xref: /titanic_53/usr/src/uts/common/disp/cpucaps.c (revision 4b175f6f2f7e98f7eb66bb44971069520bf5a52a)
1c97ad5cdSakolb /*
2c97ad5cdSakolb  * CDDL HEADER START
3c97ad5cdSakolb  *
4c97ad5cdSakolb  * The contents of this file are subject to the terms of the
5c97ad5cdSakolb  * Common Development and Distribution License (the "License").
6c97ad5cdSakolb  * You may not use this file except in compliance with the License.
7c97ad5cdSakolb  *
8c97ad5cdSakolb  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9c97ad5cdSakolb  * or http://www.opensolaris.org/os/licensing.
10c97ad5cdSakolb  * See the License for the specific language governing permissions
11c97ad5cdSakolb  * and limitations under the License.
12c97ad5cdSakolb  *
13c97ad5cdSakolb  * When distributing Covered Code, include this CDDL HEADER in each
14c97ad5cdSakolb  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15c97ad5cdSakolb  * If applicable, add the following below this CDDL HEADER, with the
16c97ad5cdSakolb  * fields enclosed by brackets "[]" replaced with your own identifying
17c97ad5cdSakolb  * information: Portions Copyright [yyyy] [name of copyright owner]
18c97ad5cdSakolb  *
19c97ad5cdSakolb  * CDDL HEADER END
20c97ad5cdSakolb  */
21c97ad5cdSakolb 
22c97ad5cdSakolb /*
23c97ad5cdSakolb  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
24c97ad5cdSakolb  * Use is subject to license terms.
25c97ad5cdSakolb  */
26c97ad5cdSakolb 
27c97ad5cdSakolb #pragma ident	"%Z%%M%	%I%	%E% SMI"
28c97ad5cdSakolb 
29c97ad5cdSakolb #include <sys/disp.h>
30c97ad5cdSakolb #include <sys/param.h>
31c97ad5cdSakolb #include <sys/systm.h>
32c97ad5cdSakolb #include <sys/sysmacros.h>
33c97ad5cdSakolb #include <sys/atomic.h>
34c97ad5cdSakolb #include <sys/cpucaps_impl.h>
35c97ad5cdSakolb #include <sys/dtrace.h>
36c97ad5cdSakolb #include <sys/sdt.h>
37c97ad5cdSakolb #include <sys/debug.h>
38c97ad5cdSakolb #include <sys/rctl.h>
39c97ad5cdSakolb #include <sys/errno.h>
40c97ad5cdSakolb 
41c97ad5cdSakolb /*
42c97ad5cdSakolb  * CPU Caps implementation
43c97ad5cdSakolb  * =======================
44c97ad5cdSakolb  *
45c97ad5cdSakolb  * A CPU cap can be set on any project or any zone. Zone CPU cap limits the CPU
46c97ad5cdSakolb  * usage for all projects running inside the zone. If the zone CPU cap is set
47c97ad5cdSakolb  * below the project CPU cap, the latter will have no effect.
48c97ad5cdSakolb  *
49c97ad5cdSakolb  * When CPU usage of projects and/or zones reaches specified caps, threads in
50c97ad5cdSakolb  * them do not get scheduled and instead are placed on wait queues associated
51c97ad5cdSakolb  * with a cap. Such threads will start running again only when CPU usage drops
52c97ad5cdSakolb  * below the cap level. Each zone and each project has its own wait queue.
53c97ad5cdSakolb  *
54c97ad5cdSakolb  * When CPU cap is set, the kernel continously keeps track of CPU time used by
55c97ad5cdSakolb  * capped zones and/or projects over a short time interval and calculates their
56c97ad5cdSakolb  * current CPU usage as a percentage. When the accumulated usage reaches the CPU
57c97ad5cdSakolb  * cap, LWPs running in the user-land (when they are not holding any critical
58c97ad5cdSakolb  * kernel locks) are placed on special wait queues until their project's or
59c97ad5cdSakolb  * zone's CPU usage drops below the cap.
60c97ad5cdSakolb  *
61c97ad5cdSakolb  * The system maintains a list of all capped projects and all capped zones. On
62c97ad5cdSakolb  * every clock tick every active thread belonging to a capped project adds its
63c97ad5cdSakolb  * CPU usage to its project. Usage from all projects belonging to a capped zone
64c97ad5cdSakolb  * is aggregated to get the zone usage.
65c97ad5cdSakolb  *
66c97ad5cdSakolb  * When the current CPU usage is above the cap, a project or zone is considered
67c97ad5cdSakolb  * over-capped. Every user thread caught running in an over-capped project or
68c97ad5cdSakolb  * zone is marked by setting TS_PROJWAITQ flag in thread's t_schedflag field and
69c97ad5cdSakolb  * is requested to surrender its CPU. This causes scheduling class specific
70c97ad5cdSakolb  * CL_PREEMPT() callback to be invoked. The callback function places threads
71c97ad5cdSakolb  * marked as TS_PROJWAIT on a wait queue and calls switch().
72c97ad5cdSakolb  *
73c97ad5cdSakolb  * Threads are only placed on wait queues after trapping from user-land
74c97ad5cdSakolb  * (they could be holding some user locks, but no kernel locks) and while
75c97ad5cdSakolb  * returning from the trap back to the user-land when no kernel locks are held.
76c97ad5cdSakolb  * Putting threads on wait queues in random places while running in the
77c97ad5cdSakolb  * kernel might lead to all kinds of locking problems.
78c97ad5cdSakolb  *
79c97ad5cdSakolb  * Accounting
80c97ad5cdSakolb  * ==========
81c97ad5cdSakolb  *
82c97ad5cdSakolb  * Accounting of CPU usage is based on per-thread micro-state accounting data.
83c97ad5cdSakolb  * On every clock tick clock() adds new on-CPU time for every thread found on
84c97ad5cdSakolb  * CPU. Scheduling classes also add new on-CPU time for any thread leaving CPU.
85c97ad5cdSakolb  * New times means time since it was last accounted for. On-CPU times greater
86c97ad5cdSakolb  * than 1 tick are truncated to 1 tick.
87c97ad5cdSakolb  *
88c97ad5cdSakolb  * Project CPU usage is aggregated from all threads within the project.
89c97ad5cdSakolb  * Zone CPU usage is the sum of usages for all projects within the zone. Zone
90c97ad5cdSakolb  * CPU usage is calculated on every clock tick by walking list of projects and
91c97ad5cdSakolb  * adding their usage together.
92c97ad5cdSakolb  *
93c97ad5cdSakolb  * Decay
94c97ad5cdSakolb  * =====
95c97ad5cdSakolb  *
96c97ad5cdSakolb  * CPU usage is decayed by the caps_update() routine which is called once per
97c97ad5cdSakolb  * every clock tick. It walks lists of project caps and decays their usages by
98c97ad5cdSakolb  * one per cent. If CPU usage drops below cap levels, threads on the wait queue
99c97ad5cdSakolb  * are made runnable again, one thread per clock tick.
100c97ad5cdSakolb  *
101c97ad5cdSakolb  * Interfaces
102c97ad5cdSakolb  * ==========
103c97ad5cdSakolb  *
104c97ad5cdSakolb  * The CPU Caps facility provides the following interfaces to the rest of the
105c97ad5cdSakolb  * system:
106c97ad5cdSakolb  *
107c97ad5cdSakolb  *   cpucaps_project_add(kproject_t *)
108c97ad5cdSakolb  *
109c97ad5cdSakolb  * Notifies the framework of a new project. It should be put on the
110c97ad5cdSakolb  * capped_projects list if its zone has a cap.
111c97ad5cdSakolb  *
112c97ad5cdSakolb  *   cpucaps_project_remove(kproject_t *)
113c97ad5cdSakolb  *
114c97ad5cdSakolb  * Remove the association between the specified project and its cap.
115c97ad5cdSakolb  * Called right before the project is destroyed.
116c97ad5cdSakolb  *
117c97ad5cdSakolb  * cpucaps_project_set(kproject_t *, rctl_qty_t)
118c97ad5cdSakolb  *
119c97ad5cdSakolb  * Set project cap of the specified project to the specified value. Setting the
120c97ad5cdSakolb  * value to NOCAP is equivalent to removing the cap.
121c97ad5cdSakolb  *
122c97ad5cdSakolb  *   cpucaps_zone_set(zone_t *, rctl_qty_t)
123c97ad5cdSakolb  *
124c97ad5cdSakolb  * Set zone cap of the specified zone to the specified value. Setting the value
125c97ad5cdSakolb  * to NOCAP is equivalent to removing the cap.
126c97ad5cdSakolb  *
127c97ad5cdSakolb  *   cpucaps_zone_remove(zone_t *)
128c97ad5cdSakolb  *
129c97ad5cdSakolb  * Remove the association between the zone and its cap.
130c97ad5cdSakolb  *
131c97ad5cdSakolb  *   cpucaps_charge(kthread_id_t, caps_sc_t *, cpucaps_charge_t)
132c97ad5cdSakolb  *
133c97ad5cdSakolb  * Charges specified thread's project the amount of on-CPU time that it used.
134c97ad5cdSakolb  * If the third argument is CPUCAPS_CHARGE_ONLY returns False.
135c97ad5cdSakolb  * Otherwise returns True if project or zone should be penalized because its
136c97ad5cdSakolb  * project or zone is exceeding its cap. Also sets TS_PROJWAITQ or TS_ZONEWAITQ
137c97ad5cdSakolb  * bits in t_schedflag in this case.
138c97ad5cdSakolb  *
139c97ad5cdSakolb  *   CPUCAPS_ENFORCE(kthread_id_t *)
140c97ad5cdSakolb  *
141c97ad5cdSakolb  * Enforces CPU caps for a specified thread. Places LWPs running in LWP_USER
142c97ad5cdSakolb  * state on project or zone wait queues, as requested by TS_PROJWAITQ or
143c97ad5cdSakolb  * TS_ZONEWAITQ bits in t_schedflag. Returns True if the thread was placed on a
144c97ad5cdSakolb  * wait queue or False otherwise.
145c97ad5cdSakolb  *
146c97ad5cdSakolb  *   cpucaps_sc_init(caps_sc_t *)
147c97ad5cdSakolb  *
148c97ad5cdSakolb  * Initializes the scheduling-class specific CPU Caps data for a thread.
149c97ad5cdSakolb  *
150c97ad5cdSakolb  * LOCKS
151c97ad5cdSakolb  * =====
152c97ad5cdSakolb  *
153c97ad5cdSakolb  * all the individual caps structures and their lists are protected by a global
154c97ad5cdSakolb  * caps_lock mutex. The lock is grabbed either by clock() or by events modifying
155c97ad5cdSakolb  * caps, so it is usually uncontended. We avoid all blocking memory allocations
156c97ad5cdSakolb  * while holding caps_lock to prevent clock() from blocking.
157c97ad5cdSakolb  *
158c97ad5cdSakolb  * Thread state is protected by the thread lock. It protects the association
159c97ad5cdSakolb  * between a thread and its project and, as a consequence, to its zone. The
160c97ad5cdSakolb  * association can not break while thread lock is held, so the project or zone
161c97ad5cdSakolb  * cap are not going to disappear while thread lock is held.
162c97ad5cdSakolb  *
163c97ad5cdSakolb  * Cap usage field is protected by high-pil spin-lock cap_usagelock. It is
164c97ad5cdSakolb  * grabbed by scheduling classes already holding thread lock at high PIL and by
165c97ad5cdSakolb  * clock thread performing usage decay. We should do as little work as possible
166c97ad5cdSakolb  * while holding the lock since it may be very hot. All threads in the project
167c97ad5cdSakolb  * contend for the same cache line doing cap usage updates.
168c97ad5cdSakolb  */
169c97ad5cdSakolb 
170c97ad5cdSakolb /*
171c97ad5cdSakolb  * caps_lock protects list of capped projects and zones, changes in the cap
172c97ad5cdSakolb  * state and changes of the global cpucaps_enabled flag.
173c97ad5cdSakolb  *
174c97ad5cdSakolb  * Changing zone caps also sets cpucaps_busy to avoid races when a zone cap is
175c97ad5cdSakolb  * modified in parallel. This can be per-zone cap flag, but we don't keep any
176c97ad5cdSakolb  * cap state for now.
177c97ad5cdSakolb  */
178c97ad5cdSakolb static kmutex_t caps_lock;		/* lock to protect: */
179c97ad5cdSakolb static list_t capped_zones;		/* - list of zones with caps */
180c97ad5cdSakolb static list_t capped_projects;		/* - list of projects with caps */
181c97ad5cdSakolb boolean_t cpucaps_enabled;		/* - are there any caps defined? */
182c97ad5cdSakolb boolean_t cpucaps_busy;			/* - is framework busy? */
183c97ad5cdSakolb 
184c97ad5cdSakolb /*
185c97ad5cdSakolb  * The accounting is based on the number of nanoseconds threads spend running
186c97ad5cdSakolb  * during a tick which is kept in the cap_tick_cost variable.
187c97ad5cdSakolb  */
188c97ad5cdSakolb static hrtime_t cap_tick_cost;
189c97ad5cdSakolb 
190c97ad5cdSakolb /*
191c97ad5cdSakolb  * How much of the usage value is decayed every clock tick
192c97ad5cdSakolb  * Decay one per cent of value per tick
193c97ad5cdSakolb  */
194c97ad5cdSakolb #define	CAP_DECAY_FACTOR 100
195c97ad5cdSakolb 
196c97ad5cdSakolb /*
197c97ad5cdSakolb  * Scale the value and round it to the closest integer value
198c97ad5cdSakolb  */
199c97ad5cdSakolb #define	ROUND_SCALE(x, y) (((x) + (y) / 2) / (y))
200c97ad5cdSakolb 
201c97ad5cdSakolb static void caps_update();
202c97ad5cdSakolb 
203c97ad5cdSakolb /*
204c97ad5cdSakolb  * CAP kstats.
205c97ad5cdSakolb  */
206c97ad5cdSakolb struct cap_kstat {
207c97ad5cdSakolb 	kstat_named_t	cap_value;
208c97ad5cdSakolb 	kstat_named_t	cap_usage;
209c97ad5cdSakolb 	kstat_named_t	cap_nwait;
210c97ad5cdSakolb 	kstat_named_t	cap_below;
211c97ad5cdSakolb 	kstat_named_t	cap_above;
212c97ad5cdSakolb 	kstat_named_t	cap_maxusage;
213c97ad5cdSakolb 	kstat_named_t	cap_zonename;
214c97ad5cdSakolb } cap_kstat = {
215c97ad5cdSakolb 	{ "value",	KSTAT_DATA_UINT64 },
216c97ad5cdSakolb 	{ "usage",	KSTAT_DATA_UINT64 },
217c97ad5cdSakolb 	{ "nwait",	KSTAT_DATA_UINT64 },
218c97ad5cdSakolb 	{ "below_sec",	KSTAT_DATA_UINT64 },
219c97ad5cdSakolb 	{ "above_sec",	KSTAT_DATA_UINT64 },
220c97ad5cdSakolb 	{ "maxusage",	KSTAT_DATA_UINT64 },
221c97ad5cdSakolb 	{ "zonename",	KSTAT_DATA_STRING },
222c97ad5cdSakolb };
223c97ad5cdSakolb 
224c97ad5cdSakolb 
225c97ad5cdSakolb static kmutex_t cap_kstat_lock;
226c97ad5cdSakolb static int cap_kstat_update(kstat_t *, int);
227c97ad5cdSakolb 
228c97ad5cdSakolb /*
229c97ad5cdSakolb  * Initialize CPU caps infrastructure.
230c97ad5cdSakolb  *   - Initialize lists of capped zones and capped projects
231c97ad5cdSakolb  *   - Set cpucaps_clock_callout to NULL
232c97ad5cdSakolb  */
233c97ad5cdSakolb void
234c97ad5cdSakolb cpucaps_init()
235c97ad5cdSakolb {
236c97ad5cdSakolb 	/*
237c97ad5cdSakolb 	 * Initialize global variables
238c97ad5cdSakolb 	 */
239c97ad5cdSakolb 	cap_tick_cost = TICK_TO_NSEC((hrtime_t)1);
240c97ad5cdSakolb 
241c97ad5cdSakolb 	list_create(&capped_zones, sizeof (cpucap_t),
242c97ad5cdSakolb 	    offsetof(cpucap_t, cap_link));
243c97ad5cdSakolb 	list_create(&capped_projects, sizeof (cpucap_t),
244c97ad5cdSakolb 	    offsetof(cpucap_t, cap_link));
245c97ad5cdSakolb 
246c97ad5cdSakolb 	cpucaps_enabled = B_FALSE;
247c97ad5cdSakolb 	cpucaps_busy = B_FALSE;
248c97ad5cdSakolb 	cpucaps_clock_callout = NULL;
249c97ad5cdSakolb }
250c97ad5cdSakolb 
251c97ad5cdSakolb /*
252c97ad5cdSakolb  * Initialize scheduling-class specific CPU Caps data.
253c97ad5cdSakolb  */
254c97ad5cdSakolb void
255c97ad5cdSakolb cpucaps_sc_init(caps_sc_t *csc)
256c97ad5cdSakolb {
257c97ad5cdSakolb 	csc->csc_cputime = 0;
258c97ad5cdSakolb }
259c97ad5cdSakolb 
260c97ad5cdSakolb /*
261c97ad5cdSakolb  * Allocate and initialize cpucap structure
262c97ad5cdSakolb  */
263c97ad5cdSakolb static cpucap_t *
264c97ad5cdSakolb cap_alloc(void)
265c97ad5cdSakolb {
266c97ad5cdSakolb 	cpucap_t *cap = kmem_zalloc(sizeof (cpucap_t), KM_SLEEP);
267c97ad5cdSakolb 
268c97ad5cdSakolb 	DISP_LOCK_INIT(&cap->cap_usagelock);
269c97ad5cdSakolb 	waitq_init(&cap->cap_waitq);
270c97ad5cdSakolb 
271c97ad5cdSakolb 	return (cap);
272c97ad5cdSakolb }
273c97ad5cdSakolb 
274c97ad5cdSakolb /*
275c97ad5cdSakolb  * Free cpucap structure
276c97ad5cdSakolb  */
277c97ad5cdSakolb static void
278c97ad5cdSakolb cap_free(cpucap_t *cap)
279c97ad5cdSakolb {
280c97ad5cdSakolb 	if (cap == NULL)
281c97ad5cdSakolb 		return;
282c97ad5cdSakolb 
283c97ad5cdSakolb 	/*
284c97ad5cdSakolb 	 * This cap should not be active
285c97ad5cdSakolb 	 */
286c97ad5cdSakolb 	ASSERT(!list_link_active(&cap->cap_link));
287c97ad5cdSakolb 	ASSERT(cap->cap_value == 0);
288c97ad5cdSakolb 	ASSERT(!DISP_LOCK_HELD(&cap->cap_usagelock));
289c97ad5cdSakolb 
290c97ad5cdSakolb 	waitq_fini(&cap->cap_waitq);
291c97ad5cdSakolb 	DISP_LOCK_DESTROY(&cap->cap_usagelock);
292c97ad5cdSakolb 
293c97ad5cdSakolb 	kmem_free(cap, sizeof (cpucap_t));
294c97ad5cdSakolb }
295c97ad5cdSakolb 
296c97ad5cdSakolb /*
297c97ad5cdSakolb  * Activate cap - insert into active list and unblock its
298c97ad5cdSakolb  * wait queue. Should be called with caps_lock held.
299c97ad5cdSakolb  * The cap_value field is set to the value supplied.
300c97ad5cdSakolb  */
301c97ad5cdSakolb static void
302c97ad5cdSakolb cap_enable(list_t *l, cpucap_t *cap, hrtime_t value)
303c97ad5cdSakolb {
304c97ad5cdSakolb 	ASSERT(MUTEX_HELD(&caps_lock));
305c97ad5cdSakolb 
306c97ad5cdSakolb 	/*
307c97ad5cdSakolb 	 * Cap can not be already enabled
308c97ad5cdSakolb 	 */
309c97ad5cdSakolb 	ASSERT(!CAP_ENABLED(cap));
310c97ad5cdSakolb 	ASSERT(!list_link_active(&cap->cap_link));
311c97ad5cdSakolb 
312c97ad5cdSakolb 	list_insert_tail(l, cap);
313c97ad5cdSakolb 	cap->cap_below = cap->cap_above = 0;
314c97ad5cdSakolb 	cap->cap_maxusage = 0;
315c97ad5cdSakolb 	cap->cap_usage = 0;
316c97ad5cdSakolb 	cap->cap_value = value;
317c97ad5cdSakolb 	waitq_unblock(&cap->cap_waitq);
318c97ad5cdSakolb 	if (CPUCAPS_OFF()) {
319c97ad5cdSakolb 		cpucaps_enabled = B_TRUE;
320c97ad5cdSakolb 		cpucaps_clock_callout = caps_update;
321c97ad5cdSakolb 	}
322c97ad5cdSakolb }
323c97ad5cdSakolb 
324c97ad5cdSakolb /*
325c97ad5cdSakolb  * Deactivate cap
326c97ad5cdSakolb  *   - Block its wait queue. This prevents any new threads from being
327c97ad5cdSakolb  *	enqueued there and moves all enqueued threads to the run queue.
328c97ad5cdSakolb  *   - Remove cap from list l.
329c97ad5cdSakolb  *   - Disable CPU caps globally if there are no capped projects or zones
330c97ad5cdSakolb  *
331c97ad5cdSakolb  * Should be called with caps_lock held.
332c97ad5cdSakolb  */
333c97ad5cdSakolb static void
334c97ad5cdSakolb cap_disable(list_t *l, cpucap_t *cap)
335c97ad5cdSakolb {
336c97ad5cdSakolb 	ASSERT(MUTEX_HELD(&caps_lock));
337c97ad5cdSakolb 	/*
338c97ad5cdSakolb 	 * Cap should be currently active
339c97ad5cdSakolb 	 */
340c97ad5cdSakolb 	ASSERT(CPUCAPS_ON());
341c97ad5cdSakolb 	ASSERT(list_link_active(&cap->cap_link));
342c97ad5cdSakolb 	ASSERT(CAP_ENABLED(cap));
343c97ad5cdSakolb 
344c97ad5cdSakolb 	waitq_block(&cap->cap_waitq);
345c97ad5cdSakolb 	list_remove(l, cap);
346c97ad5cdSakolb 	if (list_is_empty(&capped_projects) && list_is_empty(&capped_zones)) {
347c97ad5cdSakolb 		cpucaps_enabled = B_FALSE;
348c97ad5cdSakolb 		cpucaps_clock_callout = NULL;
349c97ad5cdSakolb 	}
350c97ad5cdSakolb 	cap->cap_value = 0;
351c97ad5cdSakolb 	cap->cap_project = NULL;
352c97ad5cdSakolb 	cap->cap_zone = NULL;
353c97ad5cdSakolb 	if (cap->cap_kstat != NULL) {
354c97ad5cdSakolb 		kstat_delete(cap->cap_kstat);
355c97ad5cdSakolb 		cap->cap_kstat = NULL;
356c97ad5cdSakolb 	}
357c97ad5cdSakolb 
358c97ad5cdSakolb }
359c97ad5cdSakolb 
360c97ad5cdSakolb /*
361c97ad5cdSakolb  * Enable cap for a project kpj
362c97ad5cdSakolb  * It is safe to enable already enabled project cap.
363c97ad5cdSakolb  * Should be called with caps_lock held.
364c97ad5cdSakolb  */
365c97ad5cdSakolb static void
366c97ad5cdSakolb cap_project_enable(kproject_t *kpj, hrtime_t value)
367c97ad5cdSakolb {
368c97ad5cdSakolb 	cpucap_t *cap = kpj->kpj_cpucap;
369c97ad5cdSakolb 
370c97ad5cdSakolb 	ASSERT(MUTEX_HELD(&caps_lock));
371c97ad5cdSakolb 	ASSERT(cap != NULL);
372c97ad5cdSakolb 
373c97ad5cdSakolb 	if (CAP_DISABLED(cap)) {
374c97ad5cdSakolb 		ASSERT(cap->cap_kstat == NULL);
375c97ad5cdSakolb 		cap_enable(&capped_projects, cap, value);
376c97ad5cdSakolb 		cap->cap_project = kpj;
377c97ad5cdSakolb 		cap->cap_zone = kpj->kpj_zone;
378c97ad5cdSakolb 
379c97ad5cdSakolb 		/*
380c97ad5cdSakolb 		 * Create cap kstats
381c97ad5cdSakolb 		 */
382c97ad5cdSakolb 		if ((cap->cap_kstat = rctl_kstat_create_project(kpj, "cpucaps",
383c97ad5cdSakolb 		    KSTAT_TYPE_NAMED,
384c97ad5cdSakolb 		    sizeof (cap_kstat) / sizeof (kstat_named_t),
385c97ad5cdSakolb 		    KSTAT_FLAG_VIRTUAL)) != NULL) {
386c97ad5cdSakolb 		    cap->cap_kstat->ks_data_size +=
387c97ad5cdSakolb 			strlen(cap->cap_zone->zone_name) + 1;
388c97ad5cdSakolb 		    cap->cap_kstat->ks_lock = &cap_kstat_lock;
389c97ad5cdSakolb 		    cap->cap_kstat->ks_data = &cap_kstat;
390c97ad5cdSakolb 		    cap->cap_kstat->ks_update = cap_kstat_update;
391c97ad5cdSakolb 		    cap->cap_kstat->ks_private = cap;
392c97ad5cdSakolb 		    kstat_install(cap->cap_kstat);
393c97ad5cdSakolb 		}
394c97ad5cdSakolb 	}
395c97ad5cdSakolb }
396c97ad5cdSakolb 
397c97ad5cdSakolb /*
398c97ad5cdSakolb  * Disable project cap.
399c97ad5cdSakolb  * It is safe to disable already disabled project cap.
400c97ad5cdSakolb  * Should be called with caps_lock held.
401c97ad5cdSakolb  */
402c97ad5cdSakolb static void
403c97ad5cdSakolb cap_project_disable(kproject_t *kpj)
404c97ad5cdSakolb {
405c97ad5cdSakolb 	cpucap_t *cap = kpj->kpj_cpucap;
406c97ad5cdSakolb 
407c97ad5cdSakolb 	ASSERT(MUTEX_HELD(&caps_lock));
408c97ad5cdSakolb 	ASSERT(cap != NULL);
409c97ad5cdSakolb 	ASSERT(cap->cap_project == kpj);
410c97ad5cdSakolb 
411c97ad5cdSakolb 	if (CAP_ENABLED(cap))
412c97ad5cdSakolb 		cap_disable(&capped_projects, cap);
413c97ad5cdSakolb }
414c97ad5cdSakolb 
415c97ad5cdSakolb /*
416c97ad5cdSakolb  * Enable cap for a zone
417c97ad5cdSakolb  * It is safe to enable already enabled zone cap.
418c97ad5cdSakolb  * Should be called with caps_lock held.
419c97ad5cdSakolb  */
420c97ad5cdSakolb static void
421c97ad5cdSakolb cap_zone_enable(zone_t *zone, hrtime_t value)
422c97ad5cdSakolb {
423c97ad5cdSakolb 	cpucap_t *cap = zone->zone_cpucap;
424c97ad5cdSakolb 
425c97ad5cdSakolb 	ASSERT(MUTEX_HELD(&caps_lock));
426c97ad5cdSakolb 	ASSERT(cap != NULL);
427c97ad5cdSakolb 
428c97ad5cdSakolb 	if (CAP_DISABLED(cap)) {
429c97ad5cdSakolb 		ASSERT(cap->cap_kstat == NULL);
430c97ad5cdSakolb 		cap_enable(&capped_zones, cap, value);
431c97ad5cdSakolb 		cap->cap_zone = zone;
432c97ad5cdSakolb 
433c97ad5cdSakolb 		/*
434c97ad5cdSakolb 		 * Create cap kstats
435c97ad5cdSakolb 		 */
436c97ad5cdSakolb 		if ((cap->cap_kstat = rctl_kstat_create_zone(zone, "cpucaps",
437c97ad5cdSakolb 		    KSTAT_TYPE_NAMED,
438c97ad5cdSakolb 		    sizeof (cap_kstat) / sizeof (kstat_named_t),
439c97ad5cdSakolb 		    KSTAT_FLAG_VIRTUAL)) != NULL) {
440c97ad5cdSakolb 		    cap->cap_kstat->ks_data_size +=
441c97ad5cdSakolb 			strlen(cap->cap_zone->zone_name) + 1;
442c97ad5cdSakolb 		    cap->cap_kstat->ks_lock = &cap_kstat_lock;
443c97ad5cdSakolb 		    cap->cap_kstat->ks_data = &cap_kstat;
444c97ad5cdSakolb 		    cap->cap_kstat->ks_update = cap_kstat_update;
445c97ad5cdSakolb 		    cap->cap_kstat->ks_private = cap;
446c97ad5cdSakolb 		    kstat_install(cap->cap_kstat);
447c97ad5cdSakolb 		}
448c97ad5cdSakolb 	}
449c97ad5cdSakolb }
450c97ad5cdSakolb 
451c97ad5cdSakolb /*
452c97ad5cdSakolb  * Disable zone cap.
453c97ad5cdSakolb  * It is safe to disable already disabled zone cap.
454c97ad5cdSakolb  * Should be called with caps_lock held.
455c97ad5cdSakolb  */
456c97ad5cdSakolb static void
457c97ad5cdSakolb cap_zone_disable(zone_t *zone)
458c97ad5cdSakolb {
459c97ad5cdSakolb 	cpucap_t *cap = zone->zone_cpucap;
460c97ad5cdSakolb 
461c97ad5cdSakolb 	ASSERT(MUTEX_HELD(&caps_lock));
462c97ad5cdSakolb 	ASSERT(cap != NULL);
463c97ad5cdSakolb 	ASSERT(cap->cap_zone == zone);
464c97ad5cdSakolb 
465c97ad5cdSakolb 	if (CAP_ENABLED(cap))
466c97ad5cdSakolb 		cap_disable(&capped_zones, cap);
467c97ad5cdSakolb }
468c97ad5cdSakolb 
469c97ad5cdSakolb /*
470c97ad5cdSakolb  * Apply specified callback to all caps contained in the list `l'.
471c97ad5cdSakolb  */
472c97ad5cdSakolb static void
473c97ad5cdSakolb cap_walk(list_t *l, void (*cb)(cpucap_t *))
474c97ad5cdSakolb {
475c97ad5cdSakolb 	cpucap_t *cap;
476c97ad5cdSakolb 
477c97ad5cdSakolb 	ASSERT(MUTEX_HELD(&caps_lock));
478c97ad5cdSakolb 
479c97ad5cdSakolb 	for (cap = list_head(l); cap != NULL; cap = list_next(l, cap)) {
480c97ad5cdSakolb 		(*cb)(cap);
481c97ad5cdSakolb 	}
482c97ad5cdSakolb }
483c97ad5cdSakolb 
484c97ad5cdSakolb /*
485c97ad5cdSakolb  * If cap limit is not reached, make one thread from wait queue runnable.
486c97ad5cdSakolb  * The waitq_isempty check is performed without the waitq lock. If a new thread
487c97ad5cdSakolb  * is placed on the waitq right after the check, it will be picked up during the
488c97ad5cdSakolb  * next invocation of cap_poke_waitq().
489c97ad5cdSakolb  */
490c97ad5cdSakolb static void
491c97ad5cdSakolb cap_poke_waitq(cpucap_t *cap)
492c97ad5cdSakolb {
493c97ad5cdSakolb 	ASSERT(MUTEX_HELD(&caps_lock));
494c97ad5cdSakolb 
495c97ad5cdSakolb 	if (cap->cap_usage >= cap->cap_value) {
496c97ad5cdSakolb 		cap->cap_above++;
497c97ad5cdSakolb 	} else {
498c97ad5cdSakolb 		waitq_t *wq = &cap->cap_waitq;
499c97ad5cdSakolb 
500c97ad5cdSakolb 		cap->cap_below++;
501c97ad5cdSakolb 
502c97ad5cdSakolb 		if (!waitq_isempty(wq))
503c97ad5cdSakolb 			waitq_runone(wq);
504c97ad5cdSakolb 	}
505c97ad5cdSakolb }
506c97ad5cdSakolb 
507c97ad5cdSakolb /*
508c97ad5cdSakolb  * The callback function called for every cap on capped_projects list.
509c97ad5cdSakolb  * Decay cap usage by CAP_DECAY_FACTOR
510c97ad5cdSakolb  * Add this cap project usage to its zone usage.
511c97ad5cdSakolb  * Kick off a thread from the cap waitq if cap is not reached.
512c97ad5cdSakolb  */
513c97ad5cdSakolb static void
514c97ad5cdSakolb cap_project_usage_walker(cpucap_t *cap)
515c97ad5cdSakolb {
516c97ad5cdSakolb 	zone_t		*zone = cap->cap_zone;
517c97ad5cdSakolb 	hrtime_t	cap_usage = cap->cap_usage;
518c97ad5cdSakolb 
519c97ad5cdSakolb 	ASSERT(MUTEX_HELD(&caps_lock));
520c97ad5cdSakolb 	ASSERT(cap->cap_project->kpj_cpucap == cap);
521c97ad5cdSakolb 	ASSERT(zone == cap->cap_project->kpj_zone);
522c97ad5cdSakolb 	ASSERT(CAP_ENABLED(cap));
523c97ad5cdSakolb 
524c97ad5cdSakolb 	/*
525c97ad5cdSakolb 	 * Set or clear the CAP_REACHED flag based on the current usage.
526c97ad5cdSakolb 	 * Only projects having their own caps are ever marked as CAP_REACHED.
527c97ad5cdSakolb 	 */
528c97ad5cdSakolb 	cap_poke_waitq(cap);
529c97ad5cdSakolb 
530c97ad5cdSakolb 	/*
531c97ad5cdSakolb 	 * Add project's CPU usage to our zone's CPU usage.
532c97ad5cdSakolb 	 */
533c97ad5cdSakolb 	if (ZONE_IS_CAPPED(zone)) {
534c97ad5cdSakolb 		cpucap_t *zcap = zone->zone_cpucap;
535c97ad5cdSakolb 
536c97ad5cdSakolb 		ASSERT(zcap->cap_zone == zone);
537c97ad5cdSakolb 
538c97ad5cdSakolb 		/*
539c97ad5cdSakolb 		 * If we haven't reset this zone's usage during this clock tick
540c97ad5cdSakolb 		 * yet, then do it now. The cap_lbolt field is used to check
541c97ad5cdSakolb 		 * whether this is the first zone's project we see during this
542c97ad5cdSakolb 		 * tick or a subsequent one.
543c97ad5cdSakolb 		 */
544c97ad5cdSakolb 		if (zcap->cap_lbolt != lbolt64) {
545c97ad5cdSakolb 			if (zcap->cap_usage > zcap->cap_maxusage)
546c97ad5cdSakolb 				zcap->cap_maxusage = zcap->cap_usage;
547c97ad5cdSakolb 			zcap->cap_usage = 0;
5489077d101Sakolb 			zcap->cap_lbolt = lbolt64;
549c97ad5cdSakolb 		}
550c97ad5cdSakolb 		DTRACE_PROBE2(cpucaps__zusage, cpucap_t *, zcap,
551c97ad5cdSakolb 		    hrtime_t, cap_usage);
552c97ad5cdSakolb 		zcap->cap_usage += cap_usage;
553c97ad5cdSakolb 		/* Check for overflows */
554c97ad5cdSakolb 		if (zcap->cap_usage < 0)
555c97ad5cdSakolb 			zcap->cap_usage = MAX_USAGE - 1;
556c97ad5cdSakolb 	}
557c97ad5cdSakolb 
558c97ad5cdSakolb 	/*
559c97ad5cdSakolb 	 * Decay project usage.
560c97ad5cdSakolb 	 */
561c97ad5cdSakolb 	disp_lock_enter(&cap->cap_usagelock);
562c97ad5cdSakolb 	cap->cap_usage -= ROUND_SCALE(cap_usage, CAP_DECAY_FACTOR);
563c97ad5cdSakolb 	disp_lock_exit(&cap->cap_usagelock);
564c97ad5cdSakolb }
565c97ad5cdSakolb 
566c97ad5cdSakolb /*
567c97ad5cdSakolb  * On every clock tick walk the list of project caps and update the CPU usage.
568c97ad5cdSakolb  * Also walk the list of zone caps checking whether any threads should
569c97ad5cdSakolb  * transition from wait queue to run queue.
570c97ad5cdSakolb  *
571c97ad5cdSakolb  * This function gets called by the clock thread directly when there are any
572c97ad5cdSakolb  * defined caps. The only lock that it grabs is caps_lock. Nothing else grabs
573c97ad5cdSakolb  * caps_lock for long periods of time, so there should be almost no contention
574c97ad5cdSakolb  * for it.
575c97ad5cdSakolb  */
576c97ad5cdSakolb static void
577c97ad5cdSakolb caps_update()
578c97ad5cdSakolb {
579c97ad5cdSakolb 	mutex_enter(&caps_lock);
580c97ad5cdSakolb 	cap_walk(&capped_projects, cap_project_usage_walker);
581c97ad5cdSakolb 	cap_walk(&capped_zones, cap_poke_waitq);
582c97ad5cdSakolb 	mutex_exit(&caps_lock);
583c97ad5cdSakolb }
584c97ad5cdSakolb 
585c97ad5cdSakolb /*
586c97ad5cdSakolb  * The function is called for each project in a zone when the zone cap is
587c97ad5cdSakolb  * modified. It enables project caps if zone cap is enabled and disables if the
588c97ad5cdSakolb  * zone cap is disabled and project doesn't have its own cap.
589c97ad5cdSakolb  *
590c97ad5cdSakolb  * For each project that does not have cpucap structure allocated it allocates a
591c97ad5cdSakolb  * new structure and assigns to kpj->cpu_cap. The allocation is performed
592c97ad5cdSakolb  * without holding caps_lock to avoid using KM_SLEEP allocation with caps_lock
593c97ad5cdSakolb  * held.
594c97ad5cdSakolb  */
595c97ad5cdSakolb static int
596c97ad5cdSakolb cap_project_zone_modify_walker(kproject_t *kpj, void *arg)
597c97ad5cdSakolb {
598c97ad5cdSakolb 	cpucap_t *project_cap = NULL;
599c97ad5cdSakolb 	cpucap_t *zone_cap = (cpucap_t *)arg;
600c97ad5cdSakolb 
601c97ad5cdSakolb 	ASSERT(zone_cap != NULL);
602c97ad5cdSakolb 
603c97ad5cdSakolb 	if (kpj->kpj_cpucap == NULL) {
604c97ad5cdSakolb 		/*
605c97ad5cdSakolb 		 * This is the first time any cap was established for this
606c97ad5cdSakolb 		 * project. Allocate a new cpucap structure for it.
607c97ad5cdSakolb 		 */
608c97ad5cdSakolb 		project_cap = cap_alloc();
609c97ad5cdSakolb 	}
610c97ad5cdSakolb 
611c97ad5cdSakolb 	mutex_enter(&caps_lock);
612c97ad5cdSakolb 
613c97ad5cdSakolb 	/*
614c97ad5cdSakolb 	 * Double-check that kpj_cpucap is still NULL - now with caps_lock held
615c97ad5cdSakolb 	 * and assign the newly allocated cpucap structure to it.
616c97ad5cdSakolb 	 */
617c97ad5cdSakolb 	if (kpj->kpj_cpucap == NULL) {
618c97ad5cdSakolb 		kpj->kpj_cpucap = project_cap;
619c97ad5cdSakolb 	} else if (project_cap != NULL) {
620c97ad5cdSakolb 		cap_free(project_cap);
621c97ad5cdSakolb 	}
622c97ad5cdSakolb 
623c97ad5cdSakolb 	project_cap = kpj->kpj_cpucap;
624c97ad5cdSakolb 
625c97ad5cdSakolb 	if (CAP_DISABLED(zone_cap)) {
626c97ad5cdSakolb 		/*
627c97ad5cdSakolb 		 * Remove all projects in this zone without caps
628c97ad5cdSakolb 		 * from the capped_projects list.
629c97ad5cdSakolb 		 */
630c97ad5cdSakolb 		if (project_cap->cap_value == MAX_USAGE) {
631c97ad5cdSakolb 			cap_project_disable(kpj);
632c97ad5cdSakolb 		}
633c97ad5cdSakolb 	} else if (CAP_DISABLED(project_cap)) {
634c97ad5cdSakolb 		/*
635c97ad5cdSakolb 		 * Add the project to capped_projects list.
636c97ad5cdSakolb 		 */
637c97ad5cdSakolb 		ASSERT(project_cap->cap_value == 0);
638c97ad5cdSakolb 		cap_project_enable(kpj, MAX_USAGE);
639c97ad5cdSakolb 	}
640c97ad5cdSakolb 	mutex_exit(&caps_lock);
641c97ad5cdSakolb 
642c97ad5cdSakolb 	return (0);
643c97ad5cdSakolb }
644c97ad5cdSakolb 
645c97ad5cdSakolb /*
646c97ad5cdSakolb  * Set zone cap to cap_val
647c97ad5cdSakolb  * If cap_val is equal to NOCAP, disable zone cap.
648c97ad5cdSakolb  *
649c97ad5cdSakolb  * If this is the first time a cap is set on a zone, allocate cpucap structure
650c97ad5cdSakolb  * without holding caps_lock to avoid KM_SLEEP allocation with caps_lock held.
651c97ad5cdSakolb  */
652c97ad5cdSakolb int
653c97ad5cdSakolb cpucaps_zone_set(zone_t *zone, rctl_qty_t cap_val)
654c97ad5cdSakolb {
655c97ad5cdSakolb 	cpucap_t *cap = NULL;
656c97ad5cdSakolb 	hrtime_t value;
657c97ad5cdSakolb 
658c97ad5cdSakolb 	if (cap_val == 0)
659c97ad5cdSakolb 		return (EINVAL);
660c97ad5cdSakolb 
661c97ad5cdSakolb 	ASSERT(cap_val <= MAXCAP);
662c97ad5cdSakolb 	if (cap_val > MAXCAP)
663c97ad5cdSakolb 		cap_val = MAXCAP;
664c97ad5cdSakolb 
665c97ad5cdSakolb 	/*
666c97ad5cdSakolb 	 * Nothing to do if trying to disable a cap on a zone when caps are off
667c97ad5cdSakolb 	 * or a zone which does not have a cap yet.
668c97ad5cdSakolb 	 */
669c97ad5cdSakolb 	if ((CPUCAPS_OFF() || !ZONE_IS_CAPPED(zone)) && (cap_val == NOCAP))
670c97ad5cdSakolb 		return (0);
671c97ad5cdSakolb 
672c97ad5cdSakolb 	if (zone->zone_cpucap == NULL)
673c97ad5cdSakolb 		cap = cap_alloc();
674c97ad5cdSakolb 
675c97ad5cdSakolb 	mutex_enter(&caps_lock);
676c97ad5cdSakolb 
677c97ad5cdSakolb 	if (cpucaps_busy) {
678c97ad5cdSakolb 		mutex_exit(&caps_lock);
679c97ad5cdSakolb 		return (EBUSY);
680c97ad5cdSakolb 	}
681c97ad5cdSakolb 
682c97ad5cdSakolb 	/*
683c97ad5cdSakolb 	 * Double-check whether zone->zone_cpucap is NULL, now with caps_lock
684c97ad5cdSakolb 	 * held. If it is still NULL, assign a newly allocated cpucap to it.
685c97ad5cdSakolb 	 */
686c97ad5cdSakolb 	if (zone->zone_cpucap == NULL) {
687c97ad5cdSakolb 		zone->zone_cpucap = cap;
688c97ad5cdSakolb 	} else if (cap != NULL) {
689c97ad5cdSakolb 		cap_free(cap);
690c97ad5cdSakolb 	}
691c97ad5cdSakolb 
692c97ad5cdSakolb 	cap = zone->zone_cpucap;
693c97ad5cdSakolb 	value = cap_val * cap_tick_cost;
694c97ad5cdSakolb 	if (value < 0)
695c97ad5cdSakolb 		value = MAX_USAGE;
696c97ad5cdSakolb 
697c97ad5cdSakolb 	/* Nothing to do if the value is staying the same */
698c97ad5cdSakolb 	if (value == cap->cap_value) {
699c97ad5cdSakolb 		mutex_exit(&caps_lock);
700c97ad5cdSakolb 		return (0);
701c97ad5cdSakolb 	}
702c97ad5cdSakolb 
703c97ad5cdSakolb 	/*
704c97ad5cdSakolb 	 * Clear cap statistics since the cap value itself changes.
705c97ad5cdSakolb 	 */
706c97ad5cdSakolb 	cap->cap_above = cap->cap_below = 0;
707c97ad5cdSakolb 
708c97ad5cdSakolb 
709c97ad5cdSakolb 	if (cap_val == NOCAP) {
710c97ad5cdSakolb 		if (CAP_ENABLED(cap)) {
711c97ad5cdSakolb 			/*
712c97ad5cdSakolb 			 * Remove cap for the zone
713c97ad5cdSakolb 			 */
714c97ad5cdSakolb 			cap_zone_disable(zone);
715c97ad5cdSakolb 			cpucaps_busy = B_TRUE;
716c97ad5cdSakolb 			mutex_exit(&caps_lock);
717c97ad5cdSakolb 			/*
718c97ad5cdSakolb 			 * Disable caps for all project belonging to this zone
719c97ad5cdSakolb 			 * unless they have their own cap.
720c97ad5cdSakolb 			 */
721c97ad5cdSakolb 			(void) project_walk_all(zone->zone_id,
722c97ad5cdSakolb 			    cap_project_zone_modify_walker, cap);
723c97ad5cdSakolb 
724c97ad5cdSakolb 			mutex_enter(&caps_lock);
725c97ad5cdSakolb 			cpucaps_busy = B_FALSE;
726c97ad5cdSakolb 		}
727c97ad5cdSakolb 	} else if (CAP_DISABLED(cap)) {
728c97ad5cdSakolb 		/*
729c97ad5cdSakolb 		 * Set a cap on a zone which previously was not capped.
730c97ad5cdSakolb 		 */
731c97ad5cdSakolb 		cap_zone_enable(zone, value);
732c97ad5cdSakolb 		cpucaps_busy = B_TRUE;
733c97ad5cdSakolb 		mutex_exit(&caps_lock);
734c97ad5cdSakolb 
735c97ad5cdSakolb 		/*
736c97ad5cdSakolb 		 * Enable cap for all projects belonging to this zone.
737c97ad5cdSakolb 		 */
738c97ad5cdSakolb 		(void) project_walk_all(zone->zone_id,
739c97ad5cdSakolb 		    cap_project_zone_modify_walker, cap);
740c97ad5cdSakolb 
741c97ad5cdSakolb 		mutex_enter(&caps_lock);
742c97ad5cdSakolb 		cpucaps_busy = B_FALSE;
743c97ad5cdSakolb 	} else {
744c97ad5cdSakolb 		/*
745c97ad5cdSakolb 		 * No state transitions, just change the value
746c97ad5cdSakolb 		 */
747c97ad5cdSakolb 		cap->cap_value = value;
748c97ad5cdSakolb 	}
749c97ad5cdSakolb 
750c97ad5cdSakolb 	ASSERT(MUTEX_HELD(&caps_lock));
751c97ad5cdSakolb 	ASSERT(!cpucaps_busy);
752c97ad5cdSakolb 	mutex_exit(&caps_lock);
753c97ad5cdSakolb 
754c97ad5cdSakolb 	return (0);
755c97ad5cdSakolb }
756c97ad5cdSakolb 
757c97ad5cdSakolb /*
758c97ad5cdSakolb  * The project is going away so disable its cap.
759c97ad5cdSakolb  */
760c97ad5cdSakolb void
761c97ad5cdSakolb cpucaps_project_remove(kproject_t *kpj)
762c97ad5cdSakolb {
763c97ad5cdSakolb 	mutex_enter(&caps_lock);
764c97ad5cdSakolb 	if (PROJECT_IS_CAPPED(kpj))
765c97ad5cdSakolb 		cap_project_disable(kpj);
766c97ad5cdSakolb 	if (kpj->kpj_cpucap != NULL) {
767c97ad5cdSakolb 		cap_free(kpj->kpj_cpucap);
768c97ad5cdSakolb 		kpj->kpj_cpucap = NULL;
769c97ad5cdSakolb 	}
770c97ad5cdSakolb 	mutex_exit(&caps_lock);
771c97ad5cdSakolb }
772c97ad5cdSakolb 
773c97ad5cdSakolb /*
774c97ad5cdSakolb  * The zone is going away, so disable its cap.
775c97ad5cdSakolb  */
776c97ad5cdSakolb void
777c97ad5cdSakolb cpucaps_zone_remove(zone_t *zone)
778c97ad5cdSakolb {
779c97ad5cdSakolb 	mutex_enter(&caps_lock);
780c97ad5cdSakolb 	while (ZONE_IS_CAPPED(zone)) {
781c97ad5cdSakolb 		mutex_exit(&caps_lock);
782c97ad5cdSakolb 		(void) cpucaps_zone_set(zone, NOCAP);
783c97ad5cdSakolb 		mutex_enter(&caps_lock);
784c97ad5cdSakolb 	}
785c97ad5cdSakolb 	if (zone->zone_cpucap != NULL) {
786c97ad5cdSakolb 		cap_free(zone->zone_cpucap);
787c97ad5cdSakolb 		zone->zone_cpucap = NULL;
788c97ad5cdSakolb 	}
789c97ad5cdSakolb 	mutex_exit(&caps_lock);
790c97ad5cdSakolb }
791c97ad5cdSakolb 
792c97ad5cdSakolb /*
793c97ad5cdSakolb  * New project was created. It should be put on the capped_projects list if
794c97ad5cdSakolb  * its zone has a cap.
795c97ad5cdSakolb  */
796c97ad5cdSakolb void
797c97ad5cdSakolb cpucaps_project_add(kproject_t *kpj)
798c97ad5cdSakolb {
799c97ad5cdSakolb 	cpucap_t *cap = NULL;
800c97ad5cdSakolb 
801c97ad5cdSakolb 	if (CPUCAPS_OFF() || !ZONE_IS_CAPPED(kpj->kpj_zone))
802c97ad5cdSakolb 		return;
803c97ad5cdSakolb 
804c97ad5cdSakolb 	/*
805c97ad5cdSakolb 	 * This project was never capped before, so allocate its cap structure.
806c97ad5cdSakolb 	 */
807c97ad5cdSakolb 	if (kpj->kpj_cpucap == NULL)
808c97ad5cdSakolb 		cap = cap_alloc();
809c97ad5cdSakolb 
810c97ad5cdSakolb 	mutex_enter(&caps_lock);
811c97ad5cdSakolb 	/*
812c97ad5cdSakolb 	 * Double-check with caps_lock held
813c97ad5cdSakolb 	 */
814c97ad5cdSakolb 	if (kpj->kpj_cpucap == NULL) {
815c97ad5cdSakolb 		kpj->kpj_cpucap = cap;
816c97ad5cdSakolb 	} else if (cap != NULL) {
817c97ad5cdSakolb 		cap_free(cap);
818c97ad5cdSakolb 	}
819c97ad5cdSakolb 
820c97ad5cdSakolb 	if (ZONE_IS_CAPPED(kpj->kpj_zone))
821c97ad5cdSakolb 		cap_project_enable(kpj, MAX_USAGE);
822c97ad5cdSakolb 
823c97ad5cdSakolb 	mutex_exit(&caps_lock);
824c97ad5cdSakolb }
825c97ad5cdSakolb 
826c97ad5cdSakolb /*
827c97ad5cdSakolb  * Set project cap to cap_val
828c97ad5cdSakolb  * If cap_val is equal to NOCAP, disable project cap.
829c97ad5cdSakolb  *
830c97ad5cdSakolb  * If this is the first time a cap is set on a project, allocate cpucap
831c97ad5cdSakolb  * structure without holding caps_lock to avoid KM_SLEEP allocation with
832c97ad5cdSakolb  * caps_lock held.
833c97ad5cdSakolb  */
834c97ad5cdSakolb int
835c97ad5cdSakolb cpucaps_project_set(kproject_t *kpj, rctl_qty_t cap_val)
836c97ad5cdSakolb {
837c97ad5cdSakolb 	cpucap_t *cap = NULL;
838c97ad5cdSakolb 	hrtime_t value;
839c97ad5cdSakolb 
840c97ad5cdSakolb 	if (cap_val == 0)
841c97ad5cdSakolb 		return (EINVAL);
842c97ad5cdSakolb 
843c97ad5cdSakolb 	ASSERT(cap_val <= MAXCAP);
844c97ad5cdSakolb 	if (cap_val > MAXCAP)
845c97ad5cdSakolb 		cap_val = MAXCAP;
846c97ad5cdSakolb 
847c97ad5cdSakolb 	/*
848c97ad5cdSakolb 	 * Nothing to do if trying to disable project cap and caps are not
849c97ad5cdSakolb 	 * enabled or if trying to disable cap on a project that does not have
850c97ad5cdSakolb 	 * cap enabled.
851c97ad5cdSakolb 	 */
852c97ad5cdSakolb 	if ((cap_val == NOCAP) && (CPUCAPS_OFF() || !PROJECT_IS_CAPPED(kpj)))
853c97ad5cdSakolb 		return (0);
854c97ad5cdSakolb 
855c97ad5cdSakolb 	if (kpj->kpj_cpucap == NULL) {
856c97ad5cdSakolb 		/*
857c97ad5cdSakolb 		 * This project was never capped before, so allocate its cap
858c97ad5cdSakolb 		 * structure.
859c97ad5cdSakolb 		 */
860c97ad5cdSakolb 		cap = cap_alloc();
861c97ad5cdSakolb 	}
862c97ad5cdSakolb 
863c97ad5cdSakolb 	mutex_enter(&caps_lock);
864c97ad5cdSakolb 
865c97ad5cdSakolb 	/*
866c97ad5cdSakolb 	 * Double-check with caps_lock held.
867c97ad5cdSakolb 	 */
868c97ad5cdSakolb 	if (kpj->kpj_cpucap == NULL) {
869c97ad5cdSakolb 		kpj->kpj_cpucap = cap;
870c97ad5cdSakolb 	} else if (cap != NULL) {
871c97ad5cdSakolb 		cap_free(cap);
872c97ad5cdSakolb 	}
873c97ad5cdSakolb 
874c97ad5cdSakolb 	/*
875c97ad5cdSakolb 	 * Get the actual pointer to the project cap.
876c97ad5cdSakolb 	 */
877c97ad5cdSakolb 	cap = kpj->kpj_cpucap;
878c97ad5cdSakolb 	value = cap_val * cap_tick_cost;
879c97ad5cdSakolb 	if (value < 0)
880c97ad5cdSakolb 		value = MAX_USAGE;
881c97ad5cdSakolb 
882c97ad5cdSakolb 	/*
883c97ad5cdSakolb 	 * Nothing to do if the value is not changing
884c97ad5cdSakolb 	 */
885c97ad5cdSakolb 	if (value == cap->cap_value) {
886c97ad5cdSakolb 		mutex_exit(&caps_lock);
887c97ad5cdSakolb 		return (0);
888c97ad5cdSakolb 	}
889c97ad5cdSakolb 
890c97ad5cdSakolb 	/*
891c97ad5cdSakolb 	 * Clear cap statistics since the cap value itself changes.
892c97ad5cdSakolb 	 */
893c97ad5cdSakolb 	cap->cap_above = cap->cap_below = 0;
894c97ad5cdSakolb 	cap->cap_maxusage = 0;
895c97ad5cdSakolb 
896c97ad5cdSakolb 	if (cap_val != NOCAP) {
897c97ad5cdSakolb 		/*
898c97ad5cdSakolb 		 * Enable this cap if it is not already enabled.
899c97ad5cdSakolb 		 */
900c97ad5cdSakolb 		if (CAP_DISABLED(cap))
901c97ad5cdSakolb 			cap_project_enable(kpj, value);
902c97ad5cdSakolb 		else
903c97ad5cdSakolb 			cap->cap_value = value;
904c97ad5cdSakolb 	} else if (CAP_ENABLED(cap)) {
905c97ad5cdSakolb 		/*
906c97ad5cdSakolb 		 * User requested to drop a cap on the project. If it is part of
907c97ad5cdSakolb 		 * capped zone, keep the cap and set the value to MAX_USAGE,
908c97ad5cdSakolb 		 * otherwise disable the cap.
909c97ad5cdSakolb 		 */
910c97ad5cdSakolb 		if (ZONE_IS_CAPPED(kpj->kpj_zone)) {
911c97ad5cdSakolb 			cap->cap_value = MAX_USAGE;
912c97ad5cdSakolb 		} else {
913c97ad5cdSakolb 			cap_project_disable(kpj);
914c97ad5cdSakolb 		}
915c97ad5cdSakolb 	}
916c97ad5cdSakolb 	mutex_exit(&caps_lock);
917c97ad5cdSakolb 
918c97ad5cdSakolb 	return (0);
919c97ad5cdSakolb }
920c97ad5cdSakolb 
921c97ad5cdSakolb /*
922c97ad5cdSakolb  * Get cap usage.
923c97ad5cdSakolb  */
924c97ad5cdSakolb static rctl_qty_t
925c97ad5cdSakolb cap_get(cpucap_t *cap)
926c97ad5cdSakolb {
927c97ad5cdSakolb 	return (cap != NULL ? (rctl_qty_t)(cap->cap_usage / cap_tick_cost) : 0);
928c97ad5cdSakolb }
929c97ad5cdSakolb 
930c97ad5cdSakolb /*
931c97ad5cdSakolb  * Get current project usage.
932c97ad5cdSakolb  */
933c97ad5cdSakolb rctl_qty_t
934c97ad5cdSakolb cpucaps_project_get(kproject_t *kpj)
935c97ad5cdSakolb {
936c97ad5cdSakolb 	return (cap_get(kpj->kpj_cpucap));
937c97ad5cdSakolb }
938c97ad5cdSakolb 
939c97ad5cdSakolb /*
940c97ad5cdSakolb  * Get current zone usage.
941c97ad5cdSakolb  */
942c97ad5cdSakolb rctl_qty_t
943c97ad5cdSakolb cpucaps_zone_get(zone_t *zone)
944c97ad5cdSakolb {
945c97ad5cdSakolb 	return (cap_get(zone->zone_cpucap));
946c97ad5cdSakolb }
947c97ad5cdSakolb 
948c97ad5cdSakolb /*
949c97ad5cdSakolb  * Charge project of thread t the time thread t spent on CPU since previously
950c97ad5cdSakolb  * adjusted.
951c97ad5cdSakolb  *
952c97ad5cdSakolb  * Record the current on-CPU time in the csc structure.
953c97ad5cdSakolb  *
954c97ad5cdSakolb  * Do not adjust for more than one tick worth of time.
955c97ad5cdSakolb  *
956*4b175f6fSakolb  * It is possible that the project cap is being disabled while this routine is
957*4b175f6fSakolb  * executed. This should not cause any issues since the association between the
958*4b175f6fSakolb  * thread and its project is protected by thread lock.
959c97ad5cdSakolb  */
960c97ad5cdSakolb static void
961c97ad5cdSakolb caps_charge_adjust(kthread_id_t t, caps_sc_t *csc)
962c97ad5cdSakolb {
963c97ad5cdSakolb 	kproject_t	*kpj = ttoproj(t);
964c97ad5cdSakolb 	hrtime_t	new_usage;
965c97ad5cdSakolb 	hrtime_t	usage_delta;
966c97ad5cdSakolb 
967c97ad5cdSakolb 	ASSERT(THREAD_LOCK_HELD(t));
968*4b175f6fSakolb 	ASSERT(kpj->kpj_cpucap != NULL);
969c97ad5cdSakolb 
970c97ad5cdSakolb 	/* Get on-CPU time since birth of a thread */
971c97ad5cdSakolb 	new_usage = mstate_thread_onproc_time(t);
972c97ad5cdSakolb 
973c97ad5cdSakolb 	/* Time spent on CPU since last checked */
974c97ad5cdSakolb 	usage_delta = new_usage - csc->csc_cputime;
975c97ad5cdSakolb 
976c97ad5cdSakolb 	/* Save the accumulated on-CPU time */
977c97ad5cdSakolb 	csc->csc_cputime = new_usage;
978c97ad5cdSakolb 
979c97ad5cdSakolb 	/* Charge at most one tick worth of on-CPU time */
980c97ad5cdSakolb 	if (usage_delta > cap_tick_cost)
981c97ad5cdSakolb 		usage_delta = cap_tick_cost;
982c97ad5cdSakolb 
983c97ad5cdSakolb 	/* Add usage_delta to the project usage value. */
984c97ad5cdSakolb 	if (usage_delta > 0) {
985c97ad5cdSakolb 		cpucap_t *cap = kpj->kpj_cpucap;
986c97ad5cdSakolb 
987c97ad5cdSakolb 		DTRACE_PROBE2(cpucaps__project__charge,
988c97ad5cdSakolb 		    kthread_id_t, t, hrtime_t, usage_delta);
989c97ad5cdSakolb 
990c97ad5cdSakolb 		disp_lock_enter_high(&cap->cap_usagelock);
991c97ad5cdSakolb 		cap->cap_usage += usage_delta;
992c97ad5cdSakolb 
993c97ad5cdSakolb 		/* Check for overflows */
994c97ad5cdSakolb 		if (cap->cap_usage < 0)
995c97ad5cdSakolb 			cap->cap_usage = MAX_USAGE - 1;
996c97ad5cdSakolb 
997c97ad5cdSakolb 		disp_lock_exit_high(&cap->cap_usagelock);
998c97ad5cdSakolb 
999c97ad5cdSakolb 		/*
1000c97ad5cdSakolb 		 * cap_maxusage is only kept for observability. Move it outside
1001c97ad5cdSakolb 		 * the lock to reduce the time spent while holding the lock.
1002c97ad5cdSakolb 		 */
1003c97ad5cdSakolb 		if (cap->cap_usage > cap->cap_maxusage)
1004c97ad5cdSakolb 			cap->cap_maxusage = cap->cap_usage;
1005c97ad5cdSakolb 	}
1006c97ad5cdSakolb }
1007c97ad5cdSakolb 
1008c97ad5cdSakolb /*
1009c97ad5cdSakolb  * Charge thread's project and return True if project or zone should be
1010c97ad5cdSakolb  * penalized because its project or zone is exceeding its cap. Also sets
1011c97ad5cdSakolb  * TS_PROJWAITQ or TS_ZONEWAITQ in this case.
1012*4b175f6fSakolb  *
1013*4b175f6fSakolb  * It is possible that the project cap is being disabled while this routine is
1014*4b175f6fSakolb  * executed. This should not cause any issues since the association between the
1015*4b175f6fSakolb  * thread and its project is protected by thread lock. It will still set
1016*4b175f6fSakolb  * TS_PROJECTWAITQ/TS_ZONEWAITQ in this case but cpucaps_enforce will not place
1017*4b175f6fSakolb  * anything on the blocked wait queue.
1018*4b175f6fSakolb  *
1019c97ad5cdSakolb  */
1020c97ad5cdSakolb boolean_t
1021c97ad5cdSakolb cpucaps_charge(kthread_id_t t, caps_sc_t *csc, cpucaps_charge_t charge_type)
1022c97ad5cdSakolb {
1023c97ad5cdSakolb 	kproject_t	*kpj = ttoproj(t);
1024c97ad5cdSakolb 	klwp_t		*lwp = t->t_lwp;
1025c97ad5cdSakolb 	zone_t		*zone;
1026c97ad5cdSakolb 	cpucap_t	*project_cap;
1027c97ad5cdSakolb 	boolean_t	rc = B_FALSE;
1028c97ad5cdSakolb 
1029c97ad5cdSakolb 	ASSERT(THREAD_LOCK_HELD(t));
1030c97ad5cdSakolb 
1031c97ad5cdSakolb 	/* Nothing to do for projects that are not capped. */
1032c97ad5cdSakolb 	if (lwp == NULL || !PROJECT_IS_CAPPED(kpj))
1033c97ad5cdSakolb 		return (B_FALSE);
1034c97ad5cdSakolb 
1035c97ad5cdSakolb 	caps_charge_adjust(t, csc);
1036c97ad5cdSakolb 
1037c97ad5cdSakolb 	/*
1038c97ad5cdSakolb 	 * The caller only requested to charge the project usage, no enforcement
1039c97ad5cdSakolb 	 * part.
1040c97ad5cdSakolb 	 */
1041c97ad5cdSakolb 	if (charge_type == CPUCAPS_CHARGE_ONLY)
1042c97ad5cdSakolb 		return (B_FALSE);
1043c97ad5cdSakolb 
1044c97ad5cdSakolb 	project_cap = kpj->kpj_cpucap;
1045c97ad5cdSakolb 
1046c97ad5cdSakolb 	if (project_cap->cap_usage >= project_cap->cap_value) {
1047c97ad5cdSakolb 		t->t_schedflag |= TS_PROJWAITQ;
1048c97ad5cdSakolb 		rc = B_TRUE;
1049c97ad5cdSakolb 	} else if (t->t_schedflag & TS_PROJWAITQ) {
1050c97ad5cdSakolb 		t->t_schedflag &= ~TS_PROJWAITQ;
1051c97ad5cdSakolb 	}
1052c97ad5cdSakolb 
1053c97ad5cdSakolb 	zone = ttozone(t);
1054c97ad5cdSakolb 	if (!ZONE_IS_CAPPED(zone)) {
1055c97ad5cdSakolb 		if (t->t_schedflag & TS_ZONEWAITQ)
1056c97ad5cdSakolb 			t->t_schedflag &= ~TS_ZONEWAITQ;
1057c97ad5cdSakolb 	} else {
1058c97ad5cdSakolb 		cpucap_t *zone_cap = zone->zone_cpucap;
1059c97ad5cdSakolb 
1060c97ad5cdSakolb 		if (zone_cap->cap_usage >= zone_cap->cap_value) {
1061c97ad5cdSakolb 			t->t_schedflag |= TS_ZONEWAITQ;
1062c97ad5cdSakolb 			rc = B_TRUE;
1063c97ad5cdSakolb 		} else if (t->t_schedflag & TS_ZONEWAITQ) {
1064c97ad5cdSakolb 			t->t_schedflag &= ~TS_ZONEWAITQ;
1065c97ad5cdSakolb 		}
1066c97ad5cdSakolb 	}
1067c97ad5cdSakolb 
1068c97ad5cdSakolb 
1069c97ad5cdSakolb 	return (rc);
1070c97ad5cdSakolb }
1071c97ad5cdSakolb 
1072c97ad5cdSakolb /*
1073c97ad5cdSakolb  * Enforce CPU caps. If got preempted in the user-land, we know that thread does
1074c97ad5cdSakolb  * not hold any kernel locks, so enqueue ourselves on the waitq, if needed.
1075c97ad5cdSakolb  *
1076c97ad5cdSakolb  * CPU Caps are only enforced for user threads.
1077c97ad5cdSakolb  *
1078c97ad5cdSakolb  * Threads flagged with TS_PROJWAITQ are placed on their project wait queues and
1079c97ad5cdSakolb  * threads marked with TS_ZONEWAITQ are placed on their zone wait queue.
1080c97ad5cdSakolb  *
1081c97ad5cdSakolb  * It is possible that by the time we enter cpucaps_enforce() the cap is already
1082c97ad5cdSakolb  * disabled. In this case waitq_enqueue() fails and doesn't enqueue anything. We
1083c97ad5cdSakolb  * still clear TS_PROJWAITQ/TS_ZONEWAITQ flags in this case since they no longer
1084c97ad5cdSakolb  * apply.
1085c97ad5cdSakolb  */
1086c97ad5cdSakolb boolean_t
1087c97ad5cdSakolb cpucaps_enforce(kthread_t *t)
1088c97ad5cdSakolb {
1089c97ad5cdSakolb 	klwp_t *lwp = t->t_lwp;
1090c97ad5cdSakolb 
1091c97ad5cdSakolb 	ASSERT(THREAD_LOCK_HELD(t));
1092c97ad5cdSakolb 
1093c97ad5cdSakolb 	if (lwp != NULL && lwp->lwp_state == LWP_USER) {
1094c97ad5cdSakolb 		if (t->t_schedflag & TS_PROJWAITQ) {
1095c97ad5cdSakolb 			ASSERT(ttoproj(t)->kpj_cpucap != NULL);
1096c97ad5cdSakolb 			t->t_schedflag &= ~TS_ANYWAITQ;
1097c97ad5cdSakolb 			if (waitq_enqueue(&(ttoproj(t)->kpj_cpucap->cap_waitq),
1098c97ad5cdSakolb 				t)) {
1099c97ad5cdSakolb 				return (B_TRUE);
1100c97ad5cdSakolb 			}
1101c97ad5cdSakolb 		}
1102c97ad5cdSakolb 		if (t->t_schedflag & TS_ZONEWAITQ) {
1103c97ad5cdSakolb 			ASSERT(ttozone(t)->zone_cpucap != NULL);
1104c97ad5cdSakolb 			t->t_schedflag &= ~TS_ZONEWAITQ;
1105c97ad5cdSakolb 			if (waitq_enqueue(&(ttozone(t)->zone_cpucap->cap_waitq),
1106c97ad5cdSakolb 				t)) {
1107c97ad5cdSakolb 				return (B_TRUE);
1108c97ad5cdSakolb 			}
1109c97ad5cdSakolb 		}
1110c97ad5cdSakolb 	}
1111c97ad5cdSakolb 
1112c97ad5cdSakolb 	/*
1113c97ad5cdSakolb 	 * The thread is not enqueued on the wait queue.
1114c97ad5cdSakolb 	 */
1115c97ad5cdSakolb 	return (B_FALSE);
1116c97ad5cdSakolb }
1117c97ad5cdSakolb 
1118c97ad5cdSakolb /*
1119c97ad5cdSakolb  * Convert internal cap statistics into values exported by cap kstat.
1120c97ad5cdSakolb  */
1121c97ad5cdSakolb static int
1122c97ad5cdSakolb cap_kstat_update(kstat_t *ksp, int rw)
1123c97ad5cdSakolb {
1124c97ad5cdSakolb 	struct cap_kstat *capsp = &cap_kstat;
1125c97ad5cdSakolb 	cpucap_t *cap = ksp->ks_private;
1126c97ad5cdSakolb 	clock_t	tick_sec = SEC_TO_TICK(1);
1127c97ad5cdSakolb 	char *zonename = cap->cap_zone->zone_name;
1128c97ad5cdSakolb 
1129c97ad5cdSakolb 	if (rw == KSTAT_WRITE)
1130c97ad5cdSakolb 		return (EACCES);
1131c97ad5cdSakolb 
1132c97ad5cdSakolb 	capsp->cap_value.value.ui64 =
1133c97ad5cdSakolb 	    ROUND_SCALE(cap->cap_value, cap_tick_cost);
1134c97ad5cdSakolb 	capsp->cap_usage.value.ui64 =
1135c97ad5cdSakolb 	    ROUND_SCALE(cap->cap_usage, cap_tick_cost);
1136c97ad5cdSakolb 	capsp->cap_maxusage.value.ui64 =
1137c97ad5cdSakolb 	    ROUND_SCALE(cap->cap_maxusage, cap_tick_cost);
1138c97ad5cdSakolb 	capsp->cap_nwait.value.ui64 = cap->cap_waitq.wq_count;
1139c97ad5cdSakolb 	capsp->cap_below.value.ui64 = ROUND_SCALE(cap->cap_below, tick_sec);
1140c97ad5cdSakolb 	capsp->cap_above.value.ui64 = ROUND_SCALE(cap->cap_above, tick_sec);
1141c97ad5cdSakolb 	kstat_named_setstr(&capsp->cap_zonename, zonename);
1142c97ad5cdSakolb 
1143c97ad5cdSakolb 	return (0);
1144c97ad5cdSakolb }
1145