17c478bd9Sstevel@tonic-gate /* 27c478bd9Sstevel@tonic-gate * CDDL HEADER START 37c478bd9Sstevel@tonic-gate * 47c478bd9Sstevel@tonic-gate * The contents of this file are subject to the terms of the 5c39996a7Sstevel * Common Development and Distribution License (the "License"). 6c39996a7Sstevel * You may not use this file except in compliance with the License. 77c478bd9Sstevel@tonic-gate * 87c478bd9Sstevel@tonic-gate * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 97c478bd9Sstevel@tonic-gate * or http://www.opensolaris.org/os/licensing. 107c478bd9Sstevel@tonic-gate * See the License for the specific language governing permissions 117c478bd9Sstevel@tonic-gate * and limitations under the License. 127c478bd9Sstevel@tonic-gate * 137c478bd9Sstevel@tonic-gate * When distributing Covered Code, include this CDDL HEADER in each 147c478bd9Sstevel@tonic-gate * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 157c478bd9Sstevel@tonic-gate * If applicable, add the following below this CDDL HEADER, with the 167c478bd9Sstevel@tonic-gate * fields enclosed by brackets "[]" replaced with your own identifying 177c478bd9Sstevel@tonic-gate * information: Portions Copyright [yyyy] [name of copyright owner] 187c478bd9Sstevel@tonic-gate * 197c478bd9Sstevel@tonic-gate * CDDL HEADER END 207c478bd9Sstevel@tonic-gate */ 21c39996a7Sstevel 227c478bd9Sstevel@tonic-gate /* 23*56f33205SJonathan Adams * Copyright 2010 Sun Microsystems, Inc. All rights reserved. 247c478bd9Sstevel@tonic-gate * Use is subject to license terms. 257c478bd9Sstevel@tonic-gate */ 267c478bd9Sstevel@tonic-gate 272e2c009bSjjc /* 282e2c009bSjjc * LOCALITY GROUP (LGROUP) PLATFORM SUPPORT FOR X86/AMD64 PLATFORMS 292e2c009bSjjc * ================================================================ 302e2c009bSjjc * Multiprocessor AMD and Intel systems may have Non Uniform Memory Access 312e2c009bSjjc * (NUMA). A NUMA machine consists of one or more "nodes" that each consist of 322e2c009bSjjc * one or more CPUs and some local memory. The CPUs in each node can access 332e2c009bSjjc * the memory in the other nodes but at a higher latency than accessing their 342e2c009bSjjc * local memory. Typically, a system with only one node has Uniform Memory 352e2c009bSjjc * Access (UMA), but it may be possible to have a one node system that has 362e2c009bSjjc * some global memory outside of the node which is higher latency. 372e2c009bSjjc * 382e2c009bSjjc * Module Description 392e2c009bSjjc * ------------------ 402e2c009bSjjc * This module provides a platform interface for determining which CPUs and 412e2c009bSjjc * which memory (and how much) are in a NUMA node and how far each node is from 422e2c009bSjjc * each other. The interface is used by the Virtual Memory (VM) system and the 432e2c009bSjjc * common lgroup framework. The VM system uses the plat_*() routines to fill 442e2c009bSjjc * in its memory node (memnode) array with the physical address range spanned 452e2c009bSjjc * by each NUMA node to know which memory belongs to which node, so it can 462e2c009bSjjc * build and manage a physical page free list for each NUMA node and allocate 472e2c009bSjjc * local memory from each node as needed. The common lgroup framework uses the 482e2c009bSjjc * exported lgrp_plat_*() routines to figure out which CPUs and memory belong 492e2c009bSjjc * to each node (leaf lgroup) and how far each node is from each other, so it 502e2c009bSjjc * can build the latency (lgroup) topology for the machine in order to optimize 512e2c009bSjjc * for locality. Also, an lgroup platform handle instead of lgroups are used 522e2c009bSjjc * in the interface with this module, so this module shouldn't need to know 532e2c009bSjjc * anything about lgroups. Instead, it just needs to know which CPUs, memory, 542e2c009bSjjc * etc. are in each NUMA node, how far each node is from each other, and to use 552e2c009bSjjc * a unique lgroup platform handle to refer to each node through the interface. 562e2c009bSjjc * 572e2c009bSjjc * Determining NUMA Configuration 582e2c009bSjjc * ------------------------------ 592e2c009bSjjc * By default, this module will try to determine the NUMA configuration of the 602e2c009bSjjc * machine by reading the ACPI System Resource Affinity Table (SRAT) and System 612e2c009bSjjc * Locality Information Table (SLIT). The SRAT contains info to tell which 622e2c009bSjjc * CPUs and memory are local to a given proximity domain (NUMA node). The SLIT 632e2c009bSjjc * is a matrix that gives the distance between each system locality (which is 642e2c009bSjjc * a NUMA node and should correspond to proximity domains in the SRAT). For 652e2c009bSjjc * more details on the SRAT and SLIT, please refer to an ACPI 3.0 or newer 662e2c009bSjjc * specification. 672e2c009bSjjc * 682e2c009bSjjc * If the SRAT doesn't exist on a system with AMD Opteron processors, we 692e2c009bSjjc * examine registers in PCI configuration space to determine how many nodes are 702e2c009bSjjc * in the system and which CPUs and memory are in each node. 712e2c009bSjjc * do while booting the kernel. 722e2c009bSjjc * 732e2c009bSjjc * NOTE: Using these PCI configuration space registers to determine this 742e2c009bSjjc * locality info is not guaranteed to work or be compatible across all 752e2c009bSjjc * Opteron processor families. 762e2c009bSjjc * 772e2c009bSjjc * If the SLIT does not exist or look right, the kernel will probe to determine 782e2c009bSjjc * the distance between nodes as long as the NUMA CPU and memory configuration 792e2c009bSjjc * has been determined (see lgrp_plat_probe() for details). 802e2c009bSjjc * 812e2c009bSjjc * Data Structures 822e2c009bSjjc * --------------- 832e2c009bSjjc * The main data structures used by this code are the following: 842e2c009bSjjc * 85dae2fa37Sjjc * - lgrp_plat_cpu_node[] CPU to node ID mapping table indexed by 86dae2fa37Sjjc * CPU ID (only used for SRAT) 872e2c009bSjjc * 882e2c009bSjjc * - lgrp_plat_lat_stats.latencies[][] Table of latencies between same and 892e2c009bSjjc * different nodes indexed by node ID 902e2c009bSjjc * 912e2c009bSjjc * - lgrp_plat_node_cnt Number of NUMA nodes in system 922e2c009bSjjc * 932e2c009bSjjc * - lgrp_plat_node_domain[] Node ID to proximity domain ID mapping 942e2c009bSjjc * table indexed by node ID (only used 952e2c009bSjjc * for SRAT) 962e2c009bSjjc * 972e2c009bSjjc * - lgrp_plat_node_memory[] Table with physical address range for 982e2c009bSjjc * each node indexed by node ID 992e2c009bSjjc * 1002e2c009bSjjc * The code is implemented to make the following always be true: 1012e2c009bSjjc * 1022e2c009bSjjc * lgroup platform handle == node ID == memnode ID 1032e2c009bSjjc * 1042e2c009bSjjc * Moreover, it allows for the proximity domain ID to be equal to all of the 1052e2c009bSjjc * above as long as the proximity domains IDs are numbered from 0 to <number of 1062e2c009bSjjc * nodes - 1>. This is done by hashing each proximity domain ID into the range 1072e2c009bSjjc * from 0 to <number of nodes - 1>. Then proximity ID N will hash into node ID 1082e2c009bSjjc * N and proximity domain ID N will be entered into lgrp_plat_node_domain[N] 1092e2c009bSjjc * and be assigned node ID N. If the proximity domain IDs aren't numbered 1102e2c009bSjjc * from 0 to <number of nodes - 1>, then hashing the proximity domain IDs into 1112e2c009bSjjc * lgrp_plat_node_domain[] will still work for assigning proximity domain IDs 1122e2c009bSjjc * to node IDs. However, the proximity domain IDs may not map to the 1132e2c009bSjjc * equivalent node ID since we want to keep the node IDs numbered from 0 to 1142e2c009bSjjc * <number of nodes - 1> to minimize cost of searching and potentially space. 11581d9ccb6SJonathan Chew * 11681d9ccb6SJonathan Chew * The code below really tries to do the above. However, the virtual memory 11781d9ccb6SJonathan Chew * system expects the memnodes which describe the physical address range for 11881d9ccb6SJonathan Chew * each NUMA node to be arranged in ascending order by physical address. (:-( 11981d9ccb6SJonathan Chew * Otherwise, the kernel will panic in different semi-random places in the VM 120cf5755f2SJonathan Chew * system. 12181d9ccb6SJonathan Chew * 12281d9ccb6SJonathan Chew * Consequently, this module has to try to sort the nodes in ascending order by 12381d9ccb6SJonathan Chew * each node's starting physical address to try to meet this "constraint" in 12481d9ccb6SJonathan Chew * the VM system (see lgrp_plat_node_sort()). Also, the lowest numbered 12581d9ccb6SJonathan Chew * proximity domain ID in the system is deteremined and used to make the lowest 12681d9ccb6SJonathan Chew * numbered proximity domain map to node 0 in hopes that the proximity domains 12781d9ccb6SJonathan Chew * are sorted in ascending order by physical address already even if their IDs 12881d9ccb6SJonathan Chew * don't start at 0 (see NODE_DOMAIN_HASH() and lgrp_plat_srat_domains()). 12981d9ccb6SJonathan Chew * Finally, it is important to note that these workarounds may not be 13081d9ccb6SJonathan Chew * sufficient if/when memory hotplugging is supported and the VM system may 13181d9ccb6SJonathan Chew * ultimately need to be fixed to handle this.... 1322e2c009bSjjc */ 1332e2c009bSjjc 1342e2c009bSjjc 1357c478bd9Sstevel@tonic-gate #include <sys/archsystm.h> /* for {in,out}{b,w,l}() */ 136dae2fa37Sjjc #include <sys/bootconf.h> 1377c478bd9Sstevel@tonic-gate #include <sys/cmn_err.h> 138f78a91cdSjjc #include <sys/controlregs.h> 1397c478bd9Sstevel@tonic-gate #include <sys/cpupart.h> 1407c478bd9Sstevel@tonic-gate #include <sys/cpuvar.h> 1417c478bd9Sstevel@tonic-gate #include <sys/lgrp.h> 1427c478bd9Sstevel@tonic-gate #include <sys/machsystm.h> 1437c478bd9Sstevel@tonic-gate #include <sys/memlist.h> 1447c478bd9Sstevel@tonic-gate #include <sys/memnode.h> 1457c478bd9Sstevel@tonic-gate #include <sys/mman.h> 146ef50d8c0Sesaxe #include <sys/pci_cfgspace.h> 147ef50d8c0Sesaxe #include <sys/pci_impl.h> 1487c478bd9Sstevel@tonic-gate #include <sys/param.h> 149fb2f18f8Sesaxe #include <sys/pghw.h> 1507c478bd9Sstevel@tonic-gate #include <sys/promif.h> /* for prom_printf() */ 1512e2c009bSjjc #include <sys/sysmacros.h> 1527c478bd9Sstevel@tonic-gate #include <sys/systm.h> 1537c478bd9Sstevel@tonic-gate #include <sys/thread.h> 1547c478bd9Sstevel@tonic-gate #include <sys/types.h> 1557c478bd9Sstevel@tonic-gate #include <sys/var.h> 1567c478bd9Sstevel@tonic-gate #include <sys/x86_archext.h> /* for x86_feature and X86_AMD */ 1577c478bd9Sstevel@tonic-gate #include <vm/hat_i86.h> 1587c478bd9Sstevel@tonic-gate #include <vm/seg_kmem.h> 159affbd3ccSkchow #include <vm/vm_dep.h> 1607c478bd9Sstevel@tonic-gate 1612e2c009bSjjc #include "acpi_fw.h" /* for SRAT and SLIT */ 1627c478bd9Sstevel@tonic-gate 1637c478bd9Sstevel@tonic-gate 1647c478bd9Sstevel@tonic-gate #define MAX_NODES 8 1657c478bd9Sstevel@tonic-gate #define NLGRP (MAX_NODES * (MAX_NODES - 1) + 1) 1667c478bd9Sstevel@tonic-gate 1672e2c009bSjjc /* 1682e2c009bSjjc * Constants for configuring probing 1692e2c009bSjjc */ 1707c478bd9Sstevel@tonic-gate #define LGRP_PLAT_PROBE_NROUNDS 64 /* default laps for probing */ 1717c478bd9Sstevel@tonic-gate #define LGRP_PLAT_PROBE_NSAMPLES 1 /* default samples to take */ 1728949bcd6Sandrei #define LGRP_PLAT_PROBE_NREADS 256 /* number of vendor ID reads */ 1737c478bd9Sstevel@tonic-gate 1747c478bd9Sstevel@tonic-gate /* 1752e2c009bSjjc * Flags for probing 1762e2c009bSjjc */ 1772e2c009bSjjc #define LGRP_PLAT_PROBE_ENABLE 0x1 /* enable probing */ 1782e2c009bSjjc #define LGRP_PLAT_PROBE_PGCPY 0x2 /* probe using page copy */ 1792e2c009bSjjc #define LGRP_PLAT_PROBE_VENDOR 0x4 /* probe vendor ID register */ 1802e2c009bSjjc 1812e2c009bSjjc /* 18281d9ccb6SJonathan Chew * Hash proximity domain ID into node to domain mapping table "mod" number of 18381d9ccb6SJonathan Chew * nodes to minimize span of entries used and try to have lowest numbered 18481d9ccb6SJonathan Chew * proximity domain be node 0 1852e2c009bSjjc */ 18681d9ccb6SJonathan Chew #define NODE_DOMAIN_HASH(domain, node_cnt) \ 18781d9ccb6SJonathan Chew ((lgrp_plat_prox_domain_min == UINT32_MAX) ? (domain) % node_cnt : \ 18881d9ccb6SJonathan Chew ((domain) - lgrp_plat_prox_domain_min) % node_cnt) 1892e2c009bSjjc 1902e2c009bSjjc 1912e2c009bSjjc /* 192dae2fa37Sjjc * CPU to node ID mapping structure (only used with SRAT) 1932e2c009bSjjc */ 1942e2c009bSjjc typedef struct cpu_node_map { 1952e2c009bSjjc int exists; 1962e2c009bSjjc uint_t node; 1972e2c009bSjjc uint32_t apicid; 1982e2c009bSjjc uint32_t prox_domain; 1992e2c009bSjjc } cpu_node_map_t; 2002e2c009bSjjc 2012e2c009bSjjc /* 2022e2c009bSjjc * Latency statistics 2032e2c009bSjjc */ 2042e2c009bSjjc typedef struct lgrp_plat_latency_stats { 2052e2c009bSjjc hrtime_t latencies[MAX_NODES][MAX_NODES]; 2062e2c009bSjjc hrtime_t latency_max; 2072e2c009bSjjc hrtime_t latency_min; 2082e2c009bSjjc } lgrp_plat_latency_stats_t; 2092e2c009bSjjc 2102e2c009bSjjc /* 2112e2c009bSjjc * Memory configuration for probing 2122e2c009bSjjc */ 2132e2c009bSjjc typedef struct lgrp_plat_probe_mem_config { 2142e2c009bSjjc size_t probe_memsize; /* how much memory to probe per node */ 2152e2c009bSjjc caddr_t probe_va[MAX_NODES]; /* where memory mapped for probing */ 2162e2c009bSjjc pfn_t probe_pfn[MAX_NODES]; /* physical pages to map for probing */ 2172e2c009bSjjc } lgrp_plat_probe_mem_config_t; 2182e2c009bSjjc 2192e2c009bSjjc /* 2202e2c009bSjjc * Statistics kept for probing 2212e2c009bSjjc */ 2222e2c009bSjjc typedef struct lgrp_plat_probe_stats { 2232e2c009bSjjc hrtime_t flush_cost; 2242e2c009bSjjc hrtime_t probe_cost; 2252e2c009bSjjc hrtime_t probe_cost_total; 2262e2c009bSjjc hrtime_t probe_error_code; 2272e2c009bSjjc hrtime_t probe_errors[MAX_NODES][MAX_NODES]; 2282e2c009bSjjc int probe_suspect[MAX_NODES][MAX_NODES]; 2292e2c009bSjjc hrtime_t probe_max[MAX_NODES][MAX_NODES]; 2302e2c009bSjjc hrtime_t probe_min[MAX_NODES][MAX_NODES]; 2312e2c009bSjjc } lgrp_plat_probe_stats_t; 2322e2c009bSjjc 2332e2c009bSjjc /* 2342e2c009bSjjc * Node to proximity domain ID mapping structure (only used with SRAT) 2352e2c009bSjjc */ 2362e2c009bSjjc typedef struct node_domain_map { 2372e2c009bSjjc int exists; 2382e2c009bSjjc uint32_t prox_domain; 2392e2c009bSjjc } node_domain_map_t; 2402e2c009bSjjc 2412e2c009bSjjc /* 2422e2c009bSjjc * Node ID and starting and ending page for physical memory in node 2432e2c009bSjjc */ 2442e2c009bSjjc typedef struct node_phys_addr_map { 2452e2c009bSjjc pfn_t start; 2462e2c009bSjjc pfn_t end; 2472e2c009bSjjc int exists; 2482e2c009bSjjc uint32_t prox_domain; 2492e2c009bSjjc } node_phys_addr_map_t; 2502e2c009bSjjc 251dae2fa37Sjjc /* 252d821f0f0Sjjc * Number of CPUs for which we got APIC IDs 253dae2fa37Sjjc */ 254d821f0f0Sjjc static int lgrp_plat_apic_ncpus = 0; 2552e2c009bSjjc 2562e2c009bSjjc /* 257d5d7cf4eSJonathan Chew * CPU to node ID mapping table (only used for SRAT) and its max number of 258d5d7cf4eSJonathan Chew * entries 2592e2c009bSjjc */ 260d5d7cf4eSJonathan Chew static cpu_node_map_t *lgrp_plat_cpu_node = NULL; 261d5d7cf4eSJonathan Chew static uint_t lgrp_plat_cpu_node_nentries = 0; 2622e2c009bSjjc 2632e2c009bSjjc /* 2642e2c009bSjjc * Latency statistics 2652e2c009bSjjc */ 2662e2c009bSjjc lgrp_plat_latency_stats_t lgrp_plat_lat_stats; 2672e2c009bSjjc 2682e2c009bSjjc /* 2692e2c009bSjjc * Whether memory is interleaved across nodes causing MPO to be disabled 2702e2c009bSjjc */ 2712e2c009bSjjc static int lgrp_plat_mem_intrlv = 0; 2722e2c009bSjjc 2732e2c009bSjjc /* 2742e2c009bSjjc * Node ID to proximity domain ID mapping table (only used for SRAT) 2752e2c009bSjjc */ 2762e2c009bSjjc static node_domain_map_t lgrp_plat_node_domain[MAX_NODES]; 2772e2c009bSjjc 2782e2c009bSjjc /* 2792e2c009bSjjc * Physical address range for memory in each node 2802e2c009bSjjc */ 2812e2c009bSjjc static node_phys_addr_map_t lgrp_plat_node_memory[MAX_NODES]; 2822e2c009bSjjc 2832e2c009bSjjc /* 2842e2c009bSjjc * Statistics gotten from probing 2852e2c009bSjjc */ 2862e2c009bSjjc static lgrp_plat_probe_stats_t lgrp_plat_probe_stats; 2872e2c009bSjjc 2882e2c009bSjjc /* 2892e2c009bSjjc * Memory configuration for probing 2902e2c009bSjjc */ 2912e2c009bSjjc static lgrp_plat_probe_mem_config_t lgrp_plat_probe_mem_config; 2922e2c009bSjjc 2932e2c009bSjjc /* 29481d9ccb6SJonathan Chew * Lowest proximity domain ID seen in ACPI SRAT 29581d9ccb6SJonathan Chew */ 29681d9ccb6SJonathan Chew static uint32_t lgrp_plat_prox_domain_min = UINT32_MAX; 29781d9ccb6SJonathan Chew 29881d9ccb6SJonathan Chew /* 2992e2c009bSjjc * Error code from processing ACPI SRAT 3002e2c009bSjjc */ 3012e2c009bSjjc static int lgrp_plat_srat_error = 0; 3022e2c009bSjjc 3032e2c009bSjjc /* 3042e2c009bSjjc * Error code from processing ACPI SLIT 3052e2c009bSjjc */ 3062e2c009bSjjc static int lgrp_plat_slit_error = 0; 3072e2c009bSjjc 3082e2c009bSjjc /* 3092e2c009bSjjc * Allocate lgroup array statically 3102e2c009bSjjc */ 3112e2c009bSjjc static lgrp_t lgrp_space[NLGRP]; 3122e2c009bSjjc static int nlgrps_alloc; 3132e2c009bSjjc 3142e2c009bSjjc 3152e2c009bSjjc /* 31681d9ccb6SJonathan Chew * Enable finding and using minimum proximity domain ID when hashing 31781d9ccb6SJonathan Chew */ 31881d9ccb6SJonathan Chew int lgrp_plat_domain_min_enable = 1; 31981d9ccb6SJonathan Chew 32081d9ccb6SJonathan Chew /* 3212e2c009bSjjc * Number of nodes in system 3222e2c009bSjjc */ 3232e2c009bSjjc uint_t lgrp_plat_node_cnt = 1; 3242e2c009bSjjc 3252e2c009bSjjc /* 32681d9ccb6SJonathan Chew * Enable sorting nodes in ascending order by starting physical address 32781d9ccb6SJonathan Chew */ 32881d9ccb6SJonathan Chew int lgrp_plat_node_sort_enable = 1; 32981d9ccb6SJonathan Chew 33081d9ccb6SJonathan Chew /* 3312e2c009bSjjc * Configuration Parameters for Probing 3322e2c009bSjjc * - lgrp_plat_probe_flags Flags to specify enabling probing, probe 3332e2c009bSjjc * operation, etc. 3342e2c009bSjjc * - lgrp_plat_probe_nrounds How many rounds of probing to do 3352e2c009bSjjc * - lgrp_plat_probe_nsamples Number of samples to take when probing each 3362e2c009bSjjc * node 3372e2c009bSjjc * - lgrp_plat_probe_nreads Number of times to read vendor ID from 3382e2c009bSjjc * Northbridge for each probe 3392e2c009bSjjc */ 3402e2c009bSjjc uint_t lgrp_plat_probe_flags = 0; 3412e2c009bSjjc int lgrp_plat_probe_nrounds = LGRP_PLAT_PROBE_NROUNDS; 3422e2c009bSjjc int lgrp_plat_probe_nsamples = LGRP_PLAT_PROBE_NSAMPLES; 3432e2c009bSjjc int lgrp_plat_probe_nreads = LGRP_PLAT_PROBE_NREADS; 3442e2c009bSjjc 3452e2c009bSjjc /* 3462e2c009bSjjc * Enable use of ACPI System Resource Affinity Table (SRAT) and System 3472e2c009bSjjc * Locality Information Table (SLIT) 3482e2c009bSjjc */ 3492e2c009bSjjc int lgrp_plat_srat_enable = 1; 3502e2c009bSjjc int lgrp_plat_slit_enable = 1; 3512e2c009bSjjc 3522e2c009bSjjc /* 35318968004SKit Chow * mnode_xwa: set to non-zero value to initiate workaround if large pages are 35418968004SKit Chow * found to be crossing memory node boundaries. The workaround will eliminate 35518968004SKit Chow * a base size page at the end of each memory node boundary to ensure that 35618968004SKit Chow * a large page with constituent pages that span more than 1 memory node 35718968004SKit Chow * can never be formed. 35818968004SKit Chow * 35918968004SKit Chow */ 36018968004SKit Chow int mnode_xwa = 1; 36118968004SKit Chow 36218968004SKit Chow /* 3632e2c009bSjjc * Static array to hold lgroup statistics 3642e2c009bSjjc */ 3652e2c009bSjjc struct lgrp_stats lgrp_stats[NLGRP]; 3662e2c009bSjjc 3672e2c009bSjjc 3682e2c009bSjjc /* 3692e2c009bSjjc * Forward declarations of platform interface routines 3702e2c009bSjjc */ 3712e2c009bSjjc void plat_build_mem_nodes(struct memlist *list); 3722e2c009bSjjc 3732e2c009bSjjc int plat_lgrphand_to_mem_node(lgrp_handle_t hand); 3742e2c009bSjjc 3752e2c009bSjjc lgrp_handle_t plat_mem_node_to_lgrphand(int mnode); 3762e2c009bSjjc 3772e2c009bSjjc int plat_mnode_xcheck(pfn_t pfncnt); 3782e2c009bSjjc 3792e2c009bSjjc int plat_pfn_to_mem_node(pfn_t pfn); 3802e2c009bSjjc 3812e2c009bSjjc /* 3822e2c009bSjjc * Forward declarations of lgroup platform interface routines 3832e2c009bSjjc */ 3842e2c009bSjjc lgrp_t *lgrp_plat_alloc(lgrp_id_t lgrpid); 3852e2c009bSjjc 3862e2c009bSjjc void lgrp_plat_config(lgrp_config_flag_t flag, uintptr_t arg); 3872e2c009bSjjc 3882e2c009bSjjc lgrp_handle_t lgrp_plat_cpu_to_hand(processorid_t id); 3892e2c009bSjjc 390d5d7cf4eSJonathan Chew void lgrp_plat_init(lgrp_init_stages_t stage); 3912e2c009bSjjc 3922e2c009bSjjc int lgrp_plat_latency(lgrp_handle_t from, lgrp_handle_t to); 3932e2c009bSjjc 3942e2c009bSjjc int lgrp_plat_max_lgrps(void); 3952e2c009bSjjc 3962e2c009bSjjc pgcnt_t lgrp_plat_mem_size(lgrp_handle_t plathand, 3972e2c009bSjjc lgrp_mem_query_t query); 3982e2c009bSjjc 3992e2c009bSjjc lgrp_handle_t lgrp_plat_pfn_to_hand(pfn_t pfn); 4002e2c009bSjjc 4012e2c009bSjjc void lgrp_plat_probe(void); 4022e2c009bSjjc 4032e2c009bSjjc lgrp_handle_t lgrp_plat_root_hand(void); 4042e2c009bSjjc 4052e2c009bSjjc 4062e2c009bSjjc /* 4072e2c009bSjjc * Forward declarations of local routines 4082e2c009bSjjc */ 4092e2c009bSjjc static int is_opteron(void); 4102e2c009bSjjc 411dae2fa37Sjjc static int lgrp_plat_cpu_node_update(node_domain_map_t *node_domain, 412d821f0f0Sjjc int node_cnt, cpu_node_map_t *cpu_node, int nentries, uint32_t apicid, 413d821f0f0Sjjc uint32_t domain); 414dae2fa37Sjjc 415d5d7cf4eSJonathan Chew static int lgrp_plat_cpu_to_node(cpu_t *cp, cpu_node_map_t *cpu_node, 416d5d7cf4eSJonathan Chew int cpu_node_nentries); 4172e2c009bSjjc 4182e2c009bSjjc static int lgrp_plat_domain_to_node(node_domain_map_t *node_domain, 419d821f0f0Sjjc int node_cnt, uint32_t domain); 4202e2c009bSjjc 421d5d7cf4eSJonathan Chew static void lgrp_plat_get_numa_config(void); 422d5d7cf4eSJonathan Chew 4232e2c009bSjjc static void lgrp_plat_latency_adjust(node_phys_addr_map_t *node_memory, 4242e2c009bSjjc lgrp_plat_latency_stats_t *lat_stats, 4252e2c009bSjjc lgrp_plat_probe_stats_t *probe_stats); 4262e2c009bSjjc 4272e2c009bSjjc static int lgrp_plat_latency_verify(node_phys_addr_map_t *node_memory, 4282e2c009bSjjc lgrp_plat_latency_stats_t *lat_stats); 4292e2c009bSjjc 430d5d7cf4eSJonathan Chew static void lgrp_plat_main_init(void); 431d5d7cf4eSJonathan Chew 4322e2c009bSjjc static pgcnt_t lgrp_plat_mem_size_default(lgrp_handle_t, lgrp_mem_query_t); 4332e2c009bSjjc 4342e2c009bSjjc static int lgrp_plat_node_domain_update(node_domain_map_t *node_domain, 435d821f0f0Sjjc int node_cnt, uint32_t domain); 4362e2c009bSjjc 4372e2c009bSjjc static int lgrp_plat_node_memory_update(node_domain_map_t *node_domain, 438d821f0f0Sjjc int node_cnt, node_phys_addr_map_t *node_memory, uint64_t start, 439d821f0f0Sjjc uint64_t end, uint32_t domain); 4402e2c009bSjjc 44181d9ccb6SJonathan Chew static void lgrp_plat_node_sort(node_domain_map_t *node_domain, 44281d9ccb6SJonathan Chew int node_cnt, cpu_node_map_t *cpu_node, int cpu_count, 44381d9ccb6SJonathan Chew node_phys_addr_map_t *node_memory); 44481d9ccb6SJonathan Chew 4452e2c009bSjjc static hrtime_t lgrp_plat_probe_time(int to, cpu_node_map_t *cpu_node, 446d5d7cf4eSJonathan Chew int cpu_node_nentries, lgrp_plat_probe_mem_config_t *probe_mem_config, 447d5d7cf4eSJonathan Chew lgrp_plat_latency_stats_t *lat_stats, lgrp_plat_probe_stats_t *probe_stats); 4482e2c009bSjjc 449d821f0f0Sjjc static int lgrp_plat_process_cpu_apicids(cpu_node_map_t *cpu_node); 450dae2fa37Sjjc 4512e2c009bSjjc static int lgrp_plat_process_slit(struct slit *tp, uint_t node_cnt, 4522e2c009bSjjc node_phys_addr_map_t *node_memory, lgrp_plat_latency_stats_t *lat_stats); 4532e2c009bSjjc 454d821f0f0Sjjc static int lgrp_plat_process_srat(struct srat *tp, 45581d9ccb6SJonathan Chew uint32_t *prox_domain_min, node_domain_map_t *node_domain, 45681d9ccb6SJonathan Chew cpu_node_map_t *cpu_node, int cpu_count, 4572e2c009bSjjc node_phys_addr_map_t *node_memory); 4582e2c009bSjjc 459d5d7cf4eSJonathan Chew static void lgrp_plat_release_bootstrap(void); 460d5d7cf4eSJonathan Chew 46181d9ccb6SJonathan Chew static int lgrp_plat_srat_domains(struct srat *tp, 46281d9ccb6SJonathan Chew uint32_t *prox_domain_min); 4632e2c009bSjjc 4642e2c009bSjjc static void lgrp_plat_2level_setup(node_phys_addr_map_t *node_memory, 4652e2c009bSjjc lgrp_plat_latency_stats_t *lat_stats); 4662e2c009bSjjc 4672e2c009bSjjc static void opt_get_numa_config(uint_t *node_cnt, int *mem_intrlv, 4682e2c009bSjjc node_phys_addr_map_t *node_memory); 4692e2c009bSjjc 4702e2c009bSjjc static hrtime_t opt_probe_vendor(int dest_node, int nreads); 4712e2c009bSjjc 4722e2c009bSjjc 4732e2c009bSjjc /* 4742e2c009bSjjc * PLATFORM INTERFACE ROUTINES 4757c478bd9Sstevel@tonic-gate */ 4767c478bd9Sstevel@tonic-gate 4777c478bd9Sstevel@tonic-gate /* 4782e2c009bSjjc * Configure memory nodes for machines with more than one node (ie NUMA) 4792e2c009bSjjc */ 4802e2c009bSjjc void 4812e2c009bSjjc plat_build_mem_nodes(struct memlist *list) 4822e2c009bSjjc { 4832e2c009bSjjc pfn_t cur_start; /* start addr of subrange */ 4842e2c009bSjjc pfn_t cur_end; /* end addr of subrange */ 4852e2c009bSjjc pfn_t start; /* start addr of whole range */ 4862e2c009bSjjc pfn_t end; /* end addr of whole range */ 48718968004SKit Chow pgcnt_t endcnt; /* pages to sacrifice */ 4882e2c009bSjjc 4892e2c009bSjjc /* 4902e2c009bSjjc * Boot install lists are arranged <addr, len>, ... 4912e2c009bSjjc */ 4922e2c009bSjjc while (list) { 4932e2c009bSjjc int node; 4942e2c009bSjjc 495*56f33205SJonathan Adams start = list->ml_address >> PAGESHIFT; 496*56f33205SJonathan Adams end = (list->ml_address + list->ml_size - 1) >> PAGESHIFT; 4972e2c009bSjjc 4982e2c009bSjjc if (start > physmax) { 499*56f33205SJonathan Adams list = list->ml_next; 5002e2c009bSjjc continue; 5012e2c009bSjjc } 5022e2c009bSjjc if (end > physmax) 5032e2c009bSjjc end = physmax; 5042e2c009bSjjc 5052e2c009bSjjc /* 5062e2c009bSjjc * When there is only one memnode, just add memory to memnode 5072e2c009bSjjc */ 5082e2c009bSjjc if (max_mem_nodes == 1) { 5092e2c009bSjjc mem_node_add_slice(start, end); 510*56f33205SJonathan Adams list = list->ml_next; 5112e2c009bSjjc continue; 5122e2c009bSjjc } 5132e2c009bSjjc 5142e2c009bSjjc /* 5152e2c009bSjjc * mem_node_add_slice() expects to get a memory range that 5162e2c009bSjjc * is within one memnode, so need to split any memory range 5172e2c009bSjjc * that spans multiple memnodes into subranges that are each 5182e2c009bSjjc * contained within one memnode when feeding them to 5192e2c009bSjjc * mem_node_add_slice() 5202e2c009bSjjc */ 5212e2c009bSjjc cur_start = start; 5222e2c009bSjjc do { 5232e2c009bSjjc node = plat_pfn_to_mem_node(cur_start); 5242e2c009bSjjc 5252e2c009bSjjc /* 5262e2c009bSjjc * Panic if DRAM address map registers or SRAT say 5272e2c009bSjjc * memory in node doesn't exist or address from 5282e2c009bSjjc * boot installed memory list entry isn't in this node. 5292e2c009bSjjc * This shouldn't happen and rest of code can't deal 5302e2c009bSjjc * with this if it does. 5312e2c009bSjjc */ 5322e2c009bSjjc if (node < 0 || node >= lgrp_plat_node_cnt || 5332e2c009bSjjc !lgrp_plat_node_memory[node].exists || 5342e2c009bSjjc cur_start < lgrp_plat_node_memory[node].start || 5352e2c009bSjjc cur_start > lgrp_plat_node_memory[node].end) { 5362e2c009bSjjc cmn_err(CE_PANIC, "Don't know which memnode " 5372e2c009bSjjc "to add installed memory address 0x%lx\n", 5382e2c009bSjjc cur_start); 5392e2c009bSjjc } 5402e2c009bSjjc 5412e2c009bSjjc /* 5422e2c009bSjjc * End of current subrange should not span memnodes 5432e2c009bSjjc */ 5442e2c009bSjjc cur_end = end; 54518968004SKit Chow endcnt = 0; 5462e2c009bSjjc if (lgrp_plat_node_memory[node].exists && 54718968004SKit Chow cur_end > lgrp_plat_node_memory[node].end) { 5482e2c009bSjjc cur_end = lgrp_plat_node_memory[node].end; 54918968004SKit Chow if (mnode_xwa > 1) { 55018968004SKit Chow /* 55118968004SKit Chow * sacrifice the last page in each 55218968004SKit Chow * node to eliminate large pages 55318968004SKit Chow * that span more than 1 memory node. 55418968004SKit Chow */ 55518968004SKit Chow endcnt = 1; 556bcee7a0bSKit Chow physinstalled--; 55718968004SKit Chow } 55818968004SKit Chow } 5592e2c009bSjjc 56018968004SKit Chow mem_node_add_slice(cur_start, cur_end - endcnt); 5612e2c009bSjjc 5622e2c009bSjjc /* 5632e2c009bSjjc * Next subrange starts after end of current one 5642e2c009bSjjc */ 5652e2c009bSjjc cur_start = cur_end + 1; 5662e2c009bSjjc } while (cur_end < end); 5672e2c009bSjjc 568*56f33205SJonathan Adams list = list->ml_next; 5692e2c009bSjjc } 5702e2c009bSjjc mem_node_physalign = 0; 5712e2c009bSjjc mem_node_pfn_shift = 0; 5722e2c009bSjjc } 5732e2c009bSjjc 5742e2c009bSjjc 5752e2c009bSjjc int 5762e2c009bSjjc plat_lgrphand_to_mem_node(lgrp_handle_t hand) 5772e2c009bSjjc { 5782e2c009bSjjc if (max_mem_nodes == 1) 5792e2c009bSjjc return (0); 5802e2c009bSjjc 5812e2c009bSjjc return ((int)hand); 5822e2c009bSjjc } 5832e2c009bSjjc 5842e2c009bSjjc 5852e2c009bSjjc /* 5862e2c009bSjjc * plat_mnode_xcheck: checks the node memory ranges to see if there is a pfncnt 5872e2c009bSjjc * range of pages aligned on pfncnt that crosses an node boundary. Returns 1 if 5882e2c009bSjjc * a crossing is found and returns 0 otherwise. 5892e2c009bSjjc */ 5902e2c009bSjjc int 5912e2c009bSjjc plat_mnode_xcheck(pfn_t pfncnt) 5922e2c009bSjjc { 5932e2c009bSjjc int node, prevnode = -1, basenode; 5942e2c009bSjjc pfn_t ea, sa; 5952e2c009bSjjc 5962e2c009bSjjc for (node = 0; node < lgrp_plat_node_cnt; node++) { 5972e2c009bSjjc 5982e2c009bSjjc if (lgrp_plat_node_memory[node].exists == 0) 5992e2c009bSjjc continue; 6002e2c009bSjjc 6012e2c009bSjjc if (prevnode == -1) { 6022e2c009bSjjc prevnode = node; 6032e2c009bSjjc basenode = node; 6042e2c009bSjjc continue; 6052e2c009bSjjc } 6062e2c009bSjjc 6072e2c009bSjjc /* assume x86 node pfn ranges are in increasing order */ 6082e2c009bSjjc ASSERT(lgrp_plat_node_memory[node].start > 6092e2c009bSjjc lgrp_plat_node_memory[prevnode].end); 6102e2c009bSjjc 6112e2c009bSjjc /* 6122e2c009bSjjc * continue if the starting address of node is not contiguous 6132e2c009bSjjc * with the previous node. 6142e2c009bSjjc */ 6152e2c009bSjjc 6162e2c009bSjjc if (lgrp_plat_node_memory[node].start != 6172e2c009bSjjc (lgrp_plat_node_memory[prevnode].end + 1)) { 6182e2c009bSjjc basenode = node; 6192e2c009bSjjc prevnode = node; 6202e2c009bSjjc continue; 6212e2c009bSjjc } 6222e2c009bSjjc 6232e2c009bSjjc /* check if the starting address of node is pfncnt aligned */ 6242e2c009bSjjc if ((lgrp_plat_node_memory[node].start & (pfncnt - 1)) != 0) { 6252e2c009bSjjc 6262e2c009bSjjc /* 6272e2c009bSjjc * at this point, node starts at an unaligned boundary 6282e2c009bSjjc * and is contiguous with the previous node(s) to 6292e2c009bSjjc * basenode. Check if there is an aligned contiguous 6302e2c009bSjjc * range of length pfncnt that crosses this boundary. 6312e2c009bSjjc */ 6322e2c009bSjjc 6332e2c009bSjjc sa = P2ALIGN(lgrp_plat_node_memory[prevnode].end, 6342e2c009bSjjc pfncnt); 6352e2c009bSjjc ea = P2ROUNDUP((lgrp_plat_node_memory[node].start), 6362e2c009bSjjc pfncnt); 6372e2c009bSjjc 6382e2c009bSjjc ASSERT((ea - sa) == pfncnt); 6392e2c009bSjjc if (sa >= lgrp_plat_node_memory[basenode].start && 64018968004SKit Chow ea <= (lgrp_plat_node_memory[node].end + 1)) { 64118968004SKit Chow /* 64218968004SKit Chow * large page found to cross mnode boundary. 64318968004SKit Chow * Return Failure if workaround not enabled. 64418968004SKit Chow */ 64518968004SKit Chow if (mnode_xwa == 0) 6462e2c009bSjjc return (1); 64718968004SKit Chow mnode_xwa++; 64818968004SKit Chow } 6492e2c009bSjjc } 6502e2c009bSjjc prevnode = node; 6512e2c009bSjjc } 6522e2c009bSjjc return (0); 6532e2c009bSjjc } 6542e2c009bSjjc 6552e2c009bSjjc 6562e2c009bSjjc lgrp_handle_t 6572e2c009bSjjc plat_mem_node_to_lgrphand(int mnode) 6582e2c009bSjjc { 6592e2c009bSjjc if (max_mem_nodes == 1) 6602e2c009bSjjc return (LGRP_DEFAULT_HANDLE); 6612e2c009bSjjc 6622e2c009bSjjc return ((lgrp_handle_t)mnode); 6632e2c009bSjjc } 6642e2c009bSjjc 6652e2c009bSjjc 6662e2c009bSjjc int 6672e2c009bSjjc plat_pfn_to_mem_node(pfn_t pfn) 6682e2c009bSjjc { 6692e2c009bSjjc int node; 6702e2c009bSjjc 6712e2c009bSjjc if (max_mem_nodes == 1) 6722e2c009bSjjc return (0); 6732e2c009bSjjc 6742e2c009bSjjc for (node = 0; node < lgrp_plat_node_cnt; node++) { 6752e2c009bSjjc /* 6762e2c009bSjjc * Skip nodes with no memory 6772e2c009bSjjc */ 6782e2c009bSjjc if (!lgrp_plat_node_memory[node].exists) 6792e2c009bSjjc continue; 6802e2c009bSjjc 6812e2c009bSjjc if (pfn >= lgrp_plat_node_memory[node].start && 6822e2c009bSjjc pfn <= lgrp_plat_node_memory[node].end) 6832e2c009bSjjc return (node); 6842e2c009bSjjc } 6852e2c009bSjjc 6862e2c009bSjjc /* 6872e2c009bSjjc * Didn't find memnode where this PFN lives which should never happen 6882e2c009bSjjc */ 6892e2c009bSjjc ASSERT(node < lgrp_plat_node_cnt); 6902e2c009bSjjc return (-1); 6912e2c009bSjjc } 6922e2c009bSjjc 6932e2c009bSjjc 6942e2c009bSjjc /* 6952e2c009bSjjc * LGROUP PLATFORM INTERFACE ROUTINES 6962e2c009bSjjc */ 6972e2c009bSjjc 6982e2c009bSjjc /* 6992e2c009bSjjc * Allocate additional space for an lgroup. 7002e2c009bSjjc */ 7012e2c009bSjjc /* ARGSUSED */ 7022e2c009bSjjc lgrp_t * 7032e2c009bSjjc lgrp_plat_alloc(lgrp_id_t lgrpid) 7042e2c009bSjjc { 7052e2c009bSjjc lgrp_t *lgrp; 7062e2c009bSjjc 7072e2c009bSjjc lgrp = &lgrp_space[nlgrps_alloc++]; 7082e2c009bSjjc if (lgrpid >= NLGRP || nlgrps_alloc > NLGRP) 7092e2c009bSjjc return (NULL); 7102e2c009bSjjc return (lgrp); 7112e2c009bSjjc } 7122e2c009bSjjc 7132e2c009bSjjc 7142e2c009bSjjc /* 7152e2c009bSjjc * Platform handling for (re)configuration changes 7162e2c009bSjjc */ 7172e2c009bSjjc /* ARGSUSED */ 7182e2c009bSjjc void 7192e2c009bSjjc lgrp_plat_config(lgrp_config_flag_t flag, uintptr_t arg) 7202e2c009bSjjc { 7212e2c009bSjjc } 7222e2c009bSjjc 7232e2c009bSjjc 7242e2c009bSjjc /* 7252e2c009bSjjc * Return the platform handle for the lgroup containing the given CPU 7262e2c009bSjjc */ 7272e2c009bSjjc /* ARGSUSED */ 7282e2c009bSjjc lgrp_handle_t 7292e2c009bSjjc lgrp_plat_cpu_to_hand(processorid_t id) 7302e2c009bSjjc { 7312e2c009bSjjc lgrp_handle_t hand; 7322e2c009bSjjc 7332e2c009bSjjc if (lgrp_plat_node_cnt == 1) 7342e2c009bSjjc return (LGRP_DEFAULT_HANDLE); 7352e2c009bSjjc 7362e2c009bSjjc hand = (lgrp_handle_t)lgrp_plat_cpu_to_node(cpu[id], 737d5d7cf4eSJonathan Chew lgrp_plat_cpu_node, lgrp_plat_cpu_node_nentries); 7382e2c009bSjjc 7392e2c009bSjjc ASSERT(hand != (lgrp_handle_t)-1); 7402e2c009bSjjc if (hand == (lgrp_handle_t)-1) 7412e2c009bSjjc return (LGRP_NULL_HANDLE); 7422e2c009bSjjc 7432e2c009bSjjc return (hand); 7442e2c009bSjjc } 7452e2c009bSjjc 7462e2c009bSjjc 7472e2c009bSjjc /* 7482e2c009bSjjc * Platform-specific initialization of lgroups 7492e2c009bSjjc */ 7502e2c009bSjjc void 751d5d7cf4eSJonathan Chew lgrp_plat_init(lgrp_init_stages_t stage) 7522e2c009bSjjc { 7532e2c009bSjjc #if defined(__xpv) 754d5d7cf4eSJonathan Chew #else /* __xpv */ 755d5d7cf4eSJonathan Chew u_longlong_t value; 756d5d7cf4eSJonathan Chew #endif /* __xpv */ 757d5d7cf4eSJonathan Chew 758d5d7cf4eSJonathan Chew switch (stage) { 759d5d7cf4eSJonathan Chew case LGRP_INIT_STAGE1: 760d5d7cf4eSJonathan Chew #if defined(__xpv) 7612e2c009bSjjc /* 7622e2c009bSjjc * XXPV For now, the hypervisor treats all memory equally. 7632e2c009bSjjc */ 7642e2c009bSjjc lgrp_plat_node_cnt = max_mem_nodes = 1; 7652e2c009bSjjc #else /* __xpv */ 7662baa66a0SJonathan Chew /* 7672baa66a0SJonathan Chew * Get boot property for lgroup topology height limit 7682baa66a0SJonathan Chew */ 7692baa66a0SJonathan Chew if (bootprop_getval(BP_LGRP_TOPO_LEVELS, &value) == 0) 7702baa66a0SJonathan Chew (void) lgrp_topo_ht_limit_set((int)value); 7712baa66a0SJonathan Chew 7722baa66a0SJonathan Chew /* 7732baa66a0SJonathan Chew * Get boot property for enabling/disabling SRAT 7742baa66a0SJonathan Chew */ 7752baa66a0SJonathan Chew if (bootprop_getval(BP_LGRP_SRAT_ENABLE, &value) == 0) 7762baa66a0SJonathan Chew lgrp_plat_srat_enable = (int)value; 7772baa66a0SJonathan Chew 7782baa66a0SJonathan Chew /* 7792baa66a0SJonathan Chew * Get boot property for enabling/disabling SLIT 7802baa66a0SJonathan Chew */ 7812baa66a0SJonathan Chew if (bootprop_getval(BP_LGRP_SLIT_ENABLE, &value) == 0) 7822baa66a0SJonathan Chew lgrp_plat_slit_enable = (int)value; 7832e2c009bSjjc 7842e2c009bSjjc /* 7852e2c009bSjjc * Initialize as a UMA machine 7862e2c009bSjjc */ 7872e2c009bSjjc if (lgrp_topo_ht_limit() == 1) { 7882e2c009bSjjc lgrp_plat_node_cnt = max_mem_nodes = 1; 7892e2c009bSjjc return; 7902e2c009bSjjc } 7912e2c009bSjjc 792d5d7cf4eSJonathan Chew lgrp_plat_get_numa_config(); 7932e2c009bSjjc #endif /* __xpv */ 794d5d7cf4eSJonathan Chew break; 795d5d7cf4eSJonathan Chew 796d5d7cf4eSJonathan Chew case LGRP_INIT_STAGE3: 797d5d7cf4eSJonathan Chew lgrp_plat_probe(); 798d5d7cf4eSJonathan Chew lgrp_plat_release_bootstrap(); 799d5d7cf4eSJonathan Chew break; 800d5d7cf4eSJonathan Chew 801d5d7cf4eSJonathan Chew case LGRP_INIT_STAGE4: 802d5d7cf4eSJonathan Chew lgrp_plat_main_init(); 803d5d7cf4eSJonathan Chew break; 804d5d7cf4eSJonathan Chew 805d5d7cf4eSJonathan Chew default: 806d5d7cf4eSJonathan Chew break; 807d5d7cf4eSJonathan Chew } 8082e2c009bSjjc } 8092e2c009bSjjc 8102e2c009bSjjc 8112e2c009bSjjc /* 8122e2c009bSjjc * Return latency between "from" and "to" lgroups 8132e2c009bSjjc * 8142e2c009bSjjc * This latency number can only be used for relative comparison 8152e2c009bSjjc * between lgroups on the running system, cannot be used across platforms, 8162e2c009bSjjc * and may not reflect the actual latency. It is platform and implementation 8172e2c009bSjjc * specific, so platform gets to decide its value. It would be nice if the 8182e2c009bSjjc * number was at least proportional to make comparisons more meaningful though. 8192e2c009bSjjc */ 8202e2c009bSjjc /* ARGSUSED */ 8212e2c009bSjjc int 8222e2c009bSjjc lgrp_plat_latency(lgrp_handle_t from, lgrp_handle_t to) 8232e2c009bSjjc { 8242e2c009bSjjc lgrp_handle_t src, dest; 8252e2c009bSjjc int node; 8262e2c009bSjjc 8272e2c009bSjjc if (max_mem_nodes == 1) 8282e2c009bSjjc return (0); 8292e2c009bSjjc 8302e2c009bSjjc /* 8312e2c009bSjjc * Return max latency for root lgroup 8322e2c009bSjjc */ 8332e2c009bSjjc if (from == LGRP_DEFAULT_HANDLE || to == LGRP_DEFAULT_HANDLE) 8342e2c009bSjjc return (lgrp_plat_lat_stats.latency_max); 8352e2c009bSjjc 8362e2c009bSjjc src = from; 8372e2c009bSjjc dest = to; 8382e2c009bSjjc 8392e2c009bSjjc /* 8402e2c009bSjjc * Return 0 for nodes (lgroup platform handles) out of range 8412e2c009bSjjc */ 8422e2c009bSjjc if (src < 0 || src >= MAX_NODES || dest < 0 || dest >= MAX_NODES) 8432e2c009bSjjc return (0); 8442e2c009bSjjc 8452e2c009bSjjc /* 8462e2c009bSjjc * Probe from current CPU if its lgroup latencies haven't been set yet 8472e2c009bSjjc * and we are trying to get latency from current CPU to some node 8482e2c009bSjjc */ 849d5d7cf4eSJonathan Chew node = lgrp_plat_cpu_to_node(CPU, lgrp_plat_cpu_node, 850d5d7cf4eSJonathan Chew lgrp_plat_cpu_node_nentries); 8512e2c009bSjjc ASSERT(node >= 0 && node < lgrp_plat_node_cnt); 8522e2c009bSjjc if (lgrp_plat_lat_stats.latencies[src][src] == 0 && node == src) 8532e2c009bSjjc lgrp_plat_probe(); 8542e2c009bSjjc 8552e2c009bSjjc return (lgrp_plat_lat_stats.latencies[src][dest]); 8562e2c009bSjjc } 8572e2c009bSjjc 8582e2c009bSjjc 8592e2c009bSjjc /* 8602e2c009bSjjc * Return the maximum number of lgrps supported by the platform. 8612e2c009bSjjc * Before lgrp topology is known it returns an estimate based on the number of 8622e2c009bSjjc * nodes. Once topology is known it returns the actual maximim number of lgrps 8632e2c009bSjjc * created. Since x86/x64 doesn't support Dynamic Reconfiguration (DR) and 8642e2c009bSjjc * dynamic addition of new nodes, this number may not grow during system 8652e2c009bSjjc * lifetime (yet). 8662e2c009bSjjc */ 8672e2c009bSjjc int 8682e2c009bSjjc lgrp_plat_max_lgrps(void) 8692e2c009bSjjc { 8702e2c009bSjjc return (lgrp_topo_initialized ? 8712e2c009bSjjc lgrp_alloc_max + 1 : 8722e2c009bSjjc lgrp_plat_node_cnt * (lgrp_plat_node_cnt - 1) + 1); 8732e2c009bSjjc } 8742e2c009bSjjc 8752e2c009bSjjc 8762e2c009bSjjc /* 8772e2c009bSjjc * Return the number of free pages in an lgroup. 8782e2c009bSjjc * 8792e2c009bSjjc * For query of LGRP_MEM_SIZE_FREE, return the number of base pagesize 8802e2c009bSjjc * pages on freelists. For query of LGRP_MEM_SIZE_AVAIL, return the 8812e2c009bSjjc * number of allocatable base pagesize pages corresponding to the 8822e2c009bSjjc * lgroup (e.g. do not include page_t's, BOP_ALLOC()'ed memory, ..) 8832e2c009bSjjc * For query of LGRP_MEM_SIZE_INSTALL, return the amount of physical 8842e2c009bSjjc * memory installed, regardless of whether or not it's usable. 8852e2c009bSjjc */ 8862e2c009bSjjc pgcnt_t 8872e2c009bSjjc lgrp_plat_mem_size(lgrp_handle_t plathand, lgrp_mem_query_t query) 8882e2c009bSjjc { 8892e2c009bSjjc int mnode; 8902e2c009bSjjc pgcnt_t npgs = (pgcnt_t)0; 8912e2c009bSjjc extern struct memlist *phys_avail; 8922e2c009bSjjc extern struct memlist *phys_install; 8932e2c009bSjjc 8942e2c009bSjjc 8952e2c009bSjjc if (plathand == LGRP_DEFAULT_HANDLE) 8962e2c009bSjjc return (lgrp_plat_mem_size_default(plathand, query)); 8972e2c009bSjjc 8982e2c009bSjjc if (plathand != LGRP_NULL_HANDLE) { 8992e2c009bSjjc mnode = plat_lgrphand_to_mem_node(plathand); 9002e2c009bSjjc if (mnode >= 0 && mem_node_config[mnode].exists) { 9012e2c009bSjjc switch (query) { 9022e2c009bSjjc case LGRP_MEM_SIZE_FREE: 9032e2c009bSjjc npgs = MNODE_PGCNT(mnode); 9042e2c009bSjjc break; 9052e2c009bSjjc case LGRP_MEM_SIZE_AVAIL: 9062e2c009bSjjc npgs = mem_node_memlist_pages(mnode, 9072e2c009bSjjc phys_avail); 9082e2c009bSjjc break; 9092e2c009bSjjc case LGRP_MEM_SIZE_INSTALL: 9102e2c009bSjjc npgs = mem_node_memlist_pages(mnode, 9112e2c009bSjjc phys_install); 9122e2c009bSjjc break; 9132e2c009bSjjc default: 9142e2c009bSjjc break; 9152e2c009bSjjc } 9162e2c009bSjjc } 9172e2c009bSjjc } 9182e2c009bSjjc return (npgs); 9192e2c009bSjjc } 9202e2c009bSjjc 9212e2c009bSjjc 9222e2c009bSjjc /* 9232e2c009bSjjc * Return the platform handle of the lgroup that contains the physical memory 9242e2c009bSjjc * corresponding to the given page frame number 9252e2c009bSjjc */ 9262e2c009bSjjc /* ARGSUSED */ 9272e2c009bSjjc lgrp_handle_t 9282e2c009bSjjc lgrp_plat_pfn_to_hand(pfn_t pfn) 9292e2c009bSjjc { 9302e2c009bSjjc int mnode; 9312e2c009bSjjc 9322e2c009bSjjc if (max_mem_nodes == 1) 9332e2c009bSjjc return (LGRP_DEFAULT_HANDLE); 9342e2c009bSjjc 9352e2c009bSjjc if (pfn > physmax) 9362e2c009bSjjc return (LGRP_NULL_HANDLE); 9372e2c009bSjjc 9382e2c009bSjjc mnode = plat_pfn_to_mem_node(pfn); 9392e2c009bSjjc if (mnode < 0) 9402e2c009bSjjc return (LGRP_NULL_HANDLE); 9412e2c009bSjjc 9422e2c009bSjjc return (MEM_NODE_2_LGRPHAND(mnode)); 9432e2c009bSjjc } 9442e2c009bSjjc 9452e2c009bSjjc 9462e2c009bSjjc /* 9472e2c009bSjjc * Probe memory in each node from current CPU to determine latency topology 9482e2c009bSjjc * 9492e2c009bSjjc * The probing code will probe the vendor ID register on the Northbridge of 9502e2c009bSjjc * Opteron processors and probe memory for other processors by default. 9512e2c009bSjjc * 9522e2c009bSjjc * Since probing is inherently error prone, the code takes laps across all the 9532e2c009bSjjc * nodes probing from each node to each of the other nodes some number of 9542e2c009bSjjc * times. Furthermore, each node is probed some number of times before moving 9552e2c009bSjjc * onto the next one during each lap. The minimum latency gotten between nodes 9562e2c009bSjjc * is kept as the latency between the nodes. 9572e2c009bSjjc * 9582e2c009bSjjc * After all that, the probe times are adjusted by normalizing values that are 9592e2c009bSjjc * close to each other and local latencies are made the same. Lastly, the 9602e2c009bSjjc * latencies are verified to make sure that certain conditions are met (eg. 9612e2c009bSjjc * local < remote, latency(a, b) == latency(b, a), etc.). 9622e2c009bSjjc * 9632e2c009bSjjc * If any of the conditions aren't met, the code will export a NUMA 9642e2c009bSjjc * configuration with the local CPUs and memory given by the SRAT or PCI config 9652e2c009bSjjc * space registers and one remote memory latency since it can't tell exactly 9662e2c009bSjjc * how far each node is from each other. 9672e2c009bSjjc */ 9682e2c009bSjjc void 9692e2c009bSjjc lgrp_plat_probe(void) 9702e2c009bSjjc { 9712e2c009bSjjc int from; 9722e2c009bSjjc int i; 9732e2c009bSjjc lgrp_plat_latency_stats_t *lat_stats; 9741ce8847aSJonathan Chew boolean_t probed; 9752e2c009bSjjc hrtime_t probe_time; 9762e2c009bSjjc int to; 9772e2c009bSjjc 9782e2c009bSjjc if (!(lgrp_plat_probe_flags & LGRP_PLAT_PROBE_ENABLE) || 9792e2c009bSjjc max_mem_nodes == 1 || lgrp_topo_ht_limit() <= 2) 9802e2c009bSjjc return; 9812e2c009bSjjc 9822e2c009bSjjc /* 9832e2c009bSjjc * Determine ID of node containing current CPU 9842e2c009bSjjc */ 985d5d7cf4eSJonathan Chew from = lgrp_plat_cpu_to_node(CPU, lgrp_plat_cpu_node, 986d5d7cf4eSJonathan Chew lgrp_plat_cpu_node_nentries); 9872e2c009bSjjc ASSERT(from >= 0 && from < lgrp_plat_node_cnt); 9882e2c009bSjjc if (srat_ptr && lgrp_plat_srat_enable && !lgrp_plat_srat_error) 9892e2c009bSjjc ASSERT(lgrp_plat_node_domain[from].exists); 9902e2c009bSjjc 9912e2c009bSjjc /* 9922e2c009bSjjc * Don't need to probe if got times already 9932e2c009bSjjc */ 9942e2c009bSjjc lat_stats = &lgrp_plat_lat_stats; 9952e2c009bSjjc if (lat_stats->latencies[from][from] != 0) 9962e2c009bSjjc return; 9972e2c009bSjjc 9982e2c009bSjjc /* 9992e2c009bSjjc * Read vendor ID in Northbridge or read and write page(s) 10002e2c009bSjjc * in each node from current CPU and remember how long it takes, 10012e2c009bSjjc * so we can build latency topology of machine later. 10022e2c009bSjjc * This should approximate the memory latency between each node. 10032e2c009bSjjc */ 10041ce8847aSJonathan Chew probed = B_FALSE; 10052e2c009bSjjc for (i = 0; i < lgrp_plat_probe_nrounds; i++) { 10062e2c009bSjjc for (to = 0; to < lgrp_plat_node_cnt; to++) { 10072e2c009bSjjc /* 10081ce8847aSJonathan Chew * Get probe time and skip over any nodes that can't be 10091ce8847aSJonathan Chew * probed yet or don't have memory 10102e2c009bSjjc */ 10112e2c009bSjjc probe_time = lgrp_plat_probe_time(to, 1012d5d7cf4eSJonathan Chew lgrp_plat_cpu_node, lgrp_plat_cpu_node_nentries, 1013d5d7cf4eSJonathan Chew &lgrp_plat_probe_mem_config, &lgrp_plat_lat_stats, 1014d5d7cf4eSJonathan Chew &lgrp_plat_probe_stats); 10152e2c009bSjjc if (probe_time == 0) 10161ce8847aSJonathan Chew continue; 10171ce8847aSJonathan Chew 10181ce8847aSJonathan Chew probed = B_TRUE; 10192e2c009bSjjc 10202e2c009bSjjc /* 10212e2c009bSjjc * Keep lowest probe time as latency between nodes 10222e2c009bSjjc */ 10232e2c009bSjjc if (lat_stats->latencies[from][to] == 0 || 10242e2c009bSjjc probe_time < lat_stats->latencies[from][to]) 10252e2c009bSjjc lat_stats->latencies[from][to] = probe_time; 10262e2c009bSjjc 10272e2c009bSjjc /* 10282e2c009bSjjc * Update overall minimum and maximum probe times 10292e2c009bSjjc * across all nodes 10302e2c009bSjjc */ 10312e2c009bSjjc if (probe_time < lat_stats->latency_min || 10322e2c009bSjjc lat_stats->latency_min == -1) 10332e2c009bSjjc lat_stats->latency_min = probe_time; 10342e2c009bSjjc if (probe_time > lat_stats->latency_max) 10352e2c009bSjjc lat_stats->latency_max = probe_time; 10362e2c009bSjjc } 10372e2c009bSjjc } 10382e2c009bSjjc 10392e2c009bSjjc /* 10401ce8847aSJonathan Chew * Bail out if weren't able to probe any nodes from current CPU 10411ce8847aSJonathan Chew */ 10421ce8847aSJonathan Chew if (probed == B_FALSE) 10431ce8847aSJonathan Chew return; 10441ce8847aSJonathan Chew 10451ce8847aSJonathan Chew /* 10462e2c009bSjjc * - Fix up latencies such that local latencies are same, 10472e2c009bSjjc * latency(i, j) == latency(j, i), etc. (if possible) 10482e2c009bSjjc * 10492e2c009bSjjc * - Verify that latencies look ok 10502e2c009bSjjc * 10512e2c009bSjjc * - Fallback to just optimizing for local and remote if 10522e2c009bSjjc * latencies didn't look right 10532e2c009bSjjc */ 10542e2c009bSjjc lgrp_plat_latency_adjust(lgrp_plat_node_memory, &lgrp_plat_lat_stats, 10552e2c009bSjjc &lgrp_plat_probe_stats); 10562e2c009bSjjc lgrp_plat_probe_stats.probe_error_code = 10572e2c009bSjjc lgrp_plat_latency_verify(lgrp_plat_node_memory, 10582e2c009bSjjc &lgrp_plat_lat_stats); 10592e2c009bSjjc if (lgrp_plat_probe_stats.probe_error_code) 10602e2c009bSjjc lgrp_plat_2level_setup(lgrp_plat_node_memory, 10612e2c009bSjjc &lgrp_plat_lat_stats); 10622e2c009bSjjc } 10632e2c009bSjjc 10642e2c009bSjjc 10652e2c009bSjjc /* 10662e2c009bSjjc * Return platform handle for root lgroup 10672e2c009bSjjc */ 10682e2c009bSjjc lgrp_handle_t 10692e2c009bSjjc lgrp_plat_root_hand(void) 10702e2c009bSjjc { 10712e2c009bSjjc return (LGRP_DEFAULT_HANDLE); 10722e2c009bSjjc } 10732e2c009bSjjc 10742e2c009bSjjc 10752e2c009bSjjc /* 10762e2c009bSjjc * INTERNAL ROUTINES 10772e2c009bSjjc */ 10782e2c009bSjjc 10792e2c009bSjjc 10802e2c009bSjjc /* 10812e2c009bSjjc * Update CPU to node mapping for given CPU and proximity domain (and returns 10822e2c009bSjjc * negative numbers for errors and positive ones for success) 10832e2c009bSjjc */ 10842e2c009bSjjc static int 1085d821f0f0Sjjc lgrp_plat_cpu_node_update(node_domain_map_t *node_domain, int node_cnt, 1086dae2fa37Sjjc cpu_node_map_t *cpu_node, int nentries, uint32_t apicid, uint32_t domain) 10872e2c009bSjjc { 10882e2c009bSjjc uint_t i; 10892e2c009bSjjc int node; 10902e2c009bSjjc 10912e2c009bSjjc /* 10922e2c009bSjjc * Get node number for proximity domain 10932e2c009bSjjc */ 1094d821f0f0Sjjc node = lgrp_plat_domain_to_node(node_domain, node_cnt, domain); 10952e2c009bSjjc if (node == -1) { 1096d821f0f0Sjjc node = lgrp_plat_node_domain_update(node_domain, node_cnt, 1097d821f0f0Sjjc domain); 10982e2c009bSjjc if (node == -1) 10992e2c009bSjjc return (-1); 11002e2c009bSjjc } 11012e2c009bSjjc 11022e2c009bSjjc /* 1103dae2fa37Sjjc * Search for entry with given APIC ID and fill in its node and 1104dae2fa37Sjjc * proximity domain IDs (if they haven't been set already) 11052e2c009bSjjc */ 1106dae2fa37Sjjc for (i = 0; i < nentries; i++) { 11072e2c009bSjjc /* 1108dae2fa37Sjjc * Skip nonexistent entries and ones without matching APIC ID 11092e2c009bSjjc */ 1110dae2fa37Sjjc if (!cpu_node[i].exists || cpu_node[i].apicid != apicid) 1111dae2fa37Sjjc continue; 1112dae2fa37Sjjc 11132e2c009bSjjc /* 1114dae2fa37Sjjc * Just return if entry completely and correctly filled in 1115dae2fa37Sjjc * already 11162e2c009bSjjc */ 11172e2c009bSjjc if (cpu_node[i].prox_domain == domain && 11182e2c009bSjjc cpu_node[i].node == node) 11192e2c009bSjjc return (1); 11202e2c009bSjjc 11212e2c009bSjjc /* 1122dae2fa37Sjjc * Fill in node and proximity domain IDs 11232e2c009bSjjc */ 11242e2c009bSjjc cpu_node[i].prox_domain = domain; 11252e2c009bSjjc cpu_node[i].node = node; 1126dae2fa37Sjjc 11272e2c009bSjjc return (0); 11282e2c009bSjjc } 11292e2c009bSjjc 11302e2c009bSjjc /* 1131dae2fa37Sjjc * Return error when entry for APIC ID wasn't found in table 11322e2c009bSjjc */ 1133dae2fa37Sjjc return (-2); 11342e2c009bSjjc } 11352e2c009bSjjc 11362e2c009bSjjc 11372e2c009bSjjc /* 1138dae2fa37Sjjc * Get node ID for given CPU 11392e2c009bSjjc */ 11402e2c009bSjjc static int 1141d5d7cf4eSJonathan Chew lgrp_plat_cpu_to_node(cpu_t *cp, cpu_node_map_t *cpu_node, 1142d5d7cf4eSJonathan Chew int cpu_node_nentries) 11432e2c009bSjjc { 1144dae2fa37Sjjc processorid_t cpuid; 11452e2c009bSjjc 11462e2c009bSjjc if (cp == NULL) 11472e2c009bSjjc return (-1); 11482e2c009bSjjc 1149dae2fa37Sjjc cpuid = cp->cpu_id; 1150dae2fa37Sjjc if (cpuid < 0 || cpuid >= max_ncpus) 1151dae2fa37Sjjc return (-1); 1152dae2fa37Sjjc 11532e2c009bSjjc /* 11542e2c009bSjjc * SRAT doesn't exist, isn't enabled, or there was an error processing 11558031591dSSrihari Venkatesan * it, so return node ID for Opteron and -1 otherwise. 11562e2c009bSjjc */ 11572e2c009bSjjc if (srat_ptr == NULL || !lgrp_plat_srat_enable || 11582e2c009bSjjc lgrp_plat_srat_error) { 11592e2c009bSjjc if (is_opteron()) 11608031591dSSrihari Venkatesan return (pg_plat_hw_instance_id(cp, PGHW_PROCNODE)); 11612e2c009bSjjc return (-1); 11622e2c009bSjjc } 11632e2c009bSjjc 11642e2c009bSjjc /* 1165dae2fa37Sjjc * Return -1 when CPU to node ID mapping entry doesn't exist for given 1166dae2fa37Sjjc * CPU 11672e2c009bSjjc */ 1168d5d7cf4eSJonathan Chew if (cpuid >= cpu_node_nentries || !cpu_node[cpuid].exists) 11692e2c009bSjjc return (-1); 1170dae2fa37Sjjc 1171dae2fa37Sjjc return (cpu_node[cpuid].node); 11722e2c009bSjjc } 11732e2c009bSjjc 11742e2c009bSjjc 11752e2c009bSjjc /* 11762e2c009bSjjc * Return node number for given proximity domain/system locality 11772e2c009bSjjc */ 11782e2c009bSjjc static int 1179d821f0f0Sjjc lgrp_plat_domain_to_node(node_domain_map_t *node_domain, int node_cnt, 1180d821f0f0Sjjc uint32_t domain) 11812e2c009bSjjc { 11822e2c009bSjjc uint_t node; 11832e2c009bSjjc uint_t start; 11842e2c009bSjjc 11852e2c009bSjjc /* 11862e2c009bSjjc * Hash proximity domain ID into node to domain mapping table (array), 11872e2c009bSjjc * search for entry with matching proximity domain ID, and return index 11882e2c009bSjjc * of matching entry as node ID. 11892e2c009bSjjc */ 1190d821f0f0Sjjc node = start = NODE_DOMAIN_HASH(domain, node_cnt); 11912e2c009bSjjc do { 11922e2c009bSjjc if (node_domain[node].prox_domain == domain && 11932e2c009bSjjc node_domain[node].exists) 11942e2c009bSjjc return (node); 1195cf5755f2SJonathan Chew node = (node + 1) % node_cnt; 11962e2c009bSjjc } while (node != start); 11972e2c009bSjjc return (-1); 11982e2c009bSjjc } 11992e2c009bSjjc 12002e2c009bSjjc 12012e2c009bSjjc /* 1202d5d7cf4eSJonathan Chew * Get NUMA configuration of machine 1203d5d7cf4eSJonathan Chew */ 1204d5d7cf4eSJonathan Chew static void 1205d5d7cf4eSJonathan Chew lgrp_plat_get_numa_config(void) 1206d5d7cf4eSJonathan Chew { 1207d5d7cf4eSJonathan Chew uint_t probe_op; 1208d5d7cf4eSJonathan Chew 1209d5d7cf4eSJonathan Chew /* 1210d5d7cf4eSJonathan Chew * Read boot property with CPU to APIC ID mapping table/array to 1211d5d7cf4eSJonathan Chew * determine number of CPUs 1212d5d7cf4eSJonathan Chew */ 1213d5d7cf4eSJonathan Chew lgrp_plat_apic_ncpus = lgrp_plat_process_cpu_apicids(NULL); 1214d5d7cf4eSJonathan Chew 1215d5d7cf4eSJonathan Chew /* 1216d5d7cf4eSJonathan Chew * Determine which CPUs and memory are local to each other and number 1217d5d7cf4eSJonathan Chew * of NUMA nodes by reading ACPI System Resource Affinity Table (SRAT) 1218d5d7cf4eSJonathan Chew */ 1219d5d7cf4eSJonathan Chew if (lgrp_plat_apic_ncpus > 0) { 1220d5d7cf4eSJonathan Chew int retval; 1221d5d7cf4eSJonathan Chew 1222d5d7cf4eSJonathan Chew /* 1223d5d7cf4eSJonathan Chew * Temporarily allocate boot memory to use for CPU to node 1224d5d7cf4eSJonathan Chew * mapping since kernel memory allocator isn't alive yet 1225d5d7cf4eSJonathan Chew */ 1226d5d7cf4eSJonathan Chew lgrp_plat_cpu_node = (cpu_node_map_t *)BOP_ALLOC(bootops, 1227d5d7cf4eSJonathan Chew NULL, lgrp_plat_apic_ncpus * sizeof (cpu_node_map_t), 1228d5d7cf4eSJonathan Chew sizeof (int)); 1229d5d7cf4eSJonathan Chew 1230d5d7cf4eSJonathan Chew ASSERT(lgrp_plat_cpu_node != NULL); 1231d5d7cf4eSJonathan Chew if (lgrp_plat_cpu_node) { 1232d5d7cf4eSJonathan Chew lgrp_plat_cpu_node_nentries = lgrp_plat_apic_ncpus; 1233d5d7cf4eSJonathan Chew bzero(lgrp_plat_cpu_node, lgrp_plat_cpu_node_nentries * 1234d5d7cf4eSJonathan Chew sizeof (cpu_node_map_t)); 1235d5d7cf4eSJonathan Chew } 1236d5d7cf4eSJonathan Chew 1237d5d7cf4eSJonathan Chew /* 1238d5d7cf4eSJonathan Chew * Fill in CPU to node ID mapping table with APIC ID for each 1239d5d7cf4eSJonathan Chew * CPU 1240d5d7cf4eSJonathan Chew */ 1241d5d7cf4eSJonathan Chew (void) lgrp_plat_process_cpu_apicids(lgrp_plat_cpu_node); 1242d5d7cf4eSJonathan Chew 1243d5d7cf4eSJonathan Chew retval = lgrp_plat_process_srat(srat_ptr, 1244d5d7cf4eSJonathan Chew &lgrp_plat_prox_domain_min, 1245d5d7cf4eSJonathan Chew lgrp_plat_node_domain, lgrp_plat_cpu_node, 1246d5d7cf4eSJonathan Chew lgrp_plat_apic_ncpus, lgrp_plat_node_memory); 1247d5d7cf4eSJonathan Chew if (retval <= 0) { 1248d5d7cf4eSJonathan Chew lgrp_plat_srat_error = retval; 1249d5d7cf4eSJonathan Chew lgrp_plat_node_cnt = 1; 1250d5d7cf4eSJonathan Chew } else { 1251d5d7cf4eSJonathan Chew lgrp_plat_srat_error = 0; 1252d5d7cf4eSJonathan Chew lgrp_plat_node_cnt = retval; 1253d5d7cf4eSJonathan Chew } 1254d5d7cf4eSJonathan Chew } 1255d5d7cf4eSJonathan Chew 1256d5d7cf4eSJonathan Chew /* 1257d5d7cf4eSJonathan Chew * Try to use PCI config space registers on Opteron if there's an error 1258d5d7cf4eSJonathan Chew * processing CPU to APIC ID mapping or SRAT 1259d5d7cf4eSJonathan Chew */ 1260d5d7cf4eSJonathan Chew if ((lgrp_plat_apic_ncpus <= 0 || lgrp_plat_srat_error != 0) && 1261d5d7cf4eSJonathan Chew is_opteron()) 1262d5d7cf4eSJonathan Chew opt_get_numa_config(&lgrp_plat_node_cnt, &lgrp_plat_mem_intrlv, 1263d5d7cf4eSJonathan Chew lgrp_plat_node_memory); 1264d5d7cf4eSJonathan Chew 1265d5d7cf4eSJonathan Chew /* 1266d5d7cf4eSJonathan Chew * Don't bother to setup system for multiple lgroups and only use one 1267d5d7cf4eSJonathan Chew * memory node when memory is interleaved between any nodes or there is 1268d5d7cf4eSJonathan Chew * only one NUMA node 1269d5d7cf4eSJonathan Chew * 1270d5d7cf4eSJonathan Chew * NOTE: May need to change this for Dynamic Reconfiguration (DR) 1271d5d7cf4eSJonathan Chew * when and if it happens for x86/x64 1272d5d7cf4eSJonathan Chew */ 1273d5d7cf4eSJonathan Chew if (lgrp_plat_mem_intrlv || lgrp_plat_node_cnt == 1) { 1274d5d7cf4eSJonathan Chew lgrp_plat_node_cnt = max_mem_nodes = 1; 1275d5d7cf4eSJonathan Chew (void) lgrp_topo_ht_limit_set(1); 1276d5d7cf4eSJonathan Chew return; 1277d5d7cf4eSJonathan Chew } 1278d5d7cf4eSJonathan Chew 1279d5d7cf4eSJonathan Chew /* 1280d5d7cf4eSJonathan Chew * Leaf lgroups on x86/x64 architectures contain one physical 1281d5d7cf4eSJonathan Chew * processor chip. Tune lgrp_expand_proc_thresh and 1282d5d7cf4eSJonathan Chew * lgrp_expand_proc_diff so that lgrp_choose() will spread 1283d5d7cf4eSJonathan Chew * things out aggressively. 1284d5d7cf4eSJonathan Chew */ 1285d5d7cf4eSJonathan Chew lgrp_expand_proc_thresh = LGRP_LOADAVG_THREAD_MAX / 2; 1286d5d7cf4eSJonathan Chew lgrp_expand_proc_diff = 0; 1287d5d7cf4eSJonathan Chew 1288d5d7cf4eSJonathan Chew /* 1289d5d7cf4eSJonathan Chew * There should be one memnode (physical page free list(s)) for 1290d5d7cf4eSJonathan Chew * each node 1291d5d7cf4eSJonathan Chew */ 1292d5d7cf4eSJonathan Chew max_mem_nodes = lgrp_plat_node_cnt; 1293d5d7cf4eSJonathan Chew 1294d5d7cf4eSJonathan Chew /* 1295d5d7cf4eSJonathan Chew * Initialize min and max latency before reading SLIT or probing 1296d5d7cf4eSJonathan Chew */ 1297d5d7cf4eSJonathan Chew lgrp_plat_lat_stats.latency_min = -1; 1298d5d7cf4eSJonathan Chew lgrp_plat_lat_stats.latency_max = 0; 1299d5d7cf4eSJonathan Chew 1300d5d7cf4eSJonathan Chew /* 1301d5d7cf4eSJonathan Chew * Determine how far each NUMA node is from each other by 1302d5d7cf4eSJonathan Chew * reading ACPI System Locality Information Table (SLIT) if it 1303d5d7cf4eSJonathan Chew * exists 1304d5d7cf4eSJonathan Chew */ 1305d5d7cf4eSJonathan Chew lgrp_plat_slit_error = lgrp_plat_process_slit(slit_ptr, 1306d5d7cf4eSJonathan Chew lgrp_plat_node_cnt, lgrp_plat_node_memory, 1307d5d7cf4eSJonathan Chew &lgrp_plat_lat_stats); 1308d5d7cf4eSJonathan Chew if (lgrp_plat_slit_error == 0) 1309d5d7cf4eSJonathan Chew return; 1310d5d7cf4eSJonathan Chew 1311d5d7cf4eSJonathan Chew /* 1312d5d7cf4eSJonathan Chew * Probe to determine latency between NUMA nodes when SLIT 1313d5d7cf4eSJonathan Chew * doesn't exist or make sense 1314d5d7cf4eSJonathan Chew */ 1315d5d7cf4eSJonathan Chew lgrp_plat_probe_flags |= LGRP_PLAT_PROBE_ENABLE; 1316d5d7cf4eSJonathan Chew 1317d5d7cf4eSJonathan Chew /* 1318d5d7cf4eSJonathan Chew * Specify whether to probe using vendor ID register or page copy 1319d5d7cf4eSJonathan Chew * if hasn't been specified already or is overspecified 1320d5d7cf4eSJonathan Chew */ 1321d5d7cf4eSJonathan Chew probe_op = lgrp_plat_probe_flags & 1322d5d7cf4eSJonathan Chew (LGRP_PLAT_PROBE_PGCPY|LGRP_PLAT_PROBE_VENDOR); 1323d5d7cf4eSJonathan Chew 1324d5d7cf4eSJonathan Chew if (probe_op == 0 || 1325d5d7cf4eSJonathan Chew probe_op == (LGRP_PLAT_PROBE_PGCPY|LGRP_PLAT_PROBE_VENDOR)) { 1326d5d7cf4eSJonathan Chew lgrp_plat_probe_flags &= 1327d5d7cf4eSJonathan Chew ~(LGRP_PLAT_PROBE_PGCPY|LGRP_PLAT_PROBE_VENDOR); 1328d5d7cf4eSJonathan Chew if (is_opteron()) 1329d5d7cf4eSJonathan Chew lgrp_plat_probe_flags |= 1330d5d7cf4eSJonathan Chew LGRP_PLAT_PROBE_VENDOR; 1331d5d7cf4eSJonathan Chew else 1332d5d7cf4eSJonathan Chew lgrp_plat_probe_flags |= LGRP_PLAT_PROBE_PGCPY; 1333d5d7cf4eSJonathan Chew } 1334d5d7cf4eSJonathan Chew 1335d5d7cf4eSJonathan Chew /* 1336d5d7cf4eSJonathan Chew * Probing errors can mess up the lgroup topology and 1337d5d7cf4eSJonathan Chew * force us fall back to a 2 level lgroup topology. 1338d5d7cf4eSJonathan Chew * Here we bound how tall the lgroup topology can grow 1339d5d7cf4eSJonathan Chew * in hopes of avoiding any anamolies in probing from 1340d5d7cf4eSJonathan Chew * messing up the lgroup topology by limiting the 1341d5d7cf4eSJonathan Chew * accuracy of the latency topology. 1342d5d7cf4eSJonathan Chew * 1343d5d7cf4eSJonathan Chew * Assume that nodes will at least be configured in a 1344d5d7cf4eSJonathan Chew * ring, so limit height of lgroup topology to be less 1345d5d7cf4eSJonathan Chew * than number of nodes on a system with 4 or more 1346d5d7cf4eSJonathan Chew * nodes 1347d5d7cf4eSJonathan Chew */ 1348d5d7cf4eSJonathan Chew if (lgrp_plat_node_cnt >= 4 && lgrp_topo_ht_limit() == 1349d5d7cf4eSJonathan Chew lgrp_topo_ht_limit_default()) 1350d5d7cf4eSJonathan Chew (void) lgrp_topo_ht_limit_set(lgrp_plat_node_cnt - 1); 1351d5d7cf4eSJonathan Chew } 1352d5d7cf4eSJonathan Chew 1353d5d7cf4eSJonathan Chew 1354d5d7cf4eSJonathan Chew /* 13552e2c009bSjjc * Latencies must be within 1/(2**LGRP_LAT_TOLERANCE_SHIFT) of each other to 13562e2c009bSjjc * be considered same 13572e2c009bSjjc */ 13582e2c009bSjjc #define LGRP_LAT_TOLERANCE_SHIFT 4 13592e2c009bSjjc 13602e2c009bSjjc int lgrp_plat_probe_lt_shift = LGRP_LAT_TOLERANCE_SHIFT; 13612e2c009bSjjc 13622e2c009bSjjc 13632e2c009bSjjc /* 13642e2c009bSjjc * Adjust latencies between nodes to be symmetric, normalize latencies between 13652e2c009bSjjc * any nodes that are within some tolerance to be same, and make local 13662e2c009bSjjc * latencies be same 13672e2c009bSjjc */ 13682e2c009bSjjc static void 13692e2c009bSjjc lgrp_plat_latency_adjust(node_phys_addr_map_t *node_memory, 13702e2c009bSjjc lgrp_plat_latency_stats_t *lat_stats, lgrp_plat_probe_stats_t *probe_stats) 13712e2c009bSjjc { 13722e2c009bSjjc int i; 13732e2c009bSjjc int j; 13742e2c009bSjjc int k; 13752e2c009bSjjc int l; 13762e2c009bSjjc u_longlong_t max; 13772e2c009bSjjc u_longlong_t min; 13782e2c009bSjjc u_longlong_t t; 13792e2c009bSjjc u_longlong_t t1; 13802e2c009bSjjc u_longlong_t t2; 13812e2c009bSjjc const lgrp_config_flag_t cflag = LGRP_CONFIG_LAT_CHANGE_ALL; 13822e2c009bSjjc int lat_corrected[MAX_NODES][MAX_NODES]; 13832e2c009bSjjc 13842e2c009bSjjc /* 13852e2c009bSjjc * Nothing to do when this is an UMA machine or don't have args needed 13862e2c009bSjjc */ 13872e2c009bSjjc if (max_mem_nodes == 1) 13882e2c009bSjjc return; 13892e2c009bSjjc 13902e2c009bSjjc ASSERT(node_memory != NULL && lat_stats != NULL && 13912e2c009bSjjc probe_stats != NULL); 13922e2c009bSjjc 13932e2c009bSjjc /* 13942e2c009bSjjc * Make sure that latencies are symmetric between any two nodes 13952e2c009bSjjc * (ie. latency(node0, node1) == latency(node1, node0)) 13962e2c009bSjjc */ 13972e2c009bSjjc for (i = 0; i < lgrp_plat_node_cnt; i++) { 13982e2c009bSjjc if (!node_memory[i].exists) 13992e2c009bSjjc continue; 14002e2c009bSjjc 14012e2c009bSjjc for (j = 0; j < lgrp_plat_node_cnt; j++) { 14022e2c009bSjjc if (!node_memory[j].exists) 14032e2c009bSjjc continue; 14042e2c009bSjjc 14052e2c009bSjjc t1 = lat_stats->latencies[i][j]; 14062e2c009bSjjc t2 = lat_stats->latencies[j][i]; 14072e2c009bSjjc 14082e2c009bSjjc if (t1 == 0 || t2 == 0 || t1 == t2) 14092e2c009bSjjc continue; 14102e2c009bSjjc 14112e2c009bSjjc /* 14122e2c009bSjjc * Latencies should be same 14132e2c009bSjjc * - Use minimum of two latencies which should be same 14142e2c009bSjjc * - Track suspect probe times not within tolerance of 14152e2c009bSjjc * min value 14162e2c009bSjjc * - Remember how much values are corrected by 14172e2c009bSjjc */ 14182e2c009bSjjc if (t1 > t2) { 14192e2c009bSjjc t = t2; 14202e2c009bSjjc probe_stats->probe_errors[i][j] += t1 - t2; 14212e2c009bSjjc if (t1 - t2 > t2 >> lgrp_plat_probe_lt_shift) { 14222e2c009bSjjc probe_stats->probe_suspect[i][j]++; 14232e2c009bSjjc probe_stats->probe_suspect[j][i]++; 14242e2c009bSjjc } 14252e2c009bSjjc } else if (t2 > t1) { 14262e2c009bSjjc t = t1; 14272e2c009bSjjc probe_stats->probe_errors[j][i] += t2 - t1; 14282e2c009bSjjc if (t2 - t1 > t1 >> lgrp_plat_probe_lt_shift) { 14292e2c009bSjjc probe_stats->probe_suspect[i][j]++; 14302e2c009bSjjc probe_stats->probe_suspect[j][i]++; 14312e2c009bSjjc } 14322e2c009bSjjc } 14332e2c009bSjjc 14342e2c009bSjjc lat_stats->latencies[i][j] = 14352e2c009bSjjc lat_stats->latencies[j][i] = t; 14362e2c009bSjjc lgrp_config(cflag, t1, t); 14372e2c009bSjjc lgrp_config(cflag, t2, t); 14382e2c009bSjjc } 14392e2c009bSjjc } 14402e2c009bSjjc 14412e2c009bSjjc /* 14422e2c009bSjjc * Keep track of which latencies get corrected 14432e2c009bSjjc */ 14442e2c009bSjjc for (i = 0; i < MAX_NODES; i++) 14452e2c009bSjjc for (j = 0; j < MAX_NODES; j++) 14462e2c009bSjjc lat_corrected[i][j] = 0; 14472e2c009bSjjc 14482e2c009bSjjc /* 14492e2c009bSjjc * For every two nodes, see whether there is another pair of nodes which 14502e2c009bSjjc * are about the same distance apart and make the latencies be the same 14512e2c009bSjjc * if they are close enough together 14522e2c009bSjjc */ 14532e2c009bSjjc for (i = 0; i < lgrp_plat_node_cnt; i++) { 14542e2c009bSjjc for (j = 0; j < lgrp_plat_node_cnt; j++) { 14552e2c009bSjjc if (!node_memory[j].exists) 14562e2c009bSjjc continue; 14572e2c009bSjjc /* 14582e2c009bSjjc * Pick one pair of nodes (i, j) 14592e2c009bSjjc * and get latency between them 14602e2c009bSjjc */ 14612e2c009bSjjc t1 = lat_stats->latencies[i][j]; 14622e2c009bSjjc 14632e2c009bSjjc /* 14642e2c009bSjjc * Skip this pair of nodes if there isn't a latency 14652e2c009bSjjc * for it yet 14662e2c009bSjjc */ 14672e2c009bSjjc if (t1 == 0) 14682e2c009bSjjc continue; 14692e2c009bSjjc 14702e2c009bSjjc for (k = 0; k < lgrp_plat_node_cnt; k++) { 14712e2c009bSjjc for (l = 0; l < lgrp_plat_node_cnt; l++) { 14722e2c009bSjjc if (!node_memory[l].exists) 14732e2c009bSjjc continue; 14742e2c009bSjjc /* 14752e2c009bSjjc * Pick another pair of nodes (k, l) 14762e2c009bSjjc * not same as (i, j) and get latency 14772e2c009bSjjc * between them 14782e2c009bSjjc */ 14792e2c009bSjjc if (k == i && l == j) 14802e2c009bSjjc continue; 14812e2c009bSjjc 14822e2c009bSjjc t2 = lat_stats->latencies[k][l]; 14832e2c009bSjjc 14842e2c009bSjjc /* 14852e2c009bSjjc * Skip this pair of nodes if there 14862e2c009bSjjc * isn't a latency for it yet 14872e2c009bSjjc */ 14882e2c009bSjjc 14892e2c009bSjjc if (t2 == 0) 14902e2c009bSjjc continue; 14912e2c009bSjjc 14922e2c009bSjjc /* 14932e2c009bSjjc * Skip nodes (k, l) if they already 14942e2c009bSjjc * have same latency as (i, j) or 14952e2c009bSjjc * their latency isn't close enough to 14962e2c009bSjjc * be considered/made the same 14972e2c009bSjjc */ 14982e2c009bSjjc if (t1 == t2 || (t1 > t2 && t1 - t2 > 14992e2c009bSjjc t1 >> lgrp_plat_probe_lt_shift) || 15002e2c009bSjjc (t2 > t1 && t2 - t1 > 15012e2c009bSjjc t2 >> lgrp_plat_probe_lt_shift)) 15022e2c009bSjjc continue; 15032e2c009bSjjc 15042e2c009bSjjc /* 15052e2c009bSjjc * Make latency(i, j) same as 15062e2c009bSjjc * latency(k, l), try to use latency 15072e2c009bSjjc * that has been adjusted already to get 15082e2c009bSjjc * more consistency (if possible), and 15092e2c009bSjjc * remember which latencies were 15102e2c009bSjjc * adjusted for next time 15112e2c009bSjjc */ 15122e2c009bSjjc if (lat_corrected[i][j]) { 15132e2c009bSjjc t = t1; 15142e2c009bSjjc lgrp_config(cflag, t2, t); 15152e2c009bSjjc t2 = t; 15162e2c009bSjjc } else if (lat_corrected[k][l]) { 15172e2c009bSjjc t = t2; 15182e2c009bSjjc lgrp_config(cflag, t1, t); 15192e2c009bSjjc t1 = t; 15202e2c009bSjjc } else { 15212e2c009bSjjc if (t1 > t2) 15222e2c009bSjjc t = t2; 15232e2c009bSjjc else 15242e2c009bSjjc t = t1; 15252e2c009bSjjc lgrp_config(cflag, t1, t); 15262e2c009bSjjc lgrp_config(cflag, t2, t); 15272e2c009bSjjc t1 = t2 = t; 15282e2c009bSjjc } 15292e2c009bSjjc 15302e2c009bSjjc lat_stats->latencies[i][j] = 15312e2c009bSjjc lat_stats->latencies[k][l] = t; 15322e2c009bSjjc 15332e2c009bSjjc lat_corrected[i][j] = 15342e2c009bSjjc lat_corrected[k][l] = 1; 15352e2c009bSjjc } 15362e2c009bSjjc } 15372e2c009bSjjc } 15382e2c009bSjjc } 15392e2c009bSjjc 15402e2c009bSjjc /* 15412e2c009bSjjc * Local latencies should be same 15422e2c009bSjjc * - Find min and max local latencies 15432e2c009bSjjc * - Make all local latencies be minimum 15442e2c009bSjjc */ 15452e2c009bSjjc min = -1; 15462e2c009bSjjc max = 0; 15472e2c009bSjjc for (i = 0; i < lgrp_plat_node_cnt; i++) { 15482e2c009bSjjc if (!node_memory[i].exists) 15492e2c009bSjjc continue; 15502e2c009bSjjc t = lat_stats->latencies[i][i]; 15512e2c009bSjjc if (t == 0) 15522e2c009bSjjc continue; 15532e2c009bSjjc if (min == -1 || t < min) 15542e2c009bSjjc min = t; 15552e2c009bSjjc if (t > max) 15562e2c009bSjjc max = t; 15572e2c009bSjjc } 15582e2c009bSjjc if (min != max) { 15592e2c009bSjjc for (i = 0; i < lgrp_plat_node_cnt; i++) { 15602e2c009bSjjc int local; 15612e2c009bSjjc 15622e2c009bSjjc if (!node_memory[i].exists) 15632e2c009bSjjc continue; 15642e2c009bSjjc 15652e2c009bSjjc local = lat_stats->latencies[i][i]; 15662e2c009bSjjc if (local == 0) 15672e2c009bSjjc continue; 15682e2c009bSjjc 15692e2c009bSjjc /* 15702e2c009bSjjc * Track suspect probe times that aren't within 15712e2c009bSjjc * tolerance of minimum local latency and how much 15722e2c009bSjjc * probe times are corrected by 15732e2c009bSjjc */ 15742e2c009bSjjc if (local - min > min >> lgrp_plat_probe_lt_shift) 15752e2c009bSjjc probe_stats->probe_suspect[i][i]++; 15762e2c009bSjjc 15772e2c009bSjjc probe_stats->probe_errors[i][i] += local - min; 15782e2c009bSjjc 15792e2c009bSjjc /* 15802e2c009bSjjc * Make local latencies be minimum 15812e2c009bSjjc */ 15822e2c009bSjjc lgrp_config(LGRP_CONFIG_LAT_CHANGE, i, min); 15832e2c009bSjjc lat_stats->latencies[i][i] = min; 15842e2c009bSjjc } 15852e2c009bSjjc } 15862e2c009bSjjc 15872e2c009bSjjc /* 15882e2c009bSjjc * Determine max probe time again since just adjusted latencies 15892e2c009bSjjc */ 15902e2c009bSjjc lat_stats->latency_max = 0; 15912e2c009bSjjc for (i = 0; i < lgrp_plat_node_cnt; i++) { 15922e2c009bSjjc for (j = 0; j < lgrp_plat_node_cnt; j++) { 15932e2c009bSjjc if (!node_memory[j].exists) 15942e2c009bSjjc continue; 15952e2c009bSjjc t = lat_stats->latencies[i][j]; 15962e2c009bSjjc if (t > lat_stats->latency_max) 15972e2c009bSjjc lat_stats->latency_max = t; 15982e2c009bSjjc } 15992e2c009bSjjc } 16002e2c009bSjjc } 16012e2c009bSjjc 16022e2c009bSjjc 16032e2c009bSjjc /* 16042e2c009bSjjc * Verify following about latencies between nodes: 16052e2c009bSjjc * 16062e2c009bSjjc * - Latencies should be symmetric (ie. latency(a, b) == latency(b, a)) 16072e2c009bSjjc * - Local latencies same 16082e2c009bSjjc * - Local < remote 16092e2c009bSjjc * - Number of latencies seen is reasonable 16102e2c009bSjjc * - Number of occurrences of a given latency should be more than 1 16112e2c009bSjjc * 16122e2c009bSjjc * Returns: 16132e2c009bSjjc * 0 Success 16142e2c009bSjjc * -1 Not symmetric 16152e2c009bSjjc * -2 Local latencies not same 16162e2c009bSjjc * -3 Local >= remote 16172e2c009bSjjc */ 16182e2c009bSjjc static int 16192e2c009bSjjc lgrp_plat_latency_verify(node_phys_addr_map_t *node_memory, 16202e2c009bSjjc lgrp_plat_latency_stats_t *lat_stats) 16212e2c009bSjjc { 16222e2c009bSjjc int i; 16232e2c009bSjjc int j; 16242e2c009bSjjc u_longlong_t t1; 16252e2c009bSjjc u_longlong_t t2; 16262e2c009bSjjc 16272e2c009bSjjc ASSERT(node_memory != NULL && lat_stats != NULL); 16282e2c009bSjjc 16292e2c009bSjjc /* 16302e2c009bSjjc * Nothing to do when this is an UMA machine, lgroup topology is 16312e2c009bSjjc * limited to 2 levels, or there aren't any probe times yet 16322e2c009bSjjc */ 16332e2c009bSjjc if (max_mem_nodes == 1 || lgrp_topo_levels < 2 || 16342e2c009bSjjc lat_stats->latencies[0][0] == 0) 16352e2c009bSjjc return (0); 16362e2c009bSjjc 16372e2c009bSjjc /* 16382e2c009bSjjc * Make sure that latencies are symmetric between any two nodes 16392e2c009bSjjc * (ie. latency(node0, node1) == latency(node1, node0)) 16402e2c009bSjjc */ 16412e2c009bSjjc for (i = 0; i < lgrp_plat_node_cnt; i++) { 16422e2c009bSjjc if (!node_memory[i].exists) 16432e2c009bSjjc continue; 16442e2c009bSjjc for (j = 0; j < lgrp_plat_node_cnt; j++) { 16452e2c009bSjjc if (!node_memory[j].exists) 16462e2c009bSjjc continue; 16472e2c009bSjjc t1 = lat_stats->latencies[i][j]; 16482e2c009bSjjc t2 = lat_stats->latencies[j][i]; 16492e2c009bSjjc 16502e2c009bSjjc if (t1 == 0 || t2 == 0 || t1 == t2) 16512e2c009bSjjc continue; 16522e2c009bSjjc 16532e2c009bSjjc return (-1); 16542e2c009bSjjc } 16552e2c009bSjjc } 16562e2c009bSjjc 16572e2c009bSjjc /* 16582e2c009bSjjc * Local latencies should be same 16592e2c009bSjjc */ 16602e2c009bSjjc t1 = lat_stats->latencies[0][0]; 16612e2c009bSjjc for (i = 1; i < lgrp_plat_node_cnt; i++) { 16622e2c009bSjjc if (!node_memory[i].exists) 16632e2c009bSjjc continue; 16642e2c009bSjjc 16652e2c009bSjjc t2 = lat_stats->latencies[i][i]; 16662e2c009bSjjc if (t2 == 0) 16672e2c009bSjjc continue; 16682e2c009bSjjc 16692e2c009bSjjc if (t1 == 0) { 16702e2c009bSjjc t1 = t2; 16712e2c009bSjjc continue; 16722e2c009bSjjc } 16732e2c009bSjjc 16742e2c009bSjjc if (t1 != t2) 16752e2c009bSjjc return (-2); 16762e2c009bSjjc } 16772e2c009bSjjc 16782e2c009bSjjc /* 16792e2c009bSjjc * Local latencies should be less than remote 16802e2c009bSjjc */ 16812e2c009bSjjc if (t1) { 16822e2c009bSjjc for (i = 0; i < lgrp_plat_node_cnt; i++) { 16832e2c009bSjjc for (j = 0; j < lgrp_plat_node_cnt; j++) { 16842e2c009bSjjc if (!node_memory[j].exists) 16852e2c009bSjjc continue; 16862e2c009bSjjc t2 = lat_stats->latencies[i][j]; 16872e2c009bSjjc if (i == j || t2 == 0) 16882e2c009bSjjc continue; 16892e2c009bSjjc 16902e2c009bSjjc if (t1 >= t2) 16912e2c009bSjjc return (-3); 16922e2c009bSjjc } 16932e2c009bSjjc } 16942e2c009bSjjc } 16952e2c009bSjjc 16962e2c009bSjjc return (0); 16972e2c009bSjjc } 16982e2c009bSjjc 16992e2c009bSjjc 17002e2c009bSjjc /* 1701d5d7cf4eSJonathan Chew * Platform-specific initialization 1702d5d7cf4eSJonathan Chew */ 1703d5d7cf4eSJonathan Chew static void 1704d5d7cf4eSJonathan Chew lgrp_plat_main_init(void) 1705d5d7cf4eSJonathan Chew { 1706d5d7cf4eSJonathan Chew int curnode; 1707d5d7cf4eSJonathan Chew int ht_limit; 1708d5d7cf4eSJonathan Chew int i; 1709d5d7cf4eSJonathan Chew 1710d5d7cf4eSJonathan Chew /* 1711d5d7cf4eSJonathan Chew * Print a notice that MPO is disabled when memory is interleaved 1712d5d7cf4eSJonathan Chew * across nodes....Would do this when it is discovered, but can't 1713d5d7cf4eSJonathan Chew * because it happens way too early during boot.... 1714d5d7cf4eSJonathan Chew */ 1715d5d7cf4eSJonathan Chew if (lgrp_plat_mem_intrlv) 1716d5d7cf4eSJonathan Chew cmn_err(CE_NOTE, 1717d5d7cf4eSJonathan Chew "MPO disabled because memory is interleaved\n"); 1718d5d7cf4eSJonathan Chew 1719d5d7cf4eSJonathan Chew /* 1720d5d7cf4eSJonathan Chew * Don't bother to do any probing if it is disabled, there is only one 1721d5d7cf4eSJonathan Chew * node, or the height of the lgroup topology less than or equal to 2 1722d5d7cf4eSJonathan Chew */ 1723d5d7cf4eSJonathan Chew ht_limit = lgrp_topo_ht_limit(); 1724d5d7cf4eSJonathan Chew if (!(lgrp_plat_probe_flags & LGRP_PLAT_PROBE_ENABLE) || 1725d5d7cf4eSJonathan Chew max_mem_nodes == 1 || ht_limit <= 2) { 1726d5d7cf4eSJonathan Chew /* 1727d5d7cf4eSJonathan Chew * Setup lgroup latencies for 2 level lgroup topology 1728d5d7cf4eSJonathan Chew * (ie. local and remote only) if they haven't been set yet 1729d5d7cf4eSJonathan Chew */ 1730d5d7cf4eSJonathan Chew if (ht_limit == 2 && lgrp_plat_lat_stats.latency_min == -1 && 1731d5d7cf4eSJonathan Chew lgrp_plat_lat_stats.latency_max == 0) 1732d5d7cf4eSJonathan Chew lgrp_plat_2level_setup(lgrp_plat_node_memory, 1733d5d7cf4eSJonathan Chew &lgrp_plat_lat_stats); 1734d5d7cf4eSJonathan Chew return; 1735d5d7cf4eSJonathan Chew } 1736d5d7cf4eSJonathan Chew 1737d5d7cf4eSJonathan Chew if (lgrp_plat_probe_flags & LGRP_PLAT_PROBE_VENDOR) { 1738d5d7cf4eSJonathan Chew /* 1739d5d7cf4eSJonathan Chew * Should have been able to probe from CPU 0 when it was added 1740d5d7cf4eSJonathan Chew * to lgroup hierarchy, but may not have been able to then 1741d5d7cf4eSJonathan Chew * because it happens so early in boot that gethrtime() hasn't 1742d5d7cf4eSJonathan Chew * been initialized. (:-( 1743d5d7cf4eSJonathan Chew */ 1744d5d7cf4eSJonathan Chew curnode = lgrp_plat_cpu_to_node(CPU, lgrp_plat_cpu_node, 1745d5d7cf4eSJonathan Chew lgrp_plat_cpu_node_nentries); 1746d5d7cf4eSJonathan Chew ASSERT(curnode >= 0 && curnode < lgrp_plat_node_cnt); 1747d5d7cf4eSJonathan Chew if (lgrp_plat_lat_stats.latencies[curnode][curnode] == 0) 1748d5d7cf4eSJonathan Chew lgrp_plat_probe(); 1749d5d7cf4eSJonathan Chew 1750d5d7cf4eSJonathan Chew return; 1751d5d7cf4eSJonathan Chew } 1752d5d7cf4eSJonathan Chew 1753d5d7cf4eSJonathan Chew /* 1754d5d7cf4eSJonathan Chew * When probing memory, use one page for every sample to determine 1755d5d7cf4eSJonathan Chew * lgroup topology and taking multiple samples 1756d5d7cf4eSJonathan Chew */ 1757d5d7cf4eSJonathan Chew if (lgrp_plat_probe_mem_config.probe_memsize == 0) 1758d5d7cf4eSJonathan Chew lgrp_plat_probe_mem_config.probe_memsize = PAGESIZE * 1759d5d7cf4eSJonathan Chew lgrp_plat_probe_nsamples; 1760d5d7cf4eSJonathan Chew 1761d5d7cf4eSJonathan Chew /* 1762d5d7cf4eSJonathan Chew * Map memory in each node needed for probing to determine latency 1763d5d7cf4eSJonathan Chew * topology 1764d5d7cf4eSJonathan Chew */ 1765d5d7cf4eSJonathan Chew for (i = 0; i < lgrp_plat_node_cnt; i++) { 1766d5d7cf4eSJonathan Chew int mnode; 1767d5d7cf4eSJonathan Chew 1768d5d7cf4eSJonathan Chew /* 1769d5d7cf4eSJonathan Chew * Skip this node and leave its probe page NULL 1770d5d7cf4eSJonathan Chew * if it doesn't have any memory 1771d5d7cf4eSJonathan Chew */ 1772d5d7cf4eSJonathan Chew mnode = plat_lgrphand_to_mem_node((lgrp_handle_t)i); 1773d5d7cf4eSJonathan Chew if (!mem_node_config[mnode].exists) { 1774d5d7cf4eSJonathan Chew lgrp_plat_probe_mem_config.probe_va[i] = NULL; 1775d5d7cf4eSJonathan Chew continue; 1776d5d7cf4eSJonathan Chew } 1777d5d7cf4eSJonathan Chew 1778d5d7cf4eSJonathan Chew /* 1779d5d7cf4eSJonathan Chew * Allocate one kernel virtual page 1780d5d7cf4eSJonathan Chew */ 1781d5d7cf4eSJonathan Chew lgrp_plat_probe_mem_config.probe_va[i] = vmem_alloc(heap_arena, 1782d5d7cf4eSJonathan Chew lgrp_plat_probe_mem_config.probe_memsize, VM_NOSLEEP); 1783d5d7cf4eSJonathan Chew if (lgrp_plat_probe_mem_config.probe_va[i] == NULL) { 1784d5d7cf4eSJonathan Chew cmn_err(CE_WARN, 1785d5d7cf4eSJonathan Chew "lgrp_plat_main_init: couldn't allocate memory"); 1786d5d7cf4eSJonathan Chew return; 1787d5d7cf4eSJonathan Chew } 1788d5d7cf4eSJonathan Chew 1789d5d7cf4eSJonathan Chew /* 1790d5d7cf4eSJonathan Chew * Get PFN for first page in each node 1791d5d7cf4eSJonathan Chew */ 1792d5d7cf4eSJonathan Chew lgrp_plat_probe_mem_config.probe_pfn[i] = 1793d5d7cf4eSJonathan Chew mem_node_config[mnode].physbase; 1794d5d7cf4eSJonathan Chew 1795d5d7cf4eSJonathan Chew /* 1796d5d7cf4eSJonathan Chew * Map virtual page to first page in node 1797d5d7cf4eSJonathan Chew */ 1798d5d7cf4eSJonathan Chew hat_devload(kas.a_hat, lgrp_plat_probe_mem_config.probe_va[i], 1799d5d7cf4eSJonathan Chew lgrp_plat_probe_mem_config.probe_memsize, 1800d5d7cf4eSJonathan Chew lgrp_plat_probe_mem_config.probe_pfn[i], 1801d5d7cf4eSJonathan Chew PROT_READ | PROT_WRITE | HAT_PLAT_NOCACHE, 1802d5d7cf4eSJonathan Chew HAT_LOAD_NOCONSIST); 1803d5d7cf4eSJonathan Chew } 1804d5d7cf4eSJonathan Chew 1805d5d7cf4eSJonathan Chew /* 1806d5d7cf4eSJonathan Chew * Probe from current CPU 1807d5d7cf4eSJonathan Chew */ 1808d5d7cf4eSJonathan Chew lgrp_plat_probe(); 1809d5d7cf4eSJonathan Chew } 1810d5d7cf4eSJonathan Chew 1811d5d7cf4eSJonathan Chew 1812d5d7cf4eSJonathan Chew /* 18132e2c009bSjjc * Return the number of free, allocatable, or installed 18142e2c009bSjjc * pages in an lgroup 18152e2c009bSjjc * This is a copy of the MAX_MEM_NODES == 1 version of the routine 18162e2c009bSjjc * used when MPO is disabled (i.e. single lgroup) or this is the root lgroup 18172e2c009bSjjc */ 18182e2c009bSjjc /* ARGSUSED */ 18192e2c009bSjjc static pgcnt_t 18202e2c009bSjjc lgrp_plat_mem_size_default(lgrp_handle_t lgrphand, lgrp_mem_query_t query) 18212e2c009bSjjc { 18222e2c009bSjjc struct memlist *mlist; 18232e2c009bSjjc pgcnt_t npgs = 0; 18242e2c009bSjjc extern struct memlist *phys_avail; 18252e2c009bSjjc extern struct memlist *phys_install; 18262e2c009bSjjc 18272e2c009bSjjc switch (query) { 18282e2c009bSjjc case LGRP_MEM_SIZE_FREE: 18292e2c009bSjjc return ((pgcnt_t)freemem); 18302e2c009bSjjc case LGRP_MEM_SIZE_AVAIL: 18312e2c009bSjjc memlist_read_lock(); 1832*56f33205SJonathan Adams for (mlist = phys_avail; mlist; mlist = mlist->ml_next) 1833*56f33205SJonathan Adams npgs += btop(mlist->ml_size); 18342e2c009bSjjc memlist_read_unlock(); 18352e2c009bSjjc return (npgs); 18362e2c009bSjjc case LGRP_MEM_SIZE_INSTALL: 18372e2c009bSjjc memlist_read_lock(); 1838*56f33205SJonathan Adams for (mlist = phys_install; mlist; mlist = mlist->ml_next) 1839*56f33205SJonathan Adams npgs += btop(mlist->ml_size); 18402e2c009bSjjc memlist_read_unlock(); 18412e2c009bSjjc return (npgs); 18422e2c009bSjjc default: 18432e2c009bSjjc return ((pgcnt_t)0); 18442e2c009bSjjc } 18452e2c009bSjjc } 18462e2c009bSjjc 18472e2c009bSjjc 18482e2c009bSjjc /* 18492e2c009bSjjc * Update node to proximity domain mappings for given domain and return node ID 18502e2c009bSjjc */ 18512e2c009bSjjc static int 1852d821f0f0Sjjc lgrp_plat_node_domain_update(node_domain_map_t *node_domain, int node_cnt, 1853d821f0f0Sjjc uint32_t domain) 18542e2c009bSjjc { 18552e2c009bSjjc uint_t node; 18562e2c009bSjjc uint_t start; 18572e2c009bSjjc 18582e2c009bSjjc /* 18592e2c009bSjjc * Hash proximity domain ID into node to domain mapping table (array) 18602e2c009bSjjc * and add entry for it into first non-existent or matching entry found 18612e2c009bSjjc */ 1862d821f0f0Sjjc node = start = NODE_DOMAIN_HASH(domain, node_cnt); 18632e2c009bSjjc do { 18642e2c009bSjjc /* 18652e2c009bSjjc * Entry doesn't exist yet, so create one for this proximity 18662e2c009bSjjc * domain and return node ID which is index into mapping table. 18672e2c009bSjjc */ 18682e2c009bSjjc if (!node_domain[node].exists) { 18692e2c009bSjjc node_domain[node].exists = 1; 18702e2c009bSjjc node_domain[node].prox_domain = domain; 18712e2c009bSjjc return (node); 18722e2c009bSjjc } 18732e2c009bSjjc 18742e2c009bSjjc /* 18752e2c009bSjjc * Entry exists for this proximity domain already, so just 18762e2c009bSjjc * return node ID (index into table). 18772e2c009bSjjc */ 18782e2c009bSjjc if (node_domain[node].prox_domain == domain) 18792e2c009bSjjc return (node); 1880d821f0f0Sjjc node = NODE_DOMAIN_HASH(node + 1, node_cnt); 18812e2c009bSjjc } while (node != start); 18822e2c009bSjjc 18832e2c009bSjjc /* 18842e2c009bSjjc * Ran out of supported number of entries which shouldn't happen.... 18852e2c009bSjjc */ 18862e2c009bSjjc ASSERT(node != start); 18872e2c009bSjjc return (-1); 18882e2c009bSjjc } 18892e2c009bSjjc 18902e2c009bSjjc 18912e2c009bSjjc /* 18922e2c009bSjjc * Update node memory information for given proximity domain with specified 18932e2c009bSjjc * starting and ending physical address range (and return positive numbers for 18942e2c009bSjjc * success and negative ones for errors) 18952e2c009bSjjc */ 18962e2c009bSjjc static int 1897d821f0f0Sjjc lgrp_plat_node_memory_update(node_domain_map_t *node_domain, int node_cnt, 1898e9dd3ea3Sjjc node_phys_addr_map_t *node_memory, uint64_t start, uint64_t end, 18992e2c009bSjjc uint32_t domain) 19002e2c009bSjjc { 19012e2c009bSjjc int node; 19022e2c009bSjjc 19032e2c009bSjjc /* 19042e2c009bSjjc * Get node number for proximity domain 19052e2c009bSjjc */ 1906d821f0f0Sjjc node = lgrp_plat_domain_to_node(node_domain, node_cnt, domain); 19072e2c009bSjjc if (node == -1) { 1908d821f0f0Sjjc node = lgrp_plat_node_domain_update(node_domain, node_cnt, 1909d821f0f0Sjjc domain); 19102e2c009bSjjc if (node == -1) 19112e2c009bSjjc return (-1); 19122e2c009bSjjc } 19132e2c009bSjjc 19142e2c009bSjjc /* 19152e2c009bSjjc * Create entry in table for node if it doesn't exist 19162e2c009bSjjc */ 19172e2c009bSjjc if (!node_memory[node].exists) { 19182e2c009bSjjc node_memory[node].exists = 1; 19192e2c009bSjjc node_memory[node].start = btop(start); 19202e2c009bSjjc node_memory[node].end = btop(end); 19212e2c009bSjjc node_memory[node].prox_domain = domain; 19222e2c009bSjjc return (0); 19232e2c009bSjjc } 19242e2c009bSjjc 19252e2c009bSjjc /* 19262e2c009bSjjc * Entry already exists for this proximity domain 19272e2c009bSjjc * 19282e2c009bSjjc * There may be more than one SRAT memory entry for a domain, so we may 19292e2c009bSjjc * need to update existing start or end address for the node. 19302e2c009bSjjc */ 19312e2c009bSjjc if (node_memory[node].prox_domain == domain) { 19322e2c009bSjjc if (btop(start) < node_memory[node].start) 19332e2c009bSjjc node_memory[node].start = btop(start); 19342e2c009bSjjc if (btop(end) > node_memory[node].end) 19352e2c009bSjjc node_memory[node].end = btop(end); 19362e2c009bSjjc return (1); 19372e2c009bSjjc } 19382e2c009bSjjc return (-2); 19392e2c009bSjjc } 19402e2c009bSjjc 19412e2c009bSjjc 19422e2c009bSjjc /* 194381d9ccb6SJonathan Chew * Have to sort node by starting physical address because VM system (physical 194481d9ccb6SJonathan Chew * page free list management) assumes and expects memnodes to be sorted in 194581d9ccb6SJonathan Chew * ascending order by physical address. If not, the kernel will panic in 194681d9ccb6SJonathan Chew * potentially a number of different places. (:-( 194781d9ccb6SJonathan Chew * NOTE: This workaround will not be sufficient if/when hotplugging memory is 194881d9ccb6SJonathan Chew * supported on x86/x64. 194981d9ccb6SJonathan Chew */ 195081d9ccb6SJonathan Chew static void 195181d9ccb6SJonathan Chew lgrp_plat_node_sort(node_domain_map_t *node_domain, int node_cnt, 195281d9ccb6SJonathan Chew cpu_node_map_t *cpu_node, int cpu_count, node_phys_addr_map_t *node_memory) 195381d9ccb6SJonathan Chew { 195481d9ccb6SJonathan Chew boolean_t found; 195581d9ccb6SJonathan Chew int i; 195681d9ccb6SJonathan Chew int j; 195781d9ccb6SJonathan Chew int n; 195881d9ccb6SJonathan Chew boolean_t sorted; 195981d9ccb6SJonathan Chew boolean_t swapped; 196081d9ccb6SJonathan Chew 196181d9ccb6SJonathan Chew if (!lgrp_plat_node_sort_enable || node_cnt <= 1 || 196281d9ccb6SJonathan Chew node_domain == NULL || node_memory == NULL) 196381d9ccb6SJonathan Chew return; 196481d9ccb6SJonathan Chew 196581d9ccb6SJonathan Chew /* 196681d9ccb6SJonathan Chew * Sorted already? 196781d9ccb6SJonathan Chew */ 196881d9ccb6SJonathan Chew sorted = B_TRUE; 196981d9ccb6SJonathan Chew for (i = 0; i < node_cnt - 1; i++) { 197081d9ccb6SJonathan Chew /* 197181d9ccb6SJonathan Chew * Skip entries that don't exist 197281d9ccb6SJonathan Chew */ 197381d9ccb6SJonathan Chew if (!node_memory[i].exists) 197481d9ccb6SJonathan Chew continue; 197581d9ccb6SJonathan Chew 197681d9ccb6SJonathan Chew /* 197781d9ccb6SJonathan Chew * Try to find next existing entry to compare against 197881d9ccb6SJonathan Chew */ 197981d9ccb6SJonathan Chew found = B_FALSE; 198081d9ccb6SJonathan Chew for (j = i + 1; j < node_cnt; j++) { 198181d9ccb6SJonathan Chew if (node_memory[j].exists) { 198281d9ccb6SJonathan Chew found = B_TRUE; 198381d9ccb6SJonathan Chew break; 198481d9ccb6SJonathan Chew } 198581d9ccb6SJonathan Chew } 198681d9ccb6SJonathan Chew 198781d9ccb6SJonathan Chew /* 198881d9ccb6SJonathan Chew * Done if no more existing entries to compare against 198981d9ccb6SJonathan Chew */ 199081d9ccb6SJonathan Chew if (found == B_FALSE) 199181d9ccb6SJonathan Chew break; 199281d9ccb6SJonathan Chew 199381d9ccb6SJonathan Chew /* 199481d9ccb6SJonathan Chew * Not sorted if starting address of current entry is bigger 199581d9ccb6SJonathan Chew * than starting address of next existing entry 199681d9ccb6SJonathan Chew */ 199781d9ccb6SJonathan Chew if (node_memory[i].start > node_memory[j].start) { 199881d9ccb6SJonathan Chew sorted = B_FALSE; 199981d9ccb6SJonathan Chew break; 200081d9ccb6SJonathan Chew } 200181d9ccb6SJonathan Chew } 200281d9ccb6SJonathan Chew 200381d9ccb6SJonathan Chew /* 200481d9ccb6SJonathan Chew * Don't need to sort if sorted already 200581d9ccb6SJonathan Chew */ 200681d9ccb6SJonathan Chew if (sorted == B_TRUE) 200781d9ccb6SJonathan Chew return; 200881d9ccb6SJonathan Chew 200981d9ccb6SJonathan Chew /* 201081d9ccb6SJonathan Chew * Just use bubble sort since number of nodes is small 201181d9ccb6SJonathan Chew */ 201281d9ccb6SJonathan Chew n = node_cnt; 201381d9ccb6SJonathan Chew do { 201481d9ccb6SJonathan Chew swapped = B_FALSE; 201581d9ccb6SJonathan Chew n--; 201681d9ccb6SJonathan Chew for (i = 0; i < n; i++) { 201781d9ccb6SJonathan Chew /* 201881d9ccb6SJonathan Chew * Skip entries that don't exist 201981d9ccb6SJonathan Chew */ 202081d9ccb6SJonathan Chew if (!node_memory[i].exists) 202181d9ccb6SJonathan Chew continue; 202281d9ccb6SJonathan Chew 202381d9ccb6SJonathan Chew /* 202481d9ccb6SJonathan Chew * Try to find next existing entry to compare against 202581d9ccb6SJonathan Chew */ 202681d9ccb6SJonathan Chew found = B_FALSE; 202781d9ccb6SJonathan Chew for (j = i + 1; j <= n; j++) { 202881d9ccb6SJonathan Chew if (node_memory[j].exists) { 202981d9ccb6SJonathan Chew found = B_TRUE; 203081d9ccb6SJonathan Chew break; 203181d9ccb6SJonathan Chew } 203281d9ccb6SJonathan Chew } 203381d9ccb6SJonathan Chew 203481d9ccb6SJonathan Chew /* 203581d9ccb6SJonathan Chew * Done if no more existing entries to compare against 203681d9ccb6SJonathan Chew */ 203781d9ccb6SJonathan Chew if (found == B_FALSE) 203881d9ccb6SJonathan Chew break; 203981d9ccb6SJonathan Chew 204081d9ccb6SJonathan Chew if (node_memory[i].start > node_memory[j].start) { 204181d9ccb6SJonathan Chew node_phys_addr_map_t save_addr; 204281d9ccb6SJonathan Chew node_domain_map_t save_node; 204381d9ccb6SJonathan Chew 204481d9ccb6SJonathan Chew /* 204581d9ccb6SJonathan Chew * Swap node to proxmity domain ID assignments 204681d9ccb6SJonathan Chew */ 204781d9ccb6SJonathan Chew bcopy(&node_domain[i], &save_node, 204881d9ccb6SJonathan Chew sizeof (node_domain_map_t)); 204981d9ccb6SJonathan Chew bcopy(&node_domain[j], &node_domain[i], 205081d9ccb6SJonathan Chew sizeof (node_domain_map_t)); 205181d9ccb6SJonathan Chew bcopy(&save_node, &node_domain[j], 205281d9ccb6SJonathan Chew sizeof (node_domain_map_t)); 205381d9ccb6SJonathan Chew 205481d9ccb6SJonathan Chew /* 205581d9ccb6SJonathan Chew * Swap node to physical memory assignments 205681d9ccb6SJonathan Chew */ 205781d9ccb6SJonathan Chew bcopy(&node_memory[i], &save_addr, 205881d9ccb6SJonathan Chew sizeof (node_phys_addr_map_t)); 205981d9ccb6SJonathan Chew bcopy(&node_memory[j], &node_memory[i], 206081d9ccb6SJonathan Chew sizeof (node_phys_addr_map_t)); 206181d9ccb6SJonathan Chew bcopy(&save_addr, &node_memory[j], 206281d9ccb6SJonathan Chew sizeof (node_phys_addr_map_t)); 206381d9ccb6SJonathan Chew swapped = B_TRUE; 206481d9ccb6SJonathan Chew } 206581d9ccb6SJonathan Chew } 206681d9ccb6SJonathan Chew } while (swapped == B_TRUE); 206781d9ccb6SJonathan Chew 206881d9ccb6SJonathan Chew /* 206981d9ccb6SJonathan Chew * Check to make sure that CPUs assigned to correct node IDs now since 207081d9ccb6SJonathan Chew * node to proximity domain ID assignments may have been changed above 207181d9ccb6SJonathan Chew */ 207281d9ccb6SJonathan Chew if (n == node_cnt - 1 || cpu_node == NULL || cpu_count < 1) 207381d9ccb6SJonathan Chew return; 207481d9ccb6SJonathan Chew for (i = 0; i < cpu_count; i++) { 207581d9ccb6SJonathan Chew int node; 207681d9ccb6SJonathan Chew 207781d9ccb6SJonathan Chew node = lgrp_plat_domain_to_node(node_domain, node_cnt, 207881d9ccb6SJonathan Chew cpu_node[i].prox_domain); 207981d9ccb6SJonathan Chew if (cpu_node[i].node != node) 208081d9ccb6SJonathan Chew cpu_node[i].node = node; 208181d9ccb6SJonathan Chew } 208281d9ccb6SJonathan Chew 208381d9ccb6SJonathan Chew } 208481d9ccb6SJonathan Chew 208581d9ccb6SJonathan Chew 208681d9ccb6SJonathan Chew /* 20872e2c009bSjjc * Return time needed to probe from current CPU to memory in given node 20882e2c009bSjjc */ 20892e2c009bSjjc static hrtime_t 2090d5d7cf4eSJonathan Chew lgrp_plat_probe_time(int to, cpu_node_map_t *cpu_node, int cpu_node_nentries, 20912e2c009bSjjc lgrp_plat_probe_mem_config_t *probe_mem_config, 20922e2c009bSjjc lgrp_plat_latency_stats_t *lat_stats, lgrp_plat_probe_stats_t *probe_stats) 20932e2c009bSjjc { 20942e2c009bSjjc caddr_t buf; 20952e2c009bSjjc hrtime_t elapsed; 20962e2c009bSjjc hrtime_t end; 20972e2c009bSjjc int from; 20982e2c009bSjjc int i; 20992e2c009bSjjc int ipl; 21002e2c009bSjjc hrtime_t max; 21012e2c009bSjjc hrtime_t min; 21022e2c009bSjjc hrtime_t start; 21032e2c009bSjjc extern int use_sse_pagecopy; 21042e2c009bSjjc 21052e2c009bSjjc /* 21062e2c009bSjjc * Determine ID of node containing current CPU 21072e2c009bSjjc */ 2108d5d7cf4eSJonathan Chew from = lgrp_plat_cpu_to_node(CPU, cpu_node, cpu_node_nentries); 21092e2c009bSjjc ASSERT(from >= 0 && from < lgrp_plat_node_cnt); 21102e2c009bSjjc 21112e2c009bSjjc /* 21122e2c009bSjjc * Do common work for probing main memory 21132e2c009bSjjc */ 21142e2c009bSjjc if (lgrp_plat_probe_flags & LGRP_PLAT_PROBE_PGCPY) { 21152e2c009bSjjc /* 21162e2c009bSjjc * Skip probing any nodes without memory and 21172e2c009bSjjc * set probe time to 0 21182e2c009bSjjc */ 21192e2c009bSjjc if (probe_mem_config->probe_va[to] == NULL) { 21202e2c009bSjjc lat_stats->latencies[from][to] = 0; 21212e2c009bSjjc return (0); 21222e2c009bSjjc } 21232e2c009bSjjc 21242e2c009bSjjc /* 21252e2c009bSjjc * Invalidate caches once instead of once every sample 21262e2c009bSjjc * which should cut cost of probing by a lot 21272e2c009bSjjc */ 21282e2c009bSjjc probe_stats->flush_cost = gethrtime(); 21292e2c009bSjjc invalidate_cache(); 21302e2c009bSjjc probe_stats->flush_cost = gethrtime() - 21312e2c009bSjjc probe_stats->flush_cost; 21322e2c009bSjjc probe_stats->probe_cost_total += probe_stats->flush_cost; 21332e2c009bSjjc } 21342e2c009bSjjc 21352e2c009bSjjc /* 21362e2c009bSjjc * Probe from current CPU to given memory using specified operation 21372e2c009bSjjc * and take specified number of samples 21382e2c009bSjjc */ 21392e2c009bSjjc max = 0; 21402e2c009bSjjc min = -1; 21412e2c009bSjjc for (i = 0; i < lgrp_plat_probe_nsamples; i++) { 21422e2c009bSjjc probe_stats->probe_cost = gethrtime(); 21432e2c009bSjjc 21442e2c009bSjjc /* 21452e2c009bSjjc * Can't measure probe time if gethrtime() isn't working yet 21462e2c009bSjjc */ 21472e2c009bSjjc if (probe_stats->probe_cost == 0 && gethrtime() == 0) 21482e2c009bSjjc return (0); 21492e2c009bSjjc 21502e2c009bSjjc if (lgrp_plat_probe_flags & LGRP_PLAT_PROBE_VENDOR) { 21512e2c009bSjjc /* 21522e2c009bSjjc * Measure how long it takes to read vendor ID from 21532e2c009bSjjc * Northbridge 21542e2c009bSjjc */ 21552e2c009bSjjc elapsed = opt_probe_vendor(to, lgrp_plat_probe_nreads); 21562e2c009bSjjc } else { 21572e2c009bSjjc /* 21582e2c009bSjjc * Measure how long it takes to copy page 21592e2c009bSjjc * on top of itself 21602e2c009bSjjc */ 21612e2c009bSjjc buf = probe_mem_config->probe_va[to] + (i * PAGESIZE); 21622e2c009bSjjc 21632e2c009bSjjc kpreempt_disable(); 21642e2c009bSjjc ipl = splhigh(); 21652e2c009bSjjc start = gethrtime(); 21662e2c009bSjjc if (use_sse_pagecopy) 21672e2c009bSjjc hwblkpagecopy(buf, buf); 21682e2c009bSjjc else 21692e2c009bSjjc bcopy(buf, buf, PAGESIZE); 21702e2c009bSjjc end = gethrtime(); 21712e2c009bSjjc elapsed = end - start; 21722e2c009bSjjc splx(ipl); 21732e2c009bSjjc kpreempt_enable(); 21742e2c009bSjjc } 21752e2c009bSjjc 21762e2c009bSjjc probe_stats->probe_cost = gethrtime() - 21772e2c009bSjjc probe_stats->probe_cost; 21782e2c009bSjjc probe_stats->probe_cost_total += probe_stats->probe_cost; 21792e2c009bSjjc 21802e2c009bSjjc if (min == -1 || elapsed < min) 21812e2c009bSjjc min = elapsed; 21822e2c009bSjjc if (elapsed > max) 21832e2c009bSjjc max = elapsed; 21842e2c009bSjjc } 21852e2c009bSjjc 21862e2c009bSjjc /* 21872e2c009bSjjc * Update minimum and maximum probe times between 21882e2c009bSjjc * these two nodes 21892e2c009bSjjc */ 21902e2c009bSjjc if (min < probe_stats->probe_min[from][to] || 21912e2c009bSjjc probe_stats->probe_min[from][to] == 0) 21922e2c009bSjjc probe_stats->probe_min[from][to] = min; 21932e2c009bSjjc 21942e2c009bSjjc if (max > probe_stats->probe_max[from][to]) 21952e2c009bSjjc probe_stats->probe_max[from][to] = max; 21962e2c009bSjjc 21972e2c009bSjjc return (min); 21982e2c009bSjjc } 21992e2c009bSjjc 22002e2c009bSjjc 22012e2c009bSjjc /* 2202d821f0f0Sjjc * Read boot property with CPU to APIC ID array, fill in CPU to node ID 2203d5d7cf4eSJonathan Chew * mapping table with APIC ID for each CPU (if pointer to table isn't NULL), 2204d5d7cf4eSJonathan Chew * and return number of CPU APIC IDs. 2205dae2fa37Sjjc * 2206dae2fa37Sjjc * NOTE: This code assumes that CPU IDs are assigned in order that they appear 2207dae2fa37Sjjc * in in cpu_apicid_array boot property which is based on and follows 2208dae2fa37Sjjc * same ordering as processor list in ACPI MADT. If the code in 2209dae2fa37Sjjc * usr/src/uts/i86pc/io/pcplusmp/apic.c that reads MADT and assigns 2210dae2fa37Sjjc * CPU IDs ever changes, then this code will need to change too.... 2211dae2fa37Sjjc */ 2212dae2fa37Sjjc static int 2213d821f0f0Sjjc lgrp_plat_process_cpu_apicids(cpu_node_map_t *cpu_node) 2214dae2fa37Sjjc { 2215d821f0f0Sjjc int boot_prop_len; 2216dae2fa37Sjjc char *boot_prop_name = BP_CPU_APICID_ARRAY; 2217dae2fa37Sjjc uint8_t cpu_apicid_array[UINT8_MAX + 1]; 2218dae2fa37Sjjc int i; 2219d821f0f0Sjjc int n; 2220dae2fa37Sjjc 2221dae2fa37Sjjc /* 2222dae2fa37Sjjc * Check length of property value 2223dae2fa37Sjjc */ 2224dae2fa37Sjjc boot_prop_len = BOP_GETPROPLEN(bootops, boot_prop_name); 2225d821f0f0Sjjc if (boot_prop_len <= 0 || boot_prop_len > sizeof (cpu_apicid_array)) 2226d5d7cf4eSJonathan Chew return (-1); 2227d821f0f0Sjjc 2228d821f0f0Sjjc /* 2229d821f0f0Sjjc * Calculate number of entries in array and return when there's just 2230d821f0f0Sjjc * one CPU since that's not very interesting for NUMA 2231d821f0f0Sjjc */ 2232d821f0f0Sjjc n = boot_prop_len / sizeof (uint8_t); 2233d821f0f0Sjjc if (n == 1) 2234d5d7cf4eSJonathan Chew return (-2); 2235dae2fa37Sjjc 2236dae2fa37Sjjc /* 2237dae2fa37Sjjc * Get CPU to APIC ID property value 2238dae2fa37Sjjc */ 2239dae2fa37Sjjc if (BOP_GETPROP(bootops, boot_prop_name, cpu_apicid_array) < 0) 2240d5d7cf4eSJonathan Chew return (-3); 2241d5d7cf4eSJonathan Chew 2242d5d7cf4eSJonathan Chew /* 2243d5d7cf4eSJonathan Chew * Just return number of CPU APIC IDs if CPU to node mapping table is 2244d5d7cf4eSJonathan Chew * NULL 2245d5d7cf4eSJonathan Chew */ 2246d5d7cf4eSJonathan Chew if (cpu_node == NULL) 2247d5d7cf4eSJonathan Chew return (n); 2248dae2fa37Sjjc 2249dae2fa37Sjjc /* 2250dae2fa37Sjjc * Fill in CPU to node ID mapping table with APIC ID for each CPU 2251dae2fa37Sjjc */ 2252d821f0f0Sjjc for (i = 0; i < n; i++) { 2253dae2fa37Sjjc cpu_node[i].exists = 1; 2254dae2fa37Sjjc cpu_node[i].apicid = cpu_apicid_array[i]; 2255dae2fa37Sjjc } 2256dae2fa37Sjjc 2257d821f0f0Sjjc /* 2258d821f0f0Sjjc * Return number of CPUs based on number of APIC IDs 2259d821f0f0Sjjc */ 2260d821f0f0Sjjc return (n); 2261dae2fa37Sjjc } 2262dae2fa37Sjjc 2263dae2fa37Sjjc 2264dae2fa37Sjjc /* 22652e2c009bSjjc * Read ACPI System Locality Information Table (SLIT) to determine how far each 22662e2c009bSjjc * NUMA node is from each other 22672e2c009bSjjc */ 22682e2c009bSjjc static int 22692e2c009bSjjc lgrp_plat_process_slit(struct slit *tp, uint_t node_cnt, 22702e2c009bSjjc node_phys_addr_map_t *node_memory, lgrp_plat_latency_stats_t *lat_stats) 22712e2c009bSjjc { 22722e2c009bSjjc int i; 22732e2c009bSjjc int j; 22742e2c009bSjjc int localities; 22752e2c009bSjjc hrtime_t max; 22762e2c009bSjjc hrtime_t min; 22772e2c009bSjjc int retval; 22782e2c009bSjjc uint8_t *slit_entries; 22792e2c009bSjjc 22802e2c009bSjjc if (tp == NULL || !lgrp_plat_slit_enable) 22812e2c009bSjjc return (1); 22822e2c009bSjjc 22832e2c009bSjjc if (lat_stats == NULL) 22842e2c009bSjjc return (2); 22852e2c009bSjjc 22862e2c009bSjjc localities = tp->number; 22872e2c009bSjjc if (localities != node_cnt) 22882e2c009bSjjc return (3); 22892e2c009bSjjc 22902e2c009bSjjc min = lat_stats->latency_min; 22912e2c009bSjjc max = lat_stats->latency_max; 22922e2c009bSjjc 22932e2c009bSjjc /* 22942e2c009bSjjc * Fill in latency matrix based on SLIT entries 22952e2c009bSjjc */ 22962e2c009bSjjc slit_entries = tp->entry; 22972e2c009bSjjc for (i = 0; i < localities; i++) { 22982e2c009bSjjc for (j = 0; j < localities; j++) { 22992e2c009bSjjc uint8_t latency; 23002e2c009bSjjc 23012e2c009bSjjc latency = slit_entries[(i * localities) + j]; 23022e2c009bSjjc lat_stats->latencies[i][j] = latency; 23035b7cf7f0Sjjc if (latency < min || min == -1) 23042e2c009bSjjc min = latency; 23052e2c009bSjjc if (latency > max) 23062e2c009bSjjc max = latency; 23072e2c009bSjjc } 23082e2c009bSjjc } 23092e2c009bSjjc 23102e2c009bSjjc /* 23112e2c009bSjjc * Verify that latencies/distances given in SLIT look reasonable 23122e2c009bSjjc */ 23132e2c009bSjjc retval = lgrp_plat_latency_verify(node_memory, lat_stats); 23142e2c009bSjjc 23152e2c009bSjjc if (retval) { 23162e2c009bSjjc /* 23172e2c009bSjjc * Reinitialize (zero) latency table since SLIT doesn't look 23182e2c009bSjjc * right 23192e2c009bSjjc */ 23202e2c009bSjjc for (i = 0; i < localities; i++) { 23212e2c009bSjjc for (j = 0; j < localities; j++) 23222e2c009bSjjc lat_stats->latencies[i][j] = 0; 23232e2c009bSjjc } 23242e2c009bSjjc } else { 23252e2c009bSjjc /* 23262e2c009bSjjc * Update min and max latencies seen since SLIT looks valid 23272e2c009bSjjc */ 23282e2c009bSjjc lat_stats->latency_min = min; 23292e2c009bSjjc lat_stats->latency_max = max; 23302e2c009bSjjc } 23312e2c009bSjjc 23322e2c009bSjjc return (retval); 23332e2c009bSjjc } 23342e2c009bSjjc 23352e2c009bSjjc 23362e2c009bSjjc /* 23372e2c009bSjjc * Read ACPI System Resource Affinity Table (SRAT) to determine which CPUs 2338d821f0f0Sjjc * and memory are local to each other in the same NUMA node and return number 2339d821f0f0Sjjc * of nodes 23402e2c009bSjjc */ 23412e2c009bSjjc static int 234281d9ccb6SJonathan Chew lgrp_plat_process_srat(struct srat *tp, uint32_t *prox_domain_min, 234381d9ccb6SJonathan Chew node_domain_map_t *node_domain, cpu_node_map_t *cpu_node, int cpu_count, 234481d9ccb6SJonathan Chew node_phys_addr_map_t *node_memory) 23452e2c009bSjjc { 23465b7cf7f0Sjjc struct srat_item *srat_end; 23472e2c009bSjjc int i; 23482e2c009bSjjc struct srat_item *item; 2349d821f0f0Sjjc int node_cnt; 2350dae2fa37Sjjc int proc_entry_count; 23512e2c009bSjjc 2352d821f0f0Sjjc /* 2353d821f0f0Sjjc * Nothing to do when no SRAT or disabled 2354d821f0f0Sjjc */ 23552e2c009bSjjc if (tp == NULL || !lgrp_plat_srat_enable) 2356d821f0f0Sjjc return (-1); 23572e2c009bSjjc 23582e2c009bSjjc /* 23592e2c009bSjjc * Determine number of nodes by counting number of proximity domains in 2360d821f0f0Sjjc * SRAT and return if number of nodes is 1 or less since don't need to 2361d821f0f0Sjjc * read SRAT then 23622e2c009bSjjc */ 236381d9ccb6SJonathan Chew node_cnt = lgrp_plat_srat_domains(tp, prox_domain_min); 2364d821f0f0Sjjc if (node_cnt == 1) 2365d821f0f0Sjjc return (1); 2366d821f0f0Sjjc else if (node_cnt <= 0) 2367d821f0f0Sjjc return (-2); 23682e2c009bSjjc 23692e2c009bSjjc /* 23702e2c009bSjjc * Walk through SRAT, examining each CPU and memory entry to determine 23712e2c009bSjjc * which CPUs and memory belong to which node. 23722e2c009bSjjc */ 23732e2c009bSjjc item = tp->list; 23745b7cf7f0Sjjc srat_end = (struct srat_item *)(tp->hdr.len + (uintptr_t)tp); 2375dae2fa37Sjjc proc_entry_count = 0; 23765b7cf7f0Sjjc while (item < srat_end) { 23772e2c009bSjjc uint32_t apic_id; 23782e2c009bSjjc uint32_t domain; 23792e2c009bSjjc uint64_t end; 23802e2c009bSjjc uint64_t length; 23812e2c009bSjjc uint64_t start; 23822e2c009bSjjc 23832e2c009bSjjc switch (item->type) { 23842e2c009bSjjc case SRAT_PROCESSOR: /* CPU entry */ 23852e2c009bSjjc if (!(item->i.p.flags & SRAT_ENABLED) || 23862e2c009bSjjc cpu_node == NULL) 23872e2c009bSjjc break; 23882e2c009bSjjc 23892e2c009bSjjc /* 23902e2c009bSjjc * Calculate domain (node) ID and fill in APIC ID to 23912e2c009bSjjc * domain/node mapping table 23922e2c009bSjjc */ 23932e2c009bSjjc domain = item->i.p.domain1; 23942e2c009bSjjc for (i = 0; i < 3; i++) { 23952e2c009bSjjc domain += item->i.p.domain2[i] << 23962e2c009bSjjc ((i + 1) * 8); 23972e2c009bSjjc } 23982e2c009bSjjc apic_id = item->i.p.apic_id; 23992e2c009bSjjc 2400d821f0f0Sjjc if (lgrp_plat_cpu_node_update(node_domain, node_cnt, 2401d821f0f0Sjjc cpu_node, cpu_count, apic_id, domain) < 0) 2402d821f0f0Sjjc return (-3); 2403dae2fa37Sjjc 2404dae2fa37Sjjc proc_entry_count++; 24052e2c009bSjjc break; 24062e2c009bSjjc 24072e2c009bSjjc case SRAT_MEMORY: /* memory entry */ 24082e2c009bSjjc if (!(item->i.m.flags & SRAT_ENABLED) || 24092e2c009bSjjc node_memory == NULL) 24102e2c009bSjjc break; 24112e2c009bSjjc 24122e2c009bSjjc /* 24132e2c009bSjjc * Get domain (node) ID and fill in domain/node 24142e2c009bSjjc * to memory mapping table 24152e2c009bSjjc */ 24162e2c009bSjjc domain = item->i.m.domain; 24172e2c009bSjjc start = item->i.m.base_addr; 24182e2c009bSjjc length = item->i.m.len; 24192e2c009bSjjc end = start + length - 1; 24202e2c009bSjjc 2421d821f0f0Sjjc if (lgrp_plat_node_memory_update(node_domain, node_cnt, 24222e2c009bSjjc node_memory, start, end, domain) < 0) 2423d821f0f0Sjjc return (-4); 24242e2c009bSjjc break; 2425b6917abeSmishra case SRAT_X2APIC: /* x2apic CPU entry */ 2426b6917abeSmishra if (!(item->i.xp.flags & SRAT_ENABLED) || 2427b6917abeSmishra cpu_node == NULL) 2428b6917abeSmishra break; 2429b6917abeSmishra 2430b6917abeSmishra /* 2431b6917abeSmishra * Calculate domain (node) ID and fill in APIC ID to 2432b6917abeSmishra * domain/node mapping table 2433b6917abeSmishra */ 2434b6917abeSmishra domain = item->i.xp.domain; 2435b6917abeSmishra apic_id = item->i.xp.x2apic_id; 2436b6917abeSmishra 2437b6917abeSmishra if (lgrp_plat_cpu_node_update(node_domain, node_cnt, 2438b6917abeSmishra cpu_node, cpu_count, apic_id, domain) < 0) 2439b6917abeSmishra return (-3); 2440b6917abeSmishra 2441b6917abeSmishra proc_entry_count++; 2442b6917abeSmishra break; 24432e2c009bSjjc 24442e2c009bSjjc default: 24452e2c009bSjjc break; 24462e2c009bSjjc } 24472e2c009bSjjc 24482e2c009bSjjc item = (struct srat_item *)((uintptr_t)item + item->len); 24492e2c009bSjjc } 2450dae2fa37Sjjc 2451dae2fa37Sjjc /* 2452dae2fa37Sjjc * Should have seen at least as many SRAT processor entries as CPUs 2453dae2fa37Sjjc */ 2454d821f0f0Sjjc if (proc_entry_count < cpu_count) 2455d821f0f0Sjjc return (-5); 2456dae2fa37Sjjc 245781d9ccb6SJonathan Chew /* 245881d9ccb6SJonathan Chew * Need to sort nodes by starting physical address since VM system 245981d9ccb6SJonathan Chew * assumes and expects memnodes to be sorted in ascending order by 246081d9ccb6SJonathan Chew * physical address 246181d9ccb6SJonathan Chew */ 246281d9ccb6SJonathan Chew lgrp_plat_node_sort(node_domain, node_cnt, cpu_node, cpu_count, 246381d9ccb6SJonathan Chew node_memory); 246481d9ccb6SJonathan Chew 2465d821f0f0Sjjc return (node_cnt); 24662e2c009bSjjc } 24672e2c009bSjjc 24682e2c009bSjjc 24692e2c009bSjjc /* 2470d5d7cf4eSJonathan Chew * Allocate permanent memory for any temporary memory that we needed to 2471d5d7cf4eSJonathan Chew * allocate using BOP_ALLOC() before kmem_alloc() and VM system were 2472d5d7cf4eSJonathan Chew * initialized and copy everything from temporary to permanent memory since 2473d5d7cf4eSJonathan Chew * temporary boot memory will eventually be released during boot 2474d5d7cf4eSJonathan Chew */ 2475d5d7cf4eSJonathan Chew static void 2476d5d7cf4eSJonathan Chew lgrp_plat_release_bootstrap(void) 2477d5d7cf4eSJonathan Chew { 2478d5d7cf4eSJonathan Chew void *buf; 2479d5d7cf4eSJonathan Chew size_t size; 2480d5d7cf4eSJonathan Chew 2481d5d7cf4eSJonathan Chew if (lgrp_plat_cpu_node_nentries > 0) { 2482d5d7cf4eSJonathan Chew size = lgrp_plat_cpu_node_nentries * sizeof (cpu_node_map_t); 2483d5d7cf4eSJonathan Chew buf = kmem_alloc(size, KM_SLEEP); 2484d5d7cf4eSJonathan Chew bcopy(lgrp_plat_cpu_node, buf, size); 2485d5d7cf4eSJonathan Chew lgrp_plat_cpu_node = buf; 2486d5d7cf4eSJonathan Chew } 2487d5d7cf4eSJonathan Chew } 2488d5d7cf4eSJonathan Chew 2489d5d7cf4eSJonathan Chew 2490d5d7cf4eSJonathan Chew /* 24912e2c009bSjjc * Return number of proximity domains given in ACPI SRAT 24922e2c009bSjjc */ 24932e2c009bSjjc static int 249481d9ccb6SJonathan Chew lgrp_plat_srat_domains(struct srat *tp, uint32_t *prox_domain_min) 24952e2c009bSjjc { 24962e2c009bSjjc int domain_cnt; 249781d9ccb6SJonathan Chew uint32_t domain_min; 24982e2c009bSjjc struct srat_item *end; 24992e2c009bSjjc int i; 25002e2c009bSjjc struct srat_item *item; 25012e2c009bSjjc node_domain_map_t node_domain[MAX_NODES]; 25022e2c009bSjjc 25032e2c009bSjjc 25042e2c009bSjjc if (tp == NULL || !lgrp_plat_srat_enable) 25052e2c009bSjjc return (1); 25062e2c009bSjjc 25072e2c009bSjjc /* 250881d9ccb6SJonathan Chew * Walk through SRAT to find minimum proximity domain ID 250981d9ccb6SJonathan Chew */ 251081d9ccb6SJonathan Chew domain_min = UINT32_MAX; 251181d9ccb6SJonathan Chew item = tp->list; 251281d9ccb6SJonathan Chew end = (struct srat_item *)(tp->hdr.len + (uintptr_t)tp); 251381d9ccb6SJonathan Chew while (item < end) { 251481d9ccb6SJonathan Chew uint32_t domain; 251581d9ccb6SJonathan Chew 251681d9ccb6SJonathan Chew switch (item->type) { 251781d9ccb6SJonathan Chew case SRAT_PROCESSOR: /* CPU entry */ 251881d9ccb6SJonathan Chew if (!(item->i.p.flags & SRAT_ENABLED)) { 251981d9ccb6SJonathan Chew item = (struct srat_item *)((uintptr_t)item + 252081d9ccb6SJonathan Chew item->len); 252181d9ccb6SJonathan Chew continue; 252281d9ccb6SJonathan Chew } 252381d9ccb6SJonathan Chew domain = item->i.p.domain1; 252481d9ccb6SJonathan Chew for (i = 0; i < 3; i++) { 252581d9ccb6SJonathan Chew domain += item->i.p.domain2[i] << 252681d9ccb6SJonathan Chew ((i + 1) * 8); 252781d9ccb6SJonathan Chew } 252881d9ccb6SJonathan Chew break; 252981d9ccb6SJonathan Chew 253081d9ccb6SJonathan Chew case SRAT_MEMORY: /* memory entry */ 253181d9ccb6SJonathan Chew if (!(item->i.m.flags & SRAT_ENABLED)) { 253281d9ccb6SJonathan Chew item = (struct srat_item *)((uintptr_t)item + 253381d9ccb6SJonathan Chew item->len); 253481d9ccb6SJonathan Chew continue; 253581d9ccb6SJonathan Chew } 253681d9ccb6SJonathan Chew domain = item->i.m.domain; 253781d9ccb6SJonathan Chew break; 253881d9ccb6SJonathan Chew 253981d9ccb6SJonathan Chew case SRAT_X2APIC: /* x2apic CPU entry */ 254081d9ccb6SJonathan Chew if (!(item->i.xp.flags & SRAT_ENABLED)) { 254181d9ccb6SJonathan Chew item = (struct srat_item *)((uintptr_t)item + 254281d9ccb6SJonathan Chew item->len); 254381d9ccb6SJonathan Chew continue; 254481d9ccb6SJonathan Chew } 254581d9ccb6SJonathan Chew domain = item->i.xp.domain; 254681d9ccb6SJonathan Chew break; 254781d9ccb6SJonathan Chew 254881d9ccb6SJonathan Chew default: 254981d9ccb6SJonathan Chew item = (struct srat_item *)((uintptr_t)item + 255081d9ccb6SJonathan Chew item->len); 255181d9ccb6SJonathan Chew continue; 255281d9ccb6SJonathan Chew } 255381d9ccb6SJonathan Chew 255481d9ccb6SJonathan Chew /* 255581d9ccb6SJonathan Chew * Keep track of minimum proximity domain ID 255681d9ccb6SJonathan Chew */ 255781d9ccb6SJonathan Chew if (domain < domain_min) 255881d9ccb6SJonathan Chew domain_min = domain; 255981d9ccb6SJonathan Chew 256081d9ccb6SJonathan Chew item = (struct srat_item *)((uintptr_t)item + item->len); 256181d9ccb6SJonathan Chew } 256281d9ccb6SJonathan Chew if (lgrp_plat_domain_min_enable && prox_domain_min != NULL) 256381d9ccb6SJonathan Chew *prox_domain_min = domain_min; 256481d9ccb6SJonathan Chew 256581d9ccb6SJonathan Chew /* 25662e2c009bSjjc * Walk through SRAT, examining each CPU and memory entry to determine 25672e2c009bSjjc * proximity domain ID for each. 25682e2c009bSjjc */ 25692e2c009bSjjc domain_cnt = 0; 25702e2c009bSjjc item = tp->list; 25712e2c009bSjjc end = (struct srat_item *)(tp->hdr.len + (uintptr_t)tp); 25722e2c009bSjjc bzero(node_domain, MAX_NODES * sizeof (node_domain_map_t)); 25732e2c009bSjjc while (item < end) { 25742e2c009bSjjc uint32_t domain; 25752e2c009bSjjc boolean_t overflow; 25762e2c009bSjjc uint_t start; 25772e2c009bSjjc 25782e2c009bSjjc switch (item->type) { 25792e2c009bSjjc case SRAT_PROCESSOR: /* CPU entry */ 258081d9ccb6SJonathan Chew if (!(item->i.p.flags & SRAT_ENABLED)) { 258181d9ccb6SJonathan Chew item = (struct srat_item *)((uintptr_t)item + 258281d9ccb6SJonathan Chew item->len); 258381d9ccb6SJonathan Chew continue; 258481d9ccb6SJonathan Chew } 25852e2c009bSjjc domain = item->i.p.domain1; 25862e2c009bSjjc for (i = 0; i < 3; i++) { 25872e2c009bSjjc domain += item->i.p.domain2[i] << 25882e2c009bSjjc ((i + 1) * 8); 25892e2c009bSjjc } 25902e2c009bSjjc break; 25912e2c009bSjjc 25922e2c009bSjjc case SRAT_MEMORY: /* memory entry */ 259381d9ccb6SJonathan Chew if (!(item->i.m.flags & SRAT_ENABLED)) { 259481d9ccb6SJonathan Chew item = (struct srat_item *)((uintptr_t)item + 259581d9ccb6SJonathan Chew item->len); 259681d9ccb6SJonathan Chew continue; 259781d9ccb6SJonathan Chew } 25982e2c009bSjjc domain = item->i.m.domain; 25992e2c009bSjjc break; 26002e2c009bSjjc 2601b6917abeSmishra case SRAT_X2APIC: /* x2apic CPU entry */ 260281d9ccb6SJonathan Chew if (!(item->i.xp.flags & SRAT_ENABLED)) { 260381d9ccb6SJonathan Chew item = (struct srat_item *)((uintptr_t)item + 260481d9ccb6SJonathan Chew item->len); 260581d9ccb6SJonathan Chew continue; 260681d9ccb6SJonathan Chew } 2607b6917abeSmishra domain = item->i.xp.domain; 2608b6917abeSmishra break; 2609b6917abeSmishra 26102e2c009bSjjc default: 261181d9ccb6SJonathan Chew item = (struct srat_item *)((uintptr_t)item + 261281d9ccb6SJonathan Chew item->len); 261381d9ccb6SJonathan Chew continue; 26142e2c009bSjjc } 26152e2c009bSjjc 26162e2c009bSjjc /* 26172e2c009bSjjc * Count and keep track of which proximity domain IDs seen 26182e2c009bSjjc */ 26192e2c009bSjjc start = i = domain % MAX_NODES; 26202e2c009bSjjc overflow = B_TRUE; 26212e2c009bSjjc do { 26222e2c009bSjjc /* 26232e2c009bSjjc * Create entry for proximity domain and increment 26242e2c009bSjjc * count when no entry exists where proximity domain 26252e2c009bSjjc * hashed 26262e2c009bSjjc */ 26272e2c009bSjjc if (!node_domain[i].exists) { 26282e2c009bSjjc node_domain[i].exists = 1; 26292e2c009bSjjc node_domain[i].prox_domain = domain; 26302e2c009bSjjc domain_cnt++; 26312e2c009bSjjc overflow = B_FALSE; 26322e2c009bSjjc break; 26332e2c009bSjjc } 26342e2c009bSjjc 26352e2c009bSjjc /* 26362e2c009bSjjc * Nothing to do when proximity domain seen already 26372e2c009bSjjc * and its entry exists 26382e2c009bSjjc */ 26392e2c009bSjjc if (node_domain[i].prox_domain == domain) { 26402e2c009bSjjc overflow = B_FALSE; 26412e2c009bSjjc break; 26422e2c009bSjjc } 26432e2c009bSjjc 26442e2c009bSjjc /* 26452e2c009bSjjc * Entry exists where proximity domain hashed, but for 26462e2c009bSjjc * different proximity domain so keep search for empty 26472e2c009bSjjc * slot to put it or matching entry whichever comes 26482e2c009bSjjc * first. 26492e2c009bSjjc */ 26502e2c009bSjjc i = (i + 1) % MAX_NODES; 26512e2c009bSjjc } while (i != start); 26522e2c009bSjjc 26532e2c009bSjjc /* 26542e2c009bSjjc * Didn't find empty or matching entry which means have more 26552e2c009bSjjc * proximity domains than supported nodes (:-( 26562e2c009bSjjc */ 26572e2c009bSjjc ASSERT(overflow != B_TRUE); 26582e2c009bSjjc if (overflow == B_TRUE) 26592e2c009bSjjc return (-1); 26602e2c009bSjjc 26612e2c009bSjjc item = (struct srat_item *)((uintptr_t)item + item->len); 26622e2c009bSjjc } 26632e2c009bSjjc return (domain_cnt); 26642e2c009bSjjc } 26652e2c009bSjjc 26662e2c009bSjjc 26672e2c009bSjjc /* 26682e2c009bSjjc * Set lgroup latencies for 2 level lgroup topology 26692e2c009bSjjc */ 26702e2c009bSjjc static void 26712e2c009bSjjc lgrp_plat_2level_setup(node_phys_addr_map_t *node_memory, 26722e2c009bSjjc lgrp_plat_latency_stats_t *lat_stats) 26732e2c009bSjjc { 26742e2c009bSjjc int i; 26752e2c009bSjjc 26762e2c009bSjjc ASSERT(node_memory != NULL && lat_stats != NULL); 26772e2c009bSjjc 26782e2c009bSjjc if (lgrp_plat_node_cnt >= 4) 26792e2c009bSjjc cmn_err(CE_NOTE, 26802e2c009bSjjc "MPO only optimizing for local and remote\n"); 26812e2c009bSjjc for (i = 0; i < lgrp_plat_node_cnt; i++) { 26822e2c009bSjjc int j; 26832e2c009bSjjc 26842e2c009bSjjc if (!node_memory[i].exists) 26852e2c009bSjjc continue; 26862e2c009bSjjc for (j = 0; j < lgrp_plat_node_cnt; j++) { 26872e2c009bSjjc if (!node_memory[j].exists) 26882e2c009bSjjc continue; 26892e2c009bSjjc if (i == j) 26902e2c009bSjjc lat_stats->latencies[i][j] = 2; 26912e2c009bSjjc else 26922e2c009bSjjc lat_stats->latencies[i][j] = 3; 26932e2c009bSjjc } 26942e2c009bSjjc } 26952e2c009bSjjc lat_stats->latency_min = 2; 26962e2c009bSjjc lat_stats->latency_max = 3; 26972e2c009bSjjc lgrp_config(LGRP_CONFIG_FLATTEN, 2, 0); 26982e2c009bSjjc } 26992e2c009bSjjc 27002e2c009bSjjc 27012e2c009bSjjc /* 27022e2c009bSjjc * The following Opteron specific constants, macros, types, and routines define 27032e2c009bSjjc * PCI configuration space registers and how to read them to determine the NUMA 27042e2c009bSjjc * configuration of *supported* Opteron processors. They provide the same 27052e2c009bSjjc * information that may be gotten from the ACPI System Resource Affinity Table 27062e2c009bSjjc * (SRAT) if it exists on the machine of interest. 27072e2c009bSjjc * 27082e2c009bSjjc * The AMD BIOS and Kernel Developer's Guide (BKDG) for the processor family 27092e2c009bSjjc * of interest describes all of these registers and their contents. The main 27102e2c009bSjjc * registers used by this code to determine the NUMA configuration of the 27112e2c009bSjjc * machine are the node ID register for the number of NUMA nodes and the DRAM 27122e2c009bSjjc * address map registers for the physical address range of each node. 27132e2c009bSjjc * 27142e2c009bSjjc * NOTE: The format and how to determine the NUMA configuration using PCI 27152e2c009bSjjc * config space registers may change or may not be supported in future 27162e2c009bSjjc * Opteron processor families. 27177c478bd9Sstevel@tonic-gate */ 27187c478bd9Sstevel@tonic-gate 27197c478bd9Sstevel@tonic-gate /* 27207c478bd9Sstevel@tonic-gate * How many bits to shift Opteron DRAM Address Map base and limit registers 27217c478bd9Sstevel@tonic-gate * to get actual value 27227c478bd9Sstevel@tonic-gate */ 2723f78a91cdSjjc #define OPT_DRAMADDR_HI_LSHIFT_ADDR 40 /* shift left for address */ 2724f78a91cdSjjc #define OPT_DRAMADDR_LO_LSHIFT_ADDR 8 /* shift left for address */ 27257c478bd9Sstevel@tonic-gate 2726f78a91cdSjjc #define OPT_DRAMADDR_HI_MASK_ADDR 0x000000FF /* address bits 47-40 */ 2727f78a91cdSjjc #define OPT_DRAMADDR_LO_MASK_ADDR 0xFFFF0000 /* address bits 39-24 */ 2728f78a91cdSjjc 2729f78a91cdSjjc #define OPT_DRAMADDR_LO_MASK_OFF 0xFFFFFF /* offset for address */ 2730f78a91cdSjjc 2731f78a91cdSjjc /* 2732f78a91cdSjjc * Macros to derive addresses from Opteron DRAM Address Map registers 2733f78a91cdSjjc */ 2734f78a91cdSjjc #define OPT_DRAMADDR_HI(reg) \ 2735f78a91cdSjjc (((u_longlong_t)reg & OPT_DRAMADDR_HI_MASK_ADDR) << \ 2736f78a91cdSjjc OPT_DRAMADDR_HI_LSHIFT_ADDR) 2737f78a91cdSjjc 2738f78a91cdSjjc #define OPT_DRAMADDR_LO(reg) \ 2739f78a91cdSjjc (((u_longlong_t)reg & OPT_DRAMADDR_LO_MASK_ADDR) << \ 2740f78a91cdSjjc OPT_DRAMADDR_LO_LSHIFT_ADDR) 2741f78a91cdSjjc 2742f78a91cdSjjc #define OPT_DRAMADDR(high, low) \ 2743f78a91cdSjjc (OPT_DRAMADDR_HI(high) | OPT_DRAMADDR_LO(low)) 27447c478bd9Sstevel@tonic-gate 27457c478bd9Sstevel@tonic-gate /* 27467c478bd9Sstevel@tonic-gate * Bit masks defining what's in Opteron DRAM Address Map base register 27477c478bd9Sstevel@tonic-gate */ 2748f78a91cdSjjc #define OPT_DRAMBASE_LO_MASK_RE 0x1 /* read enable */ 2749f78a91cdSjjc #define OPT_DRAMBASE_LO_MASK_WE 0x2 /* write enable */ 2750f78a91cdSjjc #define OPT_DRAMBASE_LO_MASK_INTRLVEN 0x700 /* interleave */ 27517c478bd9Sstevel@tonic-gate 27527c478bd9Sstevel@tonic-gate /* 27537c478bd9Sstevel@tonic-gate * Bit masks defining what's in Opteron DRAM Address Map limit register 27547c478bd9Sstevel@tonic-gate */ 2755f78a91cdSjjc #define OPT_DRAMLIMIT_LO_MASK_DSTNODE 0x7 /* destination node */ 2756f78a91cdSjjc #define OPT_DRAMLIMIT_LO_MASK_INTRLVSEL 0x700 /* interleave select */ 27577c478bd9Sstevel@tonic-gate 27587c478bd9Sstevel@tonic-gate 27597c478bd9Sstevel@tonic-gate /* 27607c478bd9Sstevel@tonic-gate * Opteron Node ID register in PCI configuration space contains 27617c478bd9Sstevel@tonic-gate * number of nodes in system, etc. for Opteron K8. The following 27627c478bd9Sstevel@tonic-gate * constants and macros define its contents, structure, and access. 27637c478bd9Sstevel@tonic-gate */ 27647c478bd9Sstevel@tonic-gate 27657c478bd9Sstevel@tonic-gate /* 27667c478bd9Sstevel@tonic-gate * Bit masks defining what's in Opteron Node ID register 27677c478bd9Sstevel@tonic-gate */ 27687c478bd9Sstevel@tonic-gate #define OPT_NODE_MASK_ID 0x7 /* node ID */ 27697c478bd9Sstevel@tonic-gate #define OPT_NODE_MASK_CNT 0x70 /* node count */ 27707c478bd9Sstevel@tonic-gate #define OPT_NODE_MASK_IONODE 0x700 /* Hypertransport I/O hub node ID */ 27717c478bd9Sstevel@tonic-gate #define OPT_NODE_MASK_LCKNODE 0x7000 /* lock controller node ID */ 27727c478bd9Sstevel@tonic-gate #define OPT_NODE_MASK_CPUCNT 0xF0000 /* CPUs in system (0 means 1 CPU) */ 27737c478bd9Sstevel@tonic-gate 27747c478bd9Sstevel@tonic-gate /* 27757c478bd9Sstevel@tonic-gate * How many bits in Opteron Node ID register to shift right to get actual value 27767c478bd9Sstevel@tonic-gate */ 27777c478bd9Sstevel@tonic-gate #define OPT_NODE_RSHIFT_CNT 0x4 /* shift right for node count value */ 27787c478bd9Sstevel@tonic-gate 27797c478bd9Sstevel@tonic-gate /* 27807c478bd9Sstevel@tonic-gate * Macros to get values from Opteron Node ID register 27817c478bd9Sstevel@tonic-gate */ 27827c478bd9Sstevel@tonic-gate #define OPT_NODE_CNT(reg) \ 27837c478bd9Sstevel@tonic-gate ((reg & OPT_NODE_MASK_CNT) >> OPT_NODE_RSHIFT_CNT) 27847c478bd9Sstevel@tonic-gate 2785f78a91cdSjjc /* 2786f78a91cdSjjc * Macro to setup PCI Extended Configuration Space (ECS) address to give to 2787f78a91cdSjjc * "in/out" instructions 2788f78a91cdSjjc * 2789f78a91cdSjjc * NOTE: Should only be used in lgrp_plat_init() before MMIO setup because any 2790f78a91cdSjjc * other uses should just do MMIO to access PCI ECS. 2791f78a91cdSjjc * Must enable special bit in Northbridge Configuration Register on 2792f78a91cdSjjc * Greyhound for extended CF8 space access to be able to access PCI ECS 2793f78a91cdSjjc * using "in/out" instructions and restore special bit after done 2794f78a91cdSjjc * accessing PCI ECS. 2795f78a91cdSjjc */ 2796f78a91cdSjjc #define OPT_PCI_ECS_ADDR(bus, device, function, reg) \ 2797f78a91cdSjjc (PCI_CONE | (((bus) & 0xff) << 16) | (((device & 0x1f)) << 11) | \ 2798f78a91cdSjjc (((function) & 0x7) << 8) | ((reg) & 0xfc) | \ 2799f78a91cdSjjc ((((reg) >> 8) & 0xf) << 24)) 28007c478bd9Sstevel@tonic-gate 28017c478bd9Sstevel@tonic-gate /* 28027c478bd9Sstevel@tonic-gate * PCI configuration space registers accessed by specifying 28037c478bd9Sstevel@tonic-gate * a bus, device, function, and offset. The following constants 28047c478bd9Sstevel@tonic-gate * define the values needed to access Opteron K8 configuration 28057c478bd9Sstevel@tonic-gate * info to determine its node topology 28067c478bd9Sstevel@tonic-gate */ 28077c478bd9Sstevel@tonic-gate 28087c478bd9Sstevel@tonic-gate #define OPT_PCS_BUS_CONFIG 0 /* Hypertransport config space bus */ 28097c478bd9Sstevel@tonic-gate 28107c478bd9Sstevel@tonic-gate /* 28117c478bd9Sstevel@tonic-gate * Opteron PCI configuration space register function values 28127c478bd9Sstevel@tonic-gate */ 28137c478bd9Sstevel@tonic-gate #define OPT_PCS_FUNC_HT 0 /* Hypertransport configuration */ 28147c478bd9Sstevel@tonic-gate #define OPT_PCS_FUNC_ADDRMAP 1 /* Address map configuration */ 28157c478bd9Sstevel@tonic-gate #define OPT_PCS_FUNC_DRAM 2 /* DRAM configuration */ 28167c478bd9Sstevel@tonic-gate #define OPT_PCS_FUNC_MISC 3 /* Miscellaneous configuration */ 28177c478bd9Sstevel@tonic-gate 28187c478bd9Sstevel@tonic-gate /* 28197c478bd9Sstevel@tonic-gate * PCI Configuration Space register offsets 28207c478bd9Sstevel@tonic-gate */ 28217c478bd9Sstevel@tonic-gate #define OPT_PCS_OFF_VENDOR 0x0 /* device/vendor ID register */ 2822f78a91cdSjjc #define OPT_PCS_OFF_DRAMBASE_HI 0x140 /* DRAM Base register (node 0) */ 2823f78a91cdSjjc #define OPT_PCS_OFF_DRAMBASE_LO 0x40 /* DRAM Base register (node 0) */ 28247c478bd9Sstevel@tonic-gate #define OPT_PCS_OFF_NODEID 0x60 /* Node ID register */ 28257c478bd9Sstevel@tonic-gate 28267c478bd9Sstevel@tonic-gate /* 28277c478bd9Sstevel@tonic-gate * Opteron PCI Configuration Space device IDs for nodes 28287c478bd9Sstevel@tonic-gate */ 28297c478bd9Sstevel@tonic-gate #define OPT_PCS_DEV_NODE0 24 /* device number for node 0 */ 28307c478bd9Sstevel@tonic-gate 28317c478bd9Sstevel@tonic-gate 28327c478bd9Sstevel@tonic-gate /* 28337c478bd9Sstevel@tonic-gate * Opteron DRAM address map gives base and limit for physical memory in a node 28347c478bd9Sstevel@tonic-gate */ 28357c478bd9Sstevel@tonic-gate typedef struct opt_dram_addr_map { 2836f78a91cdSjjc uint32_t base_hi; 2837f78a91cdSjjc uint32_t base_lo; 2838f78a91cdSjjc uint32_t limit_hi; 2839f78a91cdSjjc uint32_t limit_lo; 28407c478bd9Sstevel@tonic-gate } opt_dram_addr_map_t; 28417c478bd9Sstevel@tonic-gate 28427c478bd9Sstevel@tonic-gate 28437c478bd9Sstevel@tonic-gate /* 2844f78a91cdSjjc * Supported AMD processor families 2845f78a91cdSjjc */ 2846f78a91cdSjjc #define AMD_FAMILY_HAMMER 15 2847f78a91cdSjjc #define AMD_FAMILY_GREYHOUND 16 28487c478bd9Sstevel@tonic-gate 2849f78a91cdSjjc /* 28502e2c009bSjjc * Whether to have is_opteron() return 1 even when processor isn't supported 2851f78a91cdSjjc */ 2852f78a91cdSjjc uint_t is_opteron_override = 0; 2853f78a91cdSjjc 2854f78a91cdSjjc /* 2855f78a91cdSjjc * AMD processor family for current CPU 2856f78a91cdSjjc */ 28577c478bd9Sstevel@tonic-gate uint_t opt_family = 0; 2858f78a91cdSjjc 28597c478bd9Sstevel@tonic-gate 28607c478bd9Sstevel@tonic-gate /* 2861f78a91cdSjjc * Determine whether we're running on a supported AMD Opteron since reading 2862f78a91cdSjjc * node count and DRAM address map registers may have different format or 28632e2c009bSjjc * may not be supported across processor families 28647c478bd9Sstevel@tonic-gate */ 28652e2c009bSjjc static int 28667c478bd9Sstevel@tonic-gate is_opteron(void) 28677c478bd9Sstevel@tonic-gate { 2868f78a91cdSjjc 28697c478bd9Sstevel@tonic-gate if (x86_vendor != X86_VENDOR_AMD) 28707c478bd9Sstevel@tonic-gate return (0); 28717c478bd9Sstevel@tonic-gate 2872f78a91cdSjjc opt_family = cpuid_getfamily(CPU); 2873f78a91cdSjjc if (opt_family == AMD_FAMILY_HAMMER || 2874f78a91cdSjjc opt_family == AMD_FAMILY_GREYHOUND || is_opteron_override) 28757c478bd9Sstevel@tonic-gate return (1); 28767c478bd9Sstevel@tonic-gate else 28777c478bd9Sstevel@tonic-gate return (0); 28787c478bd9Sstevel@tonic-gate } 28797c478bd9Sstevel@tonic-gate 28802e2c009bSjjc 28812e2c009bSjjc /* 28822e2c009bSjjc * Determine NUMA configuration for Opteron from registers that live in PCI 28832e2c009bSjjc * configuration space 28842e2c009bSjjc */ 28852e2c009bSjjc static void 28862e2c009bSjjc opt_get_numa_config(uint_t *node_cnt, int *mem_intrlv, 28872e2c009bSjjc node_phys_addr_map_t *node_memory) 28887c478bd9Sstevel@tonic-gate { 28897c478bd9Sstevel@tonic-gate uint_t bus; 28907c478bd9Sstevel@tonic-gate uint_t dev; 28912e2c009bSjjc struct opt_dram_addr_map dram_map[MAX_NODES]; 28927c478bd9Sstevel@tonic-gate uint_t node; 28932e2c009bSjjc uint_t node_info[MAX_NODES]; 2894f78a91cdSjjc uint_t off_hi; 2895f78a91cdSjjc uint_t off_lo; 2896f78a91cdSjjc uint64_t nb_cfg_reg; 28977c478bd9Sstevel@tonic-gate 28987c478bd9Sstevel@tonic-gate /* 28997c478bd9Sstevel@tonic-gate * Read configuration registers from PCI configuration space to 29007c478bd9Sstevel@tonic-gate * determine node information, which memory is in each node, etc. 29017c478bd9Sstevel@tonic-gate * 29027c478bd9Sstevel@tonic-gate * Write to PCI configuration space address register to specify 29037c478bd9Sstevel@tonic-gate * which configuration register to read and read/write PCI 29047c478bd9Sstevel@tonic-gate * configuration space data register to get/set contents 29057c478bd9Sstevel@tonic-gate */ 29067c478bd9Sstevel@tonic-gate bus = OPT_PCS_BUS_CONFIG; 29077c478bd9Sstevel@tonic-gate dev = OPT_PCS_DEV_NODE0; 2908f78a91cdSjjc off_hi = OPT_PCS_OFF_DRAMBASE_HI; 2909f78a91cdSjjc off_lo = OPT_PCS_OFF_DRAMBASE_LO; 29107c478bd9Sstevel@tonic-gate 29117c478bd9Sstevel@tonic-gate /* 29127c478bd9Sstevel@tonic-gate * Read node ID register for node 0 to get node count 29137c478bd9Sstevel@tonic-gate */ 29142e2c009bSjjc node_info[0] = pci_getl_func(bus, dev, OPT_PCS_FUNC_HT, 2915ef50d8c0Sesaxe OPT_PCS_OFF_NODEID); 29162e2c009bSjjc *node_cnt = OPT_NODE_CNT(node_info[0]) + 1; 29172e2c009bSjjc 29182e2c009bSjjc /* 29192e2c009bSjjc * If number of nodes is more than maximum supported, then set node 29202e2c009bSjjc * count to 1 and treat system as UMA instead of NUMA. 29212e2c009bSjjc */ 29222e2c009bSjjc if (*node_cnt > MAX_NODES) { 29232e2c009bSjjc *node_cnt = 1; 29242e2c009bSjjc return; 29252e2c009bSjjc } 29267c478bd9Sstevel@tonic-gate 2927f78a91cdSjjc /* 2928f78a91cdSjjc * For Greyhound, PCI Extended Configuration Space must be enabled to 2929f78a91cdSjjc * read high DRAM address map base and limit registers 2930f78a91cdSjjc */ 2931f78a91cdSjjc if (opt_family == AMD_FAMILY_GREYHOUND) { 2932f78a91cdSjjc nb_cfg_reg = rdmsr(MSR_AMD_NB_CFG); 2933f78a91cdSjjc if ((nb_cfg_reg & AMD_GH_NB_CFG_EN_ECS) == 0) 2934f78a91cdSjjc wrmsr(MSR_AMD_NB_CFG, 2935f78a91cdSjjc nb_cfg_reg | AMD_GH_NB_CFG_EN_ECS); 2936f78a91cdSjjc } 2937f78a91cdSjjc 29382e2c009bSjjc for (node = 0; node < *node_cnt; node++) { 2939f78a91cdSjjc uint32_t base_hi; 2940f78a91cdSjjc uint32_t base_lo; 2941f78a91cdSjjc uint32_t limit_hi; 2942f78a91cdSjjc uint32_t limit_lo; 2943f78a91cdSjjc 29447c478bd9Sstevel@tonic-gate /* 29457c478bd9Sstevel@tonic-gate * Read node ID register (except for node 0 which we just read) 29467c478bd9Sstevel@tonic-gate */ 29477c478bd9Sstevel@tonic-gate if (node > 0) { 29482e2c009bSjjc node_info[node] = pci_getl_func(bus, dev, 2949ef50d8c0Sesaxe OPT_PCS_FUNC_HT, OPT_PCS_OFF_NODEID); 29507c478bd9Sstevel@tonic-gate } 29517c478bd9Sstevel@tonic-gate 29527c478bd9Sstevel@tonic-gate /* 29537c478bd9Sstevel@tonic-gate * Read DRAM base and limit registers which specify 29547c478bd9Sstevel@tonic-gate * physical memory range of each node 29557c478bd9Sstevel@tonic-gate */ 2956f78a91cdSjjc if (opt_family != AMD_FAMILY_GREYHOUND) 2957f78a91cdSjjc base_hi = 0; 2958f78a91cdSjjc else { 2959f78a91cdSjjc outl(PCI_CONFADD, OPT_PCI_ECS_ADDR(bus, dev, 2960f78a91cdSjjc OPT_PCS_FUNC_ADDRMAP, off_hi)); 29612e2c009bSjjc base_hi = dram_map[node].base_hi = 2962f78a91cdSjjc inl(PCI_CONFDATA); 2963f78a91cdSjjc } 29642e2c009bSjjc base_lo = dram_map[node].base_lo = pci_getl_func(bus, dev, 2965f78a91cdSjjc OPT_PCS_FUNC_ADDRMAP, off_lo); 2966f78a91cdSjjc 29672e2c009bSjjc if ((dram_map[node].base_lo & OPT_DRAMBASE_LO_MASK_INTRLVEN) && 29682e2c009bSjjc mem_intrlv) 29692e2c009bSjjc *mem_intrlv = *mem_intrlv + 1; 29707c478bd9Sstevel@tonic-gate 2971f78a91cdSjjc off_hi += 4; /* high limit register offset */ 2972f78a91cdSjjc if (opt_family != AMD_FAMILY_GREYHOUND) 2973f78a91cdSjjc limit_hi = 0; 2974f78a91cdSjjc else { 2975f78a91cdSjjc outl(PCI_CONFADD, OPT_PCI_ECS_ADDR(bus, dev, 2976f78a91cdSjjc OPT_PCS_FUNC_ADDRMAP, off_hi)); 29772e2c009bSjjc limit_hi = dram_map[node].limit_hi = 2978f78a91cdSjjc inl(PCI_CONFDATA); 2979f78a91cdSjjc } 2980f78a91cdSjjc 2981f78a91cdSjjc off_lo += 4; /* low limit register offset */ 29822e2c009bSjjc limit_lo = dram_map[node].limit_lo = pci_getl_func(bus, 2983f78a91cdSjjc dev, OPT_PCS_FUNC_ADDRMAP, off_lo); 29847c478bd9Sstevel@tonic-gate 29857c478bd9Sstevel@tonic-gate /* 2986f78a91cdSjjc * Increment device number to next node and register offsets 2987f78a91cdSjjc * for DRAM base register of next node 29887c478bd9Sstevel@tonic-gate */ 2989f78a91cdSjjc off_hi += 4; 2990f78a91cdSjjc off_lo += 4; 29917c478bd9Sstevel@tonic-gate dev++; 29927c478bd9Sstevel@tonic-gate 29937c478bd9Sstevel@tonic-gate /* 2994a940d195Sjjc * Both read and write enable bits must be enabled in DRAM 2995a940d195Sjjc * address map base register for physical memory to exist in 2996a940d195Sjjc * node 2997a940d195Sjjc */ 2998f78a91cdSjjc if ((base_lo & OPT_DRAMBASE_LO_MASK_RE) == 0 || 2999f78a91cdSjjc (base_lo & OPT_DRAMBASE_LO_MASK_WE) == 0) { 3000a940d195Sjjc /* 3001a940d195Sjjc * Mark node memory as non-existent and set start and 30022e2c009bSjjc * end addresses to be same in node_memory[] 3003a940d195Sjjc */ 30042e2c009bSjjc node_memory[node].exists = 0; 30052e2c009bSjjc node_memory[node].start = node_memory[node].end = 30062e2c009bSjjc (pfn_t)-1; 3007a940d195Sjjc continue; 3008a940d195Sjjc } 3009a940d195Sjjc 3010a940d195Sjjc /* 3011a940d195Sjjc * Mark node memory as existing and remember physical address 3012a940d195Sjjc * range of each node for use later 30137c478bd9Sstevel@tonic-gate */ 30142e2c009bSjjc node_memory[node].exists = 1; 3015f78a91cdSjjc 30162e2c009bSjjc node_memory[node].start = btop(OPT_DRAMADDR(base_hi, base_lo)); 3017f78a91cdSjjc 30182e2c009bSjjc node_memory[node].end = btop(OPT_DRAMADDR(limit_hi, limit_lo) | 3019f78a91cdSjjc OPT_DRAMADDR_LO_MASK_OFF); 3020f78a91cdSjjc } 3021f78a91cdSjjc 3022f78a91cdSjjc /* 3023f78a91cdSjjc * Restore PCI Extended Configuration Space enable bit 3024f78a91cdSjjc */ 3025f78a91cdSjjc if (opt_family == AMD_FAMILY_GREYHOUND) { 3026f78a91cdSjjc if ((nb_cfg_reg & AMD_GH_NB_CFG_EN_ECS) == 0) 3027f78a91cdSjjc wrmsr(MSR_AMD_NB_CFG, nb_cfg_reg); 30287c478bd9Sstevel@tonic-gate } 30297c478bd9Sstevel@tonic-gate } 30307c478bd9Sstevel@tonic-gate 30317c478bd9Sstevel@tonic-gate 30327c478bd9Sstevel@tonic-gate /* 30332e2c009bSjjc * Return average amount of time to read vendor ID register on Northbridge 30342e2c009bSjjc * N times on specified destination node from current CPU 30357c478bd9Sstevel@tonic-gate */ 30367c478bd9Sstevel@tonic-gate static hrtime_t 30372e2c009bSjjc opt_probe_vendor(int dest_node, int nreads) 30387c478bd9Sstevel@tonic-gate { 30392e2c009bSjjc int cnt; 30407c478bd9Sstevel@tonic-gate uint_t dev; 30417c478bd9Sstevel@tonic-gate /* LINTED: set but not used in function */ 30427c478bd9Sstevel@tonic-gate volatile uint_t dev_vendor; 30437c478bd9Sstevel@tonic-gate hrtime_t elapsed; 30447c478bd9Sstevel@tonic-gate hrtime_t end; 30457c478bd9Sstevel@tonic-gate int ipl; 30467c478bd9Sstevel@tonic-gate hrtime_t start; 30477c478bd9Sstevel@tonic-gate 30482e2c009bSjjc dev = OPT_PCS_DEV_NODE0 + dest_node; 30497c478bd9Sstevel@tonic-gate kpreempt_disable(); 30507c478bd9Sstevel@tonic-gate ipl = spl8(); 30512e2c009bSjjc outl(PCI_CONFADD, PCI_CADDR1(0, dev, OPT_PCS_FUNC_DRAM, 30527c478bd9Sstevel@tonic-gate OPT_PCS_OFF_VENDOR)); 30537c478bd9Sstevel@tonic-gate start = gethrtime(); 30542e2c009bSjjc for (cnt = 0; cnt < nreads; cnt++) 30557c478bd9Sstevel@tonic-gate dev_vendor = inl(PCI_CONFDATA); 30567c478bd9Sstevel@tonic-gate end = gethrtime(); 30572e2c009bSjjc elapsed = (end - start) / nreads; 30587c478bd9Sstevel@tonic-gate splx(ipl); 30597c478bd9Sstevel@tonic-gate kpreempt_enable(); 30602e2c009bSjjc return (elapsed); 30617c478bd9Sstevel@tonic-gate } 3062