xref: /titanic_54/usr/src/lib/libdtrace/common/dt_consume.c (revision 33093f5bcdc51014933497dd39374080c1ac5705)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 /*
27  * Copyright (c) 2013, Joyent, Inc. All rights reserved.
28  * Copyright (c) 2012 by Delphix. All rights reserved.
29  */
30 
31 #include <stdlib.h>
32 #include <strings.h>
33 #include <errno.h>
34 #include <unistd.h>
35 #include <limits.h>
36 #include <assert.h>
37 #include <ctype.h>
38 #include <alloca.h>
39 #include <dt_impl.h>
40 #include <dt_pq.h>
41 
42 #define	DT_MASK_LO 0x00000000FFFFFFFFULL
43 
44 /*
45  * We declare this here because (1) we need it and (2) we want to avoid a
46  * dependency on libm in libdtrace.
47  */
48 static long double
49 dt_fabsl(long double x)
50 {
51 	if (x < 0)
52 		return (-x);
53 
54 	return (x);
55 }
56 
57 static int
58 dt_ndigits(long long val)
59 {
60 	int rval = 1;
61 	long long cmp = 10;
62 
63 	if (val < 0) {
64 		val = val == INT64_MIN ? INT64_MAX : -val;
65 		rval++;
66 	}
67 
68 	while (val > cmp && cmp > 0) {
69 		rval++;
70 		cmp *= 10;
71 	}
72 
73 	return (rval < 4 ? 4 : rval);
74 }
75 
76 /*
77  * 128-bit arithmetic functions needed to support the stddev() aggregating
78  * action.
79  */
80 static int
81 dt_gt_128(uint64_t *a, uint64_t *b)
82 {
83 	return (a[1] > b[1] || (a[1] == b[1] && a[0] > b[0]));
84 }
85 
86 static int
87 dt_ge_128(uint64_t *a, uint64_t *b)
88 {
89 	return (a[1] > b[1] || (a[1] == b[1] && a[0] >= b[0]));
90 }
91 
92 static int
93 dt_le_128(uint64_t *a, uint64_t *b)
94 {
95 	return (a[1] < b[1] || (a[1] == b[1] && a[0] <= b[0]));
96 }
97 
98 /*
99  * Shift the 128-bit value in a by b. If b is positive, shift left.
100  * If b is negative, shift right.
101  */
102 static void
103 dt_shift_128(uint64_t *a, int b)
104 {
105 	uint64_t mask;
106 
107 	if (b == 0)
108 		return;
109 
110 	if (b < 0) {
111 		b = -b;
112 		if (b >= 64) {
113 			a[0] = a[1] >> (b - 64);
114 			a[1] = 0;
115 		} else {
116 			a[0] >>= b;
117 			mask = 1LL << (64 - b);
118 			mask -= 1;
119 			a[0] |= ((a[1] & mask) << (64 - b));
120 			a[1] >>= b;
121 		}
122 	} else {
123 		if (b >= 64) {
124 			a[1] = a[0] << (b - 64);
125 			a[0] = 0;
126 		} else {
127 			a[1] <<= b;
128 			mask = a[0] >> (64 - b);
129 			a[1] |= mask;
130 			a[0] <<= b;
131 		}
132 	}
133 }
134 
135 static int
136 dt_nbits_128(uint64_t *a)
137 {
138 	int nbits = 0;
139 	uint64_t tmp[2];
140 	uint64_t zero[2] = { 0, 0 };
141 
142 	tmp[0] = a[0];
143 	tmp[1] = a[1];
144 
145 	dt_shift_128(tmp, -1);
146 	while (dt_gt_128(tmp, zero)) {
147 		dt_shift_128(tmp, -1);
148 		nbits++;
149 	}
150 
151 	return (nbits);
152 }
153 
154 static void
155 dt_subtract_128(uint64_t *minuend, uint64_t *subtrahend, uint64_t *difference)
156 {
157 	uint64_t result[2];
158 
159 	result[0] = minuend[0] - subtrahend[0];
160 	result[1] = minuend[1] - subtrahend[1] -
161 	    (minuend[0] < subtrahend[0] ? 1 : 0);
162 
163 	difference[0] = result[0];
164 	difference[1] = result[1];
165 }
166 
167 static void
168 dt_add_128(uint64_t *addend1, uint64_t *addend2, uint64_t *sum)
169 {
170 	uint64_t result[2];
171 
172 	result[0] = addend1[0] + addend2[0];
173 	result[1] = addend1[1] + addend2[1] +
174 	    (result[0] < addend1[0] || result[0] < addend2[0] ? 1 : 0);
175 
176 	sum[0] = result[0];
177 	sum[1] = result[1];
178 }
179 
180 /*
181  * The basic idea is to break the 2 64-bit values into 4 32-bit values,
182  * use native multiplication on those, and then re-combine into the
183  * resulting 128-bit value.
184  *
185  * (hi1 << 32 + lo1) * (hi2 << 32 + lo2) =
186  *     hi1 * hi2 << 64 +
187  *     hi1 * lo2 << 32 +
188  *     hi2 * lo1 << 32 +
189  *     lo1 * lo2
190  */
191 static void
192 dt_multiply_128(uint64_t factor1, uint64_t factor2, uint64_t *product)
193 {
194 	uint64_t hi1, hi2, lo1, lo2;
195 	uint64_t tmp[2];
196 
197 	hi1 = factor1 >> 32;
198 	hi2 = factor2 >> 32;
199 
200 	lo1 = factor1 & DT_MASK_LO;
201 	lo2 = factor2 & DT_MASK_LO;
202 
203 	product[0] = lo1 * lo2;
204 	product[1] = hi1 * hi2;
205 
206 	tmp[0] = hi1 * lo2;
207 	tmp[1] = 0;
208 	dt_shift_128(tmp, 32);
209 	dt_add_128(product, tmp, product);
210 
211 	tmp[0] = hi2 * lo1;
212 	tmp[1] = 0;
213 	dt_shift_128(tmp, 32);
214 	dt_add_128(product, tmp, product);
215 }
216 
217 /*
218  * This is long-hand division.
219  *
220  * We initialize subtrahend by shifting divisor left as far as possible. We
221  * loop, comparing subtrahend to dividend:  if subtrahend is smaller, we
222  * subtract and set the appropriate bit in the result.  We then shift
223  * subtrahend right by one bit for the next comparison.
224  */
225 static void
226 dt_divide_128(uint64_t *dividend, uint64_t divisor, uint64_t *quotient)
227 {
228 	uint64_t result[2] = { 0, 0 };
229 	uint64_t remainder[2];
230 	uint64_t subtrahend[2];
231 	uint64_t divisor_128[2];
232 	uint64_t mask[2] = { 1, 0 };
233 	int log = 0;
234 
235 	assert(divisor != 0);
236 
237 	divisor_128[0] = divisor;
238 	divisor_128[1] = 0;
239 
240 	remainder[0] = dividend[0];
241 	remainder[1] = dividend[1];
242 
243 	subtrahend[0] = divisor;
244 	subtrahend[1] = 0;
245 
246 	while (divisor > 0) {
247 		log++;
248 		divisor >>= 1;
249 	}
250 
251 	dt_shift_128(subtrahend, 128 - log);
252 	dt_shift_128(mask, 128 - log);
253 
254 	while (dt_ge_128(remainder, divisor_128)) {
255 		if (dt_ge_128(remainder, subtrahend)) {
256 			dt_subtract_128(remainder, subtrahend, remainder);
257 			result[0] |= mask[0];
258 			result[1] |= mask[1];
259 		}
260 
261 		dt_shift_128(subtrahend, -1);
262 		dt_shift_128(mask, -1);
263 	}
264 
265 	quotient[0] = result[0];
266 	quotient[1] = result[1];
267 }
268 
269 /*
270  * This is the long-hand method of calculating a square root.
271  * The algorithm is as follows:
272  *
273  * 1. Group the digits by 2 from the right.
274  * 2. Over the leftmost group, find the largest single-digit number
275  *    whose square is less than that group.
276  * 3. Subtract the result of the previous step (2 or 4, depending) and
277  *    bring down the next two-digit group.
278  * 4. For the result R we have so far, find the largest single-digit number
279  *    x such that 2 * R * 10 * x + x^2 is less than the result from step 3.
280  *    (Note that this is doubling R and performing a decimal left-shift by 1
281  *    and searching for the appropriate decimal to fill the one's place.)
282  *    The value x is the next digit in the square root.
283  * Repeat steps 3 and 4 until the desired precision is reached.  (We're
284  * dealing with integers, so the above is sufficient.)
285  *
286  * In decimal, the square root of 582,734 would be calculated as so:
287  *
288  *     __7__6__3
289  *    | 58 27 34
290  *     -49       (7^2 == 49 => 7 is the first digit in the square root)
291  *      --
292  *       9 27    (Subtract and bring down the next group.)
293  * 146   8 76    (2 * 7 * 10 * 6 + 6^2 == 876 => 6 is the next digit in
294  *      -----     the square root)
295  *         51 34 (Subtract and bring down the next group.)
296  * 1523    45 69 (2 * 76 * 10 * 3 + 3^2 == 4569 => 3 is the next digit in
297  *         -----  the square root)
298  *          5 65 (remainder)
299  *
300  * The above algorithm applies similarly in binary, but note that the
301  * only possible non-zero value for x in step 4 is 1, so step 4 becomes a
302  * simple decision: is 2 * R * 2 * 1 + 1^2 (aka R << 2 + 1) less than the
303  * preceding difference?
304  *
305  * In binary, the square root of 11011011 would be calculated as so:
306  *
307  *     __1__1__1__0
308  *    | 11 01 10 11
309  *      01          (0 << 2 + 1 == 1 < 11 => this bit is 1)
310  *      --
311  *      10 01 10 11
312  * 101   1 01       (1 << 2 + 1 == 101 < 1001 => next bit is 1)
313  *      -----
314  *       1 00 10 11
315  * 1101    11 01    (11 << 2 + 1 == 1101 < 10010 => next bit is 1)
316  *       -------
317  *          1 01 11
318  * 11101    1 11 01 (111 << 2 + 1 == 11101 > 10111 => last bit is 0)
319  *
320  */
321 static uint64_t
322 dt_sqrt_128(uint64_t *square)
323 {
324 	uint64_t result[2] = { 0, 0 };
325 	uint64_t diff[2] = { 0, 0 };
326 	uint64_t one[2] = { 1, 0 };
327 	uint64_t next_pair[2];
328 	uint64_t next_try[2];
329 	uint64_t bit_pairs, pair_shift;
330 	int i;
331 
332 	bit_pairs = dt_nbits_128(square) / 2;
333 	pair_shift = bit_pairs * 2;
334 
335 	for (i = 0; i <= bit_pairs; i++) {
336 		/*
337 		 * Bring down the next pair of bits.
338 		 */
339 		next_pair[0] = square[0];
340 		next_pair[1] = square[1];
341 		dt_shift_128(next_pair, -pair_shift);
342 		next_pair[0] &= 0x3;
343 		next_pair[1] = 0;
344 
345 		dt_shift_128(diff, 2);
346 		dt_add_128(diff, next_pair, diff);
347 
348 		/*
349 		 * next_try = R << 2 + 1
350 		 */
351 		next_try[0] = result[0];
352 		next_try[1] = result[1];
353 		dt_shift_128(next_try, 2);
354 		dt_add_128(next_try, one, next_try);
355 
356 		if (dt_le_128(next_try, diff)) {
357 			dt_subtract_128(diff, next_try, diff);
358 			dt_shift_128(result, 1);
359 			dt_add_128(result, one, result);
360 		} else {
361 			dt_shift_128(result, 1);
362 		}
363 
364 		pair_shift -= 2;
365 	}
366 
367 	assert(result[1] == 0);
368 
369 	return (result[0]);
370 }
371 
372 uint64_t
373 dt_stddev(uint64_t *data, uint64_t normal)
374 {
375 	uint64_t avg_of_squares[2];
376 	uint64_t square_of_avg[2];
377 	int64_t norm_avg;
378 	uint64_t diff[2];
379 
380 	/*
381 	 * The standard approximation for standard deviation is
382 	 * sqrt(average(x**2) - average(x)**2), i.e. the square root
383 	 * of the average of the squares minus the square of the average.
384 	 */
385 	dt_divide_128(data + 2, normal, avg_of_squares);
386 	dt_divide_128(avg_of_squares, data[0], avg_of_squares);
387 
388 	norm_avg = (int64_t)data[1] / (int64_t)normal / (int64_t)data[0];
389 
390 	if (norm_avg < 0)
391 		norm_avg = -norm_avg;
392 
393 	dt_multiply_128((uint64_t)norm_avg, (uint64_t)norm_avg, square_of_avg);
394 
395 	dt_subtract_128(avg_of_squares, square_of_avg, diff);
396 
397 	return (dt_sqrt_128(diff));
398 }
399 
400 static int
401 dt_flowindent(dtrace_hdl_t *dtp, dtrace_probedata_t *data, dtrace_epid_t last,
402     dtrace_bufdesc_t *buf, size_t offs)
403 {
404 	dtrace_probedesc_t *pd = data->dtpda_pdesc, *npd;
405 	dtrace_eprobedesc_t *epd = data->dtpda_edesc, *nepd;
406 	char *p = pd->dtpd_provider, *n = pd->dtpd_name, *sub;
407 	dtrace_flowkind_t flow = DTRACEFLOW_NONE;
408 	const char *str = NULL;
409 	static const char *e_str[2] = { " -> ", " => " };
410 	static const char *r_str[2] = { " <- ", " <= " };
411 	static const char *ent = "entry", *ret = "return";
412 	static int entlen = 0, retlen = 0;
413 	dtrace_epid_t next, id = epd->dtepd_epid;
414 	int rval;
415 
416 	if (entlen == 0) {
417 		assert(retlen == 0);
418 		entlen = strlen(ent);
419 		retlen = strlen(ret);
420 	}
421 
422 	/*
423 	 * If the name of the probe is "entry" or ends with "-entry", we
424 	 * treat it as an entry; if it is "return" or ends with "-return",
425 	 * we treat it as a return.  (This allows application-provided probes
426 	 * like "method-entry" or "function-entry" to participate in flow
427 	 * indentation -- without accidentally misinterpreting popular probe
428 	 * names like "carpentry", "gentry" or "Coventry".)
429 	 */
430 	if ((sub = strstr(n, ent)) != NULL && sub[entlen] == '\0' &&
431 	    (sub == n || sub[-1] == '-')) {
432 		flow = DTRACEFLOW_ENTRY;
433 		str = e_str[strcmp(p, "syscall") == 0];
434 	} else if ((sub = strstr(n, ret)) != NULL && sub[retlen] == '\0' &&
435 	    (sub == n || sub[-1] == '-')) {
436 		flow = DTRACEFLOW_RETURN;
437 		str = r_str[strcmp(p, "syscall") == 0];
438 	}
439 
440 	/*
441 	 * If we're going to indent this, we need to check the ID of our last
442 	 * call.  If we're looking at the same probe ID but a different EPID,
443 	 * we _don't_ want to indent.  (Yes, there are some minor holes in
444 	 * this scheme -- it's a heuristic.)
445 	 */
446 	if (flow == DTRACEFLOW_ENTRY) {
447 		if ((last != DTRACE_EPIDNONE && id != last &&
448 		    pd->dtpd_id == dtp->dt_pdesc[last]->dtpd_id))
449 			flow = DTRACEFLOW_NONE;
450 	}
451 
452 	/*
453 	 * If we're going to unindent this, it's more difficult to see if
454 	 * we don't actually want to unindent it -- we need to look at the
455 	 * _next_ EPID.
456 	 */
457 	if (flow == DTRACEFLOW_RETURN) {
458 		offs += epd->dtepd_size;
459 
460 		do {
461 			if (offs >= buf->dtbd_size)
462 				goto out;
463 
464 			next = *(uint32_t *)((uintptr_t)buf->dtbd_data + offs);
465 
466 			if (next == DTRACE_EPIDNONE)
467 				offs += sizeof (id);
468 		} while (next == DTRACE_EPIDNONE);
469 
470 		if ((rval = dt_epid_lookup(dtp, next, &nepd, &npd)) != 0)
471 			return (rval);
472 
473 		if (next != id && npd->dtpd_id == pd->dtpd_id)
474 			flow = DTRACEFLOW_NONE;
475 	}
476 
477 out:
478 	if (flow == DTRACEFLOW_ENTRY || flow == DTRACEFLOW_RETURN) {
479 		data->dtpda_prefix = str;
480 	} else {
481 		data->dtpda_prefix = "| ";
482 	}
483 
484 	if (flow == DTRACEFLOW_RETURN && data->dtpda_indent > 0)
485 		data->dtpda_indent -= 2;
486 
487 	data->dtpda_flow = flow;
488 
489 	return (0);
490 }
491 
492 static int
493 dt_nullprobe()
494 {
495 	return (DTRACE_CONSUME_THIS);
496 }
497 
498 static int
499 dt_nullrec()
500 {
501 	return (DTRACE_CONSUME_NEXT);
502 }
503 
504 static void
505 dt_quantize_total(dtrace_hdl_t *dtp, int64_t datum, long double *total)
506 {
507 	long double val = dt_fabsl((long double)datum);
508 
509 	if (dtp->dt_options[DTRACEOPT_AGGZOOM] == DTRACEOPT_UNSET) {
510 		*total += val;
511 		return;
512 	}
513 
514 	/*
515 	 * If we're zooming in on an aggregation, we want the height of the
516 	 * highest value to be approximately 95% of total bar height -- so we
517 	 * adjust up by the reciprocal of DTRACE_AGGZOOM_MAX when comparing to
518 	 * our highest value.
519 	 */
520 	val *= 1 / DTRACE_AGGZOOM_MAX;
521 
522 	if (*total < val)
523 		*total = val;
524 }
525 
526 static int
527 dt_print_quanthdr(dtrace_hdl_t *dtp, FILE *fp, int width)
528 {
529 	return (dt_printf(dtp, fp, "\n%*s %41s %-9s\n",
530 	    width ? width : 16, width ? "key" : "value",
531 	    "------------- Distribution -------------", "count"));
532 }
533 
534 static int
535 dt_print_quanthdr_packed(dtrace_hdl_t *dtp, FILE *fp, int width,
536     const dtrace_aggdata_t *aggdata, dtrace_actkind_t action)
537 {
538 	int min = aggdata->dtada_minbin, max = aggdata->dtada_maxbin;
539 	int minwidth, maxwidth, i;
540 
541 	assert(action == DTRACEAGG_QUANTIZE || action == DTRACEAGG_LQUANTIZE);
542 
543 	if (action == DTRACEAGG_QUANTIZE) {
544 		if (min != 0 && min != DTRACE_QUANTIZE_ZEROBUCKET)
545 			min--;
546 
547 		if (max < DTRACE_QUANTIZE_NBUCKETS - 1)
548 			max++;
549 
550 		minwidth = dt_ndigits(DTRACE_QUANTIZE_BUCKETVAL(min));
551 		maxwidth = dt_ndigits(DTRACE_QUANTIZE_BUCKETVAL(max));
552 	} else {
553 		maxwidth = 8;
554 		minwidth = maxwidth - 1;
555 		max++;
556 	}
557 
558 	if (dt_printf(dtp, fp, "\n%*s %*s .",
559 	    width, width > 0 ? "key" : "", minwidth, "min") < 0)
560 		return (-1);
561 
562 	for (i = min; i <= max; i++) {
563 		if (dt_printf(dtp, fp, "-") < 0)
564 			return (-1);
565 	}
566 
567 	return (dt_printf(dtp, fp, ". %*s | count\n", -maxwidth, "max"));
568 }
569 
570 /*
571  * We use a subset of the Unicode Block Elements (U+2588 through U+258F,
572  * inclusive) to represent aggregations via UTF-8 -- which are expressed via
573  * 3-byte UTF-8 sequences.
574  */
575 #define	DTRACE_AGGUTF8_FULL	0x2588
576 #define	DTRACE_AGGUTF8_BASE	0x258f
577 #define	DTRACE_AGGUTF8_LEVELS	8
578 
579 #define	DTRACE_AGGUTF8_BYTE0(val)	(0xe0 | ((val) >> 12))
580 #define	DTRACE_AGGUTF8_BYTE1(val)	(0x80 | (((val) >> 6) & 0x3f))
581 #define	DTRACE_AGGUTF8_BYTE2(val)	(0x80 | ((val) & 0x3f))
582 
583 static int
584 dt_print_quantline_utf8(dtrace_hdl_t *dtp, FILE *fp, int64_t val,
585     uint64_t normal, long double total)
586 {
587 	uint_t len = 40, i, whole, partial;
588 	long double f = (dt_fabsl((long double)val) * len) / total;
589 	const char *spaces = "                                        ";
590 
591 	whole = (uint_t)f;
592 	partial = (uint_t)((f - (long double)(uint_t)f) *
593 	    (long double)DTRACE_AGGUTF8_LEVELS);
594 
595 	if (dt_printf(dtp, fp, "|") < 0)
596 		return (-1);
597 
598 	for (i = 0; i < whole; i++) {
599 		if (dt_printf(dtp, fp, "%c%c%c",
600 		    DTRACE_AGGUTF8_BYTE0(DTRACE_AGGUTF8_FULL),
601 		    DTRACE_AGGUTF8_BYTE1(DTRACE_AGGUTF8_FULL),
602 		    DTRACE_AGGUTF8_BYTE2(DTRACE_AGGUTF8_FULL)) < 0)
603 			return (-1);
604 	}
605 
606 	if (partial != 0) {
607 		partial = DTRACE_AGGUTF8_BASE - (partial - 1);
608 
609 		if (dt_printf(dtp, fp, "%c%c%c",
610 		    DTRACE_AGGUTF8_BYTE0(partial),
611 		    DTRACE_AGGUTF8_BYTE1(partial),
612 		    DTRACE_AGGUTF8_BYTE2(partial)) < 0)
613 			return (-1);
614 
615 		i++;
616 	}
617 
618 	return (dt_printf(dtp, fp, "%s %-9lld\n", spaces + i,
619 	    (long long)val / normal));
620 }
621 
622 static int
623 dt_print_quantline(dtrace_hdl_t *dtp, FILE *fp, int64_t val,
624     uint64_t normal, long double total, char positives, char negatives)
625 {
626 	long double f;
627 	uint_t depth, len = 40;
628 
629 	const char *ats = "@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@";
630 	const char *spaces = "                                        ";
631 
632 	assert(strlen(ats) == len && strlen(spaces) == len);
633 	assert(!(total == 0 && (positives || negatives)));
634 	assert(!(val < 0 && !negatives));
635 	assert(!(val > 0 && !positives));
636 	assert(!(val != 0 && total == 0));
637 
638 	if (!negatives) {
639 		if (positives) {
640 			if (dtp->dt_encoding == DT_ENCODING_UTF8) {
641 				return (dt_print_quantline_utf8(dtp, fp, val,
642 				    normal, total));
643 			}
644 
645 			f = (dt_fabsl((long double)val) * len) / total;
646 			depth = (uint_t)(f + 0.5);
647 		} else {
648 			depth = 0;
649 		}
650 
651 		return (dt_printf(dtp, fp, "|%s%s %-9lld\n", ats + len - depth,
652 		    spaces + depth, (long long)val / normal));
653 	}
654 
655 	if (!positives) {
656 		f = (dt_fabsl((long double)val) * len) / total;
657 		depth = (uint_t)(f + 0.5);
658 
659 		return (dt_printf(dtp, fp, "%s%s| %-9lld\n", spaces + depth,
660 		    ats + len - depth, (long long)val / normal));
661 	}
662 
663 	/*
664 	 * If we're here, we have both positive and negative bucket values.
665 	 * To express this graphically, we're going to generate both positive
666 	 * and negative bars separated by a centerline.  These bars are half
667 	 * the size of normal quantize()/lquantize() bars, so we divide the
668 	 * length in half before calculating the bar length.
669 	 */
670 	len /= 2;
671 	ats = &ats[len];
672 	spaces = &spaces[len];
673 
674 	f = (dt_fabsl((long double)val) * len) / total;
675 	depth = (uint_t)(f + 0.5);
676 
677 	if (val <= 0) {
678 		return (dt_printf(dtp, fp, "%s%s|%*s %-9lld\n", spaces + depth,
679 		    ats + len - depth, len, "", (long long)val / normal));
680 	} else {
681 		return (dt_printf(dtp, fp, "%20s|%s%s %-9lld\n", "",
682 		    ats + len - depth, spaces + depth,
683 		    (long long)val / normal));
684 	}
685 }
686 
687 /*
688  * As with UTF-8 printing of aggregations, we use a subset of the Unicode
689  * Block Elements (U+2581 through U+2588, inclusive) to represent our packed
690  * aggregation.
691  */
692 #define	DTRACE_AGGPACK_BASE	0x2581
693 #define	DTRACE_AGGPACK_LEVELS	8
694 
695 static int
696 dt_print_packed(dtrace_hdl_t *dtp, FILE *fp,
697     long double datum, long double total)
698 {
699 	static boolean_t utf8_checked = B_FALSE;
700 	static boolean_t utf8;
701 	char *ascii = "__xxxxXX";
702 	char *neg = "vvvvVV";
703 	unsigned int len;
704 	long double val;
705 
706 	if (!utf8_checked) {
707 		char *term;
708 
709 		/*
710 		 * We want to determine if we can reasonably emit UTF-8 for our
711 		 * packed aggregation.  To do this, we will check for terminals
712 		 * that are known to be primitive to emit UTF-8 on these.
713 		 */
714 		utf8_checked = B_TRUE;
715 
716 		if (dtp->dt_encoding == DT_ENCODING_ASCII) {
717 			utf8 = B_FALSE;
718 		} else if (dtp->dt_encoding == DT_ENCODING_UTF8) {
719 			utf8 = B_TRUE;
720 		} else if ((term = getenv("TERM")) != NULL &&
721 		    (strcmp(term, "sun") == 0 ||
722 		    strcmp(term, "sun-color") == 0) ||
723 		    strcmp(term, "dumb") == 0) {
724 			utf8 = B_FALSE;
725 		} else {
726 			utf8 = B_TRUE;
727 		}
728 	}
729 
730 	if (datum == 0)
731 		return (dt_printf(dtp, fp, " "));
732 
733 	if (datum < 0) {
734 		len = strlen(neg);
735 		val = dt_fabsl(datum * (len - 1)) / total;
736 		return (dt_printf(dtp, fp, "%c", neg[(uint_t)(val + 0.5)]));
737 	}
738 
739 	if (utf8) {
740 		int block = DTRACE_AGGPACK_BASE + (unsigned int)(((datum *
741 		    (DTRACE_AGGPACK_LEVELS - 1)) / total) + 0.5);
742 
743 		return (dt_printf(dtp, fp, "%c%c%c",
744 		    DTRACE_AGGUTF8_BYTE0(block),
745 		    DTRACE_AGGUTF8_BYTE1(block),
746 		    DTRACE_AGGUTF8_BYTE2(block)));
747 	}
748 
749 	len = strlen(ascii);
750 	val = (datum * (len - 1)) / total;
751 	return (dt_printf(dtp, fp, "%c", ascii[(uint_t)(val + 0.5)]));
752 }
753 
754 int
755 dt_print_quantize(dtrace_hdl_t *dtp, FILE *fp, const void *addr,
756     size_t size, uint64_t normal)
757 {
758 	const int64_t *data = addr;
759 	int i, first_bin = 0, last_bin = DTRACE_QUANTIZE_NBUCKETS - 1;
760 	long double total = 0;
761 	char positives = 0, negatives = 0;
762 
763 	if (size != DTRACE_QUANTIZE_NBUCKETS * sizeof (uint64_t))
764 		return (dt_set_errno(dtp, EDT_DMISMATCH));
765 
766 	while (first_bin < DTRACE_QUANTIZE_NBUCKETS - 1 && data[first_bin] == 0)
767 		first_bin++;
768 
769 	if (first_bin == DTRACE_QUANTIZE_NBUCKETS - 1) {
770 		/*
771 		 * There isn't any data.  This is possible if the aggregation
772 		 * has been clear()'d or if negative increment values have been
773 		 * used.  Regardless, we'll print the buckets around 0.
774 		 */
775 		first_bin = DTRACE_QUANTIZE_ZEROBUCKET - 1;
776 		last_bin = DTRACE_QUANTIZE_ZEROBUCKET + 1;
777 	} else {
778 		if (first_bin > 0)
779 			first_bin--;
780 
781 		while (last_bin > 0 && data[last_bin] == 0)
782 			last_bin--;
783 
784 		if (last_bin < DTRACE_QUANTIZE_NBUCKETS - 1)
785 			last_bin++;
786 	}
787 
788 	for (i = first_bin; i <= last_bin; i++) {
789 		positives |= (data[i] > 0);
790 		negatives |= (data[i] < 0);
791 		dt_quantize_total(dtp, data[i], &total);
792 	}
793 
794 	if (dt_print_quanthdr(dtp, fp, 0) < 0)
795 		return (-1);
796 
797 	for (i = first_bin; i <= last_bin; i++) {
798 		if (dt_printf(dtp, fp, "%16lld ",
799 		    (long long)DTRACE_QUANTIZE_BUCKETVAL(i)) < 0)
800 			return (-1);
801 
802 		if (dt_print_quantline(dtp, fp, data[i], normal, total,
803 		    positives, negatives) < 0)
804 			return (-1);
805 	}
806 
807 	return (0);
808 }
809 
810 int
811 dt_print_quantize_packed(dtrace_hdl_t *dtp, FILE *fp, const void *addr,
812     size_t size, const dtrace_aggdata_t *aggdata)
813 {
814 	const int64_t *data = addr;
815 	long double total = 0, count = 0;
816 	int min = aggdata->dtada_minbin, max = aggdata->dtada_maxbin, i;
817 	int64_t minval, maxval;
818 
819 	if (size != DTRACE_QUANTIZE_NBUCKETS * sizeof (uint64_t))
820 		return (dt_set_errno(dtp, EDT_DMISMATCH));
821 
822 	if (min != 0 && min != DTRACE_QUANTIZE_ZEROBUCKET)
823 		min--;
824 
825 	if (max < DTRACE_QUANTIZE_NBUCKETS - 1)
826 		max++;
827 
828 	minval = DTRACE_QUANTIZE_BUCKETVAL(min);
829 	maxval = DTRACE_QUANTIZE_BUCKETVAL(max);
830 
831 	if (dt_printf(dtp, fp, " %*lld :", dt_ndigits(minval),
832 	    (long long)minval) < 0)
833 		return (-1);
834 
835 	for (i = min; i <= max; i++) {
836 		dt_quantize_total(dtp, data[i], &total);
837 		count += data[i];
838 	}
839 
840 	for (i = min; i <= max; i++) {
841 		if (dt_print_packed(dtp, fp, data[i], total) < 0)
842 			return (-1);
843 	}
844 
845 	if (dt_printf(dtp, fp, ": %*lld | %lld\n",
846 	    -dt_ndigits(maxval), (long long)maxval, (long long)count) < 0)
847 		return (-1);
848 
849 	return (0);
850 }
851 
852 int
853 dt_print_lquantize(dtrace_hdl_t *dtp, FILE *fp, const void *addr,
854     size_t size, uint64_t normal)
855 {
856 	const int64_t *data = addr;
857 	int i, first_bin, last_bin, base;
858 	uint64_t arg;
859 	long double total = 0;
860 	uint16_t step, levels;
861 	char positives = 0, negatives = 0;
862 
863 	if (size < sizeof (uint64_t))
864 		return (dt_set_errno(dtp, EDT_DMISMATCH));
865 
866 	arg = *data++;
867 	size -= sizeof (uint64_t);
868 
869 	base = DTRACE_LQUANTIZE_BASE(arg);
870 	step = DTRACE_LQUANTIZE_STEP(arg);
871 	levels = DTRACE_LQUANTIZE_LEVELS(arg);
872 
873 	first_bin = 0;
874 	last_bin = levels + 1;
875 
876 	if (size != sizeof (uint64_t) * (levels + 2))
877 		return (dt_set_errno(dtp, EDT_DMISMATCH));
878 
879 	while (first_bin <= levels + 1 && data[first_bin] == 0)
880 		first_bin++;
881 
882 	if (first_bin > levels + 1) {
883 		first_bin = 0;
884 		last_bin = 2;
885 	} else {
886 		if (first_bin > 0)
887 			first_bin--;
888 
889 		while (last_bin > 0 && data[last_bin] == 0)
890 			last_bin--;
891 
892 		if (last_bin < levels + 1)
893 			last_bin++;
894 	}
895 
896 	for (i = first_bin; i <= last_bin; i++) {
897 		positives |= (data[i] > 0);
898 		negatives |= (data[i] < 0);
899 		dt_quantize_total(dtp, data[i], &total);
900 	}
901 
902 	if (dt_printf(dtp, fp, "\n%16s %41s %-9s\n", "value",
903 	    "------------- Distribution -------------", "count") < 0)
904 		return (-1);
905 
906 	for (i = first_bin; i <= last_bin; i++) {
907 		char c[32];
908 		int err;
909 
910 		if (i == 0) {
911 			(void) snprintf(c, sizeof (c), "< %d", base);
912 			err = dt_printf(dtp, fp, "%16s ", c);
913 		} else if (i == levels + 1) {
914 			(void) snprintf(c, sizeof (c), ">= %d",
915 			    base + (levels * step));
916 			err = dt_printf(dtp, fp, "%16s ", c);
917 		} else {
918 			err = dt_printf(dtp, fp, "%16d ",
919 			    base + (i - 1) * step);
920 		}
921 
922 		if (err < 0 || dt_print_quantline(dtp, fp, data[i], normal,
923 		    total, positives, negatives) < 0)
924 			return (-1);
925 	}
926 
927 	return (0);
928 }
929 
930 /*ARGSUSED*/
931 int
932 dt_print_lquantize_packed(dtrace_hdl_t *dtp, FILE *fp, const void *addr,
933     size_t size, const dtrace_aggdata_t *aggdata)
934 {
935 	const int64_t *data = addr;
936 	long double total = 0, count = 0;
937 	int min, max, base, err;
938 	uint64_t arg;
939 	uint16_t step, levels;
940 	char c[32];
941 	unsigned int i;
942 
943 	if (size < sizeof (uint64_t))
944 		return (dt_set_errno(dtp, EDT_DMISMATCH));
945 
946 	arg = *data++;
947 	size -= sizeof (uint64_t);
948 
949 	base = DTRACE_LQUANTIZE_BASE(arg);
950 	step = DTRACE_LQUANTIZE_STEP(arg);
951 	levels = DTRACE_LQUANTIZE_LEVELS(arg);
952 
953 	if (size != sizeof (uint64_t) * (levels + 2))
954 		return (dt_set_errno(dtp, EDT_DMISMATCH));
955 
956 	min = 0;
957 	max = levels + 1;
958 
959 	if (min == 0) {
960 		(void) snprintf(c, sizeof (c), "< %d", base);
961 		err = dt_printf(dtp, fp, "%8s :", c);
962 	} else {
963 		err = dt_printf(dtp, fp, "%8d :", base + (min - 1) * step);
964 	}
965 
966 	if (err < 0)
967 		return (-1);
968 
969 	for (i = min; i <= max; i++) {
970 		dt_quantize_total(dtp, data[i], &total);
971 		count += data[i];
972 	}
973 
974 	for (i = min; i <= max; i++) {
975 		if (dt_print_packed(dtp, fp, data[i], total) < 0)
976 			return (-1);
977 	}
978 
979 	(void) snprintf(c, sizeof (c), ">= %d", base + (levels * step));
980 	return (dt_printf(dtp, fp, ": %-8s | %lld\n", c, (long long)count));
981 }
982 
983 int
984 dt_print_llquantize(dtrace_hdl_t *dtp, FILE *fp, const void *addr,
985     size_t size, uint64_t normal)
986 {
987 	int i, first_bin, last_bin, bin = 1, order, levels;
988 	uint16_t factor, low, high, nsteps;
989 	const int64_t *data = addr;
990 	int64_t value = 1, next, step;
991 	char positives = 0, negatives = 0;
992 	long double total = 0;
993 	uint64_t arg;
994 	char c[32];
995 
996 	if (size < sizeof (uint64_t))
997 		return (dt_set_errno(dtp, EDT_DMISMATCH));
998 
999 	arg = *data++;
1000 	size -= sizeof (uint64_t);
1001 
1002 	factor = DTRACE_LLQUANTIZE_FACTOR(arg);
1003 	low = DTRACE_LLQUANTIZE_LOW(arg);
1004 	high = DTRACE_LLQUANTIZE_HIGH(arg);
1005 	nsteps = DTRACE_LLQUANTIZE_NSTEP(arg);
1006 
1007 	/*
1008 	 * We don't expect to be handed invalid llquantize() parameters here,
1009 	 * but sanity check them (to a degree) nonetheless.
1010 	 */
1011 	if (size > INT32_MAX || factor < 2 || low >= high ||
1012 	    nsteps == 0 || factor > nsteps)
1013 		return (dt_set_errno(dtp, EDT_DMISMATCH));
1014 
1015 	levels = (int)size / sizeof (uint64_t);
1016 
1017 	first_bin = 0;
1018 	last_bin = levels - 1;
1019 
1020 	while (first_bin < levels && data[first_bin] == 0)
1021 		first_bin++;
1022 
1023 	if (first_bin == levels) {
1024 		first_bin = 0;
1025 		last_bin = 1;
1026 	} else {
1027 		if (first_bin > 0)
1028 			first_bin--;
1029 
1030 		while (last_bin > 0 && data[last_bin] == 0)
1031 			last_bin--;
1032 
1033 		if (last_bin < levels - 1)
1034 			last_bin++;
1035 	}
1036 
1037 	for (i = first_bin; i <= last_bin; i++) {
1038 		positives |= (data[i] > 0);
1039 		negatives |= (data[i] < 0);
1040 		dt_quantize_total(dtp, data[i], &total);
1041 	}
1042 
1043 	if (dt_printf(dtp, fp, "\n%16s %41s %-9s\n", "value",
1044 	    "------------- Distribution -------------", "count") < 0)
1045 		return (-1);
1046 
1047 	for (order = 0; order < low; order++)
1048 		value *= factor;
1049 
1050 	next = value * factor;
1051 	step = next > nsteps ? next / nsteps : 1;
1052 
1053 	if (first_bin == 0) {
1054 		(void) snprintf(c, sizeof (c), "< %lld", value);
1055 
1056 		if (dt_printf(dtp, fp, "%16s ", c) < 0)
1057 			return (-1);
1058 
1059 		if (dt_print_quantline(dtp, fp, data[0], normal,
1060 		    total, positives, negatives) < 0)
1061 			return (-1);
1062 	}
1063 
1064 	while (order <= high) {
1065 		if (bin >= first_bin && bin <= last_bin) {
1066 			if (dt_printf(dtp, fp, "%16lld ", (long long)value) < 0)
1067 				return (-1);
1068 
1069 			if (dt_print_quantline(dtp, fp, data[bin],
1070 			    normal, total, positives, negatives) < 0)
1071 				return (-1);
1072 		}
1073 
1074 		assert(value < next);
1075 		bin++;
1076 
1077 		if ((value += step) != next)
1078 			continue;
1079 
1080 		next = value * factor;
1081 		step = next > nsteps ? next / nsteps : 1;
1082 		order++;
1083 	}
1084 
1085 	if (last_bin < bin)
1086 		return (0);
1087 
1088 	assert(last_bin == bin);
1089 	(void) snprintf(c, sizeof (c), ">= %lld", value);
1090 
1091 	if (dt_printf(dtp, fp, "%16s ", c) < 0)
1092 		return (-1);
1093 
1094 	return (dt_print_quantline(dtp, fp, data[bin], normal,
1095 	    total, positives, negatives));
1096 }
1097 
1098 /*ARGSUSED*/
1099 static int
1100 dt_print_average(dtrace_hdl_t *dtp, FILE *fp, caddr_t addr,
1101     size_t size, uint64_t normal)
1102 {
1103 	/* LINTED - alignment */
1104 	int64_t *data = (int64_t *)addr;
1105 
1106 	return (dt_printf(dtp, fp, " %16lld", data[0] ?
1107 	    (long long)(data[1] / (int64_t)normal / data[0]) : 0));
1108 }
1109 
1110 /*ARGSUSED*/
1111 static int
1112 dt_print_stddev(dtrace_hdl_t *dtp, FILE *fp, caddr_t addr,
1113     size_t size, uint64_t normal)
1114 {
1115 	/* LINTED - alignment */
1116 	uint64_t *data = (uint64_t *)addr;
1117 
1118 	return (dt_printf(dtp, fp, " %16llu", data[0] ?
1119 	    (unsigned long long) dt_stddev(data, normal) : 0));
1120 }
1121 
1122 /*ARGSUSED*/
1123 static int
1124 dt_print_bytes(dtrace_hdl_t *dtp, FILE *fp, caddr_t addr,
1125     size_t nbytes, int width, int quiet, int forceraw)
1126 {
1127 	/*
1128 	 * If the byte stream is a series of printable characters, followed by
1129 	 * a terminating byte, we print it out as a string.  Otherwise, we
1130 	 * assume that it's something else and just print the bytes.
1131 	 */
1132 	int i, j, margin = 5;
1133 	char *c = (char *)addr;
1134 
1135 	if (nbytes == 0)
1136 		return (0);
1137 
1138 	if (forceraw)
1139 		goto raw;
1140 
1141 	if (dtp->dt_options[DTRACEOPT_RAWBYTES] != DTRACEOPT_UNSET)
1142 		goto raw;
1143 
1144 	for (i = 0; i < nbytes; i++) {
1145 		/*
1146 		 * We define a "printable character" to be one for which
1147 		 * isprint(3C) returns non-zero, isspace(3C) returns non-zero,
1148 		 * or a character which is either backspace or the bell.
1149 		 * Backspace and the bell are regrettably special because
1150 		 * they fail the first two tests -- and yet they are entirely
1151 		 * printable.  These are the only two control characters that
1152 		 * have meaning for the terminal and for which isprint(3C) and
1153 		 * isspace(3C) return 0.
1154 		 */
1155 		if (isprint(c[i]) || isspace(c[i]) ||
1156 		    c[i] == '\b' || c[i] == '\a')
1157 			continue;
1158 
1159 		if (c[i] == '\0' && i > 0) {
1160 			/*
1161 			 * This looks like it might be a string.  Before we
1162 			 * assume that it is indeed a string, check the
1163 			 * remainder of the byte range; if it contains
1164 			 * additional non-nul characters, we'll assume that
1165 			 * it's a binary stream that just happens to look like
1166 			 * a string, and we'll print out the individual bytes.
1167 			 */
1168 			for (j = i + 1; j < nbytes; j++) {
1169 				if (c[j] != '\0')
1170 					break;
1171 			}
1172 
1173 			if (j != nbytes)
1174 				break;
1175 
1176 			if (quiet) {
1177 				return (dt_printf(dtp, fp, "%s", c));
1178 			} else {
1179 				return (dt_printf(dtp, fp, " %s%*s",
1180 				    width < 0 ? " " : "", width, c));
1181 			}
1182 		}
1183 
1184 		break;
1185 	}
1186 
1187 	if (i == nbytes) {
1188 		/*
1189 		 * The byte range is all printable characters, but there is
1190 		 * no trailing nul byte.  We'll assume that it's a string and
1191 		 * print it as such.
1192 		 */
1193 		char *s = alloca(nbytes + 1);
1194 		bcopy(c, s, nbytes);
1195 		s[nbytes] = '\0';
1196 		return (dt_printf(dtp, fp, "  %-*s", width, s));
1197 	}
1198 
1199 raw:
1200 	if (dt_printf(dtp, fp, "\n%*s      ", margin, "") < 0)
1201 		return (-1);
1202 
1203 	for (i = 0; i < 16; i++)
1204 		if (dt_printf(dtp, fp, "  %c", "0123456789abcdef"[i]) < 0)
1205 			return (-1);
1206 
1207 	if (dt_printf(dtp, fp, "  0123456789abcdef\n") < 0)
1208 		return (-1);
1209 
1210 
1211 	for (i = 0; i < nbytes; i += 16) {
1212 		if (dt_printf(dtp, fp, "%*s%5x:", margin, "", i) < 0)
1213 			return (-1);
1214 
1215 		for (j = i; j < i + 16 && j < nbytes; j++) {
1216 			if (dt_printf(dtp, fp, " %02x", (uchar_t)c[j]) < 0)
1217 				return (-1);
1218 		}
1219 
1220 		while (j++ % 16) {
1221 			if (dt_printf(dtp, fp, "   ") < 0)
1222 				return (-1);
1223 		}
1224 
1225 		if (dt_printf(dtp, fp, "  ") < 0)
1226 			return (-1);
1227 
1228 		for (j = i; j < i + 16 && j < nbytes; j++) {
1229 			if (dt_printf(dtp, fp, "%c",
1230 			    c[j] < ' ' || c[j] > '~' ? '.' : c[j]) < 0)
1231 				return (-1);
1232 		}
1233 
1234 		if (dt_printf(dtp, fp, "\n") < 0)
1235 			return (-1);
1236 	}
1237 
1238 	return (0);
1239 }
1240 
1241 int
1242 dt_print_stack(dtrace_hdl_t *dtp, FILE *fp, const char *format,
1243     caddr_t addr, int depth, int size)
1244 {
1245 	dtrace_syminfo_t dts;
1246 	GElf_Sym sym;
1247 	int i, indent;
1248 	char c[PATH_MAX * 2];
1249 	uint64_t pc;
1250 
1251 	if (dt_printf(dtp, fp, "\n") < 0)
1252 		return (-1);
1253 
1254 	if (format == NULL)
1255 		format = "%s";
1256 
1257 	if (dtp->dt_options[DTRACEOPT_STACKINDENT] != DTRACEOPT_UNSET)
1258 		indent = (int)dtp->dt_options[DTRACEOPT_STACKINDENT];
1259 	else
1260 		indent = _dtrace_stkindent;
1261 
1262 	for (i = 0; i < depth; i++) {
1263 		switch (size) {
1264 		case sizeof (uint32_t):
1265 			/* LINTED - alignment */
1266 			pc = *((uint32_t *)addr);
1267 			break;
1268 
1269 		case sizeof (uint64_t):
1270 			/* LINTED - alignment */
1271 			pc = *((uint64_t *)addr);
1272 			break;
1273 
1274 		default:
1275 			return (dt_set_errno(dtp, EDT_BADSTACKPC));
1276 		}
1277 
1278 		if (pc == NULL)
1279 			break;
1280 
1281 		addr += size;
1282 
1283 		if (dt_printf(dtp, fp, "%*s", indent, "") < 0)
1284 			return (-1);
1285 
1286 		if (dtrace_lookup_by_addr(dtp, pc, &sym, &dts) == 0) {
1287 			if (pc > sym.st_value) {
1288 				(void) snprintf(c, sizeof (c), "%s`%s+0x%llx",
1289 				    dts.dts_object, dts.dts_name,
1290 				    pc - sym.st_value);
1291 			} else {
1292 				(void) snprintf(c, sizeof (c), "%s`%s",
1293 				    dts.dts_object, dts.dts_name);
1294 			}
1295 		} else {
1296 			/*
1297 			 * We'll repeat the lookup, but this time we'll specify
1298 			 * a NULL GElf_Sym -- indicating that we're only
1299 			 * interested in the containing module.
1300 			 */
1301 			if (dtrace_lookup_by_addr(dtp, pc, NULL, &dts) == 0) {
1302 				(void) snprintf(c, sizeof (c), "%s`0x%llx",
1303 				    dts.dts_object, pc);
1304 			} else {
1305 				(void) snprintf(c, sizeof (c), "0x%llx", pc);
1306 			}
1307 		}
1308 
1309 		if (dt_printf(dtp, fp, format, c) < 0)
1310 			return (-1);
1311 
1312 		if (dt_printf(dtp, fp, "\n") < 0)
1313 			return (-1);
1314 	}
1315 
1316 	return (0);
1317 }
1318 
1319 int
1320 dt_print_ustack(dtrace_hdl_t *dtp, FILE *fp, const char *format,
1321     caddr_t addr, uint64_t arg)
1322 {
1323 	/* LINTED - alignment */
1324 	uint64_t *pc = (uint64_t *)addr;
1325 	uint32_t depth = DTRACE_USTACK_NFRAMES(arg);
1326 	uint32_t strsize = DTRACE_USTACK_STRSIZE(arg);
1327 	const char *strbase = addr + (depth + 1) * sizeof (uint64_t);
1328 	const char *str = strsize ? strbase : NULL;
1329 	int err = 0;
1330 
1331 	char name[PATH_MAX], objname[PATH_MAX], c[PATH_MAX * 2];
1332 	struct ps_prochandle *P;
1333 	GElf_Sym sym;
1334 	int i, indent;
1335 	pid_t pid;
1336 
1337 	if (depth == 0)
1338 		return (0);
1339 
1340 	pid = (pid_t)*pc++;
1341 
1342 	if (dt_printf(dtp, fp, "\n") < 0)
1343 		return (-1);
1344 
1345 	if (format == NULL)
1346 		format = "%s";
1347 
1348 	if (dtp->dt_options[DTRACEOPT_STACKINDENT] != DTRACEOPT_UNSET)
1349 		indent = (int)dtp->dt_options[DTRACEOPT_STACKINDENT];
1350 	else
1351 		indent = _dtrace_stkindent;
1352 
1353 	/*
1354 	 * Ultimately, we need to add an entry point in the library vector for
1355 	 * determining <symbol, offset> from <pid, address>.  For now, if
1356 	 * this is a vector open, we just print the raw address or string.
1357 	 */
1358 	if (dtp->dt_vector == NULL)
1359 		P = dt_proc_grab(dtp, pid, PGRAB_RDONLY | PGRAB_FORCE, 0);
1360 	else
1361 		P = NULL;
1362 
1363 	if (P != NULL)
1364 		dt_proc_lock(dtp, P); /* lock handle while we perform lookups */
1365 
1366 	for (i = 0; i < depth && pc[i] != NULL; i++) {
1367 		const prmap_t *map;
1368 
1369 		if ((err = dt_printf(dtp, fp, "%*s", indent, "")) < 0)
1370 			break;
1371 
1372 		if (P != NULL && Plookup_by_addr(P, pc[i],
1373 		    name, sizeof (name), &sym) == 0) {
1374 			(void) Pobjname(P, pc[i], objname, sizeof (objname));
1375 
1376 			if (pc[i] > sym.st_value) {
1377 				(void) snprintf(c, sizeof (c),
1378 				    "%s`%s+0x%llx", dt_basename(objname), name,
1379 				    (u_longlong_t)(pc[i] - sym.st_value));
1380 			} else {
1381 				(void) snprintf(c, sizeof (c),
1382 				    "%s`%s", dt_basename(objname), name);
1383 			}
1384 		} else if (str != NULL && str[0] != '\0' && str[0] != '@' &&
1385 		    (P != NULL && ((map = Paddr_to_map(P, pc[i])) == NULL ||
1386 		    (map->pr_mflags & MA_WRITE)))) {
1387 			/*
1388 			 * If the current string pointer in the string table
1389 			 * does not point to an empty string _and_ the program
1390 			 * counter falls in a writable region, we'll use the
1391 			 * string from the string table instead of the raw
1392 			 * address.  This last condition is necessary because
1393 			 * some (broken) ustack helpers will return a string
1394 			 * even for a program counter that they can't
1395 			 * identify.  If we have a string for a program
1396 			 * counter that falls in a segment that isn't
1397 			 * writable, we assume that we have fallen into this
1398 			 * case and we refuse to use the string.
1399 			 */
1400 			(void) snprintf(c, sizeof (c), "%s", str);
1401 		} else {
1402 			if (P != NULL && Pobjname(P, pc[i], objname,
1403 			    sizeof (objname)) != NULL) {
1404 				(void) snprintf(c, sizeof (c), "%s`0x%llx",
1405 				    dt_basename(objname), (u_longlong_t)pc[i]);
1406 			} else {
1407 				(void) snprintf(c, sizeof (c), "0x%llx",
1408 				    (u_longlong_t)pc[i]);
1409 			}
1410 		}
1411 
1412 		if ((err = dt_printf(dtp, fp, format, c)) < 0)
1413 			break;
1414 
1415 		if ((err = dt_printf(dtp, fp, "\n")) < 0)
1416 			break;
1417 
1418 		if (str != NULL && str[0] == '@') {
1419 			/*
1420 			 * If the first character of the string is an "at" sign,
1421 			 * then the string is inferred to be an annotation --
1422 			 * and it is printed out beneath the frame and offset
1423 			 * with brackets.
1424 			 */
1425 			if ((err = dt_printf(dtp, fp, "%*s", indent, "")) < 0)
1426 				break;
1427 
1428 			(void) snprintf(c, sizeof (c), "  [ %s ]", &str[1]);
1429 
1430 			if ((err = dt_printf(dtp, fp, format, c)) < 0)
1431 				break;
1432 
1433 			if ((err = dt_printf(dtp, fp, "\n")) < 0)
1434 				break;
1435 		}
1436 
1437 		if (str != NULL) {
1438 			str += strlen(str) + 1;
1439 			if (str - strbase >= strsize)
1440 				str = NULL;
1441 		}
1442 	}
1443 
1444 	if (P != NULL) {
1445 		dt_proc_unlock(dtp, P);
1446 		dt_proc_release(dtp, P);
1447 	}
1448 
1449 	return (err);
1450 }
1451 
1452 static int
1453 dt_print_usym(dtrace_hdl_t *dtp, FILE *fp, caddr_t addr, dtrace_actkind_t act)
1454 {
1455 	/* LINTED - alignment */
1456 	uint64_t pid = ((uint64_t *)addr)[0];
1457 	/* LINTED - alignment */
1458 	uint64_t pc = ((uint64_t *)addr)[1];
1459 	const char *format = "  %-50s";
1460 	char *s;
1461 	int n, len = 256;
1462 
1463 	if (act == DTRACEACT_USYM && dtp->dt_vector == NULL) {
1464 		struct ps_prochandle *P;
1465 
1466 		if ((P = dt_proc_grab(dtp, pid,
1467 		    PGRAB_RDONLY | PGRAB_FORCE, 0)) != NULL) {
1468 			GElf_Sym sym;
1469 
1470 			dt_proc_lock(dtp, P);
1471 
1472 			if (Plookup_by_addr(P, pc, NULL, 0, &sym) == 0)
1473 				pc = sym.st_value;
1474 
1475 			dt_proc_unlock(dtp, P);
1476 			dt_proc_release(dtp, P);
1477 		}
1478 	}
1479 
1480 	do {
1481 		n = len;
1482 		s = alloca(n);
1483 	} while ((len = dtrace_uaddr2str(dtp, pid, pc, s, n)) > n);
1484 
1485 	return (dt_printf(dtp, fp, format, s));
1486 }
1487 
1488 int
1489 dt_print_umod(dtrace_hdl_t *dtp, FILE *fp, const char *format, caddr_t addr)
1490 {
1491 	/* LINTED - alignment */
1492 	uint64_t pid = ((uint64_t *)addr)[0];
1493 	/* LINTED - alignment */
1494 	uint64_t pc = ((uint64_t *)addr)[1];
1495 	int err = 0;
1496 
1497 	char objname[PATH_MAX], c[PATH_MAX * 2];
1498 	struct ps_prochandle *P;
1499 
1500 	if (format == NULL)
1501 		format = "  %-50s";
1502 
1503 	/*
1504 	 * See the comment in dt_print_ustack() for the rationale for
1505 	 * printing raw addresses in the vectored case.
1506 	 */
1507 	if (dtp->dt_vector == NULL)
1508 		P = dt_proc_grab(dtp, pid, PGRAB_RDONLY | PGRAB_FORCE, 0);
1509 	else
1510 		P = NULL;
1511 
1512 	if (P != NULL)
1513 		dt_proc_lock(dtp, P); /* lock handle while we perform lookups */
1514 
1515 	if (P != NULL && Pobjname(P, pc, objname, sizeof (objname)) != NULL) {
1516 		(void) snprintf(c, sizeof (c), "%s", dt_basename(objname));
1517 	} else {
1518 		(void) snprintf(c, sizeof (c), "0x%llx", (u_longlong_t)pc);
1519 	}
1520 
1521 	err = dt_printf(dtp, fp, format, c);
1522 
1523 	if (P != NULL) {
1524 		dt_proc_unlock(dtp, P);
1525 		dt_proc_release(dtp, P);
1526 	}
1527 
1528 	return (err);
1529 }
1530 
1531 static int
1532 dt_print_sym(dtrace_hdl_t *dtp, FILE *fp, const char *format, caddr_t addr)
1533 {
1534 	/* LINTED - alignment */
1535 	uint64_t pc = *((uint64_t *)addr);
1536 	dtrace_syminfo_t dts;
1537 	GElf_Sym sym;
1538 	char c[PATH_MAX * 2];
1539 
1540 	if (format == NULL)
1541 		format = "  %-50s";
1542 
1543 	if (dtrace_lookup_by_addr(dtp, pc, &sym, &dts) == 0) {
1544 		(void) snprintf(c, sizeof (c), "%s`%s",
1545 		    dts.dts_object, dts.dts_name);
1546 	} else {
1547 		/*
1548 		 * We'll repeat the lookup, but this time we'll specify a
1549 		 * NULL GElf_Sym -- indicating that we're only interested in
1550 		 * the containing module.
1551 		 */
1552 		if (dtrace_lookup_by_addr(dtp, pc, NULL, &dts) == 0) {
1553 			(void) snprintf(c, sizeof (c), "%s`0x%llx",
1554 			    dts.dts_object, (u_longlong_t)pc);
1555 		} else {
1556 			(void) snprintf(c, sizeof (c), "0x%llx",
1557 			    (u_longlong_t)pc);
1558 		}
1559 	}
1560 
1561 	if (dt_printf(dtp, fp, format, c) < 0)
1562 		return (-1);
1563 
1564 	return (0);
1565 }
1566 
1567 int
1568 dt_print_mod(dtrace_hdl_t *dtp, FILE *fp, const char *format, caddr_t addr)
1569 {
1570 	/* LINTED - alignment */
1571 	uint64_t pc = *((uint64_t *)addr);
1572 	dtrace_syminfo_t dts;
1573 	char c[PATH_MAX * 2];
1574 
1575 	if (format == NULL)
1576 		format = "  %-50s";
1577 
1578 	if (dtrace_lookup_by_addr(dtp, pc, NULL, &dts) == 0) {
1579 		(void) snprintf(c, sizeof (c), "%s", dts.dts_object);
1580 	} else {
1581 		(void) snprintf(c, sizeof (c), "0x%llx", (u_longlong_t)pc);
1582 	}
1583 
1584 	if (dt_printf(dtp, fp, format, c) < 0)
1585 		return (-1);
1586 
1587 	return (0);
1588 }
1589 
1590 typedef struct dt_normal {
1591 	dtrace_aggvarid_t dtnd_id;
1592 	uint64_t dtnd_normal;
1593 } dt_normal_t;
1594 
1595 static int
1596 dt_normalize_agg(const dtrace_aggdata_t *aggdata, void *arg)
1597 {
1598 	dt_normal_t *normal = arg;
1599 	dtrace_aggdesc_t *agg = aggdata->dtada_desc;
1600 	dtrace_aggvarid_t id = normal->dtnd_id;
1601 
1602 	if (agg->dtagd_nrecs == 0)
1603 		return (DTRACE_AGGWALK_NEXT);
1604 
1605 	if (agg->dtagd_varid != id)
1606 		return (DTRACE_AGGWALK_NEXT);
1607 
1608 	((dtrace_aggdata_t *)aggdata)->dtada_normal = normal->dtnd_normal;
1609 	return (DTRACE_AGGWALK_NORMALIZE);
1610 }
1611 
1612 static int
1613 dt_normalize(dtrace_hdl_t *dtp, caddr_t base, dtrace_recdesc_t *rec)
1614 {
1615 	dt_normal_t normal;
1616 	caddr_t addr;
1617 
1618 	/*
1619 	 * We (should) have two records:  the aggregation ID followed by the
1620 	 * normalization value.
1621 	 */
1622 	addr = base + rec->dtrd_offset;
1623 
1624 	if (rec->dtrd_size != sizeof (dtrace_aggvarid_t))
1625 		return (dt_set_errno(dtp, EDT_BADNORMAL));
1626 
1627 	/* LINTED - alignment */
1628 	normal.dtnd_id = *((dtrace_aggvarid_t *)addr);
1629 	rec++;
1630 
1631 	if (rec->dtrd_action != DTRACEACT_LIBACT)
1632 		return (dt_set_errno(dtp, EDT_BADNORMAL));
1633 
1634 	if (rec->dtrd_arg != DT_ACT_NORMALIZE)
1635 		return (dt_set_errno(dtp, EDT_BADNORMAL));
1636 
1637 	addr = base + rec->dtrd_offset;
1638 
1639 	switch (rec->dtrd_size) {
1640 	case sizeof (uint64_t):
1641 		/* LINTED - alignment */
1642 		normal.dtnd_normal = *((uint64_t *)addr);
1643 		break;
1644 	case sizeof (uint32_t):
1645 		/* LINTED - alignment */
1646 		normal.dtnd_normal = *((uint32_t *)addr);
1647 		break;
1648 	case sizeof (uint16_t):
1649 		/* LINTED - alignment */
1650 		normal.dtnd_normal = *((uint16_t *)addr);
1651 		break;
1652 	case sizeof (uint8_t):
1653 		normal.dtnd_normal = *((uint8_t *)addr);
1654 		break;
1655 	default:
1656 		return (dt_set_errno(dtp, EDT_BADNORMAL));
1657 	}
1658 
1659 	(void) dtrace_aggregate_walk(dtp, dt_normalize_agg, &normal);
1660 
1661 	return (0);
1662 }
1663 
1664 static int
1665 dt_denormalize_agg(const dtrace_aggdata_t *aggdata, void *arg)
1666 {
1667 	dtrace_aggdesc_t *agg = aggdata->dtada_desc;
1668 	dtrace_aggvarid_t id = *((dtrace_aggvarid_t *)arg);
1669 
1670 	if (agg->dtagd_nrecs == 0)
1671 		return (DTRACE_AGGWALK_NEXT);
1672 
1673 	if (agg->dtagd_varid != id)
1674 		return (DTRACE_AGGWALK_NEXT);
1675 
1676 	return (DTRACE_AGGWALK_DENORMALIZE);
1677 }
1678 
1679 static int
1680 dt_clear_agg(const dtrace_aggdata_t *aggdata, void *arg)
1681 {
1682 	dtrace_aggdesc_t *agg = aggdata->dtada_desc;
1683 	dtrace_aggvarid_t id = *((dtrace_aggvarid_t *)arg);
1684 
1685 	if (agg->dtagd_nrecs == 0)
1686 		return (DTRACE_AGGWALK_NEXT);
1687 
1688 	if (agg->dtagd_varid != id)
1689 		return (DTRACE_AGGWALK_NEXT);
1690 
1691 	return (DTRACE_AGGWALK_CLEAR);
1692 }
1693 
1694 typedef struct dt_trunc {
1695 	dtrace_aggvarid_t dttd_id;
1696 	uint64_t dttd_remaining;
1697 } dt_trunc_t;
1698 
1699 static int
1700 dt_trunc_agg(const dtrace_aggdata_t *aggdata, void *arg)
1701 {
1702 	dt_trunc_t *trunc = arg;
1703 	dtrace_aggdesc_t *agg = aggdata->dtada_desc;
1704 	dtrace_aggvarid_t id = trunc->dttd_id;
1705 
1706 	if (agg->dtagd_nrecs == 0)
1707 		return (DTRACE_AGGWALK_NEXT);
1708 
1709 	if (agg->dtagd_varid != id)
1710 		return (DTRACE_AGGWALK_NEXT);
1711 
1712 	if (trunc->dttd_remaining == 0)
1713 		return (DTRACE_AGGWALK_REMOVE);
1714 
1715 	trunc->dttd_remaining--;
1716 	return (DTRACE_AGGWALK_NEXT);
1717 }
1718 
1719 static int
1720 dt_trunc(dtrace_hdl_t *dtp, caddr_t base, dtrace_recdesc_t *rec)
1721 {
1722 	dt_trunc_t trunc;
1723 	caddr_t addr;
1724 	int64_t remaining;
1725 	int (*func)(dtrace_hdl_t *, dtrace_aggregate_f *, void *);
1726 
1727 	/*
1728 	 * We (should) have two records:  the aggregation ID followed by the
1729 	 * number of aggregation entries after which the aggregation is to be
1730 	 * truncated.
1731 	 */
1732 	addr = base + rec->dtrd_offset;
1733 
1734 	if (rec->dtrd_size != sizeof (dtrace_aggvarid_t))
1735 		return (dt_set_errno(dtp, EDT_BADTRUNC));
1736 
1737 	/* LINTED - alignment */
1738 	trunc.dttd_id = *((dtrace_aggvarid_t *)addr);
1739 	rec++;
1740 
1741 	if (rec->dtrd_action != DTRACEACT_LIBACT)
1742 		return (dt_set_errno(dtp, EDT_BADTRUNC));
1743 
1744 	if (rec->dtrd_arg != DT_ACT_TRUNC)
1745 		return (dt_set_errno(dtp, EDT_BADTRUNC));
1746 
1747 	addr = base + rec->dtrd_offset;
1748 
1749 	switch (rec->dtrd_size) {
1750 	case sizeof (uint64_t):
1751 		/* LINTED - alignment */
1752 		remaining = *((int64_t *)addr);
1753 		break;
1754 	case sizeof (uint32_t):
1755 		/* LINTED - alignment */
1756 		remaining = *((int32_t *)addr);
1757 		break;
1758 	case sizeof (uint16_t):
1759 		/* LINTED - alignment */
1760 		remaining = *((int16_t *)addr);
1761 		break;
1762 	case sizeof (uint8_t):
1763 		remaining = *((int8_t *)addr);
1764 		break;
1765 	default:
1766 		return (dt_set_errno(dtp, EDT_BADNORMAL));
1767 	}
1768 
1769 	if (remaining < 0) {
1770 		func = dtrace_aggregate_walk_valsorted;
1771 		remaining = -remaining;
1772 	} else {
1773 		func = dtrace_aggregate_walk_valrevsorted;
1774 	}
1775 
1776 	assert(remaining >= 0);
1777 	trunc.dttd_remaining = remaining;
1778 
1779 	(void) func(dtp, dt_trunc_agg, &trunc);
1780 
1781 	return (0);
1782 }
1783 
1784 static int
1785 dt_print_datum(dtrace_hdl_t *dtp, FILE *fp, dtrace_recdesc_t *rec,
1786     caddr_t addr, size_t size, const dtrace_aggdata_t *aggdata,
1787     uint64_t normal, dt_print_aggdata_t *pd)
1788 {
1789 	int err, width;
1790 	dtrace_actkind_t act = rec->dtrd_action;
1791 	boolean_t packed = pd->dtpa_agghist || pd->dtpa_aggpack;
1792 	dtrace_aggdesc_t *agg = aggdata->dtada_desc;
1793 
1794 	static struct {
1795 		size_t size;
1796 		int width;
1797 		int packedwidth;
1798 	} *fmt, fmttab[] = {
1799 		{ sizeof (uint8_t),	3,	3 },
1800 		{ sizeof (uint16_t),	5,	5 },
1801 		{ sizeof (uint32_t),	8,	8 },
1802 		{ sizeof (uint64_t),	16,	16 },
1803 		{ 0,			-50,	16 }
1804 	};
1805 
1806 	if (packed && pd->dtpa_agghisthdr != agg->dtagd_varid) {
1807 		dtrace_recdesc_t *r;
1808 
1809 		width = 0;
1810 
1811 		/*
1812 		 * To print our quantization header for either an agghist or
1813 		 * aggpack aggregation, we need to iterate through all of our
1814 		 * of our records to determine their width.
1815 		 */
1816 		for (r = rec; !DTRACEACT_ISAGG(r->dtrd_action); r++) {
1817 			for (fmt = fmttab; fmt->size &&
1818 			    fmt->size != r->dtrd_size; fmt++)
1819 				continue;
1820 
1821 			width += fmt->packedwidth + 1;
1822 		}
1823 
1824 		if (pd->dtpa_agghist) {
1825 			if (dt_print_quanthdr(dtp, fp, width) < 0)
1826 				return (-1);
1827 		} else {
1828 			if (dt_print_quanthdr_packed(dtp, fp,
1829 			    width, aggdata, r->dtrd_action) < 0)
1830 				return (-1);
1831 		}
1832 
1833 		pd->dtpa_agghisthdr = agg->dtagd_varid;
1834 	}
1835 
1836 	if (pd->dtpa_agghist && DTRACEACT_ISAGG(act)) {
1837 		char positives = aggdata->dtada_flags & DTRACE_A_HASPOSITIVES;
1838 		char negatives = aggdata->dtada_flags & DTRACE_A_HASNEGATIVES;
1839 		int64_t val;
1840 
1841 		assert(act == DTRACEAGG_SUM || act == DTRACEAGG_COUNT);
1842 		val = (long long)*((uint64_t *)addr);
1843 
1844 		if (dt_printf(dtp, fp, " ") < 0)
1845 			return (-1);
1846 
1847 		return (dt_print_quantline(dtp, fp, val, normal,
1848 		    aggdata->dtada_total, positives, negatives));
1849 	}
1850 
1851 	if (pd->dtpa_aggpack && DTRACEACT_ISAGG(act)) {
1852 		switch (act) {
1853 		case DTRACEAGG_QUANTIZE:
1854 			return (dt_print_quantize_packed(dtp,
1855 			    fp, addr, size, aggdata));
1856 		case DTRACEAGG_LQUANTIZE:
1857 			return (dt_print_lquantize_packed(dtp,
1858 			    fp, addr, size, aggdata));
1859 		default:
1860 			break;
1861 		}
1862 	}
1863 
1864 	switch (act) {
1865 	case DTRACEACT_STACK:
1866 		return (dt_print_stack(dtp, fp, NULL, addr,
1867 		    rec->dtrd_arg, rec->dtrd_size / rec->dtrd_arg));
1868 
1869 	case DTRACEACT_USTACK:
1870 	case DTRACEACT_JSTACK:
1871 		return (dt_print_ustack(dtp, fp, NULL, addr, rec->dtrd_arg));
1872 
1873 	case DTRACEACT_USYM:
1874 	case DTRACEACT_UADDR:
1875 		return (dt_print_usym(dtp, fp, addr, act));
1876 
1877 	case DTRACEACT_UMOD:
1878 		return (dt_print_umod(dtp, fp, NULL, addr));
1879 
1880 	case DTRACEACT_SYM:
1881 		return (dt_print_sym(dtp, fp, NULL, addr));
1882 
1883 	case DTRACEACT_MOD:
1884 		return (dt_print_mod(dtp, fp, NULL, addr));
1885 
1886 	case DTRACEAGG_QUANTIZE:
1887 		return (dt_print_quantize(dtp, fp, addr, size, normal));
1888 
1889 	case DTRACEAGG_LQUANTIZE:
1890 		return (dt_print_lquantize(dtp, fp, addr, size, normal));
1891 
1892 	case DTRACEAGG_LLQUANTIZE:
1893 		return (dt_print_llquantize(dtp, fp, addr, size, normal));
1894 
1895 	case DTRACEAGG_AVG:
1896 		return (dt_print_average(dtp, fp, addr, size, normal));
1897 
1898 	case DTRACEAGG_STDDEV:
1899 		return (dt_print_stddev(dtp, fp, addr, size, normal));
1900 
1901 	default:
1902 		break;
1903 	}
1904 
1905 	for (fmt = fmttab; fmt->size && fmt->size != size; fmt++)
1906 		continue;
1907 
1908 	width = packed ? fmt->packedwidth : fmt->width;
1909 
1910 	switch (size) {
1911 	case sizeof (uint64_t):
1912 		err = dt_printf(dtp, fp, " %*lld", width,
1913 		    /* LINTED - alignment */
1914 		    (long long)*((uint64_t *)addr) / normal);
1915 		break;
1916 	case sizeof (uint32_t):
1917 		/* LINTED - alignment */
1918 		err = dt_printf(dtp, fp, " %*d", width, *((uint32_t *)addr) /
1919 		    (uint32_t)normal);
1920 		break;
1921 	case sizeof (uint16_t):
1922 		/* LINTED - alignment */
1923 		err = dt_printf(dtp, fp, " %*d", width, *((uint16_t *)addr) /
1924 		    (uint32_t)normal);
1925 		break;
1926 	case sizeof (uint8_t):
1927 		err = dt_printf(dtp, fp, " %*d", width, *((uint8_t *)addr) /
1928 		    (uint32_t)normal);
1929 		break;
1930 	default:
1931 		err = dt_print_bytes(dtp, fp, addr, size, width, 0, 0);
1932 		break;
1933 	}
1934 
1935 	return (err);
1936 }
1937 
1938 int
1939 dt_print_aggs(const dtrace_aggdata_t **aggsdata, int naggvars, void *arg)
1940 {
1941 	int i, aggact = 0;
1942 	dt_print_aggdata_t *pd = arg;
1943 	const dtrace_aggdata_t *aggdata = aggsdata[0];
1944 	dtrace_aggdesc_t *agg = aggdata->dtada_desc;
1945 	FILE *fp = pd->dtpa_fp;
1946 	dtrace_hdl_t *dtp = pd->dtpa_dtp;
1947 	dtrace_recdesc_t *rec;
1948 	dtrace_actkind_t act;
1949 	caddr_t addr;
1950 	size_t size;
1951 
1952 	pd->dtpa_agghist = (aggdata->dtada_flags & DTRACE_A_TOTAL);
1953 	pd->dtpa_aggpack = (aggdata->dtada_flags & DTRACE_A_MINMAXBIN);
1954 
1955 	/*
1956 	 * Iterate over each record description in the key, printing the traced
1957 	 * data, skipping the first datum (the tuple member created by the
1958 	 * compiler).
1959 	 */
1960 	for (i = 1; i < agg->dtagd_nrecs; i++) {
1961 		rec = &agg->dtagd_rec[i];
1962 		act = rec->dtrd_action;
1963 		addr = aggdata->dtada_data + rec->dtrd_offset;
1964 		size = rec->dtrd_size;
1965 
1966 		if (DTRACEACT_ISAGG(act)) {
1967 			aggact = i;
1968 			break;
1969 		}
1970 
1971 		if (dt_print_datum(dtp, fp, rec, addr,
1972 		    size, aggdata, 1, pd) < 0)
1973 			return (-1);
1974 
1975 		if (dt_buffered_flush(dtp, NULL, rec, aggdata,
1976 		    DTRACE_BUFDATA_AGGKEY) < 0)
1977 			return (-1);
1978 	}
1979 
1980 	assert(aggact != 0);
1981 
1982 	for (i = (naggvars == 1 ? 0 : 1); i < naggvars; i++) {
1983 		uint64_t normal;
1984 
1985 		aggdata = aggsdata[i];
1986 		agg = aggdata->dtada_desc;
1987 		rec = &agg->dtagd_rec[aggact];
1988 		act = rec->dtrd_action;
1989 		addr = aggdata->dtada_data + rec->dtrd_offset;
1990 		size = rec->dtrd_size;
1991 
1992 		assert(DTRACEACT_ISAGG(act));
1993 		normal = aggdata->dtada_normal;
1994 
1995 		if (dt_print_datum(dtp, fp, rec, addr,
1996 		    size, aggdata, normal, pd) < 0)
1997 			return (-1);
1998 
1999 		if (dt_buffered_flush(dtp, NULL, rec, aggdata,
2000 		    DTRACE_BUFDATA_AGGVAL) < 0)
2001 			return (-1);
2002 
2003 		if (!pd->dtpa_allunprint)
2004 			agg->dtagd_flags |= DTRACE_AGD_PRINTED;
2005 	}
2006 
2007 	if (!pd->dtpa_agghist && !pd->dtpa_aggpack) {
2008 		if (dt_printf(dtp, fp, "\n") < 0)
2009 			return (-1);
2010 	}
2011 
2012 	if (dt_buffered_flush(dtp, NULL, NULL, aggdata,
2013 	    DTRACE_BUFDATA_AGGFORMAT | DTRACE_BUFDATA_AGGLAST) < 0)
2014 		return (-1);
2015 
2016 	return (0);
2017 }
2018 
2019 int
2020 dt_print_agg(const dtrace_aggdata_t *aggdata, void *arg)
2021 {
2022 	dt_print_aggdata_t *pd = arg;
2023 	dtrace_aggdesc_t *agg = aggdata->dtada_desc;
2024 	dtrace_aggvarid_t aggvarid = pd->dtpa_id;
2025 
2026 	if (pd->dtpa_allunprint) {
2027 		if (agg->dtagd_flags & DTRACE_AGD_PRINTED)
2028 			return (0);
2029 	} else {
2030 		/*
2031 		 * If we're not printing all unprinted aggregations, then the
2032 		 * aggregation variable ID denotes a specific aggregation
2033 		 * variable that we should print -- skip any other aggregations
2034 		 * that we encounter.
2035 		 */
2036 		if (agg->dtagd_nrecs == 0)
2037 			return (0);
2038 
2039 		if (aggvarid != agg->dtagd_varid)
2040 			return (0);
2041 	}
2042 
2043 	return (dt_print_aggs(&aggdata, 1, arg));
2044 }
2045 
2046 int
2047 dt_setopt(dtrace_hdl_t *dtp, const dtrace_probedata_t *data,
2048     const char *option, const char *value)
2049 {
2050 	int len, rval;
2051 	char *msg;
2052 	const char *errstr;
2053 	dtrace_setoptdata_t optdata;
2054 
2055 	bzero(&optdata, sizeof (optdata));
2056 	(void) dtrace_getopt(dtp, option, &optdata.dtsda_oldval);
2057 
2058 	if (dtrace_setopt(dtp, option, value) == 0) {
2059 		(void) dtrace_getopt(dtp, option, &optdata.dtsda_newval);
2060 		optdata.dtsda_probe = data;
2061 		optdata.dtsda_option = option;
2062 		optdata.dtsda_handle = dtp;
2063 
2064 		if ((rval = dt_handle_setopt(dtp, &optdata)) != 0)
2065 			return (rval);
2066 
2067 		return (0);
2068 	}
2069 
2070 	errstr = dtrace_errmsg(dtp, dtrace_errno(dtp));
2071 	len = strlen(option) + strlen(value) + strlen(errstr) + 80;
2072 	msg = alloca(len);
2073 
2074 	(void) snprintf(msg, len, "couldn't set option \"%s\" to \"%s\": %s\n",
2075 	    option, value, errstr);
2076 
2077 	if ((rval = dt_handle_liberr(dtp, data, msg)) == 0)
2078 		return (0);
2079 
2080 	return (rval);
2081 }
2082 
2083 static int
2084 dt_consume_cpu(dtrace_hdl_t *dtp, FILE *fp, int cpu,
2085     dtrace_bufdesc_t *buf, boolean_t just_one,
2086     dtrace_consume_probe_f *efunc, dtrace_consume_rec_f *rfunc, void *arg)
2087 {
2088 	dtrace_epid_t id;
2089 	size_t offs;
2090 	int flow = (dtp->dt_options[DTRACEOPT_FLOWINDENT] != DTRACEOPT_UNSET);
2091 	int quiet = (dtp->dt_options[DTRACEOPT_QUIET] != DTRACEOPT_UNSET);
2092 	int rval, i, n;
2093 	uint64_t tracememsize = 0;
2094 	dtrace_probedata_t data;
2095 	uint64_t drops;
2096 
2097 	bzero(&data, sizeof (data));
2098 	data.dtpda_handle = dtp;
2099 	data.dtpda_cpu = cpu;
2100 	data.dtpda_flow = dtp->dt_flow;
2101 	data.dtpda_indent = dtp->dt_indent;
2102 	data.dtpda_prefix = dtp->dt_prefix;
2103 
2104 	for (offs = buf->dtbd_oldest; offs < buf->dtbd_size; ) {
2105 		dtrace_eprobedesc_t *epd;
2106 
2107 		/*
2108 		 * We're guaranteed to have an ID.
2109 		 */
2110 		id = *(uint32_t *)((uintptr_t)buf->dtbd_data + offs);
2111 
2112 		if (id == DTRACE_EPIDNONE) {
2113 			/*
2114 			 * This is filler to assure proper alignment of the
2115 			 * next record; we simply ignore it.
2116 			 */
2117 			offs += sizeof (id);
2118 			continue;
2119 		}
2120 
2121 		if ((rval = dt_epid_lookup(dtp, id, &data.dtpda_edesc,
2122 		    &data.dtpda_pdesc)) != 0)
2123 			return (rval);
2124 
2125 		epd = data.dtpda_edesc;
2126 		data.dtpda_data = buf->dtbd_data + offs;
2127 
2128 		if (data.dtpda_edesc->dtepd_uarg != DT_ECB_DEFAULT) {
2129 			rval = dt_handle(dtp, &data);
2130 
2131 			if (rval == DTRACE_CONSUME_NEXT)
2132 				goto nextepid;
2133 
2134 			if (rval == DTRACE_CONSUME_ERROR)
2135 				return (-1);
2136 		}
2137 
2138 		if (flow)
2139 			(void) dt_flowindent(dtp, &data, dtp->dt_last_epid,
2140 			    buf, offs);
2141 
2142 		rval = (*efunc)(&data, arg);
2143 
2144 		if (flow) {
2145 			if (data.dtpda_flow == DTRACEFLOW_ENTRY)
2146 				data.dtpda_indent += 2;
2147 		}
2148 
2149 		if (rval == DTRACE_CONSUME_NEXT)
2150 			goto nextepid;
2151 
2152 		if (rval == DTRACE_CONSUME_ABORT)
2153 			return (dt_set_errno(dtp, EDT_DIRABORT));
2154 
2155 		if (rval != DTRACE_CONSUME_THIS)
2156 			return (dt_set_errno(dtp, EDT_BADRVAL));
2157 
2158 		for (i = 0; i < epd->dtepd_nrecs; i++) {
2159 			caddr_t addr;
2160 			dtrace_recdesc_t *rec = &epd->dtepd_rec[i];
2161 			dtrace_actkind_t act = rec->dtrd_action;
2162 
2163 			data.dtpda_data = buf->dtbd_data + offs +
2164 			    rec->dtrd_offset;
2165 			addr = data.dtpda_data;
2166 
2167 			if (act == DTRACEACT_LIBACT) {
2168 				uint64_t arg = rec->dtrd_arg;
2169 				dtrace_aggvarid_t id;
2170 
2171 				switch (arg) {
2172 				case DT_ACT_CLEAR:
2173 					/* LINTED - alignment */
2174 					id = *((dtrace_aggvarid_t *)addr);
2175 					(void) dtrace_aggregate_walk(dtp,
2176 					    dt_clear_agg, &id);
2177 					continue;
2178 
2179 				case DT_ACT_DENORMALIZE:
2180 					/* LINTED - alignment */
2181 					id = *((dtrace_aggvarid_t *)addr);
2182 					(void) dtrace_aggregate_walk(dtp,
2183 					    dt_denormalize_agg, &id);
2184 					continue;
2185 
2186 				case DT_ACT_FTRUNCATE:
2187 					if (fp == NULL)
2188 						continue;
2189 
2190 					(void) fflush(fp);
2191 					(void) ftruncate(fileno(fp), 0);
2192 					(void) fseeko(fp, 0, SEEK_SET);
2193 					continue;
2194 
2195 				case DT_ACT_NORMALIZE:
2196 					if (i == epd->dtepd_nrecs - 1)
2197 						return (dt_set_errno(dtp,
2198 						    EDT_BADNORMAL));
2199 
2200 					if (dt_normalize(dtp,
2201 					    buf->dtbd_data + offs, rec) != 0)
2202 						return (-1);
2203 
2204 					i++;
2205 					continue;
2206 
2207 				case DT_ACT_SETOPT: {
2208 					uint64_t *opts = dtp->dt_options;
2209 					dtrace_recdesc_t *valrec;
2210 					uint32_t valsize;
2211 					caddr_t val;
2212 					int rv;
2213 
2214 					if (i == epd->dtepd_nrecs - 1) {
2215 						return (dt_set_errno(dtp,
2216 						    EDT_BADSETOPT));
2217 					}
2218 
2219 					valrec = &epd->dtepd_rec[++i];
2220 					valsize = valrec->dtrd_size;
2221 
2222 					if (valrec->dtrd_action != act ||
2223 					    valrec->dtrd_arg != arg) {
2224 						return (dt_set_errno(dtp,
2225 						    EDT_BADSETOPT));
2226 					}
2227 
2228 					if (valsize > sizeof (uint64_t)) {
2229 						val = buf->dtbd_data + offs +
2230 						    valrec->dtrd_offset;
2231 					} else {
2232 						val = "1";
2233 					}
2234 
2235 					rv = dt_setopt(dtp, &data, addr, val);
2236 
2237 					if (rv != 0)
2238 						return (-1);
2239 
2240 					flow = (opts[DTRACEOPT_FLOWINDENT] !=
2241 					    DTRACEOPT_UNSET);
2242 					quiet = (opts[DTRACEOPT_QUIET] !=
2243 					    DTRACEOPT_UNSET);
2244 
2245 					continue;
2246 				}
2247 
2248 				case DT_ACT_TRUNC:
2249 					if (i == epd->dtepd_nrecs - 1)
2250 						return (dt_set_errno(dtp,
2251 						    EDT_BADTRUNC));
2252 
2253 					if (dt_trunc(dtp,
2254 					    buf->dtbd_data + offs, rec) != 0)
2255 						return (-1);
2256 
2257 					i++;
2258 					continue;
2259 
2260 				default:
2261 					continue;
2262 				}
2263 			}
2264 
2265 			if (act == DTRACEACT_TRACEMEM_DYNSIZE &&
2266 			    rec->dtrd_size == sizeof (uint64_t)) {
2267 				/* LINTED - alignment */
2268 				tracememsize = *((unsigned long long *)addr);
2269 				continue;
2270 			}
2271 
2272 			rval = (*rfunc)(&data, rec, arg);
2273 
2274 			if (rval == DTRACE_CONSUME_NEXT)
2275 				continue;
2276 
2277 			if (rval == DTRACE_CONSUME_ABORT)
2278 				return (dt_set_errno(dtp, EDT_DIRABORT));
2279 
2280 			if (rval != DTRACE_CONSUME_THIS)
2281 				return (dt_set_errno(dtp, EDT_BADRVAL));
2282 
2283 			if (act == DTRACEACT_STACK) {
2284 				int depth = rec->dtrd_arg;
2285 
2286 				if (dt_print_stack(dtp, fp, NULL, addr, depth,
2287 				    rec->dtrd_size / depth) < 0)
2288 					return (-1);
2289 				goto nextrec;
2290 			}
2291 
2292 			if (act == DTRACEACT_USTACK ||
2293 			    act == DTRACEACT_JSTACK) {
2294 				if (dt_print_ustack(dtp, fp, NULL,
2295 				    addr, rec->dtrd_arg) < 0)
2296 					return (-1);
2297 				goto nextrec;
2298 			}
2299 
2300 			if (act == DTRACEACT_SYM) {
2301 				if (dt_print_sym(dtp, fp, NULL, addr) < 0)
2302 					return (-1);
2303 				goto nextrec;
2304 			}
2305 
2306 			if (act == DTRACEACT_MOD) {
2307 				if (dt_print_mod(dtp, fp, NULL, addr) < 0)
2308 					return (-1);
2309 				goto nextrec;
2310 			}
2311 
2312 			if (act == DTRACEACT_USYM || act == DTRACEACT_UADDR) {
2313 				if (dt_print_usym(dtp, fp, addr, act) < 0)
2314 					return (-1);
2315 				goto nextrec;
2316 			}
2317 
2318 			if (act == DTRACEACT_UMOD) {
2319 				if (dt_print_umod(dtp, fp, NULL, addr) < 0)
2320 					return (-1);
2321 				goto nextrec;
2322 			}
2323 
2324 			if (DTRACEACT_ISPRINTFLIKE(act)) {
2325 				void *fmtdata;
2326 				int (*func)(dtrace_hdl_t *, FILE *, void *,
2327 				    const dtrace_probedata_t *,
2328 				    const dtrace_recdesc_t *, uint_t,
2329 				    const void *buf, size_t);
2330 
2331 				if ((fmtdata = dt_format_lookup(dtp,
2332 				    rec->dtrd_format)) == NULL)
2333 					goto nofmt;
2334 
2335 				switch (act) {
2336 				case DTRACEACT_PRINTF:
2337 					func = dtrace_fprintf;
2338 					break;
2339 				case DTRACEACT_PRINTA:
2340 					func = dtrace_fprinta;
2341 					break;
2342 				case DTRACEACT_SYSTEM:
2343 					func = dtrace_system;
2344 					break;
2345 				case DTRACEACT_FREOPEN:
2346 					func = dtrace_freopen;
2347 					break;
2348 				}
2349 
2350 				n = (*func)(dtp, fp, fmtdata, &data,
2351 				    rec, epd->dtepd_nrecs - i,
2352 				    (uchar_t *)buf->dtbd_data + offs,
2353 				    buf->dtbd_size - offs);
2354 
2355 				if (n < 0)
2356 					return (-1); /* errno is set for us */
2357 
2358 				if (n > 0)
2359 					i += n - 1;
2360 				goto nextrec;
2361 			}
2362 
2363 			/*
2364 			 * If this is a DIF expression, and the record has a
2365 			 * format set, this indicates we have a CTF type name
2366 			 * associated with the data and we should try to print
2367 			 * it out by type.
2368 			 */
2369 			if (act == DTRACEACT_DIFEXPR) {
2370 				const char *strdata = dt_strdata_lookup(dtp,
2371 				    rec->dtrd_format);
2372 				if (strdata != NULL) {
2373 					n = dtrace_print(dtp, fp, strdata,
2374 					    addr, rec->dtrd_size);
2375 
2376 					/*
2377 					 * dtrace_print() will return -1 on
2378 					 * error, or return the number of bytes
2379 					 * consumed.  It will return 0 if the
2380 					 * type couldn't be determined, and we
2381 					 * should fall through to the normal
2382 					 * trace method.
2383 					 */
2384 					if (n < 0)
2385 						return (-1);
2386 
2387 					if (n > 0)
2388 						goto nextrec;
2389 				}
2390 			}
2391 
2392 nofmt:
2393 			if (act == DTRACEACT_PRINTA) {
2394 				dt_print_aggdata_t pd;
2395 				dtrace_aggvarid_t *aggvars;
2396 				int j, naggvars = 0;
2397 				size_t size = ((epd->dtepd_nrecs - i) *
2398 				    sizeof (dtrace_aggvarid_t));
2399 
2400 				if ((aggvars = dt_alloc(dtp, size)) == NULL)
2401 					return (-1);
2402 
2403 				/*
2404 				 * This might be a printa() with multiple
2405 				 * aggregation variables.  We need to scan
2406 				 * forward through the records until we find
2407 				 * a record from a different statement.
2408 				 */
2409 				for (j = i; j < epd->dtepd_nrecs; j++) {
2410 					dtrace_recdesc_t *nrec;
2411 					caddr_t naddr;
2412 
2413 					nrec = &epd->dtepd_rec[j];
2414 
2415 					if (nrec->dtrd_uarg != rec->dtrd_uarg)
2416 						break;
2417 
2418 					if (nrec->dtrd_action != act) {
2419 						return (dt_set_errno(dtp,
2420 						    EDT_BADAGG));
2421 					}
2422 
2423 					naddr = buf->dtbd_data + offs +
2424 					    nrec->dtrd_offset;
2425 
2426 					aggvars[naggvars++] =
2427 					    /* LINTED - alignment */
2428 					    *((dtrace_aggvarid_t *)naddr);
2429 				}
2430 
2431 				i = j - 1;
2432 				bzero(&pd, sizeof (pd));
2433 				pd.dtpa_dtp = dtp;
2434 				pd.dtpa_fp = fp;
2435 
2436 				assert(naggvars >= 1);
2437 
2438 				if (naggvars == 1) {
2439 					pd.dtpa_id = aggvars[0];
2440 					dt_free(dtp, aggvars);
2441 
2442 					if (dt_printf(dtp, fp, "\n") < 0 ||
2443 					    dtrace_aggregate_walk_sorted(dtp,
2444 					    dt_print_agg, &pd) < 0)
2445 						return (-1);
2446 					goto nextrec;
2447 				}
2448 
2449 				if (dt_printf(dtp, fp, "\n") < 0 ||
2450 				    dtrace_aggregate_walk_joined(dtp, aggvars,
2451 				    naggvars, dt_print_aggs, &pd) < 0) {
2452 					dt_free(dtp, aggvars);
2453 					return (-1);
2454 				}
2455 
2456 				dt_free(dtp, aggvars);
2457 				goto nextrec;
2458 			}
2459 
2460 			if (act == DTRACEACT_TRACEMEM) {
2461 				if (tracememsize == 0 ||
2462 				    tracememsize > rec->dtrd_size) {
2463 					tracememsize = rec->dtrd_size;
2464 				}
2465 
2466 				n = dt_print_bytes(dtp, fp, addr,
2467 				    tracememsize, -33, quiet, 1);
2468 
2469 				tracememsize = 0;
2470 
2471 				if (n < 0)
2472 					return (-1);
2473 
2474 				goto nextrec;
2475 			}
2476 
2477 			switch (rec->dtrd_size) {
2478 			case sizeof (uint64_t):
2479 				n = dt_printf(dtp, fp,
2480 				    quiet ? "%lld" : " %16lld",
2481 				    /* LINTED - alignment */
2482 				    *((unsigned long long *)addr));
2483 				break;
2484 			case sizeof (uint32_t):
2485 				n = dt_printf(dtp, fp, quiet ? "%d" : " %8d",
2486 				    /* LINTED - alignment */
2487 				    *((uint32_t *)addr));
2488 				break;
2489 			case sizeof (uint16_t):
2490 				n = dt_printf(dtp, fp, quiet ? "%d" : " %5d",
2491 				    /* LINTED - alignment */
2492 				    *((uint16_t *)addr));
2493 				break;
2494 			case sizeof (uint8_t):
2495 				n = dt_printf(dtp, fp, quiet ? "%d" : " %3d",
2496 				    *((uint8_t *)addr));
2497 				break;
2498 			default:
2499 				n = dt_print_bytes(dtp, fp, addr,
2500 				    rec->dtrd_size, -33, quiet, 0);
2501 				break;
2502 			}
2503 
2504 			if (n < 0)
2505 				return (-1); /* errno is set for us */
2506 
2507 nextrec:
2508 			if (dt_buffered_flush(dtp, &data, rec, NULL, 0) < 0)
2509 				return (-1); /* errno is set for us */
2510 		}
2511 
2512 		/*
2513 		 * Call the record callback with a NULL record to indicate
2514 		 * that we're done processing this EPID.
2515 		 */
2516 		rval = (*rfunc)(&data, NULL, arg);
2517 nextepid:
2518 		offs += epd->dtepd_size;
2519 		dtp->dt_last_epid = id;
2520 		if (just_one) {
2521 			buf->dtbd_oldest = offs;
2522 			break;
2523 		}
2524 	}
2525 
2526 	dtp->dt_flow = data.dtpda_flow;
2527 	dtp->dt_indent = data.dtpda_indent;
2528 	dtp->dt_prefix = data.dtpda_prefix;
2529 
2530 	if ((drops = buf->dtbd_drops) == 0)
2531 		return (0);
2532 
2533 	/*
2534 	 * Explicitly zero the drops to prevent us from processing them again.
2535 	 */
2536 	buf->dtbd_drops = 0;
2537 
2538 	return (dt_handle_cpudrop(dtp, cpu, DTRACEDROP_PRINCIPAL, drops));
2539 }
2540 
2541 /*
2542  * Reduce memory usage by shrinking the buffer if it's no more than half full.
2543  * Note, we need to preserve the alignment of the data at dtbd_oldest, which is
2544  * only 4-byte aligned.
2545  */
2546 static void
2547 dt_realloc_buf(dtrace_hdl_t *dtp, dtrace_bufdesc_t *buf, int cursize)
2548 {
2549 	uint64_t used = buf->dtbd_size - buf->dtbd_oldest;
2550 	if (used < cursize / 2) {
2551 		int misalign = buf->dtbd_oldest & (sizeof (uint64_t) - 1);
2552 		char *newdata = dt_alloc(dtp, used + misalign);
2553 		if (newdata == NULL)
2554 			return;
2555 		bzero(newdata, misalign);
2556 		bcopy(buf->dtbd_data + buf->dtbd_oldest,
2557 		    newdata + misalign, used);
2558 		dt_free(dtp, buf->dtbd_data);
2559 		buf->dtbd_oldest = misalign;
2560 		buf->dtbd_size = used + misalign;
2561 		buf->dtbd_data = newdata;
2562 	}
2563 }
2564 
2565 /*
2566  * If the ring buffer has wrapped, the data is not in order.  Rearrange it
2567  * so that it is.  Note, we need to preserve the alignment of the data at
2568  * dtbd_oldest, which is only 4-byte aligned.
2569  */
2570 static int
2571 dt_unring_buf(dtrace_hdl_t *dtp, dtrace_bufdesc_t *buf)
2572 {
2573 	int misalign;
2574 	char *newdata, *ndp;
2575 
2576 	if (buf->dtbd_oldest == 0)
2577 		return (0);
2578 
2579 	misalign = buf->dtbd_oldest & (sizeof (uint64_t) - 1);
2580 	newdata = ndp = dt_alloc(dtp, buf->dtbd_size + misalign);
2581 
2582 	if (newdata == NULL)
2583 		return (-1);
2584 
2585 	assert(0 == (buf->dtbd_size & (sizeof (uint64_t) - 1)));
2586 
2587 	bzero(ndp, misalign);
2588 	ndp += misalign;
2589 
2590 	bcopy(buf->dtbd_data + buf->dtbd_oldest, ndp,
2591 	    buf->dtbd_size - buf->dtbd_oldest);
2592 	ndp += buf->dtbd_size - buf->dtbd_oldest;
2593 
2594 	bcopy(buf->dtbd_data, ndp, buf->dtbd_oldest);
2595 
2596 	dt_free(dtp, buf->dtbd_data);
2597 	buf->dtbd_oldest = 0;
2598 	buf->dtbd_data = newdata;
2599 	buf->dtbd_size += misalign;
2600 
2601 	return (0);
2602 }
2603 
2604 static void
2605 dt_put_buf(dtrace_hdl_t *dtp, dtrace_bufdesc_t *buf)
2606 {
2607 	dt_free(dtp, buf->dtbd_data);
2608 	dt_free(dtp, buf);
2609 }
2610 
2611 /*
2612  * Returns 0 on success, in which case *cbp will be filled in if we retrieved
2613  * data, or NULL if there is no data for this CPU.
2614  * Returns -1 on failure and sets dt_errno.
2615  */
2616 static int
2617 dt_get_buf(dtrace_hdl_t *dtp, int cpu, dtrace_bufdesc_t **bufp)
2618 {
2619 	dtrace_optval_t size;
2620 	dtrace_bufdesc_t *buf = dt_zalloc(dtp, sizeof (*buf));
2621 	int error;
2622 
2623 	if (buf == NULL)
2624 		return (-1);
2625 
2626 	(void) dtrace_getopt(dtp, "bufsize", &size);
2627 	buf->dtbd_data = dt_alloc(dtp, size);
2628 	if (buf->dtbd_data == NULL) {
2629 		dt_free(dtp, buf);
2630 		return (-1);
2631 	}
2632 	buf->dtbd_size = size;
2633 	buf->dtbd_cpu = cpu;
2634 
2635 	if (dt_ioctl(dtp, DTRACEIOC_BUFSNAP, buf) == -1) {
2636 		dt_put_buf(dtp, buf);
2637 		/*
2638 		 * If we failed with ENOENT, it may be because the
2639 		 * CPU was unconfigured -- this is okay.  Any other
2640 		 * error, however, is unexpected.
2641 		 */
2642 		if (errno == ENOENT) {
2643 			*bufp = NULL;
2644 			return (0);
2645 		}
2646 
2647 		return (dt_set_errno(dtp, errno));
2648 	}
2649 
2650 	error = dt_unring_buf(dtp, buf);
2651 	if (error != 0) {
2652 		dt_put_buf(dtp, buf);
2653 		return (error);
2654 	}
2655 	dt_realloc_buf(dtp, buf, size);
2656 
2657 	*bufp = buf;
2658 	return (0);
2659 }
2660 
2661 typedef struct dt_begin {
2662 	dtrace_consume_probe_f *dtbgn_probefunc;
2663 	dtrace_consume_rec_f *dtbgn_recfunc;
2664 	void *dtbgn_arg;
2665 	dtrace_handle_err_f *dtbgn_errhdlr;
2666 	void *dtbgn_errarg;
2667 	int dtbgn_beginonly;
2668 } dt_begin_t;
2669 
2670 static int
2671 dt_consume_begin_probe(const dtrace_probedata_t *data, void *arg)
2672 {
2673 	dt_begin_t *begin = arg;
2674 	dtrace_probedesc_t *pd = data->dtpda_pdesc;
2675 
2676 	int r1 = (strcmp(pd->dtpd_provider, "dtrace") == 0);
2677 	int r2 = (strcmp(pd->dtpd_name, "BEGIN") == 0);
2678 
2679 	if (begin->dtbgn_beginonly) {
2680 		if (!(r1 && r2))
2681 			return (DTRACE_CONSUME_NEXT);
2682 	} else {
2683 		if (r1 && r2)
2684 			return (DTRACE_CONSUME_NEXT);
2685 	}
2686 
2687 	/*
2688 	 * We have a record that we're interested in.  Now call the underlying
2689 	 * probe function...
2690 	 */
2691 	return (begin->dtbgn_probefunc(data, begin->dtbgn_arg));
2692 }
2693 
2694 static int
2695 dt_consume_begin_record(const dtrace_probedata_t *data,
2696     const dtrace_recdesc_t *rec, void *arg)
2697 {
2698 	dt_begin_t *begin = arg;
2699 
2700 	return (begin->dtbgn_recfunc(data, rec, begin->dtbgn_arg));
2701 }
2702 
2703 static int
2704 dt_consume_begin_error(const dtrace_errdata_t *data, void *arg)
2705 {
2706 	dt_begin_t *begin = (dt_begin_t *)arg;
2707 	dtrace_probedesc_t *pd = data->dteda_pdesc;
2708 
2709 	int r1 = (strcmp(pd->dtpd_provider, "dtrace") == 0);
2710 	int r2 = (strcmp(pd->dtpd_name, "BEGIN") == 0);
2711 
2712 	if (begin->dtbgn_beginonly) {
2713 		if (!(r1 && r2))
2714 			return (DTRACE_HANDLE_OK);
2715 	} else {
2716 		if (r1 && r2)
2717 			return (DTRACE_HANDLE_OK);
2718 	}
2719 
2720 	return (begin->dtbgn_errhdlr(data, begin->dtbgn_errarg));
2721 }
2722 
2723 static int
2724 dt_consume_begin(dtrace_hdl_t *dtp, FILE *fp,
2725     dtrace_consume_probe_f *pf, dtrace_consume_rec_f *rf, void *arg)
2726 {
2727 	/*
2728 	 * There's this idea that the BEGIN probe should be processed before
2729 	 * everything else, and that the END probe should be processed after
2730 	 * anything else.  In the common case, this is pretty easy to deal
2731 	 * with.  However, a situation may arise where the BEGIN enabling and
2732 	 * END enabling are on the same CPU, and some enabling in the middle
2733 	 * occurred on a different CPU.  To deal with this (blech!) we need to
2734 	 * consume the BEGIN buffer up until the end of the BEGIN probe, and
2735 	 * then set it aside.  We will then process every other CPU, and then
2736 	 * we'll return to the BEGIN CPU and process the rest of the data
2737 	 * (which will inevitably include the END probe, if any).  Making this
2738 	 * even more complicated (!) is the library's ERROR enabling.  Because
2739 	 * this enabling is processed before we even get into the consume call
2740 	 * back, any ERROR firing would result in the library's ERROR enabling
2741 	 * being processed twice -- once in our first pass (for BEGIN probes),
2742 	 * and again in our second pass (for everything but BEGIN probes).  To
2743 	 * deal with this, we interpose on the ERROR handler to assure that we
2744 	 * only process ERROR enablings induced by BEGIN enablings in the
2745 	 * first pass, and that we only process ERROR enablings _not_ induced
2746 	 * by BEGIN enablings in the second pass.
2747 	 */
2748 
2749 	dt_begin_t begin;
2750 	processorid_t cpu = dtp->dt_beganon;
2751 	int rval, i;
2752 	static int max_ncpus;
2753 	dtrace_bufdesc_t *buf;
2754 
2755 	dtp->dt_beganon = -1;
2756 
2757 	if (dt_get_buf(dtp, cpu, &buf) != 0)
2758 		return (-1);
2759 	if (buf == NULL)
2760 		return (0);
2761 
2762 	if (!dtp->dt_stopped || buf->dtbd_cpu != dtp->dt_endedon) {
2763 		/*
2764 		 * This is the simple case.  We're either not stopped, or if
2765 		 * we are, we actually processed any END probes on another
2766 		 * CPU.  We can simply consume this buffer and return.
2767 		 */
2768 		rval = dt_consume_cpu(dtp, fp, cpu, buf, B_FALSE,
2769 		    pf, rf, arg);
2770 		dt_put_buf(dtp, buf);
2771 		return (rval);
2772 	}
2773 
2774 	begin.dtbgn_probefunc = pf;
2775 	begin.dtbgn_recfunc = rf;
2776 	begin.dtbgn_arg = arg;
2777 	begin.dtbgn_beginonly = 1;
2778 
2779 	/*
2780 	 * We need to interpose on the ERROR handler to be sure that we
2781 	 * only process ERRORs induced by BEGIN.
2782 	 */
2783 	begin.dtbgn_errhdlr = dtp->dt_errhdlr;
2784 	begin.dtbgn_errarg = dtp->dt_errarg;
2785 	dtp->dt_errhdlr = dt_consume_begin_error;
2786 	dtp->dt_errarg = &begin;
2787 
2788 	rval = dt_consume_cpu(dtp, fp, cpu, buf, B_FALSE,
2789 	    dt_consume_begin_probe, dt_consume_begin_record, &begin);
2790 
2791 	dtp->dt_errhdlr = begin.dtbgn_errhdlr;
2792 	dtp->dt_errarg = begin.dtbgn_errarg;
2793 
2794 	if (rval != 0) {
2795 		dt_put_buf(dtp, buf);
2796 		return (rval);
2797 	}
2798 
2799 	if (max_ncpus == 0)
2800 		max_ncpus = dt_sysconf(dtp, _SC_CPUID_MAX) + 1;
2801 
2802 	for (i = 0; i < max_ncpus; i++) {
2803 		dtrace_bufdesc_t *nbuf;
2804 		if (i == cpu)
2805 			continue;
2806 
2807 		if (dt_get_buf(dtp, i, &nbuf) != 0) {
2808 			dt_put_buf(dtp, buf);
2809 			return (-1);
2810 		}
2811 		if (nbuf == NULL)
2812 			continue;
2813 
2814 		rval = dt_consume_cpu(dtp, fp, i, nbuf, B_FALSE,
2815 		    pf, rf, arg);
2816 		dt_put_buf(dtp, nbuf);
2817 		if (rval != 0) {
2818 			dt_put_buf(dtp, buf);
2819 			return (rval);
2820 		}
2821 	}
2822 
2823 	/*
2824 	 * Okay -- we're done with the other buffers.  Now we want to
2825 	 * reconsume the first buffer -- but this time we're looking for
2826 	 * everything _but_ BEGIN.  And of course, in order to only consume
2827 	 * those ERRORs _not_ associated with BEGIN, we need to reinstall our
2828 	 * ERROR interposition function...
2829 	 */
2830 	begin.dtbgn_beginonly = 0;
2831 
2832 	assert(begin.dtbgn_errhdlr == dtp->dt_errhdlr);
2833 	assert(begin.dtbgn_errarg == dtp->dt_errarg);
2834 	dtp->dt_errhdlr = dt_consume_begin_error;
2835 	dtp->dt_errarg = &begin;
2836 
2837 	rval = dt_consume_cpu(dtp, fp, cpu, buf, B_FALSE,
2838 	    dt_consume_begin_probe, dt_consume_begin_record, &begin);
2839 
2840 	dtp->dt_errhdlr = begin.dtbgn_errhdlr;
2841 	dtp->dt_errarg = begin.dtbgn_errarg;
2842 
2843 	return (rval);
2844 }
2845 
2846 /* ARGSUSED */
2847 static uint64_t
2848 dt_buf_oldest(void *elem, void *arg)
2849 {
2850 	dtrace_bufdesc_t *buf = elem;
2851 	size_t offs = buf->dtbd_oldest;
2852 
2853 	while (offs < buf->dtbd_size) {
2854 		dtrace_rechdr_t *dtrh =
2855 		    /* LINTED - alignment */
2856 		    (dtrace_rechdr_t *)(buf->dtbd_data + offs);
2857 		if (dtrh->dtrh_epid == DTRACE_EPIDNONE) {
2858 			offs += sizeof (dtrace_epid_t);
2859 		} else {
2860 			return (DTRACE_RECORD_LOAD_TIMESTAMP(dtrh));
2861 		}
2862 	}
2863 
2864 	/* There are no records left; use the time the buffer was retrieved. */
2865 	return (buf->dtbd_timestamp);
2866 }
2867 
2868 int
2869 dtrace_consume(dtrace_hdl_t *dtp, FILE *fp,
2870     dtrace_consume_probe_f *pf, dtrace_consume_rec_f *rf, void *arg)
2871 {
2872 	dtrace_optval_t size;
2873 	static int max_ncpus;
2874 	int i, rval;
2875 	dtrace_optval_t interval = dtp->dt_options[DTRACEOPT_SWITCHRATE];
2876 	hrtime_t now = gethrtime();
2877 
2878 	if (dtp->dt_lastswitch != 0) {
2879 		if (now - dtp->dt_lastswitch < interval)
2880 			return (0);
2881 
2882 		dtp->dt_lastswitch += interval;
2883 	} else {
2884 		dtp->dt_lastswitch = now;
2885 	}
2886 
2887 	if (!dtp->dt_active)
2888 		return (dt_set_errno(dtp, EINVAL));
2889 
2890 	if (max_ncpus == 0)
2891 		max_ncpus = dt_sysconf(dtp, _SC_CPUID_MAX) + 1;
2892 
2893 	if (pf == NULL)
2894 		pf = (dtrace_consume_probe_f *)dt_nullprobe;
2895 
2896 	if (rf == NULL)
2897 		rf = (dtrace_consume_rec_f *)dt_nullrec;
2898 
2899 	if (dtp->dt_options[DTRACEOPT_TEMPORAL] == DTRACEOPT_UNSET) {
2900 		/*
2901 		 * The output will not be in the order it was traced.  Rather,
2902 		 * we will consume all of the data from each CPU's buffer in
2903 		 * turn.  We apply special handling for the records from BEGIN
2904 		 * and END probes so that they are consumed first and last,
2905 		 * respectively.
2906 		 *
2907 		 * If we have just begun, we want to first process the CPU that
2908 		 * executed the BEGIN probe (if any).
2909 		 */
2910 		if (dtp->dt_active && dtp->dt_beganon != -1 &&
2911 		    (rval = dt_consume_begin(dtp, fp, pf, rf, arg)) != 0)
2912 			return (rval);
2913 
2914 		for (i = 0; i < max_ncpus; i++) {
2915 			dtrace_bufdesc_t *buf;
2916 
2917 			/*
2918 			 * If we have stopped, we want to process the CPU on
2919 			 * which the END probe was processed only _after_ we
2920 			 * have processed everything else.
2921 			 */
2922 			if (dtp->dt_stopped && (i == dtp->dt_endedon))
2923 				continue;
2924 
2925 			if (dt_get_buf(dtp, i, &buf) != 0)
2926 				return (-1);
2927 			if (buf == NULL)
2928 				continue;
2929 
2930 			dtp->dt_flow = 0;
2931 			dtp->dt_indent = 0;
2932 			dtp->dt_prefix = NULL;
2933 			rval = dt_consume_cpu(dtp, fp, i,
2934 			    buf, B_FALSE, pf, rf, arg);
2935 			dt_put_buf(dtp, buf);
2936 			if (rval != 0)
2937 				return (rval);
2938 		}
2939 		if (dtp->dt_stopped) {
2940 			dtrace_bufdesc_t *buf;
2941 
2942 			if (dt_get_buf(dtp, dtp->dt_endedon, &buf) != 0)
2943 				return (-1);
2944 			if (buf == NULL)
2945 				return (0);
2946 
2947 			rval = dt_consume_cpu(dtp, fp, dtp->dt_endedon,
2948 			    buf, B_FALSE, pf, rf, arg);
2949 			dt_put_buf(dtp, buf);
2950 			return (rval);
2951 		}
2952 	} else {
2953 		/*
2954 		 * The output will be in the order it was traced (or for
2955 		 * speculations, when it was committed).  We retrieve a buffer
2956 		 * from each CPU and put it into a priority queue, which sorts
2957 		 * based on the first entry in the buffer.  This is sufficient
2958 		 * because entries within a buffer are already sorted.
2959 		 *
2960 		 * We then consume records one at a time, always consuming the
2961 		 * oldest record, as determined by the priority queue.  When
2962 		 * we reach the end of the time covered by these buffers,
2963 		 * we need to stop and retrieve more records on the next pass.
2964 		 * The kernel tells us the time covered by each buffer, in
2965 		 * dtbd_timestamp.  The first buffer's timestamp tells us the
2966 		 * time covered by all buffers, as subsequently retrieved
2967 		 * buffers will cover to a more recent time.
2968 		 */
2969 
2970 		uint64_t *drops = alloca(max_ncpus * sizeof (uint64_t));
2971 		uint64_t first_timestamp = 0;
2972 		uint_t cookie = 0;
2973 		dtrace_bufdesc_t *buf;
2974 
2975 		bzero(drops, max_ncpus * sizeof (uint64_t));
2976 
2977 		if (dtp->dt_bufq == NULL) {
2978 			dtp->dt_bufq = dt_pq_init(dtp, max_ncpus * 2,
2979 			    dt_buf_oldest, NULL);
2980 			if (dtp->dt_bufq == NULL) /* ENOMEM */
2981 				return (-1);
2982 		}
2983 
2984 		/* Retrieve data from each CPU. */
2985 		(void) dtrace_getopt(dtp, "bufsize", &size);
2986 		for (i = 0; i < max_ncpus; i++) {
2987 			dtrace_bufdesc_t *buf;
2988 
2989 			if (dt_get_buf(dtp, i, &buf) != 0)
2990 				return (-1);
2991 			if (buf != NULL) {
2992 				if (first_timestamp == 0)
2993 					first_timestamp = buf->dtbd_timestamp;
2994 				assert(buf->dtbd_timestamp >= first_timestamp);
2995 
2996 				dt_pq_insert(dtp->dt_bufq, buf);
2997 				drops[i] = buf->dtbd_drops;
2998 				buf->dtbd_drops = 0;
2999 			}
3000 		}
3001 
3002 		/* Consume records. */
3003 		for (;;) {
3004 			dtrace_bufdesc_t *buf = dt_pq_pop(dtp->dt_bufq);
3005 			uint64_t timestamp;
3006 
3007 			if (buf == NULL)
3008 				break;
3009 
3010 			timestamp = dt_buf_oldest(buf, dtp);
3011 			assert(timestamp >= dtp->dt_last_timestamp);
3012 			dtp->dt_last_timestamp = timestamp;
3013 
3014 			if (timestamp == buf->dtbd_timestamp) {
3015 				/*
3016 				 * We've reached the end of the time covered
3017 				 * by this buffer.  If this is the oldest
3018 				 * buffer, we must do another pass
3019 				 * to retrieve more data.
3020 				 */
3021 				dt_put_buf(dtp, buf);
3022 				if (timestamp == first_timestamp &&
3023 				    !dtp->dt_stopped)
3024 					break;
3025 				continue;
3026 			}
3027 
3028 			if ((rval = dt_consume_cpu(dtp, fp,
3029 			    buf->dtbd_cpu, buf, B_TRUE, pf, rf, arg)) != 0)
3030 				return (rval);
3031 			dt_pq_insert(dtp->dt_bufq, buf);
3032 		}
3033 
3034 		/* Consume drops. */
3035 		for (i = 0; i < max_ncpus; i++) {
3036 			if (drops[i] != 0) {
3037 				int error = dt_handle_cpudrop(dtp, i,
3038 				    DTRACEDROP_PRINCIPAL, drops[i]);
3039 				if (error != 0)
3040 					return (error);
3041 			}
3042 		}
3043 
3044 		/*
3045 		 * Reduce memory usage by re-allocating smaller buffers
3046 		 * for the "remnants".
3047 		 */
3048 		while (buf = dt_pq_walk(dtp->dt_bufq, &cookie))
3049 			dt_realloc_buf(dtp, buf, buf->dtbd_size);
3050 	}
3051 
3052 	return (0);
3053 }
3054