1fb2f18f8Sesaxe /* 2fb2f18f8Sesaxe * CDDL HEADER START 3fb2f18f8Sesaxe * 4fb2f18f8Sesaxe * The contents of this file are subject to the terms of the 5fb2f18f8Sesaxe * Common Development and Distribution License (the "License"). 6fb2f18f8Sesaxe * You may not use this file except in compliance with the License. 7fb2f18f8Sesaxe * 8fb2f18f8Sesaxe * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9fb2f18f8Sesaxe * or http://www.opensolaris.org/os/licensing. 10fb2f18f8Sesaxe * See the License for the specific language governing permissions 11fb2f18f8Sesaxe * and limitations under the License. 12fb2f18f8Sesaxe * 13fb2f18f8Sesaxe * When distributing Covered Code, include this CDDL HEADER in each 14fb2f18f8Sesaxe * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15fb2f18f8Sesaxe * If applicable, add the following below this CDDL HEADER, with the 16fb2f18f8Sesaxe * fields enclosed by brackets "[]" replaced with your own identifying 17fb2f18f8Sesaxe * information: Portions Copyright [yyyy] [name of copyright owner] 18fb2f18f8Sesaxe * 19fb2f18f8Sesaxe * CDDL HEADER END 20fb2f18f8Sesaxe */ 21fb2f18f8Sesaxe /* 223e81cacfSEric Saxe * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23fb2f18f8Sesaxe * Use is subject to license terms. 24fb2f18f8Sesaxe */ 25fb2f18f8Sesaxe 26fb2f18f8Sesaxe #include <sys/systm.h> 27fb2f18f8Sesaxe #include <sys/types.h> 28fb2f18f8Sesaxe #include <sys/param.h> 29fb2f18f8Sesaxe #include <sys/thread.h> 30fb2f18f8Sesaxe #include <sys/cpuvar.h> 31fb2f18f8Sesaxe #include <sys/cpupart.h> 32fb2f18f8Sesaxe #include <sys/kmem.h> 33fb2f18f8Sesaxe #include <sys/cmn_err.h> 34fb2f18f8Sesaxe #include <sys/kstat.h> 35fb2f18f8Sesaxe #include <sys/processor.h> 36fb2f18f8Sesaxe #include <sys/disp.h> 37fb2f18f8Sesaxe #include <sys/group.h> 38fb2f18f8Sesaxe #include <sys/pghw.h> 39fb2f18f8Sesaxe #include <sys/bitset.h> 40fb2f18f8Sesaxe #include <sys/lgrp.h> 41fb2f18f8Sesaxe #include <sys/cmt.h> 420e751525SEric Saxe #include <sys/cpu_pm.h> 43fb2f18f8Sesaxe 44fb2f18f8Sesaxe /* 45fb2f18f8Sesaxe * CMT scheduler / dispatcher support 46fb2f18f8Sesaxe * 47fb2f18f8Sesaxe * This file implements CMT scheduler support using Processor Groups. 48fb2f18f8Sesaxe * The CMT processor group class creates and maintains the CMT class 49fb2f18f8Sesaxe * specific processor group pg_cmt_t. 50fb2f18f8Sesaxe * 51fb2f18f8Sesaxe * ---------------------------- <-- pg_cmt_t * 52fb2f18f8Sesaxe * | pghw_t | 53fb2f18f8Sesaxe * ---------------------------- 54fb2f18f8Sesaxe * | CMT class specific data | 55fb2f18f8Sesaxe * | - hierarchy linkage | 56fb2f18f8Sesaxe * | - CMT load balancing data| 57fb2f18f8Sesaxe * | - active CPU group/bitset| 58fb2f18f8Sesaxe * ---------------------------- 59fb2f18f8Sesaxe * 60fb2f18f8Sesaxe * The scheduler/dispatcher leverages knowledge of the performance 61fb2f18f8Sesaxe * relevant CMT sharing relationships existing between cpus to implement 620e751525SEric Saxe * optimized affinity, load balancing, and coalescence policies. 63fb2f18f8Sesaxe * 64fb2f18f8Sesaxe * Load balancing policy seeks to improve performance by minimizing 650e751525SEric Saxe * contention over shared processor resources / facilities, Affinity 660e751525SEric Saxe * policies seek to improve cache and TLB utilization. Coalescence 670e751525SEric Saxe * policies improve resource utilization and ultimately power efficiency. 68fb2f18f8Sesaxe * 69fb2f18f8Sesaxe * The CMT PGs created by this class are already arranged into a 70fb2f18f8Sesaxe * hierarchy (which is done in the pghw layer). To implement the top-down 71fb2f18f8Sesaxe * CMT load balancing algorithm, the CMT PGs additionally maintain 72fb2f18f8Sesaxe * parent, child and sibling hierarchy relationships. 73fb2f18f8Sesaxe * Parent PGs always contain a superset of their children(s) resources, 74fb2f18f8Sesaxe * each PG can have at most one parent, and siblings are the group of PGs 75fb2f18f8Sesaxe * sharing the same parent. 76fb2f18f8Sesaxe * 77fb2f18f8Sesaxe * On NUMA systems, the CMT load balancing algorithm balances across the 78fb2f18f8Sesaxe * CMT PGs within their respective lgroups. On UMA based system, there 79fb2f18f8Sesaxe * exists a top level group of PGs to balance across. On NUMA systems multiple 80fb2f18f8Sesaxe * top level groups are instantiated, where the top level balancing begins by 81fb2f18f8Sesaxe * balancng across the CMT PGs within their respective (per lgroup) top level 82fb2f18f8Sesaxe * groups. 83fb2f18f8Sesaxe */ 84a6604450Sesaxe static cmt_lgrp_t *cmt_lgrps = NULL; /* cmt_lgrps list head */ 85a6604450Sesaxe static cmt_lgrp_t *cpu0_lgrp = NULL; /* boot CPU's initial lgrp */ 86a6604450Sesaxe /* used for null_proc_lpa */ 870e751525SEric Saxe cmt_lgrp_t *cmt_root = NULL; /* Reference to root cmt pg */ 88fb2f18f8Sesaxe 89a6604450Sesaxe static int is_cpu0 = 1; /* true if this is boot CPU context */ 90a6604450Sesaxe 91a6604450Sesaxe /* 920e751525SEric Saxe * Array of hardware sharing relationships that are blacklisted. 930e751525SEric Saxe * PGs won't be instantiated for blacklisted hardware sharing relationships. 940e751525SEric Saxe */ 950e751525SEric Saxe static int cmt_hw_blacklisted[PGHW_NUM_COMPONENTS]; 960e751525SEric Saxe 970e751525SEric Saxe /* 98a6604450Sesaxe * Set this to non-zero to disable CMT scheduling 99a6604450Sesaxe * This must be done via kmdb -d, as /etc/system will be too late 100a6604450Sesaxe */ 1010e751525SEric Saxe int cmt_sched_disabled = 0; 102fb2f18f8Sesaxe 103ef4f35d8SEric Saxe /* 104ef4f35d8SEric Saxe * Status codes for CMT lineage validation 105ef4f35d8SEric Saxe * See pg_cmt_lineage_validate() below 106ef4f35d8SEric Saxe */ 107ef4f35d8SEric Saxe typedef enum cmt_lineage_validation { 108ef4f35d8SEric Saxe CMT_LINEAGE_VALID, 109ef4f35d8SEric Saxe CMT_LINEAGE_NON_CONCENTRIC, 110ef4f35d8SEric Saxe CMT_LINEAGE_PG_SPANS_LGRPS, 111ef4f35d8SEric Saxe CMT_LINEAGE_NON_PROMOTABLE, 112ef4f35d8SEric Saxe CMT_LINEAGE_REPAIRED, 113ef4f35d8SEric Saxe CMT_LINEAGE_UNRECOVERABLE 114ef4f35d8SEric Saxe } cmt_lineage_validation_t; 115ef4f35d8SEric Saxe 116ef4f35d8SEric Saxe /* 117ef4f35d8SEric Saxe * Status of the current lineage under construction. 118ef4f35d8SEric Saxe * One must be holding cpu_lock to change this. 119ef4f35d8SEric Saxe */ 120ef4f35d8SEric Saxe cmt_lineage_validation_t cmt_lineage_status = CMT_LINEAGE_VALID; 121ef4f35d8SEric Saxe 122ef4f35d8SEric Saxe /* 123ef4f35d8SEric Saxe * Power domain definitions (on x86) are defined by ACPI, and 124ef4f35d8SEric Saxe * therefore may be subject to BIOS bugs. 125ef4f35d8SEric Saxe */ 126ef4f35d8SEric Saxe #define PG_CMT_HW_SUSPECT(hw) PGHW_IS_PM_DOMAIN(hw) 127ef4f35d8SEric Saxe 128ef4f35d8SEric Saxe /* 129ef4f35d8SEric Saxe * Macro to test if PG is managed by the CMT PG class 130ef4f35d8SEric Saxe */ 131ef4f35d8SEric Saxe #define IS_CMT_PG(pg) (((pg_t *)(pg))->pg_class->pgc_id == pg_cmt_class_id) 132ef4f35d8SEric Saxe 133fb2f18f8Sesaxe static pg_cid_t pg_cmt_class_id; /* PG class id */ 134fb2f18f8Sesaxe 135fb2f18f8Sesaxe static pg_t *pg_cmt_alloc(); 136fb2f18f8Sesaxe static void pg_cmt_free(pg_t *); 13747ab0c7cSEric Saxe static void pg_cmt_cpu_init(cpu_t *, cpu_pg_t *); 13847ab0c7cSEric Saxe static void pg_cmt_cpu_fini(cpu_t *, cpu_pg_t *); 139fb2f18f8Sesaxe static void pg_cmt_cpu_active(cpu_t *); 140fb2f18f8Sesaxe static void pg_cmt_cpu_inactive(cpu_t *); 141fb2f18f8Sesaxe static void pg_cmt_cpupart_in(cpu_t *, cpupart_t *); 142fb2f18f8Sesaxe static void pg_cmt_cpupart_move(cpu_t *, cpupart_t *, cpupart_t *); 1430e751525SEric Saxe static char *pg_cmt_policy_name(pg_t *); 1440e751525SEric Saxe static void pg_cmt_hier_sort(pg_cmt_t **, int); 1450e751525SEric Saxe static pg_cmt_t *pg_cmt_hier_rank(pg_cmt_t *, pg_cmt_t *); 146fb2f18f8Sesaxe static int pg_cmt_cpu_belongs(pg_t *, cpu_t *); 147fb2f18f8Sesaxe static int pg_cmt_hw(pghw_type_t); 148fb2f18f8Sesaxe static cmt_lgrp_t *pg_cmt_find_lgrp(lgrp_handle_t); 149a6604450Sesaxe static cmt_lgrp_t *pg_cmt_lgrp_create(lgrp_handle_t); 1500e751525SEric Saxe static void cmt_ev_thread_swtch(pg_t *, cpu_t *, hrtime_t, 1510e751525SEric Saxe kthread_t *, kthread_t *); 1520e751525SEric Saxe static void cmt_ev_thread_swtch_pwr(pg_t *, cpu_t *, hrtime_t, 1530e751525SEric Saxe kthread_t *, kthread_t *); 1540e751525SEric Saxe static void cmt_ev_thread_remain_pwr(pg_t *, cpu_t *, kthread_t *); 155*1a77c24bSEric Saxe static cmt_lineage_validation_t pg_cmt_lineage_validate(pg_cmt_t **, int *, 156*1a77c24bSEric Saxe cpu_pg_t *); 157fb2f18f8Sesaxe 1580e751525SEric Saxe 1590e751525SEric Saxe /* 160fb2f18f8Sesaxe * CMT PG ops 161fb2f18f8Sesaxe */ 162fb2f18f8Sesaxe struct pg_ops pg_ops_cmt = { 163fb2f18f8Sesaxe pg_cmt_alloc, 164fb2f18f8Sesaxe pg_cmt_free, 165fb2f18f8Sesaxe pg_cmt_cpu_init, 166fb2f18f8Sesaxe pg_cmt_cpu_fini, 167fb2f18f8Sesaxe pg_cmt_cpu_active, 168fb2f18f8Sesaxe pg_cmt_cpu_inactive, 169fb2f18f8Sesaxe pg_cmt_cpupart_in, 170fb2f18f8Sesaxe NULL, /* cpupart_out */ 171fb2f18f8Sesaxe pg_cmt_cpupart_move, 172fb2f18f8Sesaxe pg_cmt_cpu_belongs, 1730e751525SEric Saxe pg_cmt_policy_name, 174fb2f18f8Sesaxe }; 175fb2f18f8Sesaxe 176fb2f18f8Sesaxe /* 177fb2f18f8Sesaxe * Initialize the CMT PG class 178fb2f18f8Sesaxe */ 179fb2f18f8Sesaxe void 180fb2f18f8Sesaxe pg_cmt_class_init(void) 181fb2f18f8Sesaxe { 182fb2f18f8Sesaxe if (cmt_sched_disabled) 183fb2f18f8Sesaxe return; 184fb2f18f8Sesaxe 185fb2f18f8Sesaxe pg_cmt_class_id = pg_class_register("cmt", &pg_ops_cmt, PGR_PHYSICAL); 186fb2f18f8Sesaxe } 187fb2f18f8Sesaxe 188fb2f18f8Sesaxe /* 189fb2f18f8Sesaxe * Called to indicate a new CPU has started up so 190fb2f18f8Sesaxe * that either t0 or the slave startup thread can 191fb2f18f8Sesaxe * be accounted for. 192fb2f18f8Sesaxe */ 193fb2f18f8Sesaxe void 194fb2f18f8Sesaxe pg_cmt_cpu_startup(cpu_t *cp) 195fb2f18f8Sesaxe { 1960e751525SEric Saxe pg_ev_thread_swtch(cp, gethrtime_unscaled(), cp->cpu_idle_thread, 1970e751525SEric Saxe cp->cpu_thread); 198fb2f18f8Sesaxe } 199fb2f18f8Sesaxe 200fb2f18f8Sesaxe /* 201fb2f18f8Sesaxe * Return non-zero if thread can migrate between "from" and "to" 202fb2f18f8Sesaxe * without a performance penalty 203fb2f18f8Sesaxe */ 204fb2f18f8Sesaxe int 205fb2f18f8Sesaxe pg_cmt_can_migrate(cpu_t *from, cpu_t *to) 206fb2f18f8Sesaxe { 207fb2f18f8Sesaxe if (from->cpu_physid->cpu_cacheid == 208fb2f18f8Sesaxe to->cpu_physid->cpu_cacheid) 209fb2f18f8Sesaxe return (1); 210fb2f18f8Sesaxe return (0); 211fb2f18f8Sesaxe } 212fb2f18f8Sesaxe 213fb2f18f8Sesaxe /* 214fb2f18f8Sesaxe * CMT class specific PG allocation 215fb2f18f8Sesaxe */ 216fb2f18f8Sesaxe static pg_t * 217fb2f18f8Sesaxe pg_cmt_alloc(void) 218fb2f18f8Sesaxe { 219fb2f18f8Sesaxe return (kmem_zalloc(sizeof (pg_cmt_t), KM_NOSLEEP)); 220fb2f18f8Sesaxe } 221fb2f18f8Sesaxe 222fb2f18f8Sesaxe /* 223fb2f18f8Sesaxe * Class specific PG de-allocation 224fb2f18f8Sesaxe */ 225fb2f18f8Sesaxe static void 226fb2f18f8Sesaxe pg_cmt_free(pg_t *pg) 227fb2f18f8Sesaxe { 228fb2f18f8Sesaxe ASSERT(pg != NULL); 229fb2f18f8Sesaxe ASSERT(IS_CMT_PG(pg)); 230fb2f18f8Sesaxe 231fb2f18f8Sesaxe kmem_free((pg_cmt_t *)pg, sizeof (pg_cmt_t)); 232fb2f18f8Sesaxe } 233fb2f18f8Sesaxe 234fb2f18f8Sesaxe /* 2350e751525SEric Saxe * Given a hardware sharing relationship, return which dispatcher 2360e751525SEric Saxe * policies should be implemented to optimize performance and efficiency 237fb2f18f8Sesaxe */ 2380e751525SEric Saxe static pg_cmt_policy_t 2390e751525SEric Saxe pg_cmt_policy(pghw_type_t hw) 240fb2f18f8Sesaxe { 2410e751525SEric Saxe pg_cmt_policy_t p; 2420e751525SEric Saxe 2430e751525SEric Saxe /* 2440e751525SEric Saxe * Give the platform a chance to override the default 2450e751525SEric Saxe */ 2460e751525SEric Saxe if ((p = pg_plat_cmt_policy(hw)) != CMT_NO_POLICY) 2470e751525SEric Saxe return (p); 2480e751525SEric Saxe 2490e751525SEric Saxe switch (hw) { 2500e751525SEric Saxe case PGHW_IPIPE: 2510e751525SEric Saxe case PGHW_FPU: 2520e751525SEric Saxe case PGHW_CHIP: 2530e751525SEric Saxe return (CMT_BALANCE); 2540e751525SEric Saxe case PGHW_CACHE: 2550e751525SEric Saxe return (CMT_AFFINITY); 2560e751525SEric Saxe case PGHW_POW_ACTIVE: 2570e751525SEric Saxe case PGHW_POW_IDLE: 2580e751525SEric Saxe return (CMT_BALANCE); 2590e751525SEric Saxe default: 2600e751525SEric Saxe return (CMT_NO_POLICY); 2610e751525SEric Saxe } 2620e751525SEric Saxe } 2630e751525SEric Saxe 2640e751525SEric Saxe /* 2650e751525SEric Saxe * Rank the importance of optimizing for the pg1 relationship vs. 2660e751525SEric Saxe * the pg2 relationship. 2670e751525SEric Saxe */ 2680e751525SEric Saxe static pg_cmt_t * 2690e751525SEric Saxe pg_cmt_hier_rank(pg_cmt_t *pg1, pg_cmt_t *pg2) 2700e751525SEric Saxe { 2710e751525SEric Saxe pghw_type_t hw1 = ((pghw_t *)pg1)->pghw_hw; 2720e751525SEric Saxe pghw_type_t hw2 = ((pghw_t *)pg2)->pghw_hw; 2730e751525SEric Saxe 2740e751525SEric Saxe /* 2750e751525SEric Saxe * A power domain is only important if CPUPM is enabled. 2760e751525SEric Saxe */ 2770e751525SEric Saxe if (cpupm_get_policy() == CPUPM_POLICY_DISABLED) { 2780e751525SEric Saxe if (PGHW_IS_PM_DOMAIN(hw1) && !PGHW_IS_PM_DOMAIN(hw2)) 2790e751525SEric Saxe return (pg2); 2800e751525SEric Saxe if (PGHW_IS_PM_DOMAIN(hw2) && !PGHW_IS_PM_DOMAIN(hw1)) 2810e751525SEric Saxe return (pg1); 2820e751525SEric Saxe } 2830e751525SEric Saxe 2840e751525SEric Saxe /* 2850e751525SEric Saxe * Otherwise, ask the platform 2860e751525SEric Saxe */ 2870e751525SEric Saxe if (pg_plat_hw_rank(hw1, hw2) == hw1) 2880e751525SEric Saxe return (pg1); 2890e751525SEric Saxe else 2900e751525SEric Saxe return (pg2); 2910e751525SEric Saxe } 2920e751525SEric Saxe 2930e751525SEric Saxe /* 2940e751525SEric Saxe * Initialize CMT callbacks for the given PG 2950e751525SEric Saxe */ 2960e751525SEric Saxe static void 2970e751525SEric Saxe cmt_callback_init(pg_t *pg) 2980e751525SEric Saxe { 2990e751525SEric Saxe switch (((pghw_t *)pg)->pghw_hw) { 3000e751525SEric Saxe case PGHW_POW_ACTIVE: 3010e751525SEric Saxe pg->pg_cb.thread_swtch = cmt_ev_thread_swtch_pwr; 3020e751525SEric Saxe pg->pg_cb.thread_remain = cmt_ev_thread_remain_pwr; 3030e751525SEric Saxe break; 3040e751525SEric Saxe default: 3050e751525SEric Saxe pg->pg_cb.thread_swtch = cmt_ev_thread_swtch; 3060e751525SEric Saxe 3070e751525SEric Saxe } 3080e751525SEric Saxe } 3090e751525SEric Saxe 3100e751525SEric Saxe /* 3110e751525SEric Saxe * Promote PG above it's current parent. 312*1a77c24bSEric Saxe * This is only legal if PG has an equal or greater number of CPUs than its 313*1a77c24bSEric Saxe * parent. 314*1a77c24bSEric Saxe * 315*1a77c24bSEric Saxe * This routine operates on the CPU specific processor group data (for the CPUs 316*1a77c24bSEric Saxe * in the PG being promoted), and may be invoked from a context where one CPU's 317*1a77c24bSEric Saxe * PG data is under construction. In this case the argument "pgdata", if not 318*1a77c24bSEric Saxe * NULL, is a reference to the CPU's under-construction PG data. 3190e751525SEric Saxe */ 3200e751525SEric Saxe static void 321*1a77c24bSEric Saxe cmt_hier_promote(pg_cmt_t *pg, cpu_pg_t *pgdata) 3220e751525SEric Saxe { 3230e751525SEric Saxe pg_cmt_t *parent; 3240e751525SEric Saxe group_t *children; 3250e751525SEric Saxe cpu_t *cpu; 3260e751525SEric Saxe group_iter_t iter; 3270e751525SEric Saxe pg_cpu_itr_t cpu_iter; 3280e751525SEric Saxe int r; 3290e751525SEric Saxe int err; 3300e751525SEric Saxe 3310e751525SEric Saxe ASSERT(MUTEX_HELD(&cpu_lock)); 3320e751525SEric Saxe 3330e751525SEric Saxe parent = pg->cmt_parent; 3340e751525SEric Saxe if (parent == NULL) { 3350e751525SEric Saxe /* 3360e751525SEric Saxe * Nothing to do 3370e751525SEric Saxe */ 3380e751525SEric Saxe return; 3390e751525SEric Saxe } 3400e751525SEric Saxe 3410e751525SEric Saxe ASSERT(PG_NUM_CPUS((pg_t *)pg) >= PG_NUM_CPUS((pg_t *)parent)); 3420e751525SEric Saxe 3430e751525SEric Saxe /* 3440e751525SEric Saxe * We're changing around the hierarchy, which is actively traversed 3450e751525SEric Saxe * by the dispatcher. Pause CPUS to ensure exclusivity. 3460e751525SEric Saxe */ 3470e751525SEric Saxe pause_cpus(NULL); 3480e751525SEric Saxe 3490e751525SEric Saxe /* 3500e751525SEric Saxe * If necessary, update the parent's sibling set, replacing parent 3510e751525SEric Saxe * with PG. 3520e751525SEric Saxe */ 3530e751525SEric Saxe if (parent->cmt_siblings) { 3540e751525SEric Saxe if (group_remove(parent->cmt_siblings, parent, GRP_NORESIZE) 3550e751525SEric Saxe != -1) { 3560e751525SEric Saxe r = group_add(parent->cmt_siblings, pg, GRP_NORESIZE); 3570e751525SEric Saxe ASSERT(r != -1); 3580e751525SEric Saxe } 3590e751525SEric Saxe } 3600e751525SEric Saxe 3610e751525SEric Saxe /* 3620e751525SEric Saxe * If the parent is at the top of the hierarchy, replace it's entry 3630e751525SEric Saxe * in the root lgroup's group of top level PGs. 3640e751525SEric Saxe */ 3650e751525SEric Saxe if (parent->cmt_parent == NULL && 3660e751525SEric Saxe parent->cmt_siblings != &cmt_root->cl_pgs) { 3670e751525SEric Saxe if (group_remove(&cmt_root->cl_pgs, parent, GRP_NORESIZE) 3680e751525SEric Saxe != -1) { 3690e751525SEric Saxe r = group_add(&cmt_root->cl_pgs, pg, GRP_NORESIZE); 3700e751525SEric Saxe ASSERT(r != -1); 3710e751525SEric Saxe } 3720e751525SEric Saxe } 3730e751525SEric Saxe 3740e751525SEric Saxe /* 3750e751525SEric Saxe * We assume (and therefore assert) that the PG being promoted is an 3760e751525SEric Saxe * only child of it's parent. Update the parent's children set 3770e751525SEric Saxe * replacing PG's entry with the parent (since the parent is becoming 3780e751525SEric Saxe * the child). Then have PG and the parent swap children sets. 3790e751525SEric Saxe */ 3800e751525SEric Saxe ASSERT(GROUP_SIZE(parent->cmt_children) <= 1); 3810e751525SEric Saxe if (group_remove(parent->cmt_children, pg, GRP_NORESIZE) != -1) { 3820e751525SEric Saxe r = group_add(parent->cmt_children, parent, GRP_NORESIZE); 3830e751525SEric Saxe ASSERT(r != -1); 3840e751525SEric Saxe } 3850e751525SEric Saxe 3860e751525SEric Saxe children = pg->cmt_children; 3870e751525SEric Saxe pg->cmt_children = parent->cmt_children; 3880e751525SEric Saxe parent->cmt_children = children; 3890e751525SEric Saxe 3900e751525SEric Saxe /* 3910e751525SEric Saxe * Update the sibling references for PG and it's parent 3920e751525SEric Saxe */ 3930e751525SEric Saxe pg->cmt_siblings = parent->cmt_siblings; 3940e751525SEric Saxe parent->cmt_siblings = pg->cmt_children; 3950e751525SEric Saxe 3960e751525SEric Saxe /* 3970e751525SEric Saxe * Update any cached lineages in the per CPU pg data. 3980e751525SEric Saxe */ 3990e751525SEric Saxe PG_CPU_ITR_INIT(pg, cpu_iter); 4000e751525SEric Saxe while ((cpu = pg_cpu_next(&cpu_iter)) != NULL) { 4010e751525SEric Saxe int idx; 4020e751525SEric Saxe pg_cmt_t *cpu_pg; 403*1a77c24bSEric Saxe cpu_pg_t *pgd; /* CPU's PG data */ 404*1a77c24bSEric Saxe 405*1a77c24bSEric Saxe /* 406*1a77c24bSEric Saxe * The CPU's whose lineage is under construction still 407*1a77c24bSEric Saxe * references the bootstrap CPU PG data structure. 408*1a77c24bSEric Saxe */ 409*1a77c24bSEric Saxe if (pg_cpu_is_bootstrapped(cpu)) 410*1a77c24bSEric Saxe pgd = pgdata; 411*1a77c24bSEric Saxe else 412*1a77c24bSEric Saxe pgd = cpu->cpu_pg; 4130e751525SEric Saxe 4140e751525SEric Saxe /* 4150e751525SEric Saxe * Iterate over the CPU's PGs updating the children 4160e751525SEric Saxe * of the PG being promoted, since they have a new parent. 4170e751525SEric Saxe */ 4180e751525SEric Saxe group_iter_init(&iter); 419*1a77c24bSEric Saxe while ((cpu_pg = group_iterate(&pgd->cmt_pgs, &iter)) != NULL) { 4200e751525SEric Saxe if (cpu_pg->cmt_parent == pg) { 4210e751525SEric Saxe cpu_pg->cmt_parent = parent; 4220e751525SEric Saxe } 4230e751525SEric Saxe } 4240e751525SEric Saxe 4250e751525SEric Saxe /* 4260e751525SEric Saxe * Update the CMT load balancing lineage 4270e751525SEric Saxe */ 428*1a77c24bSEric Saxe if ((idx = group_find(&pgd->cmt_pgs, (void *)pg)) == -1) { 4290e751525SEric Saxe /* 4300e751525SEric Saxe * Unless this is the CPU who's lineage is being 4310e751525SEric Saxe * constructed, the PG being promoted should be 4320e751525SEric Saxe * in the lineage. 4330e751525SEric Saxe */ 434*1a77c24bSEric Saxe ASSERT(pg_cpu_is_bootstrapped(cpu)); 4350e751525SEric Saxe continue; 4360e751525SEric Saxe } 4370e751525SEric Saxe 438*1a77c24bSEric Saxe ASSERT(GROUP_ACCESS(&pgd->cmt_pgs, idx - 1) == parent); 4390e751525SEric Saxe ASSERT(idx > 0); 4400e751525SEric Saxe 4410e751525SEric Saxe /* 4420e751525SEric Saxe * Have the child and the parent swap places in the CPU's 4430e751525SEric Saxe * lineage 4440e751525SEric Saxe */ 445*1a77c24bSEric Saxe group_remove_at(&pgd->cmt_pgs, idx); 446*1a77c24bSEric Saxe group_remove_at(&pgd->cmt_pgs, idx - 1); 447*1a77c24bSEric Saxe err = group_add_at(&pgd->cmt_pgs, parent, idx); 4480e751525SEric Saxe ASSERT(err == 0); 449*1a77c24bSEric Saxe err = group_add_at(&pgd->cmt_pgs, pg, idx - 1); 4500e751525SEric Saxe ASSERT(err == 0); 4510e751525SEric Saxe } 4520e751525SEric Saxe 4530e751525SEric Saxe /* 4540e751525SEric Saxe * Update the parent references for PG and it's parent 4550e751525SEric Saxe */ 4560e751525SEric Saxe pg->cmt_parent = parent->cmt_parent; 4570e751525SEric Saxe parent->cmt_parent = pg; 4580e751525SEric Saxe 4590e751525SEric Saxe start_cpus(); 460fb2f18f8Sesaxe } 461fb2f18f8Sesaxe 462fb2f18f8Sesaxe /* 463fb2f18f8Sesaxe * CMT class callback for a new CPU entering the system 464*1a77c24bSEric Saxe * 465*1a77c24bSEric Saxe * This routine operates on the CPU specific processor group data (for the CPU 466*1a77c24bSEric Saxe * being initialized). The argument "pgdata" is a reference to the CPU's PG 467*1a77c24bSEric Saxe * data to be constructed. 468*1a77c24bSEric Saxe * 469*1a77c24bSEric Saxe * cp->cpu_pg is used by the dispatcher to access the CPU's PG data 470*1a77c24bSEric Saxe * references a "bootstrap" structure. pg_cmt_cpu_init() and the routines it 471*1a77c24bSEric Saxe * calls must be careful to operate only on the "pgdata" argument, and not 472*1a77c24bSEric Saxe * cp->cpu_pg. 473fb2f18f8Sesaxe */ 474fb2f18f8Sesaxe static void 475*1a77c24bSEric Saxe pg_cmt_cpu_init(cpu_t *cp, cpu_pg_t *pgdata) 476fb2f18f8Sesaxe { 477fb2f18f8Sesaxe pg_cmt_t *pg; 478fb2f18f8Sesaxe group_t *cmt_pgs; 4790e751525SEric Saxe int levels, level; 480fb2f18f8Sesaxe pghw_type_t hw; 481fb2f18f8Sesaxe pg_t *pg_cache = NULL; 482fb2f18f8Sesaxe pg_cmt_t *cpu_cmt_hier[PGHW_NUM_COMPONENTS]; 483fb2f18f8Sesaxe lgrp_handle_t lgrp_handle; 484fb2f18f8Sesaxe cmt_lgrp_t *lgrp; 485ef4f35d8SEric Saxe cmt_lineage_validation_t lineage_status; 486fb2f18f8Sesaxe 487fb2f18f8Sesaxe ASSERT(MUTEX_HELD(&cpu_lock)); 488*1a77c24bSEric Saxe ASSERT(pg_cpu_is_bootstrapped(cp)); 489fb2f18f8Sesaxe 4900e751525SEric Saxe if (cmt_sched_disabled) 4910e751525SEric Saxe return; 4920e751525SEric Saxe 493fb2f18f8Sesaxe /* 494fb2f18f8Sesaxe * A new CPU is coming into the system. 495fb2f18f8Sesaxe * Interrogate the platform to see if the CPU 4960e751525SEric Saxe * has any performance or efficiency relevant 4970e751525SEric Saxe * sharing relationships 498fb2f18f8Sesaxe */ 499*1a77c24bSEric Saxe cmt_pgs = &pgdata->cmt_pgs; 500*1a77c24bSEric Saxe pgdata->cmt_lineage = NULL; 501fb2f18f8Sesaxe 502fb2f18f8Sesaxe bzero(cpu_cmt_hier, sizeof (cpu_cmt_hier)); 5030e751525SEric Saxe levels = 0; 504fb2f18f8Sesaxe for (hw = PGHW_START; hw < PGHW_NUM_COMPONENTS; hw++) { 505fb2f18f8Sesaxe 5060e751525SEric Saxe pg_cmt_policy_t policy; 5070e751525SEric Saxe 508fb2f18f8Sesaxe /* 5090e751525SEric Saxe * We're only interested in the hw sharing relationships 5100e751525SEric Saxe * for which we know how to optimize. 511fb2f18f8Sesaxe */ 5120e751525SEric Saxe policy = pg_cmt_policy(hw); 5130e751525SEric Saxe if (policy == CMT_NO_POLICY || 5140e751525SEric Saxe pg_plat_hw_shared(cp, hw) == 0) 515fb2f18f8Sesaxe continue; 516fb2f18f8Sesaxe 517fb2f18f8Sesaxe /* 5180e751525SEric Saxe * Continue if the hardware sharing relationship has been 5190e751525SEric Saxe * blacklisted. 5200e751525SEric Saxe */ 5210e751525SEric Saxe if (cmt_hw_blacklisted[hw]) { 5220e751525SEric Saxe continue; 5230e751525SEric Saxe } 5240e751525SEric Saxe 5250e751525SEric Saxe /* 526fb2f18f8Sesaxe * Find (or create) the PG associated with 527fb2f18f8Sesaxe * the hw sharing relationship in which cp 528fb2f18f8Sesaxe * belongs. 529fb2f18f8Sesaxe * 530fb2f18f8Sesaxe * Determine if a suitable PG already 531fb2f18f8Sesaxe * exists, or if one needs to be created. 532fb2f18f8Sesaxe */ 533fb2f18f8Sesaxe pg = (pg_cmt_t *)pghw_place_cpu(cp, hw); 534fb2f18f8Sesaxe if (pg == NULL) { 535fb2f18f8Sesaxe /* 536fb2f18f8Sesaxe * Create a new one. 537fb2f18f8Sesaxe * Initialize the common... 538fb2f18f8Sesaxe */ 539fb2f18f8Sesaxe pg = (pg_cmt_t *)pg_create(pg_cmt_class_id); 540fb2f18f8Sesaxe 541fb2f18f8Sesaxe /* ... physical ... */ 542fb2f18f8Sesaxe pghw_init((pghw_t *)pg, cp, hw); 543fb2f18f8Sesaxe 544fb2f18f8Sesaxe /* 545fb2f18f8Sesaxe * ... and CMT specific portions of the 546fb2f18f8Sesaxe * structure. 547fb2f18f8Sesaxe */ 5480e751525SEric Saxe pg->cmt_policy = policy; 5490e751525SEric Saxe 5500e751525SEric Saxe /* CMT event callbacks */ 5510e751525SEric Saxe cmt_callback_init((pg_t *)pg); 5520e751525SEric Saxe 553fb2f18f8Sesaxe bitset_init(&pg->cmt_cpus_actv_set); 554fb2f18f8Sesaxe group_create(&pg->cmt_cpus_actv); 555fb2f18f8Sesaxe } else { 556fb2f18f8Sesaxe ASSERT(IS_CMT_PG(pg)); 557fb2f18f8Sesaxe } 558fb2f18f8Sesaxe 559fb2f18f8Sesaxe /* Add the CPU to the PG */ 560*1a77c24bSEric Saxe pg_cpu_add((pg_t *)pg, cp, pgdata); 561fb2f18f8Sesaxe 562fb2f18f8Sesaxe /* 5636890d023SEric Saxe * Ensure capacity of the active CPU group/bitset 564fb2f18f8Sesaxe */ 565fb2f18f8Sesaxe group_expand(&pg->cmt_cpus_actv, 566fb2f18f8Sesaxe GROUP_SIZE(&((pg_t *)pg)->pg_cpus)); 567fb2f18f8Sesaxe 568fb2f18f8Sesaxe if (cp->cpu_seqid >= 569fb2f18f8Sesaxe bitset_capacity(&pg->cmt_cpus_actv_set)) { 570fb2f18f8Sesaxe bitset_resize(&pg->cmt_cpus_actv_set, 571fb2f18f8Sesaxe cp->cpu_seqid + 1); 572fb2f18f8Sesaxe } 573fb2f18f8Sesaxe 574fb2f18f8Sesaxe /* 5750e751525SEric Saxe * Build a lineage of CMT PGs for load balancing / coalescence 576fb2f18f8Sesaxe */ 5770e751525SEric Saxe if (policy & (CMT_BALANCE | CMT_COALESCE)) { 5780e751525SEric Saxe cpu_cmt_hier[levels++] = pg; 579fb2f18f8Sesaxe } 580fb2f18f8Sesaxe 581fb2f18f8Sesaxe /* Cache this for later */ 582fb2f18f8Sesaxe if (hw == PGHW_CACHE) 583fb2f18f8Sesaxe pg_cache = (pg_t *)pg; 584fb2f18f8Sesaxe } 585fb2f18f8Sesaxe 5860e751525SEric Saxe group_expand(cmt_pgs, levels); 5876890d023SEric Saxe 5886890d023SEric Saxe if (cmt_root == NULL) 5896890d023SEric Saxe cmt_root = pg_cmt_lgrp_create(lgrp_plat_root_hand()); 590fb2f18f8Sesaxe 591fb2f18f8Sesaxe /* 5920e751525SEric Saxe * Find the lgrp that encapsulates this CPU's CMT hierarchy 5936890d023SEric Saxe */ 5946890d023SEric Saxe lgrp_handle = lgrp_plat_cpu_to_hand(cp->cpu_id); 5956890d023SEric Saxe if ((lgrp = pg_cmt_find_lgrp(lgrp_handle)) == NULL) 5966890d023SEric Saxe lgrp = pg_cmt_lgrp_create(lgrp_handle); 5976890d023SEric Saxe 5986890d023SEric Saxe /* 5990e751525SEric Saxe * Ascendingly sort the PGs in the lineage by number of CPUs 6000e751525SEric Saxe */ 6010e751525SEric Saxe pg_cmt_hier_sort(cpu_cmt_hier, levels); 6020e751525SEric Saxe 6030e751525SEric Saxe /* 6040e751525SEric Saxe * Examine the lineage and validate it. 6050e751525SEric Saxe * This routine will also try to fix the lineage along with the 6060e751525SEric Saxe * rest of the PG hierarchy should it detect an issue. 6070e751525SEric Saxe * 608ef4f35d8SEric Saxe * If it returns anything other than VALID or REPAIRED, an 609ef4f35d8SEric Saxe * unrecoverable error has occurred, and we cannot proceed. 6100e751525SEric Saxe */ 611*1a77c24bSEric Saxe lineage_status = pg_cmt_lineage_validate(cpu_cmt_hier, &levels, pgdata); 612ef4f35d8SEric Saxe if ((lineage_status != CMT_LINEAGE_VALID) && 613*1a77c24bSEric Saxe (lineage_status != CMT_LINEAGE_REPAIRED)) { 614*1a77c24bSEric Saxe /* 615*1a77c24bSEric Saxe * In the case of an unrecoverable error where CMT scheduling 616*1a77c24bSEric Saxe * has been disabled, assert that the under construction CPU's 617*1a77c24bSEric Saxe * PG data has an empty CMT load balancing lineage. 618*1a77c24bSEric Saxe */ 619*1a77c24bSEric Saxe ASSERT((cmt_sched_disabled == 0) || 620*1a77c24bSEric Saxe (GROUP_SIZE(&(pgdata->cmt_pgs)) == 0)); 6210e751525SEric Saxe return; 622*1a77c24bSEric Saxe } 6230e751525SEric Saxe 6240e751525SEric Saxe /* 6250e751525SEric Saxe * For existing PGs in the lineage, verify that the parent is 6260e751525SEric Saxe * correct, as the generation in the lineage may have changed 6270e751525SEric Saxe * as a result of the sorting. Start the traversal at the top 6280e751525SEric Saxe * of the lineage, moving down. 6290e751525SEric Saxe */ 6300e751525SEric Saxe for (level = levels - 1; level >= 0; ) { 6310e751525SEric Saxe int reorg; 6320e751525SEric Saxe 6330e751525SEric Saxe reorg = 0; 6340e751525SEric Saxe pg = cpu_cmt_hier[level]; 6350e751525SEric Saxe 6360e751525SEric Saxe /* 6370e751525SEric Saxe * Promote PGs at an incorrect generation into place. 6380e751525SEric Saxe */ 6390e751525SEric Saxe while (pg->cmt_parent && 6400e751525SEric Saxe pg->cmt_parent != cpu_cmt_hier[level + 1]) { 641*1a77c24bSEric Saxe cmt_hier_promote(pg, pgdata); 6420e751525SEric Saxe reorg++; 6430e751525SEric Saxe } 6440e751525SEric Saxe if (reorg > 0) 6450e751525SEric Saxe level = levels - 1; 6460e751525SEric Saxe else 6470e751525SEric Saxe level--; 6480e751525SEric Saxe } 6490e751525SEric Saxe 6500e751525SEric Saxe /* 6516890d023SEric Saxe * For each of the PGs in the CPU's lineage: 6520e751525SEric Saxe * - Add an entry in the CPU sorted CMT PG group 6530e751525SEric Saxe * which is used for top down CMT load balancing 654fb2f18f8Sesaxe * - Tie the PG into the CMT hierarchy by connecting 655fb2f18f8Sesaxe * it to it's parent and siblings. 656fb2f18f8Sesaxe */ 6570e751525SEric Saxe for (level = 0; level < levels; level++) { 658fb2f18f8Sesaxe uint_t children; 659fb2f18f8Sesaxe int err; 660fb2f18f8Sesaxe 661fb2f18f8Sesaxe pg = cpu_cmt_hier[level]; 6620e751525SEric Saxe err = group_add_at(cmt_pgs, pg, levels - level - 1); 663fb2f18f8Sesaxe ASSERT(err == 0); 664fb2f18f8Sesaxe 665fb2f18f8Sesaxe if (level == 0) 666*1a77c24bSEric Saxe pgdata->cmt_lineage = (pg_t *)pg; 667fb2f18f8Sesaxe 668fb2f18f8Sesaxe if (pg->cmt_siblings != NULL) { 669fb2f18f8Sesaxe /* Already initialized */ 670fb2f18f8Sesaxe ASSERT(pg->cmt_parent == NULL || 671fb2f18f8Sesaxe pg->cmt_parent == cpu_cmt_hier[level + 1]); 672fb2f18f8Sesaxe ASSERT(pg->cmt_siblings == &lgrp->cl_pgs || 673c416da2dSjb145095 ((pg->cmt_parent != NULL) && 674c416da2dSjb145095 pg->cmt_siblings == pg->cmt_parent->cmt_children)); 675fb2f18f8Sesaxe continue; 676fb2f18f8Sesaxe } 677fb2f18f8Sesaxe 6780e751525SEric Saxe if ((level + 1) == levels) { 679fb2f18f8Sesaxe pg->cmt_parent = NULL; 6806890d023SEric Saxe 681fb2f18f8Sesaxe pg->cmt_siblings = &lgrp->cl_pgs; 682fb2f18f8Sesaxe children = ++lgrp->cl_npgs; 6830e751525SEric Saxe if (cmt_root != lgrp) 6846890d023SEric Saxe cmt_root->cl_npgs++; 685fb2f18f8Sesaxe } else { 686fb2f18f8Sesaxe pg->cmt_parent = cpu_cmt_hier[level + 1]; 687fb2f18f8Sesaxe 688fb2f18f8Sesaxe /* 689fb2f18f8Sesaxe * A good parent keeps track of their children. 690fb2f18f8Sesaxe * The parent's children group is also the PG's 691fb2f18f8Sesaxe * siblings. 692fb2f18f8Sesaxe */ 693fb2f18f8Sesaxe if (pg->cmt_parent->cmt_children == NULL) { 694fb2f18f8Sesaxe pg->cmt_parent->cmt_children = 695fb2f18f8Sesaxe kmem_zalloc(sizeof (group_t), KM_SLEEP); 696fb2f18f8Sesaxe group_create(pg->cmt_parent->cmt_children); 697fb2f18f8Sesaxe } 698fb2f18f8Sesaxe pg->cmt_siblings = pg->cmt_parent->cmt_children; 699fb2f18f8Sesaxe children = ++pg->cmt_parent->cmt_nchildren; 700fb2f18f8Sesaxe } 7016890d023SEric Saxe 702fb2f18f8Sesaxe group_expand(pg->cmt_siblings, children); 7036890d023SEric Saxe group_expand(&cmt_root->cl_pgs, cmt_root->cl_npgs); 704fb2f18f8Sesaxe } 705fb2f18f8Sesaxe 706fb2f18f8Sesaxe /* 707fb2f18f8Sesaxe * Cache the chip and core IDs in the cpu_t->cpu_physid structure 708fb2f18f8Sesaxe * for fast lookups later. 709fb2f18f8Sesaxe */ 710fb2f18f8Sesaxe if (cp->cpu_physid) { 711fb2f18f8Sesaxe cp->cpu_physid->cpu_chipid = 712fb2f18f8Sesaxe pg_plat_hw_instance_id(cp, PGHW_CHIP); 713fb2f18f8Sesaxe cp->cpu_physid->cpu_coreid = pg_plat_get_core_id(cp); 714fb2f18f8Sesaxe 715fb2f18f8Sesaxe /* 716fb2f18f8Sesaxe * If this cpu has a PG representing shared cache, then set 717fb2f18f8Sesaxe * cpu_cacheid to that PG's logical id 718fb2f18f8Sesaxe */ 719fb2f18f8Sesaxe if (pg_cache) 720fb2f18f8Sesaxe cp->cpu_physid->cpu_cacheid = pg_cache->pg_id; 721fb2f18f8Sesaxe } 722fb2f18f8Sesaxe 723fb2f18f8Sesaxe /* CPU0 only initialization */ 724fb2f18f8Sesaxe if (is_cpu0) { 725fb2f18f8Sesaxe pg_cmt_cpu_startup(cp); 726fb2f18f8Sesaxe is_cpu0 = 0; 727a6604450Sesaxe cpu0_lgrp = lgrp; 728fb2f18f8Sesaxe } 729fb2f18f8Sesaxe 730fb2f18f8Sesaxe } 731fb2f18f8Sesaxe 732fb2f18f8Sesaxe /* 733fb2f18f8Sesaxe * Class callback when a CPU is leaving the system (deletion) 734*1a77c24bSEric Saxe * 735*1a77c24bSEric Saxe * "pgdata" is a reference to the CPU's PG data to be deconstructed. 736*1a77c24bSEric Saxe * 737*1a77c24bSEric Saxe * cp->cpu_pg is used by the dispatcher to access the CPU's PG data 738*1a77c24bSEric Saxe * references a "bootstrap" structure across this function's invocation. 739*1a77c24bSEric Saxe * pg_cmt_cpu_init() and the routines it calls must be careful to operate only 740*1a77c24bSEric Saxe * on the "pgdata" argument, and not cp->cpu_pg. 741fb2f18f8Sesaxe */ 742fb2f18f8Sesaxe static void 743*1a77c24bSEric Saxe pg_cmt_cpu_fini(cpu_t *cp, cpu_pg_t *pgdata) 744fb2f18f8Sesaxe { 745fb2f18f8Sesaxe group_iter_t i; 746fb2f18f8Sesaxe pg_cmt_t *pg; 747fb2f18f8Sesaxe group_t *pgs, *cmt_pgs; 748fb2f18f8Sesaxe lgrp_handle_t lgrp_handle; 749fb2f18f8Sesaxe cmt_lgrp_t *lgrp; 750fb2f18f8Sesaxe 7510e751525SEric Saxe if (cmt_sched_disabled) 7520e751525SEric Saxe return; 7530e751525SEric Saxe 754*1a77c24bSEric Saxe ASSERT(pg_cpu_is_bootstrapped(cp)); 755*1a77c24bSEric Saxe 756*1a77c24bSEric Saxe pgs = &pgdata->pgs; 757*1a77c24bSEric Saxe cmt_pgs = &pgdata->cmt_pgs; 758fb2f18f8Sesaxe 759fb2f18f8Sesaxe /* 760fb2f18f8Sesaxe * Find the lgroup that encapsulates this CPU's CMT hierarchy 761fb2f18f8Sesaxe */ 762fb2f18f8Sesaxe lgrp_handle = lgrp_plat_cpu_to_hand(cp->cpu_id); 763a6604450Sesaxe 764fb2f18f8Sesaxe lgrp = pg_cmt_find_lgrp(lgrp_handle); 7653e81cacfSEric Saxe if (ncpus == 1 && lgrp != cpu0_lgrp) { 766a6604450Sesaxe /* 7673e81cacfSEric Saxe * One might wonder how we could be deconfiguring the 7683e81cacfSEric Saxe * only CPU in the system. 769a6604450Sesaxe * 7703e81cacfSEric Saxe * On Starcat systems when null_proc_lpa is detected, 7713e81cacfSEric Saxe * the boot CPU (which is already configured into a leaf 7723e81cacfSEric Saxe * lgroup), is moved into the root lgroup. This is done by 7733e81cacfSEric Saxe * deconfiguring it from both lgroups and processor 7743e81cacfSEric Saxe * groups), and then later reconfiguring it back in. This 7753e81cacfSEric Saxe * call to pg_cmt_cpu_fini() is part of that deconfiguration. 7763e81cacfSEric Saxe * 7773e81cacfSEric Saxe * This special case is detected by noting that the platform 7783e81cacfSEric Saxe * has changed the CPU's lgrp affiliation (since it now 7793e81cacfSEric Saxe * belongs in the root). In this case, use the cmt_lgrp_t 7803e81cacfSEric Saxe * cached for the boot CPU, since this is what needs to be 7813e81cacfSEric Saxe * torn down. 782a6604450Sesaxe */ 783a6604450Sesaxe lgrp = cpu0_lgrp; 784a6604450Sesaxe } 785fb2f18f8Sesaxe 7863e81cacfSEric Saxe ASSERT(lgrp != NULL); 7873e81cacfSEric Saxe 788fb2f18f8Sesaxe /* 789fb2f18f8Sesaxe * First, clean up anything load balancing specific for each of 790fb2f18f8Sesaxe * the CPU's PGs that participated in CMT load balancing 791fb2f18f8Sesaxe */ 792*1a77c24bSEric Saxe pg = (pg_cmt_t *)pgdata->cmt_lineage; 793fb2f18f8Sesaxe while (pg != NULL) { 794fb2f18f8Sesaxe 795fb2f18f8Sesaxe /* 796fb2f18f8Sesaxe * Remove the PG from the CPU's load balancing lineage 797fb2f18f8Sesaxe */ 798fb2f18f8Sesaxe (void) group_remove(cmt_pgs, pg, GRP_RESIZE); 799fb2f18f8Sesaxe 800fb2f18f8Sesaxe /* 801fb2f18f8Sesaxe * If it's about to become empty, destroy it's children 802fb2f18f8Sesaxe * group, and remove it's reference from it's siblings. 803fb2f18f8Sesaxe * This is done here (rather than below) to avoid removing 804fb2f18f8Sesaxe * our reference from a PG that we just eliminated. 805fb2f18f8Sesaxe */ 806fb2f18f8Sesaxe if (GROUP_SIZE(&((pg_t *)pg)->pg_cpus) == 1) { 807fb2f18f8Sesaxe if (pg->cmt_children != NULL) 808fb2f18f8Sesaxe group_destroy(pg->cmt_children); 809fb2f18f8Sesaxe if (pg->cmt_siblings != NULL) { 810fb2f18f8Sesaxe if (pg->cmt_siblings == &lgrp->cl_pgs) 811fb2f18f8Sesaxe lgrp->cl_npgs--; 812fb2f18f8Sesaxe else 813fb2f18f8Sesaxe pg->cmt_parent->cmt_nchildren--; 814fb2f18f8Sesaxe } 815fb2f18f8Sesaxe } 816fb2f18f8Sesaxe pg = pg->cmt_parent; 817fb2f18f8Sesaxe } 818fb2f18f8Sesaxe ASSERT(GROUP_SIZE(cmt_pgs) == 0); 819fb2f18f8Sesaxe 820fb2f18f8Sesaxe /* 821fb2f18f8Sesaxe * Now that the load balancing lineage updates have happened, 822fb2f18f8Sesaxe * remove the CPU from all it's PGs (destroying any that become 823fb2f18f8Sesaxe * empty). 824fb2f18f8Sesaxe */ 825fb2f18f8Sesaxe group_iter_init(&i); 826fb2f18f8Sesaxe while ((pg = group_iterate(pgs, &i)) != NULL) { 827fb2f18f8Sesaxe if (IS_CMT_PG(pg) == 0) 828fb2f18f8Sesaxe continue; 829fb2f18f8Sesaxe 830*1a77c24bSEric Saxe pg_cpu_delete((pg_t *)pg, cp, pgdata); 831fb2f18f8Sesaxe /* 832fb2f18f8Sesaxe * Deleting the CPU from the PG changes the CPU's 833fb2f18f8Sesaxe * PG group over which we are actively iterating 834fb2f18f8Sesaxe * Re-initialize the iteration 835fb2f18f8Sesaxe */ 836fb2f18f8Sesaxe group_iter_init(&i); 837fb2f18f8Sesaxe 838fb2f18f8Sesaxe if (GROUP_SIZE(&((pg_t *)pg)->pg_cpus) == 0) { 839fb2f18f8Sesaxe 840fb2f18f8Sesaxe /* 841fb2f18f8Sesaxe * The PG has become zero sized, so destroy it. 842fb2f18f8Sesaxe */ 843fb2f18f8Sesaxe group_destroy(&pg->cmt_cpus_actv); 844fb2f18f8Sesaxe bitset_fini(&pg->cmt_cpus_actv_set); 845fb2f18f8Sesaxe pghw_fini((pghw_t *)pg); 846fb2f18f8Sesaxe 847fb2f18f8Sesaxe pg_destroy((pg_t *)pg); 848fb2f18f8Sesaxe } 849fb2f18f8Sesaxe } 850fb2f18f8Sesaxe } 851fb2f18f8Sesaxe 852fb2f18f8Sesaxe /* 853fb2f18f8Sesaxe * Class callback when a CPU is entering a cpu partition 854fb2f18f8Sesaxe */ 855fb2f18f8Sesaxe static void 856fb2f18f8Sesaxe pg_cmt_cpupart_in(cpu_t *cp, cpupart_t *pp) 857fb2f18f8Sesaxe { 858fb2f18f8Sesaxe group_t *pgs; 859fb2f18f8Sesaxe pg_t *pg; 860fb2f18f8Sesaxe group_iter_t i; 861fb2f18f8Sesaxe 862fb2f18f8Sesaxe ASSERT(MUTEX_HELD(&cpu_lock)); 863fb2f18f8Sesaxe 8640e751525SEric Saxe if (cmt_sched_disabled) 8650e751525SEric Saxe return; 8660e751525SEric Saxe 867fb2f18f8Sesaxe pgs = &cp->cpu_pg->pgs; 868fb2f18f8Sesaxe 869fb2f18f8Sesaxe /* 870fb2f18f8Sesaxe * Ensure that the new partition's PG bitset 871fb2f18f8Sesaxe * is large enough for all CMT PG's to which cp 872fb2f18f8Sesaxe * belongs 873fb2f18f8Sesaxe */ 874fb2f18f8Sesaxe group_iter_init(&i); 875fb2f18f8Sesaxe while ((pg = group_iterate(pgs, &i)) != NULL) { 876fb2f18f8Sesaxe if (IS_CMT_PG(pg) == 0) 877fb2f18f8Sesaxe continue; 878fb2f18f8Sesaxe 879fb2f18f8Sesaxe if (bitset_capacity(&pp->cp_cmt_pgs) <= pg->pg_id) 880fb2f18f8Sesaxe bitset_resize(&pp->cp_cmt_pgs, pg->pg_id + 1); 881fb2f18f8Sesaxe } 882fb2f18f8Sesaxe } 883fb2f18f8Sesaxe 884fb2f18f8Sesaxe /* 885fb2f18f8Sesaxe * Class callback when a CPU is actually moving partitions 886fb2f18f8Sesaxe */ 887fb2f18f8Sesaxe static void 888fb2f18f8Sesaxe pg_cmt_cpupart_move(cpu_t *cp, cpupart_t *oldpp, cpupart_t *newpp) 889fb2f18f8Sesaxe { 890fb2f18f8Sesaxe cpu_t *cpp; 891fb2f18f8Sesaxe group_t *pgs; 892fb2f18f8Sesaxe pg_t *pg; 893fb2f18f8Sesaxe group_iter_t pg_iter; 894fb2f18f8Sesaxe pg_cpu_itr_t cpu_iter; 895fb2f18f8Sesaxe boolean_t found; 896fb2f18f8Sesaxe 897fb2f18f8Sesaxe ASSERT(MUTEX_HELD(&cpu_lock)); 898fb2f18f8Sesaxe 8990e751525SEric Saxe if (cmt_sched_disabled) 9000e751525SEric Saxe return; 9010e751525SEric Saxe 902fb2f18f8Sesaxe pgs = &cp->cpu_pg->pgs; 903fb2f18f8Sesaxe group_iter_init(&pg_iter); 904fb2f18f8Sesaxe 905fb2f18f8Sesaxe /* 906fb2f18f8Sesaxe * Iterate over the CPUs CMT PGs 907fb2f18f8Sesaxe */ 908fb2f18f8Sesaxe while ((pg = group_iterate(pgs, &pg_iter)) != NULL) { 909fb2f18f8Sesaxe 910fb2f18f8Sesaxe if (IS_CMT_PG(pg) == 0) 911fb2f18f8Sesaxe continue; 912fb2f18f8Sesaxe 913fb2f18f8Sesaxe /* 914fb2f18f8Sesaxe * Add the PG to the bitset in the new partition. 915fb2f18f8Sesaxe */ 916fb2f18f8Sesaxe bitset_add(&newpp->cp_cmt_pgs, pg->pg_id); 917fb2f18f8Sesaxe 918fb2f18f8Sesaxe /* 919fb2f18f8Sesaxe * Remove the PG from the bitset in the old partition 920fb2f18f8Sesaxe * if the last of the PG's CPUs have left. 921fb2f18f8Sesaxe */ 922fb2f18f8Sesaxe found = B_FALSE; 923fb2f18f8Sesaxe PG_CPU_ITR_INIT(pg, cpu_iter); 924fb2f18f8Sesaxe while ((cpp = pg_cpu_next(&cpu_iter)) != NULL) { 925fb2f18f8Sesaxe if (cpp == cp) 926fb2f18f8Sesaxe continue; 927a6604450Sesaxe if (CPU_ACTIVE(cpp) && 928a6604450Sesaxe cpp->cpu_part->cp_id == oldpp->cp_id) { 929fb2f18f8Sesaxe found = B_TRUE; 930fb2f18f8Sesaxe break; 931fb2f18f8Sesaxe } 932fb2f18f8Sesaxe } 933fb2f18f8Sesaxe if (!found) 934fb2f18f8Sesaxe bitset_del(&cp->cpu_part->cp_cmt_pgs, pg->pg_id); 935fb2f18f8Sesaxe } 936fb2f18f8Sesaxe } 937fb2f18f8Sesaxe 938fb2f18f8Sesaxe /* 939fb2f18f8Sesaxe * Class callback when a CPU becomes active (online) 940fb2f18f8Sesaxe * 941fb2f18f8Sesaxe * This is called in a context where CPUs are paused 942fb2f18f8Sesaxe */ 943fb2f18f8Sesaxe static void 944fb2f18f8Sesaxe pg_cmt_cpu_active(cpu_t *cp) 945fb2f18f8Sesaxe { 946fb2f18f8Sesaxe int err; 947fb2f18f8Sesaxe group_iter_t i; 948fb2f18f8Sesaxe pg_cmt_t *pg; 949fb2f18f8Sesaxe group_t *pgs; 950fb2f18f8Sesaxe 951fb2f18f8Sesaxe ASSERT(MUTEX_HELD(&cpu_lock)); 952fb2f18f8Sesaxe 9530e751525SEric Saxe if (cmt_sched_disabled) 9540e751525SEric Saxe return; 9550e751525SEric Saxe 956fb2f18f8Sesaxe pgs = &cp->cpu_pg->pgs; 957fb2f18f8Sesaxe group_iter_init(&i); 958fb2f18f8Sesaxe 959fb2f18f8Sesaxe /* 960fb2f18f8Sesaxe * Iterate over the CPU's PGs 961fb2f18f8Sesaxe */ 962fb2f18f8Sesaxe while ((pg = group_iterate(pgs, &i)) != NULL) { 963fb2f18f8Sesaxe 964fb2f18f8Sesaxe if (IS_CMT_PG(pg) == 0) 965fb2f18f8Sesaxe continue; 966fb2f18f8Sesaxe 967fb2f18f8Sesaxe err = group_add(&pg->cmt_cpus_actv, cp, GRP_NORESIZE); 968fb2f18f8Sesaxe ASSERT(err == 0); 969fb2f18f8Sesaxe 970fb2f18f8Sesaxe /* 971fb2f18f8Sesaxe * If this is the first active CPU in the PG, and it 972fb2f18f8Sesaxe * represents a hardware sharing relationship over which 973fb2f18f8Sesaxe * CMT load balancing is performed, add it as a candidate 974fb2f18f8Sesaxe * for balancing with it's siblings. 975fb2f18f8Sesaxe */ 976fb2f18f8Sesaxe if (GROUP_SIZE(&pg->cmt_cpus_actv) == 1 && 9770e751525SEric Saxe (pg->cmt_policy & (CMT_BALANCE | CMT_COALESCE))) { 978fb2f18f8Sesaxe err = group_add(pg->cmt_siblings, pg, GRP_NORESIZE); 979fb2f18f8Sesaxe ASSERT(err == 0); 9806890d023SEric Saxe 9816890d023SEric Saxe /* 9826890d023SEric Saxe * If this is a top level PG, add it as a balancing 9830e751525SEric Saxe * candidate when balancing within the root lgroup. 9846890d023SEric Saxe */ 9850e751525SEric Saxe if (pg->cmt_parent == NULL && 9860e751525SEric Saxe pg->cmt_siblings != &cmt_root->cl_pgs) { 9876890d023SEric Saxe err = group_add(&cmt_root->cl_pgs, pg, 9886890d023SEric Saxe GRP_NORESIZE); 9896890d023SEric Saxe ASSERT(err == 0); 9906890d023SEric Saxe } 991fb2f18f8Sesaxe } 992fb2f18f8Sesaxe 993fb2f18f8Sesaxe /* 994fb2f18f8Sesaxe * Notate the CPU in the PGs active CPU bitset. 995fb2f18f8Sesaxe * Also notate the PG as being active in it's associated 996fb2f18f8Sesaxe * partition 997fb2f18f8Sesaxe */ 998fb2f18f8Sesaxe bitset_add(&pg->cmt_cpus_actv_set, cp->cpu_seqid); 999fb2f18f8Sesaxe bitset_add(&cp->cpu_part->cp_cmt_pgs, ((pg_t *)pg)->pg_id); 1000fb2f18f8Sesaxe } 1001fb2f18f8Sesaxe } 1002fb2f18f8Sesaxe 1003fb2f18f8Sesaxe /* 1004fb2f18f8Sesaxe * Class callback when a CPU goes inactive (offline) 1005fb2f18f8Sesaxe * 1006fb2f18f8Sesaxe * This is called in a context where CPUs are paused 1007fb2f18f8Sesaxe */ 1008fb2f18f8Sesaxe static void 1009fb2f18f8Sesaxe pg_cmt_cpu_inactive(cpu_t *cp) 1010fb2f18f8Sesaxe { 1011fb2f18f8Sesaxe int err; 1012fb2f18f8Sesaxe group_t *pgs; 1013fb2f18f8Sesaxe pg_cmt_t *pg; 1014fb2f18f8Sesaxe cpu_t *cpp; 1015fb2f18f8Sesaxe group_iter_t i; 1016fb2f18f8Sesaxe pg_cpu_itr_t cpu_itr; 1017fb2f18f8Sesaxe boolean_t found; 1018fb2f18f8Sesaxe 1019fb2f18f8Sesaxe ASSERT(MUTEX_HELD(&cpu_lock)); 1020fb2f18f8Sesaxe 10210e751525SEric Saxe if (cmt_sched_disabled) 10220e751525SEric Saxe return; 10230e751525SEric Saxe 1024fb2f18f8Sesaxe pgs = &cp->cpu_pg->pgs; 1025fb2f18f8Sesaxe group_iter_init(&i); 1026fb2f18f8Sesaxe 1027fb2f18f8Sesaxe while ((pg = group_iterate(pgs, &i)) != NULL) { 1028fb2f18f8Sesaxe 1029fb2f18f8Sesaxe if (IS_CMT_PG(pg) == 0) 1030fb2f18f8Sesaxe continue; 1031fb2f18f8Sesaxe 1032fb2f18f8Sesaxe /* 1033fb2f18f8Sesaxe * Remove the CPU from the CMT PGs active CPU group 1034fb2f18f8Sesaxe * bitmap 1035fb2f18f8Sesaxe */ 1036fb2f18f8Sesaxe err = group_remove(&pg->cmt_cpus_actv, cp, GRP_NORESIZE); 1037fb2f18f8Sesaxe ASSERT(err == 0); 1038fb2f18f8Sesaxe 1039fb2f18f8Sesaxe bitset_del(&pg->cmt_cpus_actv_set, cp->cpu_seqid); 1040fb2f18f8Sesaxe 1041fb2f18f8Sesaxe /* 1042fb2f18f8Sesaxe * If there are no more active CPUs in this PG over which 1043fb2f18f8Sesaxe * load was balanced, remove it as a balancing candidate. 1044fb2f18f8Sesaxe */ 1045fb2f18f8Sesaxe if (GROUP_SIZE(&pg->cmt_cpus_actv) == 0 && 10460e751525SEric Saxe (pg->cmt_policy & (CMT_BALANCE | CMT_COALESCE))) { 1047fb2f18f8Sesaxe err = group_remove(pg->cmt_siblings, pg, GRP_NORESIZE); 1048fb2f18f8Sesaxe ASSERT(err == 0); 10496890d023SEric Saxe 10500e751525SEric Saxe if (pg->cmt_parent == NULL && 10510e751525SEric Saxe pg->cmt_siblings != &cmt_root->cl_pgs) { 10526890d023SEric Saxe err = group_remove(&cmt_root->cl_pgs, pg, 10536890d023SEric Saxe GRP_NORESIZE); 10546890d023SEric Saxe ASSERT(err == 0); 10556890d023SEric Saxe } 1056fb2f18f8Sesaxe } 1057fb2f18f8Sesaxe 1058fb2f18f8Sesaxe /* 1059fb2f18f8Sesaxe * Assert the number of active CPUs does not exceed 1060fb2f18f8Sesaxe * the total number of CPUs in the PG 1061fb2f18f8Sesaxe */ 1062fb2f18f8Sesaxe ASSERT(GROUP_SIZE(&pg->cmt_cpus_actv) <= 1063fb2f18f8Sesaxe GROUP_SIZE(&((pg_t *)pg)->pg_cpus)); 1064fb2f18f8Sesaxe 1065fb2f18f8Sesaxe /* 1066fb2f18f8Sesaxe * Update the PG bitset in the CPU's old partition 1067fb2f18f8Sesaxe */ 1068fb2f18f8Sesaxe found = B_FALSE; 1069fb2f18f8Sesaxe PG_CPU_ITR_INIT(pg, cpu_itr); 1070fb2f18f8Sesaxe while ((cpp = pg_cpu_next(&cpu_itr)) != NULL) { 1071fb2f18f8Sesaxe if (cpp == cp) 1072fb2f18f8Sesaxe continue; 1073a6604450Sesaxe if (CPU_ACTIVE(cpp) && 1074a6604450Sesaxe cpp->cpu_part->cp_id == cp->cpu_part->cp_id) { 1075fb2f18f8Sesaxe found = B_TRUE; 1076fb2f18f8Sesaxe break; 1077fb2f18f8Sesaxe } 1078fb2f18f8Sesaxe } 1079fb2f18f8Sesaxe if (!found) { 1080fb2f18f8Sesaxe bitset_del(&cp->cpu_part->cp_cmt_pgs, 1081fb2f18f8Sesaxe ((pg_t *)pg)->pg_id); 1082fb2f18f8Sesaxe } 1083fb2f18f8Sesaxe } 1084fb2f18f8Sesaxe } 1085fb2f18f8Sesaxe 1086fb2f18f8Sesaxe /* 1087fb2f18f8Sesaxe * Return non-zero if the CPU belongs in the given PG 1088fb2f18f8Sesaxe */ 1089fb2f18f8Sesaxe static int 1090fb2f18f8Sesaxe pg_cmt_cpu_belongs(pg_t *pg, cpu_t *cp) 1091fb2f18f8Sesaxe { 1092fb2f18f8Sesaxe cpu_t *pg_cpu; 1093fb2f18f8Sesaxe 1094fb2f18f8Sesaxe pg_cpu = GROUP_ACCESS(&pg->pg_cpus, 0); 1095fb2f18f8Sesaxe 1096fb2f18f8Sesaxe ASSERT(pg_cpu != NULL); 1097fb2f18f8Sesaxe 1098fb2f18f8Sesaxe /* 1099fb2f18f8Sesaxe * The CPU belongs if, given the nature of the hardware sharing 1100fb2f18f8Sesaxe * relationship represented by the PG, the CPU has that 1101fb2f18f8Sesaxe * relationship with some other CPU already in the PG 1102fb2f18f8Sesaxe */ 1103fb2f18f8Sesaxe if (pg_plat_cpus_share(cp, pg_cpu, ((pghw_t *)pg)->pghw_hw)) 1104fb2f18f8Sesaxe return (1); 1105fb2f18f8Sesaxe 1106fb2f18f8Sesaxe return (0); 1107fb2f18f8Sesaxe } 1108fb2f18f8Sesaxe 1109fb2f18f8Sesaxe /* 11100e751525SEric Saxe * Sort the CPUs CMT hierarchy, where "size" is the number of levels. 1111fb2f18f8Sesaxe */ 1112fb2f18f8Sesaxe static void 11130e751525SEric Saxe pg_cmt_hier_sort(pg_cmt_t **hier, int size) 1114fb2f18f8Sesaxe { 11150e751525SEric Saxe int i, j, inc; 11160e751525SEric Saxe pg_t *tmp; 11170e751525SEric Saxe pg_t **h = (pg_t **)hier; 1118fb2f18f8Sesaxe 11190e751525SEric Saxe /* 11200e751525SEric Saxe * First sort by number of CPUs 11210e751525SEric Saxe */ 11220e751525SEric Saxe inc = size / 2; 11230e751525SEric Saxe while (inc > 0) { 11240e751525SEric Saxe for (i = inc; i < size; i++) { 11250e751525SEric Saxe j = i; 11260e751525SEric Saxe tmp = h[i]; 11270e751525SEric Saxe while ((j >= inc) && 11280e751525SEric Saxe (PG_NUM_CPUS(h[j - inc]) > PG_NUM_CPUS(tmp))) { 11290e751525SEric Saxe h[j] = h[j - inc]; 11300e751525SEric Saxe j = j - inc; 11310e751525SEric Saxe } 11320e751525SEric Saxe h[j] = tmp; 11330e751525SEric Saxe } 11340e751525SEric Saxe if (inc == 2) 11350e751525SEric Saxe inc = 1; 11360e751525SEric Saxe else 11370e751525SEric Saxe inc = (inc * 5) / 11; 11380e751525SEric Saxe } 1139fb2f18f8Sesaxe 11400e751525SEric Saxe /* 11410e751525SEric Saxe * Break ties by asking the platform. 11420e751525SEric Saxe * Determine if h[i] outranks h[i + 1] and if so, swap them. 11430e751525SEric Saxe */ 11440e751525SEric Saxe for (i = 0; i < size - 1; i++) { 11450e751525SEric Saxe if ((PG_NUM_CPUS(h[i]) == PG_NUM_CPUS(h[i + 1])) && 11460e751525SEric Saxe pg_cmt_hier_rank(hier[i], hier[i + 1]) == hier[i]) { 11470e751525SEric Saxe tmp = h[i]; 11480e751525SEric Saxe h[i] = h[i + 1]; 11490e751525SEric Saxe h[i + 1] = tmp; 1150fb2f18f8Sesaxe } 1151fb2f18f8Sesaxe } 1152fb2f18f8Sesaxe } 1153fb2f18f8Sesaxe 1154fb2f18f8Sesaxe /* 1155fb2f18f8Sesaxe * Return a cmt_lgrp_t * given an lgroup handle. 1156fb2f18f8Sesaxe */ 1157fb2f18f8Sesaxe static cmt_lgrp_t * 1158fb2f18f8Sesaxe pg_cmt_find_lgrp(lgrp_handle_t hand) 1159fb2f18f8Sesaxe { 1160fb2f18f8Sesaxe cmt_lgrp_t *lgrp; 1161fb2f18f8Sesaxe 1162fb2f18f8Sesaxe ASSERT(MUTEX_HELD(&cpu_lock)); 1163fb2f18f8Sesaxe 1164fb2f18f8Sesaxe lgrp = cmt_lgrps; 1165fb2f18f8Sesaxe while (lgrp != NULL) { 1166fb2f18f8Sesaxe if (lgrp->cl_hand == hand) 1167a6604450Sesaxe break; 1168fb2f18f8Sesaxe lgrp = lgrp->cl_next; 1169fb2f18f8Sesaxe } 1170a6604450Sesaxe return (lgrp); 1171a6604450Sesaxe } 1172fb2f18f8Sesaxe 1173fb2f18f8Sesaxe /* 1174a6604450Sesaxe * Create a cmt_lgrp_t with the specified handle. 1175fb2f18f8Sesaxe */ 1176a6604450Sesaxe static cmt_lgrp_t * 1177a6604450Sesaxe pg_cmt_lgrp_create(lgrp_handle_t hand) 1178a6604450Sesaxe { 1179a6604450Sesaxe cmt_lgrp_t *lgrp; 1180a6604450Sesaxe 1181a6604450Sesaxe ASSERT(MUTEX_HELD(&cpu_lock)); 1182a6604450Sesaxe 1183fb2f18f8Sesaxe lgrp = kmem_zalloc(sizeof (cmt_lgrp_t), KM_SLEEP); 1184fb2f18f8Sesaxe 1185fb2f18f8Sesaxe lgrp->cl_hand = hand; 1186fb2f18f8Sesaxe lgrp->cl_npgs = 0; 1187fb2f18f8Sesaxe lgrp->cl_next = cmt_lgrps; 1188fb2f18f8Sesaxe cmt_lgrps = lgrp; 1189fb2f18f8Sesaxe group_create(&lgrp->cl_pgs); 1190fb2f18f8Sesaxe 1191fb2f18f8Sesaxe return (lgrp); 1192fb2f18f8Sesaxe } 11936890d023SEric Saxe 11946890d023SEric Saxe /* 11950e751525SEric Saxe * Interfaces to enable and disable power aware dispatching 11960e751525SEric Saxe * The caller must be holding cpu_lock. 11976890d023SEric Saxe * 11980e751525SEric Saxe * Return 0 on success and -1 on failure. 11996890d023SEric Saxe */ 12000e751525SEric Saxe int 12010e751525SEric Saxe cmt_pad_enable(pghw_type_t type) 12026890d023SEric Saxe { 12030e751525SEric Saxe group_t *hwset; 12040e751525SEric Saxe group_iter_t iter; 12050e751525SEric Saxe pg_cmt_t *pg; 12066890d023SEric Saxe 12070e751525SEric Saxe ASSERT(PGHW_IS_PM_DOMAIN(type)); 12080e751525SEric Saxe ASSERT(MUTEX_HELD(&cpu_lock)); 12096890d023SEric Saxe 12100e751525SEric Saxe if ((hwset = pghw_set_lookup(type)) == NULL || 12110e751525SEric Saxe cmt_hw_blacklisted[type]) { 12120e751525SEric Saxe /* 12130e751525SEric Saxe * Unable to find any instances of the specified type 12140e751525SEric Saxe * of power domain, or the power domains have been blacklisted. 12150e751525SEric Saxe */ 12160e751525SEric Saxe return (-1); 12170e751525SEric Saxe } 12186890d023SEric Saxe 12196890d023SEric Saxe /* 12200e751525SEric Saxe * Iterate over the power domains, setting the default dispatcher 12210e751525SEric Saxe * policy for power/performance optimization. 12220e751525SEric Saxe * 12230e751525SEric Saxe * Simply setting the policy isn't enough in the case where the power 12240e751525SEric Saxe * domain is an only child of another PG. Because the dispatcher walks 12250e751525SEric Saxe * the PG hierarchy in a top down fashion, the higher up PG's policy 12260e751525SEric Saxe * will dominate. So promote the power domain above it's parent if both 12270e751525SEric Saxe * PG and it's parent have the same CPUs to ensure it's policy 12280e751525SEric Saxe * dominates. 12296890d023SEric Saxe */ 12300e751525SEric Saxe group_iter_init(&iter); 12310e751525SEric Saxe while ((pg = group_iterate(hwset, &iter)) != NULL) { 12320e751525SEric Saxe /* 12330e751525SEric Saxe * If the power domain is an only child to a parent 12340e751525SEric Saxe * not implementing the same policy, promote the child 12350e751525SEric Saxe * above the parent to activate the policy. 12360e751525SEric Saxe */ 12370e751525SEric Saxe pg->cmt_policy = pg_cmt_policy(((pghw_t *)pg)->pghw_hw); 12380e751525SEric Saxe while ((pg->cmt_parent != NULL) && 12390e751525SEric Saxe (pg->cmt_parent->cmt_policy != pg->cmt_policy) && 12400e751525SEric Saxe (PG_NUM_CPUS((pg_t *)pg) == 12410e751525SEric Saxe PG_NUM_CPUS((pg_t *)pg->cmt_parent))) { 1242*1a77c24bSEric Saxe cmt_hier_promote(pg, NULL); 12430e751525SEric Saxe } 12440e751525SEric Saxe } 12450e751525SEric Saxe 12460e751525SEric Saxe return (0); 12470e751525SEric Saxe } 12480e751525SEric Saxe 12490e751525SEric Saxe int 12500e751525SEric Saxe cmt_pad_disable(pghw_type_t type) 12510e751525SEric Saxe { 12520e751525SEric Saxe group_t *hwset; 12530e751525SEric Saxe group_iter_t iter; 12540e751525SEric Saxe pg_cmt_t *pg; 12550e751525SEric Saxe pg_cmt_t *child; 12560e751525SEric Saxe 12570e751525SEric Saxe ASSERT(PGHW_IS_PM_DOMAIN(type)); 12580e751525SEric Saxe ASSERT(MUTEX_HELD(&cpu_lock)); 12590e751525SEric Saxe 12600e751525SEric Saxe if ((hwset = pghw_set_lookup(type)) == NULL) { 12610e751525SEric Saxe /* 12620e751525SEric Saxe * Unable to find any instances of the specified type of 12630e751525SEric Saxe * power domain. 12640e751525SEric Saxe */ 12650e751525SEric Saxe return (-1); 12660e751525SEric Saxe } 12670e751525SEric Saxe /* 12680e751525SEric Saxe * Iterate over the power domains, setting the default dispatcher 12690e751525SEric Saxe * policy for performance optimization (load balancing). 12700e751525SEric Saxe */ 12710e751525SEric Saxe group_iter_init(&iter); 12720e751525SEric Saxe while ((pg = group_iterate(hwset, &iter)) != NULL) { 12730e751525SEric Saxe 12740e751525SEric Saxe /* 12750e751525SEric Saxe * If the power domain has an only child that implements 12760e751525SEric Saxe * policy other than load balancing, promote the child 12770e751525SEric Saxe * above the power domain to ensure it's policy dominates. 12780e751525SEric Saxe */ 1279f03808b6SEric Saxe if (pg->cmt_children != NULL && 1280f03808b6SEric Saxe GROUP_SIZE(pg->cmt_children) == 1) { 12810e751525SEric Saxe child = GROUP_ACCESS(pg->cmt_children, 0); 12820e751525SEric Saxe if ((child->cmt_policy & CMT_BALANCE) == 0) { 1283*1a77c24bSEric Saxe cmt_hier_promote(child, NULL); 12840e751525SEric Saxe } 12850e751525SEric Saxe } 12860e751525SEric Saxe pg->cmt_policy = CMT_BALANCE; 12870e751525SEric Saxe } 12880e751525SEric Saxe return (0); 12890e751525SEric Saxe } 12900e751525SEric Saxe 12910e751525SEric Saxe /* ARGSUSED */ 12920e751525SEric Saxe static void 12930e751525SEric Saxe cmt_ev_thread_swtch(pg_t *pg, cpu_t *cp, hrtime_t now, kthread_t *old, 12940e751525SEric Saxe kthread_t *new) 12950e751525SEric Saxe { 12960e751525SEric Saxe pg_cmt_t *cmt_pg = (pg_cmt_t *)pg; 12970e751525SEric Saxe 12980e751525SEric Saxe if (old == cp->cpu_idle_thread) { 12990e751525SEric Saxe atomic_add_32(&cmt_pg->cmt_utilization, 1); 13000e751525SEric Saxe } else if (new == cp->cpu_idle_thread) { 13010e751525SEric Saxe atomic_add_32(&cmt_pg->cmt_utilization, -1); 13020e751525SEric Saxe } 13030e751525SEric Saxe } 13040e751525SEric Saxe 13050e751525SEric Saxe /* 13060e751525SEric Saxe * Macro to test whether a thread is currently runnable on a CPU in a PG. 13070e751525SEric Saxe */ 13080e751525SEric Saxe #define THREAD_RUNNABLE_IN_PG(t, pg) \ 13090e751525SEric Saxe ((t)->t_state == TS_RUN && \ 13100e751525SEric Saxe (t)->t_disp_queue->disp_cpu && \ 13110e751525SEric Saxe bitset_in_set(&(pg)->cmt_cpus_actv_set, \ 13120e751525SEric Saxe (t)->t_disp_queue->disp_cpu->cpu_seqid)) 13130e751525SEric Saxe 13140e751525SEric Saxe static void 13150e751525SEric Saxe cmt_ev_thread_swtch_pwr(pg_t *pg, cpu_t *cp, hrtime_t now, kthread_t *old, 13160e751525SEric Saxe kthread_t *new) 13170e751525SEric Saxe { 13180e751525SEric Saxe pg_cmt_t *cmt = (pg_cmt_t *)pg; 13190e751525SEric Saxe cpupm_domain_t *dom; 13200e751525SEric Saxe uint32_t u; 13210e751525SEric Saxe 13220e751525SEric Saxe if (old == cp->cpu_idle_thread) { 13230e751525SEric Saxe ASSERT(new != cp->cpu_idle_thread); 13240e751525SEric Saxe u = atomic_add_32_nv(&cmt->cmt_utilization, 1); 13250e751525SEric Saxe if (u == 1) { 13260e751525SEric Saxe /* 13270e751525SEric Saxe * Notify the CPU power manager that the domain 13280e751525SEric Saxe * is non-idle. 13290e751525SEric Saxe */ 13300e751525SEric Saxe dom = (cpupm_domain_t *)cmt->cmt_pg.pghw_handle; 13310e751525SEric Saxe cpupm_utilization_event(cp, now, dom, 13320e751525SEric Saxe CPUPM_DOM_BUSY_FROM_IDLE); 13330e751525SEric Saxe } 13340e751525SEric Saxe } else if (new == cp->cpu_idle_thread) { 13350e751525SEric Saxe ASSERT(old != cp->cpu_idle_thread); 13360e751525SEric Saxe u = atomic_add_32_nv(&cmt->cmt_utilization, -1); 13370e751525SEric Saxe if (u == 0) { 13380e751525SEric Saxe /* 13390e751525SEric Saxe * The domain is idle, notify the CPU power 13400e751525SEric Saxe * manager. 13410e751525SEric Saxe * 13420e751525SEric Saxe * Avoid notifying if the thread is simply migrating 13430e751525SEric Saxe * between CPUs in the domain. 13440e751525SEric Saxe */ 13450e751525SEric Saxe if (!THREAD_RUNNABLE_IN_PG(old, cmt)) { 13460e751525SEric Saxe dom = (cpupm_domain_t *)cmt->cmt_pg.pghw_handle; 13470e751525SEric Saxe cpupm_utilization_event(cp, now, dom, 13480e751525SEric Saxe CPUPM_DOM_IDLE_FROM_BUSY); 13490e751525SEric Saxe } 13500e751525SEric Saxe } 13510e751525SEric Saxe } 13520e751525SEric Saxe } 13530e751525SEric Saxe 13540e751525SEric Saxe /* ARGSUSED */ 13550e751525SEric Saxe static void 13560e751525SEric Saxe cmt_ev_thread_remain_pwr(pg_t *pg, cpu_t *cp, kthread_t *t) 13570e751525SEric Saxe { 13580e751525SEric Saxe pg_cmt_t *cmt = (pg_cmt_t *)pg; 13590e751525SEric Saxe cpupm_domain_t *dom; 13600e751525SEric Saxe 13610e751525SEric Saxe dom = (cpupm_domain_t *)cmt->cmt_pg.pghw_handle; 13620e751525SEric Saxe cpupm_utilization_event(cp, (hrtime_t)0, dom, CPUPM_DOM_REMAIN_BUSY); 13630e751525SEric Saxe } 13640e751525SEric Saxe 13650e751525SEric Saxe /* 13660e751525SEric Saxe * Return the name of the CMT scheduling policy 13670e751525SEric Saxe * being implemented across this PG 13680e751525SEric Saxe */ 13690e751525SEric Saxe static char * 13700e751525SEric Saxe pg_cmt_policy_name(pg_t *pg) 13710e751525SEric Saxe { 13720e751525SEric Saxe pg_cmt_policy_t policy; 13730e751525SEric Saxe 13740e751525SEric Saxe policy = ((pg_cmt_t *)pg)->cmt_policy; 13750e751525SEric Saxe 13760e751525SEric Saxe if (policy & CMT_AFFINITY) { 13770e751525SEric Saxe if (policy & CMT_BALANCE) 13780e751525SEric Saxe return ("Load Balancing & Affinity"); 13790e751525SEric Saxe else if (policy & CMT_COALESCE) 13800e751525SEric Saxe return ("Load Coalescence & Affinity"); 13816890d023SEric Saxe else 13820e751525SEric Saxe return ("Affinity"); 13830e751525SEric Saxe } else { 13840e751525SEric Saxe if (policy & CMT_BALANCE) 13850e751525SEric Saxe return ("Load Balancing"); 13860e751525SEric Saxe else if (policy & CMT_COALESCE) 13870e751525SEric Saxe return ("Load Coalescence"); 13880e751525SEric Saxe else 13890e751525SEric Saxe return ("None"); 13900e751525SEric Saxe } 13910e751525SEric Saxe } 13926890d023SEric Saxe 13936890d023SEric Saxe /* 13940e751525SEric Saxe * Prune PG, and all other instances of PG's hardware sharing relationship 13950e751525SEric Saxe * from the PG hierarchy. 1396*1a77c24bSEric Saxe * 1397*1a77c24bSEric Saxe * This routine operates on the CPU specific processor group data (for the CPUs 1398*1a77c24bSEric Saxe * in the PG being pruned), and may be invoked from a context where one CPU's 1399*1a77c24bSEric Saxe * PG data is under construction. In this case the argument "pgdata", if not 1400*1a77c24bSEric Saxe * NULL, is a reference to the CPU's under-construction PG data. 14016890d023SEric Saxe */ 14020e751525SEric Saxe static int 1403*1a77c24bSEric Saxe pg_cmt_prune(pg_cmt_t *pg_bad, pg_cmt_t **lineage, int *sz, cpu_pg_t *pgdata) 14040e751525SEric Saxe { 14050e751525SEric Saxe group_t *hwset, *children; 14060e751525SEric Saxe int i, j, r, size = *sz; 14070e751525SEric Saxe group_iter_t hw_iter, child_iter; 14080e751525SEric Saxe pg_cpu_itr_t cpu_iter; 14090e751525SEric Saxe pg_cmt_t *pg, *child; 14100e751525SEric Saxe cpu_t *cpu; 14110e751525SEric Saxe int cap_needed; 14120e751525SEric Saxe pghw_type_t hw; 14136890d023SEric Saxe 14140e751525SEric Saxe ASSERT(MUTEX_HELD(&cpu_lock)); 14156890d023SEric Saxe 14160e751525SEric Saxe hw = ((pghw_t *)pg_bad)->pghw_hw; 14170e751525SEric Saxe 14180e751525SEric Saxe if (hw == PGHW_POW_ACTIVE) { 14190e751525SEric Saxe cmn_err(CE_NOTE, "!Active CPUPM domain groups look suspect. " 14200e751525SEric Saxe "Event Based CPUPM Unavailable"); 14210e751525SEric Saxe } else if (hw == PGHW_POW_IDLE) { 14220e751525SEric Saxe cmn_err(CE_NOTE, "!Idle CPUPM domain groups look suspect. " 14230e751525SEric Saxe "Dispatcher assisted CPUPM disabled."); 14240e751525SEric Saxe } 14256890d023SEric Saxe 14266890d023SEric Saxe /* 14270e751525SEric Saxe * Find and eliminate the PG from the lineage. 14286890d023SEric Saxe */ 14290e751525SEric Saxe for (i = 0; i < size; i++) { 14300e751525SEric Saxe if (lineage[i] == pg_bad) { 14310e751525SEric Saxe for (j = i; j < size - 1; j++) 14320e751525SEric Saxe lineage[j] = lineage[j + 1]; 14330e751525SEric Saxe *sz = size - 1; 14340e751525SEric Saxe break; 14350e751525SEric Saxe } 14360e751525SEric Saxe } 14370e751525SEric Saxe 14380e751525SEric Saxe /* 14390e751525SEric Saxe * We'll prune all instances of the hardware sharing relationship 14400e751525SEric Saxe * represented by pg. But before we do that (and pause CPUs) we need 14410e751525SEric Saxe * to ensure the hierarchy's groups are properly sized. 14420e751525SEric Saxe */ 14430e751525SEric Saxe hwset = pghw_set_lookup(hw); 14440e751525SEric Saxe 14450e751525SEric Saxe /* 14460e751525SEric Saxe * Blacklist the hardware so that future groups won't be created. 14470e751525SEric Saxe */ 14480e751525SEric Saxe cmt_hw_blacklisted[hw] = 1; 14490e751525SEric Saxe 14500e751525SEric Saxe /* 14510e751525SEric Saxe * For each of the PGs being pruned, ensure sufficient capacity in 14520e751525SEric Saxe * the siblings set for the PG's children 14530e751525SEric Saxe */ 14540e751525SEric Saxe group_iter_init(&hw_iter); 14550e751525SEric Saxe while ((pg = group_iterate(hwset, &hw_iter)) != NULL) { 14560e751525SEric Saxe /* 14570e751525SEric Saxe * PG is being pruned, but if it is bringing up more than 14580e751525SEric Saxe * one child, ask for more capacity in the siblings group. 14590e751525SEric Saxe */ 14600e751525SEric Saxe cap_needed = 0; 14610e751525SEric Saxe if (pg->cmt_children && 14620e751525SEric Saxe GROUP_SIZE(pg->cmt_children) > 1) { 14630e751525SEric Saxe cap_needed = GROUP_SIZE(pg->cmt_children) - 1; 14640e751525SEric Saxe 14650e751525SEric Saxe group_expand(pg->cmt_siblings, 14660e751525SEric Saxe GROUP_SIZE(pg->cmt_siblings) + cap_needed); 14670e751525SEric Saxe 14680e751525SEric Saxe /* 14690e751525SEric Saxe * If this is a top level group, also ensure the 14700e751525SEric Saxe * capacity in the root lgrp level CMT grouping. 14710e751525SEric Saxe */ 14720e751525SEric Saxe if (pg->cmt_parent == NULL && 14730e751525SEric Saxe pg->cmt_siblings != &cmt_root->cl_pgs) { 14740e751525SEric Saxe group_expand(&cmt_root->cl_pgs, 14750e751525SEric Saxe GROUP_SIZE(&cmt_root->cl_pgs) + cap_needed); 14760e751525SEric Saxe } 14770e751525SEric Saxe } 14780e751525SEric Saxe } 14790e751525SEric Saxe 14800e751525SEric Saxe /* 14810e751525SEric Saxe * We're operating on the PG hierarchy. Pause CPUs to ensure 14820e751525SEric Saxe * exclusivity with respect to the dispatcher. 14830e751525SEric Saxe */ 14840e751525SEric Saxe pause_cpus(NULL); 14850e751525SEric Saxe 14860e751525SEric Saxe /* 14870e751525SEric Saxe * Prune all PG instances of the hardware sharing relationship 14880e751525SEric Saxe * represented by pg. 14890e751525SEric Saxe */ 14900e751525SEric Saxe group_iter_init(&hw_iter); 14910e751525SEric Saxe while ((pg = group_iterate(hwset, &hw_iter)) != NULL) { 14920e751525SEric Saxe 14930e751525SEric Saxe /* 14940e751525SEric Saxe * Remove PG from it's group of siblings, if it's there. 14950e751525SEric Saxe */ 14960e751525SEric Saxe if (pg->cmt_siblings) { 14970e751525SEric Saxe (void) group_remove(pg->cmt_siblings, pg, GRP_NORESIZE); 14980e751525SEric Saxe } 14990e751525SEric Saxe if (pg->cmt_parent == NULL && 15000e751525SEric Saxe pg->cmt_siblings != &cmt_root->cl_pgs) { 15010e751525SEric Saxe (void) group_remove(&cmt_root->cl_pgs, pg, 15020e751525SEric Saxe GRP_NORESIZE); 15030e751525SEric Saxe } 15040e751525SEric Saxe /* 1505ef4f35d8SEric Saxe * Move PG's children from it's children set to it's parent's 1506ef4f35d8SEric Saxe * children set. Note that the parent's children set, and PG's 1507ef4f35d8SEric Saxe * siblings set are the same thing. 1508ef4f35d8SEric Saxe * 1509ef4f35d8SEric Saxe * Because we are iterating over the same group that we are 1510ef4f35d8SEric Saxe * operating on (removing the children), first add all of PG's 1511ef4f35d8SEric Saxe * children to the parent's children set, and once we are done 1512ef4f35d8SEric Saxe * iterating, empty PG's children set. 15130e751525SEric Saxe */ 15140e751525SEric Saxe if (pg->cmt_children != NULL) { 15150e751525SEric Saxe children = pg->cmt_children; 15160e751525SEric Saxe 15170e751525SEric Saxe group_iter_init(&child_iter); 15180e751525SEric Saxe while ((child = group_iterate(children, &child_iter)) 15190e751525SEric Saxe != NULL) { 1520ef4f35d8SEric Saxe if (pg->cmt_siblings != NULL) { 15210e751525SEric Saxe r = group_add(pg->cmt_siblings, child, 15220e751525SEric Saxe GRP_NORESIZE); 15230e751525SEric Saxe ASSERT(r == 0); 15240e751525SEric Saxe } 15250e751525SEric Saxe } 1526ef4f35d8SEric Saxe group_empty(pg->cmt_children); 15270e751525SEric Saxe } 15280e751525SEric Saxe 15290e751525SEric Saxe /* 15300e751525SEric Saxe * Reset the callbacks to the defaults 15310e751525SEric Saxe */ 15320e751525SEric Saxe pg_callback_set_defaults((pg_t *)pg); 15330e751525SEric Saxe 15340e751525SEric Saxe /* 15350e751525SEric Saxe * Update all the CPU lineages in each of PG's CPUs 15360e751525SEric Saxe */ 15370e751525SEric Saxe PG_CPU_ITR_INIT(pg, cpu_iter); 15380e751525SEric Saxe while ((cpu = pg_cpu_next(&cpu_iter)) != NULL) { 15390e751525SEric Saxe pg_cmt_t *cpu_pg; 15400e751525SEric Saxe group_iter_t liter; /* Iterator for the lineage */ 1541*1a77c24bSEric Saxe cpu_pg_t *cpd; /* CPU's PG data */ 1542*1a77c24bSEric Saxe 1543*1a77c24bSEric Saxe /* 1544*1a77c24bSEric Saxe * The CPU's lineage is under construction still 1545*1a77c24bSEric Saxe * references the bootstrap CPU PG data structure. 1546*1a77c24bSEric Saxe */ 1547*1a77c24bSEric Saxe if (pg_cpu_is_bootstrapped(cpu)) 1548*1a77c24bSEric Saxe cpd = pgdata; 1549*1a77c24bSEric Saxe else 1550*1a77c24bSEric Saxe cpd = cpu->cpu_pg; 15510e751525SEric Saxe 15520e751525SEric Saxe /* 15530e751525SEric Saxe * Iterate over the CPU's PGs updating the children 15540e751525SEric Saxe * of the PG being promoted, since they have a new 15550e751525SEric Saxe * parent and siblings set. 15560e751525SEric Saxe */ 15570e751525SEric Saxe group_iter_init(&liter); 1558*1a77c24bSEric Saxe while ((cpu_pg = group_iterate(&cpd->pgs, 1559*1a77c24bSEric Saxe &liter)) != NULL) { 15600e751525SEric Saxe if (cpu_pg->cmt_parent == pg) { 15610e751525SEric Saxe cpu_pg->cmt_parent = pg->cmt_parent; 15620e751525SEric Saxe cpu_pg->cmt_siblings = pg->cmt_siblings; 15630e751525SEric Saxe } 15640e751525SEric Saxe } 15650e751525SEric Saxe 15660e751525SEric Saxe /* 15670e751525SEric Saxe * Update the CPU's lineages 15680e751525SEric Saxe */ 1569*1a77c24bSEric Saxe (void) group_remove(&cpd->pgs, pg, GRP_NORESIZE); 1570*1a77c24bSEric Saxe (void) group_remove(&cpd->cmt_pgs, pg, GRP_NORESIZE); 15710e751525SEric Saxe } 15720e751525SEric Saxe } 15730e751525SEric Saxe start_cpus(); 15740e751525SEric Saxe return (0); 15750e751525SEric Saxe } 15760e751525SEric Saxe 15770e751525SEric Saxe /* 15780e751525SEric Saxe * Disable CMT scheduling 15790e751525SEric Saxe */ 15800e751525SEric Saxe static void 15810e751525SEric Saxe pg_cmt_disable(void) 15820e751525SEric Saxe { 15830e751525SEric Saxe cpu_t *cpu; 15840e751525SEric Saxe 1585*1a77c24bSEric Saxe ASSERT(MUTEX_HELD(&cpu_lock)); 1586*1a77c24bSEric Saxe 15870e751525SEric Saxe pause_cpus(NULL); 15880e751525SEric Saxe cpu = cpu_list; 15890e751525SEric Saxe 15906890d023SEric Saxe do { 15910e751525SEric Saxe if (cpu->cpu_pg) 15920e751525SEric Saxe group_empty(&cpu->cpu_pg->cmt_pgs); 15930e751525SEric Saxe } while ((cpu = cpu->cpu_next) != cpu_list); 15940e751525SEric Saxe 15950e751525SEric Saxe cmt_sched_disabled = 1; 15960e751525SEric Saxe start_cpus(); 15970e751525SEric Saxe cmn_err(CE_NOTE, "!CMT thread placement optimizations unavailable"); 15980e751525SEric Saxe } 15990e751525SEric Saxe 1600ef4f35d8SEric Saxe /* 1601ef4f35d8SEric Saxe * CMT lineage validation 1602ef4f35d8SEric Saxe * 1603ef4f35d8SEric Saxe * This routine is invoked by pg_cmt_cpu_init() to validate the integrity 1604ef4f35d8SEric Saxe * of the PGs in a CPU's lineage. This is necessary because it's possible that 1605ef4f35d8SEric Saxe * some groupings (power domain groupings in particular) may be defined by 1606ef4f35d8SEric Saxe * sources that are buggy (e.g. BIOS bugs). In such cases, it may not be 1607ef4f35d8SEric Saxe * possible to integrate those groupings into the CMT PG hierarchy, if doing 1608ef4f35d8SEric Saxe * so would violate the subset invariant of the hierarchy, which says that 1609ef4f35d8SEric Saxe * a PG must be subset of its parent (if it has one). 1610ef4f35d8SEric Saxe * 1611ef4f35d8SEric Saxe * pg_cmt_lineage_validate()'s purpose is to detect grouping definitions that 1612ef4f35d8SEric Saxe * would result in a violation of this invariant. If a violation is found, 1613ef4f35d8SEric Saxe * and the PG is of a grouping type who's definition is known to originate from 1614ef4f35d8SEric Saxe * suspect sources (BIOS), then pg_cmt_prune() will be invoked to prune the 1615ef4f35d8SEric Saxe * PG (and all other instances PG's sharing relationship type) from the 1616ef4f35d8SEric Saxe * hierarchy. Further, future instances of that sharing relationship type won't 1617ef4f35d8SEric Saxe * be instantiated. If the grouping definition doesn't originate from suspect 1618ef4f35d8SEric Saxe * sources, then pg_cmt_disable() will be invoked to log an error, and disable 1619ef4f35d8SEric Saxe * CMT scheduling altogether. 1620ef4f35d8SEric Saxe * 1621ef4f35d8SEric Saxe * This routine is invoked after the CPU has been added to the PGs in which 1622ef4f35d8SEric Saxe * it belongs, but before those PGs have been added to (or had their place 1623ef4f35d8SEric Saxe * adjusted in) the CMT PG hierarchy. 1624ef4f35d8SEric Saxe * 1625ef4f35d8SEric Saxe * The first argument is the CPUs PG lineage (essentially an array of PGs in 1626ef4f35d8SEric Saxe * which the CPU belongs) that has already been sorted in ascending order 1627ef4f35d8SEric Saxe * by CPU count. Some of the PGs in the CPUs lineage may already have other 1628ef4f35d8SEric Saxe * CPUs in them, and have already been integrated into the CMT hierarchy. 1629ef4f35d8SEric Saxe * 1630ef4f35d8SEric Saxe * The addition of this new CPU to these pre-existing PGs means that those 1631ef4f35d8SEric Saxe * PGs may need to be promoted up in the hierarchy to satisfy the subset 1632ef4f35d8SEric Saxe * invariant. In additon to testing the subset invariant for the lineage, 1633ef4f35d8SEric Saxe * this routine also verifies that the addition of the new CPU to the 1634ef4f35d8SEric Saxe * existing PGs wouldn't cause the subset invariant to be violated in 1635ef4f35d8SEric Saxe * the exiting lineages. 1636ef4f35d8SEric Saxe * 1637ef4f35d8SEric Saxe * This routine will normally return one of the following: 1638ef4f35d8SEric Saxe * CMT_LINEAGE_VALID - There were no problems detected with the lineage. 1639ef4f35d8SEric Saxe * CMT_LINEAGE_REPAIRED - Problems were detected, but repaired via pruning. 1640ef4f35d8SEric Saxe * 1641ef4f35d8SEric Saxe * Otherwise, this routine will return a value indicating which error it 1642ef4f35d8SEric Saxe * was unable to recover from (and set cmt_lineage_status along the way). 1643*1a77c24bSEric Saxe * 1644*1a77c24bSEric Saxe * 1645*1a77c24bSEric Saxe * This routine operates on the CPU specific processor group data (for the CPU 1646*1a77c24bSEric Saxe * whose lineage is being validated), which is under-construction. 1647*1a77c24bSEric Saxe * "pgdata" is a reference to the CPU's under-construction PG data. 1648*1a77c24bSEric Saxe * This routine must be careful to operate only on "pgdata", and not cp->cpu_pg. 1649ef4f35d8SEric Saxe */ 1650ef4f35d8SEric Saxe static cmt_lineage_validation_t 1651*1a77c24bSEric Saxe pg_cmt_lineage_validate(pg_cmt_t **lineage, int *sz, cpu_pg_t *pgdata) 16520e751525SEric Saxe { 1653ef4f35d8SEric Saxe int i, j, size; 1654ef4f35d8SEric Saxe pg_cmt_t *pg, *pg_next, *pg_bad, *pg_tmp; 16550e751525SEric Saxe cpu_t *cp; 16560e751525SEric Saxe pg_cpu_itr_t cpu_iter; 1657ef4f35d8SEric Saxe lgrp_handle_t lgrp; 16580e751525SEric Saxe 16590e751525SEric Saxe ASSERT(MUTEX_HELD(&cpu_lock)); 16600e751525SEric Saxe 16610e751525SEric Saxe revalidate: 16620e751525SEric Saxe size = *sz; 16630e751525SEric Saxe pg_bad = NULL; 1664ef4f35d8SEric Saxe lgrp = LGRP_NULL_HANDLE; 1665ef4f35d8SEric Saxe for (i = 0; i < size; i++) { 16660e751525SEric Saxe 16670e751525SEric Saxe pg = lineage[i]; 1668ef4f35d8SEric Saxe if (i < size - 1) 1669ef4f35d8SEric Saxe pg_next = lineage[i + 1]; 1670ef4f35d8SEric Saxe else 1671ef4f35d8SEric Saxe pg_next = NULL; 16726890d023SEric Saxe 16736890d023SEric Saxe /* 16740e751525SEric Saxe * We assume that the lineage has already been sorted 16750e751525SEric Saxe * by the number of CPUs. In fact, we depend on it. 16766890d023SEric Saxe */ 1677ef4f35d8SEric Saxe ASSERT(pg_next == NULL || 1678ef4f35d8SEric Saxe (PG_NUM_CPUS((pg_t *)pg) <= PG_NUM_CPUS((pg_t *)pg_next))); 16796890d023SEric Saxe 16806890d023SEric Saxe /* 1681ef4f35d8SEric Saxe * Check to make sure that the existing parent of PG (if any) 1682ef4f35d8SEric Saxe * is either in the PG's lineage, or the PG has more CPUs than 1683ef4f35d8SEric Saxe * its existing parent and can and should be promoted above its 1684ef4f35d8SEric Saxe * parent. 1685ef4f35d8SEric Saxe * 1686ef4f35d8SEric Saxe * Since the PG topology is in the middle of being changed, we 1687ef4f35d8SEric Saxe * need to check whether the PG's existing parent (if any) is 1688ef4f35d8SEric Saxe * part of its lineage (and therefore should contain the new 1689ef4f35d8SEric Saxe * CPU). If not, it means that the addition of the new CPU 1690ef4f35d8SEric Saxe * should have made this PG have more CPUs than its parent, and 1691ef4f35d8SEric Saxe * this PG should be promoted to be above its existing parent 1692ef4f35d8SEric Saxe * now. We need to verify all of this to defend against a buggy 1693ef4f35d8SEric Saxe * BIOS giving bad power domain CPU groupings. Sigh. 1694ef4f35d8SEric Saxe */ 1695ef4f35d8SEric Saxe if (pg->cmt_parent) { 1696ef4f35d8SEric Saxe /* 1697ef4f35d8SEric Saxe * Determine if cmt_parent is in this lineage 1698ef4f35d8SEric Saxe */ 1699ef4f35d8SEric Saxe for (j = 0; j < size; j++) { 1700ef4f35d8SEric Saxe pg_tmp = lineage[j]; 1701ef4f35d8SEric Saxe if (pg_tmp == pg->cmt_parent) 1702ef4f35d8SEric Saxe break; 1703ef4f35d8SEric Saxe } 1704ef4f35d8SEric Saxe if (pg_tmp != pg->cmt_parent) { 1705ef4f35d8SEric Saxe /* 1706ef4f35d8SEric Saxe * cmt_parent is not in the lineage, verify 1707ef4f35d8SEric Saxe * it is a proper subset of PG. 1708ef4f35d8SEric Saxe */ 1709ef4f35d8SEric Saxe if (PG_NUM_CPUS((pg_t *)pg->cmt_parent) >= 1710ef4f35d8SEric Saxe PG_NUM_CPUS((pg_t *)pg)) { 1711ef4f35d8SEric Saxe /* 1712ef4f35d8SEric Saxe * Not a proper subset if pg has less 1713ef4f35d8SEric Saxe * CPUs than cmt_parent... 1714ef4f35d8SEric Saxe */ 1715ef4f35d8SEric Saxe cmt_lineage_status = 1716ef4f35d8SEric Saxe CMT_LINEAGE_NON_PROMOTABLE; 1717ef4f35d8SEric Saxe goto handle_error; 1718ef4f35d8SEric Saxe } 1719ef4f35d8SEric Saxe } 1720ef4f35d8SEric Saxe } 1721ef4f35d8SEric Saxe 1722ef4f35d8SEric Saxe /* 1723ef4f35d8SEric Saxe * Walk each of the CPUs in the PGs group and perform 1724ef4f35d8SEric Saxe * consistency checks along the way. 17256890d023SEric Saxe */ 17260e751525SEric Saxe PG_CPU_ITR_INIT((pg_t *)pg, cpu_iter); 17270e751525SEric Saxe while ((cp = pg_cpu_next(&cpu_iter)) != NULL) { 1728ef4f35d8SEric Saxe /* 1729ef4f35d8SEric Saxe * Verify that there aren't any CPUs contained in PG 1730ef4f35d8SEric Saxe * that the next PG in the lineage (which is larger 1731ef4f35d8SEric Saxe * or same size) doesn't also contain. 1732ef4f35d8SEric Saxe */ 1733ef4f35d8SEric Saxe if (pg_next != NULL && 1734ef4f35d8SEric Saxe pg_cpu_find((pg_t *)pg_next, cp) == B_FALSE) { 17350e751525SEric Saxe cmt_lineage_status = CMT_LINEAGE_NON_CONCENTRIC; 17360e751525SEric Saxe goto handle_error; 17376890d023SEric Saxe } 1738ef4f35d8SEric Saxe 1739ef4f35d8SEric Saxe /* 1740ef4f35d8SEric Saxe * Verify that all the CPUs in the PG are in the same 1741ef4f35d8SEric Saxe * lgroup. 1742ef4f35d8SEric Saxe */ 1743ef4f35d8SEric Saxe if (lgrp == LGRP_NULL_HANDLE) { 1744ef4f35d8SEric Saxe lgrp = lgrp_plat_cpu_to_hand(cp->cpu_id); 1745ef4f35d8SEric Saxe } else if (lgrp_plat_cpu_to_hand(cp->cpu_id) != lgrp) { 1746ef4f35d8SEric Saxe cmt_lineage_status = CMT_LINEAGE_PG_SPANS_LGRPS; 1747ef4f35d8SEric Saxe goto handle_error; 1748ef4f35d8SEric Saxe } 17490e751525SEric Saxe } 17506890d023SEric Saxe } 17516890d023SEric Saxe 17520e751525SEric Saxe handle_error: 1753ef4f35d8SEric Saxe /* 1754ef4f35d8SEric Saxe * Some of these validation errors can result when the CPU grouping 1755ef4f35d8SEric Saxe * information is derived from buggy sources (for example, incorrect 1756ef4f35d8SEric Saxe * ACPI tables on x86 systems). 1757ef4f35d8SEric Saxe * 1758ef4f35d8SEric Saxe * We'll try to recover in such cases by pruning out the illegal 1759ef4f35d8SEric Saxe * groupings from the PG hierarchy, which means that we won't optimize 1760ef4f35d8SEric Saxe * for those levels, but we will for the remaining ones. 1761ef4f35d8SEric Saxe */ 17620e751525SEric Saxe switch (cmt_lineage_status) { 17630e751525SEric Saxe case CMT_LINEAGE_VALID: 17640e751525SEric Saxe case CMT_LINEAGE_REPAIRED: 17650e751525SEric Saxe break; 1766ef4f35d8SEric Saxe case CMT_LINEAGE_PG_SPANS_LGRPS: 1767ef4f35d8SEric Saxe /* 1768ef4f35d8SEric Saxe * We've detected a PG whose CPUs span lgroups. 1769ef4f35d8SEric Saxe * 1770ef4f35d8SEric Saxe * This isn't supported, as the dispatcher isn't allowed to 1771ef4f35d8SEric Saxe * to do CMT thread placement across lgroups, as this would 1772ef4f35d8SEric Saxe * conflict with policies implementing MPO thread affinity. 1773ef4f35d8SEric Saxe * 1774ef4f35d8SEric Saxe * The handling for this falls through to the next case. 1775ef4f35d8SEric Saxe */ 1776ef4f35d8SEric Saxe case CMT_LINEAGE_NON_PROMOTABLE: 1777ef4f35d8SEric Saxe /* 1778ef4f35d8SEric Saxe * We've detected a PG that already exists in another CPU's 1779ef4f35d8SEric Saxe * lineage that cannot cannot legally be promoted into place 1780ef4f35d8SEric Saxe * without breaking the invariants of the hierarchy. 1781ef4f35d8SEric Saxe */ 1782ef4f35d8SEric Saxe if (PG_CMT_HW_SUSPECT(((pghw_t *)pg)->pghw_hw)) { 1783*1a77c24bSEric Saxe if (pg_cmt_prune(pg, lineage, sz, pgdata) == 0) { 1784ef4f35d8SEric Saxe cmt_lineage_status = CMT_LINEAGE_REPAIRED; 1785ef4f35d8SEric Saxe goto revalidate; 1786ef4f35d8SEric Saxe } 1787ef4f35d8SEric Saxe } 1788ef4f35d8SEric Saxe /* 1789ef4f35d8SEric Saxe * Something went wrong trying to prune out the bad level. 1790ef4f35d8SEric Saxe * Disable CMT scheduling altogether. 1791ef4f35d8SEric Saxe */ 1792ef4f35d8SEric Saxe pg_cmt_disable(); 1793ef4f35d8SEric Saxe break; 17940e751525SEric Saxe case CMT_LINEAGE_NON_CONCENTRIC: 17956890d023SEric Saxe /* 1796ef4f35d8SEric Saxe * We've detected a non-concentric PG lineage, which means that 1797ef4f35d8SEric Saxe * there's a PG in the lineage that has CPUs that the next PG 1798ef4f35d8SEric Saxe * over in the lineage (which is the same size or larger) 1799ef4f35d8SEric Saxe * doesn't have. 18000e751525SEric Saxe * 1801ef4f35d8SEric Saxe * In this case, we examine the two PGs to see if either 1802ef4f35d8SEric Saxe * grouping is defined by potentially buggy sources. 18030e751525SEric Saxe * 18040e751525SEric Saxe * If one has less CPUs than the other, and contains CPUs 18050e751525SEric Saxe * not found in the parent, and it is an untrusted enumeration, 18060e751525SEric Saxe * then prune it. If both have the same number of CPUs, then 18070e751525SEric Saxe * prune the one that is untrusted. 18080e751525SEric Saxe * 18090e751525SEric Saxe * This process repeats until we have a concentric lineage, 18100e751525SEric Saxe * or we would have to prune out level derived from what we 18110e751525SEric Saxe * thought was a reliable source, in which case CMT scheduling 1812ef4f35d8SEric Saxe * is disabled altogether. 18136890d023SEric Saxe */ 1814ef4f35d8SEric Saxe if ((PG_NUM_CPUS((pg_t *)pg) < PG_NUM_CPUS((pg_t *)pg_next)) && 18150e751525SEric Saxe (PG_CMT_HW_SUSPECT(((pghw_t *)pg)->pghw_hw))) { 18160e751525SEric Saxe pg_bad = pg; 18170e751525SEric Saxe } else if (PG_NUM_CPUS((pg_t *)pg) == 1818ef4f35d8SEric Saxe PG_NUM_CPUS((pg_t *)pg_next)) { 1819ef4f35d8SEric Saxe if (PG_CMT_HW_SUSPECT(((pghw_t *)pg_next)->pghw_hw)) { 1820ef4f35d8SEric Saxe pg_bad = pg_next; 18210e751525SEric Saxe } else if (PG_CMT_HW_SUSPECT(((pghw_t *)pg)->pghw_hw)) { 18220e751525SEric Saxe pg_bad = pg; 18236890d023SEric Saxe } 18246890d023SEric Saxe } 18250e751525SEric Saxe if (pg_bad) { 1826*1a77c24bSEric Saxe if (pg_cmt_prune(pg_bad, lineage, sz, pgdata) == 0) { 18270e751525SEric Saxe cmt_lineage_status = CMT_LINEAGE_REPAIRED; 18280e751525SEric Saxe goto revalidate; 18290e751525SEric Saxe } 18300e751525SEric Saxe } 18310e751525SEric Saxe /* 1832ef4f35d8SEric Saxe * Something went wrong trying to identify and/or prune out 1833ef4f35d8SEric Saxe * the bad level. Disable CMT scheduling altogether. 18340e751525SEric Saxe */ 18350e751525SEric Saxe pg_cmt_disable(); 1836ef4f35d8SEric Saxe break; 1837ef4f35d8SEric Saxe default: 1838ef4f35d8SEric Saxe /* 1839ef4f35d8SEric Saxe * If we're here, we've encountered a validation error for 1840ef4f35d8SEric Saxe * which we don't know how to recover. In this case, disable 1841ef4f35d8SEric Saxe * CMT scheduling altogether. 1842ef4f35d8SEric Saxe */ 18430e751525SEric Saxe cmt_lineage_status = CMT_LINEAGE_UNRECOVERABLE; 1844ef4f35d8SEric Saxe pg_cmt_disable(); 18450e751525SEric Saxe } 1846ef4f35d8SEric Saxe return (cmt_lineage_status); 18476890d023SEric Saxe } 1848