1fb2f18f8Sesaxe /* 2fb2f18f8Sesaxe * CDDL HEADER START 3fb2f18f8Sesaxe * 4fb2f18f8Sesaxe * The contents of this file are subject to the terms of the 5fb2f18f8Sesaxe * Common Development and Distribution License (the "License"). 6fb2f18f8Sesaxe * You may not use this file except in compliance with the License. 7fb2f18f8Sesaxe * 8fb2f18f8Sesaxe * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9fb2f18f8Sesaxe * or http://www.opensolaris.org/os/licensing. 10fb2f18f8Sesaxe * See the License for the specific language governing permissions 11fb2f18f8Sesaxe * and limitations under the License. 12fb2f18f8Sesaxe * 13fb2f18f8Sesaxe * When distributing Covered Code, include this CDDL HEADER in each 14fb2f18f8Sesaxe * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15fb2f18f8Sesaxe * If applicable, add the following below this CDDL HEADER, with the 16fb2f18f8Sesaxe * fields enclosed by brackets "[]" replaced with your own identifying 17fb2f18f8Sesaxe * information: Portions Copyright [yyyy] [name of copyright owner] 18fb2f18f8Sesaxe * 19fb2f18f8Sesaxe * CDDL HEADER END 20fb2f18f8Sesaxe */ 21fb2f18f8Sesaxe /* 223e81cacfSEric Saxe * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23fb2f18f8Sesaxe * Use is subject to license terms. 24fb2f18f8Sesaxe */ 25fb2f18f8Sesaxe 26fb2f18f8Sesaxe #include <sys/systm.h> 27fb2f18f8Sesaxe #include <sys/types.h> 28fb2f18f8Sesaxe #include <sys/param.h> 29fb2f18f8Sesaxe #include <sys/thread.h> 30fb2f18f8Sesaxe #include <sys/cpuvar.h> 31fb2f18f8Sesaxe #include <sys/cpupart.h> 32fb2f18f8Sesaxe #include <sys/kmem.h> 33fb2f18f8Sesaxe #include <sys/cmn_err.h> 34fb2f18f8Sesaxe #include <sys/kstat.h> 35fb2f18f8Sesaxe #include <sys/processor.h> 36fb2f18f8Sesaxe #include <sys/disp.h> 37fb2f18f8Sesaxe #include <sys/group.h> 38fb2f18f8Sesaxe #include <sys/pghw.h> 39fb2f18f8Sesaxe #include <sys/bitset.h> 40fb2f18f8Sesaxe #include <sys/lgrp.h> 41fb2f18f8Sesaxe #include <sys/cmt.h> 420e751525SEric Saxe #include <sys/cpu_pm.h> 43fb2f18f8Sesaxe 44fb2f18f8Sesaxe /* 45fb2f18f8Sesaxe * CMT scheduler / dispatcher support 46fb2f18f8Sesaxe * 47fb2f18f8Sesaxe * This file implements CMT scheduler support using Processor Groups. 48fb2f18f8Sesaxe * The CMT processor group class creates and maintains the CMT class 49fb2f18f8Sesaxe * specific processor group pg_cmt_t. 50fb2f18f8Sesaxe * 51fb2f18f8Sesaxe * ---------------------------- <-- pg_cmt_t * 52fb2f18f8Sesaxe * | pghw_t | 53fb2f18f8Sesaxe * ---------------------------- 54fb2f18f8Sesaxe * | CMT class specific data | 55fb2f18f8Sesaxe * | - hierarchy linkage | 56fb2f18f8Sesaxe * | - CMT load balancing data| 57fb2f18f8Sesaxe * | - active CPU group/bitset| 58fb2f18f8Sesaxe * ---------------------------- 59fb2f18f8Sesaxe * 60fb2f18f8Sesaxe * The scheduler/dispatcher leverages knowledge of the performance 61fb2f18f8Sesaxe * relevant CMT sharing relationships existing between cpus to implement 620e751525SEric Saxe * optimized affinity, load balancing, and coalescence policies. 63fb2f18f8Sesaxe * 64fb2f18f8Sesaxe * Load balancing policy seeks to improve performance by minimizing 650e751525SEric Saxe * contention over shared processor resources / facilities, Affinity 660e751525SEric Saxe * policies seek to improve cache and TLB utilization. Coalescence 670e751525SEric Saxe * policies improve resource utilization and ultimately power efficiency. 68fb2f18f8Sesaxe * 69fb2f18f8Sesaxe * The CMT PGs created by this class are already arranged into a 70fb2f18f8Sesaxe * hierarchy (which is done in the pghw layer). To implement the top-down 71fb2f18f8Sesaxe * CMT load balancing algorithm, the CMT PGs additionally maintain 72fb2f18f8Sesaxe * parent, child and sibling hierarchy relationships. 73fb2f18f8Sesaxe * Parent PGs always contain a superset of their children(s) resources, 74fb2f18f8Sesaxe * each PG can have at most one parent, and siblings are the group of PGs 75fb2f18f8Sesaxe * sharing the same parent. 76fb2f18f8Sesaxe * 77d0e93b69SEric Saxe * On UMA based systems, the CMT load balancing algorithm begins by balancing 78d0e93b69SEric Saxe * load across the group of top level PGs in the system hierarchy. 79d0e93b69SEric Saxe * On NUMA systems, the CMT load balancing algorithm balances load across the 80d0e93b69SEric Saxe * group of top level PGs in each leaf lgroup...but for root homed threads, 81d0e93b69SEric Saxe * is willing to balance against all the top level PGs in the system. 82d0e93b69SEric Saxe * 83d0e93b69SEric Saxe * Groups of top level PGs are maintained to implement the above, one for each 84d0e93b69SEric Saxe * leaf lgroup (containing the top level PGs in that lgroup), and one (for the 85d0e93b69SEric Saxe * root lgroup) that contains all the top level PGs in the system. 86fb2f18f8Sesaxe */ 87a6604450Sesaxe static cmt_lgrp_t *cmt_lgrps = NULL; /* cmt_lgrps list head */ 88a6604450Sesaxe static cmt_lgrp_t *cpu0_lgrp = NULL; /* boot CPU's initial lgrp */ 89a6604450Sesaxe /* used for null_proc_lpa */ 900e751525SEric Saxe cmt_lgrp_t *cmt_root = NULL; /* Reference to root cmt pg */ 91fb2f18f8Sesaxe 92a6604450Sesaxe static int is_cpu0 = 1; /* true if this is boot CPU context */ 93a6604450Sesaxe 94a6604450Sesaxe /* 950e751525SEric Saxe * Array of hardware sharing relationships that are blacklisted. 96d0e93b69SEric Saxe * CMT scheduling optimizations won't be performed for blacklisted sharing 97d0e93b69SEric Saxe * relationships. 980e751525SEric Saxe */ 990e751525SEric Saxe static int cmt_hw_blacklisted[PGHW_NUM_COMPONENTS]; 1000e751525SEric Saxe 1010e751525SEric Saxe /* 102a6604450Sesaxe * Set this to non-zero to disable CMT scheduling 103a6604450Sesaxe * This must be done via kmdb -d, as /etc/system will be too late 104a6604450Sesaxe */ 1050e751525SEric Saxe int cmt_sched_disabled = 0; 106fb2f18f8Sesaxe 107ef4f35d8SEric Saxe /* 108ef4f35d8SEric Saxe * Status codes for CMT lineage validation 109ef4f35d8SEric Saxe * See pg_cmt_lineage_validate() below 110ef4f35d8SEric Saxe */ 111ef4f35d8SEric Saxe typedef enum cmt_lineage_validation { 112ef4f35d8SEric Saxe CMT_LINEAGE_VALID, 113ef4f35d8SEric Saxe CMT_LINEAGE_NON_CONCENTRIC, 114ef4f35d8SEric Saxe CMT_LINEAGE_PG_SPANS_LGRPS, 115ef4f35d8SEric Saxe CMT_LINEAGE_NON_PROMOTABLE, 116ef4f35d8SEric Saxe CMT_LINEAGE_REPAIRED, 117ef4f35d8SEric Saxe CMT_LINEAGE_UNRECOVERABLE 118ef4f35d8SEric Saxe } cmt_lineage_validation_t; 119ef4f35d8SEric Saxe 120ef4f35d8SEric Saxe /* 121ef4f35d8SEric Saxe * Status of the current lineage under construction. 122ef4f35d8SEric Saxe * One must be holding cpu_lock to change this. 123ef4f35d8SEric Saxe */ 124ef4f35d8SEric Saxe cmt_lineage_validation_t cmt_lineage_status = CMT_LINEAGE_VALID; 125ef4f35d8SEric Saxe 126ef4f35d8SEric Saxe /* 127ef4f35d8SEric Saxe * Power domain definitions (on x86) are defined by ACPI, and 128ef4f35d8SEric Saxe * therefore may be subject to BIOS bugs. 129ef4f35d8SEric Saxe */ 130ef4f35d8SEric Saxe #define PG_CMT_HW_SUSPECT(hw) PGHW_IS_PM_DOMAIN(hw) 131ef4f35d8SEric Saxe 132ef4f35d8SEric Saxe /* 133ef4f35d8SEric Saxe * Macro to test if PG is managed by the CMT PG class 134ef4f35d8SEric Saxe */ 135ef4f35d8SEric Saxe #define IS_CMT_PG(pg) (((pg_t *)(pg))->pg_class->pgc_id == pg_cmt_class_id) 136ef4f35d8SEric Saxe 137fb2f18f8Sesaxe static pg_cid_t pg_cmt_class_id; /* PG class id */ 138fb2f18f8Sesaxe 139fb2f18f8Sesaxe static pg_t *pg_cmt_alloc(); 140fb2f18f8Sesaxe static void pg_cmt_free(pg_t *); 14147ab0c7cSEric Saxe static void pg_cmt_cpu_init(cpu_t *, cpu_pg_t *); 14247ab0c7cSEric Saxe static void pg_cmt_cpu_fini(cpu_t *, cpu_pg_t *); 143fb2f18f8Sesaxe static void pg_cmt_cpu_active(cpu_t *); 144fb2f18f8Sesaxe static void pg_cmt_cpu_inactive(cpu_t *); 145fb2f18f8Sesaxe static void pg_cmt_cpupart_in(cpu_t *, cpupart_t *); 146fb2f18f8Sesaxe static void pg_cmt_cpupart_move(cpu_t *, cpupart_t *, cpupart_t *); 1470e751525SEric Saxe static char *pg_cmt_policy_name(pg_t *); 1480e751525SEric Saxe static void pg_cmt_hier_sort(pg_cmt_t **, int); 1490e751525SEric Saxe static pg_cmt_t *pg_cmt_hier_rank(pg_cmt_t *, pg_cmt_t *); 150fb2f18f8Sesaxe static int pg_cmt_cpu_belongs(pg_t *, cpu_t *); 151fb2f18f8Sesaxe static int pg_cmt_hw(pghw_type_t); 152fb2f18f8Sesaxe static cmt_lgrp_t *pg_cmt_find_lgrp(lgrp_handle_t); 153a6604450Sesaxe static cmt_lgrp_t *pg_cmt_lgrp_create(lgrp_handle_t); 1540e751525SEric Saxe static void cmt_ev_thread_swtch(pg_t *, cpu_t *, hrtime_t, 1550e751525SEric Saxe kthread_t *, kthread_t *); 1560e751525SEric Saxe static void cmt_ev_thread_swtch_pwr(pg_t *, cpu_t *, hrtime_t, 1570e751525SEric Saxe kthread_t *, kthread_t *); 1580e751525SEric Saxe static void cmt_ev_thread_remain_pwr(pg_t *, cpu_t *, kthread_t *); 1591a77c24bSEric Saxe static cmt_lineage_validation_t pg_cmt_lineage_validate(pg_cmt_t **, int *, 1601a77c24bSEric Saxe cpu_pg_t *); 161fb2f18f8Sesaxe 1620e751525SEric Saxe 1630e751525SEric Saxe /* 164fb2f18f8Sesaxe * CMT PG ops 165fb2f18f8Sesaxe */ 166fb2f18f8Sesaxe struct pg_ops pg_ops_cmt = { 167fb2f18f8Sesaxe pg_cmt_alloc, 168fb2f18f8Sesaxe pg_cmt_free, 169fb2f18f8Sesaxe pg_cmt_cpu_init, 170fb2f18f8Sesaxe pg_cmt_cpu_fini, 171fb2f18f8Sesaxe pg_cmt_cpu_active, 172fb2f18f8Sesaxe pg_cmt_cpu_inactive, 173fb2f18f8Sesaxe pg_cmt_cpupart_in, 174fb2f18f8Sesaxe NULL, /* cpupart_out */ 175fb2f18f8Sesaxe pg_cmt_cpupart_move, 176fb2f18f8Sesaxe pg_cmt_cpu_belongs, 1770e751525SEric Saxe pg_cmt_policy_name, 178fb2f18f8Sesaxe }; 179fb2f18f8Sesaxe 180fb2f18f8Sesaxe /* 181fb2f18f8Sesaxe * Initialize the CMT PG class 182fb2f18f8Sesaxe */ 183fb2f18f8Sesaxe void 184fb2f18f8Sesaxe pg_cmt_class_init(void) 185fb2f18f8Sesaxe { 186fb2f18f8Sesaxe if (cmt_sched_disabled) 187fb2f18f8Sesaxe return; 188fb2f18f8Sesaxe 189fb2f18f8Sesaxe pg_cmt_class_id = pg_class_register("cmt", &pg_ops_cmt, PGR_PHYSICAL); 190fb2f18f8Sesaxe } 191fb2f18f8Sesaxe 192fb2f18f8Sesaxe /* 193fb2f18f8Sesaxe * Called to indicate a new CPU has started up so 194fb2f18f8Sesaxe * that either t0 or the slave startup thread can 195fb2f18f8Sesaxe * be accounted for. 196fb2f18f8Sesaxe */ 197fb2f18f8Sesaxe void 198fb2f18f8Sesaxe pg_cmt_cpu_startup(cpu_t *cp) 199fb2f18f8Sesaxe { 2000e751525SEric Saxe pg_ev_thread_swtch(cp, gethrtime_unscaled(), cp->cpu_idle_thread, 2010e751525SEric Saxe cp->cpu_thread); 202fb2f18f8Sesaxe } 203fb2f18f8Sesaxe 204fb2f18f8Sesaxe /* 205fb2f18f8Sesaxe * Return non-zero if thread can migrate between "from" and "to" 206fb2f18f8Sesaxe * without a performance penalty 207fb2f18f8Sesaxe */ 208fb2f18f8Sesaxe int 209fb2f18f8Sesaxe pg_cmt_can_migrate(cpu_t *from, cpu_t *to) 210fb2f18f8Sesaxe { 211fb2f18f8Sesaxe if (from->cpu_physid->cpu_cacheid == 212fb2f18f8Sesaxe to->cpu_physid->cpu_cacheid) 213fb2f18f8Sesaxe return (1); 214fb2f18f8Sesaxe return (0); 215fb2f18f8Sesaxe } 216fb2f18f8Sesaxe 217fb2f18f8Sesaxe /* 218fb2f18f8Sesaxe * CMT class specific PG allocation 219fb2f18f8Sesaxe */ 220fb2f18f8Sesaxe static pg_t * 221fb2f18f8Sesaxe pg_cmt_alloc(void) 222fb2f18f8Sesaxe { 223fb2f18f8Sesaxe return (kmem_zalloc(sizeof (pg_cmt_t), KM_NOSLEEP)); 224fb2f18f8Sesaxe } 225fb2f18f8Sesaxe 226fb2f18f8Sesaxe /* 227fb2f18f8Sesaxe * Class specific PG de-allocation 228fb2f18f8Sesaxe */ 229fb2f18f8Sesaxe static void 230fb2f18f8Sesaxe pg_cmt_free(pg_t *pg) 231fb2f18f8Sesaxe { 232fb2f18f8Sesaxe ASSERT(pg != NULL); 233fb2f18f8Sesaxe ASSERT(IS_CMT_PG(pg)); 234fb2f18f8Sesaxe 235fb2f18f8Sesaxe kmem_free((pg_cmt_t *)pg, sizeof (pg_cmt_t)); 236fb2f18f8Sesaxe } 237fb2f18f8Sesaxe 238fb2f18f8Sesaxe /* 2390e751525SEric Saxe * Given a hardware sharing relationship, return which dispatcher 2400e751525SEric Saxe * policies should be implemented to optimize performance and efficiency 241fb2f18f8Sesaxe */ 2420e751525SEric Saxe static pg_cmt_policy_t 2430e751525SEric Saxe pg_cmt_policy(pghw_type_t hw) 244fb2f18f8Sesaxe { 2450e751525SEric Saxe pg_cmt_policy_t p; 2460e751525SEric Saxe 2470e751525SEric Saxe /* 2480e751525SEric Saxe * Give the platform a chance to override the default 2490e751525SEric Saxe */ 2500e751525SEric Saxe if ((p = pg_plat_cmt_policy(hw)) != CMT_NO_POLICY) 2510e751525SEric Saxe return (p); 2520e751525SEric Saxe 2530e751525SEric Saxe switch (hw) { 2540e751525SEric Saxe case PGHW_IPIPE: 2550e751525SEric Saxe case PGHW_FPU: 256*8031591dSSrihari Venkatesan case PGHW_PROCNODE: 2570e751525SEric Saxe case PGHW_CHIP: 2580e751525SEric Saxe return (CMT_BALANCE); 2590e751525SEric Saxe case PGHW_CACHE: 2600e751525SEric Saxe return (CMT_AFFINITY); 2610e751525SEric Saxe case PGHW_POW_ACTIVE: 2620e751525SEric Saxe case PGHW_POW_IDLE: 2630e751525SEric Saxe return (CMT_BALANCE); 2640e751525SEric Saxe default: 2650e751525SEric Saxe return (CMT_NO_POLICY); 2660e751525SEric Saxe } 2670e751525SEric Saxe } 2680e751525SEric Saxe 2690e751525SEric Saxe /* 2700e751525SEric Saxe * Rank the importance of optimizing for the pg1 relationship vs. 2710e751525SEric Saxe * the pg2 relationship. 2720e751525SEric Saxe */ 2730e751525SEric Saxe static pg_cmt_t * 2740e751525SEric Saxe pg_cmt_hier_rank(pg_cmt_t *pg1, pg_cmt_t *pg2) 2750e751525SEric Saxe { 2760e751525SEric Saxe pghw_type_t hw1 = ((pghw_t *)pg1)->pghw_hw; 2770e751525SEric Saxe pghw_type_t hw2 = ((pghw_t *)pg2)->pghw_hw; 2780e751525SEric Saxe 2790e751525SEric Saxe /* 2800e751525SEric Saxe * A power domain is only important if CPUPM is enabled. 2810e751525SEric Saxe */ 2820e751525SEric Saxe if (cpupm_get_policy() == CPUPM_POLICY_DISABLED) { 2830e751525SEric Saxe if (PGHW_IS_PM_DOMAIN(hw1) && !PGHW_IS_PM_DOMAIN(hw2)) 2840e751525SEric Saxe return (pg2); 2850e751525SEric Saxe if (PGHW_IS_PM_DOMAIN(hw2) && !PGHW_IS_PM_DOMAIN(hw1)) 2860e751525SEric Saxe return (pg1); 2870e751525SEric Saxe } 2880e751525SEric Saxe 2890e751525SEric Saxe /* 2900e751525SEric Saxe * Otherwise, ask the platform 2910e751525SEric Saxe */ 2920e751525SEric Saxe if (pg_plat_hw_rank(hw1, hw2) == hw1) 2930e751525SEric Saxe return (pg1); 2940e751525SEric Saxe else 2950e751525SEric Saxe return (pg2); 2960e751525SEric Saxe } 2970e751525SEric Saxe 2980e751525SEric Saxe /* 2990e751525SEric Saxe * Initialize CMT callbacks for the given PG 3000e751525SEric Saxe */ 3010e751525SEric Saxe static void 3020e751525SEric Saxe cmt_callback_init(pg_t *pg) 3030e751525SEric Saxe { 304d0e93b69SEric Saxe /* 305d0e93b69SEric Saxe * Stick with the default callbacks if there isn't going to be 306d0e93b69SEric Saxe * any CMT thread placement optimizations implemented. 307d0e93b69SEric Saxe */ 308d0e93b69SEric Saxe if (((pg_cmt_t *)pg)->cmt_policy == CMT_NO_POLICY) 309d0e93b69SEric Saxe return; 310d0e93b69SEric Saxe 3110e751525SEric Saxe switch (((pghw_t *)pg)->pghw_hw) { 3120e751525SEric Saxe case PGHW_POW_ACTIVE: 3130e751525SEric Saxe pg->pg_cb.thread_swtch = cmt_ev_thread_swtch_pwr; 3140e751525SEric Saxe pg->pg_cb.thread_remain = cmt_ev_thread_remain_pwr; 3150e751525SEric Saxe break; 3160e751525SEric Saxe default: 3170e751525SEric Saxe pg->pg_cb.thread_swtch = cmt_ev_thread_swtch; 3180e751525SEric Saxe 3190e751525SEric Saxe } 3200e751525SEric Saxe } 3210e751525SEric Saxe 3220e751525SEric Saxe /* 3230e751525SEric Saxe * Promote PG above it's current parent. 3241a77c24bSEric Saxe * This is only legal if PG has an equal or greater number of CPUs than its 3251a77c24bSEric Saxe * parent. 3261a77c24bSEric Saxe * 3271a77c24bSEric Saxe * This routine operates on the CPU specific processor group data (for the CPUs 3281a77c24bSEric Saxe * in the PG being promoted), and may be invoked from a context where one CPU's 3291a77c24bSEric Saxe * PG data is under construction. In this case the argument "pgdata", if not 3301a77c24bSEric Saxe * NULL, is a reference to the CPU's under-construction PG data. 3310e751525SEric Saxe */ 3320e751525SEric Saxe static void 3331a77c24bSEric Saxe cmt_hier_promote(pg_cmt_t *pg, cpu_pg_t *pgdata) 3340e751525SEric Saxe { 3350e751525SEric Saxe pg_cmt_t *parent; 3360e751525SEric Saxe group_t *children; 3370e751525SEric Saxe cpu_t *cpu; 3380e751525SEric Saxe group_iter_t iter; 3390e751525SEric Saxe pg_cpu_itr_t cpu_iter; 3400e751525SEric Saxe int r; 3410e751525SEric Saxe int err; 3420e751525SEric Saxe 3430e751525SEric Saxe ASSERT(MUTEX_HELD(&cpu_lock)); 3440e751525SEric Saxe 3450e751525SEric Saxe parent = pg->cmt_parent; 3460e751525SEric Saxe if (parent == NULL) { 3470e751525SEric Saxe /* 3480e751525SEric Saxe * Nothing to do 3490e751525SEric Saxe */ 3500e751525SEric Saxe return; 3510e751525SEric Saxe } 3520e751525SEric Saxe 3530e751525SEric Saxe ASSERT(PG_NUM_CPUS((pg_t *)pg) >= PG_NUM_CPUS((pg_t *)parent)); 3540e751525SEric Saxe 3550e751525SEric Saxe /* 3560e751525SEric Saxe * We're changing around the hierarchy, which is actively traversed 3570e751525SEric Saxe * by the dispatcher. Pause CPUS to ensure exclusivity. 3580e751525SEric Saxe */ 3590e751525SEric Saxe pause_cpus(NULL); 3600e751525SEric Saxe 3610e751525SEric Saxe /* 3620e751525SEric Saxe * If necessary, update the parent's sibling set, replacing parent 3630e751525SEric Saxe * with PG. 3640e751525SEric Saxe */ 3650e751525SEric Saxe if (parent->cmt_siblings) { 3660e751525SEric Saxe if (group_remove(parent->cmt_siblings, parent, GRP_NORESIZE) 3670e751525SEric Saxe != -1) { 3680e751525SEric Saxe r = group_add(parent->cmt_siblings, pg, GRP_NORESIZE); 3690e751525SEric Saxe ASSERT(r != -1); 3700e751525SEric Saxe } 3710e751525SEric Saxe } 3720e751525SEric Saxe 3730e751525SEric Saxe /* 3740e751525SEric Saxe * If the parent is at the top of the hierarchy, replace it's entry 3750e751525SEric Saxe * in the root lgroup's group of top level PGs. 3760e751525SEric Saxe */ 3770e751525SEric Saxe if (parent->cmt_parent == NULL && 3780e751525SEric Saxe parent->cmt_siblings != &cmt_root->cl_pgs) { 3790e751525SEric Saxe if (group_remove(&cmt_root->cl_pgs, parent, GRP_NORESIZE) 3800e751525SEric Saxe != -1) { 3810e751525SEric Saxe r = group_add(&cmt_root->cl_pgs, pg, GRP_NORESIZE); 3820e751525SEric Saxe ASSERT(r != -1); 3830e751525SEric Saxe } 3840e751525SEric Saxe } 3850e751525SEric Saxe 3860e751525SEric Saxe /* 3870e751525SEric Saxe * We assume (and therefore assert) that the PG being promoted is an 3880e751525SEric Saxe * only child of it's parent. Update the parent's children set 3890e751525SEric Saxe * replacing PG's entry with the parent (since the parent is becoming 3900e751525SEric Saxe * the child). Then have PG and the parent swap children sets. 3910e751525SEric Saxe */ 3920e751525SEric Saxe ASSERT(GROUP_SIZE(parent->cmt_children) <= 1); 3930e751525SEric Saxe if (group_remove(parent->cmt_children, pg, GRP_NORESIZE) != -1) { 3940e751525SEric Saxe r = group_add(parent->cmt_children, parent, GRP_NORESIZE); 3950e751525SEric Saxe ASSERT(r != -1); 3960e751525SEric Saxe } 3970e751525SEric Saxe 3980e751525SEric Saxe children = pg->cmt_children; 3990e751525SEric Saxe pg->cmt_children = parent->cmt_children; 4000e751525SEric Saxe parent->cmt_children = children; 4010e751525SEric Saxe 4020e751525SEric Saxe /* 4030e751525SEric Saxe * Update the sibling references for PG and it's parent 4040e751525SEric Saxe */ 4050e751525SEric Saxe pg->cmt_siblings = parent->cmt_siblings; 4060e751525SEric Saxe parent->cmt_siblings = pg->cmt_children; 4070e751525SEric Saxe 4080e751525SEric Saxe /* 4090e751525SEric Saxe * Update any cached lineages in the per CPU pg data. 4100e751525SEric Saxe */ 4110e751525SEric Saxe PG_CPU_ITR_INIT(pg, cpu_iter); 4120e751525SEric Saxe while ((cpu = pg_cpu_next(&cpu_iter)) != NULL) { 4130e751525SEric Saxe int idx; 4140e751525SEric Saxe pg_cmt_t *cpu_pg; 4151a77c24bSEric Saxe cpu_pg_t *pgd; /* CPU's PG data */ 4161a77c24bSEric Saxe 4171a77c24bSEric Saxe /* 4181a77c24bSEric Saxe * The CPU's whose lineage is under construction still 4191a77c24bSEric Saxe * references the bootstrap CPU PG data structure. 4201a77c24bSEric Saxe */ 4211a77c24bSEric Saxe if (pg_cpu_is_bootstrapped(cpu)) 4221a77c24bSEric Saxe pgd = pgdata; 4231a77c24bSEric Saxe else 4241a77c24bSEric Saxe pgd = cpu->cpu_pg; 4250e751525SEric Saxe 4260e751525SEric Saxe /* 4270e751525SEric Saxe * Iterate over the CPU's PGs updating the children 4280e751525SEric Saxe * of the PG being promoted, since they have a new parent. 4290e751525SEric Saxe */ 4300e751525SEric Saxe group_iter_init(&iter); 4311a77c24bSEric Saxe while ((cpu_pg = group_iterate(&pgd->cmt_pgs, &iter)) != NULL) { 4320e751525SEric Saxe if (cpu_pg->cmt_parent == pg) { 4330e751525SEric Saxe cpu_pg->cmt_parent = parent; 4340e751525SEric Saxe } 4350e751525SEric Saxe } 4360e751525SEric Saxe 4370e751525SEric Saxe /* 4380e751525SEric Saxe * Update the CMT load balancing lineage 4390e751525SEric Saxe */ 4401a77c24bSEric Saxe if ((idx = group_find(&pgd->cmt_pgs, (void *)pg)) == -1) { 4410e751525SEric Saxe /* 4420e751525SEric Saxe * Unless this is the CPU who's lineage is being 4430e751525SEric Saxe * constructed, the PG being promoted should be 4440e751525SEric Saxe * in the lineage. 4450e751525SEric Saxe */ 4461a77c24bSEric Saxe ASSERT(pg_cpu_is_bootstrapped(cpu)); 4470e751525SEric Saxe continue; 4480e751525SEric Saxe } 4490e751525SEric Saxe 4501a77c24bSEric Saxe ASSERT(GROUP_ACCESS(&pgd->cmt_pgs, idx - 1) == parent); 4510e751525SEric Saxe ASSERT(idx > 0); 4520e751525SEric Saxe 4530e751525SEric Saxe /* 4540e751525SEric Saxe * Have the child and the parent swap places in the CPU's 4550e751525SEric Saxe * lineage 4560e751525SEric Saxe */ 4571a77c24bSEric Saxe group_remove_at(&pgd->cmt_pgs, idx); 4581a77c24bSEric Saxe group_remove_at(&pgd->cmt_pgs, idx - 1); 4591a77c24bSEric Saxe err = group_add_at(&pgd->cmt_pgs, parent, idx); 4600e751525SEric Saxe ASSERT(err == 0); 4611a77c24bSEric Saxe err = group_add_at(&pgd->cmt_pgs, pg, idx - 1); 4620e751525SEric Saxe ASSERT(err == 0); 4630e751525SEric Saxe } 4640e751525SEric Saxe 4650e751525SEric Saxe /* 4660e751525SEric Saxe * Update the parent references for PG and it's parent 4670e751525SEric Saxe */ 4680e751525SEric Saxe pg->cmt_parent = parent->cmt_parent; 4690e751525SEric Saxe parent->cmt_parent = pg; 4700e751525SEric Saxe 4710e751525SEric Saxe start_cpus(); 472fb2f18f8Sesaxe } 473fb2f18f8Sesaxe 474fb2f18f8Sesaxe /* 475fb2f18f8Sesaxe * CMT class callback for a new CPU entering the system 4761a77c24bSEric Saxe * 4771a77c24bSEric Saxe * This routine operates on the CPU specific processor group data (for the CPU 4781a77c24bSEric Saxe * being initialized). The argument "pgdata" is a reference to the CPU's PG 4791a77c24bSEric Saxe * data to be constructed. 4801a77c24bSEric Saxe * 4811a77c24bSEric Saxe * cp->cpu_pg is used by the dispatcher to access the CPU's PG data 4821a77c24bSEric Saxe * references a "bootstrap" structure. pg_cmt_cpu_init() and the routines it 4831a77c24bSEric Saxe * calls must be careful to operate only on the "pgdata" argument, and not 4841a77c24bSEric Saxe * cp->cpu_pg. 485fb2f18f8Sesaxe */ 486fb2f18f8Sesaxe static void 4871a77c24bSEric Saxe pg_cmt_cpu_init(cpu_t *cp, cpu_pg_t *pgdata) 488fb2f18f8Sesaxe { 489fb2f18f8Sesaxe pg_cmt_t *pg; 490fb2f18f8Sesaxe group_t *cmt_pgs; 4910e751525SEric Saxe int levels, level; 492fb2f18f8Sesaxe pghw_type_t hw; 493fb2f18f8Sesaxe pg_t *pg_cache = NULL; 494fb2f18f8Sesaxe pg_cmt_t *cpu_cmt_hier[PGHW_NUM_COMPONENTS]; 495fb2f18f8Sesaxe lgrp_handle_t lgrp_handle; 496fb2f18f8Sesaxe cmt_lgrp_t *lgrp; 497ef4f35d8SEric Saxe cmt_lineage_validation_t lineage_status; 498fb2f18f8Sesaxe 499fb2f18f8Sesaxe ASSERT(MUTEX_HELD(&cpu_lock)); 5001a77c24bSEric Saxe ASSERT(pg_cpu_is_bootstrapped(cp)); 501fb2f18f8Sesaxe 5020e751525SEric Saxe if (cmt_sched_disabled) 5030e751525SEric Saxe return; 5040e751525SEric Saxe 505fb2f18f8Sesaxe /* 506fb2f18f8Sesaxe * A new CPU is coming into the system. 507fb2f18f8Sesaxe * Interrogate the platform to see if the CPU 5080e751525SEric Saxe * has any performance or efficiency relevant 5090e751525SEric Saxe * sharing relationships 510fb2f18f8Sesaxe */ 5111a77c24bSEric Saxe cmt_pgs = &pgdata->cmt_pgs; 5121a77c24bSEric Saxe pgdata->cmt_lineage = NULL; 513fb2f18f8Sesaxe 514fb2f18f8Sesaxe bzero(cpu_cmt_hier, sizeof (cpu_cmt_hier)); 5150e751525SEric Saxe levels = 0; 516fb2f18f8Sesaxe for (hw = PGHW_START; hw < PGHW_NUM_COMPONENTS; hw++) { 517fb2f18f8Sesaxe 5180e751525SEric Saxe pg_cmt_policy_t policy; 5190e751525SEric Saxe 520fb2f18f8Sesaxe /* 5210e751525SEric Saxe * We're only interested in the hw sharing relationships 5220e751525SEric Saxe * for which we know how to optimize. 523fb2f18f8Sesaxe */ 5240e751525SEric Saxe policy = pg_cmt_policy(hw); 5250e751525SEric Saxe if (policy == CMT_NO_POLICY || 5260e751525SEric Saxe pg_plat_hw_shared(cp, hw) == 0) 527fb2f18f8Sesaxe continue; 528fb2f18f8Sesaxe 529fb2f18f8Sesaxe /* 530d0e93b69SEric Saxe * We will still create the PGs for hardware sharing 531d0e93b69SEric Saxe * relationships that have been blacklisted, but won't 532d0e93b69SEric Saxe * implement CMT thread placement optimizations against them. 5330e751525SEric Saxe */ 534d0e93b69SEric Saxe if (cmt_hw_blacklisted[hw] == 1) 535d0e93b69SEric Saxe policy = CMT_NO_POLICY; 5360e751525SEric Saxe 5370e751525SEric Saxe /* 538fb2f18f8Sesaxe * Find (or create) the PG associated with 539fb2f18f8Sesaxe * the hw sharing relationship in which cp 540fb2f18f8Sesaxe * belongs. 541fb2f18f8Sesaxe * 542fb2f18f8Sesaxe * Determine if a suitable PG already 543fb2f18f8Sesaxe * exists, or if one needs to be created. 544fb2f18f8Sesaxe */ 545fb2f18f8Sesaxe pg = (pg_cmt_t *)pghw_place_cpu(cp, hw); 546fb2f18f8Sesaxe if (pg == NULL) { 547fb2f18f8Sesaxe /* 548fb2f18f8Sesaxe * Create a new one. 549fb2f18f8Sesaxe * Initialize the common... 550fb2f18f8Sesaxe */ 551fb2f18f8Sesaxe pg = (pg_cmt_t *)pg_create(pg_cmt_class_id); 552fb2f18f8Sesaxe 553fb2f18f8Sesaxe /* ... physical ... */ 554fb2f18f8Sesaxe pghw_init((pghw_t *)pg, cp, hw); 555fb2f18f8Sesaxe 556fb2f18f8Sesaxe /* 557fb2f18f8Sesaxe * ... and CMT specific portions of the 558fb2f18f8Sesaxe * structure. 559fb2f18f8Sesaxe */ 5600e751525SEric Saxe pg->cmt_policy = policy; 5610e751525SEric Saxe 5620e751525SEric Saxe /* CMT event callbacks */ 5630e751525SEric Saxe cmt_callback_init((pg_t *)pg); 5640e751525SEric Saxe 565fb2f18f8Sesaxe bitset_init(&pg->cmt_cpus_actv_set); 566fb2f18f8Sesaxe group_create(&pg->cmt_cpus_actv); 567fb2f18f8Sesaxe } else { 568fb2f18f8Sesaxe ASSERT(IS_CMT_PG(pg)); 569fb2f18f8Sesaxe } 570fb2f18f8Sesaxe 571fb2f18f8Sesaxe /* Add the CPU to the PG */ 5721a77c24bSEric Saxe pg_cpu_add((pg_t *)pg, cp, pgdata); 573fb2f18f8Sesaxe 574fb2f18f8Sesaxe /* 5756890d023SEric Saxe * Ensure capacity of the active CPU group/bitset 576fb2f18f8Sesaxe */ 577fb2f18f8Sesaxe group_expand(&pg->cmt_cpus_actv, 578fb2f18f8Sesaxe GROUP_SIZE(&((pg_t *)pg)->pg_cpus)); 579fb2f18f8Sesaxe 580fb2f18f8Sesaxe if (cp->cpu_seqid >= 581fb2f18f8Sesaxe bitset_capacity(&pg->cmt_cpus_actv_set)) { 582fb2f18f8Sesaxe bitset_resize(&pg->cmt_cpus_actv_set, 583fb2f18f8Sesaxe cp->cpu_seqid + 1); 584fb2f18f8Sesaxe } 585fb2f18f8Sesaxe 586fb2f18f8Sesaxe /* 5870e751525SEric Saxe * Build a lineage of CMT PGs for load balancing / coalescence 588fb2f18f8Sesaxe */ 5890e751525SEric Saxe if (policy & (CMT_BALANCE | CMT_COALESCE)) { 5900e751525SEric Saxe cpu_cmt_hier[levels++] = pg; 591fb2f18f8Sesaxe } 592fb2f18f8Sesaxe 593fb2f18f8Sesaxe /* Cache this for later */ 594fb2f18f8Sesaxe if (hw == PGHW_CACHE) 595fb2f18f8Sesaxe pg_cache = (pg_t *)pg; 596fb2f18f8Sesaxe } 597fb2f18f8Sesaxe 5980e751525SEric Saxe group_expand(cmt_pgs, levels); 5996890d023SEric Saxe 6006890d023SEric Saxe if (cmt_root == NULL) 6016890d023SEric Saxe cmt_root = pg_cmt_lgrp_create(lgrp_plat_root_hand()); 602fb2f18f8Sesaxe 603fb2f18f8Sesaxe /* 6040e751525SEric Saxe * Find the lgrp that encapsulates this CPU's CMT hierarchy 6056890d023SEric Saxe */ 6066890d023SEric Saxe lgrp_handle = lgrp_plat_cpu_to_hand(cp->cpu_id); 6076890d023SEric Saxe if ((lgrp = pg_cmt_find_lgrp(lgrp_handle)) == NULL) 6086890d023SEric Saxe lgrp = pg_cmt_lgrp_create(lgrp_handle); 6096890d023SEric Saxe 6106890d023SEric Saxe /* 6110e751525SEric Saxe * Ascendingly sort the PGs in the lineage by number of CPUs 6120e751525SEric Saxe */ 6130e751525SEric Saxe pg_cmt_hier_sort(cpu_cmt_hier, levels); 6140e751525SEric Saxe 6150e751525SEric Saxe /* 6160e751525SEric Saxe * Examine the lineage and validate it. 6170e751525SEric Saxe * This routine will also try to fix the lineage along with the 6180e751525SEric Saxe * rest of the PG hierarchy should it detect an issue. 6190e751525SEric Saxe * 620ef4f35d8SEric Saxe * If it returns anything other than VALID or REPAIRED, an 621ef4f35d8SEric Saxe * unrecoverable error has occurred, and we cannot proceed. 6220e751525SEric Saxe */ 6231a77c24bSEric Saxe lineage_status = pg_cmt_lineage_validate(cpu_cmt_hier, &levels, pgdata); 624ef4f35d8SEric Saxe if ((lineage_status != CMT_LINEAGE_VALID) && 6251a77c24bSEric Saxe (lineage_status != CMT_LINEAGE_REPAIRED)) { 6261a77c24bSEric Saxe /* 6271a77c24bSEric Saxe * In the case of an unrecoverable error where CMT scheduling 6281a77c24bSEric Saxe * has been disabled, assert that the under construction CPU's 6291a77c24bSEric Saxe * PG data has an empty CMT load balancing lineage. 6301a77c24bSEric Saxe */ 6311a77c24bSEric Saxe ASSERT((cmt_sched_disabled == 0) || 6321a77c24bSEric Saxe (GROUP_SIZE(&(pgdata->cmt_pgs)) == 0)); 6330e751525SEric Saxe return; 6341a77c24bSEric Saxe } 6350e751525SEric Saxe 6360e751525SEric Saxe /* 6370e751525SEric Saxe * For existing PGs in the lineage, verify that the parent is 6380e751525SEric Saxe * correct, as the generation in the lineage may have changed 6390e751525SEric Saxe * as a result of the sorting. Start the traversal at the top 6400e751525SEric Saxe * of the lineage, moving down. 6410e751525SEric Saxe */ 6420e751525SEric Saxe for (level = levels - 1; level >= 0; ) { 6430e751525SEric Saxe int reorg; 6440e751525SEric Saxe 6450e751525SEric Saxe reorg = 0; 6460e751525SEric Saxe pg = cpu_cmt_hier[level]; 6470e751525SEric Saxe 6480e751525SEric Saxe /* 6490e751525SEric Saxe * Promote PGs at an incorrect generation into place. 6500e751525SEric Saxe */ 6510e751525SEric Saxe while (pg->cmt_parent && 6520e751525SEric Saxe pg->cmt_parent != cpu_cmt_hier[level + 1]) { 6531a77c24bSEric Saxe cmt_hier_promote(pg, pgdata); 6540e751525SEric Saxe reorg++; 6550e751525SEric Saxe } 6560e751525SEric Saxe if (reorg > 0) 6570e751525SEric Saxe level = levels - 1; 6580e751525SEric Saxe else 6590e751525SEric Saxe level--; 6600e751525SEric Saxe } 6610e751525SEric Saxe 6620e751525SEric Saxe /* 6636890d023SEric Saxe * For each of the PGs in the CPU's lineage: 6640e751525SEric Saxe * - Add an entry in the CPU sorted CMT PG group 6650e751525SEric Saxe * which is used for top down CMT load balancing 666fb2f18f8Sesaxe * - Tie the PG into the CMT hierarchy by connecting 667fb2f18f8Sesaxe * it to it's parent and siblings. 668fb2f18f8Sesaxe */ 6690e751525SEric Saxe for (level = 0; level < levels; level++) { 670fb2f18f8Sesaxe uint_t children; 671fb2f18f8Sesaxe int err; 672fb2f18f8Sesaxe 673fb2f18f8Sesaxe pg = cpu_cmt_hier[level]; 6740e751525SEric Saxe err = group_add_at(cmt_pgs, pg, levels - level - 1); 675fb2f18f8Sesaxe ASSERT(err == 0); 676fb2f18f8Sesaxe 677fb2f18f8Sesaxe if (level == 0) 6781a77c24bSEric Saxe pgdata->cmt_lineage = (pg_t *)pg; 679fb2f18f8Sesaxe 680fb2f18f8Sesaxe if (pg->cmt_siblings != NULL) { 681fb2f18f8Sesaxe /* Already initialized */ 682fb2f18f8Sesaxe ASSERT(pg->cmt_parent == NULL || 683fb2f18f8Sesaxe pg->cmt_parent == cpu_cmt_hier[level + 1]); 684fb2f18f8Sesaxe ASSERT(pg->cmt_siblings == &lgrp->cl_pgs || 685c416da2dSjb145095 ((pg->cmt_parent != NULL) && 686c416da2dSjb145095 pg->cmt_siblings == pg->cmt_parent->cmt_children)); 687fb2f18f8Sesaxe continue; 688fb2f18f8Sesaxe } 689fb2f18f8Sesaxe 6900e751525SEric Saxe if ((level + 1) == levels) { 691fb2f18f8Sesaxe pg->cmt_parent = NULL; 6926890d023SEric Saxe 693fb2f18f8Sesaxe pg->cmt_siblings = &lgrp->cl_pgs; 694fb2f18f8Sesaxe children = ++lgrp->cl_npgs; 6950e751525SEric Saxe if (cmt_root != lgrp) 6966890d023SEric Saxe cmt_root->cl_npgs++; 697fb2f18f8Sesaxe } else { 698fb2f18f8Sesaxe pg->cmt_parent = cpu_cmt_hier[level + 1]; 699fb2f18f8Sesaxe 700fb2f18f8Sesaxe /* 701fb2f18f8Sesaxe * A good parent keeps track of their children. 702fb2f18f8Sesaxe * The parent's children group is also the PG's 703fb2f18f8Sesaxe * siblings. 704fb2f18f8Sesaxe */ 705fb2f18f8Sesaxe if (pg->cmt_parent->cmt_children == NULL) { 706fb2f18f8Sesaxe pg->cmt_parent->cmt_children = 707fb2f18f8Sesaxe kmem_zalloc(sizeof (group_t), KM_SLEEP); 708fb2f18f8Sesaxe group_create(pg->cmt_parent->cmt_children); 709fb2f18f8Sesaxe } 710fb2f18f8Sesaxe pg->cmt_siblings = pg->cmt_parent->cmt_children; 711fb2f18f8Sesaxe children = ++pg->cmt_parent->cmt_nchildren; 712fb2f18f8Sesaxe } 7136890d023SEric Saxe 714fb2f18f8Sesaxe group_expand(pg->cmt_siblings, children); 7156890d023SEric Saxe group_expand(&cmt_root->cl_pgs, cmt_root->cl_npgs); 716fb2f18f8Sesaxe } 717fb2f18f8Sesaxe 718fb2f18f8Sesaxe /* 719fb2f18f8Sesaxe * Cache the chip and core IDs in the cpu_t->cpu_physid structure 720fb2f18f8Sesaxe * for fast lookups later. 721fb2f18f8Sesaxe */ 722fb2f18f8Sesaxe if (cp->cpu_physid) { 723fb2f18f8Sesaxe cp->cpu_physid->cpu_chipid = 724fb2f18f8Sesaxe pg_plat_hw_instance_id(cp, PGHW_CHIP); 725fb2f18f8Sesaxe cp->cpu_physid->cpu_coreid = pg_plat_get_core_id(cp); 726fb2f18f8Sesaxe 727fb2f18f8Sesaxe /* 728fb2f18f8Sesaxe * If this cpu has a PG representing shared cache, then set 729fb2f18f8Sesaxe * cpu_cacheid to that PG's logical id 730fb2f18f8Sesaxe */ 731fb2f18f8Sesaxe if (pg_cache) 732fb2f18f8Sesaxe cp->cpu_physid->cpu_cacheid = pg_cache->pg_id; 733fb2f18f8Sesaxe } 734fb2f18f8Sesaxe 735fb2f18f8Sesaxe /* CPU0 only initialization */ 736fb2f18f8Sesaxe if (is_cpu0) { 737fb2f18f8Sesaxe is_cpu0 = 0; 738a6604450Sesaxe cpu0_lgrp = lgrp; 739fb2f18f8Sesaxe } 740fb2f18f8Sesaxe 741fb2f18f8Sesaxe } 742fb2f18f8Sesaxe 743fb2f18f8Sesaxe /* 744fb2f18f8Sesaxe * Class callback when a CPU is leaving the system (deletion) 7451a77c24bSEric Saxe * 7461a77c24bSEric Saxe * "pgdata" is a reference to the CPU's PG data to be deconstructed. 7471a77c24bSEric Saxe * 7481a77c24bSEric Saxe * cp->cpu_pg is used by the dispatcher to access the CPU's PG data 7491a77c24bSEric Saxe * references a "bootstrap" structure across this function's invocation. 7501a77c24bSEric Saxe * pg_cmt_cpu_init() and the routines it calls must be careful to operate only 7511a77c24bSEric Saxe * on the "pgdata" argument, and not cp->cpu_pg. 752fb2f18f8Sesaxe */ 753fb2f18f8Sesaxe static void 7541a77c24bSEric Saxe pg_cmt_cpu_fini(cpu_t *cp, cpu_pg_t *pgdata) 755fb2f18f8Sesaxe { 756fb2f18f8Sesaxe group_iter_t i; 757fb2f18f8Sesaxe pg_cmt_t *pg; 758fb2f18f8Sesaxe group_t *pgs, *cmt_pgs; 759fb2f18f8Sesaxe lgrp_handle_t lgrp_handle; 760fb2f18f8Sesaxe cmt_lgrp_t *lgrp; 761fb2f18f8Sesaxe 7620e751525SEric Saxe if (cmt_sched_disabled) 7630e751525SEric Saxe return; 7640e751525SEric Saxe 7651a77c24bSEric Saxe ASSERT(pg_cpu_is_bootstrapped(cp)); 7661a77c24bSEric Saxe 7671a77c24bSEric Saxe pgs = &pgdata->pgs; 7681a77c24bSEric Saxe cmt_pgs = &pgdata->cmt_pgs; 769fb2f18f8Sesaxe 770fb2f18f8Sesaxe /* 771fb2f18f8Sesaxe * Find the lgroup that encapsulates this CPU's CMT hierarchy 772fb2f18f8Sesaxe */ 773fb2f18f8Sesaxe lgrp_handle = lgrp_plat_cpu_to_hand(cp->cpu_id); 774a6604450Sesaxe 775fb2f18f8Sesaxe lgrp = pg_cmt_find_lgrp(lgrp_handle); 7763e81cacfSEric Saxe if (ncpus == 1 && lgrp != cpu0_lgrp) { 777a6604450Sesaxe /* 7783e81cacfSEric Saxe * One might wonder how we could be deconfiguring the 7793e81cacfSEric Saxe * only CPU in the system. 780a6604450Sesaxe * 7813e81cacfSEric Saxe * On Starcat systems when null_proc_lpa is detected, 7823e81cacfSEric Saxe * the boot CPU (which is already configured into a leaf 7833e81cacfSEric Saxe * lgroup), is moved into the root lgroup. This is done by 7843e81cacfSEric Saxe * deconfiguring it from both lgroups and processor 7853e81cacfSEric Saxe * groups), and then later reconfiguring it back in. This 7863e81cacfSEric Saxe * call to pg_cmt_cpu_fini() is part of that deconfiguration. 7873e81cacfSEric Saxe * 7883e81cacfSEric Saxe * This special case is detected by noting that the platform 7893e81cacfSEric Saxe * has changed the CPU's lgrp affiliation (since it now 7903e81cacfSEric Saxe * belongs in the root). In this case, use the cmt_lgrp_t 7913e81cacfSEric Saxe * cached for the boot CPU, since this is what needs to be 7923e81cacfSEric Saxe * torn down. 793a6604450Sesaxe */ 794a6604450Sesaxe lgrp = cpu0_lgrp; 795a6604450Sesaxe } 796fb2f18f8Sesaxe 7973e81cacfSEric Saxe ASSERT(lgrp != NULL); 7983e81cacfSEric Saxe 799fb2f18f8Sesaxe /* 800fb2f18f8Sesaxe * First, clean up anything load balancing specific for each of 801fb2f18f8Sesaxe * the CPU's PGs that participated in CMT load balancing 802fb2f18f8Sesaxe */ 8031a77c24bSEric Saxe pg = (pg_cmt_t *)pgdata->cmt_lineage; 804fb2f18f8Sesaxe while (pg != NULL) { 805fb2f18f8Sesaxe 806fb2f18f8Sesaxe /* 807fb2f18f8Sesaxe * Remove the PG from the CPU's load balancing lineage 808fb2f18f8Sesaxe */ 809fb2f18f8Sesaxe (void) group_remove(cmt_pgs, pg, GRP_RESIZE); 810fb2f18f8Sesaxe 811fb2f18f8Sesaxe /* 812fb2f18f8Sesaxe * If it's about to become empty, destroy it's children 813fb2f18f8Sesaxe * group, and remove it's reference from it's siblings. 814fb2f18f8Sesaxe * This is done here (rather than below) to avoid removing 815fb2f18f8Sesaxe * our reference from a PG that we just eliminated. 816fb2f18f8Sesaxe */ 817fb2f18f8Sesaxe if (GROUP_SIZE(&((pg_t *)pg)->pg_cpus) == 1) { 818fb2f18f8Sesaxe if (pg->cmt_children != NULL) 819fb2f18f8Sesaxe group_destroy(pg->cmt_children); 820fb2f18f8Sesaxe if (pg->cmt_siblings != NULL) { 821fb2f18f8Sesaxe if (pg->cmt_siblings == &lgrp->cl_pgs) 822fb2f18f8Sesaxe lgrp->cl_npgs--; 823fb2f18f8Sesaxe else 824fb2f18f8Sesaxe pg->cmt_parent->cmt_nchildren--; 825fb2f18f8Sesaxe } 826fb2f18f8Sesaxe } 827fb2f18f8Sesaxe pg = pg->cmt_parent; 828fb2f18f8Sesaxe } 829fb2f18f8Sesaxe ASSERT(GROUP_SIZE(cmt_pgs) == 0); 830fb2f18f8Sesaxe 831fb2f18f8Sesaxe /* 832fb2f18f8Sesaxe * Now that the load balancing lineage updates have happened, 833fb2f18f8Sesaxe * remove the CPU from all it's PGs (destroying any that become 834fb2f18f8Sesaxe * empty). 835fb2f18f8Sesaxe */ 836fb2f18f8Sesaxe group_iter_init(&i); 837fb2f18f8Sesaxe while ((pg = group_iterate(pgs, &i)) != NULL) { 838fb2f18f8Sesaxe if (IS_CMT_PG(pg) == 0) 839fb2f18f8Sesaxe continue; 840fb2f18f8Sesaxe 8411a77c24bSEric Saxe pg_cpu_delete((pg_t *)pg, cp, pgdata); 842fb2f18f8Sesaxe /* 843fb2f18f8Sesaxe * Deleting the CPU from the PG changes the CPU's 844fb2f18f8Sesaxe * PG group over which we are actively iterating 845fb2f18f8Sesaxe * Re-initialize the iteration 846fb2f18f8Sesaxe */ 847fb2f18f8Sesaxe group_iter_init(&i); 848fb2f18f8Sesaxe 849fb2f18f8Sesaxe if (GROUP_SIZE(&((pg_t *)pg)->pg_cpus) == 0) { 850fb2f18f8Sesaxe 851fb2f18f8Sesaxe /* 852fb2f18f8Sesaxe * The PG has become zero sized, so destroy it. 853fb2f18f8Sesaxe */ 854fb2f18f8Sesaxe group_destroy(&pg->cmt_cpus_actv); 855fb2f18f8Sesaxe bitset_fini(&pg->cmt_cpus_actv_set); 856fb2f18f8Sesaxe pghw_fini((pghw_t *)pg); 857fb2f18f8Sesaxe 858fb2f18f8Sesaxe pg_destroy((pg_t *)pg); 859fb2f18f8Sesaxe } 860fb2f18f8Sesaxe } 861fb2f18f8Sesaxe } 862fb2f18f8Sesaxe 863fb2f18f8Sesaxe /* 864fb2f18f8Sesaxe * Class callback when a CPU is entering a cpu partition 865fb2f18f8Sesaxe */ 866fb2f18f8Sesaxe static void 867fb2f18f8Sesaxe pg_cmt_cpupart_in(cpu_t *cp, cpupart_t *pp) 868fb2f18f8Sesaxe { 869fb2f18f8Sesaxe group_t *pgs; 870fb2f18f8Sesaxe pg_t *pg; 871fb2f18f8Sesaxe group_iter_t i; 872fb2f18f8Sesaxe 873fb2f18f8Sesaxe ASSERT(MUTEX_HELD(&cpu_lock)); 874fb2f18f8Sesaxe 8750e751525SEric Saxe if (cmt_sched_disabled) 8760e751525SEric Saxe return; 8770e751525SEric Saxe 878fb2f18f8Sesaxe pgs = &cp->cpu_pg->pgs; 879fb2f18f8Sesaxe 880fb2f18f8Sesaxe /* 881fb2f18f8Sesaxe * Ensure that the new partition's PG bitset 882fb2f18f8Sesaxe * is large enough for all CMT PG's to which cp 883fb2f18f8Sesaxe * belongs 884fb2f18f8Sesaxe */ 885fb2f18f8Sesaxe group_iter_init(&i); 886fb2f18f8Sesaxe while ((pg = group_iterate(pgs, &i)) != NULL) { 887fb2f18f8Sesaxe if (IS_CMT_PG(pg) == 0) 888fb2f18f8Sesaxe continue; 889fb2f18f8Sesaxe 890fb2f18f8Sesaxe if (bitset_capacity(&pp->cp_cmt_pgs) <= pg->pg_id) 891fb2f18f8Sesaxe bitset_resize(&pp->cp_cmt_pgs, pg->pg_id + 1); 892fb2f18f8Sesaxe } 893fb2f18f8Sesaxe } 894fb2f18f8Sesaxe 895fb2f18f8Sesaxe /* 896fb2f18f8Sesaxe * Class callback when a CPU is actually moving partitions 897fb2f18f8Sesaxe */ 898fb2f18f8Sesaxe static void 899fb2f18f8Sesaxe pg_cmt_cpupart_move(cpu_t *cp, cpupart_t *oldpp, cpupart_t *newpp) 900fb2f18f8Sesaxe { 901fb2f18f8Sesaxe cpu_t *cpp; 902fb2f18f8Sesaxe group_t *pgs; 903fb2f18f8Sesaxe pg_t *pg; 904fb2f18f8Sesaxe group_iter_t pg_iter; 905fb2f18f8Sesaxe pg_cpu_itr_t cpu_iter; 906fb2f18f8Sesaxe boolean_t found; 907fb2f18f8Sesaxe 908fb2f18f8Sesaxe ASSERT(MUTEX_HELD(&cpu_lock)); 909fb2f18f8Sesaxe 9100e751525SEric Saxe if (cmt_sched_disabled) 9110e751525SEric Saxe return; 9120e751525SEric Saxe 913fb2f18f8Sesaxe pgs = &cp->cpu_pg->pgs; 914fb2f18f8Sesaxe group_iter_init(&pg_iter); 915fb2f18f8Sesaxe 916fb2f18f8Sesaxe /* 917fb2f18f8Sesaxe * Iterate over the CPUs CMT PGs 918fb2f18f8Sesaxe */ 919fb2f18f8Sesaxe while ((pg = group_iterate(pgs, &pg_iter)) != NULL) { 920fb2f18f8Sesaxe 921fb2f18f8Sesaxe if (IS_CMT_PG(pg) == 0) 922fb2f18f8Sesaxe continue; 923fb2f18f8Sesaxe 924fb2f18f8Sesaxe /* 925fb2f18f8Sesaxe * Add the PG to the bitset in the new partition. 926fb2f18f8Sesaxe */ 927fb2f18f8Sesaxe bitset_add(&newpp->cp_cmt_pgs, pg->pg_id); 928fb2f18f8Sesaxe 929fb2f18f8Sesaxe /* 930fb2f18f8Sesaxe * Remove the PG from the bitset in the old partition 931fb2f18f8Sesaxe * if the last of the PG's CPUs have left. 932fb2f18f8Sesaxe */ 933fb2f18f8Sesaxe found = B_FALSE; 934fb2f18f8Sesaxe PG_CPU_ITR_INIT(pg, cpu_iter); 935fb2f18f8Sesaxe while ((cpp = pg_cpu_next(&cpu_iter)) != NULL) { 936fb2f18f8Sesaxe if (cpp == cp) 937fb2f18f8Sesaxe continue; 938a6604450Sesaxe if (CPU_ACTIVE(cpp) && 939a6604450Sesaxe cpp->cpu_part->cp_id == oldpp->cp_id) { 940fb2f18f8Sesaxe found = B_TRUE; 941fb2f18f8Sesaxe break; 942fb2f18f8Sesaxe } 943fb2f18f8Sesaxe } 944fb2f18f8Sesaxe if (!found) 945fb2f18f8Sesaxe bitset_del(&cp->cpu_part->cp_cmt_pgs, pg->pg_id); 946fb2f18f8Sesaxe } 947fb2f18f8Sesaxe } 948fb2f18f8Sesaxe 949fb2f18f8Sesaxe /* 950fb2f18f8Sesaxe * Class callback when a CPU becomes active (online) 951fb2f18f8Sesaxe * 952fb2f18f8Sesaxe * This is called in a context where CPUs are paused 953fb2f18f8Sesaxe */ 954fb2f18f8Sesaxe static void 955fb2f18f8Sesaxe pg_cmt_cpu_active(cpu_t *cp) 956fb2f18f8Sesaxe { 957fb2f18f8Sesaxe int err; 958fb2f18f8Sesaxe group_iter_t i; 959fb2f18f8Sesaxe pg_cmt_t *pg; 960fb2f18f8Sesaxe group_t *pgs; 961fb2f18f8Sesaxe 962fb2f18f8Sesaxe ASSERT(MUTEX_HELD(&cpu_lock)); 963fb2f18f8Sesaxe 9640e751525SEric Saxe if (cmt_sched_disabled) 9650e751525SEric Saxe return; 9660e751525SEric Saxe 967fb2f18f8Sesaxe pgs = &cp->cpu_pg->pgs; 968fb2f18f8Sesaxe group_iter_init(&i); 969fb2f18f8Sesaxe 970fb2f18f8Sesaxe /* 971fb2f18f8Sesaxe * Iterate over the CPU's PGs 972fb2f18f8Sesaxe */ 973fb2f18f8Sesaxe while ((pg = group_iterate(pgs, &i)) != NULL) { 974fb2f18f8Sesaxe 975fb2f18f8Sesaxe if (IS_CMT_PG(pg) == 0) 976fb2f18f8Sesaxe continue; 977fb2f18f8Sesaxe 978fb2f18f8Sesaxe err = group_add(&pg->cmt_cpus_actv, cp, GRP_NORESIZE); 979fb2f18f8Sesaxe ASSERT(err == 0); 980fb2f18f8Sesaxe 981fb2f18f8Sesaxe /* 982fb2f18f8Sesaxe * If this is the first active CPU in the PG, and it 983fb2f18f8Sesaxe * represents a hardware sharing relationship over which 984fb2f18f8Sesaxe * CMT load balancing is performed, add it as a candidate 985fb2f18f8Sesaxe * for balancing with it's siblings. 986fb2f18f8Sesaxe */ 987fb2f18f8Sesaxe if (GROUP_SIZE(&pg->cmt_cpus_actv) == 1 && 9880e751525SEric Saxe (pg->cmt_policy & (CMT_BALANCE | CMT_COALESCE))) { 989fb2f18f8Sesaxe err = group_add(pg->cmt_siblings, pg, GRP_NORESIZE); 990fb2f18f8Sesaxe ASSERT(err == 0); 9916890d023SEric Saxe 9926890d023SEric Saxe /* 9936890d023SEric Saxe * If this is a top level PG, add it as a balancing 9940e751525SEric Saxe * candidate when balancing within the root lgroup. 9956890d023SEric Saxe */ 9960e751525SEric Saxe if (pg->cmt_parent == NULL && 9970e751525SEric Saxe pg->cmt_siblings != &cmt_root->cl_pgs) { 9986890d023SEric Saxe err = group_add(&cmt_root->cl_pgs, pg, 9996890d023SEric Saxe GRP_NORESIZE); 10006890d023SEric Saxe ASSERT(err == 0); 10016890d023SEric Saxe } 1002fb2f18f8Sesaxe } 1003fb2f18f8Sesaxe 1004fb2f18f8Sesaxe /* 1005fb2f18f8Sesaxe * Notate the CPU in the PGs active CPU bitset. 1006fb2f18f8Sesaxe * Also notate the PG as being active in it's associated 1007fb2f18f8Sesaxe * partition 1008fb2f18f8Sesaxe */ 1009fb2f18f8Sesaxe bitset_add(&pg->cmt_cpus_actv_set, cp->cpu_seqid); 1010fb2f18f8Sesaxe bitset_add(&cp->cpu_part->cp_cmt_pgs, ((pg_t *)pg)->pg_id); 1011fb2f18f8Sesaxe } 1012fb2f18f8Sesaxe } 1013fb2f18f8Sesaxe 1014fb2f18f8Sesaxe /* 1015fb2f18f8Sesaxe * Class callback when a CPU goes inactive (offline) 1016fb2f18f8Sesaxe * 1017fb2f18f8Sesaxe * This is called in a context where CPUs are paused 1018fb2f18f8Sesaxe */ 1019fb2f18f8Sesaxe static void 1020fb2f18f8Sesaxe pg_cmt_cpu_inactive(cpu_t *cp) 1021fb2f18f8Sesaxe { 1022fb2f18f8Sesaxe int err; 1023fb2f18f8Sesaxe group_t *pgs; 1024fb2f18f8Sesaxe pg_cmt_t *pg; 1025fb2f18f8Sesaxe cpu_t *cpp; 1026fb2f18f8Sesaxe group_iter_t i; 1027fb2f18f8Sesaxe pg_cpu_itr_t cpu_itr; 1028fb2f18f8Sesaxe boolean_t found; 1029fb2f18f8Sesaxe 1030fb2f18f8Sesaxe ASSERT(MUTEX_HELD(&cpu_lock)); 1031fb2f18f8Sesaxe 10320e751525SEric Saxe if (cmt_sched_disabled) 10330e751525SEric Saxe return; 10340e751525SEric Saxe 1035fb2f18f8Sesaxe pgs = &cp->cpu_pg->pgs; 1036fb2f18f8Sesaxe group_iter_init(&i); 1037fb2f18f8Sesaxe 1038fb2f18f8Sesaxe while ((pg = group_iterate(pgs, &i)) != NULL) { 1039fb2f18f8Sesaxe 1040fb2f18f8Sesaxe if (IS_CMT_PG(pg) == 0) 1041fb2f18f8Sesaxe continue; 1042fb2f18f8Sesaxe 1043fb2f18f8Sesaxe /* 1044fb2f18f8Sesaxe * Remove the CPU from the CMT PGs active CPU group 1045fb2f18f8Sesaxe * bitmap 1046fb2f18f8Sesaxe */ 1047fb2f18f8Sesaxe err = group_remove(&pg->cmt_cpus_actv, cp, GRP_NORESIZE); 1048fb2f18f8Sesaxe ASSERT(err == 0); 1049fb2f18f8Sesaxe 1050fb2f18f8Sesaxe bitset_del(&pg->cmt_cpus_actv_set, cp->cpu_seqid); 1051fb2f18f8Sesaxe 1052fb2f18f8Sesaxe /* 1053fb2f18f8Sesaxe * If there are no more active CPUs in this PG over which 1054fb2f18f8Sesaxe * load was balanced, remove it as a balancing candidate. 1055fb2f18f8Sesaxe */ 1056fb2f18f8Sesaxe if (GROUP_SIZE(&pg->cmt_cpus_actv) == 0 && 10570e751525SEric Saxe (pg->cmt_policy & (CMT_BALANCE | CMT_COALESCE))) { 1058fb2f18f8Sesaxe err = group_remove(pg->cmt_siblings, pg, GRP_NORESIZE); 1059fb2f18f8Sesaxe ASSERT(err == 0); 10606890d023SEric Saxe 10610e751525SEric Saxe if (pg->cmt_parent == NULL && 10620e751525SEric Saxe pg->cmt_siblings != &cmt_root->cl_pgs) { 10636890d023SEric Saxe err = group_remove(&cmt_root->cl_pgs, pg, 10646890d023SEric Saxe GRP_NORESIZE); 10656890d023SEric Saxe ASSERT(err == 0); 10666890d023SEric Saxe } 1067fb2f18f8Sesaxe } 1068fb2f18f8Sesaxe 1069fb2f18f8Sesaxe /* 1070fb2f18f8Sesaxe * Assert the number of active CPUs does not exceed 1071fb2f18f8Sesaxe * the total number of CPUs in the PG 1072fb2f18f8Sesaxe */ 1073fb2f18f8Sesaxe ASSERT(GROUP_SIZE(&pg->cmt_cpus_actv) <= 1074fb2f18f8Sesaxe GROUP_SIZE(&((pg_t *)pg)->pg_cpus)); 1075fb2f18f8Sesaxe 1076fb2f18f8Sesaxe /* 1077fb2f18f8Sesaxe * Update the PG bitset in the CPU's old partition 1078fb2f18f8Sesaxe */ 1079fb2f18f8Sesaxe found = B_FALSE; 1080fb2f18f8Sesaxe PG_CPU_ITR_INIT(pg, cpu_itr); 1081fb2f18f8Sesaxe while ((cpp = pg_cpu_next(&cpu_itr)) != NULL) { 1082fb2f18f8Sesaxe if (cpp == cp) 1083fb2f18f8Sesaxe continue; 1084a6604450Sesaxe if (CPU_ACTIVE(cpp) && 1085a6604450Sesaxe cpp->cpu_part->cp_id == cp->cpu_part->cp_id) { 1086fb2f18f8Sesaxe found = B_TRUE; 1087fb2f18f8Sesaxe break; 1088fb2f18f8Sesaxe } 1089fb2f18f8Sesaxe } 1090fb2f18f8Sesaxe if (!found) { 1091fb2f18f8Sesaxe bitset_del(&cp->cpu_part->cp_cmt_pgs, 1092fb2f18f8Sesaxe ((pg_t *)pg)->pg_id); 1093fb2f18f8Sesaxe } 1094fb2f18f8Sesaxe } 1095fb2f18f8Sesaxe } 1096fb2f18f8Sesaxe 1097fb2f18f8Sesaxe /* 1098fb2f18f8Sesaxe * Return non-zero if the CPU belongs in the given PG 1099fb2f18f8Sesaxe */ 1100fb2f18f8Sesaxe static int 1101fb2f18f8Sesaxe pg_cmt_cpu_belongs(pg_t *pg, cpu_t *cp) 1102fb2f18f8Sesaxe { 1103fb2f18f8Sesaxe cpu_t *pg_cpu; 1104fb2f18f8Sesaxe 1105fb2f18f8Sesaxe pg_cpu = GROUP_ACCESS(&pg->pg_cpus, 0); 1106fb2f18f8Sesaxe 1107fb2f18f8Sesaxe ASSERT(pg_cpu != NULL); 1108fb2f18f8Sesaxe 1109fb2f18f8Sesaxe /* 1110fb2f18f8Sesaxe * The CPU belongs if, given the nature of the hardware sharing 1111fb2f18f8Sesaxe * relationship represented by the PG, the CPU has that 1112fb2f18f8Sesaxe * relationship with some other CPU already in the PG 1113fb2f18f8Sesaxe */ 1114fb2f18f8Sesaxe if (pg_plat_cpus_share(cp, pg_cpu, ((pghw_t *)pg)->pghw_hw)) 1115fb2f18f8Sesaxe return (1); 1116fb2f18f8Sesaxe 1117fb2f18f8Sesaxe return (0); 1118fb2f18f8Sesaxe } 1119fb2f18f8Sesaxe 1120fb2f18f8Sesaxe /* 11210e751525SEric Saxe * Sort the CPUs CMT hierarchy, where "size" is the number of levels. 1122fb2f18f8Sesaxe */ 1123fb2f18f8Sesaxe static void 11240e751525SEric Saxe pg_cmt_hier_sort(pg_cmt_t **hier, int size) 1125fb2f18f8Sesaxe { 1126*8031591dSSrihari Venkatesan int i, j, inc, sz; 1127*8031591dSSrihari Venkatesan int start, end; 11280e751525SEric Saxe pg_t *tmp; 11290e751525SEric Saxe pg_t **h = (pg_t **)hier; 1130fb2f18f8Sesaxe 11310e751525SEric Saxe /* 11320e751525SEric Saxe * First sort by number of CPUs 11330e751525SEric Saxe */ 11340e751525SEric Saxe inc = size / 2; 11350e751525SEric Saxe while (inc > 0) { 11360e751525SEric Saxe for (i = inc; i < size; i++) { 11370e751525SEric Saxe j = i; 11380e751525SEric Saxe tmp = h[i]; 11390e751525SEric Saxe while ((j >= inc) && 11400e751525SEric Saxe (PG_NUM_CPUS(h[j - inc]) > PG_NUM_CPUS(tmp))) { 11410e751525SEric Saxe h[j] = h[j - inc]; 11420e751525SEric Saxe j = j - inc; 11430e751525SEric Saxe } 11440e751525SEric Saxe h[j] = tmp; 11450e751525SEric Saxe } 11460e751525SEric Saxe if (inc == 2) 11470e751525SEric Saxe inc = 1; 11480e751525SEric Saxe else 11490e751525SEric Saxe inc = (inc * 5) / 11; 11500e751525SEric Saxe } 1151fb2f18f8Sesaxe 11520e751525SEric Saxe /* 11530e751525SEric Saxe * Break ties by asking the platform. 11540e751525SEric Saxe * Determine if h[i] outranks h[i + 1] and if so, swap them. 11550e751525SEric Saxe */ 1156*8031591dSSrihari Venkatesan for (start = 0; start < size; start++) { 1157*8031591dSSrihari Venkatesan 1158*8031591dSSrihari Venkatesan /* 1159*8031591dSSrihari Venkatesan * Find various contiguous sets of elements, 1160*8031591dSSrihari Venkatesan * in the array, with the same number of cpus 1161*8031591dSSrihari Venkatesan */ 1162*8031591dSSrihari Venkatesan end = start; 1163*8031591dSSrihari Venkatesan sz = PG_NUM_CPUS(h[start]); 1164*8031591dSSrihari Venkatesan while ((end < size) && (sz == PG_NUM_CPUS(h[end]))) 1165*8031591dSSrihari Venkatesan end++; 1166*8031591dSSrihari Venkatesan /* 1167*8031591dSSrihari Venkatesan * Sort each such set of the array by rank 1168*8031591dSSrihari Venkatesan */ 1169*8031591dSSrihari Venkatesan for (i = start + 1; i < end; i++) { 1170*8031591dSSrihari Venkatesan j = i - 1; 11710e751525SEric Saxe tmp = h[i]; 1172*8031591dSSrihari Venkatesan while (j >= start && 1173*8031591dSSrihari Venkatesan pg_cmt_hier_rank(hier[j], 1174*8031591dSSrihari Venkatesan (pg_cmt_t *)tmp) == hier[j]) { 1175*8031591dSSrihari Venkatesan h[j + 1] = h[j]; 1176*8031591dSSrihari Venkatesan j--; 1177*8031591dSSrihari Venkatesan } 1178*8031591dSSrihari Venkatesan h[j + 1] = tmp; 1179fb2f18f8Sesaxe } 1180fb2f18f8Sesaxe } 1181fb2f18f8Sesaxe } 1182fb2f18f8Sesaxe 1183fb2f18f8Sesaxe /* 1184fb2f18f8Sesaxe * Return a cmt_lgrp_t * given an lgroup handle. 1185fb2f18f8Sesaxe */ 1186fb2f18f8Sesaxe static cmt_lgrp_t * 1187fb2f18f8Sesaxe pg_cmt_find_lgrp(lgrp_handle_t hand) 1188fb2f18f8Sesaxe { 1189fb2f18f8Sesaxe cmt_lgrp_t *lgrp; 1190fb2f18f8Sesaxe 1191fb2f18f8Sesaxe ASSERT(MUTEX_HELD(&cpu_lock)); 1192fb2f18f8Sesaxe 1193fb2f18f8Sesaxe lgrp = cmt_lgrps; 1194fb2f18f8Sesaxe while (lgrp != NULL) { 1195fb2f18f8Sesaxe if (lgrp->cl_hand == hand) 1196a6604450Sesaxe break; 1197fb2f18f8Sesaxe lgrp = lgrp->cl_next; 1198fb2f18f8Sesaxe } 1199a6604450Sesaxe return (lgrp); 1200a6604450Sesaxe } 1201fb2f18f8Sesaxe 1202fb2f18f8Sesaxe /* 1203a6604450Sesaxe * Create a cmt_lgrp_t with the specified handle. 1204fb2f18f8Sesaxe */ 1205a6604450Sesaxe static cmt_lgrp_t * 1206a6604450Sesaxe pg_cmt_lgrp_create(lgrp_handle_t hand) 1207a6604450Sesaxe { 1208a6604450Sesaxe cmt_lgrp_t *lgrp; 1209a6604450Sesaxe 1210a6604450Sesaxe ASSERT(MUTEX_HELD(&cpu_lock)); 1211a6604450Sesaxe 1212fb2f18f8Sesaxe lgrp = kmem_zalloc(sizeof (cmt_lgrp_t), KM_SLEEP); 1213fb2f18f8Sesaxe 1214fb2f18f8Sesaxe lgrp->cl_hand = hand; 1215fb2f18f8Sesaxe lgrp->cl_npgs = 0; 1216fb2f18f8Sesaxe lgrp->cl_next = cmt_lgrps; 1217fb2f18f8Sesaxe cmt_lgrps = lgrp; 1218fb2f18f8Sesaxe group_create(&lgrp->cl_pgs); 1219fb2f18f8Sesaxe 1220fb2f18f8Sesaxe return (lgrp); 1221fb2f18f8Sesaxe } 12226890d023SEric Saxe 12236890d023SEric Saxe /* 12240e751525SEric Saxe * Interfaces to enable and disable power aware dispatching 12250e751525SEric Saxe * The caller must be holding cpu_lock. 12266890d023SEric Saxe * 12270e751525SEric Saxe * Return 0 on success and -1 on failure. 12286890d023SEric Saxe */ 12290e751525SEric Saxe int 12300e751525SEric Saxe cmt_pad_enable(pghw_type_t type) 12316890d023SEric Saxe { 12320e751525SEric Saxe group_t *hwset; 12330e751525SEric Saxe group_iter_t iter; 12340e751525SEric Saxe pg_cmt_t *pg; 12356890d023SEric Saxe 12360e751525SEric Saxe ASSERT(PGHW_IS_PM_DOMAIN(type)); 12370e751525SEric Saxe ASSERT(MUTEX_HELD(&cpu_lock)); 12386890d023SEric Saxe 12390e751525SEric Saxe if ((hwset = pghw_set_lookup(type)) == NULL || 12400e751525SEric Saxe cmt_hw_blacklisted[type]) { 12410e751525SEric Saxe /* 12420e751525SEric Saxe * Unable to find any instances of the specified type 12430e751525SEric Saxe * of power domain, or the power domains have been blacklisted. 12440e751525SEric Saxe */ 12450e751525SEric Saxe return (-1); 12460e751525SEric Saxe } 12476890d023SEric Saxe 12486890d023SEric Saxe /* 12490e751525SEric Saxe * Iterate over the power domains, setting the default dispatcher 12500e751525SEric Saxe * policy for power/performance optimization. 12510e751525SEric Saxe * 12520e751525SEric Saxe * Simply setting the policy isn't enough in the case where the power 12530e751525SEric Saxe * domain is an only child of another PG. Because the dispatcher walks 12540e751525SEric Saxe * the PG hierarchy in a top down fashion, the higher up PG's policy 12550e751525SEric Saxe * will dominate. So promote the power domain above it's parent if both 12560e751525SEric Saxe * PG and it's parent have the same CPUs to ensure it's policy 12570e751525SEric Saxe * dominates. 12586890d023SEric Saxe */ 12590e751525SEric Saxe group_iter_init(&iter); 12600e751525SEric Saxe while ((pg = group_iterate(hwset, &iter)) != NULL) { 12610e751525SEric Saxe /* 12620e751525SEric Saxe * If the power domain is an only child to a parent 12630e751525SEric Saxe * not implementing the same policy, promote the child 12640e751525SEric Saxe * above the parent to activate the policy. 12650e751525SEric Saxe */ 12660e751525SEric Saxe pg->cmt_policy = pg_cmt_policy(((pghw_t *)pg)->pghw_hw); 12670e751525SEric Saxe while ((pg->cmt_parent != NULL) && 12680e751525SEric Saxe (pg->cmt_parent->cmt_policy != pg->cmt_policy) && 12690e751525SEric Saxe (PG_NUM_CPUS((pg_t *)pg) == 12700e751525SEric Saxe PG_NUM_CPUS((pg_t *)pg->cmt_parent))) { 12711a77c24bSEric Saxe cmt_hier_promote(pg, NULL); 12720e751525SEric Saxe } 12730e751525SEric Saxe } 12740e751525SEric Saxe 12750e751525SEric Saxe return (0); 12760e751525SEric Saxe } 12770e751525SEric Saxe 12780e751525SEric Saxe int 12790e751525SEric Saxe cmt_pad_disable(pghw_type_t type) 12800e751525SEric Saxe { 12810e751525SEric Saxe group_t *hwset; 12820e751525SEric Saxe group_iter_t iter; 12830e751525SEric Saxe pg_cmt_t *pg; 12840e751525SEric Saxe pg_cmt_t *child; 12850e751525SEric Saxe 12860e751525SEric Saxe ASSERT(PGHW_IS_PM_DOMAIN(type)); 12870e751525SEric Saxe ASSERT(MUTEX_HELD(&cpu_lock)); 12880e751525SEric Saxe 12890e751525SEric Saxe if ((hwset = pghw_set_lookup(type)) == NULL) { 12900e751525SEric Saxe /* 12910e751525SEric Saxe * Unable to find any instances of the specified type of 12920e751525SEric Saxe * power domain. 12930e751525SEric Saxe */ 12940e751525SEric Saxe return (-1); 12950e751525SEric Saxe } 12960e751525SEric Saxe /* 12970e751525SEric Saxe * Iterate over the power domains, setting the default dispatcher 12980e751525SEric Saxe * policy for performance optimization (load balancing). 12990e751525SEric Saxe */ 13000e751525SEric Saxe group_iter_init(&iter); 13010e751525SEric Saxe while ((pg = group_iterate(hwset, &iter)) != NULL) { 13020e751525SEric Saxe 13030e751525SEric Saxe /* 13040e751525SEric Saxe * If the power domain has an only child that implements 13050e751525SEric Saxe * policy other than load balancing, promote the child 13060e751525SEric Saxe * above the power domain to ensure it's policy dominates. 13070e751525SEric Saxe */ 1308f03808b6SEric Saxe if (pg->cmt_children != NULL && 1309f03808b6SEric Saxe GROUP_SIZE(pg->cmt_children) == 1) { 13100e751525SEric Saxe child = GROUP_ACCESS(pg->cmt_children, 0); 13110e751525SEric Saxe if ((child->cmt_policy & CMT_BALANCE) == 0) { 13121a77c24bSEric Saxe cmt_hier_promote(child, NULL); 13130e751525SEric Saxe } 13140e751525SEric Saxe } 13150e751525SEric Saxe pg->cmt_policy = CMT_BALANCE; 13160e751525SEric Saxe } 13170e751525SEric Saxe return (0); 13180e751525SEric Saxe } 13190e751525SEric Saxe 13200e751525SEric Saxe /* ARGSUSED */ 13210e751525SEric Saxe static void 13220e751525SEric Saxe cmt_ev_thread_swtch(pg_t *pg, cpu_t *cp, hrtime_t now, kthread_t *old, 13230e751525SEric Saxe kthread_t *new) 13240e751525SEric Saxe { 13250e751525SEric Saxe pg_cmt_t *cmt_pg = (pg_cmt_t *)pg; 13260e751525SEric Saxe 13270e751525SEric Saxe if (old == cp->cpu_idle_thread) { 13280e751525SEric Saxe atomic_add_32(&cmt_pg->cmt_utilization, 1); 13290e751525SEric Saxe } else if (new == cp->cpu_idle_thread) { 13300e751525SEric Saxe atomic_add_32(&cmt_pg->cmt_utilization, -1); 13310e751525SEric Saxe } 13320e751525SEric Saxe } 13330e751525SEric Saxe 13340e751525SEric Saxe /* 13350e751525SEric Saxe * Macro to test whether a thread is currently runnable on a CPU in a PG. 13360e751525SEric Saxe */ 13370e751525SEric Saxe #define THREAD_RUNNABLE_IN_PG(t, pg) \ 13380e751525SEric Saxe ((t)->t_state == TS_RUN && \ 13390e751525SEric Saxe (t)->t_disp_queue->disp_cpu && \ 13400e751525SEric Saxe bitset_in_set(&(pg)->cmt_cpus_actv_set, \ 13410e751525SEric Saxe (t)->t_disp_queue->disp_cpu->cpu_seqid)) 13420e751525SEric Saxe 13430e751525SEric Saxe static void 13440e751525SEric Saxe cmt_ev_thread_swtch_pwr(pg_t *pg, cpu_t *cp, hrtime_t now, kthread_t *old, 13450e751525SEric Saxe kthread_t *new) 13460e751525SEric Saxe { 13470e751525SEric Saxe pg_cmt_t *cmt = (pg_cmt_t *)pg; 13480e751525SEric Saxe cpupm_domain_t *dom; 13490e751525SEric Saxe uint32_t u; 13500e751525SEric Saxe 13510e751525SEric Saxe if (old == cp->cpu_idle_thread) { 13520e751525SEric Saxe ASSERT(new != cp->cpu_idle_thread); 13530e751525SEric Saxe u = atomic_add_32_nv(&cmt->cmt_utilization, 1); 13540e751525SEric Saxe if (u == 1) { 13550e751525SEric Saxe /* 13560e751525SEric Saxe * Notify the CPU power manager that the domain 13570e751525SEric Saxe * is non-idle. 13580e751525SEric Saxe */ 13590e751525SEric Saxe dom = (cpupm_domain_t *)cmt->cmt_pg.pghw_handle; 13600e751525SEric Saxe cpupm_utilization_event(cp, now, dom, 13610e751525SEric Saxe CPUPM_DOM_BUSY_FROM_IDLE); 13620e751525SEric Saxe } 13630e751525SEric Saxe } else if (new == cp->cpu_idle_thread) { 13640e751525SEric Saxe ASSERT(old != cp->cpu_idle_thread); 13650e751525SEric Saxe u = atomic_add_32_nv(&cmt->cmt_utilization, -1); 13660e751525SEric Saxe if (u == 0) { 13670e751525SEric Saxe /* 13680e751525SEric Saxe * The domain is idle, notify the CPU power 13690e751525SEric Saxe * manager. 13700e751525SEric Saxe * 13710e751525SEric Saxe * Avoid notifying if the thread is simply migrating 13720e751525SEric Saxe * between CPUs in the domain. 13730e751525SEric Saxe */ 13740e751525SEric Saxe if (!THREAD_RUNNABLE_IN_PG(old, cmt)) { 13750e751525SEric Saxe dom = (cpupm_domain_t *)cmt->cmt_pg.pghw_handle; 13760e751525SEric Saxe cpupm_utilization_event(cp, now, dom, 13770e751525SEric Saxe CPUPM_DOM_IDLE_FROM_BUSY); 13780e751525SEric Saxe } 13790e751525SEric Saxe } 13800e751525SEric Saxe } 13810e751525SEric Saxe } 13820e751525SEric Saxe 13830e751525SEric Saxe /* ARGSUSED */ 13840e751525SEric Saxe static void 13850e751525SEric Saxe cmt_ev_thread_remain_pwr(pg_t *pg, cpu_t *cp, kthread_t *t) 13860e751525SEric Saxe { 13870e751525SEric Saxe pg_cmt_t *cmt = (pg_cmt_t *)pg; 13880e751525SEric Saxe cpupm_domain_t *dom; 13890e751525SEric Saxe 13900e751525SEric Saxe dom = (cpupm_domain_t *)cmt->cmt_pg.pghw_handle; 13910e751525SEric Saxe cpupm_utilization_event(cp, (hrtime_t)0, dom, CPUPM_DOM_REMAIN_BUSY); 13920e751525SEric Saxe } 13930e751525SEric Saxe 13940e751525SEric Saxe /* 13950e751525SEric Saxe * Return the name of the CMT scheduling policy 13960e751525SEric Saxe * being implemented across this PG 13970e751525SEric Saxe */ 13980e751525SEric Saxe static char * 13990e751525SEric Saxe pg_cmt_policy_name(pg_t *pg) 14000e751525SEric Saxe { 14010e751525SEric Saxe pg_cmt_policy_t policy; 14020e751525SEric Saxe 14030e751525SEric Saxe policy = ((pg_cmt_t *)pg)->cmt_policy; 14040e751525SEric Saxe 14050e751525SEric Saxe if (policy & CMT_AFFINITY) { 14060e751525SEric Saxe if (policy & CMT_BALANCE) 14070e751525SEric Saxe return ("Load Balancing & Affinity"); 14080e751525SEric Saxe else if (policy & CMT_COALESCE) 14090e751525SEric Saxe return ("Load Coalescence & Affinity"); 14106890d023SEric Saxe else 14110e751525SEric Saxe return ("Affinity"); 14120e751525SEric Saxe } else { 14130e751525SEric Saxe if (policy & CMT_BALANCE) 14140e751525SEric Saxe return ("Load Balancing"); 14150e751525SEric Saxe else if (policy & CMT_COALESCE) 14160e751525SEric Saxe return ("Load Coalescence"); 14170e751525SEric Saxe else 14180e751525SEric Saxe return ("None"); 14190e751525SEric Saxe } 14200e751525SEric Saxe } 14216890d023SEric Saxe 14226890d023SEric Saxe /* 14230e751525SEric Saxe * Prune PG, and all other instances of PG's hardware sharing relationship 1424d0e93b69SEric Saxe * from the CMT PG hierarchy. 14251a77c24bSEric Saxe * 14261a77c24bSEric Saxe * This routine operates on the CPU specific processor group data (for the CPUs 14271a77c24bSEric Saxe * in the PG being pruned), and may be invoked from a context where one CPU's 14281a77c24bSEric Saxe * PG data is under construction. In this case the argument "pgdata", if not 14291a77c24bSEric Saxe * NULL, is a reference to the CPU's under-construction PG data. 14306890d023SEric Saxe */ 14310e751525SEric Saxe static int 14321a77c24bSEric Saxe pg_cmt_prune(pg_cmt_t *pg_bad, pg_cmt_t **lineage, int *sz, cpu_pg_t *pgdata) 14330e751525SEric Saxe { 14340e751525SEric Saxe group_t *hwset, *children; 14350e751525SEric Saxe int i, j, r, size = *sz; 14360e751525SEric Saxe group_iter_t hw_iter, child_iter; 14370e751525SEric Saxe pg_cpu_itr_t cpu_iter; 14380e751525SEric Saxe pg_cmt_t *pg, *child; 14390e751525SEric Saxe cpu_t *cpu; 14400e751525SEric Saxe int cap_needed; 14410e751525SEric Saxe pghw_type_t hw; 14426890d023SEric Saxe 14430e751525SEric Saxe ASSERT(MUTEX_HELD(&cpu_lock)); 14446890d023SEric Saxe 14450e751525SEric Saxe hw = ((pghw_t *)pg_bad)->pghw_hw; 14460e751525SEric Saxe 14470e751525SEric Saxe if (hw == PGHW_POW_ACTIVE) { 14480e751525SEric Saxe cmn_err(CE_NOTE, "!Active CPUPM domain groups look suspect. " 14490e751525SEric Saxe "Event Based CPUPM Unavailable"); 14500e751525SEric Saxe } else if (hw == PGHW_POW_IDLE) { 14510e751525SEric Saxe cmn_err(CE_NOTE, "!Idle CPUPM domain groups look suspect. " 14520e751525SEric Saxe "Dispatcher assisted CPUPM disabled."); 14530e751525SEric Saxe } 14546890d023SEric Saxe 14556890d023SEric Saxe /* 14560e751525SEric Saxe * Find and eliminate the PG from the lineage. 14576890d023SEric Saxe */ 14580e751525SEric Saxe for (i = 0; i < size; i++) { 14590e751525SEric Saxe if (lineage[i] == pg_bad) { 14600e751525SEric Saxe for (j = i; j < size - 1; j++) 14610e751525SEric Saxe lineage[j] = lineage[j + 1]; 14620e751525SEric Saxe *sz = size - 1; 14630e751525SEric Saxe break; 14640e751525SEric Saxe } 14650e751525SEric Saxe } 14660e751525SEric Saxe 14670e751525SEric Saxe /* 14680e751525SEric Saxe * We'll prune all instances of the hardware sharing relationship 14690e751525SEric Saxe * represented by pg. But before we do that (and pause CPUs) we need 14700e751525SEric Saxe * to ensure the hierarchy's groups are properly sized. 14710e751525SEric Saxe */ 14720e751525SEric Saxe hwset = pghw_set_lookup(hw); 14730e751525SEric Saxe 14740e751525SEric Saxe /* 1475d0e93b69SEric Saxe * Blacklist the hardware so future processor groups of this type won't 1476d0e93b69SEric Saxe * participate in CMT thread placement. 1477d0e93b69SEric Saxe * 1478d0e93b69SEric Saxe * XXX 1479d0e93b69SEric Saxe * For heterogeneous system configurations, this might be overkill. 1480d0e93b69SEric Saxe * We may only need to blacklist the illegal PGs, and other instances 1481d0e93b69SEric Saxe * of this hardware sharing relationship may be ok. 14820e751525SEric Saxe */ 14830e751525SEric Saxe cmt_hw_blacklisted[hw] = 1; 14840e751525SEric Saxe 14850e751525SEric Saxe /* 14860e751525SEric Saxe * For each of the PGs being pruned, ensure sufficient capacity in 14870e751525SEric Saxe * the siblings set for the PG's children 14880e751525SEric Saxe */ 14890e751525SEric Saxe group_iter_init(&hw_iter); 14900e751525SEric Saxe while ((pg = group_iterate(hwset, &hw_iter)) != NULL) { 14910e751525SEric Saxe /* 14920e751525SEric Saxe * PG is being pruned, but if it is bringing up more than 14930e751525SEric Saxe * one child, ask for more capacity in the siblings group. 14940e751525SEric Saxe */ 14950e751525SEric Saxe cap_needed = 0; 14960e751525SEric Saxe if (pg->cmt_children && 14970e751525SEric Saxe GROUP_SIZE(pg->cmt_children) > 1) { 14980e751525SEric Saxe cap_needed = GROUP_SIZE(pg->cmt_children) - 1; 14990e751525SEric Saxe 15000e751525SEric Saxe group_expand(pg->cmt_siblings, 15010e751525SEric Saxe GROUP_SIZE(pg->cmt_siblings) + cap_needed); 15020e751525SEric Saxe 15030e751525SEric Saxe /* 15040e751525SEric Saxe * If this is a top level group, also ensure the 15050e751525SEric Saxe * capacity in the root lgrp level CMT grouping. 15060e751525SEric Saxe */ 15070e751525SEric Saxe if (pg->cmt_parent == NULL && 15080e751525SEric Saxe pg->cmt_siblings != &cmt_root->cl_pgs) { 15090e751525SEric Saxe group_expand(&cmt_root->cl_pgs, 15100e751525SEric Saxe GROUP_SIZE(&cmt_root->cl_pgs) + cap_needed); 1511d0e93b69SEric Saxe cmt_root->cl_npgs += cap_needed; 15120e751525SEric Saxe } 15130e751525SEric Saxe } 15140e751525SEric Saxe } 15150e751525SEric Saxe 15160e751525SEric Saxe /* 15170e751525SEric Saxe * We're operating on the PG hierarchy. Pause CPUs to ensure 15180e751525SEric Saxe * exclusivity with respect to the dispatcher. 15190e751525SEric Saxe */ 15200e751525SEric Saxe pause_cpus(NULL); 15210e751525SEric Saxe 15220e751525SEric Saxe /* 15230e751525SEric Saxe * Prune all PG instances of the hardware sharing relationship 15240e751525SEric Saxe * represented by pg. 15250e751525SEric Saxe */ 15260e751525SEric Saxe group_iter_init(&hw_iter); 15270e751525SEric Saxe while ((pg = group_iterate(hwset, &hw_iter)) != NULL) { 15280e751525SEric Saxe 15290e751525SEric Saxe /* 15300e751525SEric Saxe * Remove PG from it's group of siblings, if it's there. 15310e751525SEric Saxe */ 15320e751525SEric Saxe if (pg->cmt_siblings) { 15330e751525SEric Saxe (void) group_remove(pg->cmt_siblings, pg, GRP_NORESIZE); 15340e751525SEric Saxe } 15350e751525SEric Saxe if (pg->cmt_parent == NULL && 15360e751525SEric Saxe pg->cmt_siblings != &cmt_root->cl_pgs) { 15370e751525SEric Saxe (void) group_remove(&cmt_root->cl_pgs, pg, 15380e751525SEric Saxe GRP_NORESIZE); 15390e751525SEric Saxe } 1540d0e93b69SEric Saxe 1541d0e93b69SEric Saxe /* 1542d0e93b69SEric Saxe * Indicate that no CMT policy will be implemented across 1543d0e93b69SEric Saxe * this PG. 1544d0e93b69SEric Saxe */ 1545d0e93b69SEric Saxe pg->cmt_policy = CMT_NO_POLICY; 1546d0e93b69SEric Saxe 15470e751525SEric Saxe /* 1548ef4f35d8SEric Saxe * Move PG's children from it's children set to it's parent's 1549ef4f35d8SEric Saxe * children set. Note that the parent's children set, and PG's 1550ef4f35d8SEric Saxe * siblings set are the same thing. 1551ef4f35d8SEric Saxe * 1552ef4f35d8SEric Saxe * Because we are iterating over the same group that we are 1553ef4f35d8SEric Saxe * operating on (removing the children), first add all of PG's 1554ef4f35d8SEric Saxe * children to the parent's children set, and once we are done 1555ef4f35d8SEric Saxe * iterating, empty PG's children set. 15560e751525SEric Saxe */ 15570e751525SEric Saxe if (pg->cmt_children != NULL) { 15580e751525SEric Saxe children = pg->cmt_children; 15590e751525SEric Saxe 15600e751525SEric Saxe group_iter_init(&child_iter); 15610e751525SEric Saxe while ((child = group_iterate(children, &child_iter)) 15620e751525SEric Saxe != NULL) { 1563ef4f35d8SEric Saxe if (pg->cmt_siblings != NULL) { 15640e751525SEric Saxe r = group_add(pg->cmt_siblings, child, 15650e751525SEric Saxe GRP_NORESIZE); 15660e751525SEric Saxe ASSERT(r == 0); 1567d0e93b69SEric Saxe 1568d0e93b69SEric Saxe if (pg->cmt_parent == NULL && 1569d0e93b69SEric Saxe pg->cmt_siblings != 1570d0e93b69SEric Saxe &cmt_root->cl_pgs) { 1571d0e93b69SEric Saxe r = group_add(&cmt_root->cl_pgs, 1572d0e93b69SEric Saxe child, GRP_NORESIZE); 1573d0e93b69SEric Saxe ASSERT(r == 0); 1574d0e93b69SEric Saxe } 15750e751525SEric Saxe } 15760e751525SEric Saxe } 1577ef4f35d8SEric Saxe group_empty(pg->cmt_children); 15780e751525SEric Saxe } 15790e751525SEric Saxe 15800e751525SEric Saxe /* 15810e751525SEric Saxe * Reset the callbacks to the defaults 15820e751525SEric Saxe */ 15830e751525SEric Saxe pg_callback_set_defaults((pg_t *)pg); 15840e751525SEric Saxe 15850e751525SEric Saxe /* 15860e751525SEric Saxe * Update all the CPU lineages in each of PG's CPUs 15870e751525SEric Saxe */ 15880e751525SEric Saxe PG_CPU_ITR_INIT(pg, cpu_iter); 15890e751525SEric Saxe while ((cpu = pg_cpu_next(&cpu_iter)) != NULL) { 15900e751525SEric Saxe pg_cmt_t *cpu_pg; 15910e751525SEric Saxe group_iter_t liter; /* Iterator for the lineage */ 15921a77c24bSEric Saxe cpu_pg_t *cpd; /* CPU's PG data */ 15931a77c24bSEric Saxe 15941a77c24bSEric Saxe /* 15951a77c24bSEric Saxe * The CPU's lineage is under construction still 15961a77c24bSEric Saxe * references the bootstrap CPU PG data structure. 15971a77c24bSEric Saxe */ 15981a77c24bSEric Saxe if (pg_cpu_is_bootstrapped(cpu)) 15991a77c24bSEric Saxe cpd = pgdata; 16001a77c24bSEric Saxe else 16011a77c24bSEric Saxe cpd = cpu->cpu_pg; 16020e751525SEric Saxe 16030e751525SEric Saxe /* 16040e751525SEric Saxe * Iterate over the CPU's PGs updating the children 16050e751525SEric Saxe * of the PG being promoted, since they have a new 16060e751525SEric Saxe * parent and siblings set. 16070e751525SEric Saxe */ 16080e751525SEric Saxe group_iter_init(&liter); 16091a77c24bSEric Saxe while ((cpu_pg = group_iterate(&cpd->pgs, 16101a77c24bSEric Saxe &liter)) != NULL) { 16110e751525SEric Saxe if (cpu_pg->cmt_parent == pg) { 16120e751525SEric Saxe cpu_pg->cmt_parent = pg->cmt_parent; 16130e751525SEric Saxe cpu_pg->cmt_siblings = pg->cmt_siblings; 16140e751525SEric Saxe } 16150e751525SEric Saxe } 16160e751525SEric Saxe 16170e751525SEric Saxe /* 16180e751525SEric Saxe * Update the CPU's lineages 1619d0e93b69SEric Saxe * 1620d0e93b69SEric Saxe * Remove the PG from the CPU's group used for CMT 1621d0e93b69SEric Saxe * scheduling. 16220e751525SEric Saxe */ 16231a77c24bSEric Saxe (void) group_remove(&cpd->cmt_pgs, pg, GRP_NORESIZE); 16240e751525SEric Saxe } 16250e751525SEric Saxe } 16260e751525SEric Saxe start_cpus(); 16270e751525SEric Saxe return (0); 16280e751525SEric Saxe } 16290e751525SEric Saxe 16300e751525SEric Saxe /* 16310e751525SEric Saxe * Disable CMT scheduling 16320e751525SEric Saxe */ 16330e751525SEric Saxe static void 16340e751525SEric Saxe pg_cmt_disable(void) 16350e751525SEric Saxe { 16360e751525SEric Saxe cpu_t *cpu; 16370e751525SEric Saxe 16381a77c24bSEric Saxe ASSERT(MUTEX_HELD(&cpu_lock)); 16391a77c24bSEric Saxe 16400e751525SEric Saxe pause_cpus(NULL); 16410e751525SEric Saxe cpu = cpu_list; 16420e751525SEric Saxe 16436890d023SEric Saxe do { 16440e751525SEric Saxe if (cpu->cpu_pg) 16450e751525SEric Saxe group_empty(&cpu->cpu_pg->cmt_pgs); 16460e751525SEric Saxe } while ((cpu = cpu->cpu_next) != cpu_list); 16470e751525SEric Saxe 16480e751525SEric Saxe cmt_sched_disabled = 1; 16490e751525SEric Saxe start_cpus(); 16500e751525SEric Saxe cmn_err(CE_NOTE, "!CMT thread placement optimizations unavailable"); 16510e751525SEric Saxe } 16520e751525SEric Saxe 1653ef4f35d8SEric Saxe /* 1654ef4f35d8SEric Saxe * CMT lineage validation 1655ef4f35d8SEric Saxe * 1656ef4f35d8SEric Saxe * This routine is invoked by pg_cmt_cpu_init() to validate the integrity 1657ef4f35d8SEric Saxe * of the PGs in a CPU's lineage. This is necessary because it's possible that 1658ef4f35d8SEric Saxe * some groupings (power domain groupings in particular) may be defined by 1659ef4f35d8SEric Saxe * sources that are buggy (e.g. BIOS bugs). In such cases, it may not be 1660ef4f35d8SEric Saxe * possible to integrate those groupings into the CMT PG hierarchy, if doing 1661ef4f35d8SEric Saxe * so would violate the subset invariant of the hierarchy, which says that 1662ef4f35d8SEric Saxe * a PG must be subset of its parent (if it has one). 1663ef4f35d8SEric Saxe * 1664ef4f35d8SEric Saxe * pg_cmt_lineage_validate()'s purpose is to detect grouping definitions that 1665ef4f35d8SEric Saxe * would result in a violation of this invariant. If a violation is found, 1666ef4f35d8SEric Saxe * and the PG is of a grouping type who's definition is known to originate from 1667ef4f35d8SEric Saxe * suspect sources (BIOS), then pg_cmt_prune() will be invoked to prune the 1668ef4f35d8SEric Saxe * PG (and all other instances PG's sharing relationship type) from the 1669ef4f35d8SEric Saxe * hierarchy. Further, future instances of that sharing relationship type won't 1670ef4f35d8SEric Saxe * be instantiated. If the grouping definition doesn't originate from suspect 1671ef4f35d8SEric Saxe * sources, then pg_cmt_disable() will be invoked to log an error, and disable 1672ef4f35d8SEric Saxe * CMT scheduling altogether. 1673ef4f35d8SEric Saxe * 1674ef4f35d8SEric Saxe * This routine is invoked after the CPU has been added to the PGs in which 1675ef4f35d8SEric Saxe * it belongs, but before those PGs have been added to (or had their place 1676ef4f35d8SEric Saxe * adjusted in) the CMT PG hierarchy. 1677ef4f35d8SEric Saxe * 1678ef4f35d8SEric Saxe * The first argument is the CPUs PG lineage (essentially an array of PGs in 1679ef4f35d8SEric Saxe * which the CPU belongs) that has already been sorted in ascending order 1680ef4f35d8SEric Saxe * by CPU count. Some of the PGs in the CPUs lineage may already have other 1681ef4f35d8SEric Saxe * CPUs in them, and have already been integrated into the CMT hierarchy. 1682ef4f35d8SEric Saxe * 1683ef4f35d8SEric Saxe * The addition of this new CPU to these pre-existing PGs means that those 1684ef4f35d8SEric Saxe * PGs may need to be promoted up in the hierarchy to satisfy the subset 1685ef4f35d8SEric Saxe * invariant. In additon to testing the subset invariant for the lineage, 1686ef4f35d8SEric Saxe * this routine also verifies that the addition of the new CPU to the 1687ef4f35d8SEric Saxe * existing PGs wouldn't cause the subset invariant to be violated in 1688ef4f35d8SEric Saxe * the exiting lineages. 1689ef4f35d8SEric Saxe * 1690ef4f35d8SEric Saxe * This routine will normally return one of the following: 1691ef4f35d8SEric Saxe * CMT_LINEAGE_VALID - There were no problems detected with the lineage. 1692ef4f35d8SEric Saxe * CMT_LINEAGE_REPAIRED - Problems were detected, but repaired via pruning. 1693ef4f35d8SEric Saxe * 1694ef4f35d8SEric Saxe * Otherwise, this routine will return a value indicating which error it 1695ef4f35d8SEric Saxe * was unable to recover from (and set cmt_lineage_status along the way). 16961a77c24bSEric Saxe * 16971a77c24bSEric Saxe * 16981a77c24bSEric Saxe * This routine operates on the CPU specific processor group data (for the CPU 16991a77c24bSEric Saxe * whose lineage is being validated), which is under-construction. 17001a77c24bSEric Saxe * "pgdata" is a reference to the CPU's under-construction PG data. 17011a77c24bSEric Saxe * This routine must be careful to operate only on "pgdata", and not cp->cpu_pg. 1702ef4f35d8SEric Saxe */ 1703ef4f35d8SEric Saxe static cmt_lineage_validation_t 17041a77c24bSEric Saxe pg_cmt_lineage_validate(pg_cmt_t **lineage, int *sz, cpu_pg_t *pgdata) 17050e751525SEric Saxe { 1706ef4f35d8SEric Saxe int i, j, size; 1707ef4f35d8SEric Saxe pg_cmt_t *pg, *pg_next, *pg_bad, *pg_tmp; 17080e751525SEric Saxe cpu_t *cp; 17090e751525SEric Saxe pg_cpu_itr_t cpu_iter; 1710ef4f35d8SEric Saxe lgrp_handle_t lgrp; 17110e751525SEric Saxe 17120e751525SEric Saxe ASSERT(MUTEX_HELD(&cpu_lock)); 17130e751525SEric Saxe 17140e751525SEric Saxe revalidate: 17150e751525SEric Saxe size = *sz; 17160e751525SEric Saxe pg_bad = NULL; 1717ef4f35d8SEric Saxe lgrp = LGRP_NULL_HANDLE; 1718ef4f35d8SEric Saxe for (i = 0; i < size; i++) { 17190e751525SEric Saxe 17200e751525SEric Saxe pg = lineage[i]; 1721ef4f35d8SEric Saxe if (i < size - 1) 1722ef4f35d8SEric Saxe pg_next = lineage[i + 1]; 1723ef4f35d8SEric Saxe else 1724ef4f35d8SEric Saxe pg_next = NULL; 17256890d023SEric Saxe 17266890d023SEric Saxe /* 17270e751525SEric Saxe * We assume that the lineage has already been sorted 17280e751525SEric Saxe * by the number of CPUs. In fact, we depend on it. 17296890d023SEric Saxe */ 1730ef4f35d8SEric Saxe ASSERT(pg_next == NULL || 1731ef4f35d8SEric Saxe (PG_NUM_CPUS((pg_t *)pg) <= PG_NUM_CPUS((pg_t *)pg_next))); 17326890d023SEric Saxe 17336890d023SEric Saxe /* 1734ef4f35d8SEric Saxe * Check to make sure that the existing parent of PG (if any) 1735ef4f35d8SEric Saxe * is either in the PG's lineage, or the PG has more CPUs than 1736ef4f35d8SEric Saxe * its existing parent and can and should be promoted above its 1737ef4f35d8SEric Saxe * parent. 1738ef4f35d8SEric Saxe * 1739ef4f35d8SEric Saxe * Since the PG topology is in the middle of being changed, we 1740ef4f35d8SEric Saxe * need to check whether the PG's existing parent (if any) is 1741ef4f35d8SEric Saxe * part of its lineage (and therefore should contain the new 1742ef4f35d8SEric Saxe * CPU). If not, it means that the addition of the new CPU 1743ef4f35d8SEric Saxe * should have made this PG have more CPUs than its parent, and 1744ef4f35d8SEric Saxe * this PG should be promoted to be above its existing parent 1745ef4f35d8SEric Saxe * now. We need to verify all of this to defend against a buggy 1746ef4f35d8SEric Saxe * BIOS giving bad power domain CPU groupings. Sigh. 1747ef4f35d8SEric Saxe */ 1748ef4f35d8SEric Saxe if (pg->cmt_parent) { 1749ef4f35d8SEric Saxe /* 1750ef4f35d8SEric Saxe * Determine if cmt_parent is in this lineage 1751ef4f35d8SEric Saxe */ 1752ef4f35d8SEric Saxe for (j = 0; j < size; j++) { 1753ef4f35d8SEric Saxe pg_tmp = lineage[j]; 1754ef4f35d8SEric Saxe if (pg_tmp == pg->cmt_parent) 1755ef4f35d8SEric Saxe break; 1756ef4f35d8SEric Saxe } 1757ef4f35d8SEric Saxe if (pg_tmp != pg->cmt_parent) { 1758ef4f35d8SEric Saxe /* 1759ef4f35d8SEric Saxe * cmt_parent is not in the lineage, verify 1760ef4f35d8SEric Saxe * it is a proper subset of PG. 1761ef4f35d8SEric Saxe */ 1762ef4f35d8SEric Saxe if (PG_NUM_CPUS((pg_t *)pg->cmt_parent) >= 1763ef4f35d8SEric Saxe PG_NUM_CPUS((pg_t *)pg)) { 1764ef4f35d8SEric Saxe /* 1765ef4f35d8SEric Saxe * Not a proper subset if pg has less 1766ef4f35d8SEric Saxe * CPUs than cmt_parent... 1767ef4f35d8SEric Saxe */ 1768ef4f35d8SEric Saxe cmt_lineage_status = 1769ef4f35d8SEric Saxe CMT_LINEAGE_NON_PROMOTABLE; 1770ef4f35d8SEric Saxe goto handle_error; 1771ef4f35d8SEric Saxe } 1772ef4f35d8SEric Saxe } 1773ef4f35d8SEric Saxe } 1774ef4f35d8SEric Saxe 1775ef4f35d8SEric Saxe /* 1776ef4f35d8SEric Saxe * Walk each of the CPUs in the PGs group and perform 1777ef4f35d8SEric Saxe * consistency checks along the way. 17786890d023SEric Saxe */ 17790e751525SEric Saxe PG_CPU_ITR_INIT((pg_t *)pg, cpu_iter); 17800e751525SEric Saxe while ((cp = pg_cpu_next(&cpu_iter)) != NULL) { 1781ef4f35d8SEric Saxe /* 1782ef4f35d8SEric Saxe * Verify that there aren't any CPUs contained in PG 1783ef4f35d8SEric Saxe * that the next PG in the lineage (which is larger 1784ef4f35d8SEric Saxe * or same size) doesn't also contain. 1785ef4f35d8SEric Saxe */ 1786ef4f35d8SEric Saxe if (pg_next != NULL && 1787ef4f35d8SEric Saxe pg_cpu_find((pg_t *)pg_next, cp) == B_FALSE) { 17880e751525SEric Saxe cmt_lineage_status = CMT_LINEAGE_NON_CONCENTRIC; 17890e751525SEric Saxe goto handle_error; 17906890d023SEric Saxe } 1791ef4f35d8SEric Saxe 1792ef4f35d8SEric Saxe /* 1793ef4f35d8SEric Saxe * Verify that all the CPUs in the PG are in the same 1794ef4f35d8SEric Saxe * lgroup. 1795ef4f35d8SEric Saxe */ 1796ef4f35d8SEric Saxe if (lgrp == LGRP_NULL_HANDLE) { 1797ef4f35d8SEric Saxe lgrp = lgrp_plat_cpu_to_hand(cp->cpu_id); 1798ef4f35d8SEric Saxe } else if (lgrp_plat_cpu_to_hand(cp->cpu_id) != lgrp) { 1799ef4f35d8SEric Saxe cmt_lineage_status = CMT_LINEAGE_PG_SPANS_LGRPS; 1800ef4f35d8SEric Saxe goto handle_error; 1801ef4f35d8SEric Saxe } 18020e751525SEric Saxe } 18036890d023SEric Saxe } 18046890d023SEric Saxe 18050e751525SEric Saxe handle_error: 1806ef4f35d8SEric Saxe /* 1807ef4f35d8SEric Saxe * Some of these validation errors can result when the CPU grouping 1808ef4f35d8SEric Saxe * information is derived from buggy sources (for example, incorrect 1809ef4f35d8SEric Saxe * ACPI tables on x86 systems). 1810ef4f35d8SEric Saxe * 1811ef4f35d8SEric Saxe * We'll try to recover in such cases by pruning out the illegal 1812ef4f35d8SEric Saxe * groupings from the PG hierarchy, which means that we won't optimize 1813ef4f35d8SEric Saxe * for those levels, but we will for the remaining ones. 1814ef4f35d8SEric Saxe */ 18150e751525SEric Saxe switch (cmt_lineage_status) { 18160e751525SEric Saxe case CMT_LINEAGE_VALID: 18170e751525SEric Saxe case CMT_LINEAGE_REPAIRED: 18180e751525SEric Saxe break; 1819ef4f35d8SEric Saxe case CMT_LINEAGE_PG_SPANS_LGRPS: 1820ef4f35d8SEric Saxe /* 1821ef4f35d8SEric Saxe * We've detected a PG whose CPUs span lgroups. 1822ef4f35d8SEric Saxe * 1823ef4f35d8SEric Saxe * This isn't supported, as the dispatcher isn't allowed to 1824ef4f35d8SEric Saxe * to do CMT thread placement across lgroups, as this would 1825ef4f35d8SEric Saxe * conflict with policies implementing MPO thread affinity. 1826ef4f35d8SEric Saxe * 1827d0e93b69SEric Saxe * If the PG is of a sharing relationship type known to 1828d0e93b69SEric Saxe * legitimately span lgroups, specify that no CMT thread 1829d0e93b69SEric Saxe * placement policy should be implemented, and prune the PG 1830d0e93b69SEric Saxe * from the existing CMT PG hierarchy. 1831d0e93b69SEric Saxe * 1832d0e93b69SEric Saxe * Otherwise, fall though to the case below for handling. 1833ef4f35d8SEric Saxe */ 1834d0e93b69SEric Saxe if (((pghw_t *)pg)->pghw_hw == PGHW_CHIP) { 1835d0e93b69SEric Saxe if (pg_cmt_prune(pg, lineage, sz, pgdata) == 0) { 1836d0e93b69SEric Saxe cmt_lineage_status = CMT_LINEAGE_REPAIRED; 1837d0e93b69SEric Saxe goto revalidate; 1838d0e93b69SEric Saxe } 1839d0e93b69SEric Saxe } 1840d0e93b69SEric Saxe /*LINTED*/ 1841ef4f35d8SEric Saxe case CMT_LINEAGE_NON_PROMOTABLE: 1842ef4f35d8SEric Saxe /* 1843ef4f35d8SEric Saxe * We've detected a PG that already exists in another CPU's 1844ef4f35d8SEric Saxe * lineage that cannot cannot legally be promoted into place 1845ef4f35d8SEric Saxe * without breaking the invariants of the hierarchy. 1846ef4f35d8SEric Saxe */ 1847ef4f35d8SEric Saxe if (PG_CMT_HW_SUSPECT(((pghw_t *)pg)->pghw_hw)) { 18481a77c24bSEric Saxe if (pg_cmt_prune(pg, lineage, sz, pgdata) == 0) { 1849ef4f35d8SEric Saxe cmt_lineage_status = CMT_LINEAGE_REPAIRED; 1850ef4f35d8SEric Saxe goto revalidate; 1851ef4f35d8SEric Saxe } 1852ef4f35d8SEric Saxe } 1853ef4f35d8SEric Saxe /* 1854ef4f35d8SEric Saxe * Something went wrong trying to prune out the bad level. 1855ef4f35d8SEric Saxe * Disable CMT scheduling altogether. 1856ef4f35d8SEric Saxe */ 1857ef4f35d8SEric Saxe pg_cmt_disable(); 1858ef4f35d8SEric Saxe break; 18590e751525SEric Saxe case CMT_LINEAGE_NON_CONCENTRIC: 18606890d023SEric Saxe /* 1861ef4f35d8SEric Saxe * We've detected a non-concentric PG lineage, which means that 1862ef4f35d8SEric Saxe * there's a PG in the lineage that has CPUs that the next PG 1863ef4f35d8SEric Saxe * over in the lineage (which is the same size or larger) 1864ef4f35d8SEric Saxe * doesn't have. 18650e751525SEric Saxe * 1866ef4f35d8SEric Saxe * In this case, we examine the two PGs to see if either 1867ef4f35d8SEric Saxe * grouping is defined by potentially buggy sources. 18680e751525SEric Saxe * 18690e751525SEric Saxe * If one has less CPUs than the other, and contains CPUs 18700e751525SEric Saxe * not found in the parent, and it is an untrusted enumeration, 18710e751525SEric Saxe * then prune it. If both have the same number of CPUs, then 18720e751525SEric Saxe * prune the one that is untrusted. 18730e751525SEric Saxe * 18740e751525SEric Saxe * This process repeats until we have a concentric lineage, 18750e751525SEric Saxe * or we would have to prune out level derived from what we 18760e751525SEric Saxe * thought was a reliable source, in which case CMT scheduling 1877ef4f35d8SEric Saxe * is disabled altogether. 18786890d023SEric Saxe */ 1879ef4f35d8SEric Saxe if ((PG_NUM_CPUS((pg_t *)pg) < PG_NUM_CPUS((pg_t *)pg_next)) && 18800e751525SEric Saxe (PG_CMT_HW_SUSPECT(((pghw_t *)pg)->pghw_hw))) { 18810e751525SEric Saxe pg_bad = pg; 18820e751525SEric Saxe } else if (PG_NUM_CPUS((pg_t *)pg) == 1883ef4f35d8SEric Saxe PG_NUM_CPUS((pg_t *)pg_next)) { 1884ef4f35d8SEric Saxe if (PG_CMT_HW_SUSPECT(((pghw_t *)pg_next)->pghw_hw)) { 1885ef4f35d8SEric Saxe pg_bad = pg_next; 18860e751525SEric Saxe } else if (PG_CMT_HW_SUSPECT(((pghw_t *)pg)->pghw_hw)) { 18870e751525SEric Saxe pg_bad = pg; 18886890d023SEric Saxe } 18896890d023SEric Saxe } 18900e751525SEric Saxe if (pg_bad) { 18911a77c24bSEric Saxe if (pg_cmt_prune(pg_bad, lineage, sz, pgdata) == 0) { 18920e751525SEric Saxe cmt_lineage_status = CMT_LINEAGE_REPAIRED; 18930e751525SEric Saxe goto revalidate; 18940e751525SEric Saxe } 18950e751525SEric Saxe } 18960e751525SEric Saxe /* 1897ef4f35d8SEric Saxe * Something went wrong trying to identify and/or prune out 1898ef4f35d8SEric Saxe * the bad level. Disable CMT scheduling altogether. 18990e751525SEric Saxe */ 19000e751525SEric Saxe pg_cmt_disable(); 1901ef4f35d8SEric Saxe break; 1902ef4f35d8SEric Saxe default: 1903ef4f35d8SEric Saxe /* 1904ef4f35d8SEric Saxe * If we're here, we've encountered a validation error for 1905ef4f35d8SEric Saxe * which we don't know how to recover. In this case, disable 1906ef4f35d8SEric Saxe * CMT scheduling altogether. 1907ef4f35d8SEric Saxe */ 19080e751525SEric Saxe cmt_lineage_status = CMT_LINEAGE_UNRECOVERABLE; 1909ef4f35d8SEric Saxe pg_cmt_disable(); 19100e751525SEric Saxe } 1911ef4f35d8SEric Saxe return (cmt_lineage_status); 19126890d023SEric Saxe } 1913