xref: /titanic_52/usr/src/uts/sun4v/os/mach_cpu_states.c (revision 8523fda3525b37e02f4d11efc8cf763bf08204ec)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #include <sys/types.h>
27 #include <sys/systm.h>
28 #include <sys/archsystm.h>
29 #include <sys/t_lock.h>
30 #include <sys/uadmin.h>
31 #include <sys/panic.h>
32 #include <sys/reboot.h>
33 #include <sys/autoconf.h>
34 #include <sys/machsystm.h>
35 #include <sys/promif.h>
36 #include <sys/membar.h>
37 #include <vm/hat_sfmmu.h>
38 #include <sys/cpu_module.h>
39 #include <sys/cpu_sgnblk_defs.h>
40 #include <sys/intreg.h>
41 #include <sys/consdev.h>
42 #include <sys/kdi_impl.h>
43 #include <sys/traptrace.h>
44 #include <sys/hypervisor_api.h>
45 #include <sys/vmsystm.h>
46 #include <sys/dtrace.h>
47 #include <sys/xc_impl.h>
48 #include <sys/callb.h>
49 #include <sys/mdesc.h>
50 #include <sys/mach_descrip.h>
51 #include <sys/wdt.h>
52 #include <sys/soft_state.h>
53 #include <sys/promimpl.h>
54 #include <sys/hsvc.h>
55 #include <sys/ldoms.h>
56 #include <sys/kldc.h>
57 #include <sys/clock_impl.h>
58 #include <sys/dumphdr.h>
59 
60 /*
61  * hvdump_buf_va is a pointer to the currently-configured hvdump_buf.
62  * A value of NULL indicates that this area is not configured.
63  * hvdump_buf_sz is tunable but will be clamped to HVDUMP_SIZE_MAX.
64  */
65 
66 caddr_t hvdump_buf_va;
67 uint64_t hvdump_buf_sz = HVDUMP_SIZE_DEFAULT;
68 static uint64_t hvdump_buf_pa;
69 
70 u_longlong_t panic_tick;
71 
72 extern u_longlong_t gettick();
73 static void reboot_machine(char *);
74 static void update_hvdump_buffer(void);
75 
76 /*
77  * For xt_sync synchronization.
78  */
79 extern uint64_t xc_tick_limit;
80 extern uint64_t xc_tick_jump_limit;
81 extern uint64_t xc_sync_tick_limit;
82 
83 /*
84  * We keep our own copies, used for cache flushing, because we can be called
85  * before cpu_fiximpl().
86  */
87 static int kdi_dcache_size;
88 static int kdi_dcache_linesize;
89 static int kdi_icache_size;
90 static int kdi_icache_linesize;
91 
92 /*
93  * Assembly support for generic modules in sun4v/ml/mach_xc.s
94  */
95 extern void init_mondo_nocheck(xcfunc_t *func, uint64_t arg1, uint64_t arg2);
96 extern void kdi_flush_idcache(int, int, int, int);
97 extern uint64_t get_cpuaddr(uint64_t, uint64_t);
98 
99 
100 #define	BOOT_CMD_MAX_LEN	256
101 #define	BOOT_CMD_BASE		"boot "
102 
103 /*
104  * In an LDoms system we do not save the user's boot args in NVRAM
105  * as is done on legacy systems.  Instead, we format and send a
106  * 'reboot-command' variable to the variable service.  The contents
107  * of the variable are retrieved by OBP and used verbatim for
108  * the next boot.
109  */
110 static void
111 store_boot_cmd(char *args, boolean_t add_boot_str)
112 {
113 	static char	cmd_buf[BOOT_CMD_MAX_LEN];
114 	size_t		len = 1;
115 	pnode_t		node;
116 	size_t		base_len = 0;
117 	size_t		args_len;
118 	size_t		args_max;
119 
120 	if (add_boot_str) {
121 		(void) strcpy(cmd_buf, BOOT_CMD_BASE);
122 
123 		base_len = strlen(BOOT_CMD_BASE);
124 		len = base_len + 1;
125 	}
126 
127 	if (args != NULL) {
128 		args_len = strlen(args);
129 		args_max = BOOT_CMD_MAX_LEN - len;
130 
131 		if (args_len > args_max) {
132 			cmn_err(CE_WARN, "Reboot command too long (%ld), "
133 			    "truncating command arguments", len + args_len);
134 
135 			args_len = args_max;
136 		}
137 
138 		len += args_len;
139 		(void) strncpy(&cmd_buf[base_len], args, args_len);
140 	}
141 
142 	node = prom_optionsnode();
143 	if ((node == OBP_NONODE) || (node == OBP_BADNODE) ||
144 	    prom_setprop(node, "reboot-command", cmd_buf, len) == -1)
145 		cmn_err(CE_WARN, "Unable to store boot command for "
146 		    "use on reboot");
147 }
148 
149 
150 /*
151  * Machine dependent code to reboot.
152  *
153  * "bootstr", when non-null, points to a string to be used as the
154  * argument string when rebooting.
155  *
156  * "invoke_cb" is a boolean. It is set to true when mdboot() can safely
157  * invoke CB_CL_MDBOOT callbacks before shutting the system down, i.e. when
158  * we are in a normal shutdown sequence (interrupts are not blocked, the
159  * system is not panic'ing or being suspended).
160  */
161 /*ARGSUSED*/
162 void
163 mdboot(int cmd, int fcn, char *bootstr, boolean_t invoke_cb)
164 {
165 	extern void pm_cfb_check_and_powerup(void);
166 
167 	/*
168 	 * XXX - rconsvp is set to NULL to ensure that output messages
169 	 * are sent to the underlying "hardware" device using the
170 	 * monitor's printf routine since we are in the process of
171 	 * either rebooting or halting the machine.
172 	 */
173 	rconsvp = NULL;
174 
175 	switch (fcn) {
176 	case AD_HALT:
177 		/*
178 		 * LDoms: By storing a no-op command
179 		 * in the 'reboot-command' variable we cause OBP
180 		 * to ignore the setting of 'auto-boot?' after
181 		 * it completes the reset.  This causes the system
182 		 * to stop at the ok prompt.
183 		 */
184 		if (domaining_enabled() && invoke_cb)
185 			store_boot_cmd("noop", B_FALSE);
186 		break;
187 
188 	case AD_POWEROFF:
189 		break;
190 
191 	default:
192 		if (bootstr == NULL) {
193 			switch (fcn) {
194 
195 			case AD_BOOT:
196 				bootstr = "";
197 				break;
198 
199 			case AD_IBOOT:
200 				bootstr = "-a";
201 				break;
202 
203 			case AD_SBOOT:
204 				bootstr = "-s";
205 				break;
206 
207 			case AD_SIBOOT:
208 				bootstr = "-sa";
209 				break;
210 			default:
211 				cmn_err(CE_WARN,
212 				    "mdboot: invalid function %d", fcn);
213 				bootstr = "";
214 				break;
215 			}
216 		}
217 
218 		/*
219 		 * If LDoms is running, we must save the boot string
220 		 * before we enter restricted mode.  This is possible
221 		 * only if we are not being called from panic.
222 		 */
223 		if (domaining_enabled() && invoke_cb)
224 			store_boot_cmd(bootstr, B_TRUE);
225 	}
226 
227 	/*
228 	 * At a high interrupt level we can't:
229 	 *	1) bring up the console
230 	 * or
231 	 *	2) wait for pending interrupts prior to redistribution
232 	 *	   to the current CPU
233 	 *
234 	 * so we do them now.
235 	 */
236 	pm_cfb_check_and_powerup();
237 
238 	/* make sure there are no more changes to the device tree */
239 	devtree_freeze();
240 
241 	if (invoke_cb)
242 		(void) callb_execute_class(CB_CL_MDBOOT, NULL);
243 
244 	/*
245 	 * Clear any unresolved UEs from memory.
246 	 */
247 	page_retire_mdboot();
248 
249 	/*
250 	 * stop other cpus which also raise our priority. since there is only
251 	 * one active cpu after this, and our priority will be too high
252 	 * for us to be preempted, we're essentially single threaded
253 	 * from here on out.
254 	 */
255 	stop_other_cpus();
256 
257 	/*
258 	 * try and reset leaf devices.  reset_leaves() should only
259 	 * be called when there are no other threads that could be
260 	 * accessing devices
261 	 */
262 	reset_leaves();
263 
264 	watchdog_clear();
265 
266 	if (fcn == AD_HALT) {
267 		mach_set_soft_state(SIS_TRANSITION,
268 		    &SOLARIS_SOFT_STATE_HALT_MSG);
269 		halt((char *)NULL);
270 	} else if (fcn == AD_POWEROFF) {
271 		mach_set_soft_state(SIS_TRANSITION,
272 		    &SOLARIS_SOFT_STATE_POWER_MSG);
273 		power_down(NULL);
274 	} else {
275 		mach_set_soft_state(SIS_TRANSITION,
276 		    &SOLARIS_SOFT_STATE_REBOOT_MSG);
277 		reboot_machine(bootstr);
278 	}
279 	/* MAYBE REACHED */
280 }
281 
282 /* mdpreboot - may be called prior to mdboot while root fs still mounted */
283 /*ARGSUSED*/
284 void
285 mdpreboot(int cmd, int fcn, char *bootstr)
286 {
287 }
288 
289 /*
290  * Halt the machine and then reboot with the device
291  * and arguments specified in bootstr.
292  */
293 static void
294 reboot_machine(char *bootstr)
295 {
296 	flush_windows();
297 	stop_other_cpus();		/* send stop signal to other CPUs */
298 	prom_printf("rebooting...\n");
299 	/*
300 	 * For platforms that use CPU signatures, we
301 	 * need to set the signature block to OS and
302 	 * the state to exiting for all the processors.
303 	 */
304 	CPU_SIGNATURE(OS_SIG, SIGST_EXIT, SIGSUBST_REBOOT, -1);
305 	prom_reboot(bootstr);
306 	/*NOTREACHED*/
307 }
308 
309 /*
310  * We use the x-trap mechanism and idle_stop_xcall() to stop the other CPUs.
311  * Once in panic_idle() they raise spl, record their location, and spin.
312  */
313 static void
314 panic_idle(void)
315 {
316 	(void) spl7();
317 
318 	debug_flush_windows();
319 	(void) setjmp(&curthread->t_pcb);
320 
321 	CPU->cpu_m.in_prom = 1;
322 	membar_stld();
323 
324 	dumpsys_helper();
325 
326 	for (;;)
327 		;
328 }
329 
330 /*
331  * Force the other CPUs to trap into panic_idle(), and then remove them
332  * from the cpu_ready_set so they will no longer receive cross-calls.
333  */
334 /*ARGSUSED*/
335 void
336 panic_stopcpus(cpu_t *cp, kthread_t *t, int spl)
337 {
338 	cpuset_t cps;
339 	int i;
340 
341 	(void) splzs();
342 	CPUSET_ALL_BUT(cps, cp->cpu_id);
343 	xt_some(cps, (xcfunc_t *)idle_stop_xcall, (uint64_t)&panic_idle, NULL);
344 
345 	for (i = 0; i < NCPU; i++) {
346 		if (i != cp->cpu_id && CPU_XCALL_READY(i)) {
347 			int ntries = 0x10000;
348 
349 			while (!cpu[i]->cpu_m.in_prom && ntries) {
350 				DELAY(50);
351 				ntries--;
352 			}
353 
354 			if (!cpu[i]->cpu_m.in_prom)
355 				printf("panic: failed to stop cpu%d\n", i);
356 
357 			cpu[i]->cpu_flags &= ~CPU_READY;
358 			cpu[i]->cpu_flags |= CPU_QUIESCED;
359 			CPUSET_DEL(cpu_ready_set, cpu[i]->cpu_id);
360 		}
361 	}
362 }
363 
364 /*
365  * Platform callback following each entry to panicsys().  If we've panicked at
366  * level 14, we examine t_panic_trap to see if a fatal trap occurred.  If so,
367  * we disable further %tick_cmpr interrupts.  If not, an explicit call to panic
368  * was made and so we re-enqueue an interrupt request structure to allow
369  * further level 14 interrupts to be processed once we lower PIL.  This allows
370  * us to handle panics from the deadman() CY_HIGH_LEVEL cyclic.
371  */
372 void
373 panic_enter_hw(int spl)
374 {
375 	if (!panic_tick) {
376 		panic_tick = gettick();
377 		if (mach_htraptrace_enable) {
378 			uint64_t prev_freeze;
379 
380 			/*  there are no possible error codes for this hcall */
381 			(void) hv_ttrace_freeze((uint64_t)TRAP_TFREEZE_ALL,
382 			    &prev_freeze);
383 		}
384 #ifdef TRAPTRACE
385 		TRAPTRACE_FREEZE;
386 #endif
387 	}
388 
389 	mach_set_soft_state(SIS_TRANSITION, &SOLARIS_SOFT_STATE_PANIC_MSG);
390 
391 	if (spl == ipltospl(PIL_14)) {
392 		uint_t opstate = disable_vec_intr();
393 
394 		if (curthread->t_panic_trap != NULL) {
395 			tickcmpr_disable();
396 			intr_dequeue_req(PIL_14, cbe_level14_inum);
397 		} else {
398 			if (!tickcmpr_disabled())
399 				intr_enqueue_req(PIL_14, cbe_level14_inum);
400 			/*
401 			 * Clear SOFTINT<14>, SOFTINT<0> (TICK_INT)
402 			 * and SOFTINT<16> (STICK_INT) to indicate
403 			 * that the current level 14 has been serviced.
404 			 */
405 			wr_clr_softint((1 << PIL_14) |
406 			    TICK_INT_MASK | STICK_INT_MASK);
407 		}
408 
409 		enable_vec_intr(opstate);
410 	}
411 }
412 
413 /*
414  * Miscellaneous hardware-specific code to execute after panicstr is set
415  * by the panic code: we also print and record PTL1 panic information here.
416  */
417 /*ARGSUSED*/
418 void
419 panic_quiesce_hw(panic_data_t *pdp)
420 {
421 	extern uint_t getpstate(void);
422 	extern void setpstate(uint_t);
423 
424 	/*
425 	 * Turn off TRAPTRACE and save the current %tick value in panic_tick.
426 	 */
427 	if (!panic_tick) {
428 		panic_tick = gettick();
429 		if (mach_htraptrace_enable) {
430 			uint64_t prev_freeze;
431 
432 			/*  there are no possible error codes for this hcall */
433 			(void) hv_ttrace_freeze((uint64_t)TRAP_TFREEZE_ALL,
434 			    &prev_freeze);
435 		}
436 #ifdef TRAPTRACE
437 		TRAPTRACE_FREEZE;
438 #endif
439 	}
440 	/*
441 	 * For Platforms that use CPU signatures, we
442 	 * need to set the signature block to OS, the state to
443 	 * exiting, and the substate to panic for all the processors.
444 	 */
445 	CPU_SIGNATURE(OS_SIG, SIGST_EXIT, SIGSUBST_PANIC, -1);
446 
447 	update_hvdump_buffer();
448 
449 	/*
450 	 * Disable further ECC errors from the bus nexus.
451 	 */
452 	(void) bus_func_invoke(BF_TYPE_ERRDIS);
453 
454 	/*
455 	 * Redirect all interrupts to the current CPU.
456 	 */
457 	intr_redist_all_cpus_shutdown();
458 
459 	/*
460 	 * This call exists solely to support dumps to network
461 	 * devices after sync from OBP.
462 	 *
463 	 * If we came here via the sync callback, then on some
464 	 * platforms, interrupts may have arrived while we were
465 	 * stopped in OBP.  OBP will arrange for those interrupts to
466 	 * be redelivered if you say "go", but not if you invoke a
467 	 * client callback like 'sync'.	 For some dump devices
468 	 * (network swap devices), we need interrupts to be
469 	 * delivered in order to dump, so we have to call the bus
470 	 * nexus driver to reset the interrupt state machines.
471 	 */
472 	(void) bus_func_invoke(BF_TYPE_RESINTR);
473 
474 	setpstate(getpstate() | PSTATE_IE);
475 }
476 
477 /*
478  * Platforms that use CPU signatures need to set the signature block to OS and
479  * the state to exiting for all CPUs. PANIC_CONT indicates that we're about to
480  * write the crash dump, which tells the SSP/SMS to begin a timeout routine to
481  * reboot the machine if the dump never completes.
482  */
483 /*ARGSUSED*/
484 void
485 panic_dump_hw(int spl)
486 {
487 	CPU_SIGNATURE(OS_SIG, SIGST_EXIT, SIGSUBST_DUMP, -1);
488 }
489 
490 /*
491  * for ptl1_panic
492  */
493 void
494 ptl1_init_cpu(struct cpu *cpu)
495 {
496 	ptl1_state_t *pstate = &cpu->cpu_m.ptl1_state;
497 
498 	/*CONSTCOND*/
499 	if (sizeof (struct cpu) + PTL1_SSIZE > CPU_ALLOC_SIZE) {
500 		panic("ptl1_init_cpu: not enough space left for ptl1_panic "
501 		    "stack, sizeof (struct cpu) = %lu",
502 		    (unsigned long)sizeof (struct cpu));
503 	}
504 
505 	pstate->ptl1_stktop = (uintptr_t)cpu + CPU_ALLOC_SIZE;
506 	cpu_pa[cpu->cpu_id] = va_to_pa(cpu);
507 }
508 
509 void
510 ptl1_panic_handler(ptl1_state_t *pstate)
511 {
512 	static const char *ptl1_reasons[] = {
513 #ifdef	PTL1_PANIC_DEBUG
514 		"trap for debug purpose",	/* PTL1_BAD_DEBUG */
515 #else
516 		"unknown trap",			/* PTL1_BAD_DEBUG */
517 #endif
518 		"register window trap",		/* PTL1_BAD_WTRAP */
519 		"kernel MMU miss",		/* PTL1_BAD_KMISS */
520 		"kernel protection fault",	/* PTL1_BAD_KPROT_FAULT */
521 		"ISM MMU miss",			/* PTL1_BAD_ISM */
522 		"kernel MMU trap",		/* PTL1_BAD_MMUTRAP */
523 		"kernel trap handler state",	/* PTL1_BAD_TRAP */
524 		"floating point trap",		/* PTL1_BAD_FPTRAP */
525 #ifdef	DEBUG
526 		"pointer to intr_vec",		/* PTL1_BAD_INTR_VEC */
527 #else
528 		"unknown trap",			/* PTL1_BAD_INTR_VEC */
529 #endif
530 #ifdef	TRAPTRACE
531 		"TRACE_PTR state",		/* PTL1_BAD_TRACE_PTR */
532 #else
533 		"unknown trap",			/* PTL1_BAD_TRACE_PTR */
534 #endif
535 		"stack overflow",		/* PTL1_BAD_STACK */
536 		"DTrace flags",			/* PTL1_BAD_DTRACE_FLAGS */
537 		"attempt to steal locked ctx",  /* PTL1_BAD_CTX_STEAL */
538 		"CPU ECC error loop",		/* PTL1_BAD_ECC */
539 		"unexpected error from hypervisor call", /* PTL1_BAD_HCALL */
540 		"unexpected global level(%gl)", /* PTL1_BAD_GL */
541 		"Watchdog Reset", 		/* PTL1_BAD_WATCHDOG */
542 		"unexpected RED mode trap", 	/* PTL1_BAD_RED */
543 		"return value EINVAL from hcall: "\
544 		    "UNMAP_PERM_ADDR",	/* PTL1_BAD_HCALL_UNMAP_PERM_EINVAL */
545 		"return value ENOMAP from hcall: "\
546 		    "UNMAP_PERM_ADDR", /* PTL1_BAD_HCALL_UNMAP_PERM_ENOMAP */
547 		"error raising a TSB exception", /* PTL1_BAD_RAISE_TSBEXCP */
548 		"missing shared TSB"	/* PTL1_NO_SCDTSB8K */
549 	};
550 
551 	uint_t reason = pstate->ptl1_regs.ptl1_gregs[0].ptl1_g1;
552 	uint_t tl = pstate->ptl1_regs.ptl1_trap_regs[0].ptl1_tl;
553 	struct panic_trap_info ti = { 0 };
554 
555 	/*
556 	 * Use trap_info for a place holder to call panic_savetrap() and
557 	 * panic_showtrap() to save and print out ptl1_panic information.
558 	 */
559 	if (curthread->t_panic_trap == NULL)
560 		curthread->t_panic_trap = &ti;
561 
562 	if (reason < sizeof (ptl1_reasons) / sizeof (ptl1_reasons[0]))
563 		panic("bad %s at TL %u", ptl1_reasons[reason], tl);
564 	else
565 		panic("ptl1_panic reason 0x%x at TL %u", reason, tl);
566 }
567 
568 void
569 clear_watchdog_on_exit(void)
570 {
571 	if (watchdog_enabled && watchdog_activated) {
572 		prom_printf("Debugging requested; hardware watchdog "
573 		    "suspended.\n");
574 		(void) watchdog_suspend();
575 	}
576 }
577 
578 /*
579  * Restore the watchdog timer when returning from a debugger
580  * after a panic or L1-A and resume watchdog pat.
581  */
582 void
583 restore_watchdog_on_entry()
584 {
585 	watchdog_resume();
586 }
587 
588 int
589 kdi_watchdog_disable(void)
590 {
591 	watchdog_suspend();
592 
593 	return (0);
594 }
595 
596 void
597 kdi_watchdog_restore(void)
598 {
599 	watchdog_resume();
600 }
601 
602 void
603 mach_dump_buffer_init(void)
604 {
605 	uint64_t  ret, minsize = 0;
606 
607 	if (hvdump_buf_sz > HVDUMP_SIZE_MAX)
608 		hvdump_buf_sz = HVDUMP_SIZE_MAX;
609 
610 	hvdump_buf_va = contig_mem_alloc_align(hvdump_buf_sz, PAGESIZE);
611 	if (hvdump_buf_va == NULL)
612 		return;
613 
614 	hvdump_buf_pa = va_to_pa(hvdump_buf_va);
615 
616 	ret = hv_dump_buf_update(hvdump_buf_pa, hvdump_buf_sz,
617 	    &minsize);
618 
619 	if (ret != H_EOK) {
620 		contig_mem_free(hvdump_buf_va, hvdump_buf_sz);
621 		hvdump_buf_va = NULL;
622 		cmn_err(CE_NOTE, "!Error in setting up hvstate"
623 		    "dump buffer. Error = 0x%lx, size = 0x%lx,"
624 		    "buf_pa = 0x%lx", ret, hvdump_buf_sz,
625 		    hvdump_buf_pa);
626 
627 		if (ret == H_EINVAL) {
628 			cmn_err(CE_NOTE, "!Buffer size too small."
629 			    "Available buffer size = 0x%lx,"
630 			    "Minimum buffer size required = 0x%lx",
631 			    hvdump_buf_sz, minsize);
632 		}
633 	}
634 }
635 
636 
637 static void
638 update_hvdump_buffer(void)
639 {
640 	uint64_t ret, dummy_val;
641 
642 	if (hvdump_buf_va == NULL)
643 		return;
644 
645 	ret = hv_dump_buf_update(hvdump_buf_pa, hvdump_buf_sz,
646 	    &dummy_val);
647 	if (ret != H_EOK) {
648 		cmn_err(CE_NOTE, "!Cannot update hvstate dump"
649 		    "buffer. Error = 0x%lx", ret);
650 	}
651 }
652 
653 
654 static int
655 getintprop(pnode_t node, char *name, int deflt)
656 {
657 	int	value;
658 
659 	switch (prom_getproplen(node, name)) {
660 	case 0:
661 		value = 1;	/* boolean properties */
662 		break;
663 
664 	case sizeof (int):
665 		(void) prom_getprop(node, name, (caddr_t)&value);
666 		break;
667 
668 	default:
669 		value = deflt;
670 		break;
671 	}
672 
673 	return (value);
674 }
675 
676 /*
677  * Called by setcpudelay
678  */
679 void
680 cpu_init_tick_freq(void)
681 {
682 	md_t *mdp;
683 	mde_cookie_t rootnode;
684 	int		listsz;
685 	mde_cookie_t	*listp = NULL;
686 	int	num_nodes;
687 	uint64_t stick_prop;
688 
689 	if (broken_md_flag) {
690 		sys_tick_freq = cpunodes[CPU->cpu_id].clock_freq;
691 		return;
692 	}
693 
694 	if ((mdp = md_get_handle()) == NULL)
695 		panic("stick_frequency property not found in MD");
696 
697 	rootnode = md_root_node(mdp);
698 	ASSERT(rootnode != MDE_INVAL_ELEM_COOKIE);
699 
700 	num_nodes = md_node_count(mdp);
701 
702 	ASSERT(num_nodes > 0);
703 	listsz = num_nodes * sizeof (mde_cookie_t);
704 	listp = (mde_cookie_t *)prom_alloc((caddr_t)0, listsz, 0);
705 
706 	if (listp == NULL)
707 		panic("cannot allocate list for MD properties");
708 
709 	num_nodes = md_scan_dag(mdp, rootnode, md_find_name(mdp, "platform"),
710 	    md_find_name(mdp, "fwd"), listp);
711 
712 	ASSERT(num_nodes == 1);
713 
714 	if (md_get_prop_val(mdp, *listp, "stick-frequency", &stick_prop) != 0)
715 		panic("stick_frequency property not found in MD");
716 
717 	sys_tick_freq = stick_prop;
718 
719 	prom_free((caddr_t)listp, listsz);
720 	(void) md_fini_handle(mdp);
721 }
722 
723 int shipit(int n, uint64_t cpu_list_ra);
724 
725 #ifdef DEBUG
726 #define	SEND_MONDO_STATS	1
727 #endif
728 
729 #ifdef SEND_MONDO_STATS
730 uint32_t x_one_stimes[64];
731 uint32_t x_one_ltimes[16];
732 uint32_t x_set_stimes[64];
733 uint32_t x_set_ltimes[16];
734 uint32_t x_set_cpus[NCPU];
735 #endif
736 
737 void
738 send_one_mondo(int cpuid)
739 {
740 	int retries, stat;
741 	uint64_t starttick, endtick, tick, lasttick;
742 	struct machcpu	*mcpup = &(CPU->cpu_m);
743 
744 	CPU_STATS_ADDQ(CPU, sys, xcalls, 1);
745 	starttick = lasttick = gettick();
746 	mcpup->cpu_list[0] = (uint16_t)cpuid;
747 	stat = shipit(1, mcpup->cpu_list_ra);
748 	endtick = starttick + xc_tick_limit;
749 	retries = 0;
750 	while (stat != H_EOK) {
751 		if (stat != H_EWOULDBLOCK) {
752 			if (panic_quiesce)
753 				return;
754 			if (stat == H_ECPUERROR)
755 				cmn_err(CE_PANIC, "send_one_mondo: "
756 				    "cpuid: 0x%x has been marked in "
757 				    "error", cpuid);
758 			else
759 				cmn_err(CE_PANIC, "send_one_mondo: "
760 				    "unexpected hypervisor error 0x%x "
761 				    "while sending a mondo to cpuid: "
762 				    "0x%x", stat, cpuid);
763 		}
764 		tick = gettick();
765 		/*
766 		 * If there is a big jump between the current tick
767 		 * count and lasttick, we have probably hit a break
768 		 * point.  Adjust endtick accordingly to avoid panic.
769 		 */
770 		if (tick > (lasttick + xc_tick_jump_limit))
771 			endtick += (tick - lasttick);
772 		lasttick = tick;
773 		if (tick > endtick) {
774 			if (panic_quiesce)
775 				return;
776 			cmn_err(CE_PANIC, "send mondo timeout "
777 			    "(target 0x%x) [retries: 0x%x hvstat: 0x%x]",
778 			    cpuid, retries, stat);
779 		}
780 		drv_usecwait(1);
781 		stat = shipit(1, mcpup->cpu_list_ra);
782 		retries++;
783 	}
784 #ifdef SEND_MONDO_STATS
785 	{
786 		uint64_t n = gettick() - starttick;
787 		if (n < 8192)
788 			x_one_stimes[n >> 7]++;
789 		else if (n < 15*8192)
790 			x_one_ltimes[n >> 13]++;
791 		else
792 			x_one_ltimes[0xf]++;
793 	}
794 #endif
795 }
796 
797 void
798 send_mondo_set(cpuset_t set)
799 {
800 	uint64_t starttick, endtick, tick, lasttick;
801 	uint_t largestid, smallestid;
802 	int i, j;
803 	int ncpuids = 0;
804 	int shipped = 0;
805 	int retries = 0;
806 	struct machcpu	*mcpup = &(CPU->cpu_m);
807 
808 	ASSERT(!CPUSET_ISNULL(set));
809 	CPUSET_BOUNDS(set, smallestid, largestid);
810 	if (smallestid == CPUSET_NOTINSET) {
811 		return;
812 	}
813 
814 	starttick = lasttick = gettick();
815 	endtick = starttick + xc_tick_limit;
816 
817 	/*
818 	 * Assemble CPU list for HV argument. We already know
819 	 * smallestid and largestid are members of set.
820 	 */
821 	mcpup->cpu_list[ncpuids++] = (uint16_t)smallestid;
822 	if (largestid != smallestid) {
823 		for (i = smallestid+1; i <= largestid-1; i++) {
824 			if (CPU_IN_SET(set, i)) {
825 				mcpup->cpu_list[ncpuids++] = (uint16_t)i;
826 			}
827 		}
828 		mcpup->cpu_list[ncpuids++] = (uint16_t)largestid;
829 	}
830 
831 	do {
832 		int stat;
833 
834 		stat = shipit(ncpuids, mcpup->cpu_list_ra);
835 		if (stat == H_EOK) {
836 			shipped += ncpuids;
837 			break;
838 		}
839 
840 		/*
841 		 * Either not all CPU mondos were sent, or an
842 		 * error occurred. CPUs that were sent mondos
843 		 * have their CPU IDs overwritten in cpu_list.
844 		 * Reset cpu_list so that it only holds those
845 		 * CPU IDs that still need to be sent.
846 		 */
847 		for (i = 0, j = 0; i < ncpuids; i++) {
848 			if (mcpup->cpu_list[i] == HV_SEND_MONDO_ENTRYDONE) {
849 				shipped++;
850 			} else {
851 				mcpup->cpu_list[j++] = mcpup->cpu_list[i];
852 			}
853 		}
854 		ncpuids = j;
855 
856 		/*
857 		 * Now handle possible errors returned
858 		 * from hypervisor.
859 		 */
860 		if (stat == H_ECPUERROR) {
861 			int errorcpus;
862 
863 			if (!panic_quiesce)
864 				cmn_err(CE_CONT, "send_mondo_set: cpuid(s) ");
865 
866 			/*
867 			 * Remove any CPUs in the error state from
868 			 * cpu_list. At this point cpu_list only
869 			 * contains the CPU IDs for mondos not
870 			 * succesfully sent.
871 			 */
872 			for (i = 0, errorcpus = 0; i < ncpuids; i++) {
873 				uint64_t state = CPU_STATE_INVALID;
874 				uint16_t id = mcpup->cpu_list[i];
875 
876 				(void) hv_cpu_state(id, &state);
877 				if (state == CPU_STATE_ERROR) {
878 					if (!panic_quiesce)
879 						cmn_err(CE_CONT, "0x%x ", id);
880 					errorcpus++;
881 				} else if (errorcpus > 0) {
882 					mcpup->cpu_list[i - errorcpus] =
883 					    mcpup->cpu_list[i];
884 				}
885 			}
886 			ncpuids -= errorcpus;
887 
888 			if (!panic_quiesce) {
889 				if (errorcpus == 0) {
890 					cmn_err(CE_CONT, "<none> have been "
891 					    "marked in error\n");
892 					cmn_err(CE_PANIC, "send_mondo_set: "
893 					    "hypervisor returned "
894 					    "H_ECPUERROR but no CPU in "
895 					    "cpu_list in error state");
896 				} else {
897 					cmn_err(CE_CONT, "have been marked in "
898 					    "error\n");
899 					cmn_err(CE_PANIC, "send_mondo_set: "
900 					    "CPU(s) in error state");
901 				}
902 			}
903 		} else if (stat != H_EWOULDBLOCK) {
904 			if (panic_quiesce)
905 				return;
906 			/*
907 			 * For all other errors, panic.
908 			 */
909 			cmn_err(CE_CONT, "send_mondo_set: unexpected "
910 			    "hypervisor error 0x%x while sending a "
911 			    "mondo to cpuid(s):", stat);
912 			for (i = 0; i < ncpuids; i++) {
913 				cmn_err(CE_CONT, " 0x%x", mcpup->cpu_list[i]);
914 			}
915 			cmn_err(CE_CONT, "\n");
916 			cmn_err(CE_PANIC, "send_mondo_set: unexpected "
917 			    "hypervisor error");
918 		}
919 
920 		tick = gettick();
921 		/*
922 		 * If there is a big jump between the current tick
923 		 * count and lasttick, we have probably hit a break
924 		 * point.  Adjust endtick accordingly to avoid panic.
925 		 */
926 		if (tick > (lasttick + xc_tick_jump_limit))
927 			endtick += (tick - lasttick);
928 		lasttick = tick;
929 		if (tick > endtick) {
930 			if (panic_quiesce)
931 				return;
932 			cmn_err(CE_CONT, "send mondo timeout "
933 			    "[retries: 0x%x]  cpuids: ", retries);
934 			for (i = 0; i < ncpuids; i++)
935 				cmn_err(CE_CONT, " 0x%x", mcpup->cpu_list[i]);
936 			cmn_err(CE_CONT, "\n");
937 			cmn_err(CE_PANIC, "send_mondo_set: timeout");
938 		}
939 
940 		while (gettick() < (tick + sys_clock_mhz))
941 			;
942 		retries++;
943 	} while (ncpuids > 0);
944 
945 	CPU_STATS_ADDQ(CPU, sys, xcalls, shipped);
946 
947 #ifdef SEND_MONDO_STATS
948 	{
949 		uint64_t n = gettick() - starttick;
950 		if (n < 8192)
951 			x_set_stimes[n >> 7]++;
952 		else if (n < 15*8192)
953 			x_set_ltimes[n >> 13]++;
954 		else
955 			x_set_ltimes[0xf]++;
956 	}
957 	x_set_cpus[shipped]++;
958 #endif
959 }
960 
961 void
962 syncfpu(void)
963 {
964 }
965 
966 void
967 sticksync_slave(void)
968 {}
969 
970 void
971 sticksync_master(void)
972 {}
973 
974 void
975 cpu_init_cache_scrub(void)
976 {
977 	mach_set_soft_state(SIS_NORMAL, &SOLARIS_SOFT_STATE_RUN_MSG);
978 }
979 
980 int
981 dtrace_blksuword32_err(uintptr_t addr, uint32_t *data)
982 {
983 	int ret, watched;
984 
985 	watched = watch_disable_addr((void *)addr, 4, S_WRITE);
986 	ret = dtrace_blksuword32(addr, data, 0);
987 	if (watched)
988 		watch_enable_addr((void *)addr, 4, S_WRITE);
989 
990 	return (ret);
991 }
992 
993 int
994 dtrace_blksuword32(uintptr_t addr, uint32_t *data, int tryagain)
995 {
996 	if (suword32((void *)addr, *data) == -1)
997 		return (tryagain ? dtrace_blksuword32_err(addr, data) : -1);
998 	dtrace_flush_sec(addr);
999 
1000 	return (0);
1001 }
1002 
1003 /*ARGSUSED*/
1004 void
1005 cpu_faulted_enter(struct cpu *cp)
1006 {
1007 }
1008 
1009 /*ARGSUSED*/
1010 void
1011 cpu_faulted_exit(struct cpu *cp)
1012 {
1013 }
1014 
1015 static int
1016 kdi_cpu_ready_iter(int (*cb)(int, void *), void *arg)
1017 {
1018 	int rc, i;
1019 
1020 	for (rc = 0, i = 0; i < NCPU; i++) {
1021 		if (CPU_IN_SET(cpu_ready_set, i))
1022 			rc += cb(i, arg);
1023 	}
1024 
1025 	return (rc);
1026 }
1027 
1028 /*
1029  * Sends a cross-call to a specified processor.  The caller assumes
1030  * responsibility for repetition of cross-calls, as appropriate (MARSA for
1031  * debugging).
1032  */
1033 static int
1034 kdi_xc_one(int cpuid, void (*func)(uintptr_t, uintptr_t), uintptr_t arg1,
1035     uintptr_t arg2)
1036 {
1037 	int stat;
1038 	struct machcpu	*mcpup;
1039 	uint64_t cpuaddr_reg = 0, cpuaddr_scr = 0;
1040 
1041 	mcpup = &(((cpu_t *)get_cpuaddr(cpuaddr_reg, cpuaddr_scr))->cpu_m);
1042 
1043 	/*
1044 	 * if (idsr_busy())
1045 	 *	return (KDI_XC_RES_ERR);
1046 	 */
1047 
1048 	init_mondo_nocheck((xcfunc_t *)func, arg1, arg2);
1049 
1050 	mcpup->cpu_list[0] = (uint16_t)cpuid;
1051 	stat = shipit(1, mcpup->cpu_list_ra);
1052 
1053 	if (stat == 0)
1054 		return (KDI_XC_RES_OK);
1055 	else
1056 		return (KDI_XC_RES_NACK);
1057 }
1058 
1059 static void
1060 kdi_tickwait(clock_t nticks)
1061 {
1062 	clock_t endtick = gettick() + nticks;
1063 
1064 	while (gettick() < endtick)
1065 		;
1066 }
1067 
1068 static void
1069 kdi_cpu_init(int dcache_size, int dcache_linesize, int icache_size,
1070     int icache_linesize)
1071 {
1072 	kdi_dcache_size = dcache_size;
1073 	kdi_dcache_linesize = dcache_linesize;
1074 	kdi_icache_size = icache_size;
1075 	kdi_icache_linesize = icache_linesize;
1076 }
1077 
1078 /* used directly by kdi_read/write_phys */
1079 void
1080 kdi_flush_caches(void)
1081 {
1082 	/* Not required on sun4v architecture. */
1083 }
1084 
1085 /*ARGSUSED*/
1086 int
1087 kdi_get_stick(uint64_t *stickp)
1088 {
1089 	return (-1);
1090 }
1091 
1092 void
1093 cpu_kdi_init(kdi_t *kdi)
1094 {
1095 	kdi->kdi_flush_caches = kdi_flush_caches;
1096 	kdi->mkdi_cpu_init = kdi_cpu_init;
1097 	kdi->mkdi_cpu_ready_iter = kdi_cpu_ready_iter;
1098 	kdi->mkdi_xc_one = kdi_xc_one;
1099 	kdi->mkdi_tickwait = kdi_tickwait;
1100 	kdi->mkdi_get_stick = kdi_get_stick;
1101 }
1102 
1103 uint64_t	soft_state_message_ra[SOLARIS_SOFT_STATE_MSG_CNT];
1104 static uint64_t	soft_state_saved_state = (uint64_t)-1;
1105 static int	soft_state_initialized = 0;
1106 static uint64_t soft_state_sup_minor;		/* Supported minor number */
1107 static hsvc_info_t soft_state_hsvc = {
1108 			HSVC_REV_1, NULL, HSVC_GROUP_SOFT_STATE, 1, 0, NULL };
1109 
1110 
1111 static void
1112 sun4v_system_claim(void)
1113 {
1114 	lbolt_debug_entry();
1115 
1116 	watchdog_suspend();
1117 	kldc_debug_enter();
1118 	/*
1119 	 * For "mdb -K", set soft state to debugging
1120 	 */
1121 	if (soft_state_saved_state == -1) {
1122 		mach_get_soft_state(&soft_state_saved_state,
1123 		    &SOLARIS_SOFT_STATE_SAVED_MSG);
1124 	}
1125 	/*
1126 	 * check again as the read above may or may not have worked and if
1127 	 * it didn't then soft state will still be -1
1128 	 */
1129 	if (soft_state_saved_state != -1) {
1130 		mach_set_soft_state(SIS_TRANSITION,
1131 		    &SOLARIS_SOFT_STATE_DEBUG_MSG);
1132 	}
1133 }
1134 
1135 static void
1136 sun4v_system_release(void)
1137 {
1138 	watchdog_resume();
1139 	/*
1140 	 * For "mdb -K", set soft_state state back to original state on exit
1141 	 */
1142 	if (soft_state_saved_state != -1) {
1143 		mach_set_soft_state(soft_state_saved_state,
1144 		    &SOLARIS_SOFT_STATE_SAVED_MSG);
1145 		soft_state_saved_state = -1;
1146 	}
1147 
1148 	lbolt_debug_return();
1149 }
1150 
1151 void
1152 plat_kdi_init(kdi_t *kdi)
1153 {
1154 	kdi->pkdi_system_claim = sun4v_system_claim;
1155 	kdi->pkdi_system_release = sun4v_system_release;
1156 }
1157 
1158 /*
1159  * Routine to return memory information associated
1160  * with a physical address and syndrome.
1161  */
1162 /* ARGSUSED */
1163 int
1164 cpu_get_mem_info(uint64_t synd, uint64_t afar,
1165     uint64_t *mem_sizep, uint64_t *seg_sizep, uint64_t *bank_sizep,
1166     int *segsp, int *banksp, int *mcidp)
1167 {
1168 	return (ENOTSUP);
1169 }
1170 
1171 /*
1172  * This routine returns the size of the kernel's FRU name buffer.
1173  */
1174 size_t
1175 cpu_get_name_bufsize()
1176 {
1177 	return (UNUM_NAMLEN);
1178 }
1179 
1180 /*
1181  * This routine is a more generic interface to cpu_get_mem_unum(),
1182  * that may be used by other modules (e.g. mm).
1183  */
1184 /* ARGSUSED */
1185 int
1186 cpu_get_mem_name(uint64_t synd, uint64_t *afsr, uint64_t afar,
1187     char *buf, int buflen, int *lenp)
1188 {
1189 	return (ENOTSUP);
1190 }
1191 
1192 /* ARGSUSED */
1193 int
1194 cpu_get_mem_sid(char *unum, char *buf, int buflen, int *lenp)
1195 {
1196 	return (ENOTSUP);
1197 }
1198 
1199 /* ARGSUSED */
1200 int
1201 cpu_get_mem_addr(char *unum, char *sid, uint64_t offset, uint64_t *addrp)
1202 {
1203 	return (ENOTSUP);
1204 }
1205 
1206 /*
1207  * xt_sync - wait for previous x-traps to finish
1208  */
1209 void
1210 xt_sync(cpuset_t cpuset)
1211 {
1212 	union {
1213 		uint8_t volatile byte[NCPU];
1214 		uint64_t volatile xword[NCPU / 8];
1215 	} cpu_sync;
1216 	uint64_t starttick, endtick, tick, lasttick, traptrace_id;
1217 	uint_t largestid, smallestid;
1218 	int i, j;
1219 
1220 	kpreempt_disable();
1221 	CPUSET_DEL(cpuset, CPU->cpu_id);
1222 	CPUSET_AND(cpuset, cpu_ready_set);
1223 
1224 	CPUSET_BOUNDS(cpuset, smallestid, largestid);
1225 	if (smallestid == CPUSET_NOTINSET)
1226 		goto out;
1227 
1228 	/*
1229 	 * Sun4v uses a queue for receiving mondos. Successful
1230 	 * transmission of a mondo only indicates that the mondo
1231 	 * has been written into the queue.
1232 	 *
1233 	 * We use an array of bytes to let each cpu to signal back
1234 	 * to the cross trap sender that the cross trap has been
1235 	 * executed. Set the byte to 1 before sending the cross trap
1236 	 * and wait until other cpus reset it to 0.
1237 	 */
1238 	bzero((void *)&cpu_sync, NCPU);
1239 	cpu_sync.byte[smallestid] = 1;
1240 	if (largestid != smallestid) {
1241 		for (i = (smallestid + 1); i <= (largestid - 1); i++)
1242 			if (CPU_IN_SET(cpuset, i))
1243 				cpu_sync.byte[i] = 1;
1244 		cpu_sync.byte[largestid] = 1;
1245 	}
1246 
1247 	/*
1248 	 * To help debug xt_sync panic, each mondo is uniquely identified
1249 	 * by passing the tick value, traptrace_id as the second mondo
1250 	 * argument to xt_some which is logged in CPU's mondo queue,
1251 	 * traptrace buffer and the panic message.
1252 	 */
1253 	traptrace_id = gettick();
1254 	xt_some(cpuset, (xcfunc_t *)xt_sync_tl1,
1255 	    (uint64_t)cpu_sync.byte, traptrace_id);
1256 
1257 	starttick = lasttick = gettick();
1258 	endtick = starttick + xc_sync_tick_limit;
1259 
1260 	for (i = (smallestid / 8); i <= (largestid / 8); i++) {
1261 		while (cpu_sync.xword[i] != 0) {
1262 			tick = gettick();
1263 			/*
1264 			 * If there is a big jump between the current tick
1265 			 * count and lasttick, we have probably hit a break
1266 			 * point. Adjust endtick accordingly to avoid panic.
1267 			 */
1268 			if (tick > (lasttick + xc_tick_jump_limit)) {
1269 				endtick += (tick - lasttick);
1270 			}
1271 			lasttick = tick;
1272 			if (tick > endtick) {
1273 				if (panic_quiesce)
1274 					goto out;
1275 				cmn_err(CE_CONT, "Cross trap sync timeout:  "
1276 				    "at cpu_sync.xword[%d]: 0x%lx "
1277 				    "cpu_sync.byte: 0x%lx "
1278 				    "starttick: 0x%lx endtick: 0x%lx "
1279 				    "traptrace_id = 0x%lx\n",
1280 				    i, cpu_sync.xword[i],
1281 				    (uint64_t)cpu_sync.byte,
1282 				    starttick, endtick, traptrace_id);
1283 				cmn_err(CE_CONT, "CPUIDs:");
1284 				for (j = (i * 8); j <= largestid; j++) {
1285 					if (cpu_sync.byte[j] != 0)
1286 						cmn_err(CE_CONT, " 0x%x", j);
1287 				}
1288 				cmn_err(CE_PANIC, "xt_sync: timeout");
1289 			}
1290 		}
1291 	}
1292 
1293 out:
1294 	kpreempt_enable();
1295 }
1296 
1297 #define	QFACTOR		200
1298 /*
1299  * Recalculate the values of the cross-call timeout variables based
1300  * on the value of the 'inter-cpu-latency' property of the platform node.
1301  * The property sets the number of nanosec to wait for a cross-call
1302  * to be acknowledged.  Other timeout variables are derived from it.
1303  *
1304  * N.B. This implementation is aware of the internals of xc_init()
1305  * and updates many of the same variables.
1306  */
1307 void
1308 recalc_xc_timeouts(void)
1309 {
1310 	typedef union {
1311 		uint64_t whole;
1312 		struct {
1313 			uint_t high;
1314 			uint_t low;
1315 		} half;
1316 	} u_number;
1317 
1318 	/* See x_call.c for descriptions of these extern variables. */
1319 	extern uint64_t xc_tick_limit_scale;
1320 	extern uint64_t xc_mondo_time_limit;
1321 	extern uint64_t xc_func_time_limit;
1322 	extern uint64_t xc_scale;
1323 	extern uint64_t xc_mondo_multiplier;
1324 	extern uint_t   nsec_shift;
1325 
1326 	/* Temp versions of the target variables */
1327 	uint64_t tick_limit;
1328 	uint64_t tick_jump_limit;
1329 	uint64_t mondo_time_limit;
1330 	uint64_t func_time_limit;
1331 	uint64_t scale;
1332 
1333 	uint64_t latency;	/* nanoseconds */
1334 	uint64_t maxfreq;
1335 	uint64_t tick_limit_save = xc_tick_limit;
1336 	uint64_t sync_tick_limit_save = xc_sync_tick_limit;
1337 	uint_t   tick_scale;
1338 	uint64_t top;
1339 	uint64_t bottom;
1340 	u_number tk;
1341 
1342 	md_t *mdp;
1343 	int nrnode;
1344 	mde_cookie_t *platlist;
1345 
1346 	/*
1347 	 * Look up the 'inter-cpu-latency' (optional) property in the
1348 	 * platform node of the MD.  The units are nanoseconds.
1349 	 */
1350 	if ((mdp = md_get_handle()) == NULL) {
1351 		cmn_err(CE_WARN, "recalc_xc_timeouts: "
1352 		    "Unable to initialize machine description");
1353 		return;
1354 	}
1355 
1356 	nrnode = md_alloc_scan_dag(mdp,
1357 	    md_root_node(mdp), "platform", "fwd", &platlist);
1358 
1359 	ASSERT(nrnode == 1);
1360 	if (nrnode < 1) {
1361 		cmn_err(CE_WARN, "recalc_xc_timeouts: platform node missing");
1362 		goto done;
1363 	}
1364 	if (md_get_prop_val(mdp, platlist[0],
1365 	    "inter-cpu-latency", &latency) == -1)
1366 		goto done;
1367 
1368 	/*
1369 	 * clock.h defines an assembly-language macro
1370 	 * (NATIVE_TIME_TO_NSEC_SCALE) to convert from %stick
1371 	 * units to nanoseconds.  Since the inter-cpu-latency
1372 	 * units are nanoseconds and the xc_* variables require
1373 	 * %stick units, we need the inverse of that function.
1374 	 * The trick is to perform the calculation without
1375 	 * floating point, but also without integer truncation
1376 	 * or overflow.  To understand the calculation below,
1377 	 * please read the discussion of the macro in clock.h.
1378 	 * Since this new code will be invoked infrequently,
1379 	 * we can afford to implement it in C.
1380 	 *
1381 	 * tick_scale is the reciprocal of nsec_scale which is
1382 	 * calculated at startup in setcpudelay().  The calc
1383 	 * of tick_limit parallels that of NATIVE_TIME_TO_NSEC_SCALE
1384 	 * except we use tick_scale instead of nsec_scale and
1385 	 * C instead of assembler.
1386 	 */
1387 	tick_scale = (uint_t)(((u_longlong_t)sys_tick_freq
1388 	    << (32 - nsec_shift)) / NANOSEC);
1389 
1390 	tk.whole = latency;
1391 	top = ((uint64_t)tk.half.high << 4) * tick_scale;
1392 	bottom = (((uint64_t)tk.half.low << 4) * (uint64_t)tick_scale) >> 32;
1393 	tick_limit = top + bottom;
1394 
1395 	/*
1396 	 * xc_init() calculated 'maxfreq' by looking at all the cpus,
1397 	 * and used it to derive some of the timeout variables that we
1398 	 * recalculate below.  We can back into the original value by
1399 	 * using the inverse of one of those calculations.
1400 	 */
1401 	maxfreq = xc_mondo_time_limit / xc_scale;
1402 
1403 	/*
1404 	 * Don't allow the new timeout (xc_tick_limit) to fall below
1405 	 * the system tick frequency (stick).  Allowing the timeout
1406 	 * to be set more tightly than this empirically determined
1407 	 * value may cause panics.
1408 	 */
1409 	tick_limit = tick_limit < sys_tick_freq ? sys_tick_freq : tick_limit;
1410 
1411 	tick_jump_limit = tick_limit / 32;
1412 	tick_limit *= xc_tick_limit_scale;
1413 
1414 	/*
1415 	 * Recalculate xc_scale since it is used in a callback function
1416 	 * (xc_func_timeout_adj) to adjust two of the timeouts dynamically.
1417 	 * Make the change in xc_scale proportional to the change in
1418 	 * xc_tick_limit.
1419 	 */
1420 	scale = (xc_scale * tick_limit + sys_tick_freq / 2) / tick_limit_save;
1421 	if (scale == 0)
1422 		scale = 1;
1423 
1424 	mondo_time_limit = maxfreq * scale;
1425 	func_time_limit = mondo_time_limit * xc_mondo_multiplier;
1426 
1427 	/*
1428 	 * Don't modify the timeouts if nothing has changed.  Else,
1429 	 * stuff the variables with the freshly calculated (temp)
1430 	 * variables.  This minimizes the window where the set of
1431 	 * values could be inconsistent.
1432 	 */
1433 	if (tick_limit != xc_tick_limit) {
1434 		xc_tick_limit = tick_limit;
1435 		xc_tick_jump_limit = tick_jump_limit;
1436 		xc_scale = scale;
1437 		xc_mondo_time_limit = mondo_time_limit;
1438 		xc_func_time_limit = func_time_limit;
1439 	}
1440 
1441 done:
1442 	/*
1443 	 * Increase the timeout limit for xt_sync() cross calls.
1444 	 */
1445 	xc_sync_tick_limit = xc_tick_limit * (cpu_q_entries / QFACTOR);
1446 	xc_sync_tick_limit = xc_sync_tick_limit < xc_tick_limit ?
1447 	    xc_tick_limit : xc_sync_tick_limit;
1448 
1449 	/*
1450 	 * Force the new values to be used for future cross calls.
1451 	 * This is necessary only when we increase the timeouts.
1452 	 */
1453 	if ((xc_tick_limit > tick_limit_save) || (xc_sync_tick_limit >
1454 	    sync_tick_limit_save)) {
1455 		cpuset_t cpuset = cpu_ready_set;
1456 		xt_sync(cpuset);
1457 	}
1458 
1459 	if (nrnode > 0)
1460 		md_free_scan_dag(mdp, &platlist);
1461 	(void) md_fini_handle(mdp);
1462 }
1463 
1464 void
1465 mach_soft_state_init(void)
1466 {
1467 	int		i;
1468 	uint64_t	ra;
1469 
1470 	/*
1471 	 * Try to register soft_state api. If it fails, soft_state api has not
1472 	 * been implemented in the firmware, so do not bother to setup
1473 	 * soft_state in the kernel.
1474 	 */
1475 	if ((i = hsvc_register(&soft_state_hsvc, &soft_state_sup_minor)) != 0) {
1476 		return;
1477 	}
1478 	for (i = 0; i < SOLARIS_SOFT_STATE_MSG_CNT; i++) {
1479 		ASSERT(strlen((const char *)(void *)
1480 		    soft_state_message_strings + i) < SSM_SIZE);
1481 		if ((ra = va_to_pa(
1482 		    (void *)(soft_state_message_strings + i))) == -1ll) {
1483 			return;
1484 		}
1485 		soft_state_message_ra[i] = ra;
1486 	}
1487 	/*
1488 	 * Tell OBP that we are supporting Guest State
1489 	 */
1490 	prom_sun4v_soft_state_supported();
1491 	soft_state_initialized = 1;
1492 }
1493 
1494 void
1495 mach_set_soft_state(uint64_t state, uint64_t *string_ra)
1496 {
1497 	uint64_t	rc;
1498 
1499 	if (soft_state_initialized && *string_ra) {
1500 		rc = hv_soft_state_set(state, *string_ra);
1501 		if (rc != H_EOK) {
1502 			cmn_err(CE_WARN,
1503 			    "hv_soft_state_set returned %ld\n", rc);
1504 		}
1505 	}
1506 }
1507 
1508 void
1509 mach_get_soft_state(uint64_t *state, uint64_t *string_ra)
1510 {
1511 	uint64_t	rc;
1512 
1513 	if (soft_state_initialized && *string_ra) {
1514 		rc = hv_soft_state_get(*string_ra, state);
1515 		if (rc != H_EOK) {
1516 			cmn_err(CE_WARN,
1517 			    "hv_soft_state_get returned %ld\n", rc);
1518 			*state = -1;
1519 		}
1520 	}
1521 }
1522