xref: /titanic_53/usr/src/uts/common/dtrace/dcpc.c (revision b885580b43755ee4ea1e280b85428893d2ba9291)
1b9e93c10SJonathan Haslam /*
2b9e93c10SJonathan Haslam  * CDDL HEADER START
3b9e93c10SJonathan Haslam  *
4b9e93c10SJonathan Haslam  * The contents of this file are subject to the terms of the
5b9e93c10SJonathan Haslam  * Common Development and Distribution License (the "License").
6b9e93c10SJonathan Haslam  * You may not use this file except in compliance with the License.
7b9e93c10SJonathan Haslam  *
8b9e93c10SJonathan Haslam  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9b9e93c10SJonathan Haslam  * or http://www.opensolaris.org/os/licensing.
10b9e93c10SJonathan Haslam  * See the License for the specific language governing permissions
11b9e93c10SJonathan Haslam  * and limitations under the License.
12b9e93c10SJonathan Haslam  *
13b9e93c10SJonathan Haslam  * When distributing Covered Code, include this CDDL HEADER in each
14b9e93c10SJonathan Haslam  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15b9e93c10SJonathan Haslam  * If applicable, add the following below this CDDL HEADER, with the
16b9e93c10SJonathan Haslam  * fields enclosed by brackets "[]" replaced with your own identifying
17b9e93c10SJonathan Haslam  * information: Portions Copyright [yyyy] [name of copyright owner]
18b9e93c10SJonathan Haslam  *
19b9e93c10SJonathan Haslam  * CDDL HEADER END
20b9e93c10SJonathan Haslam  */
21b9e93c10SJonathan Haslam 
22b9e93c10SJonathan Haslam /*
23b9e93c10SJonathan Haslam  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
24b9e93c10SJonathan Haslam  * Use is subject to license terms.
25b9e93c10SJonathan Haslam  */
26b9e93c10SJonathan Haslam 
27b9e93c10SJonathan Haslam #include <sys/errno.h>
28b9e93c10SJonathan Haslam #include <sys/cpuvar.h>
29b9e93c10SJonathan Haslam #include <sys/stat.h>
30b9e93c10SJonathan Haslam #include <sys/modctl.h>
31b9e93c10SJonathan Haslam #include <sys/cmn_err.h>
32b9e93c10SJonathan Haslam #include <sys/ddi.h>
33b9e93c10SJonathan Haslam #include <sys/sunddi.h>
34b9e93c10SJonathan Haslam #include <sys/ksynch.h>
35b9e93c10SJonathan Haslam #include <sys/conf.h>
36b9e93c10SJonathan Haslam #include <sys/kmem.h>
37b9e93c10SJonathan Haslam #include <sys/kcpc.h>
38*b885580bSAlexander Kolbasov #include <sys/cap_util.h>
39b9e93c10SJonathan Haslam #include <sys/cpc_pcbe.h>
40b9e93c10SJonathan Haslam #include <sys/cpc_impl.h>
41b9e93c10SJonathan Haslam #include <sys/dtrace_impl.h>
42b9e93c10SJonathan Haslam 
43b9e93c10SJonathan Haslam /*
44b9e93c10SJonathan Haslam  * DTrace CPU Performance Counter Provider
45b9e93c10SJonathan Haslam  * ---------------------------------------
46b9e93c10SJonathan Haslam  *
47b9e93c10SJonathan Haslam  * The DTrace cpc provider allows DTrace consumers to access the CPU
48b9e93c10SJonathan Haslam  * performance counter overflow mechanism of a CPU. The configuration
49b9e93c10SJonathan Haslam  * presented in a probe specification is programmed into the performance
50b9e93c10SJonathan Haslam  * counter hardware of all available CPUs on a system. Programming the
51b9e93c10SJonathan Haslam  * hardware causes a counter on each CPU to begin counting events of the
52b9e93c10SJonathan Haslam  * given type. When the specified number of events have occurred, an overflow
53b9e93c10SJonathan Haslam  * interrupt will be generated and the probe is fired.
54b9e93c10SJonathan Haslam  *
55b9e93c10SJonathan Haslam  * The required configuration for the performance counter is encoded into
56b9e93c10SJonathan Haslam  * the probe specification and this includes the performance counter event
57b9e93c10SJonathan Haslam  * name, processor mode, overflow rate and an optional unit mask.
58b9e93c10SJonathan Haslam  *
59b9e93c10SJonathan Haslam  * Most processors provide several counters (PICs) which can count all or a
60b9e93c10SJonathan Haslam  * subset of the events available for a given CPU. However, when overflow
61b9e93c10SJonathan Haslam  * profiling is being used, not all CPUs can detect which counter generated the
62b9e93c10SJonathan Haslam  * overflow interrupt. In this case we cannot reliably determine which counter
63b9e93c10SJonathan Haslam  * overflowed and we therefore only allow such CPUs to configure one event at
64b9e93c10SJonathan Haslam  * a time. Processors that can determine the counter which overflowed are
65b9e93c10SJonathan Haslam  * allowed to program as many events at one time as possible (in theory up to
66b9e93c10SJonathan Haslam  * the number of instrumentation counters supported by that platform).
67b9e93c10SJonathan Haslam  * Therefore, multiple consumers can enable multiple probes at the same time
68b9e93c10SJonathan Haslam  * on such platforms. Platforms which cannot determine the source of an
69b9e93c10SJonathan Haslam  * overflow interrupt are only allowed to program a single event at one time.
70b9e93c10SJonathan Haslam  *
71b9e93c10SJonathan Haslam  * The performance counter hardware is made available to consumers on a
72b9e93c10SJonathan Haslam  * first-come, first-served basis. Only a finite amount of hardware resource
73b9e93c10SJonathan Haslam  * is available and, while we make every attempt to accomodate requests from
74b9e93c10SJonathan Haslam  * consumers, we must deny requests when hardware resources have been exhausted.
75b9e93c10SJonathan Haslam  * A consumer will fail to enable probes when resources are currently in use.
76b9e93c10SJonathan Haslam  *
77b9e93c10SJonathan Haslam  * The cpc provider contends for shared hardware resources along with other
78b9e93c10SJonathan Haslam  * consumers of the kernel CPU performance counter subsystem (e.g. cpustat(1M)).
79b9e93c10SJonathan Haslam  * Only one such consumer can use the performance counters at any one time and
80b9e93c10SJonathan Haslam  * counters are made available on a first-come, first-served basis. As with
81b9e93c10SJonathan Haslam  * cpustat, the cpc provider has priority over per-LWP libcpc usage (e.g.
82b9e93c10SJonathan Haslam  * cputrack(1)). Invoking the cpc provider will cause all existing per-LWP
83b9e93c10SJonathan Haslam  * counter contexts to be invalidated.
84b9e93c10SJonathan Haslam  */
85b9e93c10SJonathan Haslam 
86b9e93c10SJonathan Haslam typedef struct dcpc_probe {
87b9e93c10SJonathan Haslam 	char		dcpc_event_name[CPC_MAX_EVENT_LEN];
88b9e93c10SJonathan Haslam 	int		dcpc_flag;	/* flags (USER/SYS) */
89b9e93c10SJonathan Haslam 	uint32_t	dcpc_ovfval;	/* overflow value */
90b9e93c10SJonathan Haslam 	int64_t		dcpc_umask;	/* umask/emask for this event */
91b9e93c10SJonathan Haslam 	int		dcpc_picno;	/* pic this event is programmed in */
92b9e93c10SJonathan Haslam 	int		dcpc_enabled;	/* probe is actually enabled? */
93b9e93c10SJonathan Haslam 	int		dcpc_disabling;	/* probe is currently being disabled */
94b9e93c10SJonathan Haslam 	dtrace_id_t	dcpc_id;	/* probeid this request is enabling */
95b9e93c10SJonathan Haslam 	int		dcpc_actv_req_idx;	/* idx into dcpc_actv_reqs[] */
96b9e93c10SJonathan Haslam } dcpc_probe_t;
97b9e93c10SJonathan Haslam 
98b9e93c10SJonathan Haslam static dev_info_t			*dcpc_devi;
99b9e93c10SJonathan Haslam static dtrace_provider_id_t		dcpc_pid;
100b9e93c10SJonathan Haslam static dcpc_probe_t			**dcpc_actv_reqs;
101b9e93c10SJonathan Haslam static uint32_t				dcpc_enablings = 0;
102b9e93c10SJonathan Haslam static int				dcpc_ovf_mask = 0;
103b9e93c10SJonathan Haslam static int				dcpc_mult_ovf_cap = 0;
104b9e93c10SJonathan Haslam static int				dcpc_mask_type = 0;
105b9e93c10SJonathan Haslam 
106b9e93c10SJonathan Haslam /*
107b9e93c10SJonathan Haslam  * When the dcpc provider is loaded, dcpc_min_overflow is set to either
108b9e93c10SJonathan Haslam  * DCPC_MIN_OVF_DEFAULT or the value that dcpc-min-overflow is set to in
109b9e93c10SJonathan Haslam  * the dcpc.conf file. Decrease this value to set probes with smaller
110b9e93c10SJonathan Haslam  * overflow values. Remember that very small values could render a system
111b9e93c10SJonathan Haslam  * unusable with frequently occurring events.
112b9e93c10SJonathan Haslam  */
113b9e93c10SJonathan Haslam #define	DCPC_MIN_OVF_DEFAULT		5000
114b9e93c10SJonathan Haslam static uint32_t				dcpc_min_overflow;
115b9e93c10SJonathan Haslam 
116b9e93c10SJonathan Haslam static int dcpc_aframes = 0;	/* override for artificial frame setting */
117b9e93c10SJonathan Haslam #if defined(__x86)
118b9e93c10SJonathan Haslam #define	DCPC_ARTIFICIAL_FRAMES	8
119b9e93c10SJonathan Haslam #elif defined(__sparc)
120b9e93c10SJonathan Haslam #define	DCPC_ARTIFICIAL_FRAMES	2
121b9e93c10SJonathan Haslam #endif
122b9e93c10SJonathan Haslam 
123b9e93c10SJonathan Haslam /*
124b9e93c10SJonathan Haslam  * Called from the platform overflow interrupt handler. 'bitmap' is a mask
125b9e93c10SJonathan Haslam  * which contains the pic(s) that have overflowed.
126b9e93c10SJonathan Haslam  */
127b9e93c10SJonathan Haslam static void
128b9e93c10SJonathan Haslam dcpc_fire(uint64_t bitmap)
129b9e93c10SJonathan Haslam {
130b9e93c10SJonathan Haslam 	int i;
131b9e93c10SJonathan Haslam 
132b9e93c10SJonathan Haslam 	/*
133b9e93c10SJonathan Haslam 	 * No counter was marked as overflowing. Shout about it and get out.
134b9e93c10SJonathan Haslam 	 */
135b9e93c10SJonathan Haslam 	if ((bitmap & dcpc_ovf_mask) == 0) {
136b9e93c10SJonathan Haslam 		cmn_err(CE_NOTE, "dcpc_fire: no counter overflow found\n");
137b9e93c10SJonathan Haslam 		return;
138b9e93c10SJonathan Haslam 	}
139b9e93c10SJonathan Haslam 
140b9e93c10SJonathan Haslam 	/*
141b9e93c10SJonathan Haslam 	 * This is the common case of a processor that doesn't support
142b9e93c10SJonathan Haslam 	 * multiple overflow events. Such systems are only allowed a single
143b9e93c10SJonathan Haslam 	 * enabling and therefore we just look for the first entry in
144b9e93c10SJonathan Haslam 	 * the active request array.
145b9e93c10SJonathan Haslam 	 */
146b9e93c10SJonathan Haslam 	if (!dcpc_mult_ovf_cap) {
147b9e93c10SJonathan Haslam 		for (i = 0; i < cpc_ncounters; i++) {
148b9e93c10SJonathan Haslam 			if (dcpc_actv_reqs[i] != NULL) {
149b9e93c10SJonathan Haslam 				dtrace_probe(dcpc_actv_reqs[i]->dcpc_id,
150b9e93c10SJonathan Haslam 				    CPU->cpu_cpcprofile_pc,
151b9e93c10SJonathan Haslam 				    CPU->cpu_cpcprofile_upc, 0, 0, 0);
152b9e93c10SJonathan Haslam 				return;
153b9e93c10SJonathan Haslam 			}
154b9e93c10SJonathan Haslam 		}
155b9e93c10SJonathan Haslam 		return;
156b9e93c10SJonathan Haslam 	}
157b9e93c10SJonathan Haslam 
158b9e93c10SJonathan Haslam 	/*
159b9e93c10SJonathan Haslam 	 * This is a processor capable of handling multiple overflow events.
160b9e93c10SJonathan Haslam 	 * Iterate over the array of active requests and locate the counters
161b9e93c10SJonathan Haslam 	 * that overflowed (note: it is possible for more than one counter to
162b9e93c10SJonathan Haslam 	 * have overflowed at the same time).
163b9e93c10SJonathan Haslam 	 */
164b9e93c10SJonathan Haslam 	for (i = 0; i < cpc_ncounters; i++) {
165b9e93c10SJonathan Haslam 		if (dcpc_actv_reqs[i] != NULL &&
166b9e93c10SJonathan Haslam 		    (bitmap & (1ULL << dcpc_actv_reqs[i]->dcpc_picno))) {
167b9e93c10SJonathan Haslam 			dtrace_probe(dcpc_actv_reqs[i]->dcpc_id,
168b9e93c10SJonathan Haslam 			    CPU->cpu_cpcprofile_pc,
169b9e93c10SJonathan Haslam 			    CPU->cpu_cpcprofile_upc, 0, 0, 0);
170b9e93c10SJonathan Haslam 		}
171b9e93c10SJonathan Haslam 	}
172b9e93c10SJonathan Haslam }
173b9e93c10SJonathan Haslam 
174b9e93c10SJonathan Haslam static void
175b9e93c10SJonathan Haslam dcpc_create_probe(dtrace_provider_id_t id, const char *probename,
176b9e93c10SJonathan Haslam     char *eventname, int64_t umask, uint32_t ovfval, char flag)
177b9e93c10SJonathan Haslam {
178b9e93c10SJonathan Haslam 	dcpc_probe_t *pp;
179b9e93c10SJonathan Haslam 	int nr_frames = DCPC_ARTIFICIAL_FRAMES + dtrace_mach_aframes();
180b9e93c10SJonathan Haslam 
181b9e93c10SJonathan Haslam 	if (dcpc_aframes)
182b9e93c10SJonathan Haslam 		nr_frames = dcpc_aframes;
183b9e93c10SJonathan Haslam 
184b9e93c10SJonathan Haslam 	if (dtrace_probe_lookup(id, NULL, NULL, probename) != 0)
185b9e93c10SJonathan Haslam 		return;
186b9e93c10SJonathan Haslam 
187b9e93c10SJonathan Haslam 	pp = kmem_zalloc(sizeof (dcpc_probe_t), KM_SLEEP);
188b9e93c10SJonathan Haslam 	(void) strncpy(pp->dcpc_event_name, eventname,
189b9e93c10SJonathan Haslam 	    sizeof (pp->dcpc_event_name) - 1);
190b9e93c10SJonathan Haslam 	pp->dcpc_event_name[sizeof (pp->dcpc_event_name) - 1] = '\0';
191b9e93c10SJonathan Haslam 	pp->dcpc_flag = flag | CPC_OVF_NOTIFY_EMT;
192b9e93c10SJonathan Haslam 	pp->dcpc_ovfval = ovfval;
193b9e93c10SJonathan Haslam 	pp->dcpc_umask = umask;
194b9e93c10SJonathan Haslam 	pp->dcpc_actv_req_idx = pp->dcpc_picno = pp->dcpc_disabling = -1;
195b9e93c10SJonathan Haslam 
196b9e93c10SJonathan Haslam 	pp->dcpc_id = dtrace_probe_create(id, NULL, NULL, probename,
197b9e93c10SJonathan Haslam 	    nr_frames, pp);
198b9e93c10SJonathan Haslam }
199b9e93c10SJonathan Haslam 
200b9e93c10SJonathan Haslam /*ARGSUSED*/
201b9e93c10SJonathan Haslam static void
202b9e93c10SJonathan Haslam dcpc_provide(void *arg, const dtrace_probedesc_t *desc)
203b9e93c10SJonathan Haslam {
204b9e93c10SJonathan Haslam 	/*
205b9e93c10SJonathan Haslam 	 * The format of a probe is:
206b9e93c10SJonathan Haslam 	 *
207b9e93c10SJonathan Haslam 	 *	event_name-mode-{optional_umask}-overflow_rate
208b9e93c10SJonathan Haslam 	 * e.g.
209b9e93c10SJonathan Haslam 	 *	DC_refill_from_system-user-0x1e-50000, or,
210b9e93c10SJonathan Haslam 	 *	DC_refill_from_system-all-10000
211b9e93c10SJonathan Haslam 	 *
212b9e93c10SJonathan Haslam 	 */
213b9e93c10SJonathan Haslam 	char *str, *end, *p;
214b9e93c10SJonathan Haslam 	int i, flag = 0;
215b9e93c10SJonathan Haslam 	char event[CPC_MAX_EVENT_LEN];
216b9e93c10SJonathan Haslam 	long umask = -1, val = 0;
217b9e93c10SJonathan Haslam 	size_t evlen, len;
218b9e93c10SJonathan Haslam 
219b9e93c10SJonathan Haslam 	/*
220b9e93c10SJonathan Haslam 	 * The 'cpc' provider offers no probes by default.
221b9e93c10SJonathan Haslam 	 */
222b9e93c10SJonathan Haslam 	if (desc == NULL)
223b9e93c10SJonathan Haslam 		return;
224b9e93c10SJonathan Haslam 
225b9e93c10SJonathan Haslam 	len = strlen(desc->dtpd_name);
226b9e93c10SJonathan Haslam 	p = str = kmem_alloc(len + 1, KM_SLEEP);
227b9e93c10SJonathan Haslam 	(void) strcpy(str, desc->dtpd_name);
228b9e93c10SJonathan Haslam 
229b9e93c10SJonathan Haslam 	/*
230b9e93c10SJonathan Haslam 	 * We have a poor man's strtok() going on here. Replace any hyphens
231b9e93c10SJonathan Haslam 	 * in the the probe name with NULL characters in order to make it
232b9e93c10SJonathan Haslam 	 * easy to parse the string with regular string functions.
233b9e93c10SJonathan Haslam 	 */
234b9e93c10SJonathan Haslam 	for (i = 0; i < len; i++) {
235b9e93c10SJonathan Haslam 		if (str[i] == '-')
236b9e93c10SJonathan Haslam 			str[i] = '\0';
237b9e93c10SJonathan Haslam 	}
238b9e93c10SJonathan Haslam 
239b9e93c10SJonathan Haslam 	/*
240b9e93c10SJonathan Haslam 	 * The first part of the string must be either a platform event
241b9e93c10SJonathan Haslam 	 * name or a generic event name.
242b9e93c10SJonathan Haslam 	 */
243b9e93c10SJonathan Haslam 	evlen = strlen(p);
244b9e93c10SJonathan Haslam 	(void) strncpy(event, p, CPC_MAX_EVENT_LEN - 1);
245b9e93c10SJonathan Haslam 	event[CPC_MAX_EVENT_LEN - 1] = '\0';
246b9e93c10SJonathan Haslam 
247b9e93c10SJonathan Haslam 	/*
248b9e93c10SJonathan Haslam 	 * The next part of the name is the mode specification. Valid
249b9e93c10SJonathan Haslam 	 * settings are "user", "kernel" or "all".
250b9e93c10SJonathan Haslam 	 */
251b9e93c10SJonathan Haslam 	p += evlen + 1;
252b9e93c10SJonathan Haslam 
253b9e93c10SJonathan Haslam 	if (strcmp(p, "user") == 0)
254b9e93c10SJonathan Haslam 		flag |= CPC_COUNT_USER;
255b9e93c10SJonathan Haslam 	else if (strcmp(p, "kernel") == 0)
256b9e93c10SJonathan Haslam 		flag |= CPC_COUNT_SYSTEM;
257b9e93c10SJonathan Haslam 	else if (strcmp(p, "all") == 0)
258b9e93c10SJonathan Haslam 		flag |= CPC_COUNT_USER | CPC_COUNT_SYSTEM;
259b9e93c10SJonathan Haslam 	else
260b9e93c10SJonathan Haslam 		goto err;
261b9e93c10SJonathan Haslam 
262b9e93c10SJonathan Haslam 	/*
263b9e93c10SJonathan Haslam 	 * Next we either have a mask specification followed by an overflow
264b9e93c10SJonathan Haslam 	 * rate or just an overflow rate on its own.
265b9e93c10SJonathan Haslam 	 */
266b9e93c10SJonathan Haslam 	p += strlen(p) + 1;
267b9e93c10SJonathan Haslam 	if (p[0] == '0' && (p[1] == 'x' || p[1] == 'X')) {
268b9e93c10SJonathan Haslam 		/*
269b9e93c10SJonathan Haslam 		 * A unit mask can only be specified if:
270b9e93c10SJonathan Haslam 		 * 1) this performance counter back end supports masks.
271b9e93c10SJonathan Haslam 		 * 2) the specified event is platform specific.
272b9e93c10SJonathan Haslam 		 * 3) a valid hex number is converted.
273b9e93c10SJonathan Haslam 		 * 4) no extraneous characters follow the mask specification.
274b9e93c10SJonathan Haslam 		 */
275b9e93c10SJonathan Haslam 		if (dcpc_mask_type != 0 && strncmp(event, "PAPI", 4) != 0 &&
276b9e93c10SJonathan Haslam 		    ddi_strtol(p, &end, 16, &umask) == 0 &&
277b9e93c10SJonathan Haslam 		    end == p + strlen(p)) {
278b9e93c10SJonathan Haslam 			p += strlen(p) + 1;
279b9e93c10SJonathan Haslam 		} else {
280b9e93c10SJonathan Haslam 			goto err;
281b9e93c10SJonathan Haslam 		}
282b9e93c10SJonathan Haslam 	}
283b9e93c10SJonathan Haslam 
284b9e93c10SJonathan Haslam 	/*
285b9e93c10SJonathan Haslam 	 * This final part must be an overflow value which has to be greater
286b9e93c10SJonathan Haslam 	 * than the minimum permissible overflow rate.
287b9e93c10SJonathan Haslam 	 */
288b9e93c10SJonathan Haslam 	if ((ddi_strtol(p, &end, 10, &val) != 0) || end != p + strlen(p) ||
289b9e93c10SJonathan Haslam 	    val < dcpc_min_overflow)
290b9e93c10SJonathan Haslam 		goto err;
291b9e93c10SJonathan Haslam 
292b9e93c10SJonathan Haslam 	/*
293b9e93c10SJonathan Haslam 	 * Validate the event and create the probe.
294b9e93c10SJonathan Haslam 	 */
295b9e93c10SJonathan Haslam 	for (i = 0; i < cpc_ncounters; i++) {
2968cb74972SJonathan Haslam 		char *events, *cp, *p, *end;
2978cb74972SJonathan Haslam 		int found = 0, j;
2988cb74972SJonathan Haslam 		size_t llen;
2998cb74972SJonathan Haslam 
3008cb74972SJonathan Haslam 		if ((events = kcpc_list_events(i)) == NULL)
3018cb74972SJonathan Haslam 			goto err;
3028cb74972SJonathan Haslam 
3038cb74972SJonathan Haslam 		llen = strlen(events);
3048cb74972SJonathan Haslam 		p = cp = ddi_strdup(events, KM_NOSLEEP);
3058cb74972SJonathan Haslam 		end = cp + llen;
3068cb74972SJonathan Haslam 
3078cb74972SJonathan Haslam 		for (j = 0; j < llen; j++) {
3088cb74972SJonathan Haslam 			if (cp[j] == ',')
3098cb74972SJonathan Haslam 				cp[j] = '\0';
3108cb74972SJonathan Haslam 		}
3118cb74972SJonathan Haslam 
3128cb74972SJonathan Haslam 		while (p < end && found == 0) {
3138cb74972SJonathan Haslam 			if (strcmp(p, event) == 0) {
3148cb74972SJonathan Haslam 				dcpc_create_probe(dcpc_pid, desc->dtpd_name,
3158cb74972SJonathan Haslam 				    event, umask, (uint32_t)val, flag);
3168cb74972SJonathan Haslam 				found = 1;
3178cb74972SJonathan Haslam 			}
3188cb74972SJonathan Haslam 			p += strlen(p) + 1;
3198cb74972SJonathan Haslam 		}
3208cb74972SJonathan Haslam 		kmem_free(cp, llen + 1);
3218cb74972SJonathan Haslam 
3228cb74972SJonathan Haslam 		if (found)
3238cb74972SJonathan Haslam 			break;
324b9e93c10SJonathan Haslam 	}
325b9e93c10SJonathan Haslam 
326b9e93c10SJonathan Haslam err:
327b9e93c10SJonathan Haslam 	kmem_free(str, len + 1);
328b9e93c10SJonathan Haslam }
329b9e93c10SJonathan Haslam 
330b9e93c10SJonathan Haslam /*ARGSUSED*/
331b9e93c10SJonathan Haslam static void
332b9e93c10SJonathan Haslam dcpc_destroy(void *arg, dtrace_id_t id, void *parg)
333b9e93c10SJonathan Haslam {
334b9e93c10SJonathan Haslam 	dcpc_probe_t *pp = parg;
335b9e93c10SJonathan Haslam 
336b9e93c10SJonathan Haslam 	ASSERT(pp->dcpc_enabled == 0);
337b9e93c10SJonathan Haslam 	kmem_free(pp, sizeof (dcpc_probe_t));
338b9e93c10SJonathan Haslam }
339b9e93c10SJonathan Haslam 
340b9e93c10SJonathan Haslam /*ARGSUSED*/
341b9e93c10SJonathan Haslam static int
342b9e93c10SJonathan Haslam dcpc_usermode(void *arg, dtrace_id_t id, void *parg)
343b9e93c10SJonathan Haslam {
344b9e93c10SJonathan Haslam 	return (CPU->cpu_cpcprofile_pc == 0);
345b9e93c10SJonathan Haslam }
346b9e93c10SJonathan Haslam 
347b9e93c10SJonathan Haslam static void
348b9e93c10SJonathan Haslam dcpc_populate_set(cpu_t *c, dcpc_probe_t *pp, kcpc_set_t *set, int reqno)
349b9e93c10SJonathan Haslam {
350b9e93c10SJonathan Haslam 	kcpc_set_t *oset;
351b9e93c10SJonathan Haslam 	int i;
352b9e93c10SJonathan Haslam 
353b9e93c10SJonathan Haslam 	(void) strncpy(set->ks_req[reqno].kr_event, pp->dcpc_event_name,
354b9e93c10SJonathan Haslam 	    CPC_MAX_EVENT_LEN);
355b9e93c10SJonathan Haslam 	set->ks_req[reqno].kr_config = NULL;
356b9e93c10SJonathan Haslam 	set->ks_req[reqno].kr_index = reqno;
357b9e93c10SJonathan Haslam 	set->ks_req[reqno].kr_picnum = -1;
358b9e93c10SJonathan Haslam 	set->ks_req[reqno].kr_flags =  pp->dcpc_flag;
359b9e93c10SJonathan Haslam 
360b9e93c10SJonathan Haslam 	/*
361b9e93c10SJonathan Haslam 	 * If a unit mask has been specified then detect which attribute
362b9e93c10SJonathan Haslam 	 * the platform needs. For now, it's either "umask" or "emask".
363b9e93c10SJonathan Haslam 	 */
364b9e93c10SJonathan Haslam 	if (pp->dcpc_umask >= 0) {
365b9e93c10SJonathan Haslam 		set->ks_req[reqno].kr_attr =
366b9e93c10SJonathan Haslam 		    kmem_zalloc(sizeof (kcpc_attr_t), KM_SLEEP);
367b9e93c10SJonathan Haslam 		set->ks_req[reqno].kr_nattrs = 1;
368b9e93c10SJonathan Haslam 		if (dcpc_mask_type & DCPC_UMASK)
369b9e93c10SJonathan Haslam 			(void) strncpy(set->ks_req[reqno].kr_attr->ka_name,
370b9e93c10SJonathan Haslam 			    "umask", 5);
371b9e93c10SJonathan Haslam 		else
372b9e93c10SJonathan Haslam 			(void) strncpy(set->ks_req[reqno].kr_attr->ka_name,
373b9e93c10SJonathan Haslam 			    "emask", 5);
374b9e93c10SJonathan Haslam 		set->ks_req[reqno].kr_attr->ka_val = pp->dcpc_umask;
375b9e93c10SJonathan Haslam 	} else {
376b9e93c10SJonathan Haslam 		set->ks_req[reqno].kr_attr = NULL;
377b9e93c10SJonathan Haslam 		set->ks_req[reqno].kr_nattrs = 0;
378b9e93c10SJonathan Haslam 	}
379b9e93c10SJonathan Haslam 
380b9e93c10SJonathan Haslam 	/*
381b9e93c10SJonathan Haslam 	 * If this probe is enabled, obtain its current countdown value
382b9e93c10SJonathan Haslam 	 * and use that. The CPUs cpc context might not exist yet if we
383b9e93c10SJonathan Haslam 	 * are dealing with a CPU that is just coming online.
384b9e93c10SJonathan Haslam 	 */
385b9e93c10SJonathan Haslam 	if (pp->dcpc_enabled && (c->cpu_cpc_ctx != NULL)) {
386b9e93c10SJonathan Haslam 		oset = c->cpu_cpc_ctx->kc_set;
387b9e93c10SJonathan Haslam 
388b9e93c10SJonathan Haslam 		for (i = 0; i < oset->ks_nreqs; i++) {
389b9e93c10SJonathan Haslam 			if (strcmp(oset->ks_req[i].kr_event,
390b9e93c10SJonathan Haslam 			    set->ks_req[reqno].kr_event) == 0) {
391b9e93c10SJonathan Haslam 				set->ks_req[reqno].kr_preset =
392b9e93c10SJonathan Haslam 				    *(oset->ks_req[i].kr_data);
393b9e93c10SJonathan Haslam 			}
394b9e93c10SJonathan Haslam 		}
395b9e93c10SJonathan Haslam 	} else {
396b9e93c10SJonathan Haslam 		set->ks_req[reqno].kr_preset = UINT64_MAX - pp->dcpc_ovfval;
397b9e93c10SJonathan Haslam 	}
398b9e93c10SJonathan Haslam 
399b9e93c10SJonathan Haslam 	set->ks_nreqs++;
400b9e93c10SJonathan Haslam }
401b9e93c10SJonathan Haslam 
402b9e93c10SJonathan Haslam 
403b9e93c10SJonathan Haslam /*
404b9e93c10SJonathan Haslam  * Create a fresh request set for the enablings represented in the
405b9e93c10SJonathan Haslam  * 'dcpc_actv_reqs' array which contains the probes we want to be
406b9e93c10SJonathan Haslam  * in the set. This can be called for several reasons:
407b9e93c10SJonathan Haslam  *
408b9e93c10SJonathan Haslam  * 1)	We are on a single or multi overflow platform and we have no
409b9e93c10SJonathan Haslam  *	current events so we can just create the set and initialize it.
410b9e93c10SJonathan Haslam  * 2)	We are on a multi-overflow platform and we already have one or
411b9e93c10SJonathan Haslam  *	more existing events and we are adding a new enabling. Create a
412b9e93c10SJonathan Haslam  *	new set and copy old requests in and then add the new request.
413b9e93c10SJonathan Haslam  * 3)	We are on a multi-overflow platform and we have just removed an
414b9e93c10SJonathan Haslam  *	enabling but we still have enablings whch are valid. Create a new
415b9e93c10SJonathan Haslam  *	set and copy in still valid requests.
416b9e93c10SJonathan Haslam  */
417b9e93c10SJonathan Haslam static kcpc_set_t *
418b9e93c10SJonathan Haslam dcpc_create_set(cpu_t *c)
419b9e93c10SJonathan Haslam {
420b9e93c10SJonathan Haslam 	int i, reqno = 0;
421b9e93c10SJonathan Haslam 	int active_requests = 0;
422b9e93c10SJonathan Haslam 	kcpc_set_t *set;
423b9e93c10SJonathan Haslam 
424b9e93c10SJonathan Haslam 	/*
425b9e93c10SJonathan Haslam 	 * First get a count of the number of currently active requests.
426b9e93c10SJonathan Haslam 	 * Note that dcpc_actv_reqs[] should always reflect which requests
427b9e93c10SJonathan Haslam 	 * we want to be in the set that is to be created. It is the
428b9e93c10SJonathan Haslam 	 * responsibility of the caller of dcpc_create_set() to adjust that
429b9e93c10SJonathan Haslam 	 * array accordingly beforehand.
430b9e93c10SJonathan Haslam 	 */
431b9e93c10SJonathan Haslam 	for (i = 0; i < cpc_ncounters; i++) {
432b9e93c10SJonathan Haslam 		if (dcpc_actv_reqs[i] != NULL)
433b9e93c10SJonathan Haslam 			active_requests++;
434b9e93c10SJonathan Haslam 	}
435b9e93c10SJonathan Haslam 
436b9e93c10SJonathan Haslam 	set = kmem_zalloc(sizeof (kcpc_set_t), KM_SLEEP);
437b9e93c10SJonathan Haslam 
438b9e93c10SJonathan Haslam 	set->ks_req =
439b9e93c10SJonathan Haslam 	    kmem_zalloc(sizeof (kcpc_request_t) * active_requests, KM_SLEEP);
440b9e93c10SJonathan Haslam 
441b9e93c10SJonathan Haslam 	set->ks_data =
442b9e93c10SJonathan Haslam 	    kmem_zalloc(active_requests * sizeof (uint64_t), KM_SLEEP);
443b9e93c10SJonathan Haslam 
444b9e93c10SJonathan Haslam 	/*
445b9e93c10SJonathan Haslam 	 * Look for valid entries in the active requests array and populate
446b9e93c10SJonathan Haslam 	 * the request set for any entries found.
447b9e93c10SJonathan Haslam 	 */
448b9e93c10SJonathan Haslam 	for (i = 0; i < cpc_ncounters; i++) {
449b9e93c10SJonathan Haslam 		if (dcpc_actv_reqs[i] != NULL) {
450b9e93c10SJonathan Haslam 			dcpc_populate_set(c, dcpc_actv_reqs[i], set, reqno);
451b9e93c10SJonathan Haslam 			reqno++;
452b9e93c10SJonathan Haslam 		}
453b9e93c10SJonathan Haslam 	}
454b9e93c10SJonathan Haslam 
455b9e93c10SJonathan Haslam 	return (set);
456b9e93c10SJonathan Haslam }
457b9e93c10SJonathan Haslam 
458b9e93c10SJonathan Haslam static int
459b9e93c10SJonathan Haslam dcpc_program_cpu_event(cpu_t *c)
460b9e93c10SJonathan Haslam {
461b9e93c10SJonathan Haslam 	int i, j, subcode;
462b9e93c10SJonathan Haslam 	kcpc_ctx_t *ctx, *octx;
463b9e93c10SJonathan Haslam 	kcpc_set_t *set;
464b9e93c10SJonathan Haslam 
465b9e93c10SJonathan Haslam 	set = dcpc_create_set(c);
466b9e93c10SJonathan Haslam 
467*b885580bSAlexander Kolbasov 	set->ks_ctx = ctx = kcpc_ctx_alloc(KM_SLEEP);
468b9e93c10SJonathan Haslam 	ctx->kc_set = set;
469b9e93c10SJonathan Haslam 	ctx->kc_cpuid = c->cpu_id;
470b9e93c10SJonathan Haslam 
471b9e93c10SJonathan Haslam 	if (kcpc_assign_reqs(set, ctx) != 0)
472b9e93c10SJonathan Haslam 		goto err;
473b9e93c10SJonathan Haslam 
474b9e93c10SJonathan Haslam 	if (kcpc_configure_reqs(ctx, set, &subcode) != 0)
475b9e93c10SJonathan Haslam 		goto err;
476b9e93c10SJonathan Haslam 
477b9e93c10SJonathan Haslam 	for (i = 0; i < set->ks_nreqs; i++) {
478b9e93c10SJonathan Haslam 		for (j = 0; j < cpc_ncounters; j++) {
479b9e93c10SJonathan Haslam 			if (dcpc_actv_reqs[j] != NULL &&
480b9e93c10SJonathan Haslam 			    strcmp(set->ks_req[i].kr_event,
481b9e93c10SJonathan Haslam 			    dcpc_actv_reqs[j]->dcpc_event_name) == 0) {
482b9e93c10SJonathan Haslam 				dcpc_actv_reqs[j]->dcpc_picno =
483b9e93c10SJonathan Haslam 				    set->ks_req[i].kr_picnum;
484b9e93c10SJonathan Haslam 			}
485b9e93c10SJonathan Haslam 		}
486b9e93c10SJonathan Haslam 	}
487b9e93c10SJonathan Haslam 
488b9e93c10SJonathan Haslam 	/*
489b9e93c10SJonathan Haslam 	 * If we already have an active enabling then save the current cpc
490b9e93c10SJonathan Haslam 	 * context away.
491b9e93c10SJonathan Haslam 	 */
492b9e93c10SJonathan Haslam 	octx = c->cpu_cpc_ctx;
493b9e93c10SJonathan Haslam 
494*b885580bSAlexander Kolbasov 	kcpc_cpu_program(c, ctx);
495b9e93c10SJonathan Haslam 
496b9e93c10SJonathan Haslam 	if (octx != NULL) {
497b9e93c10SJonathan Haslam 		kcpc_set_t *oset = octx->kc_set;
498b9e93c10SJonathan Haslam 		kmem_free(oset->ks_data, oset->ks_nreqs * sizeof (uint64_t));
499b9e93c10SJonathan Haslam 		kcpc_free_set(oset);
500b9e93c10SJonathan Haslam 		kcpc_ctx_free(octx);
501b9e93c10SJonathan Haslam 	}
502b9e93c10SJonathan Haslam 
503b9e93c10SJonathan Haslam 	return (0);
504b9e93c10SJonathan Haslam 
505b9e93c10SJonathan Haslam err:
506b9e93c10SJonathan Haslam 	/*
507b9e93c10SJonathan Haslam 	 * We failed to configure this request up so free things up and
508b9e93c10SJonathan Haslam 	 * get out.
509b9e93c10SJonathan Haslam 	 */
510b9e93c10SJonathan Haslam 	kmem_free(set->ks_data, set->ks_nreqs * sizeof (uint64_t));
511b9e93c10SJonathan Haslam 	kcpc_free_set(set);
512b9e93c10SJonathan Haslam 	kcpc_ctx_free(ctx);
513b9e93c10SJonathan Haslam 
514b9e93c10SJonathan Haslam 	return (-1);
515b9e93c10SJonathan Haslam }
516b9e93c10SJonathan Haslam 
517b9e93c10SJonathan Haslam static void
518b9e93c10SJonathan Haslam dcpc_disable_cpu(cpu_t *c)
519b9e93c10SJonathan Haslam {
520b9e93c10SJonathan Haslam 	kcpc_ctx_t *ctx;
521b9e93c10SJonathan Haslam 	kcpc_set_t *set;
522b9e93c10SJonathan Haslam 
523b9e93c10SJonathan Haslam 	/*
524b9e93c10SJonathan Haslam 	 * Leave this CPU alone if it's already offline.
525b9e93c10SJonathan Haslam 	 */
526b9e93c10SJonathan Haslam 	if (c->cpu_flags & CPU_OFFLINE)
527b9e93c10SJonathan Haslam 		return;
528b9e93c10SJonathan Haslam 
529*b885580bSAlexander Kolbasov 	/*
530*b885580bSAlexander Kolbasov 	 * Grab CPUs CPC context before kcpc_cpu_stop() stops counters and
531*b885580bSAlexander Kolbasov 	 * changes it.
532*b885580bSAlexander Kolbasov 	 */
533b9e93c10SJonathan Haslam 	ctx = c->cpu_cpc_ctx;
534*b885580bSAlexander Kolbasov 
535*b885580bSAlexander Kolbasov 	kcpc_cpu_stop(c, B_FALSE);
536*b885580bSAlexander Kolbasov 
537b9e93c10SJonathan Haslam 	set = ctx->kc_set;
538b9e93c10SJonathan Haslam 
539b9e93c10SJonathan Haslam 	kcpc_free_configs(set);
540b9e93c10SJonathan Haslam 
541b9e93c10SJonathan Haslam 	kmem_free(set->ks_data, set->ks_nreqs * sizeof (uint64_t));
542b9e93c10SJonathan Haslam 	kcpc_free_set(set);
543b9e93c10SJonathan Haslam 	kcpc_ctx_free(ctx);
544b9e93c10SJonathan Haslam }
545b9e93c10SJonathan Haslam 
546b9e93c10SJonathan Haslam /*
547b9e93c10SJonathan Haslam  * Stop overflow interrupts being actively processed so that per-CPU
548b9e93c10SJonathan Haslam  * configuration state can be changed safely and correctly. Each CPU has a
549b9e93c10SJonathan Haslam  * dcpc interrupt state byte which is transitioned from DCPC_INTR_FREE (the
550b9e93c10SJonathan Haslam  * "free" state) to DCPC_INTR_CONFIG (the "configuration in process" state)
551b9e93c10SJonathan Haslam  * before any configuration state is changed on any CPUs. The hardware overflow
552b9e93c10SJonathan Haslam  * handler, kcpc_hw_overflow_intr(), will only process an interrupt when a
553b9e93c10SJonathan Haslam  * configuration is not in process (i.e. the state is marked as free). During
554b9e93c10SJonathan Haslam  * interrupt processing the state is set to DCPC_INTR_PROCESSING by the
555b9e93c10SJonathan Haslam  * overflow handler.
556b9e93c10SJonathan Haslam  */
557b9e93c10SJonathan Haslam static void
558b9e93c10SJonathan Haslam dcpc_block_interrupts(void)
559b9e93c10SJonathan Haslam {
560b9e93c10SJonathan Haslam 	cpu_t *c;
561b9e93c10SJonathan Haslam 	uint8_t *state;
562b9e93c10SJonathan Haslam 
563b9e93c10SJonathan Haslam 	c = cpu_list;
564b9e93c10SJonathan Haslam 
565b9e93c10SJonathan Haslam 	do {
566b9e93c10SJonathan Haslam 		state = &cpu_core[c->cpu_id].cpuc_dcpc_intr_state;
567b9e93c10SJonathan Haslam 
568b9e93c10SJonathan Haslam 		while (atomic_cas_8(state, DCPC_INTR_FREE,
569b9e93c10SJonathan Haslam 		    DCPC_INTR_CONFIG) != DCPC_INTR_FREE)
570b9e93c10SJonathan Haslam 			continue;
571b9e93c10SJonathan Haslam 
572b9e93c10SJonathan Haslam 	} while ((c = c->cpu_next) != cpu_list);
573b9e93c10SJonathan Haslam }
574b9e93c10SJonathan Haslam 
575b9e93c10SJonathan Haslam /*
576b9e93c10SJonathan Haslam  * Set all CPUs dcpc interrupt state to DCPC_INTR_FREE to indicate that
577b9e93c10SJonathan Haslam  * overflow interrupts can be processed safely.
578b9e93c10SJonathan Haslam  */
579b9e93c10SJonathan Haslam static void
580b9e93c10SJonathan Haslam dcpc_release_interrupts(void)
581b9e93c10SJonathan Haslam {
582b9e93c10SJonathan Haslam 	cpu_t *c = cpu_list;
583b9e93c10SJonathan Haslam 
584b9e93c10SJonathan Haslam 	do {
585b9e93c10SJonathan Haslam 		cpu_core[c->cpu_id].cpuc_dcpc_intr_state = DCPC_INTR_FREE;
586b9e93c10SJonathan Haslam 		membar_producer();
587b9e93c10SJonathan Haslam 	} while ((c = c->cpu_next) != cpu_list);
588b9e93c10SJonathan Haslam }
589b9e93c10SJonathan Haslam 
590b9e93c10SJonathan Haslam /*
591b9e93c10SJonathan Haslam  * dcpc_program_event() can be called owing to a new enabling or if a multi
592b9e93c10SJonathan Haslam  * overflow platform has disabled a request but needs to  program the requests
593b9e93c10SJonathan Haslam  * that are still valid.
594b9e93c10SJonathan Haslam  *
595b9e93c10SJonathan Haslam  * Every invocation of dcpc_program_event() will create a new kcpc_ctx_t
596b9e93c10SJonathan Haslam  * and a new request set which contains the new enabling and any old enablings
597b9e93c10SJonathan Haslam  * which are still valid (possible with multi-overflow platforms).
598b9e93c10SJonathan Haslam  */
599b9e93c10SJonathan Haslam static int
600b9e93c10SJonathan Haslam dcpc_program_event(dcpc_probe_t *pp)
601b9e93c10SJonathan Haslam {
602b9e93c10SJonathan Haslam 	cpu_t *c;
603b9e93c10SJonathan Haslam 	int ret = 0;
604b9e93c10SJonathan Haslam 
605b9e93c10SJonathan Haslam 	ASSERT(MUTEX_HELD(&cpu_lock));
606b9e93c10SJonathan Haslam 
607b9e93c10SJonathan Haslam 	kpreempt_disable();
608b9e93c10SJonathan Haslam 
609b9e93c10SJonathan Haslam 	dcpc_block_interrupts();
610b9e93c10SJonathan Haslam 
611b9e93c10SJonathan Haslam 	c = cpu_list;
612b9e93c10SJonathan Haslam 
613b9e93c10SJonathan Haslam 	do {
614b9e93c10SJonathan Haslam 		/*
615b9e93c10SJonathan Haslam 		 * Skip CPUs that are currently offline.
616b9e93c10SJonathan Haslam 		 */
617b9e93c10SJonathan Haslam 		if (c->cpu_flags & CPU_OFFLINE)
618b9e93c10SJonathan Haslam 			continue;
619b9e93c10SJonathan Haslam 
620*b885580bSAlexander Kolbasov 		/*
621*b885580bSAlexander Kolbasov 		 * Stop counters but preserve existing DTrace CPC context
622*b885580bSAlexander Kolbasov 		 * if there is one.
623*b885580bSAlexander Kolbasov 		 *
624*b885580bSAlexander Kolbasov 		 * If we come here when the first event is programmed for a CPU,
625*b885580bSAlexander Kolbasov 		 * there should be no DTrace CPC context installed. In this
626*b885580bSAlexander Kolbasov 		 * case, kcpc_cpu_stop() will ensure that there is no other
627*b885580bSAlexander Kolbasov 		 * context on the CPU.
628*b885580bSAlexander Kolbasov 		 *
629*b885580bSAlexander Kolbasov 		 * If we add new enabling to the original one, the CPU should
630*b885580bSAlexander Kolbasov 		 * have the old DTrace CPC context which we need to keep around
631*b885580bSAlexander Kolbasov 		 * since dcpc_program_event() will add to it.
632*b885580bSAlexander Kolbasov 		 */
633b9e93c10SJonathan Haslam 		if (c->cpu_cpc_ctx != NULL)
634*b885580bSAlexander Kolbasov 			kcpc_cpu_stop(c, B_TRUE);
635b9e93c10SJonathan Haslam 	} while ((c = c->cpu_next) != cpu_list);
636b9e93c10SJonathan Haslam 
637b9e93c10SJonathan Haslam 	dcpc_release_interrupts();
638b9e93c10SJonathan Haslam 
639b9e93c10SJonathan Haslam 	/*
640b9e93c10SJonathan Haslam 	 * If this enabling is being removed (in the case of a multi event
641b9e93c10SJonathan Haslam 	 * capable system with more than one active enabling), we can now
642b9e93c10SJonathan Haslam 	 * update the active request array to reflect the enablings that need
643b9e93c10SJonathan Haslam 	 * to be reprogrammed.
644b9e93c10SJonathan Haslam 	 */
645b9e93c10SJonathan Haslam 	if (pp->dcpc_disabling == 1)
646b9e93c10SJonathan Haslam 		dcpc_actv_reqs[pp->dcpc_actv_req_idx] = NULL;
647b9e93c10SJonathan Haslam 
648b9e93c10SJonathan Haslam 	do {
649b9e93c10SJonathan Haslam 		/*
650b9e93c10SJonathan Haslam 		 * Skip CPUs that are currently offline.
651b9e93c10SJonathan Haslam 		 */
652b9e93c10SJonathan Haslam 		if (c->cpu_flags & CPU_OFFLINE)
653b9e93c10SJonathan Haslam 			continue;
654b9e93c10SJonathan Haslam 
655b9e93c10SJonathan Haslam 		ret = dcpc_program_cpu_event(c);
656b9e93c10SJonathan Haslam 	} while ((c = c->cpu_next) != cpu_list && ret == 0);
657b9e93c10SJonathan Haslam 
658b9e93c10SJonathan Haslam 	/*
659b9e93c10SJonathan Haslam 	 * If dcpc_program_cpu_event() fails then it is because we couldn't
660b9e93c10SJonathan Haslam 	 * configure the requests in the set for the CPU and not because of
661b9e93c10SJonathan Haslam 	 * an error programming the hardware. If we have a failure here then
662b9e93c10SJonathan Haslam 	 * we assume no CPUs have been programmed in the above step as they
663b9e93c10SJonathan Haslam 	 * are all configured identically.
664b9e93c10SJonathan Haslam 	 */
665b9e93c10SJonathan Haslam 	if (ret != 0) {
666b9e93c10SJonathan Haslam 		pp->dcpc_enabled = 0;
667b9e93c10SJonathan Haslam 		kpreempt_enable();
668b9e93c10SJonathan Haslam 		return (-1);
669b9e93c10SJonathan Haslam 	}
670b9e93c10SJonathan Haslam 
671b9e93c10SJonathan Haslam 	if (pp->dcpc_disabling != 1)
672b9e93c10SJonathan Haslam 		pp->dcpc_enabled = 1;
673b9e93c10SJonathan Haslam 
674b9e93c10SJonathan Haslam 	kpreempt_enable();
675b9e93c10SJonathan Haslam 
676b9e93c10SJonathan Haslam 	return (0);
677b9e93c10SJonathan Haslam }
678b9e93c10SJonathan Haslam 
679b9e93c10SJonathan Haslam /*ARGSUSED*/
680b9e93c10SJonathan Haslam static int
681b9e93c10SJonathan Haslam dcpc_enable(void *arg, dtrace_id_t id, void *parg)
682b9e93c10SJonathan Haslam {
683b9e93c10SJonathan Haslam 	dcpc_probe_t *pp = parg;
684b9e93c10SJonathan Haslam 	int i, found = 0;
685b9e93c10SJonathan Haslam 	cpu_t *c;
686b9e93c10SJonathan Haslam 
687b9e93c10SJonathan Haslam 	ASSERT(MUTEX_HELD(&cpu_lock));
688b9e93c10SJonathan Haslam 
689b9e93c10SJonathan Haslam 	/*
690b9e93c10SJonathan Haslam 	 * Bail out if the counters are being used by a libcpc consumer.
691b9e93c10SJonathan Haslam 	 */
692b9e93c10SJonathan Haslam 	rw_enter(&kcpc_cpuctx_lock, RW_READER);
693b9e93c10SJonathan Haslam 	if (kcpc_cpuctx > 0) {
694b9e93c10SJonathan Haslam 		rw_exit(&kcpc_cpuctx_lock);
695b9e93c10SJonathan Haslam 		return (-1);
696b9e93c10SJonathan Haslam 	}
697b9e93c10SJonathan Haslam 
698b9e93c10SJonathan Haslam 	dtrace_cpc_in_use++;
699b9e93c10SJonathan Haslam 	rw_exit(&kcpc_cpuctx_lock);
700b9e93c10SJonathan Haslam 
701b9e93c10SJonathan Haslam 	/*
702b9e93c10SJonathan Haslam 	 * Locate this enabling in the first free entry of the active
703b9e93c10SJonathan Haslam 	 * request array.
704b9e93c10SJonathan Haslam 	 */
705b9e93c10SJonathan Haslam 	for (i = 0; i < cpc_ncounters; i++) {
706b9e93c10SJonathan Haslam 		if (dcpc_actv_reqs[i] == NULL) {
707b9e93c10SJonathan Haslam 			dcpc_actv_reqs[i] = pp;
708b9e93c10SJonathan Haslam 			pp->dcpc_actv_req_idx = i;
709b9e93c10SJonathan Haslam 			found = 1;
710b9e93c10SJonathan Haslam 			break;
711b9e93c10SJonathan Haslam 		}
712b9e93c10SJonathan Haslam 	}
713b9e93c10SJonathan Haslam 
714b9e93c10SJonathan Haslam 	/*
715b9e93c10SJonathan Haslam 	 * If we couldn't find a slot for this probe then there is no
716b9e93c10SJonathan Haslam 	 * room at the inn.
717b9e93c10SJonathan Haslam 	 */
718b9e93c10SJonathan Haslam 	if (!found) {
719b9e93c10SJonathan Haslam 		dtrace_cpc_in_use--;
720b9e93c10SJonathan Haslam 		return (-1);
721b9e93c10SJonathan Haslam 	}
722b9e93c10SJonathan Haslam 
723b9e93c10SJonathan Haslam 	ASSERT(pp->dcpc_actv_req_idx >= 0);
724b9e93c10SJonathan Haslam 
725b9e93c10SJonathan Haslam 	/*
726*b885580bSAlexander Kolbasov 	 * DTrace is taking over CPC contexts, so stop collecting
727*b885580bSAlexander Kolbasov 	 * capacity/utilization data for all CPUs.
728*b885580bSAlexander Kolbasov 	 */
729*b885580bSAlexander Kolbasov 	if (dtrace_cpc_in_use == 1)
730*b885580bSAlexander Kolbasov 		cu_disable();
731*b885580bSAlexander Kolbasov 
732*b885580bSAlexander Kolbasov 	/*
733b9e93c10SJonathan Haslam 	 * The following must hold true if we are to (attempt to) enable
734b9e93c10SJonathan Haslam 	 * this request:
735b9e93c10SJonathan Haslam 	 *
736b9e93c10SJonathan Haslam 	 * 1) No enablings currently exist. We allow all platforms to
737b9e93c10SJonathan Haslam 	 * proceed if this is true.
738b9e93c10SJonathan Haslam 	 *
739b9e93c10SJonathan Haslam 	 * OR
740b9e93c10SJonathan Haslam 	 *
741b9e93c10SJonathan Haslam 	 * 2) If the platform is multi overflow capable and there are
742b9e93c10SJonathan Haslam 	 * less valid enablings than there are counters. There is no
743b9e93c10SJonathan Haslam 	 * guarantee that a platform can accommodate as many events as
744b9e93c10SJonathan Haslam 	 * it has counters for but we will at least try to program
745b9e93c10SJonathan Haslam 	 * up to that many requests.
746b9e93c10SJonathan Haslam 	 *
747b9e93c10SJonathan Haslam 	 * The 'dcpc_enablings' variable is implictly protected by locking
748b9e93c10SJonathan Haslam 	 * provided by the DTrace framework and the cpu management framework.
749b9e93c10SJonathan Haslam 	 */
750b9e93c10SJonathan Haslam 	if (dcpc_enablings == 0 || (dcpc_mult_ovf_cap &&
751b9e93c10SJonathan Haslam 	    dcpc_enablings < cpc_ncounters)) {
752b9e93c10SJonathan Haslam 		/*
753b9e93c10SJonathan Haslam 		 * Before attempting to program the first enabling we need to
754b9e93c10SJonathan Haslam 		 * invalidate any lwp-based contexts.
755b9e93c10SJonathan Haslam 		 */
756b9e93c10SJonathan Haslam 		if (dcpc_enablings == 0)
757b9e93c10SJonathan Haslam 			kcpc_invalidate_all();
758b9e93c10SJonathan Haslam 
759b9e93c10SJonathan Haslam 		if (dcpc_program_event(pp) == 0) {
760b9e93c10SJonathan Haslam 			dcpc_enablings++;
761b9e93c10SJonathan Haslam 			return (0);
762b9e93c10SJonathan Haslam 		}
763b9e93c10SJonathan Haslam 	}
764b9e93c10SJonathan Haslam 
765b9e93c10SJonathan Haslam 	/*
766b9e93c10SJonathan Haslam 	 * If active enablings existed before we failed to enable this probe
767b9e93c10SJonathan Haslam 	 * on a multi event capable platform then we need to restart counters
768b9e93c10SJonathan Haslam 	 * as they will have been stopped in the attempted configuration. The
769b9e93c10SJonathan Haslam 	 * context should now just contain the request prior to this failed
770b9e93c10SJonathan Haslam 	 * enabling.
771b9e93c10SJonathan Haslam 	 */
772b9e93c10SJonathan Haslam 	if (dcpc_enablings > 0 && dcpc_mult_ovf_cap) {
773b9e93c10SJonathan Haslam 		c = cpu_list;
774b9e93c10SJonathan Haslam 
775b9e93c10SJonathan Haslam 		ASSERT(dcpc_mult_ovf_cap == 1);
776b9e93c10SJonathan Haslam 		do {
777b9e93c10SJonathan Haslam 			/*
778b9e93c10SJonathan Haslam 			 * Skip CPUs that are currently offline.
779b9e93c10SJonathan Haslam 			 */
780b9e93c10SJonathan Haslam 			if (c->cpu_flags & CPU_OFFLINE)
781b9e93c10SJonathan Haslam 				continue;
782b9e93c10SJonathan Haslam 
783*b885580bSAlexander Kolbasov 			kcpc_cpu_program(c, c->cpu_cpc_ctx);
784b9e93c10SJonathan Haslam 		} while ((c = c->cpu_next) != cpu_list);
785b9e93c10SJonathan Haslam 	}
786b9e93c10SJonathan Haslam 
787b9e93c10SJonathan Haslam 	dtrace_cpc_in_use--;
788b9e93c10SJonathan Haslam 	dcpc_actv_reqs[pp->dcpc_actv_req_idx] = NULL;
789b9e93c10SJonathan Haslam 	pp->dcpc_actv_req_idx = pp->dcpc_picno = -1;
790b9e93c10SJonathan Haslam 
791*b885580bSAlexander Kolbasov 	/*
792*b885580bSAlexander Kolbasov 	 * If all probes are removed, enable capacity/utilization data
793*b885580bSAlexander Kolbasov 	 * collection for every CPU.
794*b885580bSAlexander Kolbasov 	 */
795*b885580bSAlexander Kolbasov 	if (dtrace_cpc_in_use == 0)
796*b885580bSAlexander Kolbasov 		cu_enable();
797*b885580bSAlexander Kolbasov 
798b9e93c10SJonathan Haslam 	return (-1);
799b9e93c10SJonathan Haslam }
800b9e93c10SJonathan Haslam 
801b9e93c10SJonathan Haslam /*
802b9e93c10SJonathan Haslam  * If only one enabling is active then remove the context and free
803b9e93c10SJonathan Haslam  * everything up. If there are multiple enablings active then remove this
804b9e93c10SJonathan Haslam  * one, its associated meta-data and re-program the hardware.
805b9e93c10SJonathan Haslam  */
806b9e93c10SJonathan Haslam /*ARGSUSED*/
807b9e93c10SJonathan Haslam static void
808b9e93c10SJonathan Haslam dcpc_disable(void *arg, dtrace_id_t id, void *parg)
809b9e93c10SJonathan Haslam {
810b9e93c10SJonathan Haslam 	cpu_t *c;
811b9e93c10SJonathan Haslam 	dcpc_probe_t *pp = parg;
812b9e93c10SJonathan Haslam 
813b9e93c10SJonathan Haslam 	ASSERT(MUTEX_HELD(&cpu_lock));
814b9e93c10SJonathan Haslam 
815b9e93c10SJonathan Haslam 	kpreempt_disable();
816b9e93c10SJonathan Haslam 
817b9e93c10SJonathan Haslam 	/*
818b9e93c10SJonathan Haslam 	 * This probe didn't actually make it as far as being fully enabled
819b9e93c10SJonathan Haslam 	 * so we needn't do anything with it.
820b9e93c10SJonathan Haslam 	 */
821b9e93c10SJonathan Haslam 	if (pp->dcpc_enabled == 0) {
822b9e93c10SJonathan Haslam 		/*
823b9e93c10SJonathan Haslam 		 * If we actually allocated this request a slot in the
824b9e93c10SJonathan Haslam 		 * request array but failed to enabled it then remove the
825b9e93c10SJonathan Haslam 		 * entry in the array.
826b9e93c10SJonathan Haslam 		 */
827b9e93c10SJonathan Haslam 		if (pp->dcpc_actv_req_idx >= 0) {
828b9e93c10SJonathan Haslam 			dcpc_actv_reqs[pp->dcpc_actv_req_idx] = NULL;
829b9e93c10SJonathan Haslam 			pp->dcpc_actv_req_idx = pp->dcpc_picno =
830b9e93c10SJonathan Haslam 			    pp->dcpc_disabling = -1;
831b9e93c10SJonathan Haslam 		}
832b9e93c10SJonathan Haslam 
833b9e93c10SJonathan Haslam 		kpreempt_enable();
834b9e93c10SJonathan Haslam 		return;
835b9e93c10SJonathan Haslam 	}
836b9e93c10SJonathan Haslam 
837b9e93c10SJonathan Haslam 	/*
838b9e93c10SJonathan Haslam 	 * If this is the only enabling then stop all the counters and
839b9e93c10SJonathan Haslam 	 * free up the meta-data.
840b9e93c10SJonathan Haslam 	 */
841b9e93c10SJonathan Haslam 	if (dcpc_enablings == 1) {
842b9e93c10SJonathan Haslam 		ASSERT(dtrace_cpc_in_use == 1);
843b9e93c10SJonathan Haslam 
844b9e93c10SJonathan Haslam 		dcpc_block_interrupts();
845b9e93c10SJonathan Haslam 
846b9e93c10SJonathan Haslam 		c = cpu_list;
847b9e93c10SJonathan Haslam 
848b9e93c10SJonathan Haslam 		do {
849b9e93c10SJonathan Haslam 			dcpc_disable_cpu(c);
850b9e93c10SJonathan Haslam 		} while ((c = c->cpu_next) != cpu_list);
851b9e93c10SJonathan Haslam 
852b9e93c10SJonathan Haslam 		dcpc_actv_reqs[pp->dcpc_actv_req_idx] = NULL;
853b9e93c10SJonathan Haslam 		dcpc_release_interrupts();
854b9e93c10SJonathan Haslam 	} else {
855b9e93c10SJonathan Haslam 		/*
856b9e93c10SJonathan Haslam 		 * This platform can support multiple overflow events and
857b9e93c10SJonathan Haslam 		 * the enabling being disabled is not the last one. Remove this
858b9e93c10SJonathan Haslam 		 * enabling and re-program the hardware with the new config.
859b9e93c10SJonathan Haslam 		 */
860b9e93c10SJonathan Haslam 		ASSERT(dcpc_mult_ovf_cap);
861b9e93c10SJonathan Haslam 		ASSERT(dcpc_enablings > 1);
862b9e93c10SJonathan Haslam 
863b9e93c10SJonathan Haslam 		pp->dcpc_disabling = 1;
864b9e93c10SJonathan Haslam 		(void) dcpc_program_event(pp);
865b9e93c10SJonathan Haslam 	}
866b9e93c10SJonathan Haslam 
867b9e93c10SJonathan Haslam 	kpreempt_enable();
868b9e93c10SJonathan Haslam 
869b9e93c10SJonathan Haslam 	dcpc_enablings--;
870b9e93c10SJonathan Haslam 	dtrace_cpc_in_use--;
871b9e93c10SJonathan Haslam 	pp->dcpc_enabled = 0;
872b9e93c10SJonathan Haslam 	pp->dcpc_actv_req_idx = pp->dcpc_picno = pp->dcpc_disabling = -1;
873*b885580bSAlexander Kolbasov 
874*b885580bSAlexander Kolbasov 	/*
875*b885580bSAlexander Kolbasov 	 * If all probes are removed, enable capacity/utilization data
876*b885580bSAlexander Kolbasov 	 * collection for every CPU
877*b885580bSAlexander Kolbasov 	 */
878*b885580bSAlexander Kolbasov 	if (dtrace_cpc_in_use == 0)
879*b885580bSAlexander Kolbasov 		cu_enable();
880b9e93c10SJonathan Haslam }
881b9e93c10SJonathan Haslam 
882b9e93c10SJonathan Haslam /*ARGSUSED*/
883b9e93c10SJonathan Haslam static int
884b9e93c10SJonathan Haslam dcpc_cpu_setup(cpu_setup_t what, processorid_t cpu, void *arg)
885b9e93c10SJonathan Haslam {
886b9e93c10SJonathan Haslam 	cpu_t *c;
887b9e93c10SJonathan Haslam 	uint8_t *state;
888b9e93c10SJonathan Haslam 
889b9e93c10SJonathan Haslam 	ASSERT(MUTEX_HELD(&cpu_lock));
890b9e93c10SJonathan Haslam 
891b9e93c10SJonathan Haslam 	switch (what) {
892b9e93c10SJonathan Haslam 	case CPU_OFF:
893b9e93c10SJonathan Haslam 		/*
894b9e93c10SJonathan Haslam 		 * Offline CPUs are not allowed to take part so remove this
895b9e93c10SJonathan Haslam 		 * CPU if we are actively tracing.
896b9e93c10SJonathan Haslam 		 */
897b9e93c10SJonathan Haslam 		if (dtrace_cpc_in_use) {
898b9e93c10SJonathan Haslam 			c = cpu_get(cpu);
899b9e93c10SJonathan Haslam 			state = &cpu_core[c->cpu_id].cpuc_dcpc_intr_state;
900b9e93c10SJonathan Haslam 
901b9e93c10SJonathan Haslam 			/*
902b9e93c10SJonathan Haslam 			 * Indicate that a configuration is in process in
903b9e93c10SJonathan Haslam 			 * order to stop overflow interrupts being processed
904b9e93c10SJonathan Haslam 			 * on this CPU while we disable it.
905b9e93c10SJonathan Haslam 			 */
906b9e93c10SJonathan Haslam 			while (atomic_cas_8(state, DCPC_INTR_FREE,
907b9e93c10SJonathan Haslam 			    DCPC_INTR_CONFIG) != DCPC_INTR_FREE)
908b9e93c10SJonathan Haslam 				continue;
909b9e93c10SJonathan Haslam 
910b9e93c10SJonathan Haslam 			dcpc_disable_cpu(c);
911b9e93c10SJonathan Haslam 
912b9e93c10SJonathan Haslam 			/*
913b9e93c10SJonathan Haslam 			 * Reset this CPUs interrupt state as the configuration
914b9e93c10SJonathan Haslam 			 * has ended.
915b9e93c10SJonathan Haslam 			 */
916b9e93c10SJonathan Haslam 			cpu_core[c->cpu_id].cpuc_dcpc_intr_state =
917b9e93c10SJonathan Haslam 			    DCPC_INTR_FREE;
918b9e93c10SJonathan Haslam 			membar_producer();
919b9e93c10SJonathan Haslam 		}
920b9e93c10SJonathan Haslam 		break;
921b9e93c10SJonathan Haslam 
922b9e93c10SJonathan Haslam 	case CPU_ON:
923b9e93c10SJonathan Haslam 	case CPU_SETUP:
924b9e93c10SJonathan Haslam 		/*
925b9e93c10SJonathan Haslam 		 * This CPU is being initialized or brought online so program
926b9e93c10SJonathan Haslam 		 * it with the current request set if we are actively tracing.
927b9e93c10SJonathan Haslam 		 */
928b9e93c10SJonathan Haslam 		if (dtrace_cpc_in_use) {
929b9e93c10SJonathan Haslam 			c = cpu_get(cpu);
930b9e93c10SJonathan Haslam 			(void) dcpc_program_cpu_event(c);
931b9e93c10SJonathan Haslam 		}
932b9e93c10SJonathan Haslam 		break;
933b9e93c10SJonathan Haslam 
934b9e93c10SJonathan Haslam 	default:
935b9e93c10SJonathan Haslam 		break;
936b9e93c10SJonathan Haslam 	}
937b9e93c10SJonathan Haslam 
938b9e93c10SJonathan Haslam 	return (0);
939b9e93c10SJonathan Haslam }
940b9e93c10SJonathan Haslam 
941b9e93c10SJonathan Haslam static dtrace_pattr_t dcpc_attr = {
942b9e93c10SJonathan Haslam { DTRACE_STABILITY_EVOLVING, DTRACE_STABILITY_EVOLVING, DTRACE_CLASS_COMMON },
943b9e93c10SJonathan Haslam { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN },
944b9e93c10SJonathan Haslam { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN },
945b9e93c10SJonathan Haslam { DTRACE_STABILITY_EVOLVING, DTRACE_STABILITY_EVOLVING, DTRACE_CLASS_CPU },
946b9e93c10SJonathan Haslam { DTRACE_STABILITY_EVOLVING, DTRACE_STABILITY_EVOLVING, DTRACE_CLASS_COMMON },
947b9e93c10SJonathan Haslam };
948b9e93c10SJonathan Haslam 
949b9e93c10SJonathan Haslam static dtrace_pops_t dcpc_pops = {
950b9e93c10SJonathan Haslam     dcpc_provide,
951b9e93c10SJonathan Haslam     NULL,
952b9e93c10SJonathan Haslam     dcpc_enable,
953b9e93c10SJonathan Haslam     dcpc_disable,
954b9e93c10SJonathan Haslam     NULL,
955b9e93c10SJonathan Haslam     NULL,
956b9e93c10SJonathan Haslam     NULL,
957b9e93c10SJonathan Haslam     NULL,
958b9e93c10SJonathan Haslam     dcpc_usermode,
959b9e93c10SJonathan Haslam     dcpc_destroy
960b9e93c10SJonathan Haslam };
961b9e93c10SJonathan Haslam 
962b9e93c10SJonathan Haslam /*ARGSUSED*/
963b9e93c10SJonathan Haslam static int
964b9e93c10SJonathan Haslam dcpc_open(dev_t *devp, int flag, int otyp, cred_t *cred_p)
965b9e93c10SJonathan Haslam {
966b9e93c10SJonathan Haslam 	return (0);
967b9e93c10SJonathan Haslam }
968b9e93c10SJonathan Haslam 
969b9e93c10SJonathan Haslam /*ARGSUSED*/
970b9e93c10SJonathan Haslam static int
971b9e93c10SJonathan Haslam dcpc_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result)
972b9e93c10SJonathan Haslam {
973b9e93c10SJonathan Haslam 	int error;
974b9e93c10SJonathan Haslam 
975b9e93c10SJonathan Haslam 	switch (infocmd) {
976b9e93c10SJonathan Haslam 	case DDI_INFO_DEVT2DEVINFO:
977b9e93c10SJonathan Haslam 		*result = (void *)dcpc_devi;
978b9e93c10SJonathan Haslam 		error = DDI_SUCCESS;
979b9e93c10SJonathan Haslam 		break;
980b9e93c10SJonathan Haslam 	case DDI_INFO_DEVT2INSTANCE:
981b9e93c10SJonathan Haslam 		*result = (void *)0;
982b9e93c10SJonathan Haslam 		error = DDI_SUCCESS;
983b9e93c10SJonathan Haslam 		break;
984b9e93c10SJonathan Haslam 	default:
985b9e93c10SJonathan Haslam 		error = DDI_FAILURE;
986b9e93c10SJonathan Haslam 	}
987b9e93c10SJonathan Haslam 	return (error);
988b9e93c10SJonathan Haslam }
989b9e93c10SJonathan Haslam 
990b9e93c10SJonathan Haslam static int
991b9e93c10SJonathan Haslam dcpc_detach(dev_info_t *devi, ddi_detach_cmd_t cmd)
992b9e93c10SJonathan Haslam {
993b9e93c10SJonathan Haslam 	switch (cmd) {
994b9e93c10SJonathan Haslam 	case DDI_DETACH:
995b9e93c10SJonathan Haslam 		break;
996b9e93c10SJonathan Haslam 	case DDI_SUSPEND:
997b9e93c10SJonathan Haslam 		return (DDI_SUCCESS);
998b9e93c10SJonathan Haslam 	default:
999b9e93c10SJonathan Haslam 		return (DDI_FAILURE);
1000b9e93c10SJonathan Haslam 	}
1001b9e93c10SJonathan Haslam 
1002b9e93c10SJonathan Haslam 	if (dtrace_unregister(dcpc_pid) != 0)
1003b9e93c10SJonathan Haslam 		return (DDI_FAILURE);
1004b9e93c10SJonathan Haslam 
1005b9e93c10SJonathan Haslam 	ddi_remove_minor_node(devi, NULL);
1006b9e93c10SJonathan Haslam 
1007b9e93c10SJonathan Haslam 	mutex_enter(&cpu_lock);
1008b9e93c10SJonathan Haslam 	unregister_cpu_setup_func(dcpc_cpu_setup, NULL);
1009b9e93c10SJonathan Haslam 	mutex_exit(&cpu_lock);
1010b9e93c10SJonathan Haslam 
1011b9e93c10SJonathan Haslam 	kmem_free(dcpc_actv_reqs, cpc_ncounters * sizeof (dcpc_probe_t *));
1012b9e93c10SJonathan Haslam 
1013b9e93c10SJonathan Haslam 	kcpc_unregister_dcpc();
1014b9e93c10SJonathan Haslam 
1015b9e93c10SJonathan Haslam 	return (DDI_SUCCESS);
1016b9e93c10SJonathan Haslam }
1017b9e93c10SJonathan Haslam 
1018b9e93c10SJonathan Haslam static int
1019b9e93c10SJonathan Haslam dcpc_attach(dev_info_t *devi, ddi_attach_cmd_t cmd)
1020b9e93c10SJonathan Haslam {
1021b9e93c10SJonathan Haslam 	uint_t caps;
1022b9e93c10SJonathan Haslam 	char *attrs;
1023b9e93c10SJonathan Haslam 
1024b9e93c10SJonathan Haslam 	switch (cmd) {
1025b9e93c10SJonathan Haslam 	case DDI_ATTACH:
1026b9e93c10SJonathan Haslam 		break;
1027b9e93c10SJonathan Haslam 	case DDI_RESUME:
1028b9e93c10SJonathan Haslam 		return (DDI_SUCCESS);
1029b9e93c10SJonathan Haslam 	default:
1030b9e93c10SJonathan Haslam 		return (DDI_FAILURE);
1031b9e93c10SJonathan Haslam 	}
1032b9e93c10SJonathan Haslam 
1033b9e93c10SJonathan Haslam 	if (kcpc_pcbe_loaded() == -1)
1034b9e93c10SJonathan Haslam 		return (DDI_FAILURE);
1035b9e93c10SJonathan Haslam 
1036b9e93c10SJonathan Haslam 	caps = kcpc_pcbe_capabilities();
1037b9e93c10SJonathan Haslam 
1038b9e93c10SJonathan Haslam 	if (!(caps & CPC_CAP_OVERFLOW_INTERRUPT)) {
10398cb74972SJonathan Haslam 		cmn_err(CE_NOTE, "!dcpc: Counter Overflow not supported"\
10408cb74972SJonathan Haslam 		    " on this processor");
1041b9e93c10SJonathan Haslam 		return (DDI_FAILURE);
1042b9e93c10SJonathan Haslam 	}
1043b9e93c10SJonathan Haslam 
1044b9e93c10SJonathan Haslam 	if (ddi_create_minor_node(devi, "dcpc", S_IFCHR, 0,
1045b9e93c10SJonathan Haslam 	    DDI_PSEUDO, NULL) == DDI_FAILURE ||
1046b9e93c10SJonathan Haslam 	    dtrace_register("cpc", &dcpc_attr, DTRACE_PRIV_KERNEL,
1047b9e93c10SJonathan Haslam 	    NULL, &dcpc_pops, NULL, &dcpc_pid) != 0) {
1048b9e93c10SJonathan Haslam 		ddi_remove_minor_node(devi, NULL);
1049b9e93c10SJonathan Haslam 		return (DDI_FAILURE);
1050b9e93c10SJonathan Haslam 	}
1051b9e93c10SJonathan Haslam 
1052b9e93c10SJonathan Haslam 	mutex_enter(&cpu_lock);
1053b9e93c10SJonathan Haslam 	register_cpu_setup_func(dcpc_cpu_setup, NULL);
1054b9e93c10SJonathan Haslam 	mutex_exit(&cpu_lock);
1055b9e93c10SJonathan Haslam 
1056b9e93c10SJonathan Haslam 	dcpc_ovf_mask = (1 << cpc_ncounters) - 1;
1057b9e93c10SJonathan Haslam 	ASSERT(dcpc_ovf_mask != 0);
1058b9e93c10SJonathan Haslam 
1059b9e93c10SJonathan Haslam 	if (caps & CPC_CAP_OVERFLOW_PRECISE)
1060b9e93c10SJonathan Haslam 		dcpc_mult_ovf_cap = 1;
1061b9e93c10SJonathan Haslam 
1062b9e93c10SJonathan Haslam 	/*
1063b9e93c10SJonathan Haslam 	 * Determine which, if any, mask attribute the back-end can use.
1064b9e93c10SJonathan Haslam 	 */
1065b9e93c10SJonathan Haslam 	attrs = kcpc_list_attrs();
1066b9e93c10SJonathan Haslam 	if (strstr(attrs, "umask") != NULL)
1067b9e93c10SJonathan Haslam 		dcpc_mask_type |= DCPC_UMASK;
1068b9e93c10SJonathan Haslam 	else if (strstr(attrs, "emask") != NULL)
1069b9e93c10SJonathan Haslam 		dcpc_mask_type |= DCPC_EMASK;
1070b9e93c10SJonathan Haslam 
1071b9e93c10SJonathan Haslam 	/*
1072b9e93c10SJonathan Haslam 	 * The dcpc_actv_reqs array is used to store the requests that
1073b9e93c10SJonathan Haslam 	 * we currently have programmed. The order of requests in this
1074b9e93c10SJonathan Haslam 	 * array is not necessarily the order that the event appears in
1075b9e93c10SJonathan Haslam 	 * the kcpc_request_t array. Once entered into a slot in the array
1076b9e93c10SJonathan Haslam 	 * the entry is not moved until it's removed.
1077b9e93c10SJonathan Haslam 	 */
1078b9e93c10SJonathan Haslam 	dcpc_actv_reqs =
1079b9e93c10SJonathan Haslam 	    kmem_zalloc(cpc_ncounters * sizeof (dcpc_probe_t *), KM_SLEEP);
1080b9e93c10SJonathan Haslam 
1081b9e93c10SJonathan Haslam 	dcpc_min_overflow = ddi_prop_get_int(DDI_DEV_T_ANY, devi,
1082b9e93c10SJonathan Haslam 	    DDI_PROP_DONTPASS, "dcpc-min-overflow", DCPC_MIN_OVF_DEFAULT);
1083b9e93c10SJonathan Haslam 
1084b9e93c10SJonathan Haslam 	kcpc_register_dcpc(dcpc_fire);
1085b9e93c10SJonathan Haslam 
1086b9e93c10SJonathan Haslam 	ddi_report_dev(devi);
1087b9e93c10SJonathan Haslam 	dcpc_devi = devi;
1088b9e93c10SJonathan Haslam 
1089b9e93c10SJonathan Haslam 	return (DDI_SUCCESS);
1090b9e93c10SJonathan Haslam }
1091b9e93c10SJonathan Haslam 
1092b9e93c10SJonathan Haslam static struct cb_ops dcpc_cb_ops = {
1093b9e93c10SJonathan Haslam 	dcpc_open,		/* open */
1094b9e93c10SJonathan Haslam 	nodev,			/* close */
1095b9e93c10SJonathan Haslam 	nulldev,		/* strategy */
1096b9e93c10SJonathan Haslam 	nulldev,		/* print */
1097b9e93c10SJonathan Haslam 	nodev,			/* dump */
1098b9e93c10SJonathan Haslam 	nodev,			/* read */
1099b9e93c10SJonathan Haslam 	nodev,			/* write */
1100b9e93c10SJonathan Haslam 	nodev,			/* ioctl */
1101b9e93c10SJonathan Haslam 	nodev,			/* devmap */
1102b9e93c10SJonathan Haslam 	nodev,			/* mmap */
1103b9e93c10SJonathan Haslam 	nodev,			/* segmap */
1104b9e93c10SJonathan Haslam 	nochpoll,		/* poll */
1105b9e93c10SJonathan Haslam 	ddi_prop_op,		/* cb_prop_op */
1106b9e93c10SJonathan Haslam 	0,			/* streamtab  */
1107b9e93c10SJonathan Haslam 	D_NEW | D_MP		/* Driver compatibility flag */
1108b9e93c10SJonathan Haslam };
1109b9e93c10SJonathan Haslam 
1110b9e93c10SJonathan Haslam static struct dev_ops dcpc_ops = {
1111b9e93c10SJonathan Haslam 	DEVO_REV,		/* devo_rev, */
1112b9e93c10SJonathan Haslam 	0,			/* refcnt  */
1113b9e93c10SJonathan Haslam 	dcpc_info,		/* get_dev_info */
1114b9e93c10SJonathan Haslam 	nulldev,		/* identify */
1115b9e93c10SJonathan Haslam 	nulldev,		/* probe */
1116b9e93c10SJonathan Haslam 	dcpc_attach,		/* attach */
1117b9e93c10SJonathan Haslam 	dcpc_detach,		/* detach */
1118b9e93c10SJonathan Haslam 	nodev,			/* reset */
1119b9e93c10SJonathan Haslam 	&dcpc_cb_ops,		/* driver operations */
1120b9e93c10SJonathan Haslam 	NULL,			/* bus operations */
1121b9e93c10SJonathan Haslam 	nodev,			/* dev power */
1122b9e93c10SJonathan Haslam 	ddi_quiesce_not_needed	/* quiesce */
1123b9e93c10SJonathan Haslam };
1124b9e93c10SJonathan Haslam 
1125b9e93c10SJonathan Haslam /*
1126b9e93c10SJonathan Haslam  * Module linkage information for the kernel.
1127b9e93c10SJonathan Haslam  */
1128b9e93c10SJonathan Haslam static struct modldrv modldrv = {
1129b9e93c10SJonathan Haslam 	&mod_driverops,		/* module type */
1130b9e93c10SJonathan Haslam 	"DTrace CPC Module",	/* name of module */
1131b9e93c10SJonathan Haslam 	&dcpc_ops,		/* driver ops */
1132b9e93c10SJonathan Haslam };
1133b9e93c10SJonathan Haslam 
1134b9e93c10SJonathan Haslam static struct modlinkage modlinkage = {
1135b9e93c10SJonathan Haslam 	MODREV_1,
1136b9e93c10SJonathan Haslam 	(void *)&modldrv,
1137b9e93c10SJonathan Haslam 	NULL
1138b9e93c10SJonathan Haslam };
1139b9e93c10SJonathan Haslam 
1140b9e93c10SJonathan Haslam int
1141b9e93c10SJonathan Haslam _init(void)
1142b9e93c10SJonathan Haslam {
1143b9e93c10SJonathan Haslam 	return (mod_install(&modlinkage));
1144b9e93c10SJonathan Haslam }
1145b9e93c10SJonathan Haslam 
1146b9e93c10SJonathan Haslam int
1147b9e93c10SJonathan Haslam _info(struct modinfo *modinfop)
1148b9e93c10SJonathan Haslam {
1149b9e93c10SJonathan Haslam 	return (mod_info(&modlinkage, modinfop));
1150b9e93c10SJonathan Haslam }
1151b9e93c10SJonathan Haslam 
1152b9e93c10SJonathan Haslam int
1153b9e93c10SJonathan Haslam _fini(void)
1154b9e93c10SJonathan Haslam {
1155b9e93c10SJonathan Haslam 	return (mod_remove(&modlinkage));
1156b9e93c10SJonathan Haslam }
1157