1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 #include <sys/types.h> 29 #include <sys/machsystm.h> 30 #include <sys/sysmacros.h> 31 #include <sys/cpuvar.h> 32 #include <sys/async.h> 33 #include <sys/ontrap.h> 34 #include <sys/ddifm.h> 35 #include <sys/hypervisor_api.h> 36 #include <sys/errorq.h> 37 #include <sys/promif.h> 38 #include <sys/prom_plat.h> 39 #include <sys/x_call.h> 40 #include <sys/error.h> 41 #include <sys/fm/util.h> 42 #include <sys/ivintr.h> 43 #include <sys/archsystm.h> 44 45 #define MAX_CE_FLTS 10 46 #define MAX_ASYNC_FLTS 6 47 48 errorq_t *ue_queue; /* queue of uncorrectable errors */ 49 errorq_t *ce_queue; /* queue of correctable errors */ 50 51 /* 52 * Being used by memory test driver. 53 * ce_verbose_memory - covers CEs in DIMMs 54 * ce_verbose_other - covers "others" (ecache, IO, etc.) 55 * 56 * If the value is 0, nothing is logged. 57 * If the value is 1, the error is logged to the log file, but not console. 58 * If the value is 2, the error is logged to the log file and console. 59 */ 60 int ce_verbose_memory = 1; 61 int ce_verbose_other = 1; 62 63 int ce_show_data = 0; 64 int ce_debug = 0; 65 int ue_debug = 0; 66 int reset_debug = 0; 67 68 /* 69 * Tunables for controlling the handling of asynchronous faults (AFTs). Setting 70 * these to non-default values on a non-DEBUG kernel is NOT supported. 71 */ 72 int aft_verbose = 0; /* log AFT messages > 1 to log only */ 73 int aft_panic = 0; /* panic (not reboot) on fatal usermode AFLT */ 74 int aft_testfatal = 0; /* force all AFTs to panic immediately */ 75 76 /* 77 * Used for vbsc hostshutdown (power-off buton) 78 */ 79 int err_shutdown_triggered = 0; /* only once */ 80 uint64_t err_shutdown_inum = 0; /* used to pull the trigger */ 81 82 /* 83 * Defined in bus_func.c but initialised in error_init 84 */ 85 extern kmutex_t bfd_lock; 86 87 static uint32_t rq_overflow_count = 0; /* counter for rq overflow */ 88 89 static void cpu_queue_one_event(errh_async_flt_t *); 90 static uint32_t count_entries_on_queue(uint64_t, uint64_t, uint32_t); 91 static void errh_page_retire(errh_async_flt_t *, uchar_t); 92 static int errh_error_protected(struct regs *, struct async_flt *, int *); 93 static void errh_rq_full(struct async_flt *); 94 static void ue_drain(void *, struct async_flt *, errorq_elem_t *); 95 static void ce_drain(void *, struct async_flt *, errorq_elem_t *); 96 static void errh_handle_attr(errh_async_flt_t *); 97 static void errh_handle_asr(errh_async_flt_t *); 98 99 /*ARGSUSED*/ 100 void 101 process_resumable_error(struct regs *rp, uint32_t head_offset, 102 uint32_t tail_offset) 103 { 104 struct machcpu *mcpup; 105 struct async_flt *aflt; 106 errh_async_flt_t errh_flt; 107 errh_er_t *head_va; 108 109 mcpup = &(CPU->cpu_m); 110 111 while (head_offset != tail_offset) { 112 /* kernel buffer starts right after the resumable queue */ 113 head_va = (errh_er_t *)(mcpup->cpu_rq_va + head_offset + 114 CPU_RQ_SIZE); 115 /* Copy the error report to local buffer */ 116 bzero(&errh_flt, sizeof (errh_async_flt_t)); 117 bcopy((char *)head_va, &(errh_flt.errh_er), 118 sizeof (errh_er_t)); 119 120 /* Increment the queue head */ 121 head_offset += Q_ENTRY_SIZE; 122 /* Wrap around */ 123 head_offset &= (CPU_RQ_SIZE - 1); 124 125 /* set error handle to zero so it can hold new error report */ 126 head_va->ehdl = 0; 127 128 switch (errh_flt.errh_er.desc) { 129 case ERRH_DESC_UCOR_RE: 130 /* 131 * Check error attribute, handle individual error 132 * if it is needed. 133 */ 134 errh_handle_attr(&errh_flt); 135 break; 136 137 case ERRH_DESC_WARN_RE: 138 /* 139 * Power-off requested, but handle it one time only. 140 */ 141 if (!err_shutdown_triggered) { 142 setsoftint(err_shutdown_inum); 143 ++err_shutdown_triggered; 144 } 145 continue; 146 147 default: 148 cmn_err(CE_WARN, "Error Descriptor 0x%llx " 149 " invalid in resumable error handler", 150 (long long) errh_flt.errh_er.desc); 151 continue; 152 } 153 154 aflt = (struct async_flt *)&(errh_flt.cmn_asyncflt); 155 aflt->flt_id = gethrtime(); 156 aflt->flt_bus_id = getprocessorid(); 157 aflt->flt_class = CPU_FAULT; 158 aflt->flt_prot = AFLT_PROT_NONE; 159 aflt->flt_priv = (((errh_flt.errh_er.attr & ERRH_MODE_MASK) 160 >> ERRH_MODE_SHIFT) == ERRH_MODE_PRIV); 161 162 if (errh_flt.errh_er.attr & ERRH_ATTR_CPU) 163 /* If it is an error on other cpu */ 164 aflt->flt_panic = 1; 165 else 166 aflt->flt_panic = 0; 167 168 /* 169 * Handle resumable queue full case. 170 */ 171 if (errh_flt.errh_er.attr & ERRH_ATTR_RQF) { 172 (void) errh_rq_full(aflt); 173 } 174 175 /* 176 * Queue the error on ce or ue queue depend on flt_panic. 177 * Even if flt_panic is set, the code still keep processing 178 * the rest element on rq until the panic starts. 179 */ 180 (void) cpu_queue_one_event(&errh_flt); 181 182 /* 183 * Panic here if aflt->flt_panic has been set. 184 * Enqueued errors will be logged as part of the panic flow. 185 */ 186 if (aflt->flt_panic) { 187 fm_panic("Unrecoverable error on another CPU"); 188 } 189 } 190 } 191 192 void 193 process_nonresumable_error(struct regs *rp, uint64_t flags, 194 uint32_t head_offset, uint32_t tail_offset) 195 { 196 struct machcpu *mcpup; 197 struct async_flt *aflt; 198 errh_async_flt_t errh_flt; 199 errh_er_t *head_va; 200 int trampolined = 0; 201 int expected = DDI_FM_ERR_UNEXPECTED; 202 uint64_t exec_mode; 203 uint8_t u_spill_fill; 204 205 mcpup = &(CPU->cpu_m); 206 207 while (head_offset != tail_offset) { 208 /* kernel buffer starts right after the nonresumable queue */ 209 head_va = (errh_er_t *)(mcpup->cpu_nrq_va + head_offset + 210 CPU_NRQ_SIZE); 211 212 /* Copy the error report to local buffer */ 213 bzero(&errh_flt, sizeof (errh_async_flt_t)); 214 215 bcopy((char *)head_va, &(errh_flt.errh_er), 216 sizeof (errh_er_t)); 217 218 /* Increment the queue head */ 219 head_offset += Q_ENTRY_SIZE; 220 /* Wrap around */ 221 head_offset &= (CPU_NRQ_SIZE - 1); 222 223 /* set error handle to zero so it can hold new error report */ 224 head_va->ehdl = 0; 225 226 aflt = (struct async_flt *)&(errh_flt.cmn_asyncflt); 227 228 trampolined = 0; 229 230 if (errh_flt.errh_er.attr & ERRH_ATTR_PIO) 231 aflt->flt_class = BUS_FAULT; 232 else 233 aflt->flt_class = CPU_FAULT; 234 235 aflt->flt_id = gethrtime(); 236 aflt->flt_bus_id = getprocessorid(); 237 aflt->flt_pc = (caddr_t)rp->r_pc; 238 exec_mode = (errh_flt.errh_er.attr & ERRH_MODE_MASK) 239 >> ERRH_MODE_SHIFT; 240 aflt->flt_priv = (exec_mode == ERRH_MODE_PRIV || 241 exec_mode == ERRH_MODE_UNKNOWN); 242 aflt->flt_prot = AFLT_PROT_NONE; 243 aflt->flt_tl = (uchar_t)(flags & ERRH_TL_MASK); 244 aflt->flt_panic = ((aflt->flt_tl != 0) || 245 (aft_testfatal != 0)); 246 247 /* 248 * For the first error packet on the queue, check if it 249 * happened in user fill/spill trap. 250 */ 251 if (flags & ERRH_U_SPILL_FILL) { 252 u_spill_fill = 1; 253 /* clear the user fill/spill flag in flags */ 254 flags = (uint64_t)aflt->flt_tl; 255 } else 256 u_spill_fill = 0; 257 258 switch (errh_flt.errh_er.desc) { 259 case ERRH_DESC_PR_NRE: 260 if (u_spill_fill) { 261 aflt->flt_panic = 0; 262 break; 263 } 264 /* 265 * Fall through, precise fault also need to check 266 * to see if it was protected. 267 */ 268 /*FALLTHRU*/ 269 270 case ERRH_DESC_DEF_NRE: 271 /* 272 * If the trap occurred in privileged mode at TL=0, 273 * we need to check to see if we were executing 274 * in kernel under on_trap() or t_lofault 275 * protection. If so, and if it was a PIO or MEM 276 * error, then modify the saved registers so that 277 * we return from the trap to the appropriate 278 * trampoline routine. 279 */ 280 if (aflt->flt_priv == 1 && aflt->flt_tl == 0 && 281 ((errh_flt.errh_er.attr & ERRH_ATTR_PIO) || 282 (errh_flt.errh_er.attr & ERRH_ATTR_MEM))) { 283 trampolined = 284 errh_error_protected(rp, aflt, &expected); 285 } 286 287 if (!aflt->flt_priv || aflt->flt_prot == 288 AFLT_PROT_COPY) { 289 aflt->flt_panic |= aft_panic; 290 } else if (!trampolined && 291 (aflt->flt_class != BUS_FAULT)) { 292 aflt->flt_panic = 1; 293 } 294 295 /* 296 * Check error attribute, handle individual error 297 * if it is needed. 298 */ 299 errh_handle_attr(&errh_flt); 300 301 /* 302 * If PIO error, we need to query the bus nexus 303 * for fatal errors. 304 */ 305 if (aflt->flt_class == BUS_FAULT) { 306 aflt->flt_addr = errh_flt.errh_er.ra; 307 errh_cpu_run_bus_error_handlers(aflt, 308 expected); 309 } 310 311 break; 312 313 default: 314 cmn_err(CE_WARN, "Panic - Error Descriptor 0x%llx " 315 " invalid in non-resumable error handler", 316 (long long) errh_flt.errh_er.desc); 317 aflt->flt_panic = 1; 318 break; 319 } 320 321 /* 322 * Queue the error report for further processing. If 323 * flt_panic is set, code still process other errors 324 * in the queue until the panic routine stops the 325 * kernel. 326 */ 327 (void) cpu_queue_one_event(&errh_flt); 328 329 /* 330 * Panic here if aflt->flt_panic has been set. 331 * Enqueued errors will be logged as part of the panic flow. 332 */ 333 if (aflt->flt_panic) { 334 fm_panic("Unrecoverable hardware error"); 335 } 336 337 /* 338 * Call page_retire() to handle memory errors. 339 */ 340 if (errh_flt.errh_er.attr & ERRH_ATTR_MEM) 341 errh_page_retire(&errh_flt, PR_UE); 342 343 /* 344 * If we queued an error and the it was in user mode, or 345 * protected by t_lofault, or user_spill_fill is set, we 346 * set AST flag so the queue will be drained before 347 * returning to user mode. 348 */ 349 if (!aflt->flt_priv || aflt->flt_prot == AFLT_PROT_COPY || 350 u_spill_fill) { 351 int pcb_flag = 0; 352 353 if (aflt->flt_class == CPU_FAULT) 354 pcb_flag |= ASYNC_HWERR; 355 else if (aflt->flt_class == BUS_FAULT) 356 pcb_flag |= ASYNC_BERR; 357 358 ttolwp(curthread)->lwp_pcb.pcb_flags |= pcb_flag; 359 aston(curthread); 360 } 361 } 362 } 363 364 /* 365 * For PIO errors, this routine calls nexus driver's error 366 * callback routines. If the callback routine returns fatal, and 367 * we are in kernel or unknow mode without any error protection, 368 * we need to turn on the panic flag. 369 */ 370 void 371 errh_cpu_run_bus_error_handlers(struct async_flt *aflt, int expected) 372 { 373 int status; 374 ddi_fm_error_t de; 375 376 bzero(&de, sizeof (ddi_fm_error_t)); 377 378 de.fme_version = DDI_FME_VERSION; 379 de.fme_ena = fm_ena_generate(aflt->flt_id, FM_ENA_FMT1); 380 de.fme_flag = expected; 381 de.fme_bus_specific = (void *)aflt->flt_addr; 382 status = ndi_fm_handler_dispatch(ddi_root_node(), NULL, &de); 383 384 /* 385 * If error is protected, it will jump to proper routine 386 * to handle the handle; if it is in user level, we just 387 * kill the user process; if the driver thinks the error is 388 * not fatal, we can drive on. If none of above are true, 389 * we panic 390 */ 391 if ((aflt->flt_prot == AFLT_PROT_NONE) && (aflt->flt_priv == 1) && 392 (status == DDI_FM_FATAL)) 393 aflt->flt_panic = 1; 394 } 395 396 /* 397 * This routine checks to see if we are under any error protection when 398 * the error happens. If we are under error protection, we unwind to 399 * the protection and indicate fault. 400 */ 401 static int 402 errh_error_protected(struct regs *rp, struct async_flt *aflt, int *expected) 403 { 404 int trampolined = 0; 405 ddi_acc_hdl_t *hp; 406 407 if (curthread->t_ontrap != NULL) { 408 on_trap_data_t *otp = curthread->t_ontrap; 409 410 if (otp->ot_prot & OT_DATA_EC) { 411 aflt->flt_prot = AFLT_PROT_EC; 412 otp->ot_trap |= OT_DATA_EC; 413 rp->r_pc = otp->ot_trampoline; 414 rp->r_npc = rp->r_pc +4; 415 trampolined = 1; 416 } 417 418 if (otp->ot_prot & OT_DATA_ACCESS) { 419 aflt->flt_prot = AFLT_PROT_ACCESS; 420 otp->ot_trap |= OT_DATA_ACCESS; 421 rp->r_pc = otp->ot_trampoline; 422 rp->r_npc = rp->r_pc + 4; 423 trampolined = 1; 424 /* 425 * for peek and caut_gets 426 * errors are expected 427 */ 428 hp = (ddi_acc_hdl_t *)otp->ot_handle; 429 if (!hp) 430 *expected = DDI_FM_ERR_PEEK; 431 else if (hp->ah_acc.devacc_attr_access == 432 DDI_CAUTIOUS_ACC) 433 *expected = DDI_FM_ERR_EXPECTED; 434 } 435 } else if (curthread->t_lofault) { 436 aflt->flt_prot = AFLT_PROT_COPY; 437 rp->r_g1 = EFAULT; 438 rp->r_pc = curthread->t_lofault; 439 rp->r_npc = rp->r_pc + 4; 440 trampolined = 1; 441 } 442 443 return (trampolined); 444 } 445 446 /* 447 * Queue one event. 448 */ 449 static void 450 cpu_queue_one_event(errh_async_flt_t *errh_fltp) 451 { 452 struct async_flt *aflt = (struct async_flt *)errh_fltp; 453 errorq_t *eqp; 454 455 if (aflt->flt_panic) 456 eqp = ue_queue; 457 else 458 eqp = ce_queue; 459 460 errorq_dispatch(eqp, errh_fltp, sizeof (errh_async_flt_t), 461 aflt->flt_panic); 462 } 463 464 /* 465 * The cpu_async_log_err() function is called by the ce/ue_drain() function to 466 * handle logging for CPU events that are dequeued. As such, it can be invoked 467 * from softint context, from AST processing in the trap() flow, or from the 468 * panic flow. We decode the CPU-specific data, and log appropriate messages. 469 */ 470 void 471 cpu_async_log_err(void *flt) 472 { 473 errh_async_flt_t *errh_fltp = (errh_async_flt_t *)flt; 474 errh_er_t *errh_erp = (errh_er_t *)&errh_fltp->errh_er; 475 476 switch (errh_erp->desc) { 477 case ERRH_DESC_UCOR_RE: 478 if (errh_erp->attr & ERRH_ATTR_MEM) { 479 /* 480 * Turn on the PR_UE flag. The page will be 481 * scrubbed when it is freed. 482 */ 483 errh_page_retire(errh_fltp, PR_UE); 484 } 485 486 break; 487 488 case ERRH_DESC_PR_NRE: 489 case ERRH_DESC_DEF_NRE: 490 if (errh_erp->attr & ERRH_ATTR_MEM) { 491 /* 492 * For non-resumable memory error, retire 493 * the page here. 494 */ 495 errh_page_retire(errh_fltp, PR_UE); 496 497 /* 498 * If we are going to panic, scrub the page first 499 */ 500 if (errh_fltp->cmn_asyncflt.flt_panic) 501 mem_scrub(errh_fltp->errh_er.ra, 502 errh_fltp->errh_er.sz); 503 } 504 break; 505 506 default: 507 break; 508 } 509 } 510 511 /* 512 * Called from ce_drain(). 513 */ 514 void 515 cpu_ce_log_err(struct async_flt *aflt) 516 { 517 switch (aflt->flt_class) { 518 case CPU_FAULT: 519 cpu_async_log_err(aflt); 520 break; 521 522 case BUS_FAULT: 523 cpu_async_log_err(aflt); 524 break; 525 526 default: 527 break; 528 } 529 } 530 531 /* 532 * Called from ue_drain(). 533 */ 534 void 535 cpu_ue_log_err(struct async_flt *aflt) 536 { 537 switch (aflt->flt_class) { 538 case CPU_FAULT: 539 cpu_async_log_err(aflt); 540 break; 541 542 case BUS_FAULT: 543 cpu_async_log_err(aflt); 544 break; 545 546 default: 547 break; 548 } 549 } 550 551 /* 552 * Turn on flag on the error memory region. 553 */ 554 static void 555 errh_page_retire(errh_async_flt_t *errh_fltp, uchar_t flag) 556 { 557 uint64_t flt_real_addr_start = errh_fltp->errh_er.ra; 558 uint64_t flt_real_addr_end = flt_real_addr_start + 559 errh_fltp->errh_er.sz - 1; 560 int64_t current_addr; 561 562 if (errh_fltp->errh_er.sz == 0) 563 return; 564 565 for (current_addr = flt_real_addr_start; 566 current_addr < flt_real_addr_end; current_addr += MMU_PAGESIZE) { 567 (void) page_retire(current_addr, flag); 568 } 569 } 570 571 void 572 mem_scrub(uint64_t paddr, uint64_t len) 573 { 574 uint64_t pa, length, scrubbed_len; 575 576 pa = paddr; 577 length = len; 578 scrubbed_len = 0; 579 580 while (length > 0) { 581 if (hv_mem_scrub(pa, length, &scrubbed_len) != H_EOK) 582 break; 583 584 pa += scrubbed_len; 585 length -= scrubbed_len; 586 } 587 } 588 589 /* 590 * Call hypervisor to flush the memory region. 591 * Both va and len must be MMU_PAGESIZE aligned. 592 * Returns the total number of bytes flushed. 593 */ 594 uint64_t 595 mem_sync(caddr_t va, size_t len) 596 { 597 uint64_t pa, length, flushed; 598 uint64_t chunk_len = MMU_PAGESIZE; 599 uint64_t total_flushed = 0; 600 601 if (((uint64_t)va | (uint64_t)len) & MMU_PAGEOFFSET) 602 return (total_flushed); 603 604 while (len > 0) { 605 pa = va_to_pa((caddr_t)va); 606 if (pa == (uint64_t)-1) 607 return (total_flushed); 608 609 length = chunk_len; 610 flushed = 0; 611 612 while (length > 0) { 613 if (hv_mem_sync(pa, length, &flushed) != H_EOK) 614 return (total_flushed); 615 616 pa += flushed; 617 length -= flushed; 618 total_flushed += flushed; 619 } 620 621 va += chunk_len; 622 len -= chunk_len; 623 } 624 625 return (total_flushed); 626 } 627 628 /* 629 * If resumable queue is full, we need to check if any cpu is in 630 * error state. If not, we drive on. If yes, we need to panic. The 631 * hypervisor call hv_cpu_state() is being used for checking the 632 * cpu state. 633 */ 634 static void 635 errh_rq_full(struct async_flt *afltp) 636 { 637 processorid_t who; 638 uint64_t cpu_state; 639 uint64_t retval; 640 641 for (who = 0; who < NCPU; who++) 642 if (CPU_IN_SET(cpu_ready_set, who)) { 643 retval = hv_cpu_state(who, &cpu_state); 644 if (retval != H_EOK || cpu_state == CPU_STATE_ERROR) { 645 afltp->flt_panic = 1; 646 break; 647 } 648 } 649 } 650 651 /* 652 * Return processor specific async error structure 653 * size used. 654 */ 655 int 656 cpu_aflt_size(void) 657 { 658 return (sizeof (errh_async_flt_t)); 659 } 660 661 #define SZ_TO_ETRS_SHIFT 6 662 663 /* 664 * Message print out when resumable queue is overflown 665 */ 666 /*ARGSUSED*/ 667 void 668 rq_overflow(struct regs *rp, uint64_t head_offset, 669 uint64_t tail_offset) 670 { 671 rq_overflow_count++; 672 } 673 674 /* 675 * Handler to process a fatal error. This routine can be called from a 676 * softint, called from trap()'s AST handling, or called from the panic flow. 677 */ 678 /*ARGSUSED*/ 679 static void 680 ue_drain(void *ignored, struct async_flt *aflt, errorq_elem_t *eqep) 681 { 682 cpu_ue_log_err(aflt); 683 } 684 685 /* 686 * Handler to process a correctable error. This routine can be called from a 687 * softint. We just call the CPU module's logging routine. 688 */ 689 /*ARGSUSED*/ 690 static void 691 ce_drain(void *ignored, struct async_flt *aflt, errorq_elem_t *eqep) 692 { 693 cpu_ce_log_err(aflt); 694 } 695 696 /* 697 * Handler to process vbsc hostshutdown (power-off button). 698 */ 699 static int 700 err_shutdown_softintr() 701 { 702 cmn_err(CE_WARN, "Power-off requested, system will now shutdown."); 703 do_shutdown(); 704 705 /* 706 * just in case do_shutdown() fails 707 */ 708 (void) timeout((void(*)(void *))power_down, NULL, 100 * hz); 709 return (DDI_INTR_CLAIMED); 710 } 711 712 /* 713 * Allocate error queue sizes based on max_ncpus. max_ncpus is set just 714 * after ncpunode has been determined. ncpus is set in start_other_cpus 715 * which is called after error_init() but may change dynamically. 716 */ 717 void 718 error_init(void) 719 { 720 char tmp_name[MAXSYSNAME]; 721 pnode_t node; 722 size_t size = cpu_aflt_size(); 723 724 /* 725 * Initialize the correctable and uncorrectable error queues. 726 */ 727 ue_queue = errorq_create("ue_queue", (errorq_func_t)ue_drain, NULL, 728 MAX_ASYNC_FLTS * (max_ncpus + 1), size, PIL_2, ERRORQ_VITAL); 729 730 ce_queue = errorq_create("ce_queue", (errorq_func_t)ce_drain, NULL, 731 MAX_CE_FLTS * (max_ncpus + 1), size, PIL_1, 0); 732 733 if (ue_queue == NULL || ce_queue == NULL) 734 panic("failed to create required system error queue"); 735 736 /* 737 * Setup interrupt handler for power-off button. 738 */ 739 err_shutdown_inum = add_softintr(PIL_9, 740 (softintrfunc)err_shutdown_softintr, NULL, SOFTINT_ST); 741 742 /* 743 * Initialize the busfunc list mutex. This must be a PIL_15 spin lock 744 * because we will need to acquire it from cpu_async_error(). 745 */ 746 mutex_init(&bfd_lock, NULL, MUTEX_SPIN, (void *)PIL_15); 747 748 node = prom_rootnode(); 749 if ((node == OBP_NONODE) || (node == OBP_BADNODE)) { 750 cmn_err(CE_CONT, "error_init: node 0x%x\n", (uint_t)node); 751 return; 752 } 753 754 if (((size = prom_getproplen(node, "reset-reason")) != -1) && 755 (size <= MAXSYSNAME) && 756 (prom_getprop(node, "reset-reason", tmp_name) != -1)) { 757 if (reset_debug) { 758 cmn_err(CE_CONT, "System booting after %s\n", tmp_name); 759 } else if (strncmp(tmp_name, "FATAL", 5) == 0) { 760 cmn_err(CE_CONT, 761 "System booting after fatal error %s\n", tmp_name); 762 } 763 } 764 } 765 766 /* 767 * Nonresumable queue is full, panic here 768 */ 769 /*ARGSUSED*/ 770 void 771 nrq_overflow(struct regs *rp) 772 { 773 fm_panic("Nonresumable queue full"); 774 } 775 776 /* 777 * This is the place for special error handling for individual errors. 778 */ 779 static void 780 errh_handle_attr(errh_async_flt_t *errh_fltp) 781 { 782 switch (errh_fltp->errh_er.attr & ~ERRH_MODE_MASK) { 783 case ERRH_ATTR_CPU: 784 case ERRH_ATTR_MEM: 785 case ERRH_ATTR_PIO: 786 case ERRH_ATTR_IRF: 787 case ERRH_ATTR_FRF: 788 case ERRH_ATTR_SHUT: 789 break; 790 791 case ERRH_ATTR_ASR: 792 errh_handle_asr(errh_fltp); 793 break; 794 795 case ERRH_ATTR_ASI: 796 case ERRH_ATTR_PREG: 797 case ERRH_ATTR_RQF: 798 break; 799 800 default: 801 break; 802 } 803 } 804 805 /* 806 * Handle ASR bit set in ATTR 807 */ 808 static void 809 errh_handle_asr(errh_async_flt_t *errh_fltp) 810 { 811 uint64_t current_tick; 812 813 switch (errh_fltp->errh_er.reg) { 814 case ASR_REG_VALID | ASR_REG_TICK: 815 /* 816 * For Tick Compare Register error, it only happens when 817 * the register is being read or compared with the %tick 818 * register. Since we lost the contents of the register, 819 * we set the %tick_compr in the future. An interrupt will 820 * happen when %tick matches the value field of %tick_compr. 821 */ 822 current_tick = (uint64_t)gettick(); 823 tickcmpr_set(current_tick); 824 /* Do not panic */ 825 errh_fltp->cmn_asyncflt.flt_panic = 0; 826 break; 827 828 default: 829 break; 830 } 831 } 832