1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License, Version 1.0 only 6 * (the "License"). You may not use this file except in compliance 7 * with the License. 8 * 9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 10 * or http://www.opensolaris.org/os/licensing. 11 * See the License for the specific language governing permissions 12 * and limitations under the License. 13 * 14 * When distributing Covered Code, include this CDDL HEADER in each 15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 16 * If applicable, add the following below this CDDL HEADER, with the 17 * fields enclosed by brackets "[]" replaced with your own identifying 18 * information: Portions Copyright [yyyy] [name of copyright owner] 19 * 20 * CDDL HEADER END 21 */ 22 /* 23 * Copyright (c) 1988 AT&T 24 * All Rights Reserved 25 * 26 * 27 * Copyright 2005 Sun Microsystems, Inc. All rights reserved. 28 * Use is subject to license terms. 29 */ 30 #pragma ident "%Z%%M% %I% %E% SMI" 31 32 /* 33 * Utility routines for run-time linker. some are duplicated here from libc 34 * (with different names) to avoid name space collisions. 35 */ 36 #include "_synonyms.h" 37 #include <stdio.h> 38 #include <sys/types.h> 39 #include <sys/mman.h> 40 #include <sys/lwp.h> 41 #include <sys/debug.h> 42 #include <stdarg.h> 43 #include <fcntl.h> 44 #include <string.h> 45 #include <ctype.h> 46 #include <dlfcn.h> 47 #include <unistd.h> 48 #include <stdlib.h> 49 #include <signal.h> 50 #include <sys/auxv.h> 51 #include "_rtld.h" 52 #include "_audit.h" 53 #include "conv.h" 54 #include "msg.h" 55 #include "debug.h" 56 57 static int ld_flags_env(const char *, Word *, Word *, uint_t, int); 58 59 /* 60 * All error messages go through eprintf(). During process initialization these 61 * messages should be directed to the standard error, however once control has 62 * been passed to the applications code these messages should be stored in an 63 * internal buffer for use with dlerror(). Note, fatal error conditions that 64 * may occur while running the application will still cause a standard error 65 * message, see rtldexit() in this file for details. 66 * The `application' flag serves to indicate the transition between process 67 * initialization and when the applications code is running. 68 */ 69 70 /* 71 * Null function used as place where a debugger can set a breakpoint. 72 */ 73 void 74 rtld_db_dlactivity(void) 75 { 76 DBG_CALL(Dbg_util_dbnotify(r_debug.rtd_rdebug.r_rdevent, 77 r_debug.rtd_rdebug.r_state)); 78 } 79 80 /* 81 * Null function used as place where debugger can set a pre .init 82 * processing breakpoint. 83 */ 84 void 85 rtld_db_preinit(void) 86 { 87 DBG_CALL(Dbg_util_dbnotify(r_debug.rtd_rdebug.r_rdevent, 88 r_debug.rtd_rdebug.r_state)); 89 } 90 91 92 /* 93 * Null function used as place where debugger can set a post .init 94 * processing breakpoint. 95 */ 96 void 97 rtld_db_postinit(void) 98 { 99 DBG_CALL(Dbg_util_dbnotify(r_debug.rtd_rdebug.r_rdevent, 100 r_debug.rtd_rdebug.r_state)); 101 } 102 103 104 /* 105 * Debugger Event Notification 106 * 107 * This function centralizes all debugger event notification (ala rtld_db). 108 * 109 * There's a simple intent, focused on insuring the primary link-map control 110 * list (or each link-map list) is consistent, and the indication that objects 111 * have been added or deleted from this list. Although an RD_ADD and RD_DELETE 112 * event are posted for each of these, most debuggers don't care, as their 113 * view is that these events simply convey an "inconsistent" state. 114 * 115 * We also don't want to trigger multiple RD_ADD/RD_DELETE events any time we 116 * enter ld.so.1. 117 * 118 * With auditors, we may be in the process of relocating a collection of 119 * objects, and will leave() ld.so.1 to call the auditor. At this point we 120 * must indicate an RD_CONSISTENT event, but librtld_db will not report an 121 * object to the debuggers until relocation processing has been completed on it. 122 * To allow for the collection of these objects that are pending relocation, an 123 * RD_ADD event is set after completing a series of relocations on the primary 124 * link-map control list. 125 * 126 * Set an RD_ADD/RD_DELETE event and indicate that an RD_CONSISTENT event is 127 * required later (LML_FLG_DBNOTIF): 128 * 129 * i the first time we add or delete an object to the primary link-map 130 * control list. 131 * ii the first time we move a secondary link-map control list to the primary 132 * link-map control list (effectively, this is like adding a group of 133 * objects to the primary link-map control list). 134 * iii the first time we relocate a series of objects on the primary link-map 135 * control list. 136 * 137 * Set an RD_CONSISTENT event when it is required (LML_FLG_DBNOTIF is set) and 138 * 139 * i each time we leave the runtime linker. 140 */ 141 void 142 rd_event(Lm_list *lml, rd_event_e event, r_state_e state) 143 { 144 void (*fptr)(); 145 146 switch (event) { 147 case RD_PREINIT: 148 fptr = rtld_db_preinit; 149 break; 150 case RD_POSTINIT: 151 fptr = rtld_db_postinit; 152 break; 153 case RD_DLACTIVITY: 154 switch (state) { 155 case RT_CONSISTENT: 156 lml->lm_flags &= ~LML_FLG_DBNOTIF; 157 158 /* 159 * Do we need to send a notification? 160 */ 161 if ((rtld_flags & RT_FL_DBNOTIF) == 0) 162 return; 163 rtld_flags &= ~RT_FL_DBNOTIF; 164 break; 165 case RT_ADD: 166 case RT_DELETE: 167 lml->lm_flags |= LML_FLG_DBNOTIF; 168 169 /* 170 * If we are already in an inconsistent state, no 171 * notification is required. 172 */ 173 if (rtld_flags & RT_FL_DBNOTIF) 174 return; 175 rtld_flags |= RT_FL_DBNOTIF; 176 break; 177 }; 178 fptr = rtld_db_dlactivity; 179 break; 180 default: 181 /* 182 * RD_NONE - do nothing 183 */ 184 break; 185 }; 186 187 /* 188 * Set event state and call 'notification' function. 189 * 190 * The debugging clients have previously been told about these 191 * notification functions and have set breakpoints on them if they 192 * are interested in the notification. 193 */ 194 r_debug.rtd_rdebug.r_state = state; 195 r_debug.rtd_rdebug.r_rdevent = event; 196 fptr(); 197 r_debug.rtd_rdebug.r_rdevent = RD_NONE; 198 } 199 200 #if defined(sparc) || defined(i386) || defined(__amd64) 201 /* 202 * Stack Cleanup. 203 * 204 * This function is invoked to 'remove' arguments that were passed in on the 205 * stack. This is most likely if ld.so.1 was invoked directly. In that case 206 * we want to remove ld.so.1 as well as it's arguments from the argv[] array. 207 * Which means we then need to slide everything above it on the stack down 208 * accordingly. 209 * 210 * While the stack layout is platform specific - it just so happens that x86, 211 * sparc, & sparcv9 all share the following initial stack layout. 212 * 213 * !_______________________! high addresses 214 * ! ! 215 * ! Information ! 216 * ! Block ! 217 * ! (size varies) ! 218 * !_______________________! 219 * ! 0 word ! 220 * !_______________________! 221 * ! Auxiliary ! 222 * ! vector ! 223 * ! 2 word entries ! 224 * ! ! 225 * !_______________________! 226 * ! 0 word ! 227 * !_______________________! 228 * ! Environment ! 229 * ! pointers ! 230 * ! ... ! 231 * ! (one word each) ! 232 * !_______________________! 233 * ! 0 word ! 234 * !_______________________! 235 * ! Argument ! low addresses 236 * ! pointers ! 237 * ! Argc words ! 238 * !_______________________! 239 * ! ! 240 * ! Argc ! 241 * !_______________________! 242 * ! ... ! 243 * 244 */ 245 static void 246 stack_cleanup(char **argv, int rmcnt) 247 { 248 int i; 249 long *argc; 250 char **_argv, **envp, **_envp; 251 auxv_t *auxv, *_auxv; 252 253 /* 254 * Slide ARGV[] and update argc. 255 */ 256 _argv = argv; 257 argv = &argv[rmcnt]; 258 for (i = 0; argv[i]; i++) { 259 _argv[i] = argv[i]; 260 } 261 _argv[i] = argv[i]; 262 argc = (long *)((uintptr_t)_argv - sizeof (long *)); 263 *argc -= rmcnt; 264 265 /* 266 * Slide ENVP[]. 267 */ 268 envp = &argv[i + 1]; 269 _envp = &_argv[i + 1]; 270 for (i = 0; envp[i]; i++) { 271 _envp[i] = envp[i]; 272 } 273 _envp[i] = envp[i]; 274 275 /* 276 * Slide AUXV[]. 277 */ 278 auxv = (auxv_t *)&envp[i + 1]; 279 _auxv = (auxv_t *)&_envp[i + 1]; 280 for (i = 0; auxv[i].a_type != AT_NULL; i++) { 281 _auxv[i] = auxv[i]; 282 } 283 _auxv[i] = auxv[i]; 284 } 285 #else 286 /* 287 * Verify that the above routine is appropriate for any new platforms. 288 */ 289 #error unsupported architecture! 290 #endif 291 292 /* 293 * The only command line argument recognized is -e, followed by an rtld 294 * environment variable. 295 */ 296 int 297 rtld_getopt(char **argv, Word *lmflags, Word *lmtflags, int aout) 298 { 299 int i, errflg = 0; 300 301 for (i = 1; argv[i]; i++) { 302 char *str; 303 304 if (argv[i][0] != '-') 305 break; 306 307 if (argv[i][1] == '\0') { 308 i++; 309 break; 310 } 311 312 if (argv[i][1] != 'e') { 313 errflg++; 314 break; 315 } 316 317 if (argv[i][2] == '\0') { 318 i++; 319 if (argv[i] == NULL) { 320 errflg++; 321 break; 322 } 323 str = argv[i]; 324 } else 325 str = &argv[i][2]; 326 327 if (ld_flags_env(str, lmflags, lmtflags, 0, aout) == 1) 328 return (1); 329 } 330 331 if (errflg || (argv[i] == 0)) { 332 eprintf(ERR_FATAL, MSG_INTL(MSG_USG_BADOPT)); 333 return (1); 334 } 335 336 /* 337 * Having gotten the arguments, clean ourselves off of the stack. 338 */ 339 stack_cleanup(argv, i); 340 return (0); 341 } 342 343 344 /* 345 * Compare function for FullpathNode AVL tree. 346 */ 347 static int 348 fpavl_compare(const void * n1, const void * n2) 349 { 350 uint_t hash1, hash2; 351 const char *st1, *st2; 352 int rc; 353 354 hash1 = ((FullpathNode *)n1)->fpn_hash; 355 hash2 = ((FullpathNode *)n2)->fpn_hash; 356 357 if (hash1 > hash2) 358 return (1); 359 if (hash1 < hash2) 360 return (-1); 361 362 st1 = ((FullpathNode *)n1)->fpn_name; 363 st2 = ((FullpathNode *)n2)->fpn_name; 364 365 rc = strcmp(st1, st2); 366 if (rc > 0) 367 return (1); 368 if (rc < 0) 369 return (-1); 370 return (0); 371 } 372 373 374 /* 375 * Determine if a given pathname is already been loaded in the AVL tree. 376 * If the pathname does not exist in the AVL tree, the next insertion point 377 * is deposited in "where". This value can be used by fpavl_insert() to 378 * expedite the insertion. 379 */ 380 Rt_map * 381 fpavl_loaded(Lm_list *lml, const char *name, avl_index_t *where) 382 { 383 FullpathNode fpn, *fpnp; 384 avl_tree_t *avlt; 385 386 /* 387 * Create the avl tree if required. 388 */ 389 if ((avlt = lml->lm_fpavl) == NULL) { 390 if ((avlt = calloc(sizeof (avl_tree_t), 1)) == 0) 391 return (0); 392 avl_create(avlt, fpavl_compare, sizeof (FullpathNode), 393 SGSOFFSETOF(FullpathNode, fpn_avl)); 394 lml->lm_fpavl = avlt; 395 } 396 397 fpn.fpn_name = name; 398 fpn.fpn_hash = sgs_str_hash(name); 399 400 if ((fpnp = avl_find(lml->lm_fpavl, &fpn, where)) == NULL) 401 return (NULL); 402 403 return (fpnp->fpn_lmp); 404 } 405 406 407 /* 408 * Insert a the name into the FullpathNode AVL tree for the link-map list. 409 * The objects NAME() is the path that would have been searched for, and is 410 * therefore the name to associate with any "where" value. If the object has 411 * a different PATHNAME(), perhaps because it has resolved to a different file 412 * (see fullpath), then this name is recorded also. See load_file(). 413 */ 414 int 415 fpavl_insert(Lm_list *lml, Rt_map *lmp, const char *name, avl_index_t where) 416 { 417 FullpathNode *fpnp; 418 419 if (where == 0) { 420 /* LINTED */ 421 Rt_map *_lmp = fpavl_loaded(lml, name, &where); 422 423 /* 424 * We better not get a hit now, we do not want duplicates in 425 * the tree. 426 */ 427 ASSERT(_lmp == 0); 428 } 429 430 /* 431 * Insert new node in tree 432 */ 433 if ((fpnp = calloc(sizeof (FullpathNode), 1)) == 0) 434 return (0); 435 436 fpnp->fpn_name = name; 437 fpnp->fpn_hash = sgs_str_hash(name); 438 fpnp->fpn_lmp = lmp; 439 440 if (alist_append(&FPNODE(lmp), &fpnp, sizeof (FullpathNode *), 441 AL_CNT_FPNODE) == 0) { 442 free(fpnp); 443 return (0); 444 } 445 446 ASSERT(lml->lm_fpavl != NULL); 447 avl_insert(lml->lm_fpavl, fpnp, where); 448 return (1); 449 } 450 451 /* 452 * Remove a object from the Fullpath AVL tree. Note, this is called *before* 453 * the objects link-map is torn down (remove_so), which is where any NAME() and 454 * PATHNAME() strings will be deallocated. 455 */ 456 void 457 fpavl_remove(Rt_map *lmp) 458 { 459 FullpathNode **fpnpp; 460 Aliste off; 461 462 for (ALIST_TRAVERSE(FPNODE(lmp), off, fpnpp)) { 463 FullpathNode *fpnp = *fpnpp; 464 465 avl_remove(LIST(lmp)->lm_fpavl, fpnp); 466 free(fpnp); 467 } 468 free(FPNODE(lmp)); 469 FPNODE(lmp) = 0; 470 } 471 472 473 /* 474 * Prior to calling an object, either via a .plt or through dlsym(), make sure 475 * its .init has fired. Through topological sorting, ld.so.1 attempts to fire 476 * init's in the correct order, however, this order is typically based on needed 477 * dependencies and non-lazy relocation bindings. Lazy relocations (.plts) can 478 * still occur and result in bindings that were not captured during topological 479 * sorting. This routine compensates for this lack of binding information, and 480 * provides for dynamic .init firing. 481 */ 482 void 483 is_dep_init(Rt_map * dlmp, Rt_map * clmp) 484 { 485 Rt_map ** tobj; 486 487 /* 488 * If the caller is an auditor, and the destination isn't, then don't 489 * run any .inits (see comments in load_completion()). 490 */ 491 if ((LIST(clmp)->lm_flags & LML_FLG_NOAUDIT) && 492 (LIST(clmp) != LIST(dlmp))) 493 return; 494 495 if ((dlmp == clmp) || (rtld_flags & (RT_FL_BREADTH | RT_FL_INITFIRST))) 496 return; 497 498 if ((FLAGS(dlmp) & (FLG_RT_RELOCED | FLG_RT_INITDONE)) == 499 (FLG_RT_RELOCED | FLG_RT_INITDONE)) 500 return; 501 502 if ((FLAGS(dlmp) & (FLG_RT_RELOCED | FLG_RT_INITCALL)) == 503 (FLG_RT_RELOCED | FLG_RT_INITCALL)) { 504 DBG_CALL(Dbg_util_no_init(NAME(dlmp))); 505 return; 506 } 507 508 if ((tobj = calloc(2, sizeof (Rt_map *))) != NULL) { 509 tobj[0] = dlmp; 510 call_init(tobj, DBG_INIT_DYN); 511 } 512 } 513 514 /* 515 * In a threaded environment insure the thread responsible for loading an object 516 * has completed .init processing for that object before any new thread is 517 * allowed to access the object. This check is only valid with libthread 518 * TI_VERSION 2, where ld.so.1 implements locking through low level mutexes. 519 * 520 * When a new link-map is created, the thread that causes it to be loaded is 521 * identified by THREADID(dlmp). Compare this with the current thread to 522 * determine if it must be blocked. 523 * 524 * NOTE, there are a number of instances (typically only for .plt processing) 525 * where we must skip this test: 526 * 527 * . any thread id of 0 - threads that call thr_exit() may be in this state 528 * thus we can't deduce what tid they used to be. Also some of the 529 * lib/libthread worker threads have this id and must bind (to themselves 530 * or libc) for libthread to function. 531 * 532 * . libthread itself binds to libc, and as libthread is INITFIRST 533 * libc's .init can't have fired yet. Luckly libc's .init is not required 534 * by libthreads binding. 535 * 536 * . if the caller is an auditor, and the destination isn't, then don't 537 * block (see comments in load_completion()). 538 */ 539 void 540 is_dep_ready(Rt_map * dlmp, Rt_map * clmp, int what) 541 { 542 thread_t tid; 543 544 if ((LIST(clmp)->lm_flags & LML_FLG_NOAUDIT) && 545 (LIST(clmp) != LIST(dlmp))) 546 return; 547 548 if ((rtld_flags & RT_FL_CONCUR) && 549 ((FLAGS(dlmp) & FLG_RT_INITDONE) == 0) && 550 ((FLAGS(clmp) & FLG_RT_INITFRST) == 0) && 551 ((tid = rt_thr_self()) != 0) && (THREADID(dlmp) != tid)) { 552 while ((FLAGS(dlmp) & FLG_RT_INITDONE) == 0) { 553 FLAGS1(dlmp) |= FL1_RT_INITWAIT; 554 DBG_CALL(Dbg_util_wait(what, NAME(clmp), NAME(dlmp))); 555 (void) rt_cond_wait(CONDVAR(dlmp), &rtldlock); 556 } 557 } 558 } 559 560 /* 561 * Execute .{preinit|init|fini}array sections 562 */ 563 void 564 call_array(Addr * array, uint_t arraysz, Rt_map * lmp, uint_t shtype) 565 { 566 int start, stop, incr, i; 567 uint_t arraycnt = (uint_t)(arraysz / sizeof (Addr)); 568 569 if (array == NULL) 570 return; 571 572 /* 573 * initarray & preinitarray are walked from beginning to end - while 574 * finiarray is walked from end to beginning. 575 */ 576 if (shtype == SHT_FINI_ARRAY) { 577 start = arraycnt - 1; 578 stop = incr = -1; 579 } else { 580 start = 0; 581 stop = arraycnt; 582 incr = 1; 583 } 584 585 /* 586 * Call the .*array[] entries 587 */ 588 for (i = start; i != stop; i += incr) { 589 void (* fptr)(); 590 591 DBG_CALL(Dbg_util_call_array(NAME(lmp), (void *)array[i], i, 592 shtype)); 593 594 fptr = (void(*)())array[i]; 595 leave(LIST(lmp)); 596 (*fptr)(); 597 (void) enter(); 598 } 599 } 600 601 602 /* 603 * Execute any .init sections. These are passed to us in an lmp array which 604 * (by default) will have been sorted. 605 */ 606 void 607 call_init(Rt_map ** tobj, int flag) 608 { 609 void (* iptr)(); 610 Rt_map ** _tobj, ** _nobj; 611 static List pending = { NULL, NULL }; 612 613 /* 614 * If we're in the middle of an INITFIRST, this must complete before 615 * any new init's are fired. In this case add the object list to the 616 * pending queue and return. We'll pick up the queue after any 617 * INITFIRST objects have their init's fired. 618 */ 619 if (rtld_flags & RT_FL_INITFIRST) { 620 (void) list_append(&pending, tobj); 621 return; 622 } 623 624 /* 625 * If a 'thread initialization' is pending - call it now before any 626 * .init code is fired. Also clear the thrinit() to mark it as done. 627 * Note, this is called for each link-map list, which is what libc 628 * expects. 629 */ 630 if (thrinit) { 631 void (*_thrinit)() = thrinit; 632 633 thrinit = 0; 634 leave((Lm_list *)0); 635 _thrinit(); 636 (void) enter(); 637 } 638 639 /* 640 * Traverse the tobj array firing each objects init. 641 */ 642 for (_tobj = _nobj = tobj, _nobj++; *_tobj != NULL; _tobj++, _nobj++) { 643 Rt_map * lmp = *_tobj; 644 645 if (FLAGS(lmp) & FLG_RT_INITCALL) 646 continue; 647 648 FLAGS(lmp) |= FLG_RT_INITCALL; 649 650 /* 651 * Establish an initfirst state if necessary - no other inits 652 * will be fired (because of addition relocation bindings) when 653 * in this state. 654 */ 655 if (FLAGS(lmp) & FLG_RT_INITFRST) 656 rtld_flags |= RT_FL_INITFIRST; 657 658 /* 659 * It's the responsibility of MAIN(crt0) to call it's 660 * _init section. 661 */ 662 if ((FLAGS(lmp) & FLG_RT_ISMAIN) == 0) 663 iptr = INIT(lmp); 664 else 665 iptr = 0; 666 667 if (INITARRAY(lmp) || iptr) { 668 Aliste off; 669 Bnd_desc ** bdpp; 670 671 /* 672 * Make sure that all dependencies that have been 673 * relocated to are initialized before this objects 674 * .init is executed. This insures that a dependency 675 * on an external item that must first be initialized 676 * by its associated object is satisfied. 677 */ 678 for (ALIST_TRAVERSE(DEPENDS(lmp), off, bdpp)) { 679 Bnd_desc * bdp = *bdpp; 680 681 if ((bdp->b_flags & BND_REFER) == 0) 682 continue; 683 is_dep_ready(bdp->b_depend, lmp, DBG_WAIT_INIT); 684 } 685 DBG_CALL(Dbg_util_call_init(NAME(lmp), flag)); 686 } 687 688 if (iptr) { 689 leave(LIST(lmp)); 690 (*iptr)(); 691 (void) enter(); 692 } 693 694 call_array(INITARRAY(lmp), INITARRAYSZ(lmp), lmp, 695 SHT_INIT_ARRAY); 696 697 if (INITARRAY(lmp) || iptr) 698 DBG_CALL(Dbg_util_call_init(NAME(lmp), DBG_INIT_DONE)); 699 700 /* 701 * Set the initdone flag regardless of whether this object 702 * actually contains an .init section. This flag prevents us 703 * from processing this section again for an .init and also 704 * signifies that a .fini must be called should it exist. 705 * Clear the sort field for use in later .fini processing. 706 */ 707 FLAGS(lmp) |= FLG_RT_INITDONE; 708 SORTVAL(lmp) = 0; 709 710 /* 711 * Wake anyone up who might be waiting on this .init. 712 */ 713 if (FLAGS1(lmp) & FL1_RT_INITWAIT) { 714 DBG_CALL(Dbg_util_broadcast(NAME(lmp))); 715 (void) rt_cond_broadcast(CONDVAR(lmp)); 716 FLAGS1(lmp) &= ~FL1_RT_INITWAIT; 717 } 718 719 /* 720 * Set the initdone flag regardless of whether this object 721 * actually contains an .init section. This flag prevents us 722 * from processing this section again for an .init and also 723 * signifies that a .fini must be called should it exist. 724 * Clear the sort field for use in later .fini processing. 725 */ 726 FLAGS(lmp) |= FLG_RT_INITDONE; 727 SORTVAL(lmp) = 0; 728 729 /* 730 * If we're firing an INITFIRST object, and other objects must 731 * be fired which are not INITFIRST, make sure we grab any 732 * pending objects that might have been delayed as this 733 * INITFIRST was processed. 734 */ 735 if ((rtld_flags & RT_FL_INITFIRST) && 736 ((*_nobj == NULL) || !(FLAGS(*_nobj) & FLG_RT_INITFRST))) { 737 Listnode * lnp; 738 Rt_map ** pobj; 739 740 rtld_flags &= ~RT_FL_INITFIRST; 741 742 while ((lnp = pending.head) != NULL) { 743 if ((pending.head = lnp->next) == NULL) 744 pending.tail = NULL; 745 pobj = lnp->data; 746 free(lnp); 747 748 call_init(pobj, DBG_INIT_PEND); 749 } 750 } 751 } 752 free(tobj); 753 } 754 755 /* 756 * Function called by atexit(3C). Calls all .fini sections related with the 757 * mains dependent shared libraries in the order in which the shared libraries 758 * have been loaded. Skip any .fini defined in the main executable, as this 759 * will be called by crt0 (main was never marked as initdone). 760 */ 761 void 762 call_fini(Lm_list * lml, Rt_map ** tobj) 763 { 764 Rt_map ** _tobj; 765 void (* fptr)(); 766 767 for (_tobj = tobj; *_tobj != NULL; _tobj++) { 768 Rt_map * clmp, * lmp = *_tobj; 769 Aliste off; 770 Bnd_desc ** bdpp; 771 772 /* 773 * If concurrency checking isn't enabled only fire .fini if 774 * .init has completed. We collect all .fini sections of 775 * objects that had their .init collected, but that doesn't 776 * mean at the time that the .init had completed. 777 */ 778 if ((rtld_flags & RT_FL_CONCUR) || 779 (FLAGS(lmp) & FLG_RT_INITDONE)) { 780 /* 781 * It's the responsibility of MAIN(crt0) to call it's 782 * _fini section. 783 */ 784 if ((FLAGS(lmp) & FLG_RT_ISMAIN) == 0) 785 fptr = FINI(lmp); 786 else 787 fptr = 0; 788 789 if (FINIARRAY(lmp) || fptr) { 790 /* 791 * If concurrency checking is enabled make sure 792 * this object's .init is completed before 793 * calling any .fini. 794 */ 795 is_dep_ready(lmp, lmp, DBG_WAIT_FINI); 796 DBG_CALL(Dbg_util_call_fini(NAME(lmp))); 797 } 798 799 call_array(FINIARRAY(lmp), FINIARRAYSZ(lmp), 800 lmp, SHT_FINI_ARRAY); 801 802 if (fptr) { 803 leave(LIST(lmp)); 804 (*fptr)(); 805 (void) enter(); 806 } 807 } 808 809 /* 810 * Audit `close' operations at this point. The library has 811 * exercised its last instructions (regardless of whether it 812 * will be unmapped or not). 813 * 814 * First call any global auditing. 815 */ 816 if (lml->lm_tflags & LML_TFLG_AUD_OBJCLOSE) 817 _audit_objclose(&(auditors->ad_list), lmp); 818 819 /* 820 * Finally determine whether this object has local auditing 821 * requirements by inspecting itself and then its dependencies. 822 */ 823 if ((lml->lm_flags & LML_FLG_LOCAUDIT) == 0) 824 continue; 825 826 if (FLAGS1(lmp) & LML_TFLG_AUD_OBJCLOSE) 827 _audit_objclose(&(AUDITORS(lmp)->ad_list), lmp); 828 829 for (ALIST_TRAVERSE(CALLERS(lmp), off, bdpp)) { 830 Bnd_desc * bdp = *bdpp; 831 832 clmp = bdp->b_caller; 833 834 if (FLAGS1(clmp) & LML_TFLG_AUD_OBJCLOSE) { 835 _audit_objclose(&(AUDITORS(clmp)->ad_list), lmp); 836 break; 837 } 838 } 839 } 840 DBG_CALL(Dbg_bind_plt_summary(M_MACH, pltcnt21d, pltcnt24d, 841 pltcntu32, pltcntu44, pltcntfull, pltcntfar)); 842 843 free(tobj); 844 } 845 846 void 847 atexit_fini() 848 { 849 Rt_map ** tobj, * lmp; 850 Lm_list * lml; 851 Listnode * lnp; 852 853 (void) enter(); 854 855 rtld_flags |= RT_FL_ATEXIT; 856 857 lml = &lml_main; 858 lmp = (Rt_map *)lml->lm_head; 859 860 /* 861 * Display any objects that haven't been referenced so far. 862 */ 863 unused(lml); 864 865 /* 866 * Reverse topologically sort the main link-map for .fini execution. 867 */ 868 if (((tobj = tsort(lmp, lml->lm_obj, RT_SORT_FWD)) != 0) && 869 (tobj != (Rt_map **)S_ERROR)) 870 call_fini(lml, tobj); 871 872 /* 873 * Add an explicit close to main and ld.so.1 (as their fini doesn't get 874 * processed this auditing will not get caught in call_fini()). This is 875 * the reverse of the explicit calls to audit_objopen() made in setup(). 876 */ 877 if ((lml->lm_tflags | FLAGS1(lmp)) & LML_TFLG_AUD_MASK) { 878 audit_objclose(lmp, (Rt_map *)lml_rtld.lm_head); 879 /* 880 * If the executable has a fini-array, then it was captured 881 * as part of the call_fini() processing. 882 */ 883 if (FINIARRAY(lmp) == 0) 884 audit_objclose(lmp, lmp); 885 } 886 887 /* 888 * Now that all .fini code has been run, see what unreferenced objects 889 * remain. Any difference between this and the above unused() would 890 * indicate an object is only being used for .fini processing, which 891 * might be fine, but might also indicate an overhead whose removal 892 * would be worth considering. 893 */ 894 unused(lml); 895 896 /* 897 * Traverse any alternative link-map lists. 898 */ 899 for (LIST_TRAVERSE(&dynlm_list, lnp, lml)) { 900 if (lml->lm_flags & (LML_FLG_BASELM | LML_FLG_RTLDLM)) 901 continue; 902 903 if ((lmp = (Rt_map *)lml->lm_head) == 0) 904 continue; 905 906 /* 907 * Reverse topologically sort the link-map for .fini execution. 908 */ 909 if (((tobj = tsort(lmp, lml->lm_obj, RT_SORT_FWD)) != 0) && 910 (tobj != (Rt_map **)S_ERROR)) 911 call_fini(lml, tobj); 912 913 unused(lml); 914 } 915 916 /* 917 * Finally reverse topologically sort the runtime linkers link-map for 918 * .fini execution. 919 */ 920 lml = &lml_rtld; 921 lmp = (Rt_map *)lml->lm_head; 922 923 dbg_mask = 0; 924 925 if (((tobj = tsort(lmp, lml->lm_obj, RT_SORT_FWD)) != 0) && 926 (tobj != (Rt_map **)S_ERROR)) 927 call_fini(lml, tobj); 928 929 leave(&lml_main); 930 } 931 932 933 /* 934 * This routine is called to complete any runtime linker activity which may have 935 * resulted in objects being loaded. This is called from all user entry points 936 * and from any internal dl*() requests. 937 */ 938 void 939 load_completion(Rt_map * nlmp, Rt_map * clmp) 940 { 941 Rt_map **tobj = 0; 942 943 /* 944 * Establish any .init processing. Note, in a world of lazy loading, 945 * objects may have been loaded regardless of whether the users request 946 * was fulfilled (i.e., a dlsym() request may have failed to find a 947 * symbol but objects might have been loaded during its search). Thus, 948 * any tsorting starts from the nlmp (new link-maps) pointer and not 949 * necessarily from the link-map that may have satisfied the request. 950 * 951 * Note, if the caller is an auditor, and the destination isn't, then 952 * don't run any .inits. This scenario is typical of an auditor trying 953 * to inspect another link-map for symbols. Allow this inspection 954 * without running any code on the inspected link-map, as running this 955 * code may reenter the auditor, who has not yet finished their own 956 * initialization. 957 */ 958 if (nlmp && ((clmp == 0) || 959 ((LIST(clmp)->lm_flags & LML_FLG_NOAUDIT) == 0) || 960 (LIST(clmp) == LIST(nlmp)))) { 961 if ((tobj = tsort(nlmp, LIST(nlmp)->lm_init, RT_SORT_REV)) == 962 (Rt_map **)S_ERROR) 963 tobj = 0; 964 } 965 966 /* 967 * Indicate the link-map list is consistent. 968 */ 969 if (clmp && 970 ((LIST(clmp)->lm_tflags | FLAGS1(clmp)) & LML_TFLG_AUD_ACTIVITY)) 971 audit_activity(clmp, LA_ACT_CONSISTENT); 972 973 /* 974 * Fire any .init's. 975 */ 976 if (tobj) 977 call_init(tobj, DBG_INIT_SORT); 978 } 979 980 /* 981 * Append an item to the specified list, and return a pointer to the list 982 * node created. 983 */ 984 Listnode * 985 list_append(List *lst, const void *item) 986 { 987 Listnode * _lnp; 988 989 if ((_lnp = malloc(sizeof (Listnode))) == 0) 990 return (0); 991 992 _lnp->data = (void *)item; 993 _lnp->next = NULL; 994 995 if (lst->head == NULL) 996 lst->tail = lst->head = _lnp; 997 else { 998 lst->tail->next = _lnp; 999 lst->tail = lst->tail->next; 1000 } 1001 return (_lnp); 1002 } 1003 1004 1005 /* 1006 * Add an item after specified listnode, and return a pointer to the list 1007 * node created. 1008 */ 1009 Listnode * 1010 list_insert(List *lst, const void *item, Listnode *lnp) 1011 { 1012 Listnode * _lnp; 1013 1014 if ((_lnp = malloc(sizeof (Listnode))) == (Listnode *)0) 1015 return (0); 1016 1017 _lnp->data = (void *)item; 1018 _lnp->next = lnp->next; 1019 if (_lnp->next == NULL) 1020 lst->tail = _lnp; 1021 lnp->next = _lnp; 1022 return (_lnp); 1023 } 1024 1025 /* 1026 * Prepend an item to the specified list, and return a pointer to the 1027 * list node created. 1028 */ 1029 Listnode * 1030 list_prepend(List * lst, const void * item) 1031 { 1032 Listnode * _lnp; 1033 1034 if ((_lnp = malloc(sizeof (Listnode))) == (Listnode *)0) 1035 return (0); 1036 1037 _lnp->data = (void *)item; 1038 1039 if (lst->head == NULL) { 1040 _lnp->next = NULL; 1041 lst->tail = lst->head = _lnp; 1042 } else { 1043 _lnp->next = lst->head; 1044 lst->head = _lnp; 1045 } 1046 return (_lnp); 1047 } 1048 1049 1050 /* 1051 * Delete a 'listnode' from a list. 1052 */ 1053 void 1054 list_delete(List * lst, void * item) 1055 { 1056 Listnode * clnp, * plnp; 1057 1058 for (plnp = NULL, clnp = lst->head; clnp; clnp = clnp->next) { 1059 if (item == clnp->data) 1060 break; 1061 plnp = clnp; 1062 } 1063 1064 if (clnp == 0) 1065 return; 1066 1067 if (lst->head == clnp) 1068 lst->head = clnp->next; 1069 if (lst->tail == clnp) 1070 lst->tail = plnp; 1071 1072 if (plnp) 1073 plnp->next = clnp->next; 1074 1075 free(clnp); 1076 } 1077 1078 /* 1079 * Append an item to the specified link map control list. 1080 */ 1081 void 1082 lm_append(Lm_list *lml, Aliste lmco, Rt_map *lmp) 1083 { 1084 Lm_cntl *lmc; 1085 int add = 1; 1086 1087 /* 1088 * Indicate that this link-map list has a new object. 1089 */ 1090 (lml->lm_obj)++; 1091 1092 /* 1093 * Alert the debuggers that we are about to mess with the main link-map 1094 * control list. 1095 */ 1096 if ((lmco == ALO_DATA) && ((lml->lm_flags & LML_FLG_DBNOTIF) == 0)) 1097 rd_event(lml, RD_DLACTIVITY, RT_DELETE); 1098 1099 /* LINTED */ 1100 lmc = (Lm_cntl *)((char *)lml->lm_lists + lmco); 1101 1102 /* 1103 * A link-map list header points to one of more link-map control lists 1104 * (see include/rtld.h). The initial list, pointed to by lm_cntl, is 1105 * the list of relocated objects. Other lists maintain objects that 1106 * are still being analyzed or relocated. This list provides the core 1107 * link-map list information used by all ld.so.1 routines. 1108 */ 1109 if (lmc->lc_head == NULL) { 1110 /* 1111 * If this is the first link-map for the given control list, 1112 * initialize the list. 1113 */ 1114 lmc->lc_head = lmc->lc_tail = lmp; 1115 add = 0; 1116 1117 } else if (FLAGS(lmp) & FLG_RT_INTRPOSE) { 1118 Rt_map *tlmp; 1119 1120 /* 1121 * If this is an interposer then append the link-map following 1122 * any other interposers (these are objects that have been 1123 * previously preloaded, or were identified with -z interpose). 1124 * Interposers can only be inserted on the first link-map 1125 * control list, as once relocation has started, interposition 1126 * from new interposers can't be guaranteed. 1127 * 1128 * NOTE: We do not interpose on the head of a list. This model 1129 * evolved because dynamic executables have already been fully 1130 * relocated within themselves and thus can't be interposed on. 1131 * Nowadays it's possible to have shared objects at the head of 1132 * a list, which conceptually means they could be interposed on. 1133 * But, shared objects can be created via dldump() and may only 1134 * be partially relocated (just relatives), in which case they 1135 * are interposable, but are marked as fixed (ET_EXEC). 1136 * 1137 * Thus we really don't have a clear method of deciding when the 1138 * head of a link-map is interposable. So, to be consistent, 1139 * for now only add interposers after the link-map lists head 1140 * object. 1141 */ 1142 for (tlmp = (Rt_map *)NEXT(lmc->lc_head); tlmp; 1143 tlmp = (Rt_map *)NEXT(tlmp)) { 1144 1145 if (FLAGS(tlmp) & FLG_RT_INTRPOSE) 1146 continue; 1147 1148 /* 1149 * Insert the new link-map before this non-interposer, 1150 * and indicate an interposer is found. 1151 */ 1152 NEXT((Rt_map *)PREV(tlmp)) = (Link_map *)lmp; 1153 PREV(lmp) = PREV(tlmp); 1154 1155 NEXT(lmp) = (Link_map *)tlmp; 1156 PREV(tlmp) = (Link_map *)lmp; 1157 1158 lmc->lc_flags |= LMC_FLG_REANALYZE; 1159 add = 0; 1160 break; 1161 } 1162 } 1163 1164 /* 1165 * Fall through to appending the new link map to the tail of the list. 1166 * If we're processing the initial objects of this link-map list, add 1167 * them to the backward compatibility list. 1168 */ 1169 if (add) { 1170 NEXT(lmc->lc_tail) = (Link_map *)lmp; 1171 PREV(lmp) = (Link_map *)lmc->lc_tail; 1172 lmc->lc_tail = lmp; 1173 } 1174 1175 /* 1176 * Having added this link-map to a control list, indicate which control 1177 * list the link-map belongs to. Note, control list information is 1178 * always maintained as an offset, as the Alist can be reallocated. 1179 */ 1180 CNTL(lmp) = lmco; 1181 1182 /* 1183 * Indicate if an interposer is found. Note that the first object on a 1184 * link-map can be explicitly defined as an interposer so that it can 1185 * provide interposition over direct binding requests. 1186 */ 1187 if (FLAGS(lmp) & FLG_RT_INTRPOSE) 1188 lml->lm_flags |= LML_FLG_INTRPOSE; 1189 1190 /* 1191 * For backward compatibility with debuggers, the link-map list contains 1192 * pointers to the main control list. 1193 */ 1194 if (lmco == ALO_DATA) { 1195 lml->lm_head = lmc->lc_head; 1196 lml->lm_tail = lmc->lc_tail; 1197 } 1198 } 1199 1200 /* 1201 * Delete an item from the specified link map control list. 1202 */ 1203 void 1204 lm_delete(Lm_list *lml, Rt_map *lmp) 1205 { 1206 Lm_cntl *lmc; 1207 1208 /* 1209 * If the control list pointer hasn't been initialized, this object 1210 * never got added to a link-map list. 1211 */ 1212 if (CNTL(lmp) == 0) 1213 return; 1214 1215 /* 1216 * Alert the debuggers that we are about to mess with the main link-map 1217 * control list. 1218 */ 1219 if ((CNTL(lmp) == ALO_DATA) && ((lml->lm_flags & LML_FLG_DBNOTIF) == 0)) 1220 rd_event(lml, RD_DLACTIVITY, RT_DELETE); 1221 1222 /* LINTED */ 1223 lmc = (Lm_cntl *)((char *)lml->lm_lists + CNTL(lmp)); 1224 1225 if (lmc->lc_head == lmp) 1226 lmc->lc_head = (Rt_map *)NEXT(lmp); 1227 else 1228 NEXT((Rt_map *)PREV(lmp)) = (void *)NEXT(lmp); 1229 1230 if (lmc->lc_tail == lmp) 1231 lmc->lc_tail = (Rt_map *)PREV(lmp); 1232 else 1233 PREV((Rt_map *)NEXT(lmp)) = PREV(lmp); 1234 1235 /* 1236 * For backward compatibility with debuggers, the link-map list contains 1237 * pointers to the main control list. 1238 */ 1239 if (lmc == (Lm_cntl *)&(lml->lm_lists->al_data)) { 1240 lml->lm_head = lmc->lc_head; 1241 lml->lm_tail = lmc->lc_tail; 1242 } 1243 1244 /* 1245 * Indicate we have one less object on this control list. 1246 */ 1247 (lml->lm_obj)--; 1248 } 1249 1250 /* 1251 * Move a link-map control list to another. Objects that are being relocated 1252 * are maintained on secondary control lists. Once their relocation is 1253 * complete, the entire list is appended to the previous control list, as this 1254 * list must have been the trigger for generating the new control list. 1255 */ 1256 void 1257 lm_move(Lm_list *lml, Aliste nlmco, Aliste plmco, Lm_cntl *nlmc, Lm_cntl *plmc) 1258 { 1259 Rt_map *lmp; 1260 1261 DBG_CALL(Dbg_file_cntl(lml, nlmco, plmco)); 1262 1263 /* 1264 * Alert the debuggers that we are about to mess with the main link-map 1265 * control list. 1266 */ 1267 if ((plmco == ALO_DATA) && ((lml->lm_flags & LML_FLG_DBNOTIF) == 0)) 1268 rd_event(lml, RD_DLACTIVITY, RT_ADD); 1269 1270 /* 1271 * Indicate each new link-map has been moved to the previous link-map 1272 * control list. 1273 */ 1274 1275 for (lmp = nlmc->lc_head; lmp; lmp = (Rt_map *)NEXT(lmp)) 1276 CNTL(lmp) = plmco; 1277 1278 /* 1279 * Move the new link-map control list, to the callers link-map control 1280 * list. 1281 */ 1282 if (plmc->lc_head == 0) { 1283 plmc->lc_head = nlmc->lc_head; 1284 PREV(nlmc->lc_head) = 0; 1285 } else { 1286 NEXT(plmc->lc_tail) = (Link_map *)nlmc->lc_head; 1287 PREV(nlmc->lc_head) = (Link_map *)plmc->lc_tail; 1288 } 1289 1290 plmc->lc_tail = nlmc->lc_tail; 1291 nlmc->lc_head = nlmc->lc_tail = 0; 1292 1293 /* 1294 * For backward compatibility with debuggers, the link-map list contains 1295 * pointers to the main control list. 1296 */ 1297 if (plmco == ALO_DATA) { 1298 lml->lm_head = plmc->lc_head; 1299 lml->lm_tail = plmc->lc_tail; 1300 } 1301 } 1302 1303 /* 1304 * Dlopening a family of objects occurs on a new link-map control list. If the 1305 * dlopen fails, then its handle is used to tear down the family (dlclose). 1306 * However, the relocation of this family may have triggered other objects to 1307 * be loaded, and after their relocation they will have been moved to the 1308 * dlopen families control list. After a dlopen() failure, see if there are 1309 * any objects that can be savaged before tearing down this control list. 1310 */ 1311 int 1312 lm_salvage(Lm_list *lml, int test, Aliste nlmco) 1313 { 1314 Lm_cntl *nlmc; 1315 1316 /* 1317 * If a dlopen occurred on a new link-map list, then its dlclose may 1318 * have completely torn down the link-map list. Check that the link-map 1319 * list still exists before proceeding. 1320 */ 1321 if (test) { 1322 Listnode *lnp; 1323 Lm_list *tlml; 1324 int found = 0; 1325 1326 for (LIST_TRAVERSE(&dynlm_list, lnp, tlml)) { 1327 if (tlml == lml) { 1328 found++; 1329 break; 1330 } 1331 } 1332 if (found == 0) 1333 return (0); 1334 } 1335 1336 /* LINTED */ 1337 nlmc = (Lm_cntl *)((char *)lml->lm_lists + nlmco); 1338 1339 /* 1340 * If this link-map control list still contains objects, determine the 1341 * previous control list and move the objects. 1342 */ 1343 if (nlmc->lc_head) { 1344 Lm_cntl *plmc; 1345 Aliste plmco; 1346 1347 plmco = nlmco - lml->lm_lists->al_size; 1348 /* LINTED */ 1349 plmc = (Lm_cntl *)((char *)lml->lm_lists + plmco); 1350 1351 lm_move(lml, nlmco, plmco, nlmc, plmc); 1352 } 1353 return (1); 1354 } 1355 1356 /* 1357 * Environment variables can have a variety of defined permutations, and thus 1358 * the following infrastructure exists to allow this variety and to select the 1359 * required definition. 1360 * 1361 * Environment variables can be defined as 32- or 64-bit specific, and if so 1362 * they will take precedence over any instruction set neutral form. Typically 1363 * this is only useful when the environment value is an informational string. 1364 * 1365 * Environment variables may be obtained from the standard user environment or 1366 * from a configuration file. The latter provides a fallback if no user 1367 * environment setting is found, and can take two forms: 1368 * 1369 * . a replaceable definition - this will be used if no user environment 1370 * setting has been seen, or 1371 * 1372 * . an permanent definition - this will be used no matter what user 1373 * environment setting is seen. In the case of list variables it will be 1374 * appended to any process environment setting seen. 1375 * 1376 * Environment variables can be defined without a value (ie. LD_XXXX=) so as to 1377 * override any replaceable environment variables from a configuration file. 1378 */ 1379 static u_longlong_t rplgen; /* replaceable generic */ 1380 /* variables */ 1381 static u_longlong_t rplisa; /* replaceable ISA specific */ 1382 /* variables */ 1383 static u_longlong_t prmgen; /* permanent generic */ 1384 /* variables */ 1385 static u_longlong_t prmisa; /* permanent ISA specific */ 1386 /* variables */ 1387 1388 /* 1389 * Classify an environment variables type. 1390 */ 1391 #define ENV_TYP_IGNORE 0x1 /* ignore - variable is for */ 1392 /* the wrong ISA */ 1393 #define ENV_TYP_ISA 0x2 /* variable is ISA specific */ 1394 #define ENV_TYP_CONFIG 0x4 /* variable obtained from a */ 1395 /* config file */ 1396 #define ENV_TYP_PERMANT 0x8 /* variable is permanent */ 1397 1398 /* 1399 * Identify all environment variables. 1400 */ 1401 #define ENV_FLG_AUDIT 0x0000000001ULL 1402 #define ENV_FLG_AUDIT_ARGS 0x0000000002ULL 1403 #define ENV_FLG_BIND_NOW 0x0000000004ULL 1404 #define ENV_FLG_BIND_NOT 0x0000000008ULL 1405 #define ENV_FLG_BINDINGS 0x0000000010ULL 1406 #define ENV_FLG_CONCURRENCY 0x0000000020ULL 1407 #define ENV_FLG_CONFGEN 0x0000000040ULL 1408 #define ENV_FLG_CONFIG 0x0000000080ULL 1409 #define ENV_FLG_DEBUG 0x0000000100ULL 1410 #define ENV_FLG_DEBUG_OUTPUT 0x0000000200ULL 1411 #define ENV_FLG_DEMANGLE 0x0000000400ULL 1412 #define ENV_FLG_FLAGS 0x0000000800ULL 1413 #define ENV_FLG_INIT 0x0000001000ULL 1414 #define ENV_FLG_LIBPATH 0x0000002000ULL 1415 #define ENV_FLG_LOADAVAIL 0x0000004000ULL 1416 #define ENV_FLG_LOADFLTR 0x0000008000ULL 1417 #define ENV_FLG_NOAUDIT 0x0000010000ULL 1418 #define ENV_FLG_NOAUXFLTR 0x0000020000ULL 1419 #define ENV_FLG_NOBAPLT 0x0000040000ULL 1420 #define ENV_FLG_NOCONFIG 0x0000080000ULL 1421 #define ENV_FLG_NODIRCONFIG 0x0000100000ULL 1422 #define ENV_FLG_NODIRECT 0x0000200000ULL 1423 #define ENV_FLG_NOENVCONFIG 0x0000400000ULL 1424 #define ENV_FLG_NOLAZY 0x0000800000ULL 1425 #define ENV_FLG_NOOBJALTER 0x0001000000ULL 1426 #define ENV_FLG_NOVERSION 0x0002000000ULL 1427 #define ENV_FLG_PRELOAD 0x0004000000ULL 1428 #define ENV_FLG_PROFILE 0x0008000000ULL 1429 #define ENV_FLG_PROFILE_OUTPUT 0x0010000000ULL 1430 #define ENV_FLG_SIGNAL 0x0020000000ULL 1431 #define ENV_FLG_TRACE_OBJS 0x0040000000ULL 1432 #define ENV_FLG_TRACE_PTHS 0x0080000000ULL 1433 #define ENV_FLG_UNREF 0x0100000000ULL 1434 #define ENV_FLG_UNUSED 0x0200000000ULL 1435 #define ENV_FLG_VERBOSE 0x0400000000ULL 1436 #define ENV_FLG_WARN 0x0800000000ULL 1437 #define ENV_FLG_NOFLTCONFIG 0x1000000000ULL 1438 1439 #ifdef SIEBEL_DISABLE 1440 #define ENV_FLG_FIX_1 0x8000000000ULL 1441 #endif 1442 1443 #define SEL_REPLACE 0x0001 1444 #define SEL_PERMANT 0x0002 1445 #define SEL_ACT_RT 0x0100 /* setting rtld_flags */ 1446 #define SEL_ACT_RT2 0x0200 /* setting rtld_flags2 */ 1447 #define SEL_ACT_STR 0x0400 /* setting string value */ 1448 #define SEL_ACT_LML 0x0800 /* setting lml_flags */ 1449 #define SEL_ACT_LMLT 0x1000 /* setting lml_tflags */ 1450 #define SEL_ACT_SPEC_1 0x2000 /* For FLG_{FLAGS, LIBPATH} */ 1451 #define SEL_ACT_SPEC_2 0x4000 /* need special handling */ 1452 1453 /* 1454 * Pattern match an LD_XXXX environment variable. s1 points to the XXXX part 1455 * and len specifies its length (comparing a strings length before the string 1456 * itself speed things up). s2 points to the token itself which has already 1457 * had any leading white-space removed. 1458 */ 1459 static void 1460 ld_generic_env(const char *s1, size_t len, const char *s2, Word *lmflags, 1461 Word *lmtflags, uint_t env_flags, int aout) 1462 { 1463 u_longlong_t variable = 0; 1464 unsigned short select = 0; 1465 const char **str; 1466 Word val = 0; 1467 1468 /* 1469 * Determine whether we're dealing with a replaceable or permanent 1470 * string. 1471 */ 1472 if (env_flags & ENV_TYP_PERMANT) { 1473 /* 1474 * If the string is from a configuration file and defined as 1475 * permanent, assign it as permanent. 1476 */ 1477 select |= SEL_PERMANT; 1478 } else 1479 select |= SEL_REPLACE; 1480 1481 /* 1482 * Parse the variable given. 1483 * 1484 * The LD_AUDIT family. 1485 */ 1486 if (*s1 == 'A') { 1487 if ((len == MSG_LD_AUDIT_SIZE) && (strncmp(s1, 1488 MSG_ORIG(MSG_LD_AUDIT), MSG_LD_AUDIT_SIZE) == 0)) { 1489 /* 1490 * Replaceable and permanent audit objects can exist. 1491 */ 1492 select |= SEL_ACT_STR; 1493 str = (select & SEL_REPLACE) ? &rpl_audit : &prm_audit; 1494 variable = ENV_FLG_AUDIT; 1495 } else if ((len == MSG_LD_AUDIT_ARGS_SIZE) && 1496 (strncmp(s1, MSG_ORIG(MSG_LD_AUDIT_ARGS), 1497 MSG_LD_AUDIT_ARGS_SIZE) == 0)) { 1498 /* 1499 * A specialized variable for plt_exit() use, not 1500 * documented for general use. 1501 */ 1502 select |= SEL_ACT_SPEC_2; 1503 variable = ENV_FLG_AUDIT_ARGS; 1504 } 1505 } 1506 /* 1507 * The LD_BIND family and LD_BREADTH (historic). 1508 */ 1509 else if (*s1 == 'B') { 1510 if ((len == MSG_LD_BIND_NOW_SIZE) && (strncmp(s1, 1511 MSG_ORIG(MSG_LD_BIND_NOW), MSG_LD_BIND_NOW_SIZE) == 0)) { 1512 select |= SEL_ACT_RT2; 1513 val = RT_FL2_BINDNOW; 1514 variable = ENV_FLG_BIND_NOW; 1515 } else if ((len == MSG_LD_BIND_NOT_SIZE) && (strncmp(s1, 1516 MSG_ORIG(MSG_LD_BIND_NOT), MSG_LD_BIND_NOT_SIZE) == 0)) { 1517 /* 1518 * Another trick, enabled to help debug AOUT 1519 * applications under BCP, but not documented for 1520 * general use. 1521 */ 1522 select |= SEL_ACT_RT; 1523 val = RT_FL_NOBIND; 1524 variable = ENV_FLG_BIND_NOT; 1525 } else if ((len == MSG_LD_BINDINGS_SIZE) && (strncmp(s1, 1526 MSG_ORIG(MSG_LD_BINDINGS), MSG_LD_BINDINGS_SIZE) == 0)) { 1527 /* 1528 * This variable is simply for backward compatibility. 1529 * If this and LD_DEBUG are both specified, only one of 1530 * the strings is going to get processed. 1531 */ 1532 select |= SEL_ACT_SPEC_2; 1533 variable = ENV_FLG_BINDINGS; 1534 #ifndef LD_BREADTH_DISABLED 1535 } else if ((len == MSG_LD_BREADTH_SIZE) && (strncmp(s1, 1536 MSG_ORIG(MSG_LD_BREADTH), MSG_LD_BREADTH_SIZE) == 0)) { 1537 /* 1538 * Besides some old patches this is no longer available. 1539 */ 1540 rtld_flags |= RT_FL_BREADTH; 1541 return; 1542 #endif 1543 } 1544 } 1545 /* 1546 * LD_CONCURRENCY and LD_CONFIG family. 1547 */ 1548 else if (*s1 == 'C') { 1549 if ((len == MSG_LD_CONCURRENCY_SIZE) && (strncmp(s1, 1550 MSG_ORIG(MSG_LD_CONCURRENCY), 1551 MSG_LD_CONCURRENCY_SIZE) == 0)) { 1552 /* 1553 * Waiting in the wings, as concurrency checking isn't 1554 * yet enabled. 1555 */ 1556 select |= SEL_ACT_SPEC_2; 1557 variable = ENV_FLG_CONCURRENCY; 1558 } else if ((len == MSG_LD_CONFGEN_SIZE) && (strncmp(s1, 1559 MSG_ORIG(MSG_LD_CONFGEN), MSG_LD_CONFGEN_SIZE) == 0)) { 1560 /* 1561 * Set by crle(1) to indicate it's building a 1562 * configuration file, not documented for general use. 1563 */ 1564 select |= SEL_ACT_SPEC_2; 1565 variable = ENV_FLG_CONFGEN; 1566 } else if ((len == MSG_LD_CONFIG_SIZE) && (strncmp(s1, 1567 MSG_ORIG(MSG_LD_CONFIG), MSG_LD_CONFIG_SIZE) == 0)) { 1568 /* 1569 * Secure applications must use a default configuration 1570 * file. A setting from a configuration file doesn't 1571 * make sense (given we must be reading a configuration 1572 * file to have gotten this). 1573 */ 1574 if ((rtld_flags & RT_FL_SECURE) || 1575 (env_flags & ENV_TYP_CONFIG)) 1576 return; 1577 select |= SEL_ACT_STR; 1578 str = &config->c_name; 1579 variable = ENV_FLG_CONFIG; 1580 } 1581 } 1582 /* 1583 * The LD_DEBUG family and LD_DEMANGLE. 1584 */ 1585 else if (*s1 == 'D') { 1586 if ((len == MSG_LD_DEBUG_SIZE) && (strncmp(s1, 1587 MSG_ORIG(MSG_LD_DEBUG), MSG_LD_DEBUG_SIZE) == 0)) { 1588 select |= SEL_ACT_STR; 1589 str = (select & SEL_REPLACE) ? &rpl_debug : &prm_debug; 1590 variable = ENV_FLG_DEBUG; 1591 } else if ((len == MSG_LD_DEBUG_OUTPUT_SIZE) && (strncmp(s1, 1592 MSG_ORIG(MSG_LD_DEBUG_OUTPUT), 1593 MSG_LD_DEBUG_OUTPUT_SIZE) == 0)) { 1594 select |= SEL_ACT_STR; 1595 str = &dbg_file; 1596 variable = ENV_FLG_DEBUG_OUTPUT; 1597 } else if ((len == MSG_LD_DEMANGLE_SIZE) && (strncmp(s1, 1598 MSG_ORIG(MSG_LD_DEMANGLE), MSG_LD_DEMANGLE_SIZE) == 0)) { 1599 select |= SEL_ACT_RT; 1600 val = RT_FL_DEMANGLE; 1601 variable = ENV_FLG_DEMANGLE; 1602 } 1603 } 1604 /* 1605 * LD_FLAGS - collect the best variable definition. On completion of 1606 * environment variable processing pass the result to ld_flags_env() 1607 * where they'll be decomposed and passed back to this routine. 1608 */ 1609 else if (*s1 == 'F') { 1610 if ((len == MSG_LD_FLAGS_SIZE) && (strncmp(s1, 1611 MSG_ORIG(MSG_LD_FLAGS), MSG_LD_FLAGS_SIZE) == 0)) { 1612 select |= SEL_ACT_SPEC_1; 1613 str = 1614 (select & SEL_REPLACE) ? &rpl_ldflags : &prm_ldflags; 1615 variable = ENV_FLG_FLAGS; 1616 } 1617 } 1618 /* 1619 * LD_INIT (internal, used by ldd(1)). 1620 */ 1621 else if (*s1 == 'I') { 1622 if ((len == MSG_LD_INIT_SIZE) && (strncmp(s1, 1623 MSG_ORIG(MSG_LD_INIT), MSG_LD_INIT_SIZE) == 0)) { 1624 select |= SEL_ACT_LML; 1625 val = LML_FLG_TRC_INIT; 1626 variable = ENV_FLG_INIT; 1627 } 1628 } 1629 /* 1630 * The LD_LIBRARY_PATH and LD_LOAD families. 1631 */ 1632 else if (*s1 == 'L') { 1633 if ((len == MSG_LD_LIBPATH_SIZE) && (strncmp(s1, 1634 MSG_ORIG(MSG_LD_LIBPATH), MSG_LD_LIBPATH_SIZE) == 0)) { 1635 select |= SEL_ACT_SPEC_1; 1636 str = 1637 (select & SEL_REPLACE) ? &rpl_libpath : &prm_libpath; 1638 variable = ENV_FLG_LIBPATH; 1639 } else if ((len == MSG_LD_LOADAVAIL_SIZE) && (strncmp(s1, 1640 MSG_ORIG(MSG_LD_LOADAVAIL), MSG_LD_LOADAVAIL_SIZE) == 0)) { 1641 /* 1642 * Internal use by crle(1), not documented for general 1643 * use. 1644 */ 1645 select |= SEL_ACT_LML; 1646 val = LML_FLG_LOADAVAIL; 1647 variable = ENV_FLG_LOADAVAIL; 1648 } else if ((len == MSG_LD_LOADFLTR_SIZE) && (strncmp(s1, 1649 MSG_ORIG(MSG_LD_LOADFLTR), MSG_LD_LOADFLTR_SIZE) == 0)) { 1650 select |= SEL_ACT_SPEC_2; 1651 variable = ENV_FLG_LOADFLTR; 1652 } 1653 } 1654 /* 1655 * The LD_NO family. 1656 */ 1657 else if (*s1 == 'N') { 1658 if ((len == MSG_LD_NOAUDIT_SIZE) && (strncmp(s1, 1659 MSG_ORIG(MSG_LD_NOAUDIT), MSG_LD_NOAUDIT_SIZE) == 0)) { 1660 select |= SEL_ACT_RT; 1661 val = RT_FL_NOAUDIT; 1662 variable = ENV_FLG_NOAUDIT; 1663 } else if ((len == MSG_LD_NOAUXFLTR_SIZE) && (strncmp(s1, 1664 MSG_ORIG(MSG_LD_NOAUXFLTR), MSG_LD_NOAUXFLTR_SIZE) == 0)) { 1665 select |= SEL_ACT_RT; 1666 val = RT_FL_NOAUXFLTR; 1667 variable = ENV_FLG_NOAUXFLTR; 1668 } else if ((len == MSG_LD_NOBAPLT_SIZE) && (strncmp(s1, 1669 MSG_ORIG(MSG_LD_NOBAPLT), MSG_LD_NOBAPLT_SIZE) == 0)) { 1670 select |= SEL_ACT_RT; 1671 val = RT_FL_NOBAPLT; 1672 variable = ENV_FLG_NOBAPLT; 1673 } else if ((len == MSG_LD_NOCONFIG_SIZE) && (strncmp(s1, 1674 MSG_ORIG(MSG_LD_NOCONFIG), MSG_LD_NOCONFIG_SIZE) == 0)) { 1675 select |= SEL_ACT_RT; 1676 val = RT_FL_NOCFG; 1677 variable = ENV_FLG_NOCONFIG; 1678 } else if ((len == MSG_LD_NODIRCONFIG_SIZE) && (strncmp(s1, 1679 MSG_ORIG(MSG_LD_NODIRCONFIG), 1680 MSG_LD_NODIRCONFIG_SIZE) == 0)) { 1681 select |= SEL_ACT_RT; 1682 val = RT_FL_NODIRCFG; 1683 variable = ENV_FLG_NODIRCONFIG; 1684 } else if ((len == MSG_LD_NODIRECT_SIZE) && (strncmp(s1, 1685 MSG_ORIG(MSG_LD_NODIRECT), MSG_LD_NODIRECT_SIZE) == 0)) { 1686 select |= SEL_ACT_LMLT; 1687 val = LML_TFLG_NODIRECT; 1688 variable = ENV_FLG_NODIRECT; 1689 } else if ((len == MSG_LD_NOENVCONFIG_SIZE) && (strncmp(s1, 1690 MSG_ORIG(MSG_LD_NOENVCONFIG), 1691 MSG_LD_NOENVCONFIG_SIZE) == 0)) { 1692 select |= SEL_ACT_RT; 1693 val = RT_FL_NOENVCFG; 1694 variable = ENV_FLG_NOENVCONFIG; 1695 } else if ((len == MSG_LD_NOFLTCONFIG_SIZE) && (strncmp(s1, 1696 MSG_ORIG(MSG_LD_NOFLTCONFIG), 1697 MSG_LD_NOFLTCONFIG_SIZE) == 0)) { 1698 select |= SEL_ACT_RT2; 1699 val = RT_FL2_NOFLTCFG; 1700 variable = ENV_FLG_NOFLTCONFIG; 1701 } else if ((len == MSG_LD_NOLAZY_SIZE) && (strncmp(s1, 1702 MSG_ORIG(MSG_LD_NOLAZY), MSG_LD_NOLAZY_SIZE) == 0)) { 1703 select |= SEL_ACT_LMLT; 1704 val = LML_TFLG_NOLAZYLD; 1705 variable = ENV_FLG_NOLAZY; 1706 } else if ((len == MSG_LD_NOOBJALTER_SIZE) && (strncmp(s1, 1707 MSG_ORIG(MSG_LD_NOOBJALTER), 1708 MSG_LD_NOOBJALTER_SIZE) == 0)) { 1709 select |= SEL_ACT_RT; 1710 val = RT_FL_NOOBJALT; 1711 variable = ENV_FLG_NOOBJALTER; 1712 } else if ((len == MSG_LD_NOVERSION_SIZE) && (strncmp(s1, 1713 MSG_ORIG(MSG_LD_NOVERSION), MSG_LD_NOVERSION_SIZE) == 0)) { 1714 select |= SEL_ACT_RT; 1715 val = RT_FL_NOVERSION; 1716 variable = ENV_FLG_NOVERSION; 1717 } 1718 } 1719 /* 1720 * LD_ORIGIN. 1721 */ 1722 else if (*s1 == 'O') { 1723 #ifndef EXPAND_RELATIVE 1724 if ((len == MSG_LD_ORIGIN_SIZE) && (strncmp(s1, 1725 MSG_ORIG(MSG_LD_ORIGIN), MSG_LD_ORIGIN_SIZE) == 0)) { 1726 /* 1727 * Besides some old patches this is no longer required. 1728 */ 1729 rtld_flags |= RT_FL_RELATIVE; 1730 } 1731 #endif 1732 return; 1733 } 1734 /* 1735 * LD_PRELOAD and LD_PROFILE family. 1736 */ 1737 else if (*s1 == 'P') { 1738 if ((len == MSG_LD_PRELOAD_SIZE) && (strncmp(s1, 1739 MSG_ORIG(MSG_LD_PRELOAD), MSG_LD_PRELOAD_SIZE) == 0)) { 1740 select |= SEL_ACT_STR; 1741 str = 1742 (select & SEL_REPLACE) ? &rpl_preload : &prm_preload; 1743 variable = ENV_FLG_PRELOAD; 1744 } else if ((len == MSG_LD_PROFILE_SIZE) && (strncmp(s1, 1745 MSG_ORIG(MSG_LD_PROFILE), MSG_LD_PROFILE_SIZE) == 0)) { 1746 /* 1747 * Only one user library can be profiled at a time. 1748 */ 1749 select |= SEL_ACT_SPEC_2; 1750 variable = ENV_FLG_PROFILE; 1751 } else if ((len == MSG_LD_PROFILE_OUTPUT_SIZE) && (strncmp(s1, 1752 MSG_ORIG(MSG_LD_PROFILE_OUTPUT), 1753 MSG_LD_PROFILE_OUTPUT_SIZE) == 0)) { 1754 /* 1755 * Only one user library can be profiled at a time. 1756 */ 1757 select |= SEL_ACT_STR; 1758 str = &profile_out; 1759 variable = ENV_FLG_PROFILE_OUTPUT; 1760 } 1761 } 1762 /* 1763 * LD_SIGNAL. 1764 */ 1765 else if (*s1 == 'S') { 1766 if (rtld_flags & RT_FL_SECURE) 1767 return; 1768 if ((len == MSG_LD_SIGNAL_SIZE) && 1769 (strncmp(s1, MSG_ORIG(MSG_LD_SIGNAL), 1770 MSG_LD_SIGNAL_SIZE) == 0)) { 1771 select |= SEL_ACT_SPEC_2; 1772 variable = ENV_FLG_SIGNAL; 1773 } 1774 } 1775 /* 1776 * The LD_TRACE family (internal, used by ldd(1)). 1777 */ 1778 else if (*s1 == 'T') { 1779 if (((len == MSG_LD_TRACE_OBJS_SIZE) && 1780 (strncmp(s1, MSG_ORIG(MSG_LD_TRACE_OBJS), 1781 MSG_LD_TRACE_OBJS_SIZE) == 0)) || 1782 ((len == MSG_LD_TRACE_OBJS_E_SIZE) && 1783 (((strncmp(s1, MSG_ORIG(MSG_LD_TRACE_OBJS_E), 1784 MSG_LD_TRACE_OBJS_E_SIZE) == 0) && !aout) || 1785 ((strncmp(s1, MSG_ORIG(MSG_LD_TRACE_OBJS_A), 1786 MSG_LD_TRACE_OBJS_A_SIZE) == 0) && aout)))) { 1787 select |= SEL_ACT_SPEC_2; 1788 variable = ENV_FLG_TRACE_OBJS; 1789 } else if ((len == MSG_LD_TRACE_PTHS_SIZE) && (strncmp(s1, 1790 MSG_ORIG(MSG_LD_TRACE_PTHS), 1791 MSG_LD_TRACE_PTHS_SIZE) == 0)) { 1792 select |= SEL_ACT_LML; 1793 val = LML_FLG_TRC_SEARCH; 1794 variable = ENV_FLG_TRACE_PTHS; 1795 } 1796 } 1797 /* 1798 * LD_UNREF and LD_UNUSED (internal, used by ldd(1)). 1799 */ 1800 else if (*s1 == 'U') { 1801 if ((len == MSG_LD_UNREF_SIZE) && (strncmp(s1, 1802 MSG_ORIG(MSG_LD_UNREF), MSG_LD_UNREF_SIZE) == 0)) { 1803 select |= SEL_ACT_LML; 1804 val = LML_FLG_TRC_UNREF; 1805 variable = ENV_FLG_UNREF; 1806 } else if ((len == MSG_LD_UNUSED_SIZE) && (strncmp(s1, 1807 MSG_ORIG(MSG_LD_UNUSED), MSG_LD_UNUSED_SIZE) == 0)) { 1808 select |= SEL_ACT_LML; 1809 val = LML_FLG_TRC_UNUSED; 1810 variable = ENV_FLG_UNUSED; 1811 } 1812 } 1813 /* 1814 * LD_VERBOSE (internal, used by ldd(1)). 1815 */ 1816 else if (*s1 == 'V') { 1817 if ((len == MSG_LD_VERBOSE_SIZE) && (strncmp(s1, 1818 MSG_ORIG(MSG_LD_VERBOSE), MSG_LD_VERBOSE_SIZE) == 0)) { 1819 select |= SEL_ACT_LML; 1820 val = LML_FLG_TRC_VERBOSE; 1821 variable = ENV_FLG_VERBOSE; 1822 } 1823 } 1824 /* 1825 * LD_WARN (internal, used by ldd(1)). 1826 */ 1827 else if (*s1 == 'W') { 1828 if ((len == MSG_LD_WARN_SIZE) && (strncmp(s1, 1829 MSG_ORIG(MSG_LD_WARN), MSG_LD_WARN_SIZE) == 0)) { 1830 select |= SEL_ACT_LML; 1831 val = LML_FLG_TRC_WARN; 1832 variable = ENV_FLG_WARN; 1833 } 1834 #ifdef SIEBEL_DISABLE 1835 } 1836 /* 1837 * LD__FIX__ (undocumented, enable future technology that can't be 1838 * delivered in a patch release). 1839 */ 1840 else if (*s1 == '_') { 1841 if ((len == MSG_LD_FIX_1_SIZE) && (strncmp(s1, 1842 MSG_ORIG(MSG_LD_FIX_1), MSG_LD_FIX_1_SIZE) == 0)) { 1843 select |= SEL_ACT_RT; 1844 val = RT_FL_DISFIX_1; 1845 variable = ENV_FLG_FIX_1; 1846 } 1847 #endif 1848 } 1849 if (variable == 0) 1850 return; 1851 1852 /* 1853 * If the variable is already processed with ISA specific variable, 1854 * no further processing needed. 1855 */ 1856 if (((select & SEL_REPLACE) && (rplisa & variable)) || 1857 ((select & SEL_PERMANT) && (prmisa & variable))) 1858 return; 1859 1860 /* 1861 * Now mark the appropriate variables 1862 */ 1863 if (env_flags & ENV_TYP_ISA) { 1864 /* 1865 * This is ISA setting. We do the setting 1866 * even if s2 is NULL. 1867 * If s2 is NULL, we might need to undo 1868 * the setting. 1869 */ 1870 if (select & SEL_REPLACE) { 1871 rplisa |= variable; 1872 } else { 1873 prmisa |= variable; 1874 } 1875 } else if (s2) { 1876 /* 1877 * This is non0-ISA setting 1878 */ 1879 if (select & SEL_REPLACE) { 1880 rplgen |= variable; 1881 } else 1882 prmgen |= variable; 1883 } else 1884 /* 1885 * This is non-ISA setting which 1886 * can be ignored. 1887 */ 1888 return; 1889 1890 /* 1891 * Now perform the setting. 1892 */ 1893 if (select & SEL_ACT_RT) { 1894 if (s2) 1895 rtld_flags |= val; 1896 else 1897 rtld_flags &= ~val; 1898 } else if (select & SEL_ACT_RT2) { 1899 if (s2) 1900 rtld_flags2 |= val; 1901 else 1902 rtld_flags2 &= ~val; 1903 } else if (select & SEL_ACT_STR) 1904 *str = s2; 1905 else if (select & SEL_ACT_LML) { 1906 if (s2) 1907 *lmflags |= val; 1908 else 1909 *lmflags &= ~val; 1910 } else if (select & SEL_ACT_LMLT) { 1911 if (s2) 1912 *lmtflags |= val; 1913 else 1914 *lmtflags &= ~val; 1915 } else if (select & SEL_ACT_SPEC_1) { 1916 /* 1917 * variable is either ENV_FLG_FLAGS or ENV_FLG_LIBPATH 1918 */ 1919 *str = s2; 1920 if ((select & SEL_REPLACE) && (env_flags & ENV_TYP_CONFIG)) { 1921 if (s2) { 1922 if (variable == ENV_FLG_FLAGS) 1923 env_info |= ENV_INF_FLAGCFG; 1924 else 1925 env_info |= ENV_INF_PATHCFG; 1926 } else { 1927 if (variable == ENV_FLG_FLAGS) 1928 env_info &= ~ENV_INF_FLAGCFG; 1929 else 1930 env_info &= ~ENV_INF_PATHCFG; 1931 } 1932 } 1933 } else if (select & SEL_ACT_SPEC_2) { 1934 /* 1935 * variables can be: ENV_FLG_ 1936 * AUDIT_ARGS, BINDING, CONCURRENCY, CONFGEN, 1937 * LOADFLTR, PROFILE, SIGNAL, TRACE_OBJS 1938 */ 1939 if (variable == ENV_FLG_AUDIT_ARGS) { 1940 if (s2) { 1941 audit_argcnt = atoi(s2); 1942 audit_argcnt += audit_argcnt % 2; 1943 } else 1944 audit_argcnt = 0; 1945 } else if (variable == ENV_FLG_BINDINGS) { 1946 if (s2) 1947 rpl_debug = MSG_ORIG(MSG_TKN_BINDINGS); 1948 else 1949 rpl_debug = 0; 1950 } else if (variable == ENV_FLG_CONCURRENCY) { 1951 if (s2) 1952 rtld_flags &= ~RT_FL_NOCONCUR; 1953 else 1954 rtld_flags |= RT_FL_NOCONCUR; 1955 } else if (variable == ENV_FLG_CONFGEN) { 1956 if (s2) { 1957 rtld_flags |= RT_FL_CONFGEN; 1958 *lmflags |= LML_FLG_IGNRELERR; 1959 } else { 1960 rtld_flags &= ~RT_FL_CONFGEN; 1961 *lmflags &= ~LML_FLG_IGNRELERR; 1962 } 1963 } else if (variable == ENV_FLG_LOADFLTR) { 1964 if (s2) { 1965 *lmtflags |= LML_TFLG_LOADFLTR; 1966 if (*s2 == '2') 1967 rtld_flags |= RT_FL_WARNFLTR; 1968 } else { 1969 *lmtflags &= ~LML_TFLG_LOADFLTR; 1970 rtld_flags &= ~RT_FL_WARNFLTR; 1971 } 1972 } else if (variable == ENV_FLG_PROFILE) { 1973 profile_name = s2; 1974 if (s2) { 1975 if (strcmp(s2, MSG_ORIG(MSG_FIL_RTLD)) == 0) { 1976 return; 1977 } 1978 if (rtld_flags & RT_FL_SECURE) { 1979 profile_lib = 1980 #if defined(_ELF64) 1981 MSG_ORIG(MSG_PTH_LDPROFSE_64); 1982 #else 1983 MSG_ORIG(MSG_PTH_LDPROFSE); 1984 #endif 1985 } else { 1986 profile_lib = 1987 #if defined(_ELF64) 1988 MSG_ORIG(MSG_PTH_LDPROF_64); 1989 #else 1990 MSG_ORIG(MSG_PTH_LDPROF); 1991 #endif 1992 } 1993 } else 1994 profile_lib = 0; 1995 } else if (variable == ENV_FLG_SIGNAL) { 1996 killsig = s2 ? atoi(s2) : SIGKILL; 1997 } else if (variable == ENV_FLG_TRACE_OBJS) { 1998 if (s2) { 1999 *lmflags |= LML_FLG_TRC_ENABLE; 2000 if (*s2 == '2') 2001 *lmflags |= LML_FLG_TRC_LDDSTUB; 2002 } else 2003 *lmflags &= 2004 ~(LML_FLG_TRC_ENABLE|LML_FLG_TRC_LDDSTUB); 2005 } 2006 } 2007 } 2008 2009 /* 2010 * Determine whether we have an architecture specific environment variable. 2011 * If we do, and we're the wrong architecture, it'll just get ignored. 2012 * Otherwise the variable is processed in it's architecture neutral form. 2013 */ 2014 static int 2015 ld_arch_env(const char *s1, size_t *len) 2016 { 2017 size_t _len = *len - 3; 2018 2019 if (s1[_len++] == '_') { 2020 if ((s1[_len] == '3') && (s1[_len + 1] == '2')) { 2021 #if defined(_ELF64) 2022 return (ENV_TYP_IGNORE); 2023 #else 2024 *len = *len - 3; 2025 return (ENV_TYP_ISA); 2026 #endif 2027 } 2028 if ((s1[_len] == '6') && (s1[_len + 1] == '4')) { 2029 #if defined(_ELF64) 2030 *len = *len - 3; 2031 return (ENV_TYP_ISA); 2032 #else 2033 return (ENV_TYP_IGNORE); 2034 #endif 2035 } 2036 } 2037 return (0); 2038 } 2039 2040 2041 /* 2042 * Process an LD_FLAGS environment variable. The value can be a comma 2043 * separated set of tokens, which are sent (in upper case) into the generic 2044 * LD_XXXX environment variable engine. For example: 2045 * 2046 * LD_FLAGS=bind_now -> LD_BIND_NOW=1 2047 * LD_FLAGS=library_path=/foo:. -> LD_LIBRARY_PATH=/foo:. 2048 * LD_FLAGS=debug=files:detail -> LD_DEBUG=files:detail 2049 * or 2050 * LD_FLAGS=bind_now,library_path=/foo:.,debug=files:detail 2051 */ 2052 static int 2053 ld_flags_env(const char *str, Word *lmflags, Word *lmtflags, 2054 uint_t env_flags, int aout) 2055 { 2056 char *nstr, *sstr, *estr = 0; 2057 size_t nlen, len; 2058 2059 if (str == 0) 2060 return (0); 2061 2062 /* 2063 * Create a new string as we're going to transform the token(s) into 2064 * uppercase and separate tokens with nulls. 2065 */ 2066 len = strlen(str); 2067 if ((nstr = malloc(len + 1)) == 0) 2068 return (1); 2069 (void) strcpy(nstr, str); 2070 2071 for (sstr = nstr; sstr; sstr++, len--) { 2072 int flags; 2073 2074 if ((*sstr != '\0') && (*sstr != ',')) { 2075 if (estr == 0) { 2076 if (*sstr == '=') 2077 estr = sstr; 2078 else { 2079 /* 2080 * Translate token to uppercase. Don't 2081 * use toupper(3C) as including this 2082 * code doubles the size of ld.so.1. 2083 */ 2084 if ((*sstr >= 'a') && (*sstr <= 'z')) 2085 *sstr = *sstr - ('a' - 'A'); 2086 } 2087 } 2088 continue; 2089 } 2090 2091 *sstr = '\0'; 2092 if (estr) { 2093 nlen = estr - nstr; 2094 if ((*++estr == '\0') || (*estr == ',')) 2095 estr = 0; 2096 } else 2097 nlen = sstr - nstr; 2098 2099 /* 2100 * Fabricate a boolean definition for any unqualified variable. 2101 * Thus LD_FLAGS=bind_now is represented as BIND_NOW=(null). 2102 * The value is sufficient to assert any boolean variables, plus 2103 * the term "(null)" is specifically chosen in case someone 2104 * mistakenly supplies something like LD_FLAGS=library_path. 2105 */ 2106 if (estr == 0) 2107 estr = (char *)MSG_INTL(MSG_STR_NULL); 2108 2109 /* 2110 * Determine whether the environment variable is 32- or 64-bit 2111 * specific. The length, len, will reflect the architecture 2112 * neutral portion of the string. 2113 */ 2114 if ((flags = ld_arch_env(nstr, &nlen)) != ENV_TYP_IGNORE) { 2115 ld_generic_env(nstr, nlen, estr, lmflags, 2116 lmtflags, (env_flags | flags), aout); 2117 } 2118 if (len == 0) 2119 return (0); 2120 2121 nstr = sstr + 1; 2122 estr = 0; 2123 } 2124 return (0); 2125 } 2126 2127 2128 /* 2129 * Process a single environment string. Only strings starting with `LD_' are 2130 * reserved for our use. By convention, all strings should be of the form 2131 * `LD_XXXX=', if the string is followed by a non-null value the appropriate 2132 * functionality is enabled. Also pick off applicable locale variables. 2133 */ 2134 #define LOC_LANG 1 2135 #define LOC_MESG 2 2136 #define LOC_ALL 3 2137 2138 static void 2139 ld_str_env(const char *s1, Word *lmflags, Word *lmtflags, uint_t env_flags, 2140 int aout) 2141 { 2142 const char *s2; 2143 size_t loc = 0; 2144 2145 if (*s1++ != 'L') 2146 return; 2147 2148 /* 2149 * See if we have any locale environment settings. These environment 2150 * variables have a precedence, LC_ALL is higher than LC_MESSAGES which 2151 * is higher than LANG. 2152 */ 2153 s2 = s1; 2154 if ((*s2++ == 'C') && (*s2++ == '_') && (*s2 != '\0')) { 2155 if (strncmp(s2, MSG_ORIG(MSG_LC_ALL), MSG_LC_ALL_SIZE) == 0) { 2156 s2 += MSG_LC_ALL_SIZE; 2157 if ((*s2 != '\0') && (loc < LOC_ALL)) { 2158 locale = s2; 2159 loc = LOC_ALL; 2160 } 2161 } else if (strncmp(s2, MSG_ORIG(MSG_LC_MESSAGES), 2162 MSG_LC_MESSAGES_SIZE) == 0) { 2163 s2 += MSG_LC_MESSAGES_SIZE; 2164 if ((*s2 != '\0') && (loc < LOC_MESG)) { 2165 locale = s2; 2166 loc = LOC_MESG; 2167 } 2168 } 2169 return; 2170 } 2171 2172 s2 = s1; 2173 if ((*s2++ == 'A') && (*s2++ == 'N') && (*s2++ == 'G') && 2174 (*s2++ == '=') && (*s2 != '\0') && (loc < LOC_LANG)) { 2175 locale = s2; 2176 loc = LOC_LANG; 2177 return; 2178 } 2179 2180 /* 2181 * Pick off any LD_XXXX environment variables. 2182 */ 2183 if ((*s1++ == 'D') && (*s1++ == '_') && (*s1 != '\0')) { 2184 size_t len; 2185 int flags; 2186 2187 /* 2188 * Environment variables with no value (ie. LD_XXXX=) typically 2189 * have no impact, however if environment variables are defined 2190 * within a configuration file, these null user settings can be 2191 * used to disable any configuration replaceable definitions. 2192 */ 2193 if ((s2 = strchr(s1, '=')) == 0) { 2194 len = strlen(s1); 2195 s2 = 0; 2196 } else if (*++s2 == '\0') { 2197 len = strlen(s1) - 1; 2198 s2 = 0; 2199 } else { 2200 len = s2 - s1 - 1; 2201 while (isspace(*s2)) 2202 s2++; 2203 } 2204 2205 /* 2206 * Determine whether the environment variable is 32- or 64-bit 2207 * specific. The length, len, will reflect the architecture 2208 * neutral portion of the string. 2209 */ 2210 if ((flags = ld_arch_env(s1, &len)) == ENV_TYP_IGNORE) 2211 return; 2212 env_flags |= flags; 2213 2214 ld_generic_env(s1, len, s2, lmflags, lmtflags, env_flags, aout); 2215 } 2216 } 2217 2218 /* 2219 * Internal getenv routine. Called immediately after ld.so.1 initializes 2220 * itself. 2221 */ 2222 int 2223 readenv_user(const char ** envp, Word *lmflags, Word *lmtflags, int aout) 2224 { 2225 if (envp == (const char **)0) 2226 return (0); 2227 2228 while (*envp != (const char *)0) 2229 ld_str_env(*envp++, lmflags, lmtflags, 0, aout); 2230 2231 /* 2232 * Having collected the best representation of any LD_FLAGS, process 2233 * these strings. 2234 */ 2235 if (ld_flags_env(rpl_ldflags, lmflags, lmtflags, 0, aout) == 1) 2236 return (1); 2237 2238 /* 2239 * Don't allow environment controlled auditing when tracing or if 2240 * explicitly disabled. Trigger all tracing modes from 2241 * LML_FLG_TRC_ENABLE. 2242 */ 2243 if ((*lmflags & LML_FLG_TRC_ENABLE) || (rtld_flags & RT_FL_NOAUDIT)) 2244 rpl_audit = profile_lib = profile_name = 0; 2245 if ((*lmflags & LML_FLG_TRC_ENABLE) == 0) 2246 *lmflags &= ~LML_MSK_TRC; 2247 2248 /* 2249 * If we have a locale setting make sure its worth processing further. 2250 * Duplicate the string so that new locale setting can generically 2251 * cleanup any previous locales. 2252 */ 2253 if (locale) { 2254 if (((*locale == 'C') && (*(locale + 1) == '\0')) || 2255 (strcmp(locale, MSG_ORIG(MSG_TKN_POSIX)) == 0)) 2256 locale = 0; 2257 else 2258 locale = strdup(locale); 2259 } 2260 return (0); 2261 } 2262 2263 /* 2264 * Configuration environment processing. Called after the a.out has been 2265 * processed (as the a.out can specify its own configuration file). 2266 */ 2267 int 2268 readenv_config(Rtc_env * envtbl, Addr addr, int aout) 2269 { 2270 Word * lmflags = &(lml_main.lm_flags); 2271 Word * lmtflags = &(lml_main.lm_tflags); 2272 2273 if (envtbl == (Rtc_env *)0) 2274 return (0); 2275 2276 while (envtbl->env_str) { 2277 uint_t env_flags = ENV_TYP_CONFIG; 2278 2279 if (envtbl->env_flags & RTC_ENV_PERMANT) 2280 env_flags |= ENV_TYP_PERMANT; 2281 2282 ld_str_env((const char *)(envtbl->env_str + addr), 2283 lmflags, lmtflags, env_flags, 0); 2284 envtbl++; 2285 } 2286 2287 /* 2288 * Having collected the best representation of any LD_FLAGS, process 2289 * these strings. 2290 */ 2291 if (ld_flags_env(rpl_ldflags, lmflags, lmtflags, 0, aout) == 1) 2292 return (1); 2293 if (ld_flags_env(prm_ldflags, lmflags, lmtflags, ENV_TYP_CONFIG, 2294 aout) == 1) 2295 return (1); 2296 2297 /* 2298 * Don't allow environment controlled auditing when tracing or if 2299 * explicitly disabled. Trigger all tracing modes from 2300 * LML_FLG_TRC_ENABLE. 2301 */ 2302 if ((*lmflags & LML_FLG_TRC_ENABLE) || (rtld_flags & RT_FL_NOAUDIT)) 2303 prm_audit = profile_lib = profile_name = 0; 2304 if ((*lmflags & LML_FLG_TRC_ENABLE) == 0) 2305 *lmflags &= ~LML_MSK_TRC; 2306 2307 return (0); 2308 } 2309 2310 int 2311 dowrite(Prfbuf * prf) 2312 { 2313 /* 2314 * We do not have a valid file descriptor, so we are unable 2315 * to flush the buffer. 2316 */ 2317 if (prf->pr_fd == -1) 2318 return (0); 2319 (void) write(prf->pr_fd, prf->pr_buf, prf->pr_cur - prf->pr_buf); 2320 prf->pr_cur = prf->pr_buf; 2321 return (1); 2322 } 2323 2324 /* 2325 * Simplified printing. The following conversion specifications are supported: 2326 * 2327 * % [#] [-] [min field width] [. precision] s|d|x|c 2328 * 2329 * 2330 * dorprf takes the output buffer in the form of Prfbuf which permits 2331 * the verification of the output buffer size and the concatenation 2332 * of data to an already existing output buffer. The Prfbuf 2333 * structure contains the following: 2334 * 2335 * pr_buf pointer to the beginning of the output buffer. 2336 * pr_cur pointer to the next available byte in the output buffer. By 2337 * setting pr_cur ahead of pr_buf you can append to an already 2338 * existing buffer. 2339 * pr_len the size of the output buffer. By setting pr_len to '0' you 2340 * disable protection from overflows in the output buffer. 2341 * pr_fd a pointer to the file-descriptor the buffer will eventually be 2342 * output to. If pr_fd is set to '-1' then it's assumed there is 2343 * no output buffer and doprf() will return with an error if the 2344 * output buffer is overflowed. If pr_fd is > -1 then when the 2345 * output buffer is filled it will be flushed to pr_fd and then 2346 * the available for additional data. 2347 */ 2348 #define FLG_UT_MINUS 0x0001 /* - */ 2349 #define FLG_UT_SHARP 0x0002 /* # */ 2350 #define FLG_UT_DOTSEEN 0x0008 /* dot appeared in format spec */ 2351 2352 /* 2353 * This macro is for use from within doprf only. it's to be used 2354 * for checking the output buffer size and placing characters into 2355 * the buffer. 2356 */ 2357 #define PUTC(c) \ 2358 { \ 2359 register char tmpc; \ 2360 \ 2361 tmpc = (c); \ 2362 if ((bufsiz) && ((bp + 1) >= bufend)) { \ 2363 prf->pr_cur = bp; \ 2364 if (dowrite(prf) == 0) \ 2365 return (0); \ 2366 bp = prf->pr_cur; \ 2367 } \ 2368 *bp++ = tmpc; \ 2369 } 2370 2371 size_t 2372 doprf(const char *format, va_list args, Prfbuf *prf) 2373 { 2374 char c; 2375 char *bp = prf->pr_cur; 2376 char *bufend = prf->pr_buf + prf->pr_len; 2377 size_t bufsiz = prf->pr_len; 2378 2379 while ((c = *format++) != '\0') { 2380 if (c != '%') { 2381 PUTC(c); 2382 } else { 2383 int base = 0, flag = 0, width = 0, prec = 0; 2384 size_t _i; 2385 int _c, _n; 2386 char *_s; 2387 int ls = 0; 2388 again: 2389 c = *format++; 2390 switch (c) { 2391 case '-': 2392 flag |= FLG_UT_MINUS; 2393 goto again; 2394 case '#': 2395 flag |= FLG_UT_SHARP; 2396 goto again; 2397 case '.': 2398 flag |= FLG_UT_DOTSEEN; 2399 goto again; 2400 case '0': 2401 case '1': 2402 case '2': 2403 case '3': 2404 case '4': 2405 case '5': 2406 case '6': 2407 case '7': 2408 case '8': 2409 case '9': 2410 if (flag & FLG_UT_DOTSEEN) 2411 prec = (prec * 10) + c - '0'; 2412 else 2413 width = (width * 10) + c - '0'; 2414 goto again; 2415 case 'x': 2416 case 'X': 2417 base = 16; 2418 break; 2419 case 'd': 2420 case 'D': 2421 case 'u': 2422 base = 10; 2423 flag &= ~FLG_UT_SHARP; 2424 break; 2425 case 'l': 2426 base = 10; 2427 ls++; /* number of l's (long or long long) */ 2428 if ((*format == 'l') || 2429 (*format == 'd') || (*format == 'D') || 2430 (*format == 'x') || (*format == 'X') || 2431 (*format == 'o') || (*format == 'O')) 2432 goto again; 2433 break; 2434 case 'o': 2435 case 'O': 2436 base = 8; 2437 break; 2438 case 'c': 2439 _c = va_arg(args, int); 2440 2441 for (_i = 24; _i > 0; _i -= 8) { 2442 if ((c = ((_c >> _i) & 0x7f)) != 0) { 2443 PUTC(c); 2444 } 2445 } 2446 if ((c = ((_c >> _i) & 0x7f)) != 0) { 2447 PUTC(c); 2448 } 2449 break; 2450 case 's': 2451 _s = va_arg(args, char *); 2452 _i = strlen(_s); 2453 /* LINTED */ 2454 _n = (int)(width - _i); 2455 if (!prec) 2456 /* LINTED */ 2457 prec = (int)_i; 2458 2459 if (width && !(flag & FLG_UT_MINUS)) { 2460 while (_n-- > 0) 2461 PUTC(' '); 2462 } 2463 while (((c = *_s++) != 0) && prec--) { 2464 PUTC(c); 2465 } 2466 if (width && (flag & FLG_UT_MINUS)) { 2467 while (_n-- > 0) 2468 PUTC(' '); 2469 } 2470 break; 2471 case '%': 2472 PUTC('%'); 2473 break; 2474 default: 2475 break; 2476 } 2477 2478 /* 2479 * Numeric processing 2480 */ 2481 if (base) { 2482 char local[20]; 2483 const char *string = 2484 MSG_ORIG(MSG_STR_HEXNUM); 2485 size_t ssize = 0, psize = 0; 2486 const char *prefix = 2487 MSG_ORIG(MSG_STR_EMPTY); 2488 u_longlong_t num; 2489 2490 switch (ls) { 2491 case 0: /* int */ 2492 num = (u_longlong_t) 2493 va_arg(args, uint_t); 2494 break; 2495 case 1: /* long */ 2496 num = (u_longlong_t) 2497 va_arg(args, ulong_t); 2498 break; 2499 case 2: /* long long */ 2500 num = va_arg(args, u_longlong_t); 2501 break; 2502 } 2503 2504 if (flag & FLG_UT_SHARP) { 2505 if (base == 16) { 2506 prefix = MSG_ORIG(MSG_STR_HEX); 2507 psize = 2; 2508 } else { 2509 prefix = MSG_ORIG(MSG_STR_ZERO); 2510 psize = 1; 2511 } 2512 } 2513 if ((base == 10) && (long)num < 0) { 2514 prefix = MSG_ORIG(MSG_STR_NEGATE); 2515 psize = MSG_STR_NEGATE_SIZE; 2516 num = (u_longlong_t)(-(longlong_t)num); 2517 } 2518 2519 /* 2520 * Convert the numeric value into a local 2521 * string (stored in reverse order). 2522 */ 2523 _s = local; 2524 do { 2525 *_s++ = string[num % base]; 2526 num /= base; 2527 ssize++; 2528 } while (num); 2529 2530 /* 2531 * Provide any precision or width padding. 2532 */ 2533 if (prec) { 2534 /* LINTED */ 2535 _n = (int)(prec - ssize); 2536 while (_n-- > 0) { 2537 *_s++ = '0'; 2538 ssize++; 2539 } 2540 } 2541 if (width && !(flag & FLG_UT_MINUS)) { 2542 /* LINTED */ 2543 _n = (int)(width - ssize - psize); 2544 while (_n-- > 0) { 2545 PUTC(' '); 2546 } 2547 } 2548 2549 /* 2550 * Print any prefix and the numeric string 2551 */ 2552 while (*prefix) 2553 PUTC(*prefix++); 2554 do { 2555 PUTC(*--_s); 2556 } while (_s > local); 2557 2558 /* 2559 * Provide any width padding. 2560 */ 2561 if (width && (flag & FLG_UT_MINUS)) { 2562 /* LINTED */ 2563 _n = (int)(width - ssize - psize); 2564 while (_n-- > 0) 2565 PUTC(' '); 2566 } 2567 } 2568 } 2569 } 2570 PUTC('\0'); 2571 prf->pr_cur = bp; 2572 return (1); 2573 } 2574 2575 static int 2576 doprintf(const char *format, va_list args, Prfbuf *prf) 2577 { 2578 char *ocur = prf->pr_cur; 2579 2580 if (doprf(format, args, prf) == 0) 2581 return (0); 2582 /* LINTED */ 2583 return ((int)(prf->pr_cur - ocur)); 2584 } 2585 2586 /* VARARGS2 */ 2587 int 2588 sprintf(char *buf, const char *format, ...) 2589 { 2590 va_list args; 2591 int len; 2592 Prfbuf prf; 2593 2594 va_start(args, format); 2595 prf.pr_buf = prf.pr_cur = buf; 2596 prf.pr_len = 0; 2597 prf.pr_fd = -1; 2598 len = doprintf(format, args, &prf); 2599 va_end(args); 2600 2601 /* 2602 * sprintf() return value excludes the terminating null byte. 2603 */ 2604 return (len - 1); 2605 } 2606 2607 /* VARARGS3 */ 2608 int 2609 snprintf(char *buf, size_t n, const char *format, ...) 2610 { 2611 va_list args; 2612 int len; 2613 Prfbuf prf; 2614 2615 va_start(args, format); 2616 prf.pr_buf = prf.pr_cur = buf; 2617 prf.pr_len = n; 2618 prf.pr_fd = -1; 2619 len = doprintf(format, args, &prf); 2620 va_end(args); 2621 2622 return (len); 2623 } 2624 2625 /* VARARGS2 */ 2626 int 2627 bufprint(Prfbuf *prf, const char *format, ...) 2628 { 2629 va_list args; 2630 int len; 2631 2632 va_start(args, format); 2633 len = doprintf(format, args, prf); 2634 va_end(args); 2635 2636 return (len); 2637 } 2638 2639 /*PRINTFLIKE1*/ 2640 int 2641 printf(const char *format, ...) 2642 { 2643 va_list args; 2644 char buffer[ERRSIZE]; 2645 Prfbuf prf; 2646 2647 va_start(args, format); 2648 prf.pr_buf = prf.pr_cur = buffer; 2649 prf.pr_len = ERRSIZE; 2650 prf.pr_fd = 1; 2651 (void) doprf(format, args, &prf); 2652 va_end(args); 2653 /* 2654 * Trim trailing '\0' form buffer 2655 */ 2656 prf.pr_cur--; 2657 return (dowrite(&prf)); 2658 } 2659 2660 static char errbuf[ERRSIZE], *nextptr = errbuf, *prevptr = 0; 2661 2662 /*PRINTFLIKE2*/ 2663 void 2664 eprintf(Error error, const char *format, ...) 2665 { 2666 va_list args; 2667 int overflow = 0; 2668 static int lock = 0; 2669 Prfbuf prf; 2670 2671 if (lock || (nextptr == (errbuf + ERRSIZE))) 2672 return; 2673 2674 /* 2675 * Note: this lock is here to prevent the same thread from recursively 2676 * entering itself during a eprintf. ie: during eprintf malloc() fails 2677 * and we try and call eprintf ... and then malloc() fails .... 2678 */ 2679 lock = 1; 2680 2681 /* 2682 * If we have completed startup initialization, all error messages 2683 * must be saved. These are reported through dlerror(). If we're 2684 * still in the initialization stage, output the error directly and 2685 * add a newline. 2686 */ 2687 va_start(args, format); 2688 2689 prf.pr_buf = prf.pr_cur = nextptr; 2690 prf.pr_len = ERRSIZE - (nextptr - errbuf); 2691 2692 if (!(rtld_flags & RT_FL_APPLIC)) 2693 prf.pr_fd = 2; 2694 else 2695 prf.pr_fd = -1; 2696 2697 if (error > ERR_NONE) { 2698 if ((error == ERR_FATAL) && (rtld_flags2 & RT_FL2_FTL2WARN)) 2699 error = ERR_WARNING; 2700 if (error == ERR_WARNING) { 2701 if (err_strs[ERR_WARNING] == 0) 2702 err_strs[ERR_WARNING] = MSG_INTL(MSG_ERR_WARNING); 2703 } else if (error == ERR_FATAL) { 2704 if (err_strs[ERR_FATAL] == 0) 2705 err_strs[ERR_FATAL] = MSG_INTL(MSG_ERR_FATAL); 2706 } else if (error == ERR_ELF) { 2707 if (err_strs[ERR_ELF] == 0) 2708 err_strs[ERR_ELF] = MSG_INTL(MSG_ERR_ELF); 2709 } 2710 if (bufprint(&prf, MSG_ORIG(MSG_STR_EMSGFOR1), 2711 rt_name, pr_name, err_strs[error]) == 0) { 2712 overflow = 1; 2713 } else { 2714 /* 2715 * Remove the terminating '\0'. 2716 */ 2717 prf.pr_cur--; 2718 } 2719 } 2720 2721 if ((overflow == 0) && doprf(format, args, &prf) == 0) 2722 overflow = 1; 2723 2724 /* 2725 * If this is an ELF error, it will have been generated by a support 2726 * object that has a dependency on libelf. ld.so.1 doesn't generate any 2727 * ELF error messages as it doesn't interact with libelf. Determine the 2728 * ELF error string. 2729 */ 2730 if ((overflow == 0) && (error == ERR_ELF)) { 2731 static int (*elfeno)() = 0; 2732 static const char *(*elfemg)(); 2733 const char *emsg; 2734 Rt_map *dlmp, *lmp = lml_rtld.lm_head; 2735 2736 if (NEXT(lmp) && (elfeno == 0)) { 2737 if (((elfemg = (const char *(*)())dlsym_intn(RTLD_NEXT, 2738 MSG_ORIG(MSG_SYM_ELFERRMSG), lmp, &dlmp)) == 0) || 2739 ((elfeno = (int (*)())dlsym_intn(RTLD_NEXT, 2740 MSG_ORIG(MSG_SYM_ELFERRNO), lmp, &dlmp)) == 0)) 2741 elfeno = 0; 2742 } 2743 2744 /* 2745 * Lookup the message; equivalent to elf_errmsg(elf_errno()). 2746 */ 2747 if (elfeno && ((emsg = (* elfemg)((* elfeno)())) != 0)) { 2748 prf.pr_cur--; 2749 if (bufprint(&prf, MSG_ORIG(MSG_STR_EMSGFOR2), 2750 emsg) == 0) 2751 overflow = 1; 2752 } 2753 } 2754 2755 /* 2756 * Push out any message that's been built. Note, in the case of an 2757 * overflow condition, this message may be incomplete, in which case 2758 * make sure any partial string is null terminated. 2759 */ 2760 if (overflow) 2761 *(prf.pr_cur) = '\0'; 2762 if ((rtld_flags & (RT_FL_APPLIC | RT_FL_SILENCERR)) == 0) { 2763 *(prf.pr_cur - 1) = '\n'; 2764 (void) dowrite(&prf); 2765 } 2766 2767 DBG_CALL(Dbg_util_str(nextptr)); 2768 va_end(args); 2769 2770 /* 2771 * Determine if there was insufficient space left in the buffer to 2772 * complete the message. If so, we'll have printed out as much as had 2773 * been processed if we're not yet executing the application. 2774 * Otherwise, there will be some debugging diagnostic indicating 2775 * as much of the error message as possible. Write out a final buffer 2776 * overflow diagnostic - unlocalized, so we don't chance more errors. 2777 */ 2778 if (overflow) { 2779 char *str = (char *)MSG_INTL(MSG_EMG_BUFOVRFLW); 2780 2781 if ((rtld_flags & RT_FL_SILENCERR) == 0) { 2782 lasterr = str; 2783 2784 if ((rtld_flags & RT_FL_APPLIC) == 0) { 2785 (void) write(2, str, strlen(str)); 2786 (void) write(2, MSG_ORIG(MSG_STR_NL), 2787 MSG_STR_NL_SIZE); 2788 } 2789 } 2790 DBG_CALL(Dbg_util_str(str)); 2791 2792 lock = 0; 2793 nextptr = errbuf + ERRSIZE; 2794 return; 2795 } 2796 2797 /* 2798 * If the application has started, then error messages are being saved 2799 * for retrieval by dlerror(), or possible flushing from rtldexit() in 2800 * the case of a fatal error. In this case, establish the next error 2801 * pointer. If we haven't started the application, the whole message 2802 * buffer can be reused. 2803 */ 2804 if ((rtld_flags & RT_FL_SILENCERR) == 0) { 2805 lasterr = nextptr; 2806 2807 /* 2808 * Note, should we encounter an error such as ENOMEM, there may 2809 * be a number of the same error messages (ie. an operation 2810 * fails with ENOMEM, and then the attempts to construct the 2811 * error message itself, which incurs additional ENOMEM errors). 2812 * Compare any previous error message with the one we've just 2813 * created to prevent any duplication clutter. 2814 */ 2815 if ((rtld_flags & RT_FL_APPLIC) && 2816 ((prevptr == 0) || (strcmp(prevptr, nextptr) != 0))) { 2817 prevptr = nextptr; 2818 nextptr = prf.pr_cur; 2819 *nextptr = '\0'; 2820 } 2821 } 2822 lock = 0; 2823 } 2824 2825 2826 #if DEBUG 2827 /* 2828 * Provide assfail() for ASSERT() statements, 2829 * see <sys/debug.h> for further details. 2830 */ 2831 int 2832 assfail(const char *a, const char *f, int l) 2833 { 2834 (void) printf("assertion failed: %s, file: %s, line: %d\n", a, f, l); 2835 (void) _lwp_kill(_lwp_self(), SIGABRT); 2836 return (0); 2837 } 2838 #endif 2839 2840 /* 2841 * Exit. If we arrive here with a non zero status it's because of a fatal 2842 * error condition (most commonly a relocation error). If the application has 2843 * already had control, then the actual fatal error message will have been 2844 * recorded in the dlerror() message buffer. Print the message before really 2845 * exiting. 2846 */ 2847 void 2848 rtldexit(Lm_list * lml, int status) 2849 { 2850 if (status) { 2851 if (rtld_flags & RT_FL_APPLIC) { 2852 /* 2853 * If the error buffer has been used, write out all 2854 * pending messages - lasterr is simply a pointer to 2855 * the last message in this buffer. However, if the 2856 * buffer couldn't be created at all, lasterr points 2857 * to a constant error message string. 2858 */ 2859 if (*errbuf) { 2860 char *errptr = errbuf; 2861 char *errend = errbuf + ERRSIZE; 2862 2863 while ((errptr < errend) && *errptr) { 2864 size_t size = strlen(errptr); 2865 (void) write(2, errptr, size); 2866 (void) write(2, MSG_ORIG(MSG_STR_NL), 2867 MSG_STR_NL_SIZE); 2868 errptr += (size + 1); 2869 } 2870 } 2871 if (lasterr && ((lasterr < errbuf) || 2872 (lasterr > (errbuf + ERRSIZE)))) { 2873 (void) write(2, lasterr, strlen(lasterr)); 2874 (void) write(2, MSG_ORIG(MSG_STR_NL), 2875 MSG_STR_NL_SIZE); 2876 } 2877 } 2878 leave(lml); 2879 (void) _lwp_kill(_lwp_self(), killsig); 2880 } 2881 _exit(status); 2882 } 2883 2884 /* 2885 * Routines to co-ordinate the opening of /dev/zero and /proc. 2886 * dz_fd is exported for possible use by libld.so, and to insure it gets 2887 * closed on leaving ld.so.1. 2888 */ 2889 int dz_fd = FD_UNAVAIL; 2890 2891 void 2892 dz_init(int fd) 2893 { 2894 dz_fd = fd; 2895 } 2896 2897 2898 /* 2899 * mmap() a page from MAP_ANON 2900 * 2901 * Note: MAP_ANON is only on Solaris8++, we use this routine to 2902 * not only mmap(MAP_ANON) but to also probe if it is available 2903 * on the current OS. 2904 */ 2905 Am_ret 2906 anon_map(caddr_t *addr, size_t len, int prot, int flags) 2907 { 2908 #if defined(MAP_ANON) 2909 static int noanon = 0; 2910 caddr_t va; 2911 2912 if (noanon == 0) { 2913 if ((va = (caddr_t)mmap(*addr, len, prot, 2914 (flags | MAP_ANON), -1, 0)) != MAP_FAILED) { 2915 *addr = va; 2916 return (AM_OK); 2917 } 2918 2919 if ((errno != EBADF) && (errno != EINVAL)) { 2920 int err = errno; 2921 eprintf(ERR_FATAL, MSG_INTL(MSG_SYS_MMAPANON), 2922 MSG_ORIG(MSG_PTH_DEVZERO), strerror(err)); 2923 return (AM_ERROR); 2924 } else 2925 noanon = 1; 2926 } 2927 #endif 2928 return (AM_NOSUP); 2929 } 2930 2931 /* 2932 * Map anonymous memory from /dev/zero, or via MAP_ANON. 2933 * 2934 * (MAP_ANON only appears on Solaris 8, so we need fall-back 2935 * behavior for older systems.) 2936 */ 2937 caddr_t 2938 dz_map(caddr_t addr, size_t len, int prot, int flags) 2939 { 2940 caddr_t va; 2941 int err; 2942 Am_ret amret; 2943 2944 amret = anon_map(&addr, len, prot, flags); 2945 2946 if (amret == AM_OK) 2947 return (addr); 2948 if (amret == AM_ERROR) 2949 return (MAP_FAILED); 2950 2951 /* amret == AM_NOSUP -> fallback to a devzero mmaping */ 2952 2953 if (dz_fd == FD_UNAVAIL) { 2954 if ((dz_fd = open(MSG_ORIG(MSG_PTH_DEVZERO), 2955 O_RDONLY)) == FD_UNAVAIL) { 2956 err = errno; 2957 eprintf(ERR_FATAL, MSG_INTL(MSG_SYS_OPEN), 2958 MSG_ORIG(MSG_PTH_DEVZERO), strerror(err)); 2959 return (MAP_FAILED); 2960 } 2961 } 2962 2963 if ((va = mmap(addr, len, prot, flags, dz_fd, 0)) == MAP_FAILED) { 2964 err = errno; 2965 eprintf(ERR_FATAL, MSG_INTL(MSG_SYS_MMAP), 2966 MSG_ORIG(MSG_PTH_DEVZERO), strerror(err)); 2967 } 2968 return (va); 2969 } 2970 2971 static int pr_fd = FD_UNAVAIL; 2972 2973 int 2974 pr_open() 2975 { 2976 char proc[16]; 2977 2978 if (pr_fd == FD_UNAVAIL) { 2979 (void) snprintf(proc, 16, MSG_ORIG(MSG_FMT_PROC), 2980 (int)getpid()); 2981 if ((pr_fd = open(proc, O_RDONLY)) == FD_UNAVAIL) { 2982 int err = errno; 2983 2984 eprintf(ERR_FATAL, MSG_INTL(MSG_SYS_OPEN), proc, 2985 strerror(err)); 2986 } 2987 } 2988 return (pr_fd); 2989 } 2990 2991 static int nu_fd = FD_UNAVAIL; 2992 2993 caddr_t 2994 nu_map(caddr_t addr, size_t len, int prot, int flags) 2995 { 2996 caddr_t va; 2997 int err; 2998 2999 if (nu_fd == FD_UNAVAIL) { 3000 if ((nu_fd = open(MSG_ORIG(MSG_PTH_DEVNULL), 3001 O_RDONLY)) == FD_UNAVAIL) { 3002 err = errno; 3003 eprintf(ERR_FATAL, MSG_INTL(MSG_SYS_OPEN), 3004 MSG_ORIG(MSG_PTH_DEVNULL), strerror(err)); 3005 return (MAP_FAILED); 3006 } 3007 } 3008 3009 if ((va = (caddr_t)mmap(addr, len, prot, flags, nu_fd, 0)) == 3010 MAP_FAILED) { 3011 err = errno; 3012 eprintf(ERR_FATAL, MSG_INTL(MSG_SYS_MMAP), 3013 MSG_ORIG(MSG_PTH_DEVNULL), strerror(err)); 3014 } 3015 return (va); 3016 } 3017 3018 /* 3019 * Generic entry point from user code - simply grabs a lock. 3020 */ 3021 int 3022 enter(void) 3023 { 3024 if (rt_bind_guard(THR_FLG_RTLD)) { 3025 (void) rt_mutex_lock(&rtldlock); 3026 return (1); 3027 } 3028 return (0); 3029 } 3030 3031 /* 3032 * Generate diagnostics as to whether an object has been used. A symbolic 3033 * reference that gets bound to an object marks it as used. Dependencies that 3034 * are unused when RTLD_NOW is in effect should be removed from future builds 3035 * of an object. Dependencies that are unused without RTLD_NOW in effect are 3036 * candidates for lazy-loading. 3037 * Unreferenced objects identify objects that are defined as dependencies but 3038 * are unreferenced by the caller (they may however be referenced by other 3039 * objects within the process, and therefore don't qualify as completely unused. 3040 */ 3041 void 3042 unused(Lm_list *lml) 3043 { 3044 Rt_map *lmp; 3045 int nl = 0; 3046 Word tracing; 3047 3048 /* 3049 * If we're not tracing unused references or dependencies, or debugging 3050 * there's nothing to do. 3051 */ 3052 tracing = lml->lm_flags & (LML_FLG_TRC_UNREF | LML_FLG_TRC_UNUSED); 3053 3054 if ((tracing == 0) && (dbg_mask == 0)) 3055 return; 3056 3057 /* 3058 * Traverse the link-maps looking for unreferenced or unused 3059 * dependencies. Ignore the first object on a link-map list, as this 3060 * is effectively always used. 3061 */ 3062 for (lmp = (Rt_map *)NEXT(lml->lm_head); lmp; 3063 lmp = (Rt_map *)NEXT(lmp)) { 3064 /* 3065 * If tracing unreferenced objects, or under debugging, 3066 * determine whether any of this objects callers haven't 3067 * referenced it. 3068 */ 3069 if ((tracing & LML_FLG_TRC_UNREF) || dbg_mask) { 3070 Bnd_desc ** bdpp; 3071 Aliste off; 3072 3073 for (ALIST_TRAVERSE(CALLERS(lmp), off, bdpp)) { 3074 Bnd_desc * bdp = *bdpp; 3075 Rt_map * clmp; 3076 3077 if (bdp->b_flags & BND_REFER) 3078 continue; 3079 3080 clmp = bdp->b_caller; 3081 if (FLAGS1(clmp) & FL1_RT_LDDSTUB) 3082 continue; 3083 3084 if (nl++ == 0) { 3085 if (tracing & LML_FLG_TRC_UNREF) 3086 (void) printf(MSG_ORIG(MSG_STR_NL)); 3087 else 3088 DBG_CALL(Dbg_util_nl()); 3089 } 3090 3091 if (tracing & LML_FLG_TRC_UNREF) 3092 (void) printf(MSG_INTL(MSG_LDD_UNREF_FMT), 3093 NAME(lmp), NAME(clmp)); 3094 else 3095 DBG_CALL(Dbg_unused_unref(NAME(lmp), 3096 NAME(clmp))); 3097 } 3098 } 3099 3100 /* 3101 * If tracing unused objects simply display those objects that 3102 * haven't been referenced by anyone. 3103 */ 3104 if (FLAGS1(lmp) & FL1_RT_USED) 3105 continue; 3106 3107 if (nl++ == 0) { 3108 if (tracing) 3109 (void) printf(MSG_ORIG(MSG_STR_NL)); 3110 else 3111 DBG_CALL(Dbg_util_nl()); 3112 } 3113 if (CYCGROUP(lmp)) { 3114 if (tracing) 3115 (void) printf(MSG_INTL(MSG_LDD_UNCYC_FMT), 3116 NAME(lmp), CYCGROUP(lmp)); 3117 else 3118 DBG_CALL(Dbg_unused_file(NAME(lmp), 3119 CYCGROUP(lmp))); 3120 } else { 3121 if (tracing) 3122 (void) printf(MSG_INTL(MSG_LDD_UNUSED_FMT), 3123 NAME(lmp)); 3124 else 3125 DBG_CALL(Dbg_unused_file(NAME(lmp), 0)); 3126 } 3127 } 3128 3129 if (dbg_mask) 3130 DBG_CALL(Dbg_util_nl()); 3131 } 3132 3133 /* 3134 * Initialization routine for the Fmap structure. If the fmap structure is 3135 * already in use, any mapping is released. The structure is then initialized 3136 * in preparation for further use. 3137 */ 3138 void 3139 fmap_setup() 3140 { 3141 #if defined(MAP_ALIGN) 3142 /* 3143 * If MAP_ALIGN is set, the fm_addr has been seeded with an alignment 3144 * value. Otherwise, if fm_addr is non-null it indicates a mapping that 3145 * should now be freed. 3146 */ 3147 if (fmap->fm_maddr && ((fmap->fm_mflags & MAP_ALIGN) == 0)) 3148 (void) munmap((caddr_t)fmap->fm_maddr, fmap->fm_msize); 3149 3150 /* 3151 * Providing we haven't determined that this system doesn't support 3152 * MAP_ALIGN, initialize the mapping address with the default segment 3153 * alignment. 3154 */ 3155 if ((rtld_flags2 & RT_FL2_NOMALIGN) == 0) { 3156 fmap->fm_maddr = (char *)M_SEGM_ALIGN; 3157 fmap->fm_mflags = MAP_PRIVATE | MAP_ALIGN; 3158 } else { 3159 fmap->fm_maddr = 0; 3160 fmap->fm_mflags = MAP_PRIVATE; 3161 } 3162 #else 3163 if (fmap->fm_maddr) 3164 (void) munmap((caddr_t)fmap->fm_maddr, fmap->fm_msize); 3165 fmap->fm_maddr = 0; 3166 fmap->fm_mflags = MAP_PRIVATE; 3167 #endif 3168 3169 fmap->fm_msize = syspagsz; 3170 fmap->fm_hwptr = 0; 3171 } 3172 3173 /* 3174 * Generic cleanup routine called prior to returning control to the user. 3175 * Insures that any ld.so.1 specific file descriptors or temporary mapping are 3176 * released, and any locks dropped. 3177 */ 3178 void 3179 leave(Lm_list * lml) 3180 { 3181 /* 3182 * Alert the debuggers that the link-maps are consistent. 3183 */ 3184 if (lml) 3185 rd_event(lml, RD_DLACTIVITY, RT_CONSISTENT); 3186 3187 if (dz_fd != FD_UNAVAIL) { 3188 (void) close(dz_fd); 3189 dz_fd = FD_UNAVAIL; 3190 } 3191 3192 if (pr_fd != FD_UNAVAIL) { 3193 (void) close(pr_fd); 3194 pr_fd = FD_UNAVAIL; 3195 } 3196 3197 if (nu_fd != FD_UNAVAIL) { 3198 (void) close(nu_fd); 3199 nu_fd = FD_UNAVAIL; 3200 } 3201 3202 fmap_setup(); 3203 3204 /* 3205 * Reinitialize error message pointer, and any overflow indication. 3206 */ 3207 nextptr = errbuf; 3208 prevptr = 0; 3209 3210 /* 3211 * Don't drop our lock if we are running on our link-map list as 3212 * there's little point in doing so since we are single-threaded. 3213 * 3214 * LML_FLG_HOLDLOCK is set for: 3215 * *) The ld.so.1's link-map list. 3216 * *) The auditor's link-map if the environment is 3217 * libc/libthread un-unified. 3218 */ 3219 if (lml && (lml->lm_flags & LML_FLG_HOLDLOCK)) 3220 return; 3221 3222 if (rt_bind_clear(0) & THR_FLG_RTLD) { 3223 (void) rt_mutex_unlock(&rtldlock); 3224 (void) rt_bind_clear(THR_FLG_RTLD); 3225 } 3226 } 3227 3228 int 3229 callable(Rt_map * clmp, Rt_map * dlmp, Grp_hdl * ghp) 3230 { 3231 Alist * calp, * dalp; 3232 Aliste cnt1, cnt2; 3233 Grp_hdl ** ghpp1, ** ghpp2; 3234 3235 /* 3236 * An object can always find symbols within itself. 3237 */ 3238 if (clmp == dlmp) 3239 return (1); 3240 3241 /* 3242 * Don't allow an object to bind to an object that is being deleted 3243 * unless the binder is also being deleted. 3244 */ 3245 if ((FLAGS(dlmp) & FLG_RT_DELETE) && 3246 ((FLAGS(clmp) & FLG_RT_DELETE) == 0)) 3247 return (0); 3248 3249 /* 3250 * An object with world access can always bind to an object with global 3251 * visibility. 3252 */ 3253 if ((MODE(clmp) & RTLD_WORLD) && (MODE(dlmp) & RTLD_GLOBAL)) 3254 return (1); 3255 3256 /* 3257 * An object with local access can only bind to an object that is a 3258 * member of the same group. 3259 */ 3260 if (((MODE(clmp) & RTLD_GROUP) == 0) || 3261 ((calp = GROUPS(clmp)) == 0) || ((dalp = GROUPS(dlmp)) == 0)) 3262 return (0); 3263 3264 /* 3265 * Traverse the list of groups the caller is a part of. 3266 */ 3267 for (ALIST_TRAVERSE(calp, cnt1, ghpp1)) { 3268 /* 3269 * If we're testing for the ability of two objects to bind to 3270 * each other regardless of a specific group, ignore that group. 3271 */ 3272 if (ghp && (*ghpp1 == ghp)) 3273 continue; 3274 3275 /* 3276 * Traverse the list of groups the destination is a part of. 3277 */ 3278 for (ALIST_TRAVERSE(dalp, cnt2, ghpp2)) { 3279 if (*ghpp1 == *ghpp2) 3280 return (1); 3281 } 3282 } 3283 return (0); 3284 } 3285 3286 /* 3287 * Initialize the environ symbol. Traditionally this is carried out by the crt 3288 * code prior to jumping to main. However, init sections get fired before this 3289 * variable is initialized, so ld.so.1 sets this directly from the AUX vector 3290 * information. In addition, a process may have multiple link-maps (ld.so.1's 3291 * debugging and preloading objects), and link auditing, and each may need an 3292 * environ variable set. 3293 * 3294 * This routine is called after a relocation() pass, and thus provides for: 3295 * 3296 * o setting environ on the main link-map after the initial application and 3297 * its dependencies have been established. Typically environ lives in the 3298 * application (provided by its crt), but in older applications it might 3299 * be in libc. Who knows what's expected of applications not built on 3300 * Solaris. 3301 * 3302 * o after loading a new shared object. We can add shared objects to various 3303 * link-maps, and any link-map dependencies requiring getopt() require 3304 * their own environ. In addition, lazy loading might bring in the 3305 * supplier of environ (libc) after the link-map has been established and 3306 * other objects are present. 3307 * 3308 * This routine handles all these scenarios, without adding unnecessary overhead 3309 * to ld.so.1. 3310 */ 3311 void 3312 set_environ(Lm_list *lml) 3313 { 3314 Rt_map * dlmp; 3315 Sym * sym; 3316 Slookup sl; 3317 uint_t binfo; 3318 3319 sl.sl_name = MSG_ORIG(MSG_SYM_ENVIRON); 3320 sl.sl_cmap = lml->lm_head; 3321 sl.sl_imap = lml->lm_head; 3322 sl.sl_hash = 0; 3323 sl.sl_rsymndx = 0; 3324 sl.sl_flags = LKUP_WEAK; 3325 3326 if (sym = LM_LOOKUP_SYM(lml->lm_head)(&sl, &dlmp, &binfo)) { 3327 char ** addr = (char **)sym->st_value; 3328 3329 if (!(FLAGS(dlmp) & FLG_RT_FIXED)) 3330 addr = (char **)((uintptr_t)addr + 3331 (uintptr_t)ADDR(dlmp)); 3332 *addr = (char *)environ; 3333 lml->lm_flags |= LML_FLG_ENVIRON; 3334 } 3335 } 3336 3337 /* 3338 * Determine whether we have a secure executable. Uid and gid information 3339 * can be passed to us via the aux vector, however if these values are -1 3340 * then use the appropriate system call to obtain them. 3341 * 3342 * o If the user is the root they can do anything 3343 * 3344 * o If the real and effective uid's don't match, or the real and 3345 * effective gid's don't match then this is determined to be a `secure' 3346 * application. 3347 * 3348 * This function is called prior to any dependency processing (see _setup.c). 3349 * Any secure setting will remain in effect for the life of the process. 3350 */ 3351 void 3352 security(uid_t uid, uid_t euid, gid_t gid, gid_t egid, int auxflags) 3353 { 3354 #ifdef AT_SUN_AUXFLAGS 3355 if (auxflags != -1) { 3356 if ((auxflags & AF_SUN_SETUGID) != 0) 3357 rtld_flags |= RT_FL_SECURE; 3358 return; 3359 } 3360 #endif 3361 if (uid == -1) 3362 uid = getuid(); 3363 if (uid) { 3364 if (euid == -1) 3365 euid = geteuid(); 3366 if (uid != euid) 3367 rtld_flags |= RT_FL_SECURE; 3368 else { 3369 if (gid == -1) 3370 gid = getgid(); 3371 if (egid == -1) 3372 egid = getegid(); 3373 if (gid != egid) 3374 rtld_flags |= RT_FL_SECURE; 3375 } 3376 } 3377 } 3378 3379 /* 3380 * _REENTRANT code gets errno redefined to a function so provide for return 3381 * of the thread errno if applicable. This has no meaning in ld.so.1 which 3382 * is basically singled threaded. Provide the interface for our dependencies. 3383 */ 3384 #undef errno 3385 #pragma weak _private___errno = ___errno 3386 int * 3387 ___errno() 3388 { 3389 extern int errno; 3390 3391 return (&errno); 3392 } 3393 3394 /* 3395 * The interface with the c library which is supplied through libdl.so.1. 3396 * A non-null argument allows a function pointer array to be passed to us which 3397 * is used to re-initialize the linker libc table. 3398 */ 3399 void 3400 _ld_libc(void * ptr) 3401 { 3402 get_lcinterface(_caller(caller(), CL_EXECDEF), (Lc_interface *)ptr); 3403 } 3404 3405 /* 3406 * Determine whether a symbol name should be demangled. 3407 */ 3408 const char * 3409 demangle(const char *name) 3410 { 3411 if (rtld_flags & RT_FL_DEMANGLE) 3412 return (conv_sym_dem(name)); 3413 else 3414 return (name); 3415 } 3416