17c478bd9Sstevel@tonic-gate /* 27c478bd9Sstevel@tonic-gate * CDDL HEADER START 37c478bd9Sstevel@tonic-gate * 47c478bd9Sstevel@tonic-gate * The contents of this file are subject to the terms of the 5c39996a7Sstevel * Common Development and Distribution License (the "License"). 6c39996a7Sstevel * You may not use this file except in compliance with the License. 77c478bd9Sstevel@tonic-gate * 87c478bd9Sstevel@tonic-gate * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 97c478bd9Sstevel@tonic-gate * or http://www.opensolaris.org/os/licensing. 107c478bd9Sstevel@tonic-gate * See the License for the specific language governing permissions 117c478bd9Sstevel@tonic-gate * and limitations under the License. 127c478bd9Sstevel@tonic-gate * 137c478bd9Sstevel@tonic-gate * When distributing Covered Code, include this CDDL HEADER in each 147c478bd9Sstevel@tonic-gate * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 157c478bd9Sstevel@tonic-gate * If applicable, add the following below this CDDL HEADER, with the 167c478bd9Sstevel@tonic-gate * fields enclosed by brackets "[]" replaced with your own identifying 177c478bd9Sstevel@tonic-gate * information: Portions Copyright [yyyy] [name of copyright owner] 187c478bd9Sstevel@tonic-gate * 197c478bd9Sstevel@tonic-gate * CDDL HEADER END 207c478bd9Sstevel@tonic-gate */ 21c39996a7Sstevel 227c478bd9Sstevel@tonic-gate /* 23472714d6Skchow * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 247c478bd9Sstevel@tonic-gate * Use is subject to license terms. 257c478bd9Sstevel@tonic-gate */ 267c478bd9Sstevel@tonic-gate 277c478bd9Sstevel@tonic-gate #pragma ident "%Z%%M% %I% %E% SMI" 287c478bd9Sstevel@tonic-gate 297c478bd9Sstevel@tonic-gate 30*2e2c009bSjjc /* 31*2e2c009bSjjc * LOCALITY GROUP (LGROUP) PLATFORM SUPPORT FOR X86/AMD64 PLATFORMS 32*2e2c009bSjjc * ================================================================ 33*2e2c009bSjjc * Multiprocessor AMD and Intel systems may have Non Uniform Memory Access 34*2e2c009bSjjc * (NUMA). A NUMA machine consists of one or more "nodes" that each consist of 35*2e2c009bSjjc * one or more CPUs and some local memory. The CPUs in each node can access 36*2e2c009bSjjc * the memory in the other nodes but at a higher latency than accessing their 37*2e2c009bSjjc * local memory. Typically, a system with only one node has Uniform Memory 38*2e2c009bSjjc * Access (UMA), but it may be possible to have a one node system that has 39*2e2c009bSjjc * some global memory outside of the node which is higher latency. 40*2e2c009bSjjc * 41*2e2c009bSjjc * Module Description 42*2e2c009bSjjc * ------------------ 43*2e2c009bSjjc * This module provides a platform interface for determining which CPUs and 44*2e2c009bSjjc * which memory (and how much) are in a NUMA node and how far each node is from 45*2e2c009bSjjc * each other. The interface is used by the Virtual Memory (VM) system and the 46*2e2c009bSjjc * common lgroup framework. The VM system uses the plat_*() routines to fill 47*2e2c009bSjjc * in its memory node (memnode) array with the physical address range spanned 48*2e2c009bSjjc * by each NUMA node to know which memory belongs to which node, so it can 49*2e2c009bSjjc * build and manage a physical page free list for each NUMA node and allocate 50*2e2c009bSjjc * local memory from each node as needed. The common lgroup framework uses the 51*2e2c009bSjjc * exported lgrp_plat_*() routines to figure out which CPUs and memory belong 52*2e2c009bSjjc * to each node (leaf lgroup) and how far each node is from each other, so it 53*2e2c009bSjjc * can build the latency (lgroup) topology for the machine in order to optimize 54*2e2c009bSjjc * for locality. Also, an lgroup platform handle instead of lgroups are used 55*2e2c009bSjjc * in the interface with this module, so this module shouldn't need to know 56*2e2c009bSjjc * anything about lgroups. Instead, it just needs to know which CPUs, memory, 57*2e2c009bSjjc * etc. are in each NUMA node, how far each node is from each other, and to use 58*2e2c009bSjjc * a unique lgroup platform handle to refer to each node through the interface. 59*2e2c009bSjjc * 60*2e2c009bSjjc * Determining NUMA Configuration 61*2e2c009bSjjc * ------------------------------ 62*2e2c009bSjjc * By default, this module will try to determine the NUMA configuration of the 63*2e2c009bSjjc * machine by reading the ACPI System Resource Affinity Table (SRAT) and System 64*2e2c009bSjjc * Locality Information Table (SLIT). The SRAT contains info to tell which 65*2e2c009bSjjc * CPUs and memory are local to a given proximity domain (NUMA node). The SLIT 66*2e2c009bSjjc * is a matrix that gives the distance between each system locality (which is 67*2e2c009bSjjc * a NUMA node and should correspond to proximity domains in the SRAT). For 68*2e2c009bSjjc * more details on the SRAT and SLIT, please refer to an ACPI 3.0 or newer 69*2e2c009bSjjc * specification. 70*2e2c009bSjjc * 71*2e2c009bSjjc * If the SRAT doesn't exist on a system with AMD Opteron processors, we 72*2e2c009bSjjc * examine registers in PCI configuration space to determine how many nodes are 73*2e2c009bSjjc * in the system and which CPUs and memory are in each node. 74*2e2c009bSjjc * do while booting the kernel. 75*2e2c009bSjjc * 76*2e2c009bSjjc * NOTE: Using these PCI configuration space registers to determine this 77*2e2c009bSjjc * locality info is not guaranteed to work or be compatible across all 78*2e2c009bSjjc * Opteron processor families. 79*2e2c009bSjjc * 80*2e2c009bSjjc * If the SLIT does not exist or look right, the kernel will probe to determine 81*2e2c009bSjjc * the distance between nodes as long as the NUMA CPU and memory configuration 82*2e2c009bSjjc * has been determined (see lgrp_plat_probe() for details). 83*2e2c009bSjjc * 84*2e2c009bSjjc * Data Structures 85*2e2c009bSjjc * --------------- 86*2e2c009bSjjc * The main data structures used by this code are the following: 87*2e2c009bSjjc * 88*2e2c009bSjjc * - lgrp_plat_cpu_node[] APIC ID to node ID mapping table 89*2e2c009bSjjc * indexed by hashed APIC ID (only used 90*2e2c009bSjjc * for SRAT) 91*2e2c009bSjjc * 92*2e2c009bSjjc * - lgrp_plat_lat_stats.latencies[][] Table of latencies between same and 93*2e2c009bSjjc * different nodes indexed by node ID 94*2e2c009bSjjc * 95*2e2c009bSjjc * - lgrp_plat_node_cnt Number of NUMA nodes in system 96*2e2c009bSjjc * 97*2e2c009bSjjc * - lgrp_plat_node_domain[] Node ID to proximity domain ID mapping 98*2e2c009bSjjc * table indexed by node ID (only used 99*2e2c009bSjjc * for SRAT) 100*2e2c009bSjjc * 101*2e2c009bSjjc * - lgrp_plat_node_memory[] Table with physical address range for 102*2e2c009bSjjc * each node indexed by node ID 103*2e2c009bSjjc * 104*2e2c009bSjjc * The code is implemented to make the following always be true: 105*2e2c009bSjjc * 106*2e2c009bSjjc * lgroup platform handle == node ID == memnode ID 107*2e2c009bSjjc * 108*2e2c009bSjjc * Moreover, it allows for the proximity domain ID to be equal to all of the 109*2e2c009bSjjc * above as long as the proximity domains IDs are numbered from 0 to <number of 110*2e2c009bSjjc * nodes - 1>. This is done by hashing each proximity domain ID into the range 111*2e2c009bSjjc * from 0 to <number of nodes - 1>. Then proximity ID N will hash into node ID 112*2e2c009bSjjc * N and proximity domain ID N will be entered into lgrp_plat_node_domain[N] 113*2e2c009bSjjc * and be assigned node ID N. If the proximity domain IDs aren't numbered 114*2e2c009bSjjc * from 0 to <number of nodes - 1>, then hashing the proximity domain IDs into 115*2e2c009bSjjc * lgrp_plat_node_domain[] will still work for assigning proximity domain IDs 116*2e2c009bSjjc * to node IDs. However, the proximity domain IDs may not map to the 117*2e2c009bSjjc * equivalent node ID since we want to keep the node IDs numbered from 0 to 118*2e2c009bSjjc * <number of nodes - 1> to minimize cost of searching and potentially space. 119*2e2c009bSjjc */ 120*2e2c009bSjjc 121*2e2c009bSjjc 1227c478bd9Sstevel@tonic-gate #include <sys/archsystm.h> /* for {in,out}{b,w,l}() */ 1237c478bd9Sstevel@tonic-gate #include <sys/cmn_err.h> 124f78a91cdSjjc #include <sys/controlregs.h> 1257c478bd9Sstevel@tonic-gate #include <sys/cpupart.h> 1267c478bd9Sstevel@tonic-gate #include <sys/cpuvar.h> 1277c478bd9Sstevel@tonic-gate #include <sys/lgrp.h> 1287c478bd9Sstevel@tonic-gate #include <sys/machsystm.h> 1297c478bd9Sstevel@tonic-gate #include <sys/memlist.h> 1307c478bd9Sstevel@tonic-gate #include <sys/memnode.h> 1317c478bd9Sstevel@tonic-gate #include <sys/mman.h> 132ef50d8c0Sesaxe #include <sys/pci_cfgspace.h> 133ef50d8c0Sesaxe #include <sys/pci_impl.h> 1347c478bd9Sstevel@tonic-gate #include <sys/param.h> 135fb2f18f8Sesaxe #include <sys/pghw.h> 1367c478bd9Sstevel@tonic-gate #include <sys/promif.h> /* for prom_printf() */ 137*2e2c009bSjjc #include <sys/sysmacros.h> 1387c478bd9Sstevel@tonic-gate #include <sys/systm.h> 1397c478bd9Sstevel@tonic-gate #include <sys/thread.h> 1407c478bd9Sstevel@tonic-gate #include <sys/types.h> 1417c478bd9Sstevel@tonic-gate #include <sys/var.h> 1427c478bd9Sstevel@tonic-gate #include <sys/x86_archext.h> /* for x86_feature and X86_AMD */ 1437c478bd9Sstevel@tonic-gate #include <vm/hat_i86.h> 1447c478bd9Sstevel@tonic-gate #include <vm/seg_kmem.h> 145affbd3ccSkchow #include <vm/vm_dep.h> 1467c478bd9Sstevel@tonic-gate 147*2e2c009bSjjc #include "acpi_fw.h" /* for SRAT and SLIT */ 1487c478bd9Sstevel@tonic-gate 1497c478bd9Sstevel@tonic-gate 1507c478bd9Sstevel@tonic-gate #define MAX_NODES 8 1517c478bd9Sstevel@tonic-gate #define NLGRP (MAX_NODES * (MAX_NODES - 1) + 1) 1527c478bd9Sstevel@tonic-gate 153*2e2c009bSjjc /* 154*2e2c009bSjjc * Constants for configuring probing 155*2e2c009bSjjc */ 1567c478bd9Sstevel@tonic-gate #define LGRP_PLAT_PROBE_NROUNDS 64 /* default laps for probing */ 1577c478bd9Sstevel@tonic-gate #define LGRP_PLAT_PROBE_NSAMPLES 1 /* default samples to take */ 1588949bcd6Sandrei #define LGRP_PLAT_PROBE_NREADS 256 /* number of vendor ID reads */ 1597c478bd9Sstevel@tonic-gate 1607c478bd9Sstevel@tonic-gate /* 161*2e2c009bSjjc * Flags for probing 162*2e2c009bSjjc */ 163*2e2c009bSjjc #define LGRP_PLAT_PROBE_ENABLE 0x1 /* enable probing */ 164*2e2c009bSjjc #define LGRP_PLAT_PROBE_PGCPY 0x2 /* probe using page copy */ 165*2e2c009bSjjc #define LGRP_PLAT_PROBE_VENDOR 0x4 /* probe vendor ID register */ 166*2e2c009bSjjc 167*2e2c009bSjjc /* 168*2e2c009bSjjc * Hash CPU APIC ID into CPU to node mapping table using max_ncpus 169*2e2c009bSjjc * to minimize span of entries used 170*2e2c009bSjjc */ 171*2e2c009bSjjc #define CPU_NODE_HASH(apicid) ((apicid) % max_ncpus) 172*2e2c009bSjjc 173*2e2c009bSjjc /* 174*2e2c009bSjjc * Hash proximity domain ID into node to domain mapping table using to minimize 175*2e2c009bSjjc * span of entries used 176*2e2c009bSjjc */ 177*2e2c009bSjjc #define NODE_DOMAIN_HASH(domain) ((domain) % lgrp_plat_node_cnt) 178*2e2c009bSjjc 179*2e2c009bSjjc 180*2e2c009bSjjc /* 181*2e2c009bSjjc * CPU APIC ID to node ID mapping structure (only used with SRAT) 182*2e2c009bSjjc */ 183*2e2c009bSjjc typedef struct cpu_node_map { 184*2e2c009bSjjc int exists; 185*2e2c009bSjjc uint_t node; 186*2e2c009bSjjc uint32_t apicid; 187*2e2c009bSjjc uint32_t prox_domain; 188*2e2c009bSjjc } cpu_node_map_t; 189*2e2c009bSjjc 190*2e2c009bSjjc /* 191*2e2c009bSjjc * Latency statistics 192*2e2c009bSjjc */ 193*2e2c009bSjjc typedef struct lgrp_plat_latency_stats { 194*2e2c009bSjjc hrtime_t latencies[MAX_NODES][MAX_NODES]; 195*2e2c009bSjjc hrtime_t latency_max; 196*2e2c009bSjjc hrtime_t latency_min; 197*2e2c009bSjjc } lgrp_plat_latency_stats_t; 198*2e2c009bSjjc 199*2e2c009bSjjc /* 200*2e2c009bSjjc * Memory configuration for probing 201*2e2c009bSjjc */ 202*2e2c009bSjjc typedef struct lgrp_plat_probe_mem_config { 203*2e2c009bSjjc size_t probe_memsize; /* how much memory to probe per node */ 204*2e2c009bSjjc caddr_t probe_va[MAX_NODES]; /* where memory mapped for probing */ 205*2e2c009bSjjc pfn_t probe_pfn[MAX_NODES]; /* physical pages to map for probing */ 206*2e2c009bSjjc } lgrp_plat_probe_mem_config_t; 207*2e2c009bSjjc 208*2e2c009bSjjc /* 209*2e2c009bSjjc * Statistics kept for probing 210*2e2c009bSjjc */ 211*2e2c009bSjjc typedef struct lgrp_plat_probe_stats { 212*2e2c009bSjjc hrtime_t flush_cost; 213*2e2c009bSjjc hrtime_t probe_cost; 214*2e2c009bSjjc hrtime_t probe_cost_total; 215*2e2c009bSjjc hrtime_t probe_error_code; 216*2e2c009bSjjc hrtime_t probe_errors[MAX_NODES][MAX_NODES]; 217*2e2c009bSjjc int probe_suspect[MAX_NODES][MAX_NODES]; 218*2e2c009bSjjc hrtime_t probe_max[MAX_NODES][MAX_NODES]; 219*2e2c009bSjjc hrtime_t probe_min[MAX_NODES][MAX_NODES]; 220*2e2c009bSjjc } lgrp_plat_probe_stats_t; 221*2e2c009bSjjc 222*2e2c009bSjjc /* 223*2e2c009bSjjc * Node to proximity domain ID mapping structure (only used with SRAT) 224*2e2c009bSjjc */ 225*2e2c009bSjjc typedef struct node_domain_map { 226*2e2c009bSjjc int exists; 227*2e2c009bSjjc uint32_t prox_domain; 228*2e2c009bSjjc } node_domain_map_t; 229*2e2c009bSjjc 230*2e2c009bSjjc /* 231*2e2c009bSjjc * Node ID and starting and ending page for physical memory in node 232*2e2c009bSjjc */ 233*2e2c009bSjjc typedef struct node_phys_addr_map { 234*2e2c009bSjjc pfn_t start; 235*2e2c009bSjjc pfn_t end; 236*2e2c009bSjjc int exists; 237*2e2c009bSjjc uint32_t prox_domain; 238*2e2c009bSjjc } node_phys_addr_map_t; 239*2e2c009bSjjc 240*2e2c009bSjjc 241*2e2c009bSjjc /* 242*2e2c009bSjjc * CPU APIC ID to node ID mapping table (only used for SRAT) 243*2e2c009bSjjc */ 244*2e2c009bSjjc static cpu_node_map_t lgrp_plat_cpu_node[NCPU]; 245*2e2c009bSjjc 246*2e2c009bSjjc /* 247*2e2c009bSjjc * Latency statistics 248*2e2c009bSjjc */ 249*2e2c009bSjjc lgrp_plat_latency_stats_t lgrp_plat_lat_stats; 250*2e2c009bSjjc 251*2e2c009bSjjc /* 252*2e2c009bSjjc * Whether memory is interleaved across nodes causing MPO to be disabled 253*2e2c009bSjjc */ 254*2e2c009bSjjc static int lgrp_plat_mem_intrlv = 0; 255*2e2c009bSjjc 256*2e2c009bSjjc /* 257*2e2c009bSjjc * Node ID to proximity domain ID mapping table (only used for SRAT) 258*2e2c009bSjjc */ 259*2e2c009bSjjc static node_domain_map_t lgrp_plat_node_domain[MAX_NODES]; 260*2e2c009bSjjc 261*2e2c009bSjjc /* 262*2e2c009bSjjc * Physical address range for memory in each node 263*2e2c009bSjjc */ 264*2e2c009bSjjc static node_phys_addr_map_t lgrp_plat_node_memory[MAX_NODES]; 265*2e2c009bSjjc 266*2e2c009bSjjc /* 267*2e2c009bSjjc * Statistics gotten from probing 268*2e2c009bSjjc */ 269*2e2c009bSjjc static lgrp_plat_probe_stats_t lgrp_plat_probe_stats; 270*2e2c009bSjjc 271*2e2c009bSjjc /* 272*2e2c009bSjjc * Memory configuration for probing 273*2e2c009bSjjc */ 274*2e2c009bSjjc static lgrp_plat_probe_mem_config_t lgrp_plat_probe_mem_config; 275*2e2c009bSjjc 276*2e2c009bSjjc /* 277*2e2c009bSjjc * Error code from processing ACPI SRAT 278*2e2c009bSjjc */ 279*2e2c009bSjjc static int lgrp_plat_srat_error = 0; 280*2e2c009bSjjc 281*2e2c009bSjjc /* 282*2e2c009bSjjc * Error code from processing ACPI SLIT 283*2e2c009bSjjc */ 284*2e2c009bSjjc static int lgrp_plat_slit_error = 0; 285*2e2c009bSjjc 286*2e2c009bSjjc /* 287*2e2c009bSjjc * Allocate lgroup array statically 288*2e2c009bSjjc */ 289*2e2c009bSjjc static lgrp_t lgrp_space[NLGRP]; 290*2e2c009bSjjc static int nlgrps_alloc; 291*2e2c009bSjjc 292*2e2c009bSjjc 293*2e2c009bSjjc /* 294*2e2c009bSjjc * Number of nodes in system 295*2e2c009bSjjc */ 296*2e2c009bSjjc uint_t lgrp_plat_node_cnt = 1; 297*2e2c009bSjjc 298*2e2c009bSjjc /* 299*2e2c009bSjjc * Configuration Parameters for Probing 300*2e2c009bSjjc * - lgrp_plat_probe_flags Flags to specify enabling probing, probe 301*2e2c009bSjjc * operation, etc. 302*2e2c009bSjjc * - lgrp_plat_probe_nrounds How many rounds of probing to do 303*2e2c009bSjjc * - lgrp_plat_probe_nsamples Number of samples to take when probing each 304*2e2c009bSjjc * node 305*2e2c009bSjjc * - lgrp_plat_probe_nreads Number of times to read vendor ID from 306*2e2c009bSjjc * Northbridge for each probe 307*2e2c009bSjjc */ 308*2e2c009bSjjc uint_t lgrp_plat_probe_flags = 0; 309*2e2c009bSjjc int lgrp_plat_probe_nrounds = LGRP_PLAT_PROBE_NROUNDS; 310*2e2c009bSjjc int lgrp_plat_probe_nsamples = LGRP_PLAT_PROBE_NSAMPLES; 311*2e2c009bSjjc int lgrp_plat_probe_nreads = LGRP_PLAT_PROBE_NREADS; 312*2e2c009bSjjc 313*2e2c009bSjjc /* 314*2e2c009bSjjc * Enable use of ACPI System Resource Affinity Table (SRAT) and System 315*2e2c009bSjjc * Locality Information Table (SLIT) 316*2e2c009bSjjc */ 317*2e2c009bSjjc int lgrp_plat_srat_enable = 1; 318*2e2c009bSjjc int lgrp_plat_slit_enable = 1; 319*2e2c009bSjjc 320*2e2c009bSjjc /* 321*2e2c009bSjjc * Static array to hold lgroup statistics 322*2e2c009bSjjc */ 323*2e2c009bSjjc struct lgrp_stats lgrp_stats[NLGRP]; 324*2e2c009bSjjc 325*2e2c009bSjjc 326*2e2c009bSjjc /* 327*2e2c009bSjjc * Forward declarations of platform interface routines 328*2e2c009bSjjc */ 329*2e2c009bSjjc void plat_build_mem_nodes(struct memlist *list); 330*2e2c009bSjjc 331*2e2c009bSjjc int plat_lgrphand_to_mem_node(lgrp_handle_t hand); 332*2e2c009bSjjc 333*2e2c009bSjjc lgrp_handle_t plat_mem_node_to_lgrphand(int mnode); 334*2e2c009bSjjc 335*2e2c009bSjjc int plat_mnode_xcheck(pfn_t pfncnt); 336*2e2c009bSjjc 337*2e2c009bSjjc int plat_pfn_to_mem_node(pfn_t pfn); 338*2e2c009bSjjc 339*2e2c009bSjjc /* 340*2e2c009bSjjc * Forward declarations of lgroup platform interface routines 341*2e2c009bSjjc */ 342*2e2c009bSjjc lgrp_t *lgrp_plat_alloc(lgrp_id_t lgrpid); 343*2e2c009bSjjc 344*2e2c009bSjjc void lgrp_plat_config(lgrp_config_flag_t flag, uintptr_t arg); 345*2e2c009bSjjc 346*2e2c009bSjjc lgrp_handle_t lgrp_plat_cpu_to_hand(processorid_t id); 347*2e2c009bSjjc 348*2e2c009bSjjc void lgrp_plat_init(void); 349*2e2c009bSjjc 350*2e2c009bSjjc int lgrp_plat_latency(lgrp_handle_t from, lgrp_handle_t to); 351*2e2c009bSjjc 352*2e2c009bSjjc void lgrp_plat_main_init(void); 353*2e2c009bSjjc 354*2e2c009bSjjc int lgrp_plat_max_lgrps(void); 355*2e2c009bSjjc 356*2e2c009bSjjc pgcnt_t lgrp_plat_mem_size(lgrp_handle_t plathand, 357*2e2c009bSjjc lgrp_mem_query_t query); 358*2e2c009bSjjc 359*2e2c009bSjjc lgrp_handle_t lgrp_plat_pfn_to_hand(pfn_t pfn); 360*2e2c009bSjjc 361*2e2c009bSjjc void lgrp_plat_probe(void); 362*2e2c009bSjjc 363*2e2c009bSjjc lgrp_handle_t lgrp_plat_root_hand(void); 364*2e2c009bSjjc 365*2e2c009bSjjc 366*2e2c009bSjjc /* 367*2e2c009bSjjc * Forward declarations of local routines 368*2e2c009bSjjc */ 369*2e2c009bSjjc static int is_opteron(void); 370*2e2c009bSjjc 371*2e2c009bSjjc static int lgrp_plat_cpu_to_node(cpu_t *cp, cpu_node_map_t *cpu_node); 372*2e2c009bSjjc 373*2e2c009bSjjc static int lgrp_plat_domain_to_node(node_domain_map_t *node_domain, 374*2e2c009bSjjc uint32_t domain); 375*2e2c009bSjjc 376*2e2c009bSjjc static void lgrp_plat_latency_adjust(node_phys_addr_map_t *node_memory, 377*2e2c009bSjjc lgrp_plat_latency_stats_t *lat_stats, 378*2e2c009bSjjc lgrp_plat_probe_stats_t *probe_stats); 379*2e2c009bSjjc 380*2e2c009bSjjc static int lgrp_plat_latency_verify(node_phys_addr_map_t *node_memory, 381*2e2c009bSjjc lgrp_plat_latency_stats_t *lat_stats); 382*2e2c009bSjjc 383*2e2c009bSjjc static pgcnt_t lgrp_plat_mem_size_default(lgrp_handle_t, lgrp_mem_query_t); 384*2e2c009bSjjc 385*2e2c009bSjjc static int lgrp_plat_node_domain_update(node_domain_map_t *node_domain, 386*2e2c009bSjjc uint32_t domain); 387*2e2c009bSjjc 388*2e2c009bSjjc static int lgrp_plat_node_memory_update(node_domain_map_t *node_domain, 389*2e2c009bSjjc node_phys_addr_map_t *node_memory, uintptr_t start, uintptr_t end, 390*2e2c009bSjjc uint32_t domain); 391*2e2c009bSjjc 392*2e2c009bSjjc static hrtime_t lgrp_plat_probe_time(int to, cpu_node_map_t *cpu_node, 393*2e2c009bSjjc lgrp_plat_probe_mem_config_t *probe_mem_config, 394*2e2c009bSjjc lgrp_plat_latency_stats_t *lat_stats, 395*2e2c009bSjjc lgrp_plat_probe_stats_t *probe_stats); 396*2e2c009bSjjc 397*2e2c009bSjjc static int lgrp_plat_process_slit(struct slit *tp, uint_t node_cnt, 398*2e2c009bSjjc node_phys_addr_map_t *node_memory, lgrp_plat_latency_stats_t *lat_stats); 399*2e2c009bSjjc 400*2e2c009bSjjc static int lgrp_plat_process_srat(struct srat *tp, uint_t *node_cnt, 401*2e2c009bSjjc node_domain_map_t *node_domain, cpu_node_map_t *cpu_node, 402*2e2c009bSjjc node_phys_addr_map_t *node_memory); 403*2e2c009bSjjc 404*2e2c009bSjjc static int lgrp_plat_srat_domains(struct srat *tp); 405*2e2c009bSjjc 406*2e2c009bSjjc static void lgrp_plat_2level_setup(node_phys_addr_map_t *node_memory, 407*2e2c009bSjjc lgrp_plat_latency_stats_t *lat_stats); 408*2e2c009bSjjc 409*2e2c009bSjjc static void opt_get_numa_config(uint_t *node_cnt, int *mem_intrlv, 410*2e2c009bSjjc node_phys_addr_map_t *node_memory); 411*2e2c009bSjjc 412*2e2c009bSjjc static hrtime_t opt_probe_vendor(int dest_node, int nreads); 413*2e2c009bSjjc 414*2e2c009bSjjc 415*2e2c009bSjjc /* 416*2e2c009bSjjc * PLATFORM INTERFACE ROUTINES 4177c478bd9Sstevel@tonic-gate */ 4187c478bd9Sstevel@tonic-gate 4197c478bd9Sstevel@tonic-gate /* 420*2e2c009bSjjc * Configure memory nodes for machines with more than one node (ie NUMA) 421*2e2c009bSjjc */ 422*2e2c009bSjjc void 423*2e2c009bSjjc plat_build_mem_nodes(struct memlist *list) 424*2e2c009bSjjc { 425*2e2c009bSjjc pfn_t cur_start; /* start addr of subrange */ 426*2e2c009bSjjc pfn_t cur_end; /* end addr of subrange */ 427*2e2c009bSjjc pfn_t start; /* start addr of whole range */ 428*2e2c009bSjjc pfn_t end; /* end addr of whole range */ 429*2e2c009bSjjc 430*2e2c009bSjjc /* 431*2e2c009bSjjc * Boot install lists are arranged <addr, len>, ... 432*2e2c009bSjjc */ 433*2e2c009bSjjc while (list) { 434*2e2c009bSjjc int node; 435*2e2c009bSjjc 436*2e2c009bSjjc start = list->address >> PAGESHIFT; 437*2e2c009bSjjc end = (list->address + list->size - 1) >> PAGESHIFT; 438*2e2c009bSjjc 439*2e2c009bSjjc if (start > physmax) { 440*2e2c009bSjjc list = list->next; 441*2e2c009bSjjc continue; 442*2e2c009bSjjc } 443*2e2c009bSjjc if (end > physmax) 444*2e2c009bSjjc end = physmax; 445*2e2c009bSjjc 446*2e2c009bSjjc /* 447*2e2c009bSjjc * When there is only one memnode, just add memory to memnode 448*2e2c009bSjjc */ 449*2e2c009bSjjc if (max_mem_nodes == 1) { 450*2e2c009bSjjc mem_node_add_slice(start, end); 451*2e2c009bSjjc list = list->next; 452*2e2c009bSjjc continue; 453*2e2c009bSjjc } 454*2e2c009bSjjc 455*2e2c009bSjjc /* 456*2e2c009bSjjc * mem_node_add_slice() expects to get a memory range that 457*2e2c009bSjjc * is within one memnode, so need to split any memory range 458*2e2c009bSjjc * that spans multiple memnodes into subranges that are each 459*2e2c009bSjjc * contained within one memnode when feeding them to 460*2e2c009bSjjc * mem_node_add_slice() 461*2e2c009bSjjc */ 462*2e2c009bSjjc cur_start = start; 463*2e2c009bSjjc do { 464*2e2c009bSjjc node = plat_pfn_to_mem_node(cur_start); 465*2e2c009bSjjc 466*2e2c009bSjjc /* 467*2e2c009bSjjc * Panic if DRAM address map registers or SRAT say 468*2e2c009bSjjc * memory in node doesn't exist or address from 469*2e2c009bSjjc * boot installed memory list entry isn't in this node. 470*2e2c009bSjjc * This shouldn't happen and rest of code can't deal 471*2e2c009bSjjc * with this if it does. 472*2e2c009bSjjc */ 473*2e2c009bSjjc if (node < 0 || node >= lgrp_plat_node_cnt || 474*2e2c009bSjjc !lgrp_plat_node_memory[node].exists || 475*2e2c009bSjjc cur_start < lgrp_plat_node_memory[node].start || 476*2e2c009bSjjc cur_start > lgrp_plat_node_memory[node].end) { 477*2e2c009bSjjc cmn_err(CE_PANIC, "Don't know which memnode " 478*2e2c009bSjjc "to add installed memory address 0x%lx\n", 479*2e2c009bSjjc cur_start); 480*2e2c009bSjjc } 481*2e2c009bSjjc 482*2e2c009bSjjc /* 483*2e2c009bSjjc * End of current subrange should not span memnodes 484*2e2c009bSjjc */ 485*2e2c009bSjjc cur_end = end; 486*2e2c009bSjjc if (lgrp_plat_node_memory[node].exists && 487*2e2c009bSjjc cur_end > lgrp_plat_node_memory[node].end) 488*2e2c009bSjjc cur_end = lgrp_plat_node_memory[node].end; 489*2e2c009bSjjc 490*2e2c009bSjjc mem_node_add_slice(cur_start, cur_end); 491*2e2c009bSjjc 492*2e2c009bSjjc /* 493*2e2c009bSjjc * Next subrange starts after end of current one 494*2e2c009bSjjc */ 495*2e2c009bSjjc cur_start = cur_end + 1; 496*2e2c009bSjjc } while (cur_end < end); 497*2e2c009bSjjc 498*2e2c009bSjjc list = list->next; 499*2e2c009bSjjc } 500*2e2c009bSjjc mem_node_physalign = 0; 501*2e2c009bSjjc mem_node_pfn_shift = 0; 502*2e2c009bSjjc } 503*2e2c009bSjjc 504*2e2c009bSjjc 505*2e2c009bSjjc int 506*2e2c009bSjjc plat_lgrphand_to_mem_node(lgrp_handle_t hand) 507*2e2c009bSjjc { 508*2e2c009bSjjc if (max_mem_nodes == 1) 509*2e2c009bSjjc return (0); 510*2e2c009bSjjc 511*2e2c009bSjjc return ((int)hand); 512*2e2c009bSjjc } 513*2e2c009bSjjc 514*2e2c009bSjjc 515*2e2c009bSjjc /* 516*2e2c009bSjjc * plat_mnode_xcheck: checks the node memory ranges to see if there is a pfncnt 517*2e2c009bSjjc * range of pages aligned on pfncnt that crosses an node boundary. Returns 1 if 518*2e2c009bSjjc * a crossing is found and returns 0 otherwise. 519*2e2c009bSjjc */ 520*2e2c009bSjjc int 521*2e2c009bSjjc plat_mnode_xcheck(pfn_t pfncnt) 522*2e2c009bSjjc { 523*2e2c009bSjjc int node, prevnode = -1, basenode; 524*2e2c009bSjjc pfn_t ea, sa; 525*2e2c009bSjjc 526*2e2c009bSjjc for (node = 0; node < lgrp_plat_node_cnt; node++) { 527*2e2c009bSjjc 528*2e2c009bSjjc if (lgrp_plat_node_memory[node].exists == 0) 529*2e2c009bSjjc continue; 530*2e2c009bSjjc 531*2e2c009bSjjc if (prevnode == -1) { 532*2e2c009bSjjc prevnode = node; 533*2e2c009bSjjc basenode = node; 534*2e2c009bSjjc continue; 535*2e2c009bSjjc } 536*2e2c009bSjjc 537*2e2c009bSjjc /* assume x86 node pfn ranges are in increasing order */ 538*2e2c009bSjjc ASSERT(lgrp_plat_node_memory[node].start > 539*2e2c009bSjjc lgrp_plat_node_memory[prevnode].end); 540*2e2c009bSjjc 541*2e2c009bSjjc /* 542*2e2c009bSjjc * continue if the starting address of node is not contiguous 543*2e2c009bSjjc * with the previous node. 544*2e2c009bSjjc */ 545*2e2c009bSjjc 546*2e2c009bSjjc if (lgrp_plat_node_memory[node].start != 547*2e2c009bSjjc (lgrp_plat_node_memory[prevnode].end + 1)) { 548*2e2c009bSjjc basenode = node; 549*2e2c009bSjjc prevnode = node; 550*2e2c009bSjjc continue; 551*2e2c009bSjjc } 552*2e2c009bSjjc 553*2e2c009bSjjc /* check if the starting address of node is pfncnt aligned */ 554*2e2c009bSjjc if ((lgrp_plat_node_memory[node].start & (pfncnt - 1)) != 0) { 555*2e2c009bSjjc 556*2e2c009bSjjc /* 557*2e2c009bSjjc * at this point, node starts at an unaligned boundary 558*2e2c009bSjjc * and is contiguous with the previous node(s) to 559*2e2c009bSjjc * basenode. Check if there is an aligned contiguous 560*2e2c009bSjjc * range of length pfncnt that crosses this boundary. 561*2e2c009bSjjc */ 562*2e2c009bSjjc 563*2e2c009bSjjc sa = P2ALIGN(lgrp_plat_node_memory[prevnode].end, 564*2e2c009bSjjc pfncnt); 565*2e2c009bSjjc ea = P2ROUNDUP((lgrp_plat_node_memory[node].start), 566*2e2c009bSjjc pfncnt); 567*2e2c009bSjjc 568*2e2c009bSjjc ASSERT((ea - sa) == pfncnt); 569*2e2c009bSjjc if (sa >= lgrp_plat_node_memory[basenode].start && 570*2e2c009bSjjc ea <= (lgrp_plat_node_memory[node].end + 1)) 571*2e2c009bSjjc return (1); 572*2e2c009bSjjc } 573*2e2c009bSjjc prevnode = node; 574*2e2c009bSjjc } 575*2e2c009bSjjc return (0); 576*2e2c009bSjjc } 577*2e2c009bSjjc 578*2e2c009bSjjc 579*2e2c009bSjjc lgrp_handle_t 580*2e2c009bSjjc plat_mem_node_to_lgrphand(int mnode) 581*2e2c009bSjjc { 582*2e2c009bSjjc if (max_mem_nodes == 1) 583*2e2c009bSjjc return (LGRP_DEFAULT_HANDLE); 584*2e2c009bSjjc 585*2e2c009bSjjc return ((lgrp_handle_t)mnode); 586*2e2c009bSjjc } 587*2e2c009bSjjc 588*2e2c009bSjjc 589*2e2c009bSjjc int 590*2e2c009bSjjc plat_pfn_to_mem_node(pfn_t pfn) 591*2e2c009bSjjc { 592*2e2c009bSjjc int node; 593*2e2c009bSjjc 594*2e2c009bSjjc if (max_mem_nodes == 1) 595*2e2c009bSjjc return (0); 596*2e2c009bSjjc 597*2e2c009bSjjc for (node = 0; node < lgrp_plat_node_cnt; node++) { 598*2e2c009bSjjc /* 599*2e2c009bSjjc * Skip nodes with no memory 600*2e2c009bSjjc */ 601*2e2c009bSjjc if (!lgrp_plat_node_memory[node].exists) 602*2e2c009bSjjc continue; 603*2e2c009bSjjc 604*2e2c009bSjjc if (pfn >= lgrp_plat_node_memory[node].start && 605*2e2c009bSjjc pfn <= lgrp_plat_node_memory[node].end) 606*2e2c009bSjjc return (node); 607*2e2c009bSjjc } 608*2e2c009bSjjc 609*2e2c009bSjjc /* 610*2e2c009bSjjc * Didn't find memnode where this PFN lives which should never happen 611*2e2c009bSjjc */ 612*2e2c009bSjjc ASSERT(node < lgrp_plat_node_cnt); 613*2e2c009bSjjc return (-1); 614*2e2c009bSjjc } 615*2e2c009bSjjc 616*2e2c009bSjjc 617*2e2c009bSjjc /* 618*2e2c009bSjjc * LGROUP PLATFORM INTERFACE ROUTINES 619*2e2c009bSjjc */ 620*2e2c009bSjjc 621*2e2c009bSjjc /* 622*2e2c009bSjjc * Allocate additional space for an lgroup. 623*2e2c009bSjjc */ 624*2e2c009bSjjc /* ARGSUSED */ 625*2e2c009bSjjc lgrp_t * 626*2e2c009bSjjc lgrp_plat_alloc(lgrp_id_t lgrpid) 627*2e2c009bSjjc { 628*2e2c009bSjjc lgrp_t *lgrp; 629*2e2c009bSjjc 630*2e2c009bSjjc lgrp = &lgrp_space[nlgrps_alloc++]; 631*2e2c009bSjjc if (lgrpid >= NLGRP || nlgrps_alloc > NLGRP) 632*2e2c009bSjjc return (NULL); 633*2e2c009bSjjc return (lgrp); 634*2e2c009bSjjc } 635*2e2c009bSjjc 636*2e2c009bSjjc 637*2e2c009bSjjc /* 638*2e2c009bSjjc * Platform handling for (re)configuration changes 639*2e2c009bSjjc */ 640*2e2c009bSjjc /* ARGSUSED */ 641*2e2c009bSjjc void 642*2e2c009bSjjc lgrp_plat_config(lgrp_config_flag_t flag, uintptr_t arg) 643*2e2c009bSjjc { 644*2e2c009bSjjc } 645*2e2c009bSjjc 646*2e2c009bSjjc 647*2e2c009bSjjc /* 648*2e2c009bSjjc * Return the platform handle for the lgroup containing the given CPU 649*2e2c009bSjjc */ 650*2e2c009bSjjc /* ARGSUSED */ 651*2e2c009bSjjc lgrp_handle_t 652*2e2c009bSjjc lgrp_plat_cpu_to_hand(processorid_t id) 653*2e2c009bSjjc { 654*2e2c009bSjjc lgrp_handle_t hand; 655*2e2c009bSjjc 656*2e2c009bSjjc if (lgrp_plat_node_cnt == 1) 657*2e2c009bSjjc return (LGRP_DEFAULT_HANDLE); 658*2e2c009bSjjc 659*2e2c009bSjjc hand = (lgrp_handle_t)lgrp_plat_cpu_to_node(cpu[id], 660*2e2c009bSjjc lgrp_plat_cpu_node); 661*2e2c009bSjjc 662*2e2c009bSjjc ASSERT(hand != (lgrp_handle_t)-1); 663*2e2c009bSjjc if (hand == (lgrp_handle_t)-1) 664*2e2c009bSjjc return (LGRP_NULL_HANDLE); 665*2e2c009bSjjc 666*2e2c009bSjjc return (hand); 667*2e2c009bSjjc } 668*2e2c009bSjjc 669*2e2c009bSjjc 670*2e2c009bSjjc /* 671*2e2c009bSjjc * Platform-specific initialization of lgroups 672*2e2c009bSjjc */ 673*2e2c009bSjjc void 674*2e2c009bSjjc lgrp_plat_init(void) 675*2e2c009bSjjc { 676*2e2c009bSjjc #if defined(__xpv) 677*2e2c009bSjjc /* 678*2e2c009bSjjc * XXPV For now, the hypervisor treats all memory equally. 679*2e2c009bSjjc */ 680*2e2c009bSjjc lgrp_plat_node_cnt = max_mem_nodes = 1; 681*2e2c009bSjjc #else /* __xpv */ 682*2e2c009bSjjc uint_t probe_op; 683*2e2c009bSjjc 684*2e2c009bSjjc /* 685*2e2c009bSjjc * Initialize as a UMA machine 686*2e2c009bSjjc */ 687*2e2c009bSjjc if (lgrp_topo_ht_limit() == 1) { 688*2e2c009bSjjc lgrp_plat_node_cnt = max_mem_nodes = 1; 689*2e2c009bSjjc return; 690*2e2c009bSjjc } 691*2e2c009bSjjc 692*2e2c009bSjjc /* 693*2e2c009bSjjc * Determine which CPUs and memory are local to each other and number 694*2e2c009bSjjc * of NUMA nodes by reading ACPI System Resource Affinity Table (SRAT) 695*2e2c009bSjjc */ 696*2e2c009bSjjc lgrp_plat_srat_error = lgrp_plat_process_srat(srat_ptr, 697*2e2c009bSjjc &lgrp_plat_node_cnt, lgrp_plat_node_domain, lgrp_plat_cpu_node, 698*2e2c009bSjjc lgrp_plat_node_memory); 699*2e2c009bSjjc 700*2e2c009bSjjc /* 701*2e2c009bSjjc * Try to use PCI config space registers on Opteron if SRAT doesn't 702*2e2c009bSjjc * exist or there is some error processing the SRAT 703*2e2c009bSjjc */ 704*2e2c009bSjjc if (lgrp_plat_srat_error != 0 && is_opteron()) 705*2e2c009bSjjc opt_get_numa_config(&lgrp_plat_node_cnt, &lgrp_plat_mem_intrlv, 706*2e2c009bSjjc lgrp_plat_node_memory); 707*2e2c009bSjjc 708*2e2c009bSjjc /* 709*2e2c009bSjjc * Don't bother to setup system for multiple lgroups and only use one 710*2e2c009bSjjc * memory node when memory is interleaved between any nodes or there is 711*2e2c009bSjjc * only one NUMA node 712*2e2c009bSjjc * 713*2e2c009bSjjc * NOTE: May need to change this for Dynamic Reconfiguration (DR) 714*2e2c009bSjjc * when and if it happens for x86/x64 715*2e2c009bSjjc */ 716*2e2c009bSjjc if (lgrp_plat_mem_intrlv || lgrp_plat_node_cnt == 1) { 717*2e2c009bSjjc lgrp_plat_node_cnt = max_mem_nodes = 1; 718*2e2c009bSjjc (void) lgrp_topo_ht_limit_set(1); 719*2e2c009bSjjc return; 720*2e2c009bSjjc } 721*2e2c009bSjjc 722*2e2c009bSjjc /* 723*2e2c009bSjjc * Leaf lgroups on x86/x64 architectures contain one physical 724*2e2c009bSjjc * processor chip. Tune lgrp_expand_proc_thresh and 725*2e2c009bSjjc * lgrp_expand_proc_diff so that lgrp_choose() will spread 726*2e2c009bSjjc * things out aggressively. 727*2e2c009bSjjc */ 728*2e2c009bSjjc lgrp_expand_proc_thresh = LGRP_LOADAVG_THREAD_MAX / 2; 729*2e2c009bSjjc lgrp_expand_proc_diff = 0; 730*2e2c009bSjjc 731*2e2c009bSjjc /* 732*2e2c009bSjjc * There should be one memnode (physical page free list(s)) for 733*2e2c009bSjjc * each node 734*2e2c009bSjjc */ 735*2e2c009bSjjc max_mem_nodes = lgrp_plat_node_cnt; 736*2e2c009bSjjc 737*2e2c009bSjjc /* 738*2e2c009bSjjc * Determine how far each NUMA node is from each other by 739*2e2c009bSjjc * reading ACPI System Locality Information Table (SLIT) if it 740*2e2c009bSjjc * exists 741*2e2c009bSjjc */ 742*2e2c009bSjjc lgrp_plat_slit_error = lgrp_plat_process_slit(slit_ptr, 743*2e2c009bSjjc lgrp_plat_node_cnt, lgrp_plat_node_memory, 744*2e2c009bSjjc &lgrp_plat_lat_stats); 745*2e2c009bSjjc if (lgrp_plat_slit_error == 0) 746*2e2c009bSjjc return; 747*2e2c009bSjjc 748*2e2c009bSjjc /* 749*2e2c009bSjjc * Probe to determine latency between NUMA nodes when SLIT 750*2e2c009bSjjc * doesn't exist or make sense 751*2e2c009bSjjc */ 752*2e2c009bSjjc lgrp_plat_probe_flags |= LGRP_PLAT_PROBE_ENABLE; 753*2e2c009bSjjc 754*2e2c009bSjjc /* 755*2e2c009bSjjc * Specify whether to probe using vendor ID register or page copy 756*2e2c009bSjjc * if hasn't been specified already or is overspecified 757*2e2c009bSjjc */ 758*2e2c009bSjjc probe_op = lgrp_plat_probe_flags & 759*2e2c009bSjjc (LGRP_PLAT_PROBE_PGCPY|LGRP_PLAT_PROBE_VENDOR); 760*2e2c009bSjjc 761*2e2c009bSjjc if (probe_op == 0 || 762*2e2c009bSjjc probe_op == (LGRP_PLAT_PROBE_PGCPY|LGRP_PLAT_PROBE_VENDOR)) { 763*2e2c009bSjjc lgrp_plat_probe_flags &= 764*2e2c009bSjjc ~(LGRP_PLAT_PROBE_PGCPY|LGRP_PLAT_PROBE_VENDOR); 765*2e2c009bSjjc if (is_opteron()) 766*2e2c009bSjjc lgrp_plat_probe_flags |= 767*2e2c009bSjjc LGRP_PLAT_PROBE_VENDOR; 768*2e2c009bSjjc else 769*2e2c009bSjjc lgrp_plat_probe_flags |= LGRP_PLAT_PROBE_PGCPY; 770*2e2c009bSjjc } 771*2e2c009bSjjc 772*2e2c009bSjjc /* 773*2e2c009bSjjc * Probing errors can mess up the lgroup topology and 774*2e2c009bSjjc * force us fall back to a 2 level lgroup topology. 775*2e2c009bSjjc * Here we bound how tall the lgroup topology can grow 776*2e2c009bSjjc * in hopes of avoiding any anamolies in probing from 777*2e2c009bSjjc * messing up the lgroup topology by limiting the 778*2e2c009bSjjc * accuracy of the latency topology. 779*2e2c009bSjjc * 780*2e2c009bSjjc * Assume that nodes will at least be configured in a 781*2e2c009bSjjc * ring, so limit height of lgroup topology to be less 782*2e2c009bSjjc * than number of nodes on a system with 4 or more 783*2e2c009bSjjc * nodes 784*2e2c009bSjjc */ 785*2e2c009bSjjc if (lgrp_plat_node_cnt >= 4 && lgrp_topo_ht_limit() == 786*2e2c009bSjjc lgrp_topo_ht_limit_default()) 787*2e2c009bSjjc (void) lgrp_topo_ht_limit_set(lgrp_plat_node_cnt - 1); 788*2e2c009bSjjc #endif /* __xpv */ 789*2e2c009bSjjc } 790*2e2c009bSjjc 791*2e2c009bSjjc 792*2e2c009bSjjc /* 793*2e2c009bSjjc * Return latency between "from" and "to" lgroups 794*2e2c009bSjjc * 795*2e2c009bSjjc * This latency number can only be used for relative comparison 796*2e2c009bSjjc * between lgroups on the running system, cannot be used across platforms, 797*2e2c009bSjjc * and may not reflect the actual latency. It is platform and implementation 798*2e2c009bSjjc * specific, so platform gets to decide its value. It would be nice if the 799*2e2c009bSjjc * number was at least proportional to make comparisons more meaningful though. 800*2e2c009bSjjc */ 801*2e2c009bSjjc /* ARGSUSED */ 802*2e2c009bSjjc int 803*2e2c009bSjjc lgrp_plat_latency(lgrp_handle_t from, lgrp_handle_t to) 804*2e2c009bSjjc { 805*2e2c009bSjjc lgrp_handle_t src, dest; 806*2e2c009bSjjc int node; 807*2e2c009bSjjc 808*2e2c009bSjjc if (max_mem_nodes == 1) 809*2e2c009bSjjc return (0); 810*2e2c009bSjjc 811*2e2c009bSjjc /* 812*2e2c009bSjjc * Return max latency for root lgroup 813*2e2c009bSjjc */ 814*2e2c009bSjjc if (from == LGRP_DEFAULT_HANDLE || to == LGRP_DEFAULT_HANDLE) 815*2e2c009bSjjc return (lgrp_plat_lat_stats.latency_max); 816*2e2c009bSjjc 817*2e2c009bSjjc src = from; 818*2e2c009bSjjc dest = to; 819*2e2c009bSjjc 820*2e2c009bSjjc /* 821*2e2c009bSjjc * Return 0 for nodes (lgroup platform handles) out of range 822*2e2c009bSjjc */ 823*2e2c009bSjjc if (src < 0 || src >= MAX_NODES || dest < 0 || dest >= MAX_NODES) 824*2e2c009bSjjc return (0); 825*2e2c009bSjjc 826*2e2c009bSjjc /* 827*2e2c009bSjjc * Probe from current CPU if its lgroup latencies haven't been set yet 828*2e2c009bSjjc * and we are trying to get latency from current CPU to some node 829*2e2c009bSjjc */ 830*2e2c009bSjjc node = lgrp_plat_cpu_to_node(CPU, lgrp_plat_cpu_node); 831*2e2c009bSjjc ASSERT(node >= 0 && node < lgrp_plat_node_cnt); 832*2e2c009bSjjc if (lgrp_plat_lat_stats.latencies[src][src] == 0 && node == src) 833*2e2c009bSjjc lgrp_plat_probe(); 834*2e2c009bSjjc 835*2e2c009bSjjc return (lgrp_plat_lat_stats.latencies[src][dest]); 836*2e2c009bSjjc } 837*2e2c009bSjjc 838*2e2c009bSjjc 839*2e2c009bSjjc /* 840*2e2c009bSjjc * Platform-specific initialization 841*2e2c009bSjjc */ 842*2e2c009bSjjc void 843*2e2c009bSjjc lgrp_plat_main_init(void) 844*2e2c009bSjjc { 845*2e2c009bSjjc int curnode; 846*2e2c009bSjjc int ht_limit; 847*2e2c009bSjjc int i; 848*2e2c009bSjjc 849*2e2c009bSjjc /* 850*2e2c009bSjjc * Print a notice that MPO is disabled when memory is interleaved 851*2e2c009bSjjc * across nodes....Would do this when it is discovered, but can't 852*2e2c009bSjjc * because it happens way too early during boot.... 853*2e2c009bSjjc */ 854*2e2c009bSjjc if (lgrp_plat_mem_intrlv) 855*2e2c009bSjjc cmn_err(CE_NOTE, 856*2e2c009bSjjc "MPO disabled because memory is interleaved\n"); 857*2e2c009bSjjc 858*2e2c009bSjjc /* 859*2e2c009bSjjc * Don't bother to do any probing if it is disabled, there is only one 860*2e2c009bSjjc * node, or the height of the lgroup topology less than or equal to 2 861*2e2c009bSjjc */ 862*2e2c009bSjjc ht_limit = lgrp_topo_ht_limit(); 863*2e2c009bSjjc if (!(lgrp_plat_probe_flags & LGRP_PLAT_PROBE_ENABLE) || 864*2e2c009bSjjc max_mem_nodes == 1 || ht_limit <= 2) { 865*2e2c009bSjjc /* 866*2e2c009bSjjc * Setup lgroup latencies for 2 level lgroup topology 867*2e2c009bSjjc * (ie. local and remote only) if they haven't been set yet 868*2e2c009bSjjc */ 869*2e2c009bSjjc if (ht_limit == 2 && lgrp_plat_lat_stats.latency_min == -1 && 870*2e2c009bSjjc lgrp_plat_lat_stats.latency_max == 0) 871*2e2c009bSjjc lgrp_plat_2level_setup(lgrp_plat_node_memory, 872*2e2c009bSjjc &lgrp_plat_lat_stats); 873*2e2c009bSjjc return; 874*2e2c009bSjjc } 875*2e2c009bSjjc 876*2e2c009bSjjc if (lgrp_plat_probe_flags & LGRP_PLAT_PROBE_VENDOR) { 877*2e2c009bSjjc /* 878*2e2c009bSjjc * Should have been able to probe from CPU 0 when it was added 879*2e2c009bSjjc * to lgroup hierarchy, but may not have been able to then 880*2e2c009bSjjc * because it happens so early in boot that gethrtime() hasn't 881*2e2c009bSjjc * been initialized. (:-( 882*2e2c009bSjjc */ 883*2e2c009bSjjc curnode = lgrp_plat_cpu_to_node(CPU, lgrp_plat_cpu_node); 884*2e2c009bSjjc ASSERT(curnode >= 0 && curnode < lgrp_plat_node_cnt); 885*2e2c009bSjjc if (lgrp_plat_lat_stats.latencies[curnode][curnode] == 0) 886*2e2c009bSjjc lgrp_plat_probe(); 887*2e2c009bSjjc 888*2e2c009bSjjc return; 889*2e2c009bSjjc } 890*2e2c009bSjjc 891*2e2c009bSjjc /* 892*2e2c009bSjjc * When probing memory, use one page for every sample to determine 893*2e2c009bSjjc * lgroup topology and taking multiple samples 894*2e2c009bSjjc */ 895*2e2c009bSjjc if (lgrp_plat_probe_mem_config.probe_memsize == 0) 896*2e2c009bSjjc lgrp_plat_probe_mem_config.probe_memsize = PAGESIZE * 897*2e2c009bSjjc lgrp_plat_probe_nsamples; 898*2e2c009bSjjc 899*2e2c009bSjjc /* 900*2e2c009bSjjc * Map memory in each node needed for probing to determine latency 901*2e2c009bSjjc * topology 902*2e2c009bSjjc */ 903*2e2c009bSjjc for (i = 0; i < lgrp_plat_node_cnt; i++) { 904*2e2c009bSjjc int mnode; 905*2e2c009bSjjc 906*2e2c009bSjjc /* 907*2e2c009bSjjc * Skip this node and leave its probe page NULL 908*2e2c009bSjjc * if it doesn't have any memory 909*2e2c009bSjjc */ 910*2e2c009bSjjc mnode = plat_lgrphand_to_mem_node((lgrp_handle_t)i); 911*2e2c009bSjjc if (!mem_node_config[mnode].exists) { 912*2e2c009bSjjc lgrp_plat_probe_mem_config.probe_va[i] = NULL; 913*2e2c009bSjjc continue; 914*2e2c009bSjjc } 915*2e2c009bSjjc 916*2e2c009bSjjc /* 917*2e2c009bSjjc * Allocate one kernel virtual page 918*2e2c009bSjjc */ 919*2e2c009bSjjc lgrp_plat_probe_mem_config.probe_va[i] = vmem_alloc(heap_arena, 920*2e2c009bSjjc lgrp_plat_probe_mem_config.probe_memsize, VM_NOSLEEP); 921*2e2c009bSjjc if (lgrp_plat_probe_mem_config.probe_va[i] == NULL) { 922*2e2c009bSjjc cmn_err(CE_WARN, 923*2e2c009bSjjc "lgrp_plat_main_init: couldn't allocate memory"); 924*2e2c009bSjjc return; 925*2e2c009bSjjc } 926*2e2c009bSjjc 927*2e2c009bSjjc /* 928*2e2c009bSjjc * Get PFN for first page in each node 929*2e2c009bSjjc */ 930*2e2c009bSjjc lgrp_plat_probe_mem_config.probe_pfn[i] = 931*2e2c009bSjjc mem_node_config[mnode].physbase; 932*2e2c009bSjjc 933*2e2c009bSjjc /* 934*2e2c009bSjjc * Map virtual page to first page in node 935*2e2c009bSjjc */ 936*2e2c009bSjjc hat_devload(kas.a_hat, lgrp_plat_probe_mem_config.probe_va[i], 937*2e2c009bSjjc lgrp_plat_probe_mem_config.probe_memsize, 938*2e2c009bSjjc lgrp_plat_probe_mem_config.probe_pfn[i], 939*2e2c009bSjjc PROT_READ | PROT_WRITE | HAT_PLAT_NOCACHE, 940*2e2c009bSjjc HAT_LOAD_NOCONSIST); 941*2e2c009bSjjc } 942*2e2c009bSjjc 943*2e2c009bSjjc /* 944*2e2c009bSjjc * Probe from current CPU 945*2e2c009bSjjc */ 946*2e2c009bSjjc lgrp_plat_probe(); 947*2e2c009bSjjc } 948*2e2c009bSjjc 949*2e2c009bSjjc 950*2e2c009bSjjc /* 951*2e2c009bSjjc * Return the maximum number of lgrps supported by the platform. 952*2e2c009bSjjc * Before lgrp topology is known it returns an estimate based on the number of 953*2e2c009bSjjc * nodes. Once topology is known it returns the actual maximim number of lgrps 954*2e2c009bSjjc * created. Since x86/x64 doesn't support Dynamic Reconfiguration (DR) and 955*2e2c009bSjjc * dynamic addition of new nodes, this number may not grow during system 956*2e2c009bSjjc * lifetime (yet). 957*2e2c009bSjjc */ 958*2e2c009bSjjc int 959*2e2c009bSjjc lgrp_plat_max_lgrps(void) 960*2e2c009bSjjc { 961*2e2c009bSjjc return (lgrp_topo_initialized ? 962*2e2c009bSjjc lgrp_alloc_max + 1 : 963*2e2c009bSjjc lgrp_plat_node_cnt * (lgrp_plat_node_cnt - 1) + 1); 964*2e2c009bSjjc } 965*2e2c009bSjjc 966*2e2c009bSjjc 967*2e2c009bSjjc /* 968*2e2c009bSjjc * Return the number of free pages in an lgroup. 969*2e2c009bSjjc * 970*2e2c009bSjjc * For query of LGRP_MEM_SIZE_FREE, return the number of base pagesize 971*2e2c009bSjjc * pages on freelists. For query of LGRP_MEM_SIZE_AVAIL, return the 972*2e2c009bSjjc * number of allocatable base pagesize pages corresponding to the 973*2e2c009bSjjc * lgroup (e.g. do not include page_t's, BOP_ALLOC()'ed memory, ..) 974*2e2c009bSjjc * For query of LGRP_MEM_SIZE_INSTALL, return the amount of physical 975*2e2c009bSjjc * memory installed, regardless of whether or not it's usable. 976*2e2c009bSjjc */ 977*2e2c009bSjjc pgcnt_t 978*2e2c009bSjjc lgrp_plat_mem_size(lgrp_handle_t plathand, lgrp_mem_query_t query) 979*2e2c009bSjjc { 980*2e2c009bSjjc int mnode; 981*2e2c009bSjjc pgcnt_t npgs = (pgcnt_t)0; 982*2e2c009bSjjc extern struct memlist *phys_avail; 983*2e2c009bSjjc extern struct memlist *phys_install; 984*2e2c009bSjjc 985*2e2c009bSjjc 986*2e2c009bSjjc if (plathand == LGRP_DEFAULT_HANDLE) 987*2e2c009bSjjc return (lgrp_plat_mem_size_default(plathand, query)); 988*2e2c009bSjjc 989*2e2c009bSjjc if (plathand != LGRP_NULL_HANDLE) { 990*2e2c009bSjjc mnode = plat_lgrphand_to_mem_node(plathand); 991*2e2c009bSjjc if (mnode >= 0 && mem_node_config[mnode].exists) { 992*2e2c009bSjjc switch (query) { 993*2e2c009bSjjc case LGRP_MEM_SIZE_FREE: 994*2e2c009bSjjc npgs = MNODE_PGCNT(mnode); 995*2e2c009bSjjc break; 996*2e2c009bSjjc case LGRP_MEM_SIZE_AVAIL: 997*2e2c009bSjjc npgs = mem_node_memlist_pages(mnode, 998*2e2c009bSjjc phys_avail); 999*2e2c009bSjjc break; 1000*2e2c009bSjjc case LGRP_MEM_SIZE_INSTALL: 1001*2e2c009bSjjc npgs = mem_node_memlist_pages(mnode, 1002*2e2c009bSjjc phys_install); 1003*2e2c009bSjjc break; 1004*2e2c009bSjjc default: 1005*2e2c009bSjjc break; 1006*2e2c009bSjjc } 1007*2e2c009bSjjc } 1008*2e2c009bSjjc } 1009*2e2c009bSjjc return (npgs); 1010*2e2c009bSjjc } 1011*2e2c009bSjjc 1012*2e2c009bSjjc 1013*2e2c009bSjjc /* 1014*2e2c009bSjjc * Return the platform handle of the lgroup that contains the physical memory 1015*2e2c009bSjjc * corresponding to the given page frame number 1016*2e2c009bSjjc */ 1017*2e2c009bSjjc /* ARGSUSED */ 1018*2e2c009bSjjc lgrp_handle_t 1019*2e2c009bSjjc lgrp_plat_pfn_to_hand(pfn_t pfn) 1020*2e2c009bSjjc { 1021*2e2c009bSjjc int mnode; 1022*2e2c009bSjjc 1023*2e2c009bSjjc if (max_mem_nodes == 1) 1024*2e2c009bSjjc return (LGRP_DEFAULT_HANDLE); 1025*2e2c009bSjjc 1026*2e2c009bSjjc if (pfn > physmax) 1027*2e2c009bSjjc return (LGRP_NULL_HANDLE); 1028*2e2c009bSjjc 1029*2e2c009bSjjc mnode = plat_pfn_to_mem_node(pfn); 1030*2e2c009bSjjc if (mnode < 0) 1031*2e2c009bSjjc return (LGRP_NULL_HANDLE); 1032*2e2c009bSjjc 1033*2e2c009bSjjc return (MEM_NODE_2_LGRPHAND(mnode)); 1034*2e2c009bSjjc } 1035*2e2c009bSjjc 1036*2e2c009bSjjc 1037*2e2c009bSjjc /* 1038*2e2c009bSjjc * Probe memory in each node from current CPU to determine latency topology 1039*2e2c009bSjjc * 1040*2e2c009bSjjc * The probing code will probe the vendor ID register on the Northbridge of 1041*2e2c009bSjjc * Opteron processors and probe memory for other processors by default. 1042*2e2c009bSjjc * 1043*2e2c009bSjjc * Since probing is inherently error prone, the code takes laps across all the 1044*2e2c009bSjjc * nodes probing from each node to each of the other nodes some number of 1045*2e2c009bSjjc * times. Furthermore, each node is probed some number of times before moving 1046*2e2c009bSjjc * onto the next one during each lap. The minimum latency gotten between nodes 1047*2e2c009bSjjc * is kept as the latency between the nodes. 1048*2e2c009bSjjc * 1049*2e2c009bSjjc * After all that, the probe times are adjusted by normalizing values that are 1050*2e2c009bSjjc * close to each other and local latencies are made the same. Lastly, the 1051*2e2c009bSjjc * latencies are verified to make sure that certain conditions are met (eg. 1052*2e2c009bSjjc * local < remote, latency(a, b) == latency(b, a), etc.). 1053*2e2c009bSjjc * 1054*2e2c009bSjjc * If any of the conditions aren't met, the code will export a NUMA 1055*2e2c009bSjjc * configuration with the local CPUs and memory given by the SRAT or PCI config 1056*2e2c009bSjjc * space registers and one remote memory latency since it can't tell exactly 1057*2e2c009bSjjc * how far each node is from each other. 1058*2e2c009bSjjc */ 1059*2e2c009bSjjc void 1060*2e2c009bSjjc lgrp_plat_probe(void) 1061*2e2c009bSjjc { 1062*2e2c009bSjjc int from; 1063*2e2c009bSjjc int i; 1064*2e2c009bSjjc lgrp_plat_latency_stats_t *lat_stats; 1065*2e2c009bSjjc hrtime_t probe_time; 1066*2e2c009bSjjc int to; 1067*2e2c009bSjjc 1068*2e2c009bSjjc if (!(lgrp_plat_probe_flags & LGRP_PLAT_PROBE_ENABLE) || 1069*2e2c009bSjjc max_mem_nodes == 1 || lgrp_topo_ht_limit() <= 2) 1070*2e2c009bSjjc return; 1071*2e2c009bSjjc 1072*2e2c009bSjjc /* 1073*2e2c009bSjjc * Determine ID of node containing current CPU 1074*2e2c009bSjjc */ 1075*2e2c009bSjjc from = lgrp_plat_cpu_to_node(CPU, lgrp_plat_cpu_node); 1076*2e2c009bSjjc ASSERT(from >= 0 && from < lgrp_plat_node_cnt); 1077*2e2c009bSjjc if (srat_ptr && lgrp_plat_srat_enable && !lgrp_plat_srat_error) 1078*2e2c009bSjjc ASSERT(lgrp_plat_node_domain[from].exists); 1079*2e2c009bSjjc 1080*2e2c009bSjjc /* 1081*2e2c009bSjjc * Don't need to probe if got times already 1082*2e2c009bSjjc */ 1083*2e2c009bSjjc lat_stats = &lgrp_plat_lat_stats; 1084*2e2c009bSjjc if (lat_stats->latencies[from][from] != 0) 1085*2e2c009bSjjc return; 1086*2e2c009bSjjc 1087*2e2c009bSjjc /* 1088*2e2c009bSjjc * Read vendor ID in Northbridge or read and write page(s) 1089*2e2c009bSjjc * in each node from current CPU and remember how long it takes, 1090*2e2c009bSjjc * so we can build latency topology of machine later. 1091*2e2c009bSjjc * This should approximate the memory latency between each node. 1092*2e2c009bSjjc */ 1093*2e2c009bSjjc for (i = 0; i < lgrp_plat_probe_nrounds; i++) { 1094*2e2c009bSjjc for (to = 0; to < lgrp_plat_node_cnt; to++) { 1095*2e2c009bSjjc /* 1096*2e2c009bSjjc * Get probe time and bail out if can't get it yet 1097*2e2c009bSjjc */ 1098*2e2c009bSjjc probe_time = lgrp_plat_probe_time(to, 1099*2e2c009bSjjc lgrp_plat_cpu_node, &lgrp_plat_probe_mem_config, 1100*2e2c009bSjjc &lgrp_plat_lat_stats, &lgrp_plat_probe_stats); 1101*2e2c009bSjjc if (probe_time == 0) 1102*2e2c009bSjjc return; 1103*2e2c009bSjjc 1104*2e2c009bSjjc /* 1105*2e2c009bSjjc * Keep lowest probe time as latency between nodes 1106*2e2c009bSjjc */ 1107*2e2c009bSjjc if (lat_stats->latencies[from][to] == 0 || 1108*2e2c009bSjjc probe_time < lat_stats->latencies[from][to]) 1109*2e2c009bSjjc lat_stats->latencies[from][to] = probe_time; 1110*2e2c009bSjjc 1111*2e2c009bSjjc /* 1112*2e2c009bSjjc * Update overall minimum and maximum probe times 1113*2e2c009bSjjc * across all nodes 1114*2e2c009bSjjc */ 1115*2e2c009bSjjc if (probe_time < lat_stats->latency_min || 1116*2e2c009bSjjc lat_stats->latency_min == -1) 1117*2e2c009bSjjc lat_stats->latency_min = probe_time; 1118*2e2c009bSjjc if (probe_time > lat_stats->latency_max) 1119*2e2c009bSjjc lat_stats->latency_max = probe_time; 1120*2e2c009bSjjc } 1121*2e2c009bSjjc } 1122*2e2c009bSjjc 1123*2e2c009bSjjc /* 1124*2e2c009bSjjc * - Fix up latencies such that local latencies are same, 1125*2e2c009bSjjc * latency(i, j) == latency(j, i), etc. (if possible) 1126*2e2c009bSjjc * 1127*2e2c009bSjjc * - Verify that latencies look ok 1128*2e2c009bSjjc * 1129*2e2c009bSjjc * - Fallback to just optimizing for local and remote if 1130*2e2c009bSjjc * latencies didn't look right 1131*2e2c009bSjjc */ 1132*2e2c009bSjjc lgrp_plat_latency_adjust(lgrp_plat_node_memory, &lgrp_plat_lat_stats, 1133*2e2c009bSjjc &lgrp_plat_probe_stats); 1134*2e2c009bSjjc lgrp_plat_probe_stats.probe_error_code = 1135*2e2c009bSjjc lgrp_plat_latency_verify(lgrp_plat_node_memory, 1136*2e2c009bSjjc &lgrp_plat_lat_stats); 1137*2e2c009bSjjc if (lgrp_plat_probe_stats.probe_error_code) 1138*2e2c009bSjjc lgrp_plat_2level_setup(lgrp_plat_node_memory, 1139*2e2c009bSjjc &lgrp_plat_lat_stats); 1140*2e2c009bSjjc } 1141*2e2c009bSjjc 1142*2e2c009bSjjc 1143*2e2c009bSjjc /* 1144*2e2c009bSjjc * Return platform handle for root lgroup 1145*2e2c009bSjjc */ 1146*2e2c009bSjjc lgrp_handle_t 1147*2e2c009bSjjc lgrp_plat_root_hand(void) 1148*2e2c009bSjjc { 1149*2e2c009bSjjc return (LGRP_DEFAULT_HANDLE); 1150*2e2c009bSjjc } 1151*2e2c009bSjjc 1152*2e2c009bSjjc 1153*2e2c009bSjjc /* 1154*2e2c009bSjjc * INTERNAL ROUTINES 1155*2e2c009bSjjc */ 1156*2e2c009bSjjc 1157*2e2c009bSjjc 1158*2e2c009bSjjc /* 1159*2e2c009bSjjc * Update CPU to node mapping for given CPU and proximity domain (and returns 1160*2e2c009bSjjc * negative numbers for errors and positive ones for success) 1161*2e2c009bSjjc */ 1162*2e2c009bSjjc static int 1163*2e2c009bSjjc lgrp_plat_cpu_node_update(node_domain_map_t *node_domain, 1164*2e2c009bSjjc cpu_node_map_t *cpu_node, uint32_t apicid, uint32_t domain) 1165*2e2c009bSjjc { 1166*2e2c009bSjjc uint_t i; 1167*2e2c009bSjjc uint_t start; 1168*2e2c009bSjjc int node; 1169*2e2c009bSjjc 1170*2e2c009bSjjc /* 1171*2e2c009bSjjc * Get node number for proximity domain 1172*2e2c009bSjjc */ 1173*2e2c009bSjjc node = lgrp_plat_domain_to_node(node_domain, domain); 1174*2e2c009bSjjc if (node == -1) { 1175*2e2c009bSjjc node = lgrp_plat_node_domain_update(node_domain, domain); 1176*2e2c009bSjjc if (node == -1) 1177*2e2c009bSjjc return (-1); 1178*2e2c009bSjjc } 1179*2e2c009bSjjc 1180*2e2c009bSjjc /* 1181*2e2c009bSjjc * Hash given CPU APIC ID into CPU to node mapping table/array and 1182*2e2c009bSjjc * enter it and its corresponding node and proximity domain IDs into 1183*2e2c009bSjjc * first non-existent or matching entry 1184*2e2c009bSjjc */ 1185*2e2c009bSjjc i = start = CPU_NODE_HASH(apicid); 1186*2e2c009bSjjc do { 1187*2e2c009bSjjc if (cpu_node[i].exists) { 1188*2e2c009bSjjc /* 1189*2e2c009bSjjc * Update already existing entry for CPU 1190*2e2c009bSjjc */ 1191*2e2c009bSjjc if (cpu_node[i].apicid == apicid) { 1192*2e2c009bSjjc /* 1193*2e2c009bSjjc * Just return when everything same 1194*2e2c009bSjjc */ 1195*2e2c009bSjjc if (cpu_node[i].prox_domain == domain && 1196*2e2c009bSjjc cpu_node[i].node == node) 1197*2e2c009bSjjc return (1); 1198*2e2c009bSjjc 1199*2e2c009bSjjc /* 1200*2e2c009bSjjc * Assert that proximity domain and node IDs 1201*2e2c009bSjjc * should be same and return error on non-debug 1202*2e2c009bSjjc * kernel 1203*2e2c009bSjjc */ 1204*2e2c009bSjjc ASSERT(cpu_node[i].prox_domain == domain && 1205*2e2c009bSjjc cpu_node[i].node == node); 1206*2e2c009bSjjc return (-1); 1207*2e2c009bSjjc } 1208*2e2c009bSjjc } else { 1209*2e2c009bSjjc /* 1210*2e2c009bSjjc * Create new entry for CPU 1211*2e2c009bSjjc */ 1212*2e2c009bSjjc cpu_node[i].exists = 1; 1213*2e2c009bSjjc cpu_node[i].apicid = apicid; 1214*2e2c009bSjjc cpu_node[i].prox_domain = domain; 1215*2e2c009bSjjc cpu_node[i].node = node; 1216*2e2c009bSjjc return (0); 1217*2e2c009bSjjc } 1218*2e2c009bSjjc i = CPU_NODE_HASH(i + 1); 1219*2e2c009bSjjc } while (i != start); 1220*2e2c009bSjjc 1221*2e2c009bSjjc /* 1222*2e2c009bSjjc * Ran out of supported number of entries which shouldn't happen.... 1223*2e2c009bSjjc */ 1224*2e2c009bSjjc ASSERT(i != start); 1225*2e2c009bSjjc return (-1); 1226*2e2c009bSjjc } 1227*2e2c009bSjjc 1228*2e2c009bSjjc 1229*2e2c009bSjjc /* 1230*2e2c009bSjjc * Get node ID for given CPU ID 1231*2e2c009bSjjc */ 1232*2e2c009bSjjc static int 1233*2e2c009bSjjc lgrp_plat_cpu_to_node(cpu_t *cp, cpu_node_map_t *cpu_node) 1234*2e2c009bSjjc { 1235*2e2c009bSjjc uint32_t apicid; 1236*2e2c009bSjjc uint_t i; 1237*2e2c009bSjjc uint_t start; 1238*2e2c009bSjjc 1239*2e2c009bSjjc if (cp == NULL) 1240*2e2c009bSjjc return (-1); 1241*2e2c009bSjjc 1242*2e2c009bSjjc /* 1243*2e2c009bSjjc * SRAT doesn't exist, isn't enabled, or there was an error processing 1244*2e2c009bSjjc * it, so return chip ID for Opteron and -1 otherwise. 1245*2e2c009bSjjc */ 1246*2e2c009bSjjc if (srat_ptr == NULL || !lgrp_plat_srat_enable || 1247*2e2c009bSjjc lgrp_plat_srat_error) { 1248*2e2c009bSjjc if (is_opteron()) 1249*2e2c009bSjjc return (pg_plat_hw_instance_id(cp, PGHW_CHIP)); 1250*2e2c009bSjjc return (-1); 1251*2e2c009bSjjc } 1252*2e2c009bSjjc 1253*2e2c009bSjjc /* 1254*2e2c009bSjjc * SRAT does exist, so get APIC ID for given CPU and map that to its 1255*2e2c009bSjjc * node ID 1256*2e2c009bSjjc */ 1257*2e2c009bSjjc apicid = cpuid_get_apicid(cp); 1258*2e2c009bSjjc i = start = CPU_NODE_HASH(apicid); 1259*2e2c009bSjjc do { 1260*2e2c009bSjjc if (cpu_node[i].apicid == apicid && cpu_node[i].exists) 1261*2e2c009bSjjc return (cpu_node[i].node); 1262*2e2c009bSjjc i = CPU_NODE_HASH(i + 1); 1263*2e2c009bSjjc } while (i != start); 1264*2e2c009bSjjc return (-1); 1265*2e2c009bSjjc } 1266*2e2c009bSjjc 1267*2e2c009bSjjc 1268*2e2c009bSjjc /* 1269*2e2c009bSjjc * Return node number for given proximity domain/system locality 1270*2e2c009bSjjc */ 1271*2e2c009bSjjc static int 1272*2e2c009bSjjc lgrp_plat_domain_to_node(node_domain_map_t *node_domain, uint32_t domain) 1273*2e2c009bSjjc { 1274*2e2c009bSjjc uint_t node; 1275*2e2c009bSjjc uint_t start; 1276*2e2c009bSjjc 1277*2e2c009bSjjc /* 1278*2e2c009bSjjc * Hash proximity domain ID into node to domain mapping table (array), 1279*2e2c009bSjjc * search for entry with matching proximity domain ID, and return index 1280*2e2c009bSjjc * of matching entry as node ID. 1281*2e2c009bSjjc */ 1282*2e2c009bSjjc node = start = NODE_DOMAIN_HASH(domain); 1283*2e2c009bSjjc do { 1284*2e2c009bSjjc if (node_domain[node].prox_domain == domain && 1285*2e2c009bSjjc node_domain[node].exists) 1286*2e2c009bSjjc return (node); 1287*2e2c009bSjjc node = NODE_DOMAIN_HASH(node + 1); 1288*2e2c009bSjjc } while (node != start); 1289*2e2c009bSjjc return (-1); 1290*2e2c009bSjjc } 1291*2e2c009bSjjc 1292*2e2c009bSjjc 1293*2e2c009bSjjc /* 1294*2e2c009bSjjc * Latencies must be within 1/(2**LGRP_LAT_TOLERANCE_SHIFT) of each other to 1295*2e2c009bSjjc * be considered same 1296*2e2c009bSjjc */ 1297*2e2c009bSjjc #define LGRP_LAT_TOLERANCE_SHIFT 4 1298*2e2c009bSjjc 1299*2e2c009bSjjc int lgrp_plat_probe_lt_shift = LGRP_LAT_TOLERANCE_SHIFT; 1300*2e2c009bSjjc 1301*2e2c009bSjjc 1302*2e2c009bSjjc /* 1303*2e2c009bSjjc * Adjust latencies between nodes to be symmetric, normalize latencies between 1304*2e2c009bSjjc * any nodes that are within some tolerance to be same, and make local 1305*2e2c009bSjjc * latencies be same 1306*2e2c009bSjjc */ 1307*2e2c009bSjjc static void 1308*2e2c009bSjjc lgrp_plat_latency_adjust(node_phys_addr_map_t *node_memory, 1309*2e2c009bSjjc lgrp_plat_latency_stats_t *lat_stats, lgrp_plat_probe_stats_t *probe_stats) 1310*2e2c009bSjjc { 1311*2e2c009bSjjc int i; 1312*2e2c009bSjjc int j; 1313*2e2c009bSjjc int k; 1314*2e2c009bSjjc int l; 1315*2e2c009bSjjc u_longlong_t max; 1316*2e2c009bSjjc u_longlong_t min; 1317*2e2c009bSjjc u_longlong_t t; 1318*2e2c009bSjjc u_longlong_t t1; 1319*2e2c009bSjjc u_longlong_t t2; 1320*2e2c009bSjjc const lgrp_config_flag_t cflag = LGRP_CONFIG_LAT_CHANGE_ALL; 1321*2e2c009bSjjc int lat_corrected[MAX_NODES][MAX_NODES]; 1322*2e2c009bSjjc 1323*2e2c009bSjjc /* 1324*2e2c009bSjjc * Nothing to do when this is an UMA machine or don't have args needed 1325*2e2c009bSjjc */ 1326*2e2c009bSjjc if (max_mem_nodes == 1) 1327*2e2c009bSjjc return; 1328*2e2c009bSjjc 1329*2e2c009bSjjc ASSERT(node_memory != NULL && lat_stats != NULL && 1330*2e2c009bSjjc probe_stats != NULL); 1331*2e2c009bSjjc 1332*2e2c009bSjjc /* 1333*2e2c009bSjjc * Make sure that latencies are symmetric between any two nodes 1334*2e2c009bSjjc * (ie. latency(node0, node1) == latency(node1, node0)) 1335*2e2c009bSjjc */ 1336*2e2c009bSjjc for (i = 0; i < lgrp_plat_node_cnt; i++) { 1337*2e2c009bSjjc if (!node_memory[i].exists) 1338*2e2c009bSjjc continue; 1339*2e2c009bSjjc 1340*2e2c009bSjjc for (j = 0; j < lgrp_plat_node_cnt; j++) { 1341*2e2c009bSjjc if (!node_memory[j].exists) 1342*2e2c009bSjjc continue; 1343*2e2c009bSjjc 1344*2e2c009bSjjc t1 = lat_stats->latencies[i][j]; 1345*2e2c009bSjjc t2 = lat_stats->latencies[j][i]; 1346*2e2c009bSjjc 1347*2e2c009bSjjc if (t1 == 0 || t2 == 0 || t1 == t2) 1348*2e2c009bSjjc continue; 1349*2e2c009bSjjc 1350*2e2c009bSjjc /* 1351*2e2c009bSjjc * Latencies should be same 1352*2e2c009bSjjc * - Use minimum of two latencies which should be same 1353*2e2c009bSjjc * - Track suspect probe times not within tolerance of 1354*2e2c009bSjjc * min value 1355*2e2c009bSjjc * - Remember how much values are corrected by 1356*2e2c009bSjjc */ 1357*2e2c009bSjjc if (t1 > t2) { 1358*2e2c009bSjjc t = t2; 1359*2e2c009bSjjc probe_stats->probe_errors[i][j] += t1 - t2; 1360*2e2c009bSjjc if (t1 - t2 > t2 >> lgrp_plat_probe_lt_shift) { 1361*2e2c009bSjjc probe_stats->probe_suspect[i][j]++; 1362*2e2c009bSjjc probe_stats->probe_suspect[j][i]++; 1363*2e2c009bSjjc } 1364*2e2c009bSjjc } else if (t2 > t1) { 1365*2e2c009bSjjc t = t1; 1366*2e2c009bSjjc probe_stats->probe_errors[j][i] += t2 - t1; 1367*2e2c009bSjjc if (t2 - t1 > t1 >> lgrp_plat_probe_lt_shift) { 1368*2e2c009bSjjc probe_stats->probe_suspect[i][j]++; 1369*2e2c009bSjjc probe_stats->probe_suspect[j][i]++; 1370*2e2c009bSjjc } 1371*2e2c009bSjjc } 1372*2e2c009bSjjc 1373*2e2c009bSjjc lat_stats->latencies[i][j] = 1374*2e2c009bSjjc lat_stats->latencies[j][i] = t; 1375*2e2c009bSjjc lgrp_config(cflag, t1, t); 1376*2e2c009bSjjc lgrp_config(cflag, t2, t); 1377*2e2c009bSjjc } 1378*2e2c009bSjjc } 1379*2e2c009bSjjc 1380*2e2c009bSjjc /* 1381*2e2c009bSjjc * Keep track of which latencies get corrected 1382*2e2c009bSjjc */ 1383*2e2c009bSjjc for (i = 0; i < MAX_NODES; i++) 1384*2e2c009bSjjc for (j = 0; j < MAX_NODES; j++) 1385*2e2c009bSjjc lat_corrected[i][j] = 0; 1386*2e2c009bSjjc 1387*2e2c009bSjjc /* 1388*2e2c009bSjjc * For every two nodes, see whether there is another pair of nodes which 1389*2e2c009bSjjc * are about the same distance apart and make the latencies be the same 1390*2e2c009bSjjc * if they are close enough together 1391*2e2c009bSjjc */ 1392*2e2c009bSjjc for (i = 0; i < lgrp_plat_node_cnt; i++) { 1393*2e2c009bSjjc if (!node_memory[i].exists) 1394*2e2c009bSjjc continue; 1395*2e2c009bSjjc for (j = 0; j < lgrp_plat_node_cnt; j++) { 1396*2e2c009bSjjc if (!node_memory[j].exists) 1397*2e2c009bSjjc continue; 1398*2e2c009bSjjc /* 1399*2e2c009bSjjc * Pick one pair of nodes (i, j) 1400*2e2c009bSjjc * and get latency between them 1401*2e2c009bSjjc */ 1402*2e2c009bSjjc t1 = lat_stats->latencies[i][j]; 1403*2e2c009bSjjc 1404*2e2c009bSjjc /* 1405*2e2c009bSjjc * Skip this pair of nodes if there isn't a latency 1406*2e2c009bSjjc * for it yet 1407*2e2c009bSjjc */ 1408*2e2c009bSjjc if (t1 == 0) 1409*2e2c009bSjjc continue; 1410*2e2c009bSjjc 1411*2e2c009bSjjc for (k = 0; k < lgrp_plat_node_cnt; k++) { 1412*2e2c009bSjjc if (!node_memory[k].exists) 1413*2e2c009bSjjc continue; 1414*2e2c009bSjjc for (l = 0; l < lgrp_plat_node_cnt; l++) { 1415*2e2c009bSjjc if (!node_memory[l].exists) 1416*2e2c009bSjjc continue; 1417*2e2c009bSjjc /* 1418*2e2c009bSjjc * Pick another pair of nodes (k, l) 1419*2e2c009bSjjc * not same as (i, j) and get latency 1420*2e2c009bSjjc * between them 1421*2e2c009bSjjc */ 1422*2e2c009bSjjc if (k == i && l == j) 1423*2e2c009bSjjc continue; 1424*2e2c009bSjjc 1425*2e2c009bSjjc t2 = lat_stats->latencies[k][l]; 1426*2e2c009bSjjc 1427*2e2c009bSjjc /* 1428*2e2c009bSjjc * Skip this pair of nodes if there 1429*2e2c009bSjjc * isn't a latency for it yet 1430*2e2c009bSjjc */ 1431*2e2c009bSjjc 1432*2e2c009bSjjc if (t2 == 0) 1433*2e2c009bSjjc continue; 1434*2e2c009bSjjc 1435*2e2c009bSjjc /* 1436*2e2c009bSjjc * Skip nodes (k, l) if they already 1437*2e2c009bSjjc * have same latency as (i, j) or 1438*2e2c009bSjjc * their latency isn't close enough to 1439*2e2c009bSjjc * be considered/made the same 1440*2e2c009bSjjc */ 1441*2e2c009bSjjc if (t1 == t2 || (t1 > t2 && t1 - t2 > 1442*2e2c009bSjjc t1 >> lgrp_plat_probe_lt_shift) || 1443*2e2c009bSjjc (t2 > t1 && t2 - t1 > 1444*2e2c009bSjjc t2 >> lgrp_plat_probe_lt_shift)) 1445*2e2c009bSjjc continue; 1446*2e2c009bSjjc 1447*2e2c009bSjjc /* 1448*2e2c009bSjjc * Make latency(i, j) same as 1449*2e2c009bSjjc * latency(k, l), try to use latency 1450*2e2c009bSjjc * that has been adjusted already to get 1451*2e2c009bSjjc * more consistency (if possible), and 1452*2e2c009bSjjc * remember which latencies were 1453*2e2c009bSjjc * adjusted for next time 1454*2e2c009bSjjc */ 1455*2e2c009bSjjc if (lat_corrected[i][j]) { 1456*2e2c009bSjjc t = t1; 1457*2e2c009bSjjc lgrp_config(cflag, t2, t); 1458*2e2c009bSjjc t2 = t; 1459*2e2c009bSjjc } else if (lat_corrected[k][l]) { 1460*2e2c009bSjjc t = t2; 1461*2e2c009bSjjc lgrp_config(cflag, t1, t); 1462*2e2c009bSjjc t1 = t; 1463*2e2c009bSjjc } else { 1464*2e2c009bSjjc if (t1 > t2) 1465*2e2c009bSjjc t = t2; 1466*2e2c009bSjjc else 1467*2e2c009bSjjc t = t1; 1468*2e2c009bSjjc lgrp_config(cflag, t1, t); 1469*2e2c009bSjjc lgrp_config(cflag, t2, t); 1470*2e2c009bSjjc t1 = t2 = t; 1471*2e2c009bSjjc } 1472*2e2c009bSjjc 1473*2e2c009bSjjc lat_stats->latencies[i][j] = 1474*2e2c009bSjjc lat_stats->latencies[k][l] = t; 1475*2e2c009bSjjc 1476*2e2c009bSjjc lat_corrected[i][j] = 1477*2e2c009bSjjc lat_corrected[k][l] = 1; 1478*2e2c009bSjjc } 1479*2e2c009bSjjc } 1480*2e2c009bSjjc } 1481*2e2c009bSjjc } 1482*2e2c009bSjjc 1483*2e2c009bSjjc /* 1484*2e2c009bSjjc * Local latencies should be same 1485*2e2c009bSjjc * - Find min and max local latencies 1486*2e2c009bSjjc * - Make all local latencies be minimum 1487*2e2c009bSjjc */ 1488*2e2c009bSjjc min = -1; 1489*2e2c009bSjjc max = 0; 1490*2e2c009bSjjc for (i = 0; i < lgrp_plat_node_cnt; i++) { 1491*2e2c009bSjjc if (!node_memory[i].exists) 1492*2e2c009bSjjc continue; 1493*2e2c009bSjjc t = lat_stats->latencies[i][i]; 1494*2e2c009bSjjc if (t == 0) 1495*2e2c009bSjjc continue; 1496*2e2c009bSjjc if (min == -1 || t < min) 1497*2e2c009bSjjc min = t; 1498*2e2c009bSjjc if (t > max) 1499*2e2c009bSjjc max = t; 1500*2e2c009bSjjc } 1501*2e2c009bSjjc if (min != max) { 1502*2e2c009bSjjc for (i = 0; i < lgrp_plat_node_cnt; i++) { 1503*2e2c009bSjjc int local; 1504*2e2c009bSjjc 1505*2e2c009bSjjc if (!node_memory[i].exists) 1506*2e2c009bSjjc continue; 1507*2e2c009bSjjc 1508*2e2c009bSjjc local = lat_stats->latencies[i][i]; 1509*2e2c009bSjjc if (local == 0) 1510*2e2c009bSjjc continue; 1511*2e2c009bSjjc 1512*2e2c009bSjjc /* 1513*2e2c009bSjjc * Track suspect probe times that aren't within 1514*2e2c009bSjjc * tolerance of minimum local latency and how much 1515*2e2c009bSjjc * probe times are corrected by 1516*2e2c009bSjjc */ 1517*2e2c009bSjjc if (local - min > min >> lgrp_plat_probe_lt_shift) 1518*2e2c009bSjjc probe_stats->probe_suspect[i][i]++; 1519*2e2c009bSjjc 1520*2e2c009bSjjc probe_stats->probe_errors[i][i] += local - min; 1521*2e2c009bSjjc 1522*2e2c009bSjjc /* 1523*2e2c009bSjjc * Make local latencies be minimum 1524*2e2c009bSjjc */ 1525*2e2c009bSjjc lgrp_config(LGRP_CONFIG_LAT_CHANGE, i, min); 1526*2e2c009bSjjc lat_stats->latencies[i][i] = min; 1527*2e2c009bSjjc } 1528*2e2c009bSjjc } 1529*2e2c009bSjjc 1530*2e2c009bSjjc /* 1531*2e2c009bSjjc * Determine max probe time again since just adjusted latencies 1532*2e2c009bSjjc */ 1533*2e2c009bSjjc lat_stats->latency_max = 0; 1534*2e2c009bSjjc for (i = 0; i < lgrp_plat_node_cnt; i++) { 1535*2e2c009bSjjc if (!node_memory[i].exists) 1536*2e2c009bSjjc continue; 1537*2e2c009bSjjc for (j = 0; j < lgrp_plat_node_cnt; j++) { 1538*2e2c009bSjjc if (!node_memory[j].exists) 1539*2e2c009bSjjc continue; 1540*2e2c009bSjjc t = lat_stats->latencies[i][j]; 1541*2e2c009bSjjc if (t > lat_stats->latency_max) 1542*2e2c009bSjjc lat_stats->latency_max = t; 1543*2e2c009bSjjc } 1544*2e2c009bSjjc } 1545*2e2c009bSjjc } 1546*2e2c009bSjjc 1547*2e2c009bSjjc 1548*2e2c009bSjjc /* 1549*2e2c009bSjjc * Verify following about latencies between nodes: 1550*2e2c009bSjjc * 1551*2e2c009bSjjc * - Latencies should be symmetric (ie. latency(a, b) == latency(b, a)) 1552*2e2c009bSjjc * - Local latencies same 1553*2e2c009bSjjc * - Local < remote 1554*2e2c009bSjjc * - Number of latencies seen is reasonable 1555*2e2c009bSjjc * - Number of occurrences of a given latency should be more than 1 1556*2e2c009bSjjc * 1557*2e2c009bSjjc * Returns: 1558*2e2c009bSjjc * 0 Success 1559*2e2c009bSjjc * -1 Not symmetric 1560*2e2c009bSjjc * -2 Local latencies not same 1561*2e2c009bSjjc * -3 Local >= remote 1562*2e2c009bSjjc */ 1563*2e2c009bSjjc static int 1564*2e2c009bSjjc lgrp_plat_latency_verify(node_phys_addr_map_t *node_memory, 1565*2e2c009bSjjc lgrp_plat_latency_stats_t *lat_stats) 1566*2e2c009bSjjc { 1567*2e2c009bSjjc int i; 1568*2e2c009bSjjc int j; 1569*2e2c009bSjjc u_longlong_t t1; 1570*2e2c009bSjjc u_longlong_t t2; 1571*2e2c009bSjjc 1572*2e2c009bSjjc ASSERT(node_memory != NULL && lat_stats != NULL); 1573*2e2c009bSjjc 1574*2e2c009bSjjc /* 1575*2e2c009bSjjc * Nothing to do when this is an UMA machine, lgroup topology is 1576*2e2c009bSjjc * limited to 2 levels, or there aren't any probe times yet 1577*2e2c009bSjjc */ 1578*2e2c009bSjjc if (max_mem_nodes == 1 || lgrp_topo_levels < 2 || 1579*2e2c009bSjjc lat_stats->latencies[0][0] == 0) 1580*2e2c009bSjjc return (0); 1581*2e2c009bSjjc 1582*2e2c009bSjjc /* 1583*2e2c009bSjjc * Make sure that latencies are symmetric between any two nodes 1584*2e2c009bSjjc * (ie. latency(node0, node1) == latency(node1, node0)) 1585*2e2c009bSjjc */ 1586*2e2c009bSjjc for (i = 0; i < lgrp_plat_node_cnt; i++) { 1587*2e2c009bSjjc if (!node_memory[i].exists) 1588*2e2c009bSjjc continue; 1589*2e2c009bSjjc for (j = 0; j < lgrp_plat_node_cnt; j++) { 1590*2e2c009bSjjc if (!node_memory[j].exists) 1591*2e2c009bSjjc continue; 1592*2e2c009bSjjc t1 = lat_stats->latencies[i][j]; 1593*2e2c009bSjjc t2 = lat_stats->latencies[j][i]; 1594*2e2c009bSjjc 1595*2e2c009bSjjc if (t1 == 0 || t2 == 0 || t1 == t2) 1596*2e2c009bSjjc continue; 1597*2e2c009bSjjc 1598*2e2c009bSjjc return (-1); 1599*2e2c009bSjjc } 1600*2e2c009bSjjc } 1601*2e2c009bSjjc 1602*2e2c009bSjjc /* 1603*2e2c009bSjjc * Local latencies should be same 1604*2e2c009bSjjc */ 1605*2e2c009bSjjc t1 = lat_stats->latencies[0][0]; 1606*2e2c009bSjjc for (i = 1; i < lgrp_plat_node_cnt; i++) { 1607*2e2c009bSjjc if (!node_memory[i].exists) 1608*2e2c009bSjjc continue; 1609*2e2c009bSjjc 1610*2e2c009bSjjc t2 = lat_stats->latencies[i][i]; 1611*2e2c009bSjjc if (t2 == 0) 1612*2e2c009bSjjc continue; 1613*2e2c009bSjjc 1614*2e2c009bSjjc if (t1 == 0) { 1615*2e2c009bSjjc t1 = t2; 1616*2e2c009bSjjc continue; 1617*2e2c009bSjjc } 1618*2e2c009bSjjc 1619*2e2c009bSjjc if (t1 != t2) 1620*2e2c009bSjjc return (-2); 1621*2e2c009bSjjc } 1622*2e2c009bSjjc 1623*2e2c009bSjjc /* 1624*2e2c009bSjjc * Local latencies should be less than remote 1625*2e2c009bSjjc */ 1626*2e2c009bSjjc if (t1) { 1627*2e2c009bSjjc for (i = 0; i < lgrp_plat_node_cnt; i++) { 1628*2e2c009bSjjc if (!node_memory[i].exists) 1629*2e2c009bSjjc continue; 1630*2e2c009bSjjc for (j = 0; j < lgrp_plat_node_cnt; j++) { 1631*2e2c009bSjjc if (!node_memory[j].exists) 1632*2e2c009bSjjc continue; 1633*2e2c009bSjjc t2 = lat_stats->latencies[i][j]; 1634*2e2c009bSjjc if (i == j || t2 == 0) 1635*2e2c009bSjjc continue; 1636*2e2c009bSjjc 1637*2e2c009bSjjc if (t1 >= t2) 1638*2e2c009bSjjc return (-3); 1639*2e2c009bSjjc } 1640*2e2c009bSjjc } 1641*2e2c009bSjjc } 1642*2e2c009bSjjc 1643*2e2c009bSjjc return (0); 1644*2e2c009bSjjc } 1645*2e2c009bSjjc 1646*2e2c009bSjjc 1647*2e2c009bSjjc /* 1648*2e2c009bSjjc * Return the number of free, allocatable, or installed 1649*2e2c009bSjjc * pages in an lgroup 1650*2e2c009bSjjc * This is a copy of the MAX_MEM_NODES == 1 version of the routine 1651*2e2c009bSjjc * used when MPO is disabled (i.e. single lgroup) or this is the root lgroup 1652*2e2c009bSjjc */ 1653*2e2c009bSjjc /* ARGSUSED */ 1654*2e2c009bSjjc static pgcnt_t 1655*2e2c009bSjjc lgrp_plat_mem_size_default(lgrp_handle_t lgrphand, lgrp_mem_query_t query) 1656*2e2c009bSjjc { 1657*2e2c009bSjjc struct memlist *mlist; 1658*2e2c009bSjjc pgcnt_t npgs = 0; 1659*2e2c009bSjjc extern struct memlist *phys_avail; 1660*2e2c009bSjjc extern struct memlist *phys_install; 1661*2e2c009bSjjc 1662*2e2c009bSjjc switch (query) { 1663*2e2c009bSjjc case LGRP_MEM_SIZE_FREE: 1664*2e2c009bSjjc return ((pgcnt_t)freemem); 1665*2e2c009bSjjc case LGRP_MEM_SIZE_AVAIL: 1666*2e2c009bSjjc memlist_read_lock(); 1667*2e2c009bSjjc for (mlist = phys_avail; mlist; mlist = mlist->next) 1668*2e2c009bSjjc npgs += btop(mlist->size); 1669*2e2c009bSjjc memlist_read_unlock(); 1670*2e2c009bSjjc return (npgs); 1671*2e2c009bSjjc case LGRP_MEM_SIZE_INSTALL: 1672*2e2c009bSjjc memlist_read_lock(); 1673*2e2c009bSjjc for (mlist = phys_install; mlist; mlist = mlist->next) 1674*2e2c009bSjjc npgs += btop(mlist->size); 1675*2e2c009bSjjc memlist_read_unlock(); 1676*2e2c009bSjjc return (npgs); 1677*2e2c009bSjjc default: 1678*2e2c009bSjjc return ((pgcnt_t)0); 1679*2e2c009bSjjc } 1680*2e2c009bSjjc } 1681*2e2c009bSjjc 1682*2e2c009bSjjc 1683*2e2c009bSjjc /* 1684*2e2c009bSjjc * Update node to proximity domain mappings for given domain and return node ID 1685*2e2c009bSjjc */ 1686*2e2c009bSjjc static int 1687*2e2c009bSjjc lgrp_plat_node_domain_update(node_domain_map_t *node_domain, uint32_t domain) 1688*2e2c009bSjjc { 1689*2e2c009bSjjc uint_t node; 1690*2e2c009bSjjc uint_t start; 1691*2e2c009bSjjc 1692*2e2c009bSjjc /* 1693*2e2c009bSjjc * Hash proximity domain ID into node to domain mapping table (array) 1694*2e2c009bSjjc * and add entry for it into first non-existent or matching entry found 1695*2e2c009bSjjc */ 1696*2e2c009bSjjc node = start = NODE_DOMAIN_HASH(domain); 1697*2e2c009bSjjc do { 1698*2e2c009bSjjc /* 1699*2e2c009bSjjc * Entry doesn't exist yet, so create one for this proximity 1700*2e2c009bSjjc * domain and return node ID which is index into mapping table. 1701*2e2c009bSjjc */ 1702*2e2c009bSjjc if (!node_domain[node].exists) { 1703*2e2c009bSjjc node_domain[node].exists = 1; 1704*2e2c009bSjjc node_domain[node].prox_domain = domain; 1705*2e2c009bSjjc return (node); 1706*2e2c009bSjjc } 1707*2e2c009bSjjc 1708*2e2c009bSjjc /* 1709*2e2c009bSjjc * Entry exists for this proximity domain already, so just 1710*2e2c009bSjjc * return node ID (index into table). 1711*2e2c009bSjjc */ 1712*2e2c009bSjjc if (node_domain[node].prox_domain == domain) 1713*2e2c009bSjjc return (node); 1714*2e2c009bSjjc node = NODE_DOMAIN_HASH(node + 1); 1715*2e2c009bSjjc } while (node != start); 1716*2e2c009bSjjc 1717*2e2c009bSjjc /* 1718*2e2c009bSjjc * Ran out of supported number of entries which shouldn't happen.... 1719*2e2c009bSjjc */ 1720*2e2c009bSjjc ASSERT(node != start); 1721*2e2c009bSjjc return (-1); 1722*2e2c009bSjjc } 1723*2e2c009bSjjc 1724*2e2c009bSjjc 1725*2e2c009bSjjc /* 1726*2e2c009bSjjc * Update node memory information for given proximity domain with specified 1727*2e2c009bSjjc * starting and ending physical address range (and return positive numbers for 1728*2e2c009bSjjc * success and negative ones for errors) 1729*2e2c009bSjjc */ 1730*2e2c009bSjjc static int 1731*2e2c009bSjjc lgrp_plat_node_memory_update(node_domain_map_t *node_domain, 1732*2e2c009bSjjc node_phys_addr_map_t *node_memory, uintptr_t start, uintptr_t end, 1733*2e2c009bSjjc uint32_t domain) 1734*2e2c009bSjjc { 1735*2e2c009bSjjc int node; 1736*2e2c009bSjjc 1737*2e2c009bSjjc /* 1738*2e2c009bSjjc * Get node number for proximity domain 1739*2e2c009bSjjc */ 1740*2e2c009bSjjc node = lgrp_plat_domain_to_node(node_domain, domain); 1741*2e2c009bSjjc if (node == -1) { 1742*2e2c009bSjjc node = lgrp_plat_node_domain_update(node_domain, domain); 1743*2e2c009bSjjc if (node == -1) 1744*2e2c009bSjjc return (-1); 1745*2e2c009bSjjc } 1746*2e2c009bSjjc 1747*2e2c009bSjjc /* 1748*2e2c009bSjjc * Create entry in table for node if it doesn't exist 1749*2e2c009bSjjc */ 1750*2e2c009bSjjc if (!node_memory[node].exists) { 1751*2e2c009bSjjc node_memory[node].exists = 1; 1752*2e2c009bSjjc node_memory[node].start = btop(start); 1753*2e2c009bSjjc node_memory[node].end = btop(end); 1754*2e2c009bSjjc node_memory[node].prox_domain = domain; 1755*2e2c009bSjjc return (0); 1756*2e2c009bSjjc } 1757*2e2c009bSjjc 1758*2e2c009bSjjc /* 1759*2e2c009bSjjc * Entry already exists for this proximity domain 1760*2e2c009bSjjc * 1761*2e2c009bSjjc * There may be more than one SRAT memory entry for a domain, so we may 1762*2e2c009bSjjc * need to update existing start or end address for the node. 1763*2e2c009bSjjc */ 1764*2e2c009bSjjc if (node_memory[node].prox_domain == domain) { 1765*2e2c009bSjjc if (btop(start) < node_memory[node].start) 1766*2e2c009bSjjc node_memory[node].start = btop(start); 1767*2e2c009bSjjc if (btop(end) > node_memory[node].end) 1768*2e2c009bSjjc node_memory[node].end = btop(end); 1769*2e2c009bSjjc return (1); 1770*2e2c009bSjjc } 1771*2e2c009bSjjc return (-2); 1772*2e2c009bSjjc } 1773*2e2c009bSjjc 1774*2e2c009bSjjc 1775*2e2c009bSjjc /* 1776*2e2c009bSjjc * Return time needed to probe from current CPU to memory in given node 1777*2e2c009bSjjc */ 1778*2e2c009bSjjc static hrtime_t 1779*2e2c009bSjjc lgrp_plat_probe_time(int to, cpu_node_map_t *cpu_node, 1780*2e2c009bSjjc lgrp_plat_probe_mem_config_t *probe_mem_config, 1781*2e2c009bSjjc lgrp_plat_latency_stats_t *lat_stats, lgrp_plat_probe_stats_t *probe_stats) 1782*2e2c009bSjjc { 1783*2e2c009bSjjc caddr_t buf; 1784*2e2c009bSjjc hrtime_t elapsed; 1785*2e2c009bSjjc hrtime_t end; 1786*2e2c009bSjjc int from; 1787*2e2c009bSjjc int i; 1788*2e2c009bSjjc int ipl; 1789*2e2c009bSjjc hrtime_t max; 1790*2e2c009bSjjc hrtime_t min; 1791*2e2c009bSjjc hrtime_t start; 1792*2e2c009bSjjc extern int use_sse_pagecopy; 1793*2e2c009bSjjc 1794*2e2c009bSjjc /* 1795*2e2c009bSjjc * Determine ID of node containing current CPU 1796*2e2c009bSjjc */ 1797*2e2c009bSjjc from = lgrp_plat_cpu_to_node(CPU, cpu_node); 1798*2e2c009bSjjc ASSERT(from >= 0 && from < lgrp_plat_node_cnt); 1799*2e2c009bSjjc 1800*2e2c009bSjjc /* 1801*2e2c009bSjjc * Do common work for probing main memory 1802*2e2c009bSjjc */ 1803*2e2c009bSjjc if (lgrp_plat_probe_flags & LGRP_PLAT_PROBE_PGCPY) { 1804*2e2c009bSjjc /* 1805*2e2c009bSjjc * Skip probing any nodes without memory and 1806*2e2c009bSjjc * set probe time to 0 1807*2e2c009bSjjc */ 1808*2e2c009bSjjc if (probe_mem_config->probe_va[to] == NULL) { 1809*2e2c009bSjjc lat_stats->latencies[from][to] = 0; 1810*2e2c009bSjjc return (0); 1811*2e2c009bSjjc } 1812*2e2c009bSjjc 1813*2e2c009bSjjc /* 1814*2e2c009bSjjc * Invalidate caches once instead of once every sample 1815*2e2c009bSjjc * which should cut cost of probing by a lot 1816*2e2c009bSjjc */ 1817*2e2c009bSjjc probe_stats->flush_cost = gethrtime(); 1818*2e2c009bSjjc invalidate_cache(); 1819*2e2c009bSjjc probe_stats->flush_cost = gethrtime() - 1820*2e2c009bSjjc probe_stats->flush_cost; 1821*2e2c009bSjjc probe_stats->probe_cost_total += probe_stats->flush_cost; 1822*2e2c009bSjjc } 1823*2e2c009bSjjc 1824*2e2c009bSjjc /* 1825*2e2c009bSjjc * Probe from current CPU to given memory using specified operation 1826*2e2c009bSjjc * and take specified number of samples 1827*2e2c009bSjjc */ 1828*2e2c009bSjjc max = 0; 1829*2e2c009bSjjc min = -1; 1830*2e2c009bSjjc for (i = 0; i < lgrp_plat_probe_nsamples; i++) { 1831*2e2c009bSjjc probe_stats->probe_cost = gethrtime(); 1832*2e2c009bSjjc 1833*2e2c009bSjjc /* 1834*2e2c009bSjjc * Can't measure probe time if gethrtime() isn't working yet 1835*2e2c009bSjjc */ 1836*2e2c009bSjjc if (probe_stats->probe_cost == 0 && gethrtime() == 0) 1837*2e2c009bSjjc return (0); 1838*2e2c009bSjjc 1839*2e2c009bSjjc if (lgrp_plat_probe_flags & LGRP_PLAT_PROBE_VENDOR) { 1840*2e2c009bSjjc /* 1841*2e2c009bSjjc * Measure how long it takes to read vendor ID from 1842*2e2c009bSjjc * Northbridge 1843*2e2c009bSjjc */ 1844*2e2c009bSjjc elapsed = opt_probe_vendor(to, lgrp_plat_probe_nreads); 1845*2e2c009bSjjc } else { 1846*2e2c009bSjjc /* 1847*2e2c009bSjjc * Measure how long it takes to copy page 1848*2e2c009bSjjc * on top of itself 1849*2e2c009bSjjc */ 1850*2e2c009bSjjc buf = probe_mem_config->probe_va[to] + (i * PAGESIZE); 1851*2e2c009bSjjc 1852*2e2c009bSjjc kpreempt_disable(); 1853*2e2c009bSjjc ipl = splhigh(); 1854*2e2c009bSjjc start = gethrtime(); 1855*2e2c009bSjjc if (use_sse_pagecopy) 1856*2e2c009bSjjc hwblkpagecopy(buf, buf); 1857*2e2c009bSjjc else 1858*2e2c009bSjjc bcopy(buf, buf, PAGESIZE); 1859*2e2c009bSjjc end = gethrtime(); 1860*2e2c009bSjjc elapsed = end - start; 1861*2e2c009bSjjc splx(ipl); 1862*2e2c009bSjjc kpreempt_enable(); 1863*2e2c009bSjjc } 1864*2e2c009bSjjc 1865*2e2c009bSjjc probe_stats->probe_cost = gethrtime() - 1866*2e2c009bSjjc probe_stats->probe_cost; 1867*2e2c009bSjjc probe_stats->probe_cost_total += probe_stats->probe_cost; 1868*2e2c009bSjjc 1869*2e2c009bSjjc if (min == -1 || elapsed < min) 1870*2e2c009bSjjc min = elapsed; 1871*2e2c009bSjjc if (elapsed > max) 1872*2e2c009bSjjc max = elapsed; 1873*2e2c009bSjjc } 1874*2e2c009bSjjc 1875*2e2c009bSjjc /* 1876*2e2c009bSjjc * Update minimum and maximum probe times between 1877*2e2c009bSjjc * these two nodes 1878*2e2c009bSjjc */ 1879*2e2c009bSjjc if (min < probe_stats->probe_min[from][to] || 1880*2e2c009bSjjc probe_stats->probe_min[from][to] == 0) 1881*2e2c009bSjjc probe_stats->probe_min[from][to] = min; 1882*2e2c009bSjjc 1883*2e2c009bSjjc if (max > probe_stats->probe_max[from][to]) 1884*2e2c009bSjjc probe_stats->probe_max[from][to] = max; 1885*2e2c009bSjjc 1886*2e2c009bSjjc return (min); 1887*2e2c009bSjjc } 1888*2e2c009bSjjc 1889*2e2c009bSjjc 1890*2e2c009bSjjc /* 1891*2e2c009bSjjc * Read ACPI System Locality Information Table (SLIT) to determine how far each 1892*2e2c009bSjjc * NUMA node is from each other 1893*2e2c009bSjjc */ 1894*2e2c009bSjjc static int 1895*2e2c009bSjjc lgrp_plat_process_slit(struct slit *tp, uint_t node_cnt, 1896*2e2c009bSjjc node_phys_addr_map_t *node_memory, lgrp_plat_latency_stats_t *lat_stats) 1897*2e2c009bSjjc { 1898*2e2c009bSjjc int i; 1899*2e2c009bSjjc int j; 1900*2e2c009bSjjc int localities; 1901*2e2c009bSjjc hrtime_t max; 1902*2e2c009bSjjc hrtime_t min; 1903*2e2c009bSjjc int retval; 1904*2e2c009bSjjc uint8_t *slit_entries; 1905*2e2c009bSjjc 1906*2e2c009bSjjc if (tp == NULL || !lgrp_plat_slit_enable) 1907*2e2c009bSjjc return (1); 1908*2e2c009bSjjc 1909*2e2c009bSjjc if (lat_stats == NULL) 1910*2e2c009bSjjc return (2); 1911*2e2c009bSjjc 1912*2e2c009bSjjc localities = tp->number; 1913*2e2c009bSjjc if (localities != node_cnt) 1914*2e2c009bSjjc return (3); 1915*2e2c009bSjjc 1916*2e2c009bSjjc min = lat_stats->latency_min; 1917*2e2c009bSjjc max = lat_stats->latency_max; 1918*2e2c009bSjjc 1919*2e2c009bSjjc /* 1920*2e2c009bSjjc * Fill in latency matrix based on SLIT entries 1921*2e2c009bSjjc */ 1922*2e2c009bSjjc slit_entries = tp->entry; 1923*2e2c009bSjjc for (i = 0; i < localities; i++) { 1924*2e2c009bSjjc for (j = 0; j < localities; j++) { 1925*2e2c009bSjjc uint8_t latency; 1926*2e2c009bSjjc 1927*2e2c009bSjjc latency = slit_entries[(i * localities) + j]; 1928*2e2c009bSjjc lat_stats->latencies[i][j] = latency; 1929*2e2c009bSjjc if (latency < min) 1930*2e2c009bSjjc min = latency; 1931*2e2c009bSjjc if (latency > max) 1932*2e2c009bSjjc max = latency; 1933*2e2c009bSjjc } 1934*2e2c009bSjjc } 1935*2e2c009bSjjc 1936*2e2c009bSjjc /* 1937*2e2c009bSjjc * Verify that latencies/distances given in SLIT look reasonable 1938*2e2c009bSjjc */ 1939*2e2c009bSjjc retval = lgrp_plat_latency_verify(node_memory, lat_stats); 1940*2e2c009bSjjc 1941*2e2c009bSjjc if (retval) { 1942*2e2c009bSjjc /* 1943*2e2c009bSjjc * Reinitialize (zero) latency table since SLIT doesn't look 1944*2e2c009bSjjc * right 1945*2e2c009bSjjc */ 1946*2e2c009bSjjc for (i = 0; i < localities; i++) { 1947*2e2c009bSjjc for (j = 0; j < localities; j++) 1948*2e2c009bSjjc lat_stats->latencies[i][j] = 0; 1949*2e2c009bSjjc } 1950*2e2c009bSjjc } else { 1951*2e2c009bSjjc /* 1952*2e2c009bSjjc * Update min and max latencies seen since SLIT looks valid 1953*2e2c009bSjjc */ 1954*2e2c009bSjjc lat_stats->latency_min = min; 1955*2e2c009bSjjc lat_stats->latency_max = max; 1956*2e2c009bSjjc } 1957*2e2c009bSjjc 1958*2e2c009bSjjc return (retval); 1959*2e2c009bSjjc } 1960*2e2c009bSjjc 1961*2e2c009bSjjc 1962*2e2c009bSjjc /* 1963*2e2c009bSjjc * Read ACPI System Resource Affinity Table (SRAT) to determine which CPUs 1964*2e2c009bSjjc * and memory are local to each other in the same NUMA node 1965*2e2c009bSjjc */ 1966*2e2c009bSjjc static int 1967*2e2c009bSjjc lgrp_plat_process_srat(struct srat *tp, uint_t *node_cnt, 1968*2e2c009bSjjc node_domain_map_t *node_domain, cpu_node_map_t *cpu_node, 1969*2e2c009bSjjc node_phys_addr_map_t *node_memory) 1970*2e2c009bSjjc { 1971*2e2c009bSjjc struct srat_item *end; 1972*2e2c009bSjjc int i; 1973*2e2c009bSjjc struct srat_item *item; 1974*2e2c009bSjjc 1975*2e2c009bSjjc if (tp == NULL || !lgrp_plat_srat_enable) 1976*2e2c009bSjjc return (1); 1977*2e2c009bSjjc 1978*2e2c009bSjjc /* 1979*2e2c009bSjjc * Determine number of nodes by counting number of proximity domains in 1980*2e2c009bSjjc * SRAT 1981*2e2c009bSjjc */ 1982*2e2c009bSjjc if (node_cnt) { 1983*2e2c009bSjjc int nodes; 1984*2e2c009bSjjc 1985*2e2c009bSjjc nodes = lgrp_plat_srat_domains(tp); 1986*2e2c009bSjjc if (nodes < 0) { 1987*2e2c009bSjjc *node_cnt = 1; 1988*2e2c009bSjjc return (2); 1989*2e2c009bSjjc } 1990*2e2c009bSjjc *node_cnt = nodes; 1991*2e2c009bSjjc } 1992*2e2c009bSjjc 1993*2e2c009bSjjc /* 1994*2e2c009bSjjc * Walk through SRAT, examining each CPU and memory entry to determine 1995*2e2c009bSjjc * which CPUs and memory belong to which node. 1996*2e2c009bSjjc */ 1997*2e2c009bSjjc item = tp->list; 1998*2e2c009bSjjc end = (struct srat_item *)(tp->hdr.len + (uintptr_t)tp); 1999*2e2c009bSjjc while (item < end) { 2000*2e2c009bSjjc uint32_t apic_id; 2001*2e2c009bSjjc uint32_t domain; 2002*2e2c009bSjjc uint64_t end; 2003*2e2c009bSjjc uint64_t length; 2004*2e2c009bSjjc uint64_t start; 2005*2e2c009bSjjc 2006*2e2c009bSjjc switch (item->type) { 2007*2e2c009bSjjc case SRAT_PROCESSOR: /* CPU entry */ 2008*2e2c009bSjjc if (!(item->i.p.flags & SRAT_ENABLED) || 2009*2e2c009bSjjc cpu_node == NULL) 2010*2e2c009bSjjc break; 2011*2e2c009bSjjc 2012*2e2c009bSjjc /* 2013*2e2c009bSjjc * Calculate domain (node) ID and fill in APIC ID to 2014*2e2c009bSjjc * domain/node mapping table 2015*2e2c009bSjjc */ 2016*2e2c009bSjjc domain = item->i.p.domain1; 2017*2e2c009bSjjc for (i = 0; i < 3; i++) { 2018*2e2c009bSjjc domain += item->i.p.domain2[i] << 2019*2e2c009bSjjc ((i + 1) * 8); 2020*2e2c009bSjjc } 2021*2e2c009bSjjc apic_id = item->i.p.apic_id; 2022*2e2c009bSjjc 2023*2e2c009bSjjc if (lgrp_plat_cpu_node_update(node_domain, cpu_node, 2024*2e2c009bSjjc apic_id, domain) < 0) 2025*2e2c009bSjjc return (3); 2026*2e2c009bSjjc break; 2027*2e2c009bSjjc 2028*2e2c009bSjjc case SRAT_MEMORY: /* memory entry */ 2029*2e2c009bSjjc if (!(item->i.m.flags & SRAT_ENABLED) || 2030*2e2c009bSjjc node_memory == NULL) 2031*2e2c009bSjjc break; 2032*2e2c009bSjjc 2033*2e2c009bSjjc /* 2034*2e2c009bSjjc * Get domain (node) ID and fill in domain/node 2035*2e2c009bSjjc * to memory mapping table 2036*2e2c009bSjjc */ 2037*2e2c009bSjjc domain = item->i.m.domain; 2038*2e2c009bSjjc start = item->i.m.base_addr; 2039*2e2c009bSjjc length = item->i.m.len; 2040*2e2c009bSjjc end = start + length - 1; 2041*2e2c009bSjjc 2042*2e2c009bSjjc if (lgrp_plat_node_memory_update(node_domain, 2043*2e2c009bSjjc node_memory, start, end, domain) < 0) 2044*2e2c009bSjjc return (4); 2045*2e2c009bSjjc break; 2046*2e2c009bSjjc 2047*2e2c009bSjjc default: 2048*2e2c009bSjjc break; 2049*2e2c009bSjjc } 2050*2e2c009bSjjc 2051*2e2c009bSjjc item = (struct srat_item *)((uintptr_t)item + item->len); 2052*2e2c009bSjjc } 2053*2e2c009bSjjc return (0); 2054*2e2c009bSjjc } 2055*2e2c009bSjjc 2056*2e2c009bSjjc 2057*2e2c009bSjjc /* 2058*2e2c009bSjjc * Return number of proximity domains given in ACPI SRAT 2059*2e2c009bSjjc */ 2060*2e2c009bSjjc static int 2061*2e2c009bSjjc lgrp_plat_srat_domains(struct srat *tp) 2062*2e2c009bSjjc { 2063*2e2c009bSjjc int domain_cnt; 2064*2e2c009bSjjc struct srat_item *end; 2065*2e2c009bSjjc int i; 2066*2e2c009bSjjc struct srat_item *item; 2067*2e2c009bSjjc node_domain_map_t node_domain[MAX_NODES]; 2068*2e2c009bSjjc 2069*2e2c009bSjjc 2070*2e2c009bSjjc if (tp == NULL || !lgrp_plat_srat_enable) 2071*2e2c009bSjjc return (1); 2072*2e2c009bSjjc 2073*2e2c009bSjjc /* 2074*2e2c009bSjjc * Walk through SRAT, examining each CPU and memory entry to determine 2075*2e2c009bSjjc * proximity domain ID for each. 2076*2e2c009bSjjc */ 2077*2e2c009bSjjc domain_cnt = 0; 2078*2e2c009bSjjc item = tp->list; 2079*2e2c009bSjjc end = (struct srat_item *)(tp->hdr.len + (uintptr_t)tp); 2080*2e2c009bSjjc bzero(node_domain, MAX_NODES * sizeof (node_domain_map_t)); 2081*2e2c009bSjjc while (item < end) { 2082*2e2c009bSjjc uint32_t domain; 2083*2e2c009bSjjc boolean_t overflow; 2084*2e2c009bSjjc uint_t start; 2085*2e2c009bSjjc 2086*2e2c009bSjjc switch (item->type) { 2087*2e2c009bSjjc case SRAT_PROCESSOR: /* CPU entry */ 2088*2e2c009bSjjc if (!(item->i.p.flags & SRAT_ENABLED)) 2089*2e2c009bSjjc break; 2090*2e2c009bSjjc domain = item->i.p.domain1; 2091*2e2c009bSjjc for (i = 0; i < 3; i++) { 2092*2e2c009bSjjc domain += item->i.p.domain2[i] << 2093*2e2c009bSjjc ((i + 1) * 8); 2094*2e2c009bSjjc } 2095*2e2c009bSjjc break; 2096*2e2c009bSjjc 2097*2e2c009bSjjc case SRAT_MEMORY: /* memory entry */ 2098*2e2c009bSjjc if (!(item->i.m.flags & SRAT_ENABLED)) 2099*2e2c009bSjjc break; 2100*2e2c009bSjjc domain = item->i.m.domain; 2101*2e2c009bSjjc break; 2102*2e2c009bSjjc 2103*2e2c009bSjjc default: 2104*2e2c009bSjjc break; 2105*2e2c009bSjjc } 2106*2e2c009bSjjc 2107*2e2c009bSjjc /* 2108*2e2c009bSjjc * Count and keep track of which proximity domain IDs seen 2109*2e2c009bSjjc */ 2110*2e2c009bSjjc start = i = domain % MAX_NODES; 2111*2e2c009bSjjc overflow = B_TRUE; 2112*2e2c009bSjjc do { 2113*2e2c009bSjjc /* 2114*2e2c009bSjjc * Create entry for proximity domain and increment 2115*2e2c009bSjjc * count when no entry exists where proximity domain 2116*2e2c009bSjjc * hashed 2117*2e2c009bSjjc */ 2118*2e2c009bSjjc if (!node_domain[i].exists) { 2119*2e2c009bSjjc node_domain[i].exists = 1; 2120*2e2c009bSjjc node_domain[i].prox_domain = domain; 2121*2e2c009bSjjc domain_cnt++; 2122*2e2c009bSjjc overflow = B_FALSE; 2123*2e2c009bSjjc break; 2124*2e2c009bSjjc } 2125*2e2c009bSjjc 2126*2e2c009bSjjc /* 2127*2e2c009bSjjc * Nothing to do when proximity domain seen already 2128*2e2c009bSjjc * and its entry exists 2129*2e2c009bSjjc */ 2130*2e2c009bSjjc if (node_domain[i].prox_domain == domain) { 2131*2e2c009bSjjc overflow = B_FALSE; 2132*2e2c009bSjjc break; 2133*2e2c009bSjjc } 2134*2e2c009bSjjc 2135*2e2c009bSjjc /* 2136*2e2c009bSjjc * Entry exists where proximity domain hashed, but for 2137*2e2c009bSjjc * different proximity domain so keep search for empty 2138*2e2c009bSjjc * slot to put it or matching entry whichever comes 2139*2e2c009bSjjc * first. 2140*2e2c009bSjjc */ 2141*2e2c009bSjjc i = (i + 1) % MAX_NODES; 2142*2e2c009bSjjc } while (i != start); 2143*2e2c009bSjjc 2144*2e2c009bSjjc /* 2145*2e2c009bSjjc * Didn't find empty or matching entry which means have more 2146*2e2c009bSjjc * proximity domains than supported nodes (:-( 2147*2e2c009bSjjc */ 2148*2e2c009bSjjc ASSERT(overflow != B_TRUE); 2149*2e2c009bSjjc if (overflow == B_TRUE) 2150*2e2c009bSjjc return (-1); 2151*2e2c009bSjjc 2152*2e2c009bSjjc item = (struct srat_item *)((uintptr_t)item + item->len); 2153*2e2c009bSjjc } 2154*2e2c009bSjjc return (domain_cnt); 2155*2e2c009bSjjc } 2156*2e2c009bSjjc 2157*2e2c009bSjjc 2158*2e2c009bSjjc /* 2159*2e2c009bSjjc * Set lgroup latencies for 2 level lgroup topology 2160*2e2c009bSjjc */ 2161*2e2c009bSjjc static void 2162*2e2c009bSjjc lgrp_plat_2level_setup(node_phys_addr_map_t *node_memory, 2163*2e2c009bSjjc lgrp_plat_latency_stats_t *lat_stats) 2164*2e2c009bSjjc { 2165*2e2c009bSjjc int i; 2166*2e2c009bSjjc 2167*2e2c009bSjjc ASSERT(node_memory != NULL && lat_stats != NULL); 2168*2e2c009bSjjc 2169*2e2c009bSjjc if (lgrp_plat_node_cnt >= 4) 2170*2e2c009bSjjc cmn_err(CE_NOTE, 2171*2e2c009bSjjc "MPO only optimizing for local and remote\n"); 2172*2e2c009bSjjc for (i = 0; i < lgrp_plat_node_cnt; i++) { 2173*2e2c009bSjjc int j; 2174*2e2c009bSjjc 2175*2e2c009bSjjc if (!node_memory[i].exists) 2176*2e2c009bSjjc continue; 2177*2e2c009bSjjc for (j = 0; j < lgrp_plat_node_cnt; j++) { 2178*2e2c009bSjjc if (!node_memory[j].exists) 2179*2e2c009bSjjc continue; 2180*2e2c009bSjjc if (i == j) 2181*2e2c009bSjjc lat_stats->latencies[i][j] = 2; 2182*2e2c009bSjjc else 2183*2e2c009bSjjc lat_stats->latencies[i][j] = 3; 2184*2e2c009bSjjc } 2185*2e2c009bSjjc } 2186*2e2c009bSjjc lat_stats->latency_min = 2; 2187*2e2c009bSjjc lat_stats->latency_max = 3; 2188*2e2c009bSjjc lgrp_config(LGRP_CONFIG_FLATTEN, 2, 0); 2189*2e2c009bSjjc } 2190*2e2c009bSjjc 2191*2e2c009bSjjc 2192*2e2c009bSjjc /* 2193*2e2c009bSjjc * The following Opteron specific constants, macros, types, and routines define 2194*2e2c009bSjjc * PCI configuration space registers and how to read them to determine the NUMA 2195*2e2c009bSjjc * configuration of *supported* Opteron processors. They provide the same 2196*2e2c009bSjjc * information that may be gotten from the ACPI System Resource Affinity Table 2197*2e2c009bSjjc * (SRAT) if it exists on the machine of interest. 2198*2e2c009bSjjc * 2199*2e2c009bSjjc * The AMD BIOS and Kernel Developer's Guide (BKDG) for the processor family 2200*2e2c009bSjjc * of interest describes all of these registers and their contents. The main 2201*2e2c009bSjjc * registers used by this code to determine the NUMA configuration of the 2202*2e2c009bSjjc * machine are the node ID register for the number of NUMA nodes and the DRAM 2203*2e2c009bSjjc * address map registers for the physical address range of each node. 2204*2e2c009bSjjc * 2205*2e2c009bSjjc * NOTE: The format and how to determine the NUMA configuration using PCI 2206*2e2c009bSjjc * config space registers may change or may not be supported in future 2207*2e2c009bSjjc * Opteron processor families. 22087c478bd9Sstevel@tonic-gate */ 22097c478bd9Sstevel@tonic-gate 22107c478bd9Sstevel@tonic-gate /* 22117c478bd9Sstevel@tonic-gate * How many bits to shift Opteron DRAM Address Map base and limit registers 22127c478bd9Sstevel@tonic-gate * to get actual value 22137c478bd9Sstevel@tonic-gate */ 2214f78a91cdSjjc #define OPT_DRAMADDR_HI_LSHIFT_ADDR 40 /* shift left for address */ 2215f78a91cdSjjc #define OPT_DRAMADDR_LO_LSHIFT_ADDR 8 /* shift left for address */ 22167c478bd9Sstevel@tonic-gate 2217f78a91cdSjjc #define OPT_DRAMADDR_HI_MASK_ADDR 0x000000FF /* address bits 47-40 */ 2218f78a91cdSjjc #define OPT_DRAMADDR_LO_MASK_ADDR 0xFFFF0000 /* address bits 39-24 */ 2219f78a91cdSjjc 2220f78a91cdSjjc #define OPT_DRAMADDR_LO_MASK_OFF 0xFFFFFF /* offset for address */ 2221f78a91cdSjjc 2222f78a91cdSjjc /* 2223f78a91cdSjjc * Macros to derive addresses from Opteron DRAM Address Map registers 2224f78a91cdSjjc */ 2225f78a91cdSjjc #define OPT_DRAMADDR_HI(reg) \ 2226f78a91cdSjjc (((u_longlong_t)reg & OPT_DRAMADDR_HI_MASK_ADDR) << \ 2227f78a91cdSjjc OPT_DRAMADDR_HI_LSHIFT_ADDR) 2228f78a91cdSjjc 2229f78a91cdSjjc #define OPT_DRAMADDR_LO(reg) \ 2230f78a91cdSjjc (((u_longlong_t)reg & OPT_DRAMADDR_LO_MASK_ADDR) << \ 2231f78a91cdSjjc OPT_DRAMADDR_LO_LSHIFT_ADDR) 2232f78a91cdSjjc 2233f78a91cdSjjc #define OPT_DRAMADDR(high, low) \ 2234f78a91cdSjjc (OPT_DRAMADDR_HI(high) | OPT_DRAMADDR_LO(low)) 22357c478bd9Sstevel@tonic-gate 22367c478bd9Sstevel@tonic-gate /* 22377c478bd9Sstevel@tonic-gate * Bit masks defining what's in Opteron DRAM Address Map base register 22387c478bd9Sstevel@tonic-gate */ 2239f78a91cdSjjc #define OPT_DRAMBASE_LO_MASK_RE 0x1 /* read enable */ 2240f78a91cdSjjc #define OPT_DRAMBASE_LO_MASK_WE 0x2 /* write enable */ 2241f78a91cdSjjc #define OPT_DRAMBASE_LO_MASK_INTRLVEN 0x700 /* interleave */ 22427c478bd9Sstevel@tonic-gate 22437c478bd9Sstevel@tonic-gate /* 22447c478bd9Sstevel@tonic-gate * Bit masks defining what's in Opteron DRAM Address Map limit register 22457c478bd9Sstevel@tonic-gate */ 2246f78a91cdSjjc #define OPT_DRAMLIMIT_LO_MASK_DSTNODE 0x7 /* destination node */ 2247f78a91cdSjjc #define OPT_DRAMLIMIT_LO_MASK_INTRLVSEL 0x700 /* interleave select */ 22487c478bd9Sstevel@tonic-gate 22497c478bd9Sstevel@tonic-gate 22507c478bd9Sstevel@tonic-gate /* 22517c478bd9Sstevel@tonic-gate * Opteron Node ID register in PCI configuration space contains 22527c478bd9Sstevel@tonic-gate * number of nodes in system, etc. for Opteron K8. The following 22537c478bd9Sstevel@tonic-gate * constants and macros define its contents, structure, and access. 22547c478bd9Sstevel@tonic-gate */ 22557c478bd9Sstevel@tonic-gate 22567c478bd9Sstevel@tonic-gate /* 22577c478bd9Sstevel@tonic-gate * Bit masks defining what's in Opteron Node ID register 22587c478bd9Sstevel@tonic-gate */ 22597c478bd9Sstevel@tonic-gate #define OPT_NODE_MASK_ID 0x7 /* node ID */ 22607c478bd9Sstevel@tonic-gate #define OPT_NODE_MASK_CNT 0x70 /* node count */ 22617c478bd9Sstevel@tonic-gate #define OPT_NODE_MASK_IONODE 0x700 /* Hypertransport I/O hub node ID */ 22627c478bd9Sstevel@tonic-gate #define OPT_NODE_MASK_LCKNODE 0x7000 /* lock controller node ID */ 22637c478bd9Sstevel@tonic-gate #define OPT_NODE_MASK_CPUCNT 0xF0000 /* CPUs in system (0 means 1 CPU) */ 22647c478bd9Sstevel@tonic-gate 22657c478bd9Sstevel@tonic-gate /* 22667c478bd9Sstevel@tonic-gate * How many bits in Opteron Node ID register to shift right to get actual value 22677c478bd9Sstevel@tonic-gate */ 22687c478bd9Sstevel@tonic-gate #define OPT_NODE_RSHIFT_CNT 0x4 /* shift right for node count value */ 22697c478bd9Sstevel@tonic-gate 22707c478bd9Sstevel@tonic-gate /* 22717c478bd9Sstevel@tonic-gate * Macros to get values from Opteron Node ID register 22727c478bd9Sstevel@tonic-gate */ 22737c478bd9Sstevel@tonic-gate #define OPT_NODE_CNT(reg) \ 22747c478bd9Sstevel@tonic-gate ((reg & OPT_NODE_MASK_CNT) >> OPT_NODE_RSHIFT_CNT) 22757c478bd9Sstevel@tonic-gate 2276f78a91cdSjjc /* 2277f78a91cdSjjc * Macro to setup PCI Extended Configuration Space (ECS) address to give to 2278f78a91cdSjjc * "in/out" instructions 2279f78a91cdSjjc * 2280f78a91cdSjjc * NOTE: Should only be used in lgrp_plat_init() before MMIO setup because any 2281f78a91cdSjjc * other uses should just do MMIO to access PCI ECS. 2282f78a91cdSjjc * Must enable special bit in Northbridge Configuration Register on 2283f78a91cdSjjc * Greyhound for extended CF8 space access to be able to access PCI ECS 2284f78a91cdSjjc * using "in/out" instructions and restore special bit after done 2285f78a91cdSjjc * accessing PCI ECS. 2286f78a91cdSjjc */ 2287f78a91cdSjjc #define OPT_PCI_ECS_ADDR(bus, device, function, reg) \ 2288f78a91cdSjjc (PCI_CONE | (((bus) & 0xff) << 16) | (((device & 0x1f)) << 11) | \ 2289f78a91cdSjjc (((function) & 0x7) << 8) | ((reg) & 0xfc) | \ 2290f78a91cdSjjc ((((reg) >> 8) & 0xf) << 24)) 22917c478bd9Sstevel@tonic-gate 22927c478bd9Sstevel@tonic-gate /* 22937c478bd9Sstevel@tonic-gate * PCI configuration space registers accessed by specifying 22947c478bd9Sstevel@tonic-gate * a bus, device, function, and offset. The following constants 22957c478bd9Sstevel@tonic-gate * define the values needed to access Opteron K8 configuration 22967c478bd9Sstevel@tonic-gate * info to determine its node topology 22977c478bd9Sstevel@tonic-gate */ 22987c478bd9Sstevel@tonic-gate 22997c478bd9Sstevel@tonic-gate #define OPT_PCS_BUS_CONFIG 0 /* Hypertransport config space bus */ 23007c478bd9Sstevel@tonic-gate 23017c478bd9Sstevel@tonic-gate /* 23027c478bd9Sstevel@tonic-gate * Opteron PCI configuration space register function values 23037c478bd9Sstevel@tonic-gate */ 23047c478bd9Sstevel@tonic-gate #define OPT_PCS_FUNC_HT 0 /* Hypertransport configuration */ 23057c478bd9Sstevel@tonic-gate #define OPT_PCS_FUNC_ADDRMAP 1 /* Address map configuration */ 23067c478bd9Sstevel@tonic-gate #define OPT_PCS_FUNC_DRAM 2 /* DRAM configuration */ 23077c478bd9Sstevel@tonic-gate #define OPT_PCS_FUNC_MISC 3 /* Miscellaneous configuration */ 23087c478bd9Sstevel@tonic-gate 23097c478bd9Sstevel@tonic-gate /* 23107c478bd9Sstevel@tonic-gate * PCI Configuration Space register offsets 23117c478bd9Sstevel@tonic-gate */ 23127c478bd9Sstevel@tonic-gate #define OPT_PCS_OFF_VENDOR 0x0 /* device/vendor ID register */ 2313f78a91cdSjjc #define OPT_PCS_OFF_DRAMBASE_HI 0x140 /* DRAM Base register (node 0) */ 2314f78a91cdSjjc #define OPT_PCS_OFF_DRAMBASE_LO 0x40 /* DRAM Base register (node 0) */ 23157c478bd9Sstevel@tonic-gate #define OPT_PCS_OFF_NODEID 0x60 /* Node ID register */ 23167c478bd9Sstevel@tonic-gate 23177c478bd9Sstevel@tonic-gate /* 23187c478bd9Sstevel@tonic-gate * Opteron PCI Configuration Space device IDs for nodes 23197c478bd9Sstevel@tonic-gate */ 23207c478bd9Sstevel@tonic-gate #define OPT_PCS_DEV_NODE0 24 /* device number for node 0 */ 23217c478bd9Sstevel@tonic-gate 23227c478bd9Sstevel@tonic-gate 23237c478bd9Sstevel@tonic-gate /* 23247c478bd9Sstevel@tonic-gate * Opteron DRAM address map gives base and limit for physical memory in a node 23257c478bd9Sstevel@tonic-gate */ 23267c478bd9Sstevel@tonic-gate typedef struct opt_dram_addr_map { 2327f78a91cdSjjc uint32_t base_hi; 2328f78a91cdSjjc uint32_t base_lo; 2329f78a91cdSjjc uint32_t limit_hi; 2330f78a91cdSjjc uint32_t limit_lo; 23317c478bd9Sstevel@tonic-gate } opt_dram_addr_map_t; 23327c478bd9Sstevel@tonic-gate 23337c478bd9Sstevel@tonic-gate 23347c478bd9Sstevel@tonic-gate /* 2335f78a91cdSjjc * Supported AMD processor families 2336f78a91cdSjjc */ 2337f78a91cdSjjc #define AMD_FAMILY_HAMMER 15 2338f78a91cdSjjc #define AMD_FAMILY_GREYHOUND 16 23397c478bd9Sstevel@tonic-gate 2340f78a91cdSjjc /* 2341*2e2c009bSjjc * Whether to have is_opteron() return 1 even when processor isn't supported 2342f78a91cdSjjc */ 2343f78a91cdSjjc uint_t is_opteron_override = 0; 2344f78a91cdSjjc 2345f78a91cdSjjc /* 2346f78a91cdSjjc * AMD processor family for current CPU 2347f78a91cdSjjc */ 23487c478bd9Sstevel@tonic-gate uint_t opt_family = 0; 2349f78a91cdSjjc 23507c478bd9Sstevel@tonic-gate 23517c478bd9Sstevel@tonic-gate /* 2352f78a91cdSjjc * Determine whether we're running on a supported AMD Opteron since reading 2353f78a91cdSjjc * node count and DRAM address map registers may have different format or 2354*2e2c009bSjjc * may not be supported across processor families 23557c478bd9Sstevel@tonic-gate */ 2356*2e2c009bSjjc static int 23577c478bd9Sstevel@tonic-gate is_opteron(void) 23587c478bd9Sstevel@tonic-gate { 2359f78a91cdSjjc 23607c478bd9Sstevel@tonic-gate if (x86_vendor != X86_VENDOR_AMD) 23617c478bd9Sstevel@tonic-gate return (0); 23627c478bd9Sstevel@tonic-gate 2363f78a91cdSjjc opt_family = cpuid_getfamily(CPU); 2364f78a91cdSjjc if (opt_family == AMD_FAMILY_HAMMER || 2365f78a91cdSjjc opt_family == AMD_FAMILY_GREYHOUND || is_opteron_override) 23667c478bd9Sstevel@tonic-gate return (1); 23677c478bd9Sstevel@tonic-gate else 23687c478bd9Sstevel@tonic-gate return (0); 23697c478bd9Sstevel@tonic-gate } 23707c478bd9Sstevel@tonic-gate 2371*2e2c009bSjjc 2372*2e2c009bSjjc /* 2373*2e2c009bSjjc * Determine NUMA configuration for Opteron from registers that live in PCI 2374*2e2c009bSjjc * configuration space 2375*2e2c009bSjjc */ 2376*2e2c009bSjjc static void 2377*2e2c009bSjjc opt_get_numa_config(uint_t *node_cnt, int *mem_intrlv, 2378*2e2c009bSjjc node_phys_addr_map_t *node_memory) 23797c478bd9Sstevel@tonic-gate { 23807c478bd9Sstevel@tonic-gate uint_t bus; 23817c478bd9Sstevel@tonic-gate uint_t dev; 2382*2e2c009bSjjc struct opt_dram_addr_map dram_map[MAX_NODES]; 23837c478bd9Sstevel@tonic-gate uint_t node; 2384*2e2c009bSjjc uint_t node_info[MAX_NODES]; 2385f78a91cdSjjc uint_t off_hi; 2386f78a91cdSjjc uint_t off_lo; 2387f78a91cdSjjc uint64_t nb_cfg_reg; 23887c478bd9Sstevel@tonic-gate 23897c478bd9Sstevel@tonic-gate /* 23907c478bd9Sstevel@tonic-gate * Read configuration registers from PCI configuration space to 23917c478bd9Sstevel@tonic-gate * determine node information, which memory is in each node, etc. 23927c478bd9Sstevel@tonic-gate * 23937c478bd9Sstevel@tonic-gate * Write to PCI configuration space address register to specify 23947c478bd9Sstevel@tonic-gate * which configuration register to read and read/write PCI 23957c478bd9Sstevel@tonic-gate * configuration space data register to get/set contents 23967c478bd9Sstevel@tonic-gate */ 23977c478bd9Sstevel@tonic-gate bus = OPT_PCS_BUS_CONFIG; 23987c478bd9Sstevel@tonic-gate dev = OPT_PCS_DEV_NODE0; 2399f78a91cdSjjc off_hi = OPT_PCS_OFF_DRAMBASE_HI; 2400f78a91cdSjjc off_lo = OPT_PCS_OFF_DRAMBASE_LO; 24017c478bd9Sstevel@tonic-gate 24027c478bd9Sstevel@tonic-gate /* 24037c478bd9Sstevel@tonic-gate * Read node ID register for node 0 to get node count 24047c478bd9Sstevel@tonic-gate */ 2405*2e2c009bSjjc node_info[0] = pci_getl_func(bus, dev, OPT_PCS_FUNC_HT, 2406ef50d8c0Sesaxe OPT_PCS_OFF_NODEID); 2407*2e2c009bSjjc *node_cnt = OPT_NODE_CNT(node_info[0]) + 1; 2408*2e2c009bSjjc 2409*2e2c009bSjjc /* 2410*2e2c009bSjjc * If number of nodes is more than maximum supported, then set node 2411*2e2c009bSjjc * count to 1 and treat system as UMA instead of NUMA. 2412*2e2c009bSjjc */ 2413*2e2c009bSjjc if (*node_cnt > MAX_NODES) { 2414*2e2c009bSjjc *node_cnt = 1; 2415*2e2c009bSjjc return; 2416*2e2c009bSjjc } 24177c478bd9Sstevel@tonic-gate 2418f78a91cdSjjc /* 2419f78a91cdSjjc * For Greyhound, PCI Extended Configuration Space must be enabled to 2420f78a91cdSjjc * read high DRAM address map base and limit registers 2421f78a91cdSjjc */ 2422f78a91cdSjjc if (opt_family == AMD_FAMILY_GREYHOUND) { 2423f78a91cdSjjc nb_cfg_reg = rdmsr(MSR_AMD_NB_CFG); 2424f78a91cdSjjc if ((nb_cfg_reg & AMD_GH_NB_CFG_EN_ECS) == 0) 2425f78a91cdSjjc wrmsr(MSR_AMD_NB_CFG, 2426f78a91cdSjjc nb_cfg_reg | AMD_GH_NB_CFG_EN_ECS); 2427f78a91cdSjjc } 2428f78a91cdSjjc 2429*2e2c009bSjjc for (node = 0; node < *node_cnt; node++) { 2430f78a91cdSjjc uint32_t base_hi; 2431f78a91cdSjjc uint32_t base_lo; 2432f78a91cdSjjc uint32_t limit_hi; 2433f78a91cdSjjc uint32_t limit_lo; 2434f78a91cdSjjc 24357c478bd9Sstevel@tonic-gate /* 24367c478bd9Sstevel@tonic-gate * Read node ID register (except for node 0 which we just read) 24377c478bd9Sstevel@tonic-gate */ 24387c478bd9Sstevel@tonic-gate if (node > 0) { 2439*2e2c009bSjjc node_info[node] = pci_getl_func(bus, dev, 2440ef50d8c0Sesaxe OPT_PCS_FUNC_HT, OPT_PCS_OFF_NODEID); 24417c478bd9Sstevel@tonic-gate } 24427c478bd9Sstevel@tonic-gate 24437c478bd9Sstevel@tonic-gate /* 24447c478bd9Sstevel@tonic-gate * Read DRAM base and limit registers which specify 24457c478bd9Sstevel@tonic-gate * physical memory range of each node 24467c478bd9Sstevel@tonic-gate */ 2447f78a91cdSjjc if (opt_family != AMD_FAMILY_GREYHOUND) 2448f78a91cdSjjc base_hi = 0; 2449f78a91cdSjjc else { 2450f78a91cdSjjc outl(PCI_CONFADD, OPT_PCI_ECS_ADDR(bus, dev, 2451f78a91cdSjjc OPT_PCS_FUNC_ADDRMAP, off_hi)); 2452*2e2c009bSjjc base_hi = dram_map[node].base_hi = 2453f78a91cdSjjc inl(PCI_CONFDATA); 2454f78a91cdSjjc } 2455*2e2c009bSjjc base_lo = dram_map[node].base_lo = pci_getl_func(bus, dev, 2456f78a91cdSjjc OPT_PCS_FUNC_ADDRMAP, off_lo); 2457f78a91cdSjjc 2458*2e2c009bSjjc if ((dram_map[node].base_lo & OPT_DRAMBASE_LO_MASK_INTRLVEN) && 2459*2e2c009bSjjc mem_intrlv) 2460*2e2c009bSjjc *mem_intrlv = *mem_intrlv + 1; 24617c478bd9Sstevel@tonic-gate 2462f78a91cdSjjc off_hi += 4; /* high limit register offset */ 2463f78a91cdSjjc if (opt_family != AMD_FAMILY_GREYHOUND) 2464f78a91cdSjjc limit_hi = 0; 2465f78a91cdSjjc else { 2466f78a91cdSjjc outl(PCI_CONFADD, OPT_PCI_ECS_ADDR(bus, dev, 2467f78a91cdSjjc OPT_PCS_FUNC_ADDRMAP, off_hi)); 2468*2e2c009bSjjc limit_hi = dram_map[node].limit_hi = 2469f78a91cdSjjc inl(PCI_CONFDATA); 2470f78a91cdSjjc } 2471f78a91cdSjjc 2472f78a91cdSjjc off_lo += 4; /* low limit register offset */ 2473*2e2c009bSjjc limit_lo = dram_map[node].limit_lo = pci_getl_func(bus, 2474f78a91cdSjjc dev, OPT_PCS_FUNC_ADDRMAP, off_lo); 24757c478bd9Sstevel@tonic-gate 24767c478bd9Sstevel@tonic-gate /* 2477f78a91cdSjjc * Increment device number to next node and register offsets 2478f78a91cdSjjc * for DRAM base register of next node 24797c478bd9Sstevel@tonic-gate */ 2480f78a91cdSjjc off_hi += 4; 2481f78a91cdSjjc off_lo += 4; 24827c478bd9Sstevel@tonic-gate dev++; 24837c478bd9Sstevel@tonic-gate 24847c478bd9Sstevel@tonic-gate /* 2485a940d195Sjjc * Both read and write enable bits must be enabled in DRAM 2486a940d195Sjjc * address map base register for physical memory to exist in 2487a940d195Sjjc * node 2488a940d195Sjjc */ 2489f78a91cdSjjc if ((base_lo & OPT_DRAMBASE_LO_MASK_RE) == 0 || 2490f78a91cdSjjc (base_lo & OPT_DRAMBASE_LO_MASK_WE) == 0) { 2491a940d195Sjjc /* 2492a940d195Sjjc * Mark node memory as non-existent and set start and 2493*2e2c009bSjjc * end addresses to be same in node_memory[] 2494a940d195Sjjc */ 2495*2e2c009bSjjc node_memory[node].exists = 0; 2496*2e2c009bSjjc node_memory[node].start = node_memory[node].end = 2497*2e2c009bSjjc (pfn_t)-1; 2498a940d195Sjjc continue; 2499a940d195Sjjc } 2500a940d195Sjjc 2501a940d195Sjjc /* 2502a940d195Sjjc * Mark node memory as existing and remember physical address 2503a940d195Sjjc * range of each node for use later 25047c478bd9Sstevel@tonic-gate */ 2505*2e2c009bSjjc node_memory[node].exists = 1; 2506f78a91cdSjjc 2507*2e2c009bSjjc node_memory[node].start = btop(OPT_DRAMADDR(base_hi, base_lo)); 2508f78a91cdSjjc 2509*2e2c009bSjjc node_memory[node].end = btop(OPT_DRAMADDR(limit_hi, limit_lo) | 2510f78a91cdSjjc OPT_DRAMADDR_LO_MASK_OFF); 2511f78a91cdSjjc } 2512f78a91cdSjjc 2513f78a91cdSjjc /* 2514f78a91cdSjjc * Restore PCI Extended Configuration Space enable bit 2515f78a91cdSjjc */ 2516f78a91cdSjjc if (opt_family == AMD_FAMILY_GREYHOUND) { 2517f78a91cdSjjc if ((nb_cfg_reg & AMD_GH_NB_CFG_EN_ECS) == 0) 2518f78a91cdSjjc wrmsr(MSR_AMD_NB_CFG, nb_cfg_reg); 25197c478bd9Sstevel@tonic-gate } 25207c478bd9Sstevel@tonic-gate } 25217c478bd9Sstevel@tonic-gate 25227c478bd9Sstevel@tonic-gate 25237c478bd9Sstevel@tonic-gate /* 2524*2e2c009bSjjc * Return average amount of time to read vendor ID register on Northbridge 2525*2e2c009bSjjc * N times on specified destination node from current CPU 25267c478bd9Sstevel@tonic-gate */ 25277c478bd9Sstevel@tonic-gate static hrtime_t 2528*2e2c009bSjjc opt_probe_vendor(int dest_node, int nreads) 25297c478bd9Sstevel@tonic-gate { 2530*2e2c009bSjjc int cnt; 25317c478bd9Sstevel@tonic-gate uint_t dev; 25327c478bd9Sstevel@tonic-gate /* LINTED: set but not used in function */ 25337c478bd9Sstevel@tonic-gate volatile uint_t dev_vendor; 25347c478bd9Sstevel@tonic-gate hrtime_t elapsed; 25357c478bd9Sstevel@tonic-gate hrtime_t end; 25367c478bd9Sstevel@tonic-gate int ipl; 25377c478bd9Sstevel@tonic-gate hrtime_t start; 25387c478bd9Sstevel@tonic-gate 2539*2e2c009bSjjc dev = OPT_PCS_DEV_NODE0 + dest_node; 25407c478bd9Sstevel@tonic-gate kpreempt_disable(); 25417c478bd9Sstevel@tonic-gate ipl = spl8(); 2542*2e2c009bSjjc outl(PCI_CONFADD, PCI_CADDR1(0, dev, OPT_PCS_FUNC_DRAM, 25437c478bd9Sstevel@tonic-gate OPT_PCS_OFF_VENDOR)); 25447c478bd9Sstevel@tonic-gate start = gethrtime(); 2545*2e2c009bSjjc for (cnt = 0; cnt < nreads; cnt++) 25467c478bd9Sstevel@tonic-gate dev_vendor = inl(PCI_CONFDATA); 25477c478bd9Sstevel@tonic-gate end = gethrtime(); 2548*2e2c009bSjjc elapsed = (end - start) / nreads; 25497c478bd9Sstevel@tonic-gate splx(ipl); 25507c478bd9Sstevel@tonic-gate kpreempt_enable(); 2551*2e2c009bSjjc return (elapsed); 25527c478bd9Sstevel@tonic-gate } 2553