1b9e93c10SJonathan Haslam /* 2b9e93c10SJonathan Haslam * CDDL HEADER START 3b9e93c10SJonathan Haslam * 4b9e93c10SJonathan Haslam * The contents of this file are subject to the terms of the 5b9e93c10SJonathan Haslam * Common Development and Distribution License (the "License"). 6b9e93c10SJonathan Haslam * You may not use this file except in compliance with the License. 7b9e93c10SJonathan Haslam * 8b9e93c10SJonathan Haslam * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9b9e93c10SJonathan Haslam * or http://www.opensolaris.org/os/licensing. 10b9e93c10SJonathan Haslam * See the License for the specific language governing permissions 11b9e93c10SJonathan Haslam * and limitations under the License. 12b9e93c10SJonathan Haslam * 13b9e93c10SJonathan Haslam * When distributing Covered Code, include this CDDL HEADER in each 14b9e93c10SJonathan Haslam * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15b9e93c10SJonathan Haslam * If applicable, add the following below this CDDL HEADER, with the 16b9e93c10SJonathan Haslam * fields enclosed by brackets "[]" replaced with your own identifying 17b9e93c10SJonathan Haslam * information: Portions Copyright [yyyy] [name of copyright owner] 18b9e93c10SJonathan Haslam * 19b9e93c10SJonathan Haslam * CDDL HEADER END 20b9e93c10SJonathan Haslam */ 21b9e93c10SJonathan Haslam 22b9e93c10SJonathan Haslam /* 23b9e93c10SJonathan Haslam * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 24b9e93c10SJonathan Haslam * Use is subject to license terms. 25b9e93c10SJonathan Haslam */ 26b9e93c10SJonathan Haslam 27b9e93c10SJonathan Haslam #include <sys/errno.h> 28b9e93c10SJonathan Haslam #include <sys/cpuvar.h> 29b9e93c10SJonathan Haslam #include <sys/stat.h> 30b9e93c10SJonathan Haslam #include <sys/modctl.h> 31b9e93c10SJonathan Haslam #include <sys/cmn_err.h> 32b9e93c10SJonathan Haslam #include <sys/ddi.h> 33b9e93c10SJonathan Haslam #include <sys/sunddi.h> 34b9e93c10SJonathan Haslam #include <sys/ksynch.h> 35b9e93c10SJonathan Haslam #include <sys/conf.h> 36b9e93c10SJonathan Haslam #include <sys/kmem.h> 37b9e93c10SJonathan Haslam #include <sys/kcpc.h> 38*b885580bSAlexander Kolbasov #include <sys/cap_util.h> 39b9e93c10SJonathan Haslam #include <sys/cpc_pcbe.h> 40b9e93c10SJonathan Haslam #include <sys/cpc_impl.h> 41b9e93c10SJonathan Haslam #include <sys/dtrace_impl.h> 42b9e93c10SJonathan Haslam 43b9e93c10SJonathan Haslam /* 44b9e93c10SJonathan Haslam * DTrace CPU Performance Counter Provider 45b9e93c10SJonathan Haslam * --------------------------------------- 46b9e93c10SJonathan Haslam * 47b9e93c10SJonathan Haslam * The DTrace cpc provider allows DTrace consumers to access the CPU 48b9e93c10SJonathan Haslam * performance counter overflow mechanism of a CPU. The configuration 49b9e93c10SJonathan Haslam * presented in a probe specification is programmed into the performance 50b9e93c10SJonathan Haslam * counter hardware of all available CPUs on a system. Programming the 51b9e93c10SJonathan Haslam * hardware causes a counter on each CPU to begin counting events of the 52b9e93c10SJonathan Haslam * given type. When the specified number of events have occurred, an overflow 53b9e93c10SJonathan Haslam * interrupt will be generated and the probe is fired. 54b9e93c10SJonathan Haslam * 55b9e93c10SJonathan Haslam * The required configuration for the performance counter is encoded into 56b9e93c10SJonathan Haslam * the probe specification and this includes the performance counter event 57b9e93c10SJonathan Haslam * name, processor mode, overflow rate and an optional unit mask. 58b9e93c10SJonathan Haslam * 59b9e93c10SJonathan Haslam * Most processors provide several counters (PICs) which can count all or a 60b9e93c10SJonathan Haslam * subset of the events available for a given CPU. However, when overflow 61b9e93c10SJonathan Haslam * profiling is being used, not all CPUs can detect which counter generated the 62b9e93c10SJonathan Haslam * overflow interrupt. In this case we cannot reliably determine which counter 63b9e93c10SJonathan Haslam * overflowed and we therefore only allow such CPUs to configure one event at 64b9e93c10SJonathan Haslam * a time. Processors that can determine the counter which overflowed are 65b9e93c10SJonathan Haslam * allowed to program as many events at one time as possible (in theory up to 66b9e93c10SJonathan Haslam * the number of instrumentation counters supported by that platform). 67b9e93c10SJonathan Haslam * Therefore, multiple consumers can enable multiple probes at the same time 68b9e93c10SJonathan Haslam * on such platforms. Platforms which cannot determine the source of an 69b9e93c10SJonathan Haslam * overflow interrupt are only allowed to program a single event at one time. 70b9e93c10SJonathan Haslam * 71b9e93c10SJonathan Haslam * The performance counter hardware is made available to consumers on a 72b9e93c10SJonathan Haslam * first-come, first-served basis. Only a finite amount of hardware resource 73b9e93c10SJonathan Haslam * is available and, while we make every attempt to accomodate requests from 74b9e93c10SJonathan Haslam * consumers, we must deny requests when hardware resources have been exhausted. 75b9e93c10SJonathan Haslam * A consumer will fail to enable probes when resources are currently in use. 76b9e93c10SJonathan Haslam * 77b9e93c10SJonathan Haslam * The cpc provider contends for shared hardware resources along with other 78b9e93c10SJonathan Haslam * consumers of the kernel CPU performance counter subsystem (e.g. cpustat(1M)). 79b9e93c10SJonathan Haslam * Only one such consumer can use the performance counters at any one time and 80b9e93c10SJonathan Haslam * counters are made available on a first-come, first-served basis. As with 81b9e93c10SJonathan Haslam * cpustat, the cpc provider has priority over per-LWP libcpc usage (e.g. 82b9e93c10SJonathan Haslam * cputrack(1)). Invoking the cpc provider will cause all existing per-LWP 83b9e93c10SJonathan Haslam * counter contexts to be invalidated. 84b9e93c10SJonathan Haslam */ 85b9e93c10SJonathan Haslam 86b9e93c10SJonathan Haslam typedef struct dcpc_probe { 87b9e93c10SJonathan Haslam char dcpc_event_name[CPC_MAX_EVENT_LEN]; 88b9e93c10SJonathan Haslam int dcpc_flag; /* flags (USER/SYS) */ 89b9e93c10SJonathan Haslam uint32_t dcpc_ovfval; /* overflow value */ 90b9e93c10SJonathan Haslam int64_t dcpc_umask; /* umask/emask for this event */ 91b9e93c10SJonathan Haslam int dcpc_picno; /* pic this event is programmed in */ 92b9e93c10SJonathan Haslam int dcpc_enabled; /* probe is actually enabled? */ 93b9e93c10SJonathan Haslam int dcpc_disabling; /* probe is currently being disabled */ 94b9e93c10SJonathan Haslam dtrace_id_t dcpc_id; /* probeid this request is enabling */ 95b9e93c10SJonathan Haslam int dcpc_actv_req_idx; /* idx into dcpc_actv_reqs[] */ 96b9e93c10SJonathan Haslam } dcpc_probe_t; 97b9e93c10SJonathan Haslam 98b9e93c10SJonathan Haslam static dev_info_t *dcpc_devi; 99b9e93c10SJonathan Haslam static dtrace_provider_id_t dcpc_pid; 100b9e93c10SJonathan Haslam static dcpc_probe_t **dcpc_actv_reqs; 101b9e93c10SJonathan Haslam static uint32_t dcpc_enablings = 0; 102b9e93c10SJonathan Haslam static int dcpc_ovf_mask = 0; 103b9e93c10SJonathan Haslam static int dcpc_mult_ovf_cap = 0; 104b9e93c10SJonathan Haslam static int dcpc_mask_type = 0; 105b9e93c10SJonathan Haslam 106b9e93c10SJonathan Haslam /* 107b9e93c10SJonathan Haslam * When the dcpc provider is loaded, dcpc_min_overflow is set to either 108b9e93c10SJonathan Haslam * DCPC_MIN_OVF_DEFAULT or the value that dcpc-min-overflow is set to in 109b9e93c10SJonathan Haslam * the dcpc.conf file. Decrease this value to set probes with smaller 110b9e93c10SJonathan Haslam * overflow values. Remember that very small values could render a system 111b9e93c10SJonathan Haslam * unusable with frequently occurring events. 112b9e93c10SJonathan Haslam */ 113b9e93c10SJonathan Haslam #define DCPC_MIN_OVF_DEFAULT 5000 114b9e93c10SJonathan Haslam static uint32_t dcpc_min_overflow; 115b9e93c10SJonathan Haslam 116b9e93c10SJonathan Haslam static int dcpc_aframes = 0; /* override for artificial frame setting */ 117b9e93c10SJonathan Haslam #if defined(__x86) 118b9e93c10SJonathan Haslam #define DCPC_ARTIFICIAL_FRAMES 8 119b9e93c10SJonathan Haslam #elif defined(__sparc) 120b9e93c10SJonathan Haslam #define DCPC_ARTIFICIAL_FRAMES 2 121b9e93c10SJonathan Haslam #endif 122b9e93c10SJonathan Haslam 123b9e93c10SJonathan Haslam /* 124b9e93c10SJonathan Haslam * Called from the platform overflow interrupt handler. 'bitmap' is a mask 125b9e93c10SJonathan Haslam * which contains the pic(s) that have overflowed. 126b9e93c10SJonathan Haslam */ 127b9e93c10SJonathan Haslam static void 128b9e93c10SJonathan Haslam dcpc_fire(uint64_t bitmap) 129b9e93c10SJonathan Haslam { 130b9e93c10SJonathan Haslam int i; 131b9e93c10SJonathan Haslam 132b9e93c10SJonathan Haslam /* 133b9e93c10SJonathan Haslam * No counter was marked as overflowing. Shout about it and get out. 134b9e93c10SJonathan Haslam */ 135b9e93c10SJonathan Haslam if ((bitmap & dcpc_ovf_mask) == 0) { 136b9e93c10SJonathan Haslam cmn_err(CE_NOTE, "dcpc_fire: no counter overflow found\n"); 137b9e93c10SJonathan Haslam return; 138b9e93c10SJonathan Haslam } 139b9e93c10SJonathan Haslam 140b9e93c10SJonathan Haslam /* 141b9e93c10SJonathan Haslam * This is the common case of a processor that doesn't support 142b9e93c10SJonathan Haslam * multiple overflow events. Such systems are only allowed a single 143b9e93c10SJonathan Haslam * enabling and therefore we just look for the first entry in 144b9e93c10SJonathan Haslam * the active request array. 145b9e93c10SJonathan Haslam */ 146b9e93c10SJonathan Haslam if (!dcpc_mult_ovf_cap) { 147b9e93c10SJonathan Haslam for (i = 0; i < cpc_ncounters; i++) { 148b9e93c10SJonathan Haslam if (dcpc_actv_reqs[i] != NULL) { 149b9e93c10SJonathan Haslam dtrace_probe(dcpc_actv_reqs[i]->dcpc_id, 150b9e93c10SJonathan Haslam CPU->cpu_cpcprofile_pc, 151b9e93c10SJonathan Haslam CPU->cpu_cpcprofile_upc, 0, 0, 0); 152b9e93c10SJonathan Haslam return; 153b9e93c10SJonathan Haslam } 154b9e93c10SJonathan Haslam } 155b9e93c10SJonathan Haslam return; 156b9e93c10SJonathan Haslam } 157b9e93c10SJonathan Haslam 158b9e93c10SJonathan Haslam /* 159b9e93c10SJonathan Haslam * This is a processor capable of handling multiple overflow events. 160b9e93c10SJonathan Haslam * Iterate over the array of active requests and locate the counters 161b9e93c10SJonathan Haslam * that overflowed (note: it is possible for more than one counter to 162b9e93c10SJonathan Haslam * have overflowed at the same time). 163b9e93c10SJonathan Haslam */ 164b9e93c10SJonathan Haslam for (i = 0; i < cpc_ncounters; i++) { 165b9e93c10SJonathan Haslam if (dcpc_actv_reqs[i] != NULL && 166b9e93c10SJonathan Haslam (bitmap & (1ULL << dcpc_actv_reqs[i]->dcpc_picno))) { 167b9e93c10SJonathan Haslam dtrace_probe(dcpc_actv_reqs[i]->dcpc_id, 168b9e93c10SJonathan Haslam CPU->cpu_cpcprofile_pc, 169b9e93c10SJonathan Haslam CPU->cpu_cpcprofile_upc, 0, 0, 0); 170b9e93c10SJonathan Haslam } 171b9e93c10SJonathan Haslam } 172b9e93c10SJonathan Haslam } 173b9e93c10SJonathan Haslam 174b9e93c10SJonathan Haslam static void 175b9e93c10SJonathan Haslam dcpc_create_probe(dtrace_provider_id_t id, const char *probename, 176b9e93c10SJonathan Haslam char *eventname, int64_t umask, uint32_t ovfval, char flag) 177b9e93c10SJonathan Haslam { 178b9e93c10SJonathan Haslam dcpc_probe_t *pp; 179b9e93c10SJonathan Haslam int nr_frames = DCPC_ARTIFICIAL_FRAMES + dtrace_mach_aframes(); 180b9e93c10SJonathan Haslam 181b9e93c10SJonathan Haslam if (dcpc_aframes) 182b9e93c10SJonathan Haslam nr_frames = dcpc_aframes; 183b9e93c10SJonathan Haslam 184b9e93c10SJonathan Haslam if (dtrace_probe_lookup(id, NULL, NULL, probename) != 0) 185b9e93c10SJonathan Haslam return; 186b9e93c10SJonathan Haslam 187b9e93c10SJonathan Haslam pp = kmem_zalloc(sizeof (dcpc_probe_t), KM_SLEEP); 188b9e93c10SJonathan Haslam (void) strncpy(pp->dcpc_event_name, eventname, 189b9e93c10SJonathan Haslam sizeof (pp->dcpc_event_name) - 1); 190b9e93c10SJonathan Haslam pp->dcpc_event_name[sizeof (pp->dcpc_event_name) - 1] = '\0'; 191b9e93c10SJonathan Haslam pp->dcpc_flag = flag | CPC_OVF_NOTIFY_EMT; 192b9e93c10SJonathan Haslam pp->dcpc_ovfval = ovfval; 193b9e93c10SJonathan Haslam pp->dcpc_umask = umask; 194b9e93c10SJonathan Haslam pp->dcpc_actv_req_idx = pp->dcpc_picno = pp->dcpc_disabling = -1; 195b9e93c10SJonathan Haslam 196b9e93c10SJonathan Haslam pp->dcpc_id = dtrace_probe_create(id, NULL, NULL, probename, 197b9e93c10SJonathan Haslam nr_frames, pp); 198b9e93c10SJonathan Haslam } 199b9e93c10SJonathan Haslam 200b9e93c10SJonathan Haslam /*ARGSUSED*/ 201b9e93c10SJonathan Haslam static void 202b9e93c10SJonathan Haslam dcpc_provide(void *arg, const dtrace_probedesc_t *desc) 203b9e93c10SJonathan Haslam { 204b9e93c10SJonathan Haslam /* 205b9e93c10SJonathan Haslam * The format of a probe is: 206b9e93c10SJonathan Haslam * 207b9e93c10SJonathan Haslam * event_name-mode-{optional_umask}-overflow_rate 208b9e93c10SJonathan Haslam * e.g. 209b9e93c10SJonathan Haslam * DC_refill_from_system-user-0x1e-50000, or, 210b9e93c10SJonathan Haslam * DC_refill_from_system-all-10000 211b9e93c10SJonathan Haslam * 212b9e93c10SJonathan Haslam */ 213b9e93c10SJonathan Haslam char *str, *end, *p; 214b9e93c10SJonathan Haslam int i, flag = 0; 215b9e93c10SJonathan Haslam char event[CPC_MAX_EVENT_LEN]; 216b9e93c10SJonathan Haslam long umask = -1, val = 0; 217b9e93c10SJonathan Haslam size_t evlen, len; 218b9e93c10SJonathan Haslam 219b9e93c10SJonathan Haslam /* 220b9e93c10SJonathan Haslam * The 'cpc' provider offers no probes by default. 221b9e93c10SJonathan Haslam */ 222b9e93c10SJonathan Haslam if (desc == NULL) 223b9e93c10SJonathan Haslam return; 224b9e93c10SJonathan Haslam 225b9e93c10SJonathan Haslam len = strlen(desc->dtpd_name); 226b9e93c10SJonathan Haslam p = str = kmem_alloc(len + 1, KM_SLEEP); 227b9e93c10SJonathan Haslam (void) strcpy(str, desc->dtpd_name); 228b9e93c10SJonathan Haslam 229b9e93c10SJonathan Haslam /* 230b9e93c10SJonathan Haslam * We have a poor man's strtok() going on here. Replace any hyphens 231b9e93c10SJonathan Haslam * in the the probe name with NULL characters in order to make it 232b9e93c10SJonathan Haslam * easy to parse the string with regular string functions. 233b9e93c10SJonathan Haslam */ 234b9e93c10SJonathan Haslam for (i = 0; i < len; i++) { 235b9e93c10SJonathan Haslam if (str[i] == '-') 236b9e93c10SJonathan Haslam str[i] = '\0'; 237b9e93c10SJonathan Haslam } 238b9e93c10SJonathan Haslam 239b9e93c10SJonathan Haslam /* 240b9e93c10SJonathan Haslam * The first part of the string must be either a platform event 241b9e93c10SJonathan Haslam * name or a generic event name. 242b9e93c10SJonathan Haslam */ 243b9e93c10SJonathan Haslam evlen = strlen(p); 244b9e93c10SJonathan Haslam (void) strncpy(event, p, CPC_MAX_EVENT_LEN - 1); 245b9e93c10SJonathan Haslam event[CPC_MAX_EVENT_LEN - 1] = '\0'; 246b9e93c10SJonathan Haslam 247b9e93c10SJonathan Haslam /* 248b9e93c10SJonathan Haslam * The next part of the name is the mode specification. Valid 249b9e93c10SJonathan Haslam * settings are "user", "kernel" or "all". 250b9e93c10SJonathan Haslam */ 251b9e93c10SJonathan Haslam p += evlen + 1; 252b9e93c10SJonathan Haslam 253b9e93c10SJonathan Haslam if (strcmp(p, "user") == 0) 254b9e93c10SJonathan Haslam flag |= CPC_COUNT_USER; 255b9e93c10SJonathan Haslam else if (strcmp(p, "kernel") == 0) 256b9e93c10SJonathan Haslam flag |= CPC_COUNT_SYSTEM; 257b9e93c10SJonathan Haslam else if (strcmp(p, "all") == 0) 258b9e93c10SJonathan Haslam flag |= CPC_COUNT_USER | CPC_COUNT_SYSTEM; 259b9e93c10SJonathan Haslam else 260b9e93c10SJonathan Haslam goto err; 261b9e93c10SJonathan Haslam 262b9e93c10SJonathan Haslam /* 263b9e93c10SJonathan Haslam * Next we either have a mask specification followed by an overflow 264b9e93c10SJonathan Haslam * rate or just an overflow rate on its own. 265b9e93c10SJonathan Haslam */ 266b9e93c10SJonathan Haslam p += strlen(p) + 1; 267b9e93c10SJonathan Haslam if (p[0] == '0' && (p[1] == 'x' || p[1] == 'X')) { 268b9e93c10SJonathan Haslam /* 269b9e93c10SJonathan Haslam * A unit mask can only be specified if: 270b9e93c10SJonathan Haslam * 1) this performance counter back end supports masks. 271b9e93c10SJonathan Haslam * 2) the specified event is platform specific. 272b9e93c10SJonathan Haslam * 3) a valid hex number is converted. 273b9e93c10SJonathan Haslam * 4) no extraneous characters follow the mask specification. 274b9e93c10SJonathan Haslam */ 275b9e93c10SJonathan Haslam if (dcpc_mask_type != 0 && strncmp(event, "PAPI", 4) != 0 && 276b9e93c10SJonathan Haslam ddi_strtol(p, &end, 16, &umask) == 0 && 277b9e93c10SJonathan Haslam end == p + strlen(p)) { 278b9e93c10SJonathan Haslam p += strlen(p) + 1; 279b9e93c10SJonathan Haslam } else { 280b9e93c10SJonathan Haslam goto err; 281b9e93c10SJonathan Haslam } 282b9e93c10SJonathan Haslam } 283b9e93c10SJonathan Haslam 284b9e93c10SJonathan Haslam /* 285b9e93c10SJonathan Haslam * This final part must be an overflow value which has to be greater 286b9e93c10SJonathan Haslam * than the minimum permissible overflow rate. 287b9e93c10SJonathan Haslam */ 288b9e93c10SJonathan Haslam if ((ddi_strtol(p, &end, 10, &val) != 0) || end != p + strlen(p) || 289b9e93c10SJonathan Haslam val < dcpc_min_overflow) 290b9e93c10SJonathan Haslam goto err; 291b9e93c10SJonathan Haslam 292b9e93c10SJonathan Haslam /* 293b9e93c10SJonathan Haslam * Validate the event and create the probe. 294b9e93c10SJonathan Haslam */ 295b9e93c10SJonathan Haslam for (i = 0; i < cpc_ncounters; i++) { 2968cb74972SJonathan Haslam char *events, *cp, *p, *end; 2978cb74972SJonathan Haslam int found = 0, j; 2988cb74972SJonathan Haslam size_t llen; 2998cb74972SJonathan Haslam 3008cb74972SJonathan Haslam if ((events = kcpc_list_events(i)) == NULL) 3018cb74972SJonathan Haslam goto err; 3028cb74972SJonathan Haslam 3038cb74972SJonathan Haslam llen = strlen(events); 3048cb74972SJonathan Haslam p = cp = ddi_strdup(events, KM_NOSLEEP); 3058cb74972SJonathan Haslam end = cp + llen; 3068cb74972SJonathan Haslam 3078cb74972SJonathan Haslam for (j = 0; j < llen; j++) { 3088cb74972SJonathan Haslam if (cp[j] == ',') 3098cb74972SJonathan Haslam cp[j] = '\0'; 3108cb74972SJonathan Haslam } 3118cb74972SJonathan Haslam 3128cb74972SJonathan Haslam while (p < end && found == 0) { 3138cb74972SJonathan Haslam if (strcmp(p, event) == 0) { 3148cb74972SJonathan Haslam dcpc_create_probe(dcpc_pid, desc->dtpd_name, 3158cb74972SJonathan Haslam event, umask, (uint32_t)val, flag); 3168cb74972SJonathan Haslam found = 1; 3178cb74972SJonathan Haslam } 3188cb74972SJonathan Haslam p += strlen(p) + 1; 3198cb74972SJonathan Haslam } 3208cb74972SJonathan Haslam kmem_free(cp, llen + 1); 3218cb74972SJonathan Haslam 3228cb74972SJonathan Haslam if (found) 3238cb74972SJonathan Haslam break; 324b9e93c10SJonathan Haslam } 325b9e93c10SJonathan Haslam 326b9e93c10SJonathan Haslam err: 327b9e93c10SJonathan Haslam kmem_free(str, len + 1); 328b9e93c10SJonathan Haslam } 329b9e93c10SJonathan Haslam 330b9e93c10SJonathan Haslam /*ARGSUSED*/ 331b9e93c10SJonathan Haslam static void 332b9e93c10SJonathan Haslam dcpc_destroy(void *arg, dtrace_id_t id, void *parg) 333b9e93c10SJonathan Haslam { 334b9e93c10SJonathan Haslam dcpc_probe_t *pp = parg; 335b9e93c10SJonathan Haslam 336b9e93c10SJonathan Haslam ASSERT(pp->dcpc_enabled == 0); 337b9e93c10SJonathan Haslam kmem_free(pp, sizeof (dcpc_probe_t)); 338b9e93c10SJonathan Haslam } 339b9e93c10SJonathan Haslam 340b9e93c10SJonathan Haslam /*ARGSUSED*/ 341b9e93c10SJonathan Haslam static int 342b9e93c10SJonathan Haslam dcpc_usermode(void *arg, dtrace_id_t id, void *parg) 343b9e93c10SJonathan Haslam { 344b9e93c10SJonathan Haslam return (CPU->cpu_cpcprofile_pc == 0); 345b9e93c10SJonathan Haslam } 346b9e93c10SJonathan Haslam 347b9e93c10SJonathan Haslam static void 348b9e93c10SJonathan Haslam dcpc_populate_set(cpu_t *c, dcpc_probe_t *pp, kcpc_set_t *set, int reqno) 349b9e93c10SJonathan Haslam { 350b9e93c10SJonathan Haslam kcpc_set_t *oset; 351b9e93c10SJonathan Haslam int i; 352b9e93c10SJonathan Haslam 353b9e93c10SJonathan Haslam (void) strncpy(set->ks_req[reqno].kr_event, pp->dcpc_event_name, 354b9e93c10SJonathan Haslam CPC_MAX_EVENT_LEN); 355b9e93c10SJonathan Haslam set->ks_req[reqno].kr_config = NULL; 356b9e93c10SJonathan Haslam set->ks_req[reqno].kr_index = reqno; 357b9e93c10SJonathan Haslam set->ks_req[reqno].kr_picnum = -1; 358b9e93c10SJonathan Haslam set->ks_req[reqno].kr_flags = pp->dcpc_flag; 359b9e93c10SJonathan Haslam 360b9e93c10SJonathan Haslam /* 361b9e93c10SJonathan Haslam * If a unit mask has been specified then detect which attribute 362b9e93c10SJonathan Haslam * the platform needs. For now, it's either "umask" or "emask". 363b9e93c10SJonathan Haslam */ 364b9e93c10SJonathan Haslam if (pp->dcpc_umask >= 0) { 365b9e93c10SJonathan Haslam set->ks_req[reqno].kr_attr = 366b9e93c10SJonathan Haslam kmem_zalloc(sizeof (kcpc_attr_t), KM_SLEEP); 367b9e93c10SJonathan Haslam set->ks_req[reqno].kr_nattrs = 1; 368b9e93c10SJonathan Haslam if (dcpc_mask_type & DCPC_UMASK) 369b9e93c10SJonathan Haslam (void) strncpy(set->ks_req[reqno].kr_attr->ka_name, 370b9e93c10SJonathan Haslam "umask", 5); 371b9e93c10SJonathan Haslam else 372b9e93c10SJonathan Haslam (void) strncpy(set->ks_req[reqno].kr_attr->ka_name, 373b9e93c10SJonathan Haslam "emask", 5); 374b9e93c10SJonathan Haslam set->ks_req[reqno].kr_attr->ka_val = pp->dcpc_umask; 375b9e93c10SJonathan Haslam } else { 376b9e93c10SJonathan Haslam set->ks_req[reqno].kr_attr = NULL; 377b9e93c10SJonathan Haslam set->ks_req[reqno].kr_nattrs = 0; 378b9e93c10SJonathan Haslam } 379b9e93c10SJonathan Haslam 380b9e93c10SJonathan Haslam /* 381b9e93c10SJonathan Haslam * If this probe is enabled, obtain its current countdown value 382b9e93c10SJonathan Haslam * and use that. The CPUs cpc context might not exist yet if we 383b9e93c10SJonathan Haslam * are dealing with a CPU that is just coming online. 384b9e93c10SJonathan Haslam */ 385b9e93c10SJonathan Haslam if (pp->dcpc_enabled && (c->cpu_cpc_ctx != NULL)) { 386b9e93c10SJonathan Haslam oset = c->cpu_cpc_ctx->kc_set; 387b9e93c10SJonathan Haslam 388b9e93c10SJonathan Haslam for (i = 0; i < oset->ks_nreqs; i++) { 389b9e93c10SJonathan Haslam if (strcmp(oset->ks_req[i].kr_event, 390b9e93c10SJonathan Haslam set->ks_req[reqno].kr_event) == 0) { 391b9e93c10SJonathan Haslam set->ks_req[reqno].kr_preset = 392b9e93c10SJonathan Haslam *(oset->ks_req[i].kr_data); 393b9e93c10SJonathan Haslam } 394b9e93c10SJonathan Haslam } 395b9e93c10SJonathan Haslam } else { 396b9e93c10SJonathan Haslam set->ks_req[reqno].kr_preset = UINT64_MAX - pp->dcpc_ovfval; 397b9e93c10SJonathan Haslam } 398b9e93c10SJonathan Haslam 399b9e93c10SJonathan Haslam set->ks_nreqs++; 400b9e93c10SJonathan Haslam } 401b9e93c10SJonathan Haslam 402b9e93c10SJonathan Haslam 403b9e93c10SJonathan Haslam /* 404b9e93c10SJonathan Haslam * Create a fresh request set for the enablings represented in the 405b9e93c10SJonathan Haslam * 'dcpc_actv_reqs' array which contains the probes we want to be 406b9e93c10SJonathan Haslam * in the set. This can be called for several reasons: 407b9e93c10SJonathan Haslam * 408b9e93c10SJonathan Haslam * 1) We are on a single or multi overflow platform and we have no 409b9e93c10SJonathan Haslam * current events so we can just create the set and initialize it. 410b9e93c10SJonathan Haslam * 2) We are on a multi-overflow platform and we already have one or 411b9e93c10SJonathan Haslam * more existing events and we are adding a new enabling. Create a 412b9e93c10SJonathan Haslam * new set and copy old requests in and then add the new request. 413b9e93c10SJonathan Haslam * 3) We are on a multi-overflow platform and we have just removed an 414b9e93c10SJonathan Haslam * enabling but we still have enablings whch are valid. Create a new 415b9e93c10SJonathan Haslam * set and copy in still valid requests. 416b9e93c10SJonathan Haslam */ 417b9e93c10SJonathan Haslam static kcpc_set_t * 418b9e93c10SJonathan Haslam dcpc_create_set(cpu_t *c) 419b9e93c10SJonathan Haslam { 420b9e93c10SJonathan Haslam int i, reqno = 0; 421b9e93c10SJonathan Haslam int active_requests = 0; 422b9e93c10SJonathan Haslam kcpc_set_t *set; 423b9e93c10SJonathan Haslam 424b9e93c10SJonathan Haslam /* 425b9e93c10SJonathan Haslam * First get a count of the number of currently active requests. 426b9e93c10SJonathan Haslam * Note that dcpc_actv_reqs[] should always reflect which requests 427b9e93c10SJonathan Haslam * we want to be in the set that is to be created. It is the 428b9e93c10SJonathan Haslam * responsibility of the caller of dcpc_create_set() to adjust that 429b9e93c10SJonathan Haslam * array accordingly beforehand. 430b9e93c10SJonathan Haslam */ 431b9e93c10SJonathan Haslam for (i = 0; i < cpc_ncounters; i++) { 432b9e93c10SJonathan Haslam if (dcpc_actv_reqs[i] != NULL) 433b9e93c10SJonathan Haslam active_requests++; 434b9e93c10SJonathan Haslam } 435b9e93c10SJonathan Haslam 436b9e93c10SJonathan Haslam set = kmem_zalloc(sizeof (kcpc_set_t), KM_SLEEP); 437b9e93c10SJonathan Haslam 438b9e93c10SJonathan Haslam set->ks_req = 439b9e93c10SJonathan Haslam kmem_zalloc(sizeof (kcpc_request_t) * active_requests, KM_SLEEP); 440b9e93c10SJonathan Haslam 441b9e93c10SJonathan Haslam set->ks_data = 442b9e93c10SJonathan Haslam kmem_zalloc(active_requests * sizeof (uint64_t), KM_SLEEP); 443b9e93c10SJonathan Haslam 444b9e93c10SJonathan Haslam /* 445b9e93c10SJonathan Haslam * Look for valid entries in the active requests array and populate 446b9e93c10SJonathan Haslam * the request set for any entries found. 447b9e93c10SJonathan Haslam */ 448b9e93c10SJonathan Haslam for (i = 0; i < cpc_ncounters; i++) { 449b9e93c10SJonathan Haslam if (dcpc_actv_reqs[i] != NULL) { 450b9e93c10SJonathan Haslam dcpc_populate_set(c, dcpc_actv_reqs[i], set, reqno); 451b9e93c10SJonathan Haslam reqno++; 452b9e93c10SJonathan Haslam } 453b9e93c10SJonathan Haslam } 454b9e93c10SJonathan Haslam 455b9e93c10SJonathan Haslam return (set); 456b9e93c10SJonathan Haslam } 457b9e93c10SJonathan Haslam 458b9e93c10SJonathan Haslam static int 459b9e93c10SJonathan Haslam dcpc_program_cpu_event(cpu_t *c) 460b9e93c10SJonathan Haslam { 461b9e93c10SJonathan Haslam int i, j, subcode; 462b9e93c10SJonathan Haslam kcpc_ctx_t *ctx, *octx; 463b9e93c10SJonathan Haslam kcpc_set_t *set; 464b9e93c10SJonathan Haslam 465b9e93c10SJonathan Haslam set = dcpc_create_set(c); 466b9e93c10SJonathan Haslam 467*b885580bSAlexander Kolbasov set->ks_ctx = ctx = kcpc_ctx_alloc(KM_SLEEP); 468b9e93c10SJonathan Haslam ctx->kc_set = set; 469b9e93c10SJonathan Haslam ctx->kc_cpuid = c->cpu_id; 470b9e93c10SJonathan Haslam 471b9e93c10SJonathan Haslam if (kcpc_assign_reqs(set, ctx) != 0) 472b9e93c10SJonathan Haslam goto err; 473b9e93c10SJonathan Haslam 474b9e93c10SJonathan Haslam if (kcpc_configure_reqs(ctx, set, &subcode) != 0) 475b9e93c10SJonathan Haslam goto err; 476b9e93c10SJonathan Haslam 477b9e93c10SJonathan Haslam for (i = 0; i < set->ks_nreqs; i++) { 478b9e93c10SJonathan Haslam for (j = 0; j < cpc_ncounters; j++) { 479b9e93c10SJonathan Haslam if (dcpc_actv_reqs[j] != NULL && 480b9e93c10SJonathan Haslam strcmp(set->ks_req[i].kr_event, 481b9e93c10SJonathan Haslam dcpc_actv_reqs[j]->dcpc_event_name) == 0) { 482b9e93c10SJonathan Haslam dcpc_actv_reqs[j]->dcpc_picno = 483b9e93c10SJonathan Haslam set->ks_req[i].kr_picnum; 484b9e93c10SJonathan Haslam } 485b9e93c10SJonathan Haslam } 486b9e93c10SJonathan Haslam } 487b9e93c10SJonathan Haslam 488b9e93c10SJonathan Haslam /* 489b9e93c10SJonathan Haslam * If we already have an active enabling then save the current cpc 490b9e93c10SJonathan Haslam * context away. 491b9e93c10SJonathan Haslam */ 492b9e93c10SJonathan Haslam octx = c->cpu_cpc_ctx; 493b9e93c10SJonathan Haslam 494*b885580bSAlexander Kolbasov kcpc_cpu_program(c, ctx); 495b9e93c10SJonathan Haslam 496b9e93c10SJonathan Haslam if (octx != NULL) { 497b9e93c10SJonathan Haslam kcpc_set_t *oset = octx->kc_set; 498b9e93c10SJonathan Haslam kmem_free(oset->ks_data, oset->ks_nreqs * sizeof (uint64_t)); 499b9e93c10SJonathan Haslam kcpc_free_set(oset); 500b9e93c10SJonathan Haslam kcpc_ctx_free(octx); 501b9e93c10SJonathan Haslam } 502b9e93c10SJonathan Haslam 503b9e93c10SJonathan Haslam return (0); 504b9e93c10SJonathan Haslam 505b9e93c10SJonathan Haslam err: 506b9e93c10SJonathan Haslam /* 507b9e93c10SJonathan Haslam * We failed to configure this request up so free things up and 508b9e93c10SJonathan Haslam * get out. 509b9e93c10SJonathan Haslam */ 510b9e93c10SJonathan Haslam kmem_free(set->ks_data, set->ks_nreqs * sizeof (uint64_t)); 511b9e93c10SJonathan Haslam kcpc_free_set(set); 512b9e93c10SJonathan Haslam kcpc_ctx_free(ctx); 513b9e93c10SJonathan Haslam 514b9e93c10SJonathan Haslam return (-1); 515b9e93c10SJonathan Haslam } 516b9e93c10SJonathan Haslam 517b9e93c10SJonathan Haslam static void 518b9e93c10SJonathan Haslam dcpc_disable_cpu(cpu_t *c) 519b9e93c10SJonathan Haslam { 520b9e93c10SJonathan Haslam kcpc_ctx_t *ctx; 521b9e93c10SJonathan Haslam kcpc_set_t *set; 522b9e93c10SJonathan Haslam 523b9e93c10SJonathan Haslam /* 524b9e93c10SJonathan Haslam * Leave this CPU alone if it's already offline. 525b9e93c10SJonathan Haslam */ 526b9e93c10SJonathan Haslam if (c->cpu_flags & CPU_OFFLINE) 527b9e93c10SJonathan Haslam return; 528b9e93c10SJonathan Haslam 529*b885580bSAlexander Kolbasov /* 530*b885580bSAlexander Kolbasov * Grab CPUs CPC context before kcpc_cpu_stop() stops counters and 531*b885580bSAlexander Kolbasov * changes it. 532*b885580bSAlexander Kolbasov */ 533b9e93c10SJonathan Haslam ctx = c->cpu_cpc_ctx; 534*b885580bSAlexander Kolbasov 535*b885580bSAlexander Kolbasov kcpc_cpu_stop(c, B_FALSE); 536*b885580bSAlexander Kolbasov 537b9e93c10SJonathan Haslam set = ctx->kc_set; 538b9e93c10SJonathan Haslam 539b9e93c10SJonathan Haslam kcpc_free_configs(set); 540b9e93c10SJonathan Haslam 541b9e93c10SJonathan Haslam kmem_free(set->ks_data, set->ks_nreqs * sizeof (uint64_t)); 542b9e93c10SJonathan Haslam kcpc_free_set(set); 543b9e93c10SJonathan Haslam kcpc_ctx_free(ctx); 544b9e93c10SJonathan Haslam } 545b9e93c10SJonathan Haslam 546b9e93c10SJonathan Haslam /* 547b9e93c10SJonathan Haslam * Stop overflow interrupts being actively processed so that per-CPU 548b9e93c10SJonathan Haslam * configuration state can be changed safely and correctly. Each CPU has a 549b9e93c10SJonathan Haslam * dcpc interrupt state byte which is transitioned from DCPC_INTR_FREE (the 550b9e93c10SJonathan Haslam * "free" state) to DCPC_INTR_CONFIG (the "configuration in process" state) 551b9e93c10SJonathan Haslam * before any configuration state is changed on any CPUs. The hardware overflow 552b9e93c10SJonathan Haslam * handler, kcpc_hw_overflow_intr(), will only process an interrupt when a 553b9e93c10SJonathan Haslam * configuration is not in process (i.e. the state is marked as free). During 554b9e93c10SJonathan Haslam * interrupt processing the state is set to DCPC_INTR_PROCESSING by the 555b9e93c10SJonathan Haslam * overflow handler. 556b9e93c10SJonathan Haslam */ 557b9e93c10SJonathan Haslam static void 558b9e93c10SJonathan Haslam dcpc_block_interrupts(void) 559b9e93c10SJonathan Haslam { 560b9e93c10SJonathan Haslam cpu_t *c; 561b9e93c10SJonathan Haslam uint8_t *state; 562b9e93c10SJonathan Haslam 563b9e93c10SJonathan Haslam c = cpu_list; 564b9e93c10SJonathan Haslam 565b9e93c10SJonathan Haslam do { 566b9e93c10SJonathan Haslam state = &cpu_core[c->cpu_id].cpuc_dcpc_intr_state; 567b9e93c10SJonathan Haslam 568b9e93c10SJonathan Haslam while (atomic_cas_8(state, DCPC_INTR_FREE, 569b9e93c10SJonathan Haslam DCPC_INTR_CONFIG) != DCPC_INTR_FREE) 570b9e93c10SJonathan Haslam continue; 571b9e93c10SJonathan Haslam 572b9e93c10SJonathan Haslam } while ((c = c->cpu_next) != cpu_list); 573b9e93c10SJonathan Haslam } 574b9e93c10SJonathan Haslam 575b9e93c10SJonathan Haslam /* 576b9e93c10SJonathan Haslam * Set all CPUs dcpc interrupt state to DCPC_INTR_FREE to indicate that 577b9e93c10SJonathan Haslam * overflow interrupts can be processed safely. 578b9e93c10SJonathan Haslam */ 579b9e93c10SJonathan Haslam static void 580b9e93c10SJonathan Haslam dcpc_release_interrupts(void) 581b9e93c10SJonathan Haslam { 582b9e93c10SJonathan Haslam cpu_t *c = cpu_list; 583b9e93c10SJonathan Haslam 584b9e93c10SJonathan Haslam do { 585b9e93c10SJonathan Haslam cpu_core[c->cpu_id].cpuc_dcpc_intr_state = DCPC_INTR_FREE; 586b9e93c10SJonathan Haslam membar_producer(); 587b9e93c10SJonathan Haslam } while ((c = c->cpu_next) != cpu_list); 588b9e93c10SJonathan Haslam } 589b9e93c10SJonathan Haslam 590b9e93c10SJonathan Haslam /* 591b9e93c10SJonathan Haslam * dcpc_program_event() can be called owing to a new enabling or if a multi 592b9e93c10SJonathan Haslam * overflow platform has disabled a request but needs to program the requests 593b9e93c10SJonathan Haslam * that are still valid. 594b9e93c10SJonathan Haslam * 595b9e93c10SJonathan Haslam * Every invocation of dcpc_program_event() will create a new kcpc_ctx_t 596b9e93c10SJonathan Haslam * and a new request set which contains the new enabling and any old enablings 597b9e93c10SJonathan Haslam * which are still valid (possible with multi-overflow platforms). 598b9e93c10SJonathan Haslam */ 599b9e93c10SJonathan Haslam static int 600b9e93c10SJonathan Haslam dcpc_program_event(dcpc_probe_t *pp) 601b9e93c10SJonathan Haslam { 602b9e93c10SJonathan Haslam cpu_t *c; 603b9e93c10SJonathan Haslam int ret = 0; 604b9e93c10SJonathan Haslam 605b9e93c10SJonathan Haslam ASSERT(MUTEX_HELD(&cpu_lock)); 606b9e93c10SJonathan Haslam 607b9e93c10SJonathan Haslam kpreempt_disable(); 608b9e93c10SJonathan Haslam 609b9e93c10SJonathan Haslam dcpc_block_interrupts(); 610b9e93c10SJonathan Haslam 611b9e93c10SJonathan Haslam c = cpu_list; 612b9e93c10SJonathan Haslam 613b9e93c10SJonathan Haslam do { 614b9e93c10SJonathan Haslam /* 615b9e93c10SJonathan Haslam * Skip CPUs that are currently offline. 616b9e93c10SJonathan Haslam */ 617b9e93c10SJonathan Haslam if (c->cpu_flags & CPU_OFFLINE) 618b9e93c10SJonathan Haslam continue; 619b9e93c10SJonathan Haslam 620*b885580bSAlexander Kolbasov /* 621*b885580bSAlexander Kolbasov * Stop counters but preserve existing DTrace CPC context 622*b885580bSAlexander Kolbasov * if there is one. 623*b885580bSAlexander Kolbasov * 624*b885580bSAlexander Kolbasov * If we come here when the first event is programmed for a CPU, 625*b885580bSAlexander Kolbasov * there should be no DTrace CPC context installed. In this 626*b885580bSAlexander Kolbasov * case, kcpc_cpu_stop() will ensure that there is no other 627*b885580bSAlexander Kolbasov * context on the CPU. 628*b885580bSAlexander Kolbasov * 629*b885580bSAlexander Kolbasov * If we add new enabling to the original one, the CPU should 630*b885580bSAlexander Kolbasov * have the old DTrace CPC context which we need to keep around 631*b885580bSAlexander Kolbasov * since dcpc_program_event() will add to it. 632*b885580bSAlexander Kolbasov */ 633b9e93c10SJonathan Haslam if (c->cpu_cpc_ctx != NULL) 634*b885580bSAlexander Kolbasov kcpc_cpu_stop(c, B_TRUE); 635b9e93c10SJonathan Haslam } while ((c = c->cpu_next) != cpu_list); 636b9e93c10SJonathan Haslam 637b9e93c10SJonathan Haslam dcpc_release_interrupts(); 638b9e93c10SJonathan Haslam 639b9e93c10SJonathan Haslam /* 640b9e93c10SJonathan Haslam * If this enabling is being removed (in the case of a multi event 641b9e93c10SJonathan Haslam * capable system with more than one active enabling), we can now 642b9e93c10SJonathan Haslam * update the active request array to reflect the enablings that need 643b9e93c10SJonathan Haslam * to be reprogrammed. 644b9e93c10SJonathan Haslam */ 645b9e93c10SJonathan Haslam if (pp->dcpc_disabling == 1) 646b9e93c10SJonathan Haslam dcpc_actv_reqs[pp->dcpc_actv_req_idx] = NULL; 647b9e93c10SJonathan Haslam 648b9e93c10SJonathan Haslam do { 649b9e93c10SJonathan Haslam /* 650b9e93c10SJonathan Haslam * Skip CPUs that are currently offline. 651b9e93c10SJonathan Haslam */ 652b9e93c10SJonathan Haslam if (c->cpu_flags & CPU_OFFLINE) 653b9e93c10SJonathan Haslam continue; 654b9e93c10SJonathan Haslam 655b9e93c10SJonathan Haslam ret = dcpc_program_cpu_event(c); 656b9e93c10SJonathan Haslam } while ((c = c->cpu_next) != cpu_list && ret == 0); 657b9e93c10SJonathan Haslam 658b9e93c10SJonathan Haslam /* 659b9e93c10SJonathan Haslam * If dcpc_program_cpu_event() fails then it is because we couldn't 660b9e93c10SJonathan Haslam * configure the requests in the set for the CPU and not because of 661b9e93c10SJonathan Haslam * an error programming the hardware. If we have a failure here then 662b9e93c10SJonathan Haslam * we assume no CPUs have been programmed in the above step as they 663b9e93c10SJonathan Haslam * are all configured identically. 664b9e93c10SJonathan Haslam */ 665b9e93c10SJonathan Haslam if (ret != 0) { 666b9e93c10SJonathan Haslam pp->dcpc_enabled = 0; 667b9e93c10SJonathan Haslam kpreempt_enable(); 668b9e93c10SJonathan Haslam return (-1); 669b9e93c10SJonathan Haslam } 670b9e93c10SJonathan Haslam 671b9e93c10SJonathan Haslam if (pp->dcpc_disabling != 1) 672b9e93c10SJonathan Haslam pp->dcpc_enabled = 1; 673b9e93c10SJonathan Haslam 674b9e93c10SJonathan Haslam kpreempt_enable(); 675b9e93c10SJonathan Haslam 676b9e93c10SJonathan Haslam return (0); 677b9e93c10SJonathan Haslam } 678b9e93c10SJonathan Haslam 679b9e93c10SJonathan Haslam /*ARGSUSED*/ 680b9e93c10SJonathan Haslam static int 681b9e93c10SJonathan Haslam dcpc_enable(void *arg, dtrace_id_t id, void *parg) 682b9e93c10SJonathan Haslam { 683b9e93c10SJonathan Haslam dcpc_probe_t *pp = parg; 684b9e93c10SJonathan Haslam int i, found = 0; 685b9e93c10SJonathan Haslam cpu_t *c; 686b9e93c10SJonathan Haslam 687b9e93c10SJonathan Haslam ASSERT(MUTEX_HELD(&cpu_lock)); 688b9e93c10SJonathan Haslam 689b9e93c10SJonathan Haslam /* 690b9e93c10SJonathan Haslam * Bail out if the counters are being used by a libcpc consumer. 691b9e93c10SJonathan Haslam */ 692b9e93c10SJonathan Haslam rw_enter(&kcpc_cpuctx_lock, RW_READER); 693b9e93c10SJonathan Haslam if (kcpc_cpuctx > 0) { 694b9e93c10SJonathan Haslam rw_exit(&kcpc_cpuctx_lock); 695b9e93c10SJonathan Haslam return (-1); 696b9e93c10SJonathan Haslam } 697b9e93c10SJonathan Haslam 698b9e93c10SJonathan Haslam dtrace_cpc_in_use++; 699b9e93c10SJonathan Haslam rw_exit(&kcpc_cpuctx_lock); 700b9e93c10SJonathan Haslam 701b9e93c10SJonathan Haslam /* 702b9e93c10SJonathan Haslam * Locate this enabling in the first free entry of the active 703b9e93c10SJonathan Haslam * request array. 704b9e93c10SJonathan Haslam */ 705b9e93c10SJonathan Haslam for (i = 0; i < cpc_ncounters; i++) { 706b9e93c10SJonathan Haslam if (dcpc_actv_reqs[i] == NULL) { 707b9e93c10SJonathan Haslam dcpc_actv_reqs[i] = pp; 708b9e93c10SJonathan Haslam pp->dcpc_actv_req_idx = i; 709b9e93c10SJonathan Haslam found = 1; 710b9e93c10SJonathan Haslam break; 711b9e93c10SJonathan Haslam } 712b9e93c10SJonathan Haslam } 713b9e93c10SJonathan Haslam 714b9e93c10SJonathan Haslam /* 715b9e93c10SJonathan Haslam * If we couldn't find a slot for this probe then there is no 716b9e93c10SJonathan Haslam * room at the inn. 717b9e93c10SJonathan Haslam */ 718b9e93c10SJonathan Haslam if (!found) { 719b9e93c10SJonathan Haslam dtrace_cpc_in_use--; 720b9e93c10SJonathan Haslam return (-1); 721b9e93c10SJonathan Haslam } 722b9e93c10SJonathan Haslam 723b9e93c10SJonathan Haslam ASSERT(pp->dcpc_actv_req_idx >= 0); 724b9e93c10SJonathan Haslam 725b9e93c10SJonathan Haslam /* 726*b885580bSAlexander Kolbasov * DTrace is taking over CPC contexts, so stop collecting 727*b885580bSAlexander Kolbasov * capacity/utilization data for all CPUs. 728*b885580bSAlexander Kolbasov */ 729*b885580bSAlexander Kolbasov if (dtrace_cpc_in_use == 1) 730*b885580bSAlexander Kolbasov cu_disable(); 731*b885580bSAlexander Kolbasov 732*b885580bSAlexander Kolbasov /* 733b9e93c10SJonathan Haslam * The following must hold true if we are to (attempt to) enable 734b9e93c10SJonathan Haslam * this request: 735b9e93c10SJonathan Haslam * 736b9e93c10SJonathan Haslam * 1) No enablings currently exist. We allow all platforms to 737b9e93c10SJonathan Haslam * proceed if this is true. 738b9e93c10SJonathan Haslam * 739b9e93c10SJonathan Haslam * OR 740b9e93c10SJonathan Haslam * 741b9e93c10SJonathan Haslam * 2) If the platform is multi overflow capable and there are 742b9e93c10SJonathan Haslam * less valid enablings than there are counters. There is no 743b9e93c10SJonathan Haslam * guarantee that a platform can accommodate as many events as 744b9e93c10SJonathan Haslam * it has counters for but we will at least try to program 745b9e93c10SJonathan Haslam * up to that many requests. 746b9e93c10SJonathan Haslam * 747b9e93c10SJonathan Haslam * The 'dcpc_enablings' variable is implictly protected by locking 748b9e93c10SJonathan Haslam * provided by the DTrace framework and the cpu management framework. 749b9e93c10SJonathan Haslam */ 750b9e93c10SJonathan Haslam if (dcpc_enablings == 0 || (dcpc_mult_ovf_cap && 751b9e93c10SJonathan Haslam dcpc_enablings < cpc_ncounters)) { 752b9e93c10SJonathan Haslam /* 753b9e93c10SJonathan Haslam * Before attempting to program the first enabling we need to 754b9e93c10SJonathan Haslam * invalidate any lwp-based contexts. 755b9e93c10SJonathan Haslam */ 756b9e93c10SJonathan Haslam if (dcpc_enablings == 0) 757b9e93c10SJonathan Haslam kcpc_invalidate_all(); 758b9e93c10SJonathan Haslam 759b9e93c10SJonathan Haslam if (dcpc_program_event(pp) == 0) { 760b9e93c10SJonathan Haslam dcpc_enablings++; 761b9e93c10SJonathan Haslam return (0); 762b9e93c10SJonathan Haslam } 763b9e93c10SJonathan Haslam } 764b9e93c10SJonathan Haslam 765b9e93c10SJonathan Haslam /* 766b9e93c10SJonathan Haslam * If active enablings existed before we failed to enable this probe 767b9e93c10SJonathan Haslam * on a multi event capable platform then we need to restart counters 768b9e93c10SJonathan Haslam * as they will have been stopped in the attempted configuration. The 769b9e93c10SJonathan Haslam * context should now just contain the request prior to this failed 770b9e93c10SJonathan Haslam * enabling. 771b9e93c10SJonathan Haslam */ 772b9e93c10SJonathan Haslam if (dcpc_enablings > 0 && dcpc_mult_ovf_cap) { 773b9e93c10SJonathan Haslam c = cpu_list; 774b9e93c10SJonathan Haslam 775b9e93c10SJonathan Haslam ASSERT(dcpc_mult_ovf_cap == 1); 776b9e93c10SJonathan Haslam do { 777b9e93c10SJonathan Haslam /* 778b9e93c10SJonathan Haslam * Skip CPUs that are currently offline. 779b9e93c10SJonathan Haslam */ 780b9e93c10SJonathan Haslam if (c->cpu_flags & CPU_OFFLINE) 781b9e93c10SJonathan Haslam continue; 782b9e93c10SJonathan Haslam 783*b885580bSAlexander Kolbasov kcpc_cpu_program(c, c->cpu_cpc_ctx); 784b9e93c10SJonathan Haslam } while ((c = c->cpu_next) != cpu_list); 785b9e93c10SJonathan Haslam } 786b9e93c10SJonathan Haslam 787b9e93c10SJonathan Haslam dtrace_cpc_in_use--; 788b9e93c10SJonathan Haslam dcpc_actv_reqs[pp->dcpc_actv_req_idx] = NULL; 789b9e93c10SJonathan Haslam pp->dcpc_actv_req_idx = pp->dcpc_picno = -1; 790b9e93c10SJonathan Haslam 791*b885580bSAlexander Kolbasov /* 792*b885580bSAlexander Kolbasov * If all probes are removed, enable capacity/utilization data 793*b885580bSAlexander Kolbasov * collection for every CPU. 794*b885580bSAlexander Kolbasov */ 795*b885580bSAlexander Kolbasov if (dtrace_cpc_in_use == 0) 796*b885580bSAlexander Kolbasov cu_enable(); 797*b885580bSAlexander Kolbasov 798b9e93c10SJonathan Haslam return (-1); 799b9e93c10SJonathan Haslam } 800b9e93c10SJonathan Haslam 801b9e93c10SJonathan Haslam /* 802b9e93c10SJonathan Haslam * If only one enabling is active then remove the context and free 803b9e93c10SJonathan Haslam * everything up. If there are multiple enablings active then remove this 804b9e93c10SJonathan Haslam * one, its associated meta-data and re-program the hardware. 805b9e93c10SJonathan Haslam */ 806b9e93c10SJonathan Haslam /*ARGSUSED*/ 807b9e93c10SJonathan Haslam static void 808b9e93c10SJonathan Haslam dcpc_disable(void *arg, dtrace_id_t id, void *parg) 809b9e93c10SJonathan Haslam { 810b9e93c10SJonathan Haslam cpu_t *c; 811b9e93c10SJonathan Haslam dcpc_probe_t *pp = parg; 812b9e93c10SJonathan Haslam 813b9e93c10SJonathan Haslam ASSERT(MUTEX_HELD(&cpu_lock)); 814b9e93c10SJonathan Haslam 815b9e93c10SJonathan Haslam kpreempt_disable(); 816b9e93c10SJonathan Haslam 817b9e93c10SJonathan Haslam /* 818b9e93c10SJonathan Haslam * This probe didn't actually make it as far as being fully enabled 819b9e93c10SJonathan Haslam * so we needn't do anything with it. 820b9e93c10SJonathan Haslam */ 821b9e93c10SJonathan Haslam if (pp->dcpc_enabled == 0) { 822b9e93c10SJonathan Haslam /* 823b9e93c10SJonathan Haslam * If we actually allocated this request a slot in the 824b9e93c10SJonathan Haslam * request array but failed to enabled it then remove the 825b9e93c10SJonathan Haslam * entry in the array. 826b9e93c10SJonathan Haslam */ 827b9e93c10SJonathan Haslam if (pp->dcpc_actv_req_idx >= 0) { 828b9e93c10SJonathan Haslam dcpc_actv_reqs[pp->dcpc_actv_req_idx] = NULL; 829b9e93c10SJonathan Haslam pp->dcpc_actv_req_idx = pp->dcpc_picno = 830b9e93c10SJonathan Haslam pp->dcpc_disabling = -1; 831b9e93c10SJonathan Haslam } 832b9e93c10SJonathan Haslam 833b9e93c10SJonathan Haslam kpreempt_enable(); 834b9e93c10SJonathan Haslam return; 835b9e93c10SJonathan Haslam } 836b9e93c10SJonathan Haslam 837b9e93c10SJonathan Haslam /* 838b9e93c10SJonathan Haslam * If this is the only enabling then stop all the counters and 839b9e93c10SJonathan Haslam * free up the meta-data. 840b9e93c10SJonathan Haslam */ 841b9e93c10SJonathan Haslam if (dcpc_enablings == 1) { 842b9e93c10SJonathan Haslam ASSERT(dtrace_cpc_in_use == 1); 843b9e93c10SJonathan Haslam 844b9e93c10SJonathan Haslam dcpc_block_interrupts(); 845b9e93c10SJonathan Haslam 846b9e93c10SJonathan Haslam c = cpu_list; 847b9e93c10SJonathan Haslam 848b9e93c10SJonathan Haslam do { 849b9e93c10SJonathan Haslam dcpc_disable_cpu(c); 850b9e93c10SJonathan Haslam } while ((c = c->cpu_next) != cpu_list); 851b9e93c10SJonathan Haslam 852b9e93c10SJonathan Haslam dcpc_actv_reqs[pp->dcpc_actv_req_idx] = NULL; 853b9e93c10SJonathan Haslam dcpc_release_interrupts(); 854b9e93c10SJonathan Haslam } else { 855b9e93c10SJonathan Haslam /* 856b9e93c10SJonathan Haslam * This platform can support multiple overflow events and 857b9e93c10SJonathan Haslam * the enabling being disabled is not the last one. Remove this 858b9e93c10SJonathan Haslam * enabling and re-program the hardware with the new config. 859b9e93c10SJonathan Haslam */ 860b9e93c10SJonathan Haslam ASSERT(dcpc_mult_ovf_cap); 861b9e93c10SJonathan Haslam ASSERT(dcpc_enablings > 1); 862b9e93c10SJonathan Haslam 863b9e93c10SJonathan Haslam pp->dcpc_disabling = 1; 864b9e93c10SJonathan Haslam (void) dcpc_program_event(pp); 865b9e93c10SJonathan Haslam } 866b9e93c10SJonathan Haslam 867b9e93c10SJonathan Haslam kpreempt_enable(); 868b9e93c10SJonathan Haslam 869b9e93c10SJonathan Haslam dcpc_enablings--; 870b9e93c10SJonathan Haslam dtrace_cpc_in_use--; 871b9e93c10SJonathan Haslam pp->dcpc_enabled = 0; 872b9e93c10SJonathan Haslam pp->dcpc_actv_req_idx = pp->dcpc_picno = pp->dcpc_disabling = -1; 873*b885580bSAlexander Kolbasov 874*b885580bSAlexander Kolbasov /* 875*b885580bSAlexander Kolbasov * If all probes are removed, enable capacity/utilization data 876*b885580bSAlexander Kolbasov * collection for every CPU 877*b885580bSAlexander Kolbasov */ 878*b885580bSAlexander Kolbasov if (dtrace_cpc_in_use == 0) 879*b885580bSAlexander Kolbasov cu_enable(); 880b9e93c10SJonathan Haslam } 881b9e93c10SJonathan Haslam 882b9e93c10SJonathan Haslam /*ARGSUSED*/ 883b9e93c10SJonathan Haslam static int 884b9e93c10SJonathan Haslam dcpc_cpu_setup(cpu_setup_t what, processorid_t cpu, void *arg) 885b9e93c10SJonathan Haslam { 886b9e93c10SJonathan Haslam cpu_t *c; 887b9e93c10SJonathan Haslam uint8_t *state; 888b9e93c10SJonathan Haslam 889b9e93c10SJonathan Haslam ASSERT(MUTEX_HELD(&cpu_lock)); 890b9e93c10SJonathan Haslam 891b9e93c10SJonathan Haslam switch (what) { 892b9e93c10SJonathan Haslam case CPU_OFF: 893b9e93c10SJonathan Haslam /* 894b9e93c10SJonathan Haslam * Offline CPUs are not allowed to take part so remove this 895b9e93c10SJonathan Haslam * CPU if we are actively tracing. 896b9e93c10SJonathan Haslam */ 897b9e93c10SJonathan Haslam if (dtrace_cpc_in_use) { 898b9e93c10SJonathan Haslam c = cpu_get(cpu); 899b9e93c10SJonathan Haslam state = &cpu_core[c->cpu_id].cpuc_dcpc_intr_state; 900b9e93c10SJonathan Haslam 901b9e93c10SJonathan Haslam /* 902b9e93c10SJonathan Haslam * Indicate that a configuration is in process in 903b9e93c10SJonathan Haslam * order to stop overflow interrupts being processed 904b9e93c10SJonathan Haslam * on this CPU while we disable it. 905b9e93c10SJonathan Haslam */ 906b9e93c10SJonathan Haslam while (atomic_cas_8(state, DCPC_INTR_FREE, 907b9e93c10SJonathan Haslam DCPC_INTR_CONFIG) != DCPC_INTR_FREE) 908b9e93c10SJonathan Haslam continue; 909b9e93c10SJonathan Haslam 910b9e93c10SJonathan Haslam dcpc_disable_cpu(c); 911b9e93c10SJonathan Haslam 912b9e93c10SJonathan Haslam /* 913b9e93c10SJonathan Haslam * Reset this CPUs interrupt state as the configuration 914b9e93c10SJonathan Haslam * has ended. 915b9e93c10SJonathan Haslam */ 916b9e93c10SJonathan Haslam cpu_core[c->cpu_id].cpuc_dcpc_intr_state = 917b9e93c10SJonathan Haslam DCPC_INTR_FREE; 918b9e93c10SJonathan Haslam membar_producer(); 919b9e93c10SJonathan Haslam } 920b9e93c10SJonathan Haslam break; 921b9e93c10SJonathan Haslam 922b9e93c10SJonathan Haslam case CPU_ON: 923b9e93c10SJonathan Haslam case CPU_SETUP: 924b9e93c10SJonathan Haslam /* 925b9e93c10SJonathan Haslam * This CPU is being initialized or brought online so program 926b9e93c10SJonathan Haslam * it with the current request set if we are actively tracing. 927b9e93c10SJonathan Haslam */ 928b9e93c10SJonathan Haslam if (dtrace_cpc_in_use) { 929b9e93c10SJonathan Haslam c = cpu_get(cpu); 930b9e93c10SJonathan Haslam (void) dcpc_program_cpu_event(c); 931b9e93c10SJonathan Haslam } 932b9e93c10SJonathan Haslam break; 933b9e93c10SJonathan Haslam 934b9e93c10SJonathan Haslam default: 935b9e93c10SJonathan Haslam break; 936b9e93c10SJonathan Haslam } 937b9e93c10SJonathan Haslam 938b9e93c10SJonathan Haslam return (0); 939b9e93c10SJonathan Haslam } 940b9e93c10SJonathan Haslam 941b9e93c10SJonathan Haslam static dtrace_pattr_t dcpc_attr = { 942b9e93c10SJonathan Haslam { DTRACE_STABILITY_EVOLVING, DTRACE_STABILITY_EVOLVING, DTRACE_CLASS_COMMON }, 943b9e93c10SJonathan Haslam { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN }, 944b9e93c10SJonathan Haslam { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN }, 945b9e93c10SJonathan Haslam { DTRACE_STABILITY_EVOLVING, DTRACE_STABILITY_EVOLVING, DTRACE_CLASS_CPU }, 946b9e93c10SJonathan Haslam { DTRACE_STABILITY_EVOLVING, DTRACE_STABILITY_EVOLVING, DTRACE_CLASS_COMMON }, 947b9e93c10SJonathan Haslam }; 948b9e93c10SJonathan Haslam 949b9e93c10SJonathan Haslam static dtrace_pops_t dcpc_pops = { 950b9e93c10SJonathan Haslam dcpc_provide, 951b9e93c10SJonathan Haslam NULL, 952b9e93c10SJonathan Haslam dcpc_enable, 953b9e93c10SJonathan Haslam dcpc_disable, 954b9e93c10SJonathan Haslam NULL, 955b9e93c10SJonathan Haslam NULL, 956b9e93c10SJonathan Haslam NULL, 957b9e93c10SJonathan Haslam NULL, 958b9e93c10SJonathan Haslam dcpc_usermode, 959b9e93c10SJonathan Haslam dcpc_destroy 960b9e93c10SJonathan Haslam }; 961b9e93c10SJonathan Haslam 962b9e93c10SJonathan Haslam /*ARGSUSED*/ 963b9e93c10SJonathan Haslam static int 964b9e93c10SJonathan Haslam dcpc_open(dev_t *devp, int flag, int otyp, cred_t *cred_p) 965b9e93c10SJonathan Haslam { 966b9e93c10SJonathan Haslam return (0); 967b9e93c10SJonathan Haslam } 968b9e93c10SJonathan Haslam 969b9e93c10SJonathan Haslam /*ARGSUSED*/ 970b9e93c10SJonathan Haslam static int 971b9e93c10SJonathan Haslam dcpc_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result) 972b9e93c10SJonathan Haslam { 973b9e93c10SJonathan Haslam int error; 974b9e93c10SJonathan Haslam 975b9e93c10SJonathan Haslam switch (infocmd) { 976b9e93c10SJonathan Haslam case DDI_INFO_DEVT2DEVINFO: 977b9e93c10SJonathan Haslam *result = (void *)dcpc_devi; 978b9e93c10SJonathan Haslam error = DDI_SUCCESS; 979b9e93c10SJonathan Haslam break; 980b9e93c10SJonathan Haslam case DDI_INFO_DEVT2INSTANCE: 981b9e93c10SJonathan Haslam *result = (void *)0; 982b9e93c10SJonathan Haslam error = DDI_SUCCESS; 983b9e93c10SJonathan Haslam break; 984b9e93c10SJonathan Haslam default: 985b9e93c10SJonathan Haslam error = DDI_FAILURE; 986b9e93c10SJonathan Haslam } 987b9e93c10SJonathan Haslam return (error); 988b9e93c10SJonathan Haslam } 989b9e93c10SJonathan Haslam 990b9e93c10SJonathan Haslam static int 991b9e93c10SJonathan Haslam dcpc_detach(dev_info_t *devi, ddi_detach_cmd_t cmd) 992b9e93c10SJonathan Haslam { 993b9e93c10SJonathan Haslam switch (cmd) { 994b9e93c10SJonathan Haslam case DDI_DETACH: 995b9e93c10SJonathan Haslam break; 996b9e93c10SJonathan Haslam case DDI_SUSPEND: 997b9e93c10SJonathan Haslam return (DDI_SUCCESS); 998b9e93c10SJonathan Haslam default: 999b9e93c10SJonathan Haslam return (DDI_FAILURE); 1000b9e93c10SJonathan Haslam } 1001b9e93c10SJonathan Haslam 1002b9e93c10SJonathan Haslam if (dtrace_unregister(dcpc_pid) != 0) 1003b9e93c10SJonathan Haslam return (DDI_FAILURE); 1004b9e93c10SJonathan Haslam 1005b9e93c10SJonathan Haslam ddi_remove_minor_node(devi, NULL); 1006b9e93c10SJonathan Haslam 1007b9e93c10SJonathan Haslam mutex_enter(&cpu_lock); 1008b9e93c10SJonathan Haslam unregister_cpu_setup_func(dcpc_cpu_setup, NULL); 1009b9e93c10SJonathan Haslam mutex_exit(&cpu_lock); 1010b9e93c10SJonathan Haslam 1011b9e93c10SJonathan Haslam kmem_free(dcpc_actv_reqs, cpc_ncounters * sizeof (dcpc_probe_t *)); 1012b9e93c10SJonathan Haslam 1013b9e93c10SJonathan Haslam kcpc_unregister_dcpc(); 1014b9e93c10SJonathan Haslam 1015b9e93c10SJonathan Haslam return (DDI_SUCCESS); 1016b9e93c10SJonathan Haslam } 1017b9e93c10SJonathan Haslam 1018b9e93c10SJonathan Haslam static int 1019b9e93c10SJonathan Haslam dcpc_attach(dev_info_t *devi, ddi_attach_cmd_t cmd) 1020b9e93c10SJonathan Haslam { 1021b9e93c10SJonathan Haslam uint_t caps; 1022b9e93c10SJonathan Haslam char *attrs; 1023b9e93c10SJonathan Haslam 1024b9e93c10SJonathan Haslam switch (cmd) { 1025b9e93c10SJonathan Haslam case DDI_ATTACH: 1026b9e93c10SJonathan Haslam break; 1027b9e93c10SJonathan Haslam case DDI_RESUME: 1028b9e93c10SJonathan Haslam return (DDI_SUCCESS); 1029b9e93c10SJonathan Haslam default: 1030b9e93c10SJonathan Haslam return (DDI_FAILURE); 1031b9e93c10SJonathan Haslam } 1032b9e93c10SJonathan Haslam 1033b9e93c10SJonathan Haslam if (kcpc_pcbe_loaded() == -1) 1034b9e93c10SJonathan Haslam return (DDI_FAILURE); 1035b9e93c10SJonathan Haslam 1036b9e93c10SJonathan Haslam caps = kcpc_pcbe_capabilities(); 1037b9e93c10SJonathan Haslam 1038b9e93c10SJonathan Haslam if (!(caps & CPC_CAP_OVERFLOW_INTERRUPT)) { 10398cb74972SJonathan Haslam cmn_err(CE_NOTE, "!dcpc: Counter Overflow not supported"\ 10408cb74972SJonathan Haslam " on this processor"); 1041b9e93c10SJonathan Haslam return (DDI_FAILURE); 1042b9e93c10SJonathan Haslam } 1043b9e93c10SJonathan Haslam 1044b9e93c10SJonathan Haslam if (ddi_create_minor_node(devi, "dcpc", S_IFCHR, 0, 1045b9e93c10SJonathan Haslam DDI_PSEUDO, NULL) == DDI_FAILURE || 1046b9e93c10SJonathan Haslam dtrace_register("cpc", &dcpc_attr, DTRACE_PRIV_KERNEL, 1047b9e93c10SJonathan Haslam NULL, &dcpc_pops, NULL, &dcpc_pid) != 0) { 1048b9e93c10SJonathan Haslam ddi_remove_minor_node(devi, NULL); 1049b9e93c10SJonathan Haslam return (DDI_FAILURE); 1050b9e93c10SJonathan Haslam } 1051b9e93c10SJonathan Haslam 1052b9e93c10SJonathan Haslam mutex_enter(&cpu_lock); 1053b9e93c10SJonathan Haslam register_cpu_setup_func(dcpc_cpu_setup, NULL); 1054b9e93c10SJonathan Haslam mutex_exit(&cpu_lock); 1055b9e93c10SJonathan Haslam 1056b9e93c10SJonathan Haslam dcpc_ovf_mask = (1 << cpc_ncounters) - 1; 1057b9e93c10SJonathan Haslam ASSERT(dcpc_ovf_mask != 0); 1058b9e93c10SJonathan Haslam 1059b9e93c10SJonathan Haslam if (caps & CPC_CAP_OVERFLOW_PRECISE) 1060b9e93c10SJonathan Haslam dcpc_mult_ovf_cap = 1; 1061b9e93c10SJonathan Haslam 1062b9e93c10SJonathan Haslam /* 1063b9e93c10SJonathan Haslam * Determine which, if any, mask attribute the back-end can use. 1064b9e93c10SJonathan Haslam */ 1065b9e93c10SJonathan Haslam attrs = kcpc_list_attrs(); 1066b9e93c10SJonathan Haslam if (strstr(attrs, "umask") != NULL) 1067b9e93c10SJonathan Haslam dcpc_mask_type |= DCPC_UMASK; 1068b9e93c10SJonathan Haslam else if (strstr(attrs, "emask") != NULL) 1069b9e93c10SJonathan Haslam dcpc_mask_type |= DCPC_EMASK; 1070b9e93c10SJonathan Haslam 1071b9e93c10SJonathan Haslam /* 1072b9e93c10SJonathan Haslam * The dcpc_actv_reqs array is used to store the requests that 1073b9e93c10SJonathan Haslam * we currently have programmed. The order of requests in this 1074b9e93c10SJonathan Haslam * array is not necessarily the order that the event appears in 1075b9e93c10SJonathan Haslam * the kcpc_request_t array. Once entered into a slot in the array 1076b9e93c10SJonathan Haslam * the entry is not moved until it's removed. 1077b9e93c10SJonathan Haslam */ 1078b9e93c10SJonathan Haslam dcpc_actv_reqs = 1079b9e93c10SJonathan Haslam kmem_zalloc(cpc_ncounters * sizeof (dcpc_probe_t *), KM_SLEEP); 1080b9e93c10SJonathan Haslam 1081b9e93c10SJonathan Haslam dcpc_min_overflow = ddi_prop_get_int(DDI_DEV_T_ANY, devi, 1082b9e93c10SJonathan Haslam DDI_PROP_DONTPASS, "dcpc-min-overflow", DCPC_MIN_OVF_DEFAULT); 1083b9e93c10SJonathan Haslam 1084b9e93c10SJonathan Haslam kcpc_register_dcpc(dcpc_fire); 1085b9e93c10SJonathan Haslam 1086b9e93c10SJonathan Haslam ddi_report_dev(devi); 1087b9e93c10SJonathan Haslam dcpc_devi = devi; 1088b9e93c10SJonathan Haslam 1089b9e93c10SJonathan Haslam return (DDI_SUCCESS); 1090b9e93c10SJonathan Haslam } 1091b9e93c10SJonathan Haslam 1092b9e93c10SJonathan Haslam static struct cb_ops dcpc_cb_ops = { 1093b9e93c10SJonathan Haslam dcpc_open, /* open */ 1094b9e93c10SJonathan Haslam nodev, /* close */ 1095b9e93c10SJonathan Haslam nulldev, /* strategy */ 1096b9e93c10SJonathan Haslam nulldev, /* print */ 1097b9e93c10SJonathan Haslam nodev, /* dump */ 1098b9e93c10SJonathan Haslam nodev, /* read */ 1099b9e93c10SJonathan Haslam nodev, /* write */ 1100b9e93c10SJonathan Haslam nodev, /* ioctl */ 1101b9e93c10SJonathan Haslam nodev, /* devmap */ 1102b9e93c10SJonathan Haslam nodev, /* mmap */ 1103b9e93c10SJonathan Haslam nodev, /* segmap */ 1104b9e93c10SJonathan Haslam nochpoll, /* poll */ 1105b9e93c10SJonathan Haslam ddi_prop_op, /* cb_prop_op */ 1106b9e93c10SJonathan Haslam 0, /* streamtab */ 1107b9e93c10SJonathan Haslam D_NEW | D_MP /* Driver compatibility flag */ 1108b9e93c10SJonathan Haslam }; 1109b9e93c10SJonathan Haslam 1110b9e93c10SJonathan Haslam static struct dev_ops dcpc_ops = { 1111b9e93c10SJonathan Haslam DEVO_REV, /* devo_rev, */ 1112b9e93c10SJonathan Haslam 0, /* refcnt */ 1113b9e93c10SJonathan Haslam dcpc_info, /* get_dev_info */ 1114b9e93c10SJonathan Haslam nulldev, /* identify */ 1115b9e93c10SJonathan Haslam nulldev, /* probe */ 1116b9e93c10SJonathan Haslam dcpc_attach, /* attach */ 1117b9e93c10SJonathan Haslam dcpc_detach, /* detach */ 1118b9e93c10SJonathan Haslam nodev, /* reset */ 1119b9e93c10SJonathan Haslam &dcpc_cb_ops, /* driver operations */ 1120b9e93c10SJonathan Haslam NULL, /* bus operations */ 1121b9e93c10SJonathan Haslam nodev, /* dev power */ 1122b9e93c10SJonathan Haslam ddi_quiesce_not_needed /* quiesce */ 1123b9e93c10SJonathan Haslam }; 1124b9e93c10SJonathan Haslam 1125b9e93c10SJonathan Haslam /* 1126b9e93c10SJonathan Haslam * Module linkage information for the kernel. 1127b9e93c10SJonathan Haslam */ 1128b9e93c10SJonathan Haslam static struct modldrv modldrv = { 1129b9e93c10SJonathan Haslam &mod_driverops, /* module type */ 1130b9e93c10SJonathan Haslam "DTrace CPC Module", /* name of module */ 1131b9e93c10SJonathan Haslam &dcpc_ops, /* driver ops */ 1132b9e93c10SJonathan Haslam }; 1133b9e93c10SJonathan Haslam 1134b9e93c10SJonathan Haslam static struct modlinkage modlinkage = { 1135b9e93c10SJonathan Haslam MODREV_1, 1136b9e93c10SJonathan Haslam (void *)&modldrv, 1137b9e93c10SJonathan Haslam NULL 1138b9e93c10SJonathan Haslam }; 1139b9e93c10SJonathan Haslam 1140b9e93c10SJonathan Haslam int 1141b9e93c10SJonathan Haslam _init(void) 1142b9e93c10SJonathan Haslam { 1143b9e93c10SJonathan Haslam return (mod_install(&modlinkage)); 1144b9e93c10SJonathan Haslam } 1145b9e93c10SJonathan Haslam 1146b9e93c10SJonathan Haslam int 1147b9e93c10SJonathan Haslam _info(struct modinfo *modinfop) 1148b9e93c10SJonathan Haslam { 1149b9e93c10SJonathan Haslam return (mod_info(&modlinkage, modinfop)); 1150b9e93c10SJonathan Haslam } 1151b9e93c10SJonathan Haslam 1152b9e93c10SJonathan Haslam int 1153b9e93c10SJonathan Haslam _fini(void) 1154b9e93c10SJonathan Haslam { 1155b9e93c10SJonathan Haslam return (mod_remove(&modlinkage)); 1156b9e93c10SJonathan Haslam } 1157