) { 15348 mutex_exit(&dtrace_lock); 15349 return (ESRCH); 15350 } 15351 15352 dtrace_probe_description(probe, &desc); 15353 mutex_exit(&dtrace_lock); 15354 15355 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0) 15356 return (EFAULT); 15357 15358 return (0); 15359 } 15360 15361 case DTRACEIOC_PROBEARG: { 15362 dtrace_argdesc_t desc; 15363 dtrace_probe_t *probe; 15364 dtrace_provider_t *prov; 15365 15366 if (copyin((void *)arg, &desc, sizeof (desc)) != 0) 15367 return (EFAULT); 15368 15369 if (desc.dtargd_id == DTRACE_IDNONE) 15370 return (EINVAL); 15371 15372 if (desc.dtargd_ndx == DTRACE_ARGNONE) 15373 return (EINVAL); 15374 15375 mutex_enter(&dtrace_provider_lock); 15376 mutex_enter(&mod_lock); 15377 mutex_enter(&dtrace_lock); 15378 15379 if (desc.dtargd_id > dtrace_nprobes) { 15380 mutex_exit(&dtrace_lock); 15381 mutex_exit(&mod_lock); 15382 mutex_exit(&dtrace_provider_lock); 15383 return (EINVAL); 15384 } 15385 15386 if ((probe = dtrace_probes[desc.dtargd_id - 1]) == NULL) { 15387 mutex_exit(&dtrace_lock); 15388 mutex_exit(&mod_lock); 15389 mutex_exit(&dtrace_provider_lock); 15390 return (EINVAL); 15391 } 15392 15393 mutex_exit(&dtrace_lock); 15394 15395 prov = probe->dtpr_provider; 15396 15397 if (prov->dtpv_pops.dtps_getargdesc == NULL) { 15398 /* 15399 * There isn't any typed information for this probe. 15400 * Set the argument number to DTRACE_ARGNONE. 15401 */ 15402 desc.dtargd_ndx = DTRACE_ARGNONE; 15403 } else { 15404 desc.dtargd_native[0] = '\0'; 15405 desc.dtargd_xlate[0] = '\0'; 15406 desc.dtargd_mapping = desc.dtargd_ndx; 15407 15408 prov->dtpv_pops.dtps_getargdesc(prov->dtpv_arg, 15409 probe->dtpr_id, probe->dtpr_arg, &desc); 15410 } 15411 15412 mutex_exit(&mod_lock); 15413 mutex_exit(&dtrace_provider_lock); 15414 15415 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0) 15416 return (EFAULT); 15417 15418 return (0); 15419 } 15420 15421 case DTRACEIOC_GO: { 15422 processorid_t cpuid; 15423 rval = dtrace_state_go(state, &cpuid); 15424 15425 if (rval != 0) 15426 return (rval); 15427 15428 if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0) 15429 return (EFAULT); 15430 15431 return (0); 15432 } 15433 15434 case DTRACEIOC_STOP: { 15435 processorid_t cpuid; 15436 15437 mutex_enter(&dtrace_lock); 15438 rval = dtrace_state_stop(state, &cpuid); 15439 mutex_exit(&dtrace_lock); 15440 15441 if (rval != 0) 15442 return (rval); 15443 15444 if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0) 15445 return (EFAULT); 15446 15447 return (0); 15448 } 15449 15450 case DTRACEIOC_DOFGET: { 15451 dof_hdr_t hdr, *dof; 15452 uint64_t len; 15453 15454 if (copyin((void *)arg, &hdr, sizeof (hdr)) != 0) 15455 return (EFAULT); 15456 15457 mutex_enter(&dtrace_lock); 15458 dof = dtrace_dof_create(state); 15459 mutex_exit(&dtrace_lock); 15460 15461 len = MIN(hdr.dofh_loadsz, dof->dofh_loadsz); 15462 rval = copyout(dof, (void *)arg, len); 15463 dtrace_dof_destroy(dof); 15464 15465 return (rval == 0 ? 0 : EFAULT); 15466 } 15467 15468 case DTRACEIOC_AGGSNAP: 15469 case DTRACEIOC_BUFSNAP: { 15470 dtrace_bufdesc_t desc; 15471 caddr_t cached; 15472 dtrace_buffer_t *buf; 15473 15474 if (copyin((void *)arg, &desc, sizeof (desc)) != 0) 15475 return (EFAULT); 15476 15477 if (desc.dtbd_cpu < 0 || desc.dtbd_cpu >= NCPU) 15478 return (EINVAL); 15479 15480 mutex_enter(&dtrace_lock); 15481 15482 if (cmd == DTRACEIOC_BUFSNAP) { 15483 buf = &state->dts_buffer[desc.dtbd_cpu]; 15484 } else { 15485 buf = &state->dts_aggbuffer[desc.dtbd_cpu]; 15486 } 15487 15488 if (buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL)) { 15489 size_t sz = buf->dtb_offset; 15490 15491 if (state->dts_activity != DTRACE_ACTIVITY_STOPPED) { 15492 mutex_exit(&dtrace_lock); 15493 return (EBUSY); 15494 } 15495 15496 /* 15497 * If this buffer has already been consumed, we're 15498 * going to indicate that there's nothing left here 15499 * to consume. 15500 */ 15501 if (buf->dtb_flags & DTRACEBUF_CONSUMED) { 15502 mutex_exit(&dtrace_lock); 15503 15504 desc.dtbd_size = 0; 15505 desc.dtbd_drops = 0; 15506 desc.dtbd_errors = 0; 15507 desc.dtbd_oldest = 0; 15508 sz = sizeof (desc); 15509 15510 if (copyout(&desc, (void *)arg, sz) != 0) 15511 return (EFAULT); 15512 15513 return (0); 15514 } 15515 15516 /* 15517 * If this is a ring buffer that has wrapped, we want 15518 * to copy the whole thing out. 15519 */ 15520 if (buf->dtb_flags & DTRACEBUF_WRAPPED) { 15521 dtrace_buffer_polish(buf); 15522 sz = buf->dtb_size; 15523 } 15524 15525 if (copyout(buf->dtb_tomax, desc.dtbd_data, sz) != 0) { 15526 mutex_exit(&dtrace_lock); 15527 return (EFAULT); 15528 } 15529 15530 desc.dtbd_size = sz; 15531 desc.dtbd_drops = buf->dtb_drops; 15532 desc.dtbd_errors = buf->dtb_errors; 15533 desc.dtbd_oldest = buf->dtb_xamot_offset; 15534 15535 mutex_exit(&dtrace_lock); 15536 15537 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0) 15538 return (EFAULT); 15539 15540 buf->dtb_flags |= DTRACEBUF_CONSUMED; 15541 15542 return (0); 15543 } 15544 15545 if (buf->dtb_tomax == NULL) { 15546 ASSERT(buf->dtb_xamot == NULL); 15547 mutex_exit(&dtrace_lock); 15548 return (ENOENT); 15549 } 15550 15551 cached = buf->dtb_tomax; 15552 ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH)); 15553 15554 dtrace_xcall(desc.dtbd_cpu, 15555 (dtrace_xcall_t)dtrace_buffer_switch, buf); 15556 15557 state->dts_errors += buf->dtb_xamot_errors; 15558 15559 /* 15560 * If the buffers did not actually switch, then the cross call 15561 * did not take place -- presumably because the given CPU is 15562 * not in the ready set. If this is the case, we'll return 15563 * ENOENT. 15564 */ 15565 if (buf->dtb_tomax == cached) { 15566 ASSERT(buf->dtb_xamot != cached); 15567 mutex_exit(&dtrace_lock); 15568 return (ENOENT); 15569 } 15570 15571 ASSERT(cached == buf->dtb_xamot); 15572 15573 /* 15574 * We have our snapshot; now copy it out. 15575 */ 15576 if (copyout(buf->dtb_xamot, desc.dtbd_data, 15577 buf->dtb_xamot_offset) != 0) { 15578 mutex_exit(&dtrace_lock); 15579 return (EFAULT); 15580 } 15581 15582 desc.dtbd_size = buf->dtb_xamot_offset; 15583 desc.dtbd_drops = buf->dtb_xamot_drops; 15584 desc.dtbd_errors = buf->dtb_xamot_errors; 15585 desc.dtbd_oldest = 0; 15586 15587 mutex_exit(&dtrace_lock); 15588 15589 /* 15590 * Finally, copy out the buffer description. 15591 */ 15592 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0) 15593 return (EFAULT); 15594 15595 return (0); 15596 } 15597 15598 case DTRACEIOC_CONF: { 15599 dtrace_conf_t conf; 15600 15601 bzero(&conf, sizeof (conf)); 15602 conf.dtc_difversion = DIF_VERSION; 15603 conf.dtc_difintregs = DIF_DIR_NREGS; 15604 conf.dtc_diftupregs = DIF_DTR_NREGS; 15605 conf.dtc_ctfmodel = CTF_MODEL_NATIVE; 15606 15607 if (copyout(&conf, (void *)arg, sizeof (conf)) != 0) 15608 return (EFAULT); 15609 15610 return (0); 15611 } 15612 15613 case DTRACEIOC_STATUS: { 15614 dtrace_status_t stat; 15615 dtrace_dstate_t *dstate; 15616 int i, j; 15617 uint64_t nerrs; 15618 15619 /* 15620 * See the comment in dtrace_state_deadman() for the reason 15621 * for setting dts_laststatus to INT64_MAX before setting 15622 * it to the correct value. 15623 */ 15624 state->dts_laststatus = INT64_MAX; 15625 dtrace_membar_producer(); 15626 state->dts_laststatus = dtrace_gethrtime(); 15627 15628 bzero(&stat, sizeof (stat)); 15629 15630 mutex_enter(&dtrace_lock); 15631 15632 if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE) { 15633 mutex_exit(&dtrace_lock); 15634 return (ENOENT); 15635 } 15636 15637 if (state->dts_activity == DTRACE_ACTIVITY_DRAINING) 15638 stat.dtst_exiting = 1; 15639 15640 nerrs = state->dts_errors; 15641 dstate = &state->dts_vstate.dtvs_dynvars; 15642 15643 for (i = 0; i < NCPU; i++) { 15644 dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[i]; 15645 15646 stat.dtst_dyndrops += dcpu->dtdsc_drops; 15647 stat.dtst_dyndrops_dirty += dcpu->dtdsc_dirty_drops; 15648 stat.dtst_dyndrops_rinsing += dcpu->dtdsc_rinsing_drops; 15649 15650 if (state->dts_buffer[i].dtb_flags & DTRACEBUF_FULL) 15651 stat.dtst_filled++; 15652 15653 nerrs += state->dts_buffer[i].dtb_errors; 15654 15655 for (j = 0; j < state->dts_nspeculations; j++) { 15656 dtrace_speculation_t *spec; 15657 dtrace_buffer_t *buf; 15658 15659 spec = &state->dts_speculations[j]; 15660 buf = &spec->dtsp_buffer[i]; 15661 stat.dtst_specdrops += buf->dtb_xamot_drops; 15662 } 15663 } 15664 15665 stat.dtst_specdrops_busy = state->dts_speculations_busy; 15666 stat.dtst_specdrops_unavail = state->dts_speculations_unavail; 15667 stat.dtst_stkstroverflows = state->dts_stkstroverflows; 15668 stat.dtst_dblerrors = state->dts_dblerrors; 15669 stat.dtst_killed = 15670 (state->dts_activity == DTRACE_ACTIVITY_KILLED); 15671 stat.dtst_errors = nerrs; 15672 15673 mutex_exit(&dtrace_lock); 15674 15675 if (copyout(&stat, (void *)arg, sizeof (stat)) != 0) 15676 return (EFAULT); 15677 15678 return (0); 15679 } 15680 15681 case DTRACEIOC_FORMAT: { 15682 dtrace_fmtdesc_t fmt; 15683 char *str; 15684 int len; 15685 15686 if (copyin((void *)arg, &fmt, sizeof (fmt)) != 0) 15687 return (EFAULT); 15688 15689 mutex_enter(&dtrace_lock); 15690 15691 if (fmt.dtfd_format == 0 || 15692 fmt.dtfd_format > state->dts_nformats) { 15693 mutex_exit(&dtrace_lock); 15694 return (EINVAL); 15695 } 15696 15697 /* 15698 * Format strings are allocated contiguously and they are 15699 * never freed; if a format index is less than the number 15700 * of formats, we can assert that the format map is non-NULL 15701 * and that the format for the specified index is non-NULL. 15702 */ 15703 ASSERT(state->dts_formats != NULL); 15704 str = state->dts_formats[fmt.dtfd_format - 1]; 15705 ASSERT(str != NULL); 15706 15707 len = strlen(str) + 1; 15708 15709 if (len > fmt.dtfd_length) { 15710 fmt.dtfd_length = len; 15711 15712 if (copyout(&fmt, (void *)arg, sizeof (fmt)) != 0) { 15713 mutex_exit(&dtrace_lock); 15714 return (EINVAL); 15715 } 15716 } else { 15717 if (copyout(str, fmt.dtfd_string, len) != 0) { 15718 mutex_exit(&dtrace_lock); 15719 return (EINVAL); 15720 } 15721 } 15722 15723 mutex_exit(&dtrace_lock); 15724 return (0); 15725 } 15726 15727 default: 15728 break; 15729 } 15730 15731 return (ENOTTY); 15732 } 15733 15734 /*ARGSUSED*/ 15735 static int 15736 dtrace_detach(dev_info_t *dip, ddi_detach_cmd_t cmd) 15737 { 15738 dtrace_state_t *state; 15739 15740 switch (cmd) { 15741 case DDI_DETACH: 15742 break; 15743 15744 case DDI_SUSPEND: 15745 return (DDI_SUCCESS); 15746 15747 default: 15748 return (DDI_FAILURE); 15749 } 15750 15751 mutex_enter(&cpu_lock); 15752 mutex_enter(&dtrace_provider_lock); 15753 mutex_enter(&dtrace_lock); 15754 15755 ASSERT(dtrace_opens == 0); 15756 15757 if (dtrace_helpers > 0) { 15758 mutex_exit(&dtrace_provider_lock); 15759 mutex_exit(&dtrace_lock); 15760 mutex_exit(&cpu_lock); 15761 return (DDI_FAILURE); 15762 } 15763 15764 if (dtrace_unregister((dtrace_provider_id_t)dtrace_provider) != 0) { 15765 mutex_exit(&dtrace_provider_lock); 15766 mutex_exit(&dtrace_lock); 15767 mutex_exit(&cpu_lock); 15768 return (DDI_FAILURE); 15769 } 15770 15771 dtrace_provider = NULL; 15772 15773 if ((state = dtrace_anon_grab()) != NULL) { 15774 /* 15775 * If there were ECBs on this state, the provider should 15776 * have not been allowed to detach; assert that there is 15777 * none. 15778 */ 15779 ASSERT(state->dts_necbs == 0); 15780 dtrace_state_destroy(state); 15781 15782 /* 15783 * If we're being detached with anonymous state, we need to 15784 * indicate to the kernel debugger that DTrace is now inactive. 15785 */ 15786 (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE); 15787 } 15788 15789 bzero(&dtrace_anon, sizeof (dtrace_anon_t)); 15790 unregister_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL); 15791 dtrace_cpu_init = NULL; 15792 dtrace_helpers_cleanup = NULL; 15793 dtrace_helpers_fork = NULL; 15794 dtrace_cpustart_init = NULL; 15795 dtrace_cpustart_fini = NULL; 15796 dtrace_debugger_init = NULL; 15797 dtrace_debugger_fini = NULL; 15798 dtrace_modload = NULL; 15799 dtrace_modunload = NULL; 15800 15801 mutex_exit(&cpu_lock); 15802 15803 if (dtrace_helptrace_enabled) { 15804 kmem_free(dtrace_helptrace_buffer, dtrace_helptrace_bufsize); 15805 dtrace_helptrace_buffer = NULL; 15806 } 15807 15808 kmem_free(dtrace_probes, dtrace_nprobes * sizeof (dtrace_probe_t *)); 15809 dtrace_probes = NULL; 15810 dtrace_nprobes = 0; 15811 15812 dtrace_hash_destroy(dtrace_bymod); 15813 dtrace_hash_destroy(dtrace_byfunc); 15814 dtrace_hash_destroy(dtrace_byname); 15815 dtrace_bymod = NULL; 15816 dtrace_byfunc = NULL; 15817 dtrace_byname = NULL; 15818 15819 kmem_cache_destroy(dtrace_state_cache); 15820 vmem_destroy(dtrace_minor); 15821 vmem_destroy(dtrace_arena); 15822 15823 if (dtrace_toxrange != NULL) { 15824 kmem_free(dtrace_toxrange, 15825 dtrace_toxranges_max * sizeof (dtrace_toxrange_t)); 15826 dtrace_toxrange = NULL; 15827 dtrace_toxranges = 0; 15828 dtrace_toxranges_max = 0; 15829 } 15830 15831 ddi_remove_minor_node(dtrace_devi, NULL); 15832 dtrace_devi = NULL; 15833 15834 ddi_soft_state_fini(&dtrace_softstate); 15835 15836 ASSERT(dtrace_vtime_references == 0); 15837 ASSERT(dtrace_opens == 0); 15838 ASSERT(dtrace_retained == NULL); 15839 15840 mutex_exit(&dtrace_lock); 15841 mutex_exit(&dtrace_provider_lock); 15842 15843 /* 15844 * We don't destroy the task queue until after we have dropped our 15845 * locks (taskq_destroy() may block on running tasks). To prevent 15846 * attempting to do work after we have effectively detached but before 15847 * the task queue has been destroyed, all tasks dispatched via the 15848 * task queue must check that DTrace is still attached before 15849 * performing any operation. 15850 */ 15851 taskq_destroy(dtrace_taskq); 15852 dtrace_taskq = NULL; 15853 15854 return (DDI_SUCCESS); 15855 } 15856 15857 /*ARGSUSED*/ 15858 static int 15859 dtrace_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result) 15860 { 15861 int error; 15862 15863 switch (infocmd) { 15864 case DDI_INFO_DEVT2DEVINFO: 15865 *result = (void *)dtrace_devi; 15866 error = DDI_SUCCESS; 15867 break; 15868 case DDI_INFO_DEVT2INSTANCE: 15869 *result = (void *)0; 15870 error = DDI_SUCCESS; 15871 break; 15872 default: 15873 error = DDI_FAILURE; 15874 } 15875 return (error); 15876 } 15877 15878 static struct cb_ops dtrace_cb_ops = { 15879 dtrace_open, /* open */ 15880 dtrace_close, /* close */ 15881 nulldev, /* strategy */ 15882 nulldev, /* print */ 15883 nodev, /* dump */ 15884 nodev, /* read */ 15885 nodev, /* write */ 15886 dtrace_ioctl, /* ioctl */ 15887 nodev, /* devmap */ 15888 nodev, /* mmap */ 15889 nodev, /* segmap */ 15890 nochpoll, /* poll */ 15891 ddi_prop_op, /* cb_prop_op */ 15892 0, /* streamtab */ 15893 D_NEW | D_MP /* Driver compatibility flag */ 15894 }; 15895 15896 static struct dev_ops dtrace_ops = { 15897 DEVO_REV, /* devo_rev */ 15898 0, /* refcnt */ 15899 dtrace_info, /* get_dev_info */ 15900 nulldev, /* identify */ 15901 nulldev, /* probe */ 15902 dtrace_attach, /* attach */ 15903 dtrace_detach, /* detach */ 15904 nodev, /* reset */ 15905 &dtrace_cb_ops, /* driver operations */ 15906 NULL, /* bus operations */ 15907 nodev, /* dev power */ 15908 ddi_quiesce_not_needed, /* quiesce */ 15909 }; 15910 15911 static struct modldrv modldrv = { 15912 &mod_driverops, /* module type (this is a pseudo driver) */ 15913 "Dynamic Tracing", /* name of module */ 15914 &dtrace_ops, /* driver ops */ 15915 }; 15916 15917 static struct modlinkage modlinkage = { 15918 MODREV_1, 15919 (void *)&modldrv, 15920 NULL 15921 }; 15922 15923 int 15924 _init(void) 15925 { 15926 return (mod_install(&modlinkage)); 15927 } 15928 15929 int 15930 _info(struct modinfo *modinfop) 15931 { 15932 return (mod_info(&modlinkage, modinfop)); 15933 } 15934 15935 int 15936 _fini(void) 15937 { 15938 return (mod_remove(&modlinkage)); 15939 } 15940