xref: /titanic_52/usr/src/uts/sun4v/ml/trap_table.s (revision d9976468b7ae1e0b4133ee59b2fa5678de9e9cf2)
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22/*
23 * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
24 * Use is subject to license terms.
25 */
26
27#pragma ident	"%Z%%M%	%I%	%E% SMI"
28
29#if !defined(lint)
30#include "assym.h"
31#endif /* !lint */
32#include <sys/asm_linkage.h>
33#include <sys/privregs.h>
34#include <sys/sun4asi.h>
35#include <sys/machasi.h>
36#include <sys/hypervisor_api.h>
37#include <sys/machtrap.h>
38#include <sys/machthread.h>
39#include <sys/machbrand.h>
40#include <sys/pcb.h>
41#include <sys/pte.h>
42#include <sys/mmu.h>
43#include <sys/machpcb.h>
44#include <sys/async.h>
45#include <sys/intreg.h>
46#include <sys/scb.h>
47#include <sys/psr_compat.h>
48#include <sys/syscall.h>
49#include <sys/machparam.h>
50#include <sys/traptrace.h>
51#include <vm/hat_sfmmu.h>
52#include <sys/archsystm.h>
53#include <sys/utrap.h>
54#include <sys/clock.h>
55#include <sys/intr.h>
56#include <sys/fpu/fpu_simulator.h>
57#include <vm/seg_spt.h>
58
59/*
60 * WARNING: If you add a fast trap handler which can be invoked by a
61 * non-privileged user, you may have to use the FAST_TRAP_DONE macro
62 * instead of "done" instruction to return back to the user mode. See
63 * comments for the "fast_trap_done" entry point for more information.
64 *
65 * An alternate FAST_TRAP_DONE_CHK_INTR macro should be used for the
66 * cases where you always want to process any pending interrupts before
67 * returning back to the user mode.
68 */
69#define	FAST_TRAP_DONE		\
70	ba,a	fast_trap_done
71
72#define	FAST_TRAP_DONE_CHK_INTR	\
73	ba,a	fast_trap_done_chk_intr
74
75/*
76 * SPARC V9 Trap Table
77 *
78 * Most of the trap handlers are made from common building
79 * blocks, and some are instantiated multiple times within
80 * the trap table. So, I build a bunch of macros, then
81 * populate the table using only the macros.
82 *
83 * Many macros branch to sys_trap.  Its calling convention is:
84 *	%g1		kernel trap handler
85 *	%g2, %g3	args for above
86 *	%g4		desire %pil
87 */
88
89#ifdef	TRAPTRACE
90
91/*
92 * Tracing macro. Adds two instructions if TRAPTRACE is defined.
93 */
94#define	TT_TRACE(label)		\
95	ba	label		;\
96	rd	%pc, %g7
97#define	TT_TRACE_INS	2
98
99#define	TT_TRACE_L(label)	\
100	ba	label		;\
101	rd	%pc, %l4	;\
102	clr	%l4
103#define	TT_TRACE_L_INS	3
104
105#else
106
107#define	TT_TRACE(label)
108#define	TT_TRACE_INS	0
109
110#define	TT_TRACE_L(label)
111#define	TT_TRACE_L_INS	0
112
113#endif
114
115/*
116 * This macro is used to update per cpu mmu stats in perf critical
117 * paths. It is only enabled in debug kernels or if SFMMU_STAT_GATHER
118 * is defined.
119 */
120#if defined(DEBUG) || defined(SFMMU_STAT_GATHER)
121#define	HAT_PERCPU_DBSTAT(stat)			\
122	mov	stat, %g1			;\
123	ba	stat_mmu			;\
124	rd	%pc, %g7
125#else
126#define	HAT_PERCPU_DBSTAT(stat)
127#endif /* DEBUG || SFMMU_STAT_GATHER */
128
129/*
130 * This first set are funneled to trap() with %tt as the type.
131 * Trap will then either panic or send the user a signal.
132 */
133/*
134 * NOT is used for traps that just shouldn't happen.
135 * It comes in both single and quadruple flavors.
136 */
137#if !defined(lint)
138	.global	trap
139#endif /* !lint */
140#define	NOT			\
141	TT_TRACE(trace_gen)	;\
142	set	trap, %g1	;\
143	rdpr	%tt, %g3	;\
144	ba,pt	%xcc, sys_trap	;\
145	sub	%g0, 1, %g4	;\
146	.align	32
147#define	NOT4	NOT; NOT; NOT; NOT
148
149#define	NOTP				\
150	TT_TRACE(trace_gen)		;\
151	ba,pt	%xcc, ptl1_panic	;\
152	  mov	PTL1_BAD_TRAP, %g1	;\
153	.align	32
154#define	NOTP4	NOTP; NOTP; NOTP; NOTP
155
156
157/*
158 * BAD is used for trap vectors we don't have a kernel
159 * handler for.
160 * It also comes in single and quadruple versions.
161 */
162#define	BAD	NOT
163#define	BAD4	NOT4
164
165#define	DONE			\
166	done;			\
167	.align	32
168
169/*
170 * TRAP vectors to the trap() function.
171 * It's main use is for user errors.
172 */
173#if !defined(lint)
174	.global	trap
175#endif /* !lint */
176#define	TRAP(arg)		\
177	TT_TRACE(trace_gen)	;\
178	set	trap, %g1	;\
179	mov	arg, %g3	;\
180	ba,pt	%xcc, sys_trap	;\
181	sub	%g0, 1, %g4	;\
182	.align	32
183
184/*
185 * SYSCALL is used for unsupported syscall interfaces (with 'which'
186 * set to 'nosys') and legacy support of old SunOS 4.x syscalls (with
187 * 'which' set to 'syscall_trap32').
188 *
189 * The SYSCALL_TRAP* macros are used for syscall entry points.
190 * SYSCALL_TRAP is used to support LP64 syscalls and SYSCALL_TRAP32
191 * is used to support ILP32.  Each macro can only be used once
192 * since they each define a symbol.  The symbols are used as hot patch
193 * points by the brand infrastructure to dynamically enable and disable
194 * brand syscall interposition.  See the comments around BRAND_CALLBACK
195 * and brand_plat_interposition_enable() for more information.
196 */
197#define	SYSCALL_NOTT(which)		\
198	set	(which), %g1		;\
199	ba,pt	%xcc, sys_trap		;\
200	sub	%g0, 1, %g4		;\
201	.align	32
202
203#define	SYSCALL(which)			\
204	TT_TRACE(trace_gen)		;\
205	SYSCALL_NOTT(which)
206
207#define	SYSCALL_TRAP32				\
208	TT_TRACE(trace_gen)			;\
209	ALTENTRY(syscall_trap32_patch_point)	\
210	SYSCALL_NOTT(syscall_trap32)
211
212#define	SYSCALL_TRAP				\
213	TT_TRACE(trace_gen)			;\
214	ALTENTRY(syscall_trap_patch_point)	\
215	SYSCALL_NOTT(syscall_trap)
216
217/*
218 * GOTO just jumps to a label.
219 * It's used for things that can be fixed without going thru sys_trap.
220 */
221#define	GOTO(label)		\
222	.global	label		;\
223	ba,a	label		;\
224	.empty			;\
225	.align	32
226
227/*
228 * GOTO_TT just jumps to a label.
229 * correctable ECC error traps at  level 0 and 1 will use this macro.
230 * It's used for things that can be fixed without going thru sys_trap.
231 */
232#define	GOTO_TT(label, ttlabel)		\
233	.global	label		;\
234	TT_TRACE(ttlabel)	;\
235	ba,a	label		;\
236	.empty			;\
237	.align	32
238
239/*
240 * Privileged traps
241 * Takes breakpoint if privileged, calls trap() if not.
242 */
243#define	PRIV(label)			\
244	rdpr	%tstate, %g1		;\
245	btst	TSTATE_PRIV, %g1	;\
246	bnz	label			;\
247	rdpr	%tt, %g3		;\
248	set	trap, %g1		;\
249	ba,pt	%xcc, sys_trap		;\
250	sub	%g0, 1, %g4		;\
251	.align	32
252
253
254/*
255 * DTrace traps.
256 */
257#define	DTRACE_PID			\
258	.global dtrace_pid_probe				;\
259	set	dtrace_pid_probe, %g1				;\
260	ba,pt	%xcc, user_trap					;\
261	sub	%g0, 1, %g4					;\
262	.align	32
263
264#define	DTRACE_RETURN			\
265	.global dtrace_return_probe				;\
266	set	dtrace_return_probe, %g1			;\
267	ba,pt	%xcc, user_trap					;\
268	sub	%g0, 1, %g4					;\
269	.align	32
270
271/*
272 * REGISTER WINDOW MANAGEMENT MACROS
273 */
274
275/*
276 * various convenient units of padding
277 */
278#define	SKIP(n)	.skip 4*(n)
279
280/*
281 * CLEAN_WINDOW is the simple handler for cleaning a register window.
282 */
283#define	CLEAN_WINDOW						\
284	TT_TRACE_L(trace_win)					;\
285	rdpr %cleanwin, %l0; inc %l0; wrpr %l0, %cleanwin	;\
286	clr %l0; clr %l1; clr %l2; clr %l3			;\
287	clr %l4; clr %l5; clr %l6; clr %l7			;\
288	clr %o0; clr %o1; clr %o2; clr %o3			;\
289	clr %o4; clr %o5; clr %o6; clr %o7			;\
290	retry; .align 128
291
292#if !defined(lint)
293
294/*
295 * If we get an unresolved tlb miss while in a window handler, the fault
296 * handler will resume execution at the last instruction of the window
297 * hander, instead of delivering the fault to the kernel.  Spill handlers
298 * use this to spill windows into the wbuf.
299 *
300 * The mixed handler works by checking %sp, and branching to the correct
301 * handler.  This is done by branching back to label 1: for 32b frames,
302 * or label 2: for 64b frames; which implies the handler order is: 32b,
303 * 64b, mixed.  The 1: and 2: labels are offset into the routines to
304 * allow the branchs' delay slots to contain useful instructions.
305 */
306
307/*
308 * SPILL_32bit spills a 32-bit-wide kernel register window.  It
309 * assumes that the kernel context and the nucleus context are the
310 * same.  The stack pointer is required to be eight-byte aligned even
311 * though this code only needs it to be four-byte aligned.
312 */
313#define	SPILL_32bit(tail)					\
314	srl	%sp, 0, %sp					;\
3151:	st	%l0, [%sp + 0]					;\
316	st	%l1, [%sp + 4]					;\
317	st	%l2, [%sp + 8]					;\
318	st	%l3, [%sp + 12]					;\
319	st	%l4, [%sp + 16]					;\
320	st	%l5, [%sp + 20]					;\
321	st	%l6, [%sp + 24]					;\
322	st	%l7, [%sp + 28]					;\
323	st	%i0, [%sp + 32]					;\
324	st	%i1, [%sp + 36]					;\
325	st	%i2, [%sp + 40]					;\
326	st	%i3, [%sp + 44]					;\
327	st	%i4, [%sp + 48]					;\
328	st	%i5, [%sp + 52]					;\
329	st	%i6, [%sp + 56]					;\
330	st	%i7, [%sp + 60]					;\
331	TT_TRACE_L(trace_win)					;\
332	saved							;\
333	retry							;\
334	SKIP(31-19-TT_TRACE_L_INS)				;\
335	ba,a,pt	%xcc, fault_32bit_/**/tail			;\
336	.empty
337
338/*
339 * SPILL_32bit_asi spills a 32-bit-wide register window into a 32-bit
340 * wide address space via the designated asi.  It is used to spill
341 * non-kernel windows.  The stack pointer is required to be eight-byte
342 * aligned even though this code only needs it to be four-byte
343 * aligned.
344 */
345#define	SPILL_32bit_asi(asi_num, tail)				\
346	srl	%sp, 0, %sp					;\
3471:	sta	%l0, [%sp + %g0]asi_num				;\
348	mov	4, %g1						;\
349	sta	%l1, [%sp + %g1]asi_num				;\
350	mov	8, %g2						;\
351	sta	%l2, [%sp + %g2]asi_num				;\
352	mov	12, %g3						;\
353	sta	%l3, [%sp + %g3]asi_num				;\
354	add	%sp, 16, %g4					;\
355	sta	%l4, [%g4 + %g0]asi_num				;\
356	sta	%l5, [%g4 + %g1]asi_num				;\
357	sta	%l6, [%g4 + %g2]asi_num				;\
358	sta	%l7, [%g4 + %g3]asi_num				;\
359	add	%g4, 16, %g4					;\
360	sta	%i0, [%g4 + %g0]asi_num				;\
361	sta	%i1, [%g4 + %g1]asi_num				;\
362	sta	%i2, [%g4 + %g2]asi_num				;\
363	sta	%i3, [%g4 + %g3]asi_num				;\
364	add	%g4, 16, %g4					;\
365	sta	%i4, [%g4 + %g0]asi_num				;\
366	sta	%i5, [%g4 + %g1]asi_num				;\
367	sta	%i6, [%g4 + %g2]asi_num				;\
368	sta	%i7, [%g4 + %g3]asi_num				;\
369	TT_TRACE_L(trace_win)					;\
370	saved							;\
371	retry							;\
372	SKIP(31-25-TT_TRACE_L_INS)				;\
373	ba,a,pt %xcc, fault_32bit_/**/tail			;\
374	.empty
375
376#define	SPILL_32bit_tt1(asi_num, tail)				\
377	ba,a,pt	%xcc, fault_32bit_/**/tail			;\
378	.empty							;\
379	.align 128
380
381
382/*
383 * FILL_32bit fills a 32-bit-wide kernel register window.  It assumes
384 * that the kernel context and the nucleus context are the same.  The
385 * stack pointer is required to be eight-byte aligned even though this
386 * code only needs it to be four-byte aligned.
387 */
388#define	FILL_32bit(tail)					\
389	srl	%sp, 0, %sp					;\
3901:	TT_TRACE_L(trace_win)					;\
391	ld	[%sp + 0], %l0					;\
392	ld	[%sp + 4], %l1					;\
393	ld	[%sp + 8], %l2					;\
394	ld	[%sp + 12], %l3					;\
395	ld	[%sp + 16], %l4					;\
396	ld	[%sp + 20], %l5					;\
397	ld	[%sp + 24], %l6					;\
398	ld	[%sp + 28], %l7					;\
399	ld	[%sp + 32], %i0					;\
400	ld	[%sp + 36], %i1					;\
401	ld	[%sp + 40], %i2					;\
402	ld	[%sp + 44], %i3					;\
403	ld	[%sp + 48], %i4					;\
404	ld	[%sp + 52], %i5					;\
405	ld	[%sp + 56], %i6					;\
406	ld	[%sp + 60], %i7					;\
407	restored						;\
408	retry							;\
409	SKIP(31-19-TT_TRACE_L_INS)				;\
410	ba,a,pt	%xcc, fault_32bit_/**/tail			;\
411	.empty
412
413/*
414 * FILL_32bit_asi fills a 32-bit-wide register window from a 32-bit
415 * wide address space via the designated asi.  It is used to fill
416 * non-kernel windows.  The stack pointer is required to be eight-byte
417 * aligned even though this code only needs it to be four-byte
418 * aligned.
419 */
420#define	FILL_32bit_asi(asi_num, tail)				\
421	srl	%sp, 0, %sp					;\
4221:	TT_TRACE_L(trace_win)					;\
423	mov	4, %g1						;\
424	lda	[%sp + %g0]asi_num, %l0				;\
425	mov	8, %g2						;\
426	lda	[%sp + %g1]asi_num, %l1				;\
427	mov	12, %g3						;\
428	lda	[%sp + %g2]asi_num, %l2				;\
429	lda	[%sp + %g3]asi_num, %l3				;\
430	add	%sp, 16, %g4					;\
431	lda	[%g4 + %g0]asi_num, %l4				;\
432	lda	[%g4 + %g1]asi_num, %l5				;\
433	lda	[%g4 + %g2]asi_num, %l6				;\
434	lda	[%g4 + %g3]asi_num, %l7				;\
435	add	%g4, 16, %g4					;\
436	lda	[%g4 + %g0]asi_num, %i0				;\
437	lda	[%g4 + %g1]asi_num, %i1				;\
438	lda	[%g4 + %g2]asi_num, %i2				;\
439	lda	[%g4 + %g3]asi_num, %i3				;\
440	add	%g4, 16, %g4					;\
441	lda	[%g4 + %g0]asi_num, %i4				;\
442	lda	[%g4 + %g1]asi_num, %i5				;\
443	lda	[%g4 + %g2]asi_num, %i6				;\
444	lda	[%g4 + %g3]asi_num, %i7				;\
445	restored						;\
446	retry							;\
447	SKIP(31-25-TT_TRACE_L_INS)				;\
448	ba,a,pt %xcc, fault_32bit_/**/tail			;\
449	.empty
450
451
452/*
453 * SPILL_64bit spills a 64-bit-wide kernel register window.  It
454 * assumes that the kernel context and the nucleus context are the
455 * same.  The stack pointer is required to be eight-byte aligned.
456 */
457#define	SPILL_64bit(tail)					\
4582:	stx	%l0, [%sp + V9BIAS64 + 0]			;\
459	stx	%l1, [%sp + V9BIAS64 + 8]			;\
460	stx	%l2, [%sp + V9BIAS64 + 16]			;\
461	stx	%l3, [%sp + V9BIAS64 + 24]			;\
462	stx	%l4, [%sp + V9BIAS64 + 32]			;\
463	stx	%l5, [%sp + V9BIAS64 + 40]			;\
464	stx	%l6, [%sp + V9BIAS64 + 48]			;\
465	stx	%l7, [%sp + V9BIAS64 + 56]			;\
466	stx	%i0, [%sp + V9BIAS64 + 64]			;\
467	stx	%i1, [%sp + V9BIAS64 + 72]			;\
468	stx	%i2, [%sp + V9BIAS64 + 80]			;\
469	stx	%i3, [%sp + V9BIAS64 + 88]			;\
470	stx	%i4, [%sp + V9BIAS64 + 96]			;\
471	stx	%i5, [%sp + V9BIAS64 + 104]			;\
472	stx	%i6, [%sp + V9BIAS64 + 112]			;\
473	stx	%i7, [%sp + V9BIAS64 + 120]			;\
474	TT_TRACE_L(trace_win)					;\
475	saved							;\
476	retry							;\
477	SKIP(31-18-TT_TRACE_L_INS)				;\
478	ba,a,pt	%xcc, fault_64bit_/**/tail			;\
479	.empty
480
481#define	SPILL_64bit_ktt1(tail)				\
482	ba,a,pt	%xcc, fault_64bit_/**/tail			;\
483	.empty							;\
484	.align 128
485
486#define	SPILL_mixed_ktt1(tail)				\
487	btst	1, %sp						;\
488	bz,a,pt	%xcc, fault_32bit_/**/tail			;\
489	srl	%sp, 0, %sp					;\
490	ba,a,pt	%xcc, fault_64bit_/**/tail			;\
491	.empty							;\
492	.align 128
493
494/*
495 * SPILL_64bit_asi spills a 64-bit-wide register window into a 64-bit
496 * wide address space via the designated asi.  It is used to spill
497 * non-kernel windows.  The stack pointer is required to be eight-byte
498 * aligned.
499 */
500#define	SPILL_64bit_asi(asi_num, tail)				\
501	mov	0 + V9BIAS64, %g1				;\
5022:	stxa	%l0, [%sp + %g1]asi_num				;\
503	mov	8 + V9BIAS64, %g2				;\
504	stxa	%l1, [%sp + %g2]asi_num				;\
505	mov	16 + V9BIAS64, %g3				;\
506	stxa	%l2, [%sp + %g3]asi_num				;\
507	mov	24 + V9BIAS64, %g4				;\
508	stxa	%l3, [%sp + %g4]asi_num				;\
509	add	%sp, 32, %g5					;\
510	stxa	%l4, [%g5 + %g1]asi_num				;\
511	stxa	%l5, [%g5 + %g2]asi_num				;\
512	stxa	%l6, [%g5 + %g3]asi_num				;\
513	stxa	%l7, [%g5 + %g4]asi_num				;\
514	add	%g5, 32, %g5					;\
515	stxa	%i0, [%g5 + %g1]asi_num				;\
516	stxa	%i1, [%g5 + %g2]asi_num				;\
517	stxa	%i2, [%g5 + %g3]asi_num				;\
518	stxa	%i3, [%g5 + %g4]asi_num				;\
519	add	%g5, 32, %g5					;\
520	stxa	%i4, [%g5 + %g1]asi_num				;\
521	stxa	%i5, [%g5 + %g2]asi_num				;\
522	stxa	%i6, [%g5 + %g3]asi_num				;\
523	stxa	%i7, [%g5 + %g4]asi_num				;\
524	TT_TRACE_L(trace_win)					;\
525	saved							;\
526	retry							;\
527	SKIP(31-25-TT_TRACE_L_INS)				;\
528	ba,a,pt %xcc, fault_64bit_/**/tail			;\
529	.empty
530
531#define	SPILL_64bit_tt1(asi_num, tail)				\
532	ba,a,pt	%xcc, fault_64bit_/**/tail			;\
533	.empty							;\
534	.align 128
535
536/*
537 * FILL_64bit fills a 64-bit-wide kernel register window.  It assumes
538 * that the kernel context and the nucleus context are the same.  The
539 * stack pointer is required to be eight-byte aligned.
540 */
541#define	FILL_64bit(tail)					\
5422:	TT_TRACE_L(trace_win)					;\
543	ldx	[%sp + V9BIAS64 + 0], %l0			;\
544	ldx	[%sp + V9BIAS64 + 8], %l1			;\
545	ldx	[%sp + V9BIAS64 + 16], %l2			;\
546	ldx	[%sp + V9BIAS64 + 24], %l3			;\
547	ldx	[%sp + V9BIAS64 + 32], %l4			;\
548	ldx	[%sp + V9BIAS64 + 40], %l5			;\
549	ldx	[%sp + V9BIAS64 + 48], %l6			;\
550	ldx	[%sp + V9BIAS64 + 56], %l7			;\
551	ldx	[%sp + V9BIAS64 + 64], %i0			;\
552	ldx	[%sp + V9BIAS64 + 72], %i1			;\
553	ldx	[%sp + V9BIAS64 + 80], %i2			;\
554	ldx	[%sp + V9BIAS64 + 88], %i3			;\
555	ldx	[%sp + V9BIAS64 + 96], %i4			;\
556	ldx	[%sp + V9BIAS64 + 104], %i5			;\
557	ldx	[%sp + V9BIAS64 + 112], %i6			;\
558	ldx	[%sp + V9BIAS64 + 120], %i7			;\
559	restored						;\
560	retry							;\
561	SKIP(31-18-TT_TRACE_L_INS)				;\
562	ba,a,pt	%xcc, fault_64bit_/**/tail			;\
563	.empty
564
565/*
566 * FILL_64bit_asi fills a 64-bit-wide register window from a 64-bit
567 * wide address space via the designated asi.  It is used to fill
568 * non-kernel windows.  The stack pointer is required to be eight-byte
569 * aligned.
570 */
571#define	FILL_64bit_asi(asi_num, tail)				\
572	mov	V9BIAS64 + 0, %g1				;\
5732:	TT_TRACE_L(trace_win)					;\
574	ldxa	[%sp + %g1]asi_num, %l0				;\
575	mov	V9BIAS64 + 8, %g2				;\
576	ldxa	[%sp + %g2]asi_num, %l1				;\
577	mov	V9BIAS64 + 16, %g3				;\
578	ldxa	[%sp + %g3]asi_num, %l2				;\
579	mov	V9BIAS64 + 24, %g4				;\
580	ldxa	[%sp + %g4]asi_num, %l3				;\
581	add	%sp, 32, %g5					;\
582	ldxa	[%g5 + %g1]asi_num, %l4				;\
583	ldxa	[%g5 + %g2]asi_num, %l5				;\
584	ldxa	[%g5 + %g3]asi_num, %l6				;\
585	ldxa	[%g5 + %g4]asi_num, %l7				;\
586	add	%g5, 32, %g5					;\
587	ldxa	[%g5 + %g1]asi_num, %i0				;\
588	ldxa	[%g5 + %g2]asi_num, %i1				;\
589	ldxa	[%g5 + %g3]asi_num, %i2				;\
590	ldxa	[%g5 + %g4]asi_num, %i3				;\
591	add	%g5, 32, %g5					;\
592	ldxa	[%g5 + %g1]asi_num, %i4				;\
593	ldxa	[%g5 + %g2]asi_num, %i5				;\
594	ldxa	[%g5 + %g3]asi_num, %i6				;\
595	ldxa	[%g5 + %g4]asi_num, %i7				;\
596	restored						;\
597	retry							;\
598	SKIP(31-25-TT_TRACE_L_INS)				;\
599	ba,a,pt	%xcc, fault_64bit_/**/tail			;\
600	.empty
601
602
603#endif /* !lint */
604
605/*
606 * SPILL_mixed spills either size window, depending on
607 * whether %sp is even or odd, to a 32-bit address space.
608 * This may only be used in conjunction with SPILL_32bit/
609 * FILL_64bit.
610 * Clear upper 32 bits of %sp if it is odd.
611 * We won't need to clear them in 64 bit kernel.
612 */
613#define	SPILL_mixed						\
614	btst	1, %sp						;\
615	bz,a,pt	%xcc, 1b					;\
616	srl	%sp, 0, %sp					;\
617	ba,pt	%xcc, 2b					;\
618	nop							;\
619	.align	128
620
621/*
622 * FILL_mixed(ASI) fills either size window, depending on
623 * whether %sp is even or odd, from a 32-bit address space.
624 * This may only be used in conjunction with FILL_32bit/
625 * FILL_64bit. New versions of FILL_mixed_{tt1,asi} would be
626 * needed for use with FILL_{32,64}bit_{tt1,asi}. Particular
627 * attention should be paid to the instructions that belong
628 * in the delay slots of the branches depending on the type
629 * of fill handler being branched to.
630 * Clear upper 32 bits of %sp if it is odd.
631 * We won't need to clear them in 64 bit kernel.
632 */
633#define	FILL_mixed						\
634	btst	1, %sp						;\
635	bz,a,pt	%xcc, 1b					;\
636	srl	%sp, 0, %sp					;\
637	ba,pt	%xcc, 2b					;\
638	nop							;\
639	.align	128
640
641
642/*
643 * SPILL_32clean/SPILL_64clean spill 32-bit and 64-bit register windows,
644 * respectively, into the address space via the designated asi.  The
645 * unbiased stack pointer is required to be eight-byte aligned (even for
646 * the 32-bit case even though this code does not require such strict
647 * alignment).
648 *
649 * With SPARC v9 the spill trap takes precedence over the cleanwin trap
650 * so when cansave == 0, canrestore == 6, and cleanwin == 6 the next save
651 * will cause cwp + 2 to be spilled but will not clean cwp + 1.  That
652 * window may contain kernel data so in user_rtt we set wstate to call
653 * these spill handlers on the first user spill trap.  These handler then
654 * spill the appropriate window but also back up a window and clean the
655 * window that didn't get a cleanwin trap.
656 */
657#define	SPILL_32clean(asi_num, tail)				\
658	srl	%sp, 0, %sp					;\
659	sta	%l0, [%sp + %g0]asi_num				;\
660	mov	4, %g1						;\
661	sta	%l1, [%sp + %g1]asi_num				;\
662	mov	8, %g2						;\
663	sta	%l2, [%sp + %g2]asi_num				;\
664	mov	12, %g3						;\
665	sta	%l3, [%sp + %g3]asi_num				;\
666	add	%sp, 16, %g4					;\
667	sta	%l4, [%g4 + %g0]asi_num				;\
668	sta	%l5, [%g4 + %g1]asi_num				;\
669	sta	%l6, [%g4 + %g2]asi_num				;\
670	sta	%l7, [%g4 + %g3]asi_num				;\
671	add	%g4, 16, %g4					;\
672	sta	%i0, [%g4 + %g0]asi_num				;\
673	sta	%i1, [%g4 + %g1]asi_num				;\
674	sta	%i2, [%g4 + %g2]asi_num				;\
675	sta	%i3, [%g4 + %g3]asi_num				;\
676	add	%g4, 16, %g4					;\
677	sta	%i4, [%g4 + %g0]asi_num				;\
678	sta	%i5, [%g4 + %g1]asi_num				;\
679	sta	%i6, [%g4 + %g2]asi_num				;\
680	sta	%i7, [%g4 + %g3]asi_num				;\
681	TT_TRACE_L(trace_win)					;\
682	b	.spill_clean					;\
683	  mov	WSTATE_USER32, %g7				;\
684	SKIP(31-25-TT_TRACE_L_INS)				;\
685	ba,a,pt	%xcc, fault_32bit_/**/tail			;\
686	.empty
687
688#define	SPILL_64clean(asi_num, tail)				\
689	mov	0 + V9BIAS64, %g1				;\
690	stxa	%l0, [%sp + %g1]asi_num				;\
691	mov	8 + V9BIAS64, %g2				;\
692	stxa	%l1, [%sp + %g2]asi_num				;\
693	mov	16 + V9BIAS64, %g3				;\
694	stxa	%l2, [%sp + %g3]asi_num				;\
695	mov	24 + V9BIAS64, %g4				;\
696	stxa	%l3, [%sp + %g4]asi_num				;\
697	add	%sp, 32, %g5					;\
698	stxa	%l4, [%g5 + %g1]asi_num				;\
699	stxa	%l5, [%g5 + %g2]asi_num				;\
700	stxa	%l6, [%g5 + %g3]asi_num				;\
701	stxa	%l7, [%g5 + %g4]asi_num				;\
702	add	%g5, 32, %g5					;\
703	stxa	%i0, [%g5 + %g1]asi_num				;\
704	stxa	%i1, [%g5 + %g2]asi_num				;\
705	stxa	%i2, [%g5 + %g3]asi_num				;\
706	stxa	%i3, [%g5 + %g4]asi_num				;\
707	add	%g5, 32, %g5					;\
708	stxa	%i4, [%g5 + %g1]asi_num				;\
709	stxa	%i5, [%g5 + %g2]asi_num				;\
710	stxa	%i6, [%g5 + %g3]asi_num				;\
711	stxa	%i7, [%g5 + %g4]asi_num				;\
712	TT_TRACE_L(trace_win)					;\
713	b	.spill_clean					;\
714	  mov	WSTATE_USER64, %g7				;\
715	SKIP(31-25-TT_TRACE_L_INS)				;\
716	ba,a,pt	%xcc, fault_64bit_/**/tail			;\
717	.empty
718
719
720/*
721 * Floating point disabled.
722 */
723#define	FP_DISABLED_TRAP		\
724	TT_TRACE(trace_gen)		;\
725	ba,pt	%xcc,.fp_disabled	;\
726	nop				;\
727	.align	32
728
729/*
730 * Floating point exceptions.
731 */
732#define	FP_IEEE_TRAP			\
733	TT_TRACE(trace_gen)		;\
734	ba,pt	%xcc,.fp_ieee_exception	;\
735	nop				;\
736	.align	32
737
738#define	FP_TRAP				\
739	TT_TRACE(trace_gen)		;\
740	ba,pt	%xcc,.fp_exception	;\
741	nop				;\
742	.align	32
743
744#if !defined(lint)
745
746/*
747 * ECACHE_ECC error traps at level 0 and level 1
748 */
749#define	ECACHE_ECC(table_name)		\
750	.global	table_name		;\
751table_name:				;\
752	membar	#Sync			;\
753	set	trap, %g1		;\
754	rdpr	%tt, %g3		;\
755	ba,pt	%xcc, sys_trap		;\
756	sub	%g0, 1, %g4		;\
757	.align	32
758
759#endif /* !lint */
760
761/*
762 * illegal instruction trap
763 */
764#define	ILLTRAP_INSTR			  \
765	membar	#Sync			  ;\
766	TT_TRACE(trace_gen)		  ;\
767	or	%g0, P_UTRAP4, %g2	  ;\
768	or	%g0, T_UNIMP_INSTR, %g3   ;\
769	sethi	%hi(.check_v9utrap), %g4  ;\
770	jmp	%g4 + %lo(.check_v9utrap) ;\
771	nop				  ;\
772	.align	32
773
774/*
775 * tag overflow trap
776 */
777#define	TAG_OVERFLOW			  \
778	TT_TRACE(trace_gen)		  ;\
779	or	%g0, P_UTRAP10, %g2	  ;\
780	or	%g0, T_TAG_OVERFLOW, %g3  ;\
781	sethi	%hi(.check_v9utrap), %g4  ;\
782	jmp	%g4 + %lo(.check_v9utrap) ;\
783	nop				  ;\
784	.align	32
785
786/*
787 * divide by zero trap
788 */
789#define	DIV_BY_ZERO			  \
790	TT_TRACE(trace_gen)		  ;\
791	or	%g0, P_UTRAP11, %g2	  ;\
792	or	%g0, T_IDIV0, %g3	  ;\
793	sethi	%hi(.check_v9utrap), %g4  ;\
794	jmp	%g4 + %lo(.check_v9utrap) ;\
795	nop				  ;\
796	.align	32
797
798/*
799 * trap instruction for V9 user trap handlers
800 */
801#define	TRAP_INSTR			  \
802	TT_TRACE(trace_gen)		  ;\
803	or	%g0, T_SOFTWARE_TRAP, %g3 ;\
804	sethi	%hi(.check_v9utrap), %g4  ;\
805	jmp	%g4 + %lo(.check_v9utrap) ;\
806	nop				  ;\
807	.align	32
808#define	TRP4	TRAP_INSTR; TRAP_INSTR; TRAP_INSTR; TRAP_INSTR
809
810/*
811 * LEVEL_INTERRUPT is for level N interrupts.
812 * VECTOR_INTERRUPT is for the vector trap.
813 */
814#define	LEVEL_INTERRUPT(level)		\
815	.global	tt_pil/**/level		;\
816tt_pil/**/level:			;\
817	ba,pt	%xcc, pil_interrupt	;\
818	mov	level, %g4		;\
819	.align	32
820
821#define	LEVEL14_INTERRUPT			\
822	ba	pil14_interrupt			;\
823	mov	PIL_14, %g4			;\
824	.align	32
825
826#define CPU_MONDO			\
827	ba,a,pt	%xcc, cpu_mondo		;\
828	.align	32
829
830#define DEV_MONDO			\
831	ba,a,pt	%xcc, dev_mondo		;\
832	.align	32
833
834/*
835 * We take over the rtba after we set our trap table and
836 * fault status area. The watchdog reset trap is now handled by the OS.
837 */
838#define WATCHDOG_RESET			\
839	mov	PTL1_BAD_WATCHDOG, %g1	;\
840	ba,a,pt	%xcc, .watchdog_trap	;\
841	.align	32
842
843/*
844 * RED is for traps that use the red mode handler.
845 * We should never see these either.
846 */
847#define RED			\
848	mov	PTL1_BAD_RED, %g1	;\
849	ba,a,pt	%xcc, .watchdog_trap	;\
850	.align	32
851
852
853/*
854 * MMU Trap Handlers.
855 */
856
857/*
858 * synthesize for trap(): SFSR in %g3
859 */
860#define	IMMU_EXCEPTION							\
861	MMU_FAULT_STATUS_AREA(%g3)					;\
862	rdpr	%tpc, %g2						;\
863	ldx	[%g3 + MMFSA_I_TYPE], %g1				;\
864	ldx	[%g3 + MMFSA_I_CTX], %g3				;\
865	sllx	%g3, SFSR_CTX_SHIFT, %g3				;\
866	or	%g3, %g1, %g3						;\
867	ba,pt	%xcc, .mmu_exception_end				;\
868	mov	T_INSTR_EXCEPTION, %g1					;\
869	.align	32
870
871/*
872 * synthesize for trap(): TAG_ACCESS in %g2, SFSR in %g3
873 */
874#define	DMMU_EXCEPTION							\
875	ba,a,pt	%xcc, .dmmu_exception					;\
876	.align	32
877
878/*
879 * synthesize for trap(): SFAR in %g2, SFSR in %g3
880 */
881#define	DMMU_EXC_AG_PRIV						\
882	MMU_FAULT_STATUS_AREA(%g3)					;\
883	ldx	[%g3 + MMFSA_D_ADDR], %g2				;\
884	/* Fault type not available in MMU fault status area */		;\
885	mov	MMFSA_F_PRVACT, %g1					;\
886	ldx	[%g3 + MMFSA_D_CTX], %g3				;\
887	sllx	%g3, SFSR_CTX_SHIFT, %g3				;\
888	ba,pt	%xcc, .mmu_priv_exception				;\
889	or	%g3, %g1, %g3						;\
890	.align	32
891
892/*
893 * synthesize for trap(): SFAR in %g2, SFSR in %g3
894 */
895#define	DMMU_EXC_AG_NOT_ALIGNED						\
896	MMU_FAULT_STATUS_AREA(%g3)					;\
897	ldx	[%g3 + MMFSA_D_ADDR], %g2				;\
898	/* Fault type not available in MMU fault status area */		;\
899	mov	MMFSA_F_UNALIGN, %g1					;\
900	ldx	[%g3 + MMFSA_D_CTX], %g3				;\
901	sllx	%g3, SFSR_CTX_SHIFT, %g3				;\
902	ba,pt	%xcc, .mmu_exception_not_aligned			;\
903	or	%g3, %g1, %g3			/* SFSR */		;\
904	.align	32
905/*
906 * SPARC V9 IMPL. DEP. #109(1) and (2) and #110(1) and (2)
907 */
908
909/*
910 * synthesize for trap(): SFAR in %g2, SFSR in %g3
911 */
912#define	DMMU_EXC_LDDF_NOT_ALIGNED					\
913	ba,a,pt	%xcc, .dmmu_exc_lddf_not_aligned			;\
914	.align	32
915/*
916 * synthesize for trap(): SFAR in %g2, SFSR in %g3
917 */
918#define	DMMU_EXC_STDF_NOT_ALIGNED					\
919	ba,a,pt	%xcc, .dmmu_exc_stdf_not_aligned			;\
920	.align	32
921
922#if defined(cscope)
923/*
924 * Define labels to direct cscope quickly to labels that
925 * are generated by macro expansion of DTLB_MISS().
926 */
927	.global	tt0_dtlbmiss
928tt0_dtlbmiss:
929	.global	tt1_dtlbmiss
930tt1_dtlbmiss:
931	nop
932#endif
933
934/*
935 * Data miss handler (must be exactly 32 instructions)
936 *
937 * This handler is invoked only if the hypervisor has been instructed
938 * not to do any TSB walk.
939 *
940 * Kernel and invalid context cases are handled by the sfmmu_kdtlb_miss
941 * handler.
942 *
943 * User TLB miss handling depends upon whether a user process has one or
944 * two TSBs. User TSB information (physical base and size code) is kept
945 * in two dedicated scratchpad registers. Absence of a user TSB (primarily
946 * second TSB) is indicated by a negative value (-1) in that register.
947 */
948
949/*
950 * synthesize for miss handler: pseudo-tag access in %g2 (with context "type"
951 * (0=kernel, 1=invalid, or 2=user) rather than context ID)
952 */
953#define	DTLB_MISS(table_name)						;\
954	.global	table_name/**/_dtlbmiss					;\
955table_name/**/_dtlbmiss:						;\
956	HAT_PERCPU_DBSTAT(TSBMISS_DTLBMISS) /* 3 instr ifdef DEBUG */	;\
957	GET_MMU_D_PTAGACC_CTXTYPE(%g2, %g3)	/* 8 instr */		;\
958	cmp	%g3, INVALID_CONTEXT					;\
959	ble,pn	%xcc, sfmmu_kdtlb_miss					;\
960	  srlx	%g2, TAG_VALO_SHIFT, %g7	/* g7 = tsb tag */	;\
961	mov	SCRATCHPAD_UTSBREG2, %g1				;\
962	ldxa	[%g1]ASI_SCRATCHPAD, %g1	/* get 2nd tsbreg */	;\
963	brgez,pn %g1, sfmmu_udtlb_slowpath	/* branch if 2 TSBs */	;\
964	  nop								;\
965	GET_1ST_TSBE_PTR(%g2, %g1, %g4, %g5)	/* 11 instr */		;\
966	ba,pt	%xcc, sfmmu_udtlb_fastpath	/* no 4M TSB, miss */	;\
967	  srlx	%g2, TAG_VALO_SHIFT, %g7	/* g7 = tsb tag */	;\
968	.align 128
969
970
971#if defined(cscope)
972/*
973 * Define labels to direct cscope quickly to labels that
974 * are generated by macro expansion of ITLB_MISS().
975 */
976	.global	tt0_itlbmiss
977tt0_itlbmiss:
978	.global	tt1_itlbmiss
979tt1_itlbmiss:
980	nop
981#endif
982
983/*
984 * Instruction miss handler.
985 *
986 * This handler is invoked only if the hypervisor has been instructed
987 * not to do any TSB walk.
988 *
989 * ldda instructions will have their ASI patched
990 * by sfmmu_patch_ktsb at runtime.
991 * MUST be EXACTLY 32 instructions or we'll break.
992 */
993
994/*
995 * synthesize for miss handler: TAG_ACCESS in %g2 (with context "type"
996 * (0=kernel, 1=invalid, or 2=user) rather than context ID)
997 */
998#define	ITLB_MISS(table_name)						 \
999	.global	table_name/**/_itlbmiss					;\
1000table_name/**/_itlbmiss:						;\
1001	HAT_PERCPU_DBSTAT(TSBMISS_ITLBMISS) /* 3 instr ifdef DEBUG */	;\
1002	GET_MMU_I_PTAGACC_CTXTYPE(%g2, %g3)	/* 8 instr */		;\
1003	cmp	%g3, INVALID_CONTEXT					;\
1004	ble,pn	%xcc, sfmmu_kitlb_miss					;\
1005	  srlx	%g2, TAG_VALO_SHIFT, %g7	/* g7 = tsb tag */	;\
1006	mov	SCRATCHPAD_UTSBREG2, %g1				;\
1007	ldxa	[%g1]ASI_SCRATCHPAD, %g1	/* get 2nd tsbreg */	;\
1008	brgez,pn %g1, sfmmu_uitlb_slowpath	/* branch if 2 TSBs */	;\
1009	  nop								;\
1010	GET_1ST_TSBE_PTR(%g2, %g1, %g4, %g5)	/* 11 instr */		;\
1011	ba,pt	%xcc, sfmmu_uitlb_fastpath	/* no 4M TSB, miss */	;\
1012	  srlx	%g2, TAG_VALO_SHIFT, %g7	/* g7 = tsb tag */	;\
1013	.align 128
1014
1015#define	DTSB_MISS \
1016	GOTO_TT(sfmmu_slow_dmmu_miss,trace_dmmu)
1017
1018#define	ITSB_MISS \
1019	GOTO_TT(sfmmu_slow_immu_miss,trace_immu)
1020
1021/*
1022 * This macro is the first level handler for fast protection faults.
1023 * It first demaps the tlb entry which generated the fault and then
1024 * attempts to set the modify bit on the hash.  It needs to be
1025 * exactly 32 instructions.
1026 */
1027/*
1028 * synthesize for miss handler: TAG_ACCESS in %g2 (with context "type"
1029 * (0=kernel, 1=invalid, or 2=user) rather than context ID)
1030 */
1031#define	DTLB_PROT							 \
1032	GET_MMU_D_PTAGACC_CTXTYPE(%g2, %g3)	/* 8 instr */		;\
1033	/*								;\
1034	 *   g2 = pseudo-tag access register (ctx type rather than ctx ID) ;\
1035	 *   g3 = ctx type (0, 1, or 2)					;\
1036	 */								;\
1037	TT_TRACE(trace_dataprot)	/* 2 instr ifdef TRAPTRACE */	;\
1038					/* clobbers g1 and g6 XXXQ? */	;\
1039	brnz,pt %g3, sfmmu_uprot_trap		/* user trap */		;\
1040	  nop								;\
1041	ba,a,pt	%xcc, sfmmu_kprot_trap		/* kernel trap */	;\
1042	.align 128
1043
1044#define	DMMU_EXCEPTION_TL1						;\
1045	ba,a,pt	%xcc, mmu_trap_tl1					;\
1046	.align 32
1047
1048#define	MISALIGN_ADDR_TL1						;\
1049	ba,a,pt	%xcc, mmu_trap_tl1					;\
1050	.align 32
1051
1052/*
1053 * Trace a tsb hit
1054 * g1 = tsbe pointer (in/clobbered)
1055 * g2 = tag access register (in)
1056 * g3 - g4 = scratch (clobbered)
1057 * g5 = tsbe data (in)
1058 * g6 = scratch (clobbered)
1059 * g7 = pc we jumped here from (in)
1060 * ttextra = value to OR in to trap type (%tt) (in)
1061 */
1062#ifdef TRAPTRACE
1063#define TRACE_TSBHIT(ttextra)						 \
1064	membar	#Sync							;\
1065	sethi	%hi(FLUSH_ADDR), %g6					;\
1066	flush	%g6							;\
1067	TRACE_PTR(%g3, %g6)						;\
1068	GET_TRACE_TICK(%g6)						;\
1069	stxa	%g6, [%g3 + TRAP_ENT_TICK]%asi				;\
1070	stna	%g2, [%g3 + TRAP_ENT_SP]%asi	/* tag access */	;\
1071	stna	%g5, [%g3 + TRAP_ENT_F1]%asi	/* tsb data */		;\
1072	rdpr	%tnpc, %g6						;\
1073	stna	%g6, [%g3 + TRAP_ENT_F2]%asi				;\
1074	stna	%g1, [%g3 + TRAP_ENT_F3]%asi	/* tsb pointer */	;\
1075	stna	%g0, [%g3 + TRAP_ENT_F4]%asi				;\
1076	rdpr	%tpc, %g6						;\
1077	stna	%g6, [%g3 + TRAP_ENT_TPC]%asi				;\
1078	TRACE_SAVE_TL_GL_REGS(%g3, %g6)					;\
1079	rdpr	%tt, %g6						;\
1080	or	%g6, (ttextra), %g1					;\
1081	stha	%g1, [%g3 + TRAP_ENT_TT]%asi				;\
1082	MMU_FAULT_STATUS_AREA(%g4)					;\
1083	mov	MMFSA_D_ADDR, %g1					;\
1084	cmp	%g6, FAST_IMMU_MISS_TT					;\
1085	move	%xcc, MMFSA_I_ADDR, %g1					;\
1086	cmp	%g6, T_INSTR_MMU_MISS					;\
1087	move	%xcc, MMFSA_I_ADDR, %g1					;\
1088	ldx	[%g4 + %g1], %g1					;\
1089	stxa	%g1, [%g3 + TRAP_ENT_TSTATE]%asi /* fault addr */	;\
1090	mov	MMFSA_D_CTX, %g1					;\
1091	cmp	%g6, FAST_IMMU_MISS_TT					;\
1092	move	%xcc, MMFSA_I_CTX, %g1					;\
1093	cmp	%g6, T_INSTR_MMU_MISS					;\
1094	move	%xcc, MMFSA_I_CTX, %g1					;\
1095	ldx	[%g4 + %g1], %g1					;\
1096	stna	%g1, [%g3 + TRAP_ENT_TR]%asi				;\
1097	TRACE_NEXT(%g3, %g4, %g6)
1098#else
1099#define TRACE_TSBHIT(ttextra)
1100#endif
1101
1102
1103#if defined(lint)
1104
1105struct scb	trap_table;
1106struct scb	scb;		/* trap_table/scb are the same object */
1107
1108#else /* lint */
1109
1110/*
1111 * =======================================================================
1112 *		SPARC V9 TRAP TABLE
1113 *
1114 * The trap table is divided into two halves: the first half is used when
1115 * taking traps when TL=0; the second half is used when taking traps from
1116 * TL>0. Note that handlers in the second half of the table might not be able
1117 * to make the same assumptions as handlers in the first half of the table.
1118 *
1119 * Worst case trap nesting so far:
1120 *
1121 *	at TL=0 client issues software trap requesting service
1122 *	at TL=1 nucleus wants a register window
1123 *	at TL=2 register window clean/spill/fill takes a TLB miss
1124 *	at TL=3 processing TLB miss
1125 *	at TL=4 handle asynchronous error
1126 *
1127 * Note that a trap from TL=4 to TL=5 places Spitfire in "RED mode".
1128 *
1129 * =======================================================================
1130 */
1131	.section ".text"
1132	.align	4
1133	.global trap_table, scb, trap_table0, trap_table1, etrap_table
1134	.type	trap_table, #object
1135	.type	trap_table0, #object
1136	.type	trap_table1, #object
1137	.type	scb, #object
1138trap_table:
1139scb:
1140trap_table0:
1141	/* hardware traps */
1142	NOT;				/* 000	reserved */
1143	RED;				/* 001	power on reset */
1144	WATCHDOG_RESET;			/* 002	watchdog reset */
1145	RED;				/* 003	externally initiated reset */
1146	RED;				/* 004	software initiated reset */
1147	RED;				/* 005	red mode exception */
1148	NOT; NOT;			/* 006 - 007 reserved */
1149	IMMU_EXCEPTION;			/* 008	instruction access exception */
1150	ITSB_MISS;			/* 009	instruction access MMU miss */
1151 	NOT;				/* 00A  reserved */
1152	NOT; NOT4;			/* 00B - 00F reserved */
1153	ILLTRAP_INSTR;			/* 010	illegal instruction */
1154	TRAP(T_PRIV_INSTR);		/* 011	privileged opcode */
1155	TRAP(T_UNIMP_LDD);		/* 012	unimplemented LDD */
1156	TRAP(T_UNIMP_STD);		/* 013	unimplemented STD */
1157	NOT4; NOT4; NOT4;		/* 014 - 01F reserved */
1158	FP_DISABLED_TRAP;		/* 020	fp disabled */
1159	FP_IEEE_TRAP;			/* 021	fp exception ieee 754 */
1160	FP_TRAP;			/* 022	fp exception other */
1161	TAG_OVERFLOW;			/* 023	tag overflow */
1162	CLEAN_WINDOW;			/* 024 - 027 clean window */
1163	DIV_BY_ZERO;			/* 028	division by zero */
1164	NOT;				/* 029	internal processor error */
1165	NOT; NOT; NOT4;			/* 02A - 02F reserved */
1166	DMMU_EXCEPTION;			/* 030	data access exception */
1167	DTSB_MISS;			/* 031	data access MMU miss */
1168	NOT;				/* 032  reserved */
1169	NOT;				/* 033	data access protection */
1170	DMMU_EXC_AG_NOT_ALIGNED;	/* 034	mem address not aligned */
1171	DMMU_EXC_LDDF_NOT_ALIGNED;	/* 035	LDDF mem address not aligned */
1172	DMMU_EXC_STDF_NOT_ALIGNED;	/* 036	STDF mem address not aligned */
1173	DMMU_EXC_AG_PRIV;		/* 037	privileged action */
1174	NOT;				/* 038	LDQF mem address not aligned */
1175	NOT;				/* 039	STQF mem address not aligned */
1176	NOT; NOT; NOT4;			/* 03A - 03F reserved */
1177	NOT;				/* 040	async data error */
1178	LEVEL_INTERRUPT(1);		/* 041	interrupt level 1 */
1179	LEVEL_INTERRUPT(2);		/* 042	interrupt level 2 */
1180	LEVEL_INTERRUPT(3);		/* 043	interrupt level 3 */
1181	LEVEL_INTERRUPT(4);		/* 044	interrupt level 4 */
1182	LEVEL_INTERRUPT(5);		/* 045	interrupt level 5 */
1183	LEVEL_INTERRUPT(6);		/* 046	interrupt level 6 */
1184	LEVEL_INTERRUPT(7);		/* 047	interrupt level 7 */
1185	LEVEL_INTERRUPT(8);		/* 048	interrupt level 8 */
1186	LEVEL_INTERRUPT(9);		/* 049	interrupt level 9 */
1187	LEVEL_INTERRUPT(10);		/* 04A	interrupt level 10 */
1188	LEVEL_INTERRUPT(11);		/* 04B	interrupt level 11 */
1189	LEVEL_INTERRUPT(12);		/* 04C	interrupt level 12 */
1190	LEVEL_INTERRUPT(13);		/* 04D	interrupt level 13 */
1191	LEVEL14_INTERRUPT;		/* 04E	interrupt level 14 */
1192	LEVEL_INTERRUPT(15);		/* 04F	interrupt level 15 */
1193	NOT4; NOT4; NOT4; NOT4;		/* 050 - 05F reserved */
1194	NOT;				/* 060	interrupt vector */
1195	GOTO(kmdb_trap);		/* 061	PA watchpoint */
1196	GOTO(kmdb_trap);		/* 062	VA watchpoint */
1197	NOT;				/* 063	reserved */
1198	ITLB_MISS(tt0);			/* 064	instruction access MMU miss */
1199	DTLB_MISS(tt0);			/* 068	data access MMU miss */
1200	DTLB_PROT;			/* 06C	data access protection */
1201	NOT;				/* 070  reserved */
1202	NOT;				/* 071  reserved */
1203	NOT;				/* 072  reserved */
1204	NOT;				/* 073  reserved */
1205	NOT4; NOT4			/* 074 - 07B reserved */
1206	CPU_MONDO;			/* 07C	cpu_mondo */
1207	DEV_MONDO;			/* 07D	dev_mondo */
1208	GOTO_TT(resumable_error, trace_gen);	/* 07E  resumable error */
1209	GOTO_TT(nonresumable_error, trace_gen);	/* 07F  non-reasumable error */
1210	NOT4;				/* 080	spill 0 normal */
1211	SPILL_32bit_asi(ASI_AIUP,sn0);	/* 084	spill 1 normal */
1212	SPILL_64bit_asi(ASI_AIUP,sn0);	/* 088	spill 2 normal */
1213	SPILL_32clean(ASI_AIUP,sn0);	/* 08C	spill 3 normal */
1214	SPILL_64clean(ASI_AIUP,sn0);	/* 090	spill 4 normal */
1215	SPILL_32bit(not);		/* 094	spill 5 normal */
1216	SPILL_64bit(not);		/* 098	spill 6 normal */
1217	SPILL_mixed;			/* 09C	spill 7 normal */
1218	NOT4;				/* 0A0	spill 0 other */
1219	SPILL_32bit_asi(ASI_AIUS,so0);	/* 0A4	spill 1 other */
1220	SPILL_64bit_asi(ASI_AIUS,so0);	/* 0A8	spill 2 other */
1221	SPILL_32bit_asi(ASI_AIUS,so0);	/* 0AC	spill 3 other */
1222	SPILL_64bit_asi(ASI_AIUS,so0);	/* 0B0	spill 4 other */
1223	NOT4;				/* 0B4	spill 5 other */
1224	NOT4;				/* 0B8	spill 6 other */
1225	NOT4;				/* 0BC	spill 7 other */
1226	NOT4;				/* 0C0	fill 0 normal */
1227	FILL_32bit_asi(ASI_AIUP,fn0);	/* 0C4	fill 1 normal */
1228	FILL_64bit_asi(ASI_AIUP,fn0);	/* 0C8	fill 2 normal */
1229	FILL_32bit_asi(ASI_AIUP,fn0);	/* 0CC	fill 3 normal */
1230	FILL_64bit_asi(ASI_AIUP,fn0);	/* 0D0	fill 4 normal */
1231	FILL_32bit(not);		/* 0D4	fill 5 normal */
1232	FILL_64bit(not);		/* 0D8	fill 6 normal */
1233	FILL_mixed;			/* 0DC	fill 7 normal */
1234	NOT4;				/* 0E0	fill 0 other */
1235	NOT4;				/* 0E4	fill 1 other */
1236	NOT4;				/* 0E8	fill 2 other */
1237	NOT4;				/* 0EC	fill 3 other */
1238	NOT4;				/* 0F0	fill 4 other */
1239	NOT4;				/* 0F4	fill 5 other */
1240	NOT4;				/* 0F8	fill 6 other */
1241	NOT4;				/* 0FC	fill 7 other */
1242	/* user traps */
1243	GOTO(syscall_trap_4x);		/* 100	old system call */
1244	TRAP(T_BREAKPOINT);		/* 101	user breakpoint */
1245	TRAP(T_DIV0);			/* 102	user divide by zero */
1246	GOTO(.flushw);			/* 103	flush windows */
1247	GOTO(.clean_windows);		/* 104	clean windows */
1248	BAD;				/* 105	range check ?? */
1249	GOTO(.fix_alignment);		/* 106	do unaligned references */
1250	BAD;				/* 107	unused */
1251	SYSCALL_TRAP32;			/* 108	ILP32 system call on LP64 */
1252	GOTO(set_trap0_addr);		/* 109	set trap0 address */
1253	BAD; BAD; BAD4;			/* 10A - 10F unused */
1254	TRP4; TRP4; TRP4; TRP4;		/* 110 - 11F V9 user trap handlers */
1255	GOTO(.getcc);			/* 120	get condition codes */
1256	GOTO(.setcc);			/* 121	set condition codes */
1257	GOTO(.getpsr);			/* 122	get psr */
1258	GOTO(.setpsr);			/* 123	set psr (some fields) */
1259	GOTO(get_timestamp);		/* 124	get timestamp */
1260	GOTO(get_virtime);		/* 125	get lwp virtual time */
1261	PRIV(self_xcall);		/* 126	self xcall */
1262	GOTO(get_hrestime);		/* 127	get hrestime */
1263	BAD;				/* 128	ST_SETV9STACK */
1264	GOTO(.getlgrp);			/* 129  get lgrpid */
1265	BAD; BAD; BAD4;			/* 12A - 12F unused */
1266	BAD4; BAD4; 			/* 130 - 137 unused */
1267	DTRACE_PID;			/* 138  dtrace pid tracing provider */
1268	BAD;				/* 139  unused */
1269	DTRACE_RETURN;			/* 13A	dtrace pid return probe */
1270	BAD; BAD4;			/* 13B - 13F unused */
1271	SYSCALL_TRAP;			/* 140  LP64 system call */
1272	SYSCALL(nosys);			/* 141  unused system call trap */
1273#ifdef DEBUG_USER_TRAPTRACECTL
1274	GOTO(.traptrace_freeze);	/* 142  freeze traptrace */
1275	GOTO(.traptrace_unfreeze);	/* 143  unfreeze traptrace */
1276#else
1277	SYSCALL(nosys);			/* 142  unused system call trap */
1278	SYSCALL(nosys);			/* 143  unused system call trap */
1279#endif
1280	BAD4; BAD4; BAD4;		/* 144 - 14F unused */
1281	BAD4; BAD4; BAD4; BAD4;		/* 150 - 15F unused */
1282	BAD4; BAD4; BAD4; BAD4;		/* 160 - 16F unused */
1283	BAD;				/* 170 - unused */
1284	BAD;				/* 171 - unused */
1285	BAD; BAD;			/* 172 - 173 unused */
1286	BAD4; BAD4;			/* 174 - 17B unused */
1287#ifdef	PTL1_PANIC_DEBUG
1288	mov PTL1_BAD_DEBUG, %g1; GOTO(ptl1_panic);
1289					/* 17C	test ptl1_panic */
1290#else
1291	BAD;				/* 17C  unused */
1292#endif	/* PTL1_PANIC_DEBUG */
1293	PRIV(kmdb_trap);		/* 17D	kmdb enter (L1-A) */
1294	PRIV(kmdb_trap);		/* 17E	kmdb breakpoint */
1295	PRIV(obp_bpt);			/* 17F	obp breakpoint */
1296	/* reserved */
1297	NOT4; NOT4; NOT4; NOT4;		/* 180 - 18F reserved */
1298	NOT4; NOT4; NOT4; NOT4;		/* 190 - 19F reserved */
1299	NOT4; NOT4; NOT4; NOT4;		/* 1A0 - 1AF reserved */
1300	NOT4; NOT4; NOT4; NOT4;		/* 1B0 - 1BF reserved */
1301	NOT4; NOT4; NOT4; NOT4;		/* 1C0 - 1CF reserved */
1302	NOT4; NOT4; NOT4; NOT4;		/* 1D0 - 1DF reserved */
1303	NOT4; NOT4; NOT4; NOT4;		/* 1E0 - 1EF reserved */
1304	NOT4; NOT4; NOT4; NOT4;		/* 1F0 - 1FF reserved */
1305	.size	trap_table0, (.-trap_table0)
1306trap_table1:
1307	NOT4; NOT4;			/* 000 - 007 unused */
1308	NOT;				/* 008	instruction access exception */
1309	ITSB_MISS;			/* 009	instruction access MMU miss */
1310 	NOT;				/* 00A  reserved */
1311	NOT; NOT4;			/* 00B - 00F unused */
1312	NOT4; NOT4; NOT4; NOT4;		/* 010 - 01F unused */
1313	NOT4;				/* 020 - 023 unused */
1314	CLEAN_WINDOW;			/* 024 - 027 clean window */
1315	NOT4; NOT4;			/* 028 - 02F unused */
1316	DMMU_EXCEPTION_TL1;		/* 030 	data access exception */
1317	DTSB_MISS;			/* 031  data access MMU miss */
1318	NOT;				/* 032  reserved */
1319	NOT;				/* 033	unused */
1320	MISALIGN_ADDR_TL1;		/* 034	mem address not aligned */
1321	NOT; NOT; NOT; NOT4; NOT4	/* 035 - 03F unused */
1322	NOT4; NOT4; NOT4; NOT4;		/* 040 - 04F unused */
1323	NOT4; NOT4; NOT4; NOT4;		/* 050 - 05F unused */
1324	NOT;				/* 060	unused */
1325	GOTO(kmdb_trap_tl1);		/* 061	PA watchpoint */
1326	GOTO(kmdb_trap_tl1);		/* 062	VA watchpoint */
1327	NOT;				/* 063	reserved */
1328	ITLB_MISS(tt1);			/* 064	instruction access MMU miss */
1329	DTLB_MISS(tt1);			/* 068	data access MMU miss */
1330	DTLB_PROT;			/* 06C	data access protection */
1331	NOT;				/* 070  reserved */
1332	NOT;				/* 071  reserved */
1333	NOT;				/* 072  reserved */
1334	NOT;				/* 073  reserved */
1335	NOT4; NOT4;			/* 074 - 07B reserved */
1336	NOT;				/* 07C  reserved */
1337	NOT;				/* 07D  reserved */
1338	NOT;				/* 07E  resumable error */
1339	GOTO_TT(nonresumable_error, trace_gen);	/* 07F  nonresumable error */
1340	NOTP4;				/* 080	spill 0 normal */
1341	SPILL_32bit_tt1(ASI_AIUP,sn1);	/* 084	spill 1 normal */
1342	SPILL_64bit_tt1(ASI_AIUP,sn1);	/* 088	spill 2 normal */
1343	SPILL_32bit_tt1(ASI_AIUP,sn1);	/* 08C	spill 3 normal */
1344	SPILL_64bit_tt1(ASI_AIUP,sn1);	/* 090	spill 4 normal */
1345	NOTP4;				/* 094	spill 5 normal */
1346	SPILL_64bit_ktt1(sk);		/* 098	spill 6 normal */
1347	SPILL_mixed_ktt1(sk);		/* 09C	spill 7 normal */
1348	NOTP4;				/* 0A0	spill 0 other */
1349	SPILL_32bit_tt1(ASI_AIUS,so1);	/* 0A4  spill 1 other */
1350	SPILL_64bit_tt1(ASI_AIUS,so1);	/* 0A8	spill 2 other */
1351	SPILL_32bit_tt1(ASI_AIUS,so1);	/* 0AC	spill 3 other */
1352	SPILL_64bit_tt1(ASI_AIUS,so1);	/* 0B0  spill 4 other */
1353	NOTP4;				/* 0B4  spill 5 other */
1354	NOTP4;				/* 0B8  spill 6 other */
1355	NOTP4;				/* 0BC  spill 7 other */
1356	NOT4;				/* 0C0	fill 0 normal */
1357	NOT4;				/* 0C4	fill 1 normal */
1358	NOT4;				/* 0C8	fill 2 normal */
1359	NOT4;				/* 0CC	fill 3 normal */
1360	NOT4;				/* 0D0	fill 4 normal */
1361	NOT4;				/* 0D4	fill 5 normal */
1362	NOT4;				/* 0D8	fill 6 normal */
1363	NOT4;				/* 0DC	fill 7 normal */
1364	NOT4; NOT4; NOT4; NOT4;		/* 0E0 - 0EF unused */
1365	NOT4; NOT4; NOT4; NOT4;		/* 0F0 - 0FF unused */
1366/*
1367 * Code running at TL>0 does not use soft traps, so
1368 * we can truncate the table here.
1369 * However:
1370 * sun4v uses (hypervisor) ta instructions at TL > 0, so
1371 * provide a safety net for now.
1372 */
1373	/* soft traps */
1374	BAD4; BAD4; BAD4; BAD4;		/* 100 - 10F unused */
1375	BAD4; BAD4; BAD4; BAD4;		/* 110 - 11F unused */
1376	BAD4; BAD4; BAD4; BAD4;		/* 120 - 12F unused */
1377	BAD4; BAD4; BAD4; BAD4;		/* 130 - 13F unused */
1378	BAD4; BAD4; BAD4; BAD4;		/* 140 - 14F unused */
1379	BAD4; BAD4; BAD4; BAD4;		/* 150 - 15F unused */
1380	BAD4; BAD4; BAD4; BAD4;		/* 160 - 16F unused */
1381	BAD4; BAD4; BAD4; BAD4;		/* 170 - 17F unused */
1382	/* reserved */
1383	NOT4; NOT4; NOT4; NOT4;		/* 180 - 18F reserved */
1384	NOT4; NOT4; NOT4; NOT4;		/* 190 - 19F reserved */
1385	NOT4; NOT4; NOT4; NOT4;		/* 1A0 - 1AF reserved */
1386	NOT4; NOT4; NOT4; NOT4;		/* 1B0 - 1BF reserved */
1387	NOT4; NOT4; NOT4; NOT4;		/* 1C0 - 1CF reserved */
1388	NOT4; NOT4; NOT4; NOT4;		/* 1D0 - 1DF reserved */
1389	NOT4; NOT4; NOT4; NOT4;		/* 1E0 - 1EF reserved */
1390	NOT4; NOT4; NOT4; NOT4;		/* 1F0 - 1FF reserved */
1391etrap_table:
1392	.size	trap_table1, (.-trap_table1)
1393	.size	trap_table, (.-trap_table)
1394	.size	scb, (.-scb)
1395
1396/*
1397 * We get to exec_fault in the case of an instruction miss and tte
1398 * has no execute bit set.  We go to tl0 to handle it.
1399 *
1400 * g1 = tsbe pointer (in/clobbered)
1401 * g2 = tag access register (in)
1402 * g3 - g4 = scratch (clobbered)
1403 * g5 = tsbe data (in)
1404 * g6 = scratch (clobbered)
1405 * g7 = pc we jumped here from (in)
1406 */
1407/*
1408 * synthesize for miss handler: TAG_ACCESS in %g2 (with context "type"
1409 * (0=kernel, 1=invalid, or 2=user) rather than context ID)
1410 */
1411	ALTENTRY(exec_fault)
1412	TRACE_TSBHIT(TT_MMU_EXEC)
1413	MMU_FAULT_STATUS_AREA(%g4)
1414	ldx	[%g4 + MMFSA_I_ADDR], %g2	/* g2 = address */
1415	ldx	[%g4 + MMFSA_I_CTX], %g3	/* g3 = ctx */
1416	srlx	%g2, MMU_PAGESHIFT, %g2		! align address to page boundry
1417	cmp	%g3, USER_CONTEXT_TYPE
1418	sllx	%g2, MMU_PAGESHIFT, %g2
1419	movgu	%icc, USER_CONTEXT_TYPE, %g3
1420	or	%g2, %g3, %g2			/* TAG_ACCESS */
1421	mov	T_INSTR_MMU_MISS, %g3		! arg2 = traptype
1422	set	trap, %g1
1423	ba,pt	%xcc, sys_trap
1424	  mov	-1, %g4
1425
1426.mmu_exception_not_aligned:
1427	/* %g2 = sfar, %g3 = sfsr */
1428	rdpr	%tstate, %g1
1429	btst	TSTATE_PRIV, %g1
1430	bnz,pn	%icc, 2f
1431	nop
1432	CPU_ADDR(%g1, %g4)				! load CPU struct addr
1433	ldn	[%g1 + CPU_THREAD], %g1			! load thread pointer
1434	ldn	[%g1 + T_PROCP], %g1			! load proc pointer
1435	ldn	[%g1 + P_UTRAPS], %g5			! are there utraps?
1436	brz,pt	%g5, 2f
1437	nop
1438	ldn	[%g5 + P_UTRAP15], %g5			! unaligned utrap?
1439	brz,pn	%g5, 2f
1440	nop
1441	btst	1, %sp
1442	bz,pt	%xcc, 1f				! 32 bit user program
1443	nop
1444	ba,pt	%xcc, .setup_v9utrap			! 64 bit user program
1445	nop
14461:
1447	ba,pt	%xcc, .setup_utrap
1448	or	%g2, %g0, %g7
14492:
1450	ba,pt	%xcc, .mmu_exception_end
1451	mov	T_ALIGNMENT, %g1
1452
1453.mmu_priv_exception:
1454	rdpr	%tstate, %g1
1455	btst	TSTATE_PRIV, %g1
1456	bnz,pn	%icc, 1f
1457	nop
1458	CPU_ADDR(%g1, %g4)				! load CPU struct addr
1459	ldn	[%g1 + CPU_THREAD], %g1			! load thread pointer
1460	ldn	[%g1 + T_PROCP], %g1			! load proc pointer
1461	ldn	[%g1 + P_UTRAPS], %g5			! are there utraps?
1462	brz,pt	%g5, 1f
1463	nop
1464	ldn	[%g5 + P_UTRAP16], %g5
1465	brnz,pt	%g5, .setup_v9utrap
1466	nop
14671:
1468	mov	T_PRIV_INSTR, %g1
1469
1470.mmu_exception_end:
1471	CPU_INDEX(%g4, %g5)
1472	set	cpu_core, %g5
1473	sllx	%g4, CPU_CORE_SHIFT, %g4
1474	add	%g4, %g5, %g4
1475	lduh	[%g4 + CPUC_DTRACE_FLAGS], %g5
1476	andcc	%g5, CPU_DTRACE_NOFAULT, %g0
1477	bz	1f
1478	or	%g5, CPU_DTRACE_BADADDR, %g5
1479	stuh	%g5, [%g4 + CPUC_DTRACE_FLAGS]
1480	done
1481
14821:
1483	sllx	%g3, 32, %g3
1484	or	%g3, %g1, %g3
1485	set	trap, %g1
1486	ba,pt	%xcc, sys_trap
1487	sub	%g0, 1, %g4
1488
1489.fp_disabled:
1490	CPU_ADDR(%g1, %g4)				! load CPU struct addr
1491	ldn	[%g1 + CPU_THREAD], %g1			! load thread pointer
1492	rdpr	%tstate, %g4
1493	btst	TSTATE_PRIV, %g4
1494	bnz,a,pn %icc, ptl1_panic
1495	  mov	PTL1_BAD_FPTRAP, %g1
1496
1497	ldn	[%g1 + T_PROCP], %g1			! load proc pointer
1498	ldn	[%g1 + P_UTRAPS], %g5			! are there utraps?
1499	brz,a,pt %g5, 2f
1500	  nop
1501	ldn	[%g5 + P_UTRAP7], %g5			! fp_disabled utrap?
1502	brz,a,pn %g5, 2f
1503	  nop
1504	btst	1, %sp
1505	bz,a,pt	%xcc, 1f				! 32 bit user program
1506	  nop
1507	ba,a,pt	%xcc, .setup_v9utrap			! 64 bit user program
1508	  nop
15091:
1510	ba,pt	%xcc, .setup_utrap
1511	  or	%g0, %g0, %g7
15122:
1513	set	fp_disabled, %g1
1514	ba,pt	%xcc, sys_trap
1515	  sub	%g0, 1, %g4
1516
1517.fp_ieee_exception:
1518	rdpr	%tstate, %g1
1519	btst	TSTATE_PRIV, %g1
1520	bnz,a,pn %icc, ptl1_panic
1521	  mov	PTL1_BAD_FPTRAP, %g1
1522	CPU_ADDR(%g1, %g4)				! load CPU struct addr
1523	stx	%fsr, [%g1 + CPU_TMP1]
1524	ldx	[%g1 + CPU_TMP1], %g2
1525	ldn	[%g1 + CPU_THREAD], %g1			! load thread pointer
1526	ldn	[%g1 + T_PROCP], %g1			! load proc pointer
1527	ldn	[%g1 + P_UTRAPS], %g5			! are there utraps?
1528	brz,a,pt %g5, 1f
1529	  nop
1530	ldn	[%g5 + P_UTRAP8], %g5
1531	brnz,a,pt %g5, .setup_v9utrap
1532	  nop
15331:
1534	set	_fp_ieee_exception, %g1
1535	ba,pt	%xcc, sys_trap
1536	  sub	%g0, 1, %g4
1537
1538/*
1539 * Register Inputs:
1540 *	%g5		user trap handler
1541 *	%g7		misaligned addr - for alignment traps only
1542 */
1543.setup_utrap:
1544	set	trap, %g1			! setup in case we go
1545	mov	T_FLUSH_PCB, %g3		! through sys_trap on
1546	sub	%g0, 1, %g4			! the save instruction below
1547
1548	/*
1549	 * If the DTrace pid provider is single stepping a copied-out
1550	 * instruction, t->t_dtrace_step will be set. In that case we need
1551	 * to abort the single-stepping (since execution of the instruction
1552	 * was interrupted) and use the value of t->t_dtrace_npc as the %npc.
1553	 */
1554	save	%sp, -SA(MINFRAME32), %sp	! window for trap handler
1555	CPU_ADDR(%g1, %g4)			! load CPU struct addr
1556	ldn	[%g1 + CPU_THREAD], %g1		! load thread pointer
1557	ldub	[%g1 + T_DTRACE_STEP], %g2	! load t->t_dtrace_step
1558	rdpr	%tnpc, %l2			! arg1 == tnpc
1559	brz,pt	%g2, 1f
1560	rdpr	%tpc, %l1			! arg0 == tpc
1561
1562	ldub	[%g1 + T_DTRACE_AST], %g2	! load t->t_dtrace_ast
1563	ldn	[%g1 + T_DTRACE_NPC], %l2	! arg1 = t->t_dtrace_npc (step)
1564	brz,pt	%g2, 1f
1565	st	%g0, [%g1 + T_DTRACE_FT]	! zero all pid provider flags
1566	stub	%g2, [%g1 + T_ASTFLAG]		! aston(t) if t->t_dtrace_ast
15671:
1568	mov	%g7, %l3			! arg2 == misaligned address
1569
1570	rdpr	%tstate, %g1			! cwp for trap handler
1571	rdpr	%cwp, %g4
1572	bclr	TSTATE_CWP_MASK, %g1
1573	wrpr	%g1, %g4, %tstate
1574	wrpr	%g0, %g5, %tnpc			! trap handler address
1575	FAST_TRAP_DONE
1576	/* NOTREACHED */
1577
1578.check_v9utrap:
1579	rdpr	%tstate, %g1
1580	btst	TSTATE_PRIV, %g1
1581	bnz,a,pn %icc, 3f
1582	  nop
1583	CPU_ADDR(%g4, %g1)				! load CPU struct addr
1584	ldn	[%g4 + CPU_THREAD], %g5			! load thread pointer
1585	ldn	[%g5 + T_PROCP], %g5			! load proc pointer
1586	ldn	[%g5 + P_UTRAPS], %g5			! are there utraps?
1587
1588	cmp	%g3, T_SOFTWARE_TRAP
1589	bne,a,pt %icc, 1f
1590	  nop
1591
1592	brz,pt %g5, 3f			! if p_utraps == NULL goto trap()
1593	  rdpr	%tt, %g3		! delay - get actual hw trap type
1594
1595	sub	%g3, 254, %g1		! UT_TRAP_INSTRUCTION_16 = p_utraps[18]
1596	ba,pt	%icc, 2f
1597	  smul	%g1, CPTRSIZE, %g2
15981:
1599	brz,a,pt %g5, 3f		! if p_utraps == NULL goto trap()
1600	  nop
1601
1602	cmp	%g3, T_UNIMP_INSTR
1603	bne,a,pt %icc, 2f
1604	  nop
1605
1606	mov	1, %g1
1607	st	%g1, [%g4 + CPU_TL1_HDLR] ! set CPU_TL1_HDLR
1608	rdpr	%tpc, %g1		! ld trapping instruction using
1609	lduwa	[%g1]ASI_AIUP, %g1	! "AS IF USER" ASI which could fault
1610	st	%g0, [%g4 + CPU_TL1_HDLR] ! clr CPU_TL1_HDLR
1611
1612	sethi	%hi(0xc1c00000), %g4	! setup mask for illtrap instruction
1613	andcc	%g1, %g4, %g4		! and instruction with mask
1614	bnz,a,pt %icc, 3f		! if %g4 == zero, %g1 is an ILLTRAP
1615	  nop				! fall thru to setup
16162:
1617	ldn	[%g5 + %g2], %g5
1618	brnz,a,pt %g5, .setup_v9utrap
1619	  nop
16203:
1621	set	trap, %g1
1622	ba,pt	%xcc, sys_trap
1623	  sub	%g0, 1, %g4
1624	/* NOTREACHED */
1625
1626/*
1627 * Register Inputs:
1628 *	%g5		user trap handler
1629 */
1630.setup_v9utrap:
1631	set	trap, %g1			! setup in case we go
1632	mov	T_FLUSH_PCB, %g3		! through sys_trap on
1633	sub	%g0, 1, %g4			! the save instruction below
1634
1635	/*
1636	 * If the DTrace pid provider is single stepping a copied-out
1637	 * instruction, t->t_dtrace_step will be set. In that case we need
1638	 * to abort the single-stepping (since execution of the instruction
1639	 * was interrupted) and use the value of t->t_dtrace_npc as the %npc.
1640	 */
1641	save	%sp, -SA(MINFRAME64), %sp	! window for trap handler
1642	CPU_ADDR(%g1, %g4)			! load CPU struct addr
1643	ldn	[%g1 + CPU_THREAD], %g1		! load thread pointer
1644	ldub	[%g1 + T_DTRACE_STEP], %g2	! load t->t_dtrace_step
1645	rdpr	%tnpc, %l7			! arg1 == tnpc
1646	brz,pt	%g2, 1f
1647	rdpr	%tpc, %l6			! arg0 == tpc
1648
1649	ldub	[%g1 + T_DTRACE_AST], %g2	! load t->t_dtrace_ast
1650	ldn	[%g1 + T_DTRACE_NPC], %l7	! arg1 == t->t_dtrace_npc (step)
1651	brz,pt	%g2, 1f
1652	st	%g0, [%g1 + T_DTRACE_FT]	! zero all pid provider flags
1653	stub	%g2, [%g1 + T_ASTFLAG]		! aston(t) if t->t_dtrace_ast
16541:
1655	rdpr	%tstate, %g2			! cwp for trap handler
1656	rdpr	%cwp, %g4
1657	bclr	TSTATE_CWP_MASK, %g2
1658	wrpr	%g2, %g4, %tstate
1659
1660	ldn	[%g1 + T_PROCP], %g4		! load proc pointer
1661	ldn	[%g4 + P_AS], %g4		! load as pointer
1662	ldn	[%g4 + A_USERLIMIT], %g4	! load as userlimit
1663	cmp	%l7, %g4			! check for single-step set
1664	bne,pt	%xcc, 4f
1665	  nop
1666	ldn	[%g1 + T_LWP], %g1		! load klwp pointer
1667	ld	[%g1 + PCB_STEP], %g4		! load single-step flag
1668	cmp	%g4, STEP_ACTIVE		! step flags set in pcb?
1669	bne,pt	%icc, 4f
1670	  nop
1671	stn	%g5, [%g1 + PCB_TRACEPC]	! save trap handler addr in pcb
1672	mov	%l7, %g4			! on entry to precise user trap
1673	add	%l6, 4, %l7			! handler, %l6 == pc, %l7 == npc
1674						! at time of trap
1675	wrpr	%g0, %g4, %tnpc			! generate FLTBOUNDS,
1676						! %g4 == userlimit
1677	FAST_TRAP_DONE
1678	/* NOTREACHED */
16794:
1680	wrpr	%g0, %g5, %tnpc			! trap handler address
1681	FAST_TRAP_DONE_CHK_INTR
1682	/* NOTREACHED */
1683
1684.fp_exception:
1685	CPU_ADDR(%g1, %g4)
1686	stx	%fsr, [%g1 + CPU_TMP1]
1687	ldx	[%g1 + CPU_TMP1], %g2
1688
1689	/*
1690	 * Cheetah takes unfinished_FPop trap for certain range of operands
1691	 * to the "fitos" instruction. Instead of going through the slow
1692	 * software emulation path, we try to simulate the "fitos" instruction
1693	 * via "fitod" and "fdtos" provided the following conditions are met:
1694	 *
1695	 *	fpu_exists is set (if DEBUG)
1696	 *	not in privileged mode
1697	 *	ftt is unfinished_FPop
1698	 *	NXM IEEE trap is not enabled
1699	 *	instruction at %tpc is "fitos"
1700	 *
1701	 *  Usage:
1702	 *	%g1	per cpu address
1703	 *	%g2	%fsr
1704	 *	%g6	user instruction
1705	 *
1706	 * Note that we can take a memory access related trap while trying
1707	 * to fetch the user instruction. Therefore, we set CPU_TL1_HDLR
1708	 * flag to catch those traps and let the SFMMU code deal with page
1709	 * fault and data access exception.
1710	 */
1711#if defined(DEBUG) || defined(NEED_FPU_EXISTS)
1712	sethi	%hi(fpu_exists), %g7
1713	ld	[%g7 + %lo(fpu_exists)], %g7
1714	brz,pn %g7, .fp_exception_cont
1715	  nop
1716#endif
1717	rdpr	%tstate, %g7			! branch if in privileged mode
1718	btst	TSTATE_PRIV, %g7
1719	bnz,pn	%xcc, .fp_exception_cont
1720	srl	%g2, FSR_FTT_SHIFT, %g7		! extract ftt from %fsr
1721	and	%g7, (FSR_FTT>>FSR_FTT_SHIFT), %g7
1722	cmp	%g7, FTT_UNFIN
1723	set	FSR_TEM_NX, %g5
1724	bne,pn	%xcc, .fp_exception_cont	! branch if NOT unfinished_FPop
1725	  andcc	%g2, %g5, %g0
1726	bne,pn	%xcc, .fp_exception_cont	! branch if FSR_TEM_NX enabled
1727	  rdpr	%tpc, %g5			! get faulting PC
1728
1729	or	%g0, 1, %g7
1730	st	%g7, [%g1 + CPU_TL1_HDLR]	! set tl1_hdlr flag
1731	lda	[%g5]ASI_USER, %g6		! get user's instruction
1732	st	%g0, [%g1 + CPU_TL1_HDLR]	! clear tl1_hdlr flag
1733
1734	set	FITOS_INSTR_MASK, %g7
1735	and	%g6, %g7, %g7
1736	set	FITOS_INSTR, %g5
1737	cmp	%g7, %g5
1738	bne,pn	%xcc, .fp_exception_cont	! branch if not FITOS_INSTR
1739	 nop
1740
1741	/*
1742	 * This is unfinished FPops trap for "fitos" instruction. We
1743	 * need to simulate "fitos" via "fitod" and "fdtos" instruction
1744	 * sequence.
1745	 *
1746	 * We need a temporary FP register to do the conversion. Since
1747	 * both source and destination operands for the "fitos" instruction
1748	 * have to be within %f0-%f31, we use an FP register from the upper
1749	 * half to guarantee that it won't collide with the source or the
1750	 * dest operand. However, we do have to save and restore its value.
1751	 *
1752	 * We use %d62 as a temporary FP register for the conversion and
1753	 * branch to appropriate instruction within the conversion tables
1754	 * based upon the rs2 and rd values.
1755	 */
1756
1757	std	%d62, [%g1 + CPU_TMP1]		! save original value
1758
1759	srl	%g6, FITOS_RS2_SHIFT, %g7
1760	and	%g7, FITOS_REG_MASK, %g7
1761	set	_fitos_fitod_table, %g4
1762	sllx	%g7, 2, %g7
1763	jmp	%g4 + %g7
1764	  ba,pt	%xcc, _fitos_fitod_done
1765	.empty
1766
1767_fitos_fitod_table:
1768	  fitod	%f0, %d62
1769	  fitod	%f1, %d62
1770	  fitod	%f2, %d62
1771	  fitod	%f3, %d62
1772	  fitod	%f4, %d62
1773	  fitod	%f5, %d62
1774	  fitod	%f6, %d62
1775	  fitod	%f7, %d62
1776	  fitod	%f8, %d62
1777	  fitod	%f9, %d62
1778	  fitod	%f10, %d62
1779	  fitod	%f11, %d62
1780	  fitod	%f12, %d62
1781	  fitod	%f13, %d62
1782	  fitod	%f14, %d62
1783	  fitod	%f15, %d62
1784	  fitod	%f16, %d62
1785	  fitod	%f17, %d62
1786	  fitod	%f18, %d62
1787	  fitod	%f19, %d62
1788	  fitod	%f20, %d62
1789	  fitod	%f21, %d62
1790	  fitod	%f22, %d62
1791	  fitod	%f23, %d62
1792	  fitod	%f24, %d62
1793	  fitod	%f25, %d62
1794	  fitod	%f26, %d62
1795	  fitod	%f27, %d62
1796	  fitod	%f28, %d62
1797	  fitod	%f29, %d62
1798	  fitod	%f30, %d62
1799	  fitod	%f31, %d62
1800_fitos_fitod_done:
1801
1802	/*
1803	 * Now convert data back into single precision
1804	 */
1805	srl	%g6, FITOS_RD_SHIFT, %g7
1806	and	%g7, FITOS_REG_MASK, %g7
1807	set	_fitos_fdtos_table, %g4
1808	sllx	%g7, 2, %g7
1809	jmp	%g4 + %g7
1810	  ba,pt	%xcc, _fitos_fdtos_done
1811	.empty
1812
1813_fitos_fdtos_table:
1814	  fdtos	%d62, %f0
1815	  fdtos	%d62, %f1
1816	  fdtos	%d62, %f2
1817	  fdtos	%d62, %f3
1818	  fdtos	%d62, %f4
1819	  fdtos	%d62, %f5
1820	  fdtos	%d62, %f6
1821	  fdtos	%d62, %f7
1822	  fdtos	%d62, %f8
1823	  fdtos	%d62, %f9
1824	  fdtos	%d62, %f10
1825	  fdtos	%d62, %f11
1826	  fdtos	%d62, %f12
1827	  fdtos	%d62, %f13
1828	  fdtos	%d62, %f14
1829	  fdtos	%d62, %f15
1830	  fdtos	%d62, %f16
1831	  fdtos	%d62, %f17
1832	  fdtos	%d62, %f18
1833	  fdtos	%d62, %f19
1834	  fdtos	%d62, %f20
1835	  fdtos	%d62, %f21
1836	  fdtos	%d62, %f22
1837	  fdtos	%d62, %f23
1838	  fdtos	%d62, %f24
1839	  fdtos	%d62, %f25
1840	  fdtos	%d62, %f26
1841	  fdtos	%d62, %f27
1842	  fdtos	%d62, %f28
1843	  fdtos	%d62, %f29
1844	  fdtos	%d62, %f30
1845	  fdtos	%d62, %f31
1846_fitos_fdtos_done:
1847
1848	ldd	[%g1 + CPU_TMP1], %d62		! restore %d62
1849
1850#if DEBUG
1851	/*
1852	 * Update FPop_unfinished trap kstat
1853	 */
1854	set	fpustat+FPUSTAT_UNFIN_KSTAT, %g7
1855	ldx	[%g7], %g5
18561:
1857	add	%g5, 1, %g6
1858
1859	casxa	[%g7] ASI_N, %g5, %g6
1860	cmp	%g5, %g6
1861	bne,a,pn %xcc, 1b
1862	  or	%g0, %g6, %g5
1863
1864	/*
1865	 * Update fpu_sim_fitos kstat
1866	 */
1867	set	fpuinfo+FPUINFO_FITOS_KSTAT, %g7
1868	ldx	[%g7], %g5
18691:
1870	add	%g5, 1, %g6
1871
1872	casxa	[%g7] ASI_N, %g5, %g6
1873	cmp	%g5, %g6
1874	bne,a,pn %xcc, 1b
1875	  or	%g0, %g6, %g5
1876#endif /* DEBUG */
1877
1878	FAST_TRAP_DONE
1879
1880.fp_exception_cont:
1881	/*
1882	 * Let _fp_exception deal with simulating FPop instruction.
1883	 * Note that we need to pass %fsr in %g2 (already read above).
1884	 */
1885
1886	set	_fp_exception, %g1
1887	ba,pt	%xcc, sys_trap
1888	sub	%g0, 1, %g4
1889
1890
1891/*
1892 * Register windows
1893 */
1894.flushw:
1895.clean_windows:
1896	rdpr	%tnpc, %g1
1897	wrpr	%g1, %tpc
1898	add	%g1, 4, %g1
1899	wrpr	%g1, %tnpc
1900	set	trap, %g1
1901	mov	T_FLUSH_PCB, %g3
1902	ba,pt	%xcc, sys_trap
1903	sub	%g0, 1, %g4
1904
1905/*
1906 * .spill_clean: clean the previous window, restore the wstate, and
1907 * "done".
1908 *
1909 * Entry: %g7 contains new wstate
1910 */
1911.spill_clean:
1912	sethi	%hi(nwin_minus_one), %g5
1913	ld	[%g5 + %lo(nwin_minus_one)], %g5 ! %g5 = nwin - 1
1914	rdpr	%cwp, %g6			! %g6 = %cwp
1915	deccc	%g6				! %g6--
1916	movneg	%xcc, %g5, %g6			! if (%g6<0) %g6 = nwin-1
1917	wrpr	%g6, %cwp
1918	TT_TRACE_L(trace_win)
1919	clr	%l0
1920	clr	%l1
1921	clr	%l2
1922	clr	%l3
1923	clr	%l4
1924	clr	%l5
1925	clr	%l6
1926	clr	%l7
1927	wrpr	%g0, %g7, %wstate
1928	saved
1929	retry			! restores correct %cwp
1930
1931.fix_alignment:
1932	CPU_ADDR(%g1, %g2)		! load CPU struct addr to %g1 using %g2
1933	ldn	[%g1 + CPU_THREAD], %g1	! load thread pointer
1934	ldn	[%g1 + T_PROCP], %g1
1935	mov	1, %g2
1936	stb	%g2, [%g1 + P_FIXALIGNMENT]
1937	FAST_TRAP_DONE
1938
1939#define	STDF_REG(REG, ADDR, TMP)		\
1940	sll	REG, 3, REG			;\
1941mark1:	set	start1, TMP			;\
1942	jmp	REG + TMP			;\
1943	  nop					;\
1944start1:	ba,pt	%xcc, done1			;\
1945	  std	%f0, [ADDR + CPU_TMP1]		;\
1946	ba,pt	%xcc, done1			;\
1947	  std	%f32, [ADDR + CPU_TMP1]		;\
1948	ba,pt	%xcc, done1			;\
1949	  std	%f2, [ADDR + CPU_TMP1]		;\
1950	ba,pt	%xcc, done1			;\
1951	  std	%f34, [ADDR + CPU_TMP1]		;\
1952	ba,pt	%xcc, done1			;\
1953	  std	%f4, [ADDR + CPU_TMP1]		;\
1954	ba,pt	%xcc, done1			;\
1955	  std	%f36, [ADDR + CPU_TMP1]		;\
1956	ba,pt	%xcc, done1			;\
1957	  std	%f6, [ADDR + CPU_TMP1]		;\
1958	ba,pt	%xcc, done1			;\
1959	  std	%f38, [ADDR + CPU_TMP1]		;\
1960	ba,pt	%xcc, done1			;\
1961	  std	%f8, [ADDR + CPU_TMP1]		;\
1962	ba,pt	%xcc, done1			;\
1963	  std	%f40, [ADDR + CPU_TMP1]		;\
1964	ba,pt	%xcc, done1			;\
1965	  std	%f10, [ADDR + CPU_TMP1]		;\
1966	ba,pt	%xcc, done1			;\
1967	  std	%f42, [ADDR + CPU_TMP1]		;\
1968	ba,pt	%xcc, done1			;\
1969	  std	%f12, [ADDR + CPU_TMP1]		;\
1970	ba,pt	%xcc, done1			;\
1971	  std	%f44, [ADDR + CPU_TMP1]		;\
1972	ba,pt	%xcc, done1			;\
1973	  std	%f14, [ADDR + CPU_TMP1]		;\
1974	ba,pt	%xcc, done1			;\
1975	  std	%f46, [ADDR + CPU_TMP1]		;\
1976	ba,pt	%xcc, done1			;\
1977	  std	%f16, [ADDR + CPU_TMP1]		;\
1978	ba,pt	%xcc, done1			;\
1979	  std	%f48, [ADDR + CPU_TMP1]		;\
1980	ba,pt	%xcc, done1			;\
1981	  std	%f18, [ADDR + CPU_TMP1]		;\
1982	ba,pt	%xcc, done1			;\
1983	  std	%f50, [ADDR + CPU_TMP1]		;\
1984	ba,pt	%xcc, done1			;\
1985	  std	%f20, [ADDR + CPU_TMP1]		;\
1986	ba,pt	%xcc, done1			;\
1987	  std	%f52, [ADDR + CPU_TMP1]		;\
1988	ba,pt	%xcc, done1			;\
1989	  std	%f22, [ADDR + CPU_TMP1]		;\
1990	ba,pt	%xcc, done1			;\
1991	  std	%f54, [ADDR + CPU_TMP1]		;\
1992	ba,pt	%xcc, done1			;\
1993	  std	%f24, [ADDR + CPU_TMP1]		;\
1994	ba,pt	%xcc, done1			;\
1995	  std	%f56, [ADDR + CPU_TMP1]		;\
1996	ba,pt	%xcc, done1			;\
1997	  std	%f26, [ADDR + CPU_TMP1]		;\
1998	ba,pt	%xcc, done1			;\
1999	  std	%f58, [ADDR + CPU_TMP1]		;\
2000	ba,pt	%xcc, done1			;\
2001	  std	%f28, [ADDR + CPU_TMP1]		;\
2002	ba,pt	%xcc, done1			;\
2003	  std	%f60, [ADDR + CPU_TMP1]		;\
2004	ba,pt	%xcc, done1			;\
2005	  std	%f30, [ADDR + CPU_TMP1]		;\
2006	ba,pt	%xcc, done1			;\
2007	  std	%f62, [ADDR + CPU_TMP1]		;\
2008done1:
2009
2010#define	LDDF_REG(REG, ADDR, TMP)		\
2011	sll	REG, 3, REG			;\
2012mark2:	set	start2, TMP			;\
2013	jmp	REG + TMP			;\
2014	  nop					;\
2015start2:	ba,pt	%xcc, done2			;\
2016	  ldd	[ADDR + CPU_TMP1], %f0		;\
2017	ba,pt	%xcc, done2			;\
2018	  ldd	[ADDR + CPU_TMP1], %f32		;\
2019	ba,pt	%xcc, done2			;\
2020	  ldd	[ADDR + CPU_TMP1], %f2		;\
2021	ba,pt	%xcc, done2			;\
2022	  ldd	[ADDR + CPU_TMP1], %f34		;\
2023	ba,pt	%xcc, done2			;\
2024	  ldd	[ADDR + CPU_TMP1], %f4		;\
2025	ba,pt	%xcc, done2			;\
2026	  ldd	[ADDR + CPU_TMP1], %f36		;\
2027	ba,pt	%xcc, done2			;\
2028	  ldd	[ADDR + CPU_TMP1], %f6		;\
2029	ba,pt	%xcc, done2			;\
2030	  ldd	[ADDR + CPU_TMP1], %f38		;\
2031	ba,pt	%xcc, done2			;\
2032	  ldd	[ADDR + CPU_TMP1], %f8		;\
2033	ba,pt	%xcc, done2			;\
2034	  ldd	[ADDR + CPU_TMP1], %f40		;\
2035	ba,pt	%xcc, done2			;\
2036	  ldd	[ADDR + CPU_TMP1], %f10		;\
2037	ba,pt	%xcc, done2			;\
2038	  ldd	[ADDR + CPU_TMP1], %f42		;\
2039	ba,pt	%xcc, done2			;\
2040	  ldd	[ADDR + CPU_TMP1], %f12		;\
2041	ba,pt	%xcc, done2			;\
2042	  ldd	[ADDR + CPU_TMP1], %f44		;\
2043	ba,pt	%xcc, done2			;\
2044	  ldd	[ADDR + CPU_TMP1], %f14		;\
2045	ba,pt	%xcc, done2			;\
2046	  ldd	[ADDR + CPU_TMP1], %f46		;\
2047	ba,pt	%xcc, done2			;\
2048	  ldd	[ADDR + CPU_TMP1], %f16		;\
2049	ba,pt	%xcc, done2			;\
2050	  ldd	[ADDR + CPU_TMP1], %f48		;\
2051	ba,pt	%xcc, done2			;\
2052	  ldd	[ADDR + CPU_TMP1], %f18		;\
2053	ba,pt	%xcc, done2			;\
2054	  ldd	[ADDR + CPU_TMP1], %f50		;\
2055	ba,pt	%xcc, done2			;\
2056	  ldd	[ADDR + CPU_TMP1], %f20		;\
2057	ba,pt	%xcc, done2			;\
2058	  ldd	[ADDR + CPU_TMP1], %f52		;\
2059	ba,pt	%xcc, done2			;\
2060	  ldd	[ADDR + CPU_TMP1], %f22		;\
2061	ba,pt	%xcc, done2			;\
2062	  ldd	[ADDR + CPU_TMP1], %f54		;\
2063	ba,pt	%xcc, done2			;\
2064	  ldd	[ADDR + CPU_TMP1], %f24		;\
2065	ba,pt	%xcc, done2			;\
2066	  ldd	[ADDR + CPU_TMP1], %f56		;\
2067	ba,pt	%xcc, done2			;\
2068	  ldd	[ADDR + CPU_TMP1], %f26		;\
2069	ba,pt	%xcc, done2			;\
2070	  ldd	[ADDR + CPU_TMP1], %f58		;\
2071	ba,pt	%xcc, done2			;\
2072	  ldd	[ADDR + CPU_TMP1], %f28		;\
2073	ba,pt	%xcc, done2			;\
2074	  ldd	[ADDR + CPU_TMP1], %f60		;\
2075	ba,pt	%xcc, done2			;\
2076	  ldd	[ADDR + CPU_TMP1], %f30		;\
2077	ba,pt	%xcc, done2			;\
2078	  ldd	[ADDR + CPU_TMP1], %f62		;\
2079done2:
2080
2081.lddf_exception_not_aligned:
2082	/* %g2 = sfar, %g3 = sfsr */
2083	mov	%g2, %g5		! stash sfar
2084#if defined(DEBUG) || defined(NEED_FPU_EXISTS)
2085	sethi	%hi(fpu_exists), %g2	! check fpu_exists
2086	ld	[%g2 + %lo(fpu_exists)], %g2
2087	brz,a,pn %g2, 4f
2088	  nop
2089#endif
2090	CPU_ADDR(%g1, %g4)
2091	or	%g0, 1, %g4
2092	st	%g4, [%g1 + CPU_TL1_HDLR] ! set tl1_hdlr flag
2093
2094	rdpr	%tpc, %g2
2095	lda	[%g2]ASI_AIUP, %g6	! get the user's lddf instruction
2096	srl	%g6, 23, %g1		! using ldda or not?
2097	and	%g1, 1, %g1
2098	brz,a,pt %g1, 2f		! check for ldda instruction
2099	  nop
2100	srl	%g6, 13, %g1		! check immflag
2101	and	%g1, 1, %g1
2102	rdpr	%tstate, %g2		! %tstate in %g2
2103	brnz,a,pn %g1, 1f
2104	  srl	%g2, 31, %g1		! get asi from %tstate
2105	srl	%g6, 5, %g1		! get asi from instruction
2106	and	%g1, 0xFF, %g1		! imm_asi field
21071:
2108	cmp	%g1, ASI_P		! primary address space
2109	be,a,pt %icc, 2f
2110	  nop
2111	cmp	%g1, ASI_PNF		! primary no fault address space
2112	be,a,pt %icc, 2f
2113	  nop
2114	cmp	%g1, ASI_S		! secondary address space
2115	be,a,pt %icc, 2f
2116	  nop
2117	cmp	%g1, ASI_SNF		! secondary no fault address space
2118	bne,a,pn %icc, 3f
2119	  nop
21202:
2121	lduwa	[%g5]ASI_USER, %g7	! get first half of misaligned data
2122	add	%g5, 4, %g5		! increment misaligned data address
2123	lduwa	[%g5]ASI_USER, %g5	! get second half of misaligned data
2124
2125	sllx	%g7, 32, %g7
2126	or	%g5, %g7, %g5		! combine data
2127	CPU_ADDR(%g7, %g1)		! save data on a per-cpu basis
2128	stx	%g5, [%g7 + CPU_TMP1]	! save in cpu_tmp1
2129
2130	srl	%g6, 25, %g3		! %g6 has the instruction
2131	and	%g3, 0x1F, %g3		! %g3 has rd
2132	LDDF_REG(%g3, %g7, %g4)
2133
2134	CPU_ADDR(%g1, %g4)
2135	st	%g0, [%g1 + CPU_TL1_HDLR] ! clear tl1_hdlr flag
2136	FAST_TRAP_DONE
21373:
2138	CPU_ADDR(%g1, %g4)
2139	st	%g0, [%g1 + CPU_TL1_HDLR] ! clear tl1_hdlr flag
21404:
2141	set	T_USER, %g3		! trap type in %g3
2142	or	%g3, T_LDDF_ALIGN, %g3
2143	mov	%g5, %g2		! misaligned vaddr in %g2
2144	set	fpu_trap, %g1		! goto C for the little and
2145	ba,pt	%xcc, sys_trap		! no fault little asi's
2146	  sub	%g0, 1, %g4
2147
2148.stdf_exception_not_aligned:
2149	/* %g2 = sfar, %g3 = sfsr */
2150	mov	%g2, %g5
2151
2152#if defined(DEBUG) || defined(NEED_FPU_EXISTS)
2153	sethi	%hi(fpu_exists), %g7		! check fpu_exists
2154	ld	[%g7 + %lo(fpu_exists)], %g3
2155	brz,a,pn %g3, 4f
2156	  nop
2157#endif
2158	CPU_ADDR(%g1, %g4)
2159	or	%g0, 1, %g4
2160	st	%g4, [%g1 + CPU_TL1_HDLR] ! set tl1_hdlr flag
2161
2162	rdpr	%tpc, %g2
2163	lda	[%g2]ASI_AIUP, %g6	! get the user's stdf instruction
2164
2165	srl	%g6, 23, %g1		! using stda or not?
2166	and	%g1, 1, %g1
2167	brz,a,pt %g1, 2f		! check for stda instruction
2168	  nop
2169	srl	%g6, 13, %g1		! check immflag
2170	and	%g1, 1, %g1
2171	rdpr	%tstate, %g2		! %tstate in %g2
2172	brnz,a,pn %g1, 1f
2173	  srl	%g2, 31, %g1		! get asi from %tstate
2174	srl	%g6, 5, %g1		! get asi from instruction
2175	and	%g1, 0xff, %g1		! imm_asi field
21761:
2177	cmp	%g1, ASI_P		! primary address space
2178	be,a,pt %icc, 2f
2179	  nop
2180	cmp	%g1, ASI_S		! secondary address space
2181	bne,a,pn %icc, 3f
2182	  nop
21832:
2184	srl	%g6, 25, %g6
2185	and	%g6, 0x1F, %g6		! %g6 has rd
2186	CPU_ADDR(%g7, %g1)
2187	STDF_REG(%g6, %g7, %g4)		! STDF_REG(REG, ADDR, TMP)
2188
2189	ldx	[%g7 + CPU_TMP1], %g6
2190	srlx	%g6, 32, %g7
2191	stuwa	%g7, [%g5]ASI_USER	! first half
2192	add	%g5, 4, %g5		! increment misaligned data address
2193	stuwa	%g6, [%g5]ASI_USER	! second half
2194
2195	CPU_ADDR(%g1, %g4)
2196	st	%g0, [%g1 + CPU_TL1_HDLR] ! clear tl1_hdlr flag
2197	FAST_TRAP_DONE
21983:
2199	CPU_ADDR(%g1, %g4)
2200	st	%g0, [%g1 + CPU_TL1_HDLR] ! clear tl1_hdlr flag
22014:
2202	set	T_USER, %g3		! trap type in %g3
2203	or	%g3, T_STDF_ALIGN, %g3
2204	mov	%g5, %g2		! misaligned vaddr in %g2
2205	set	fpu_trap, %g1		! goto C for the little and
2206	ba,pt	%xcc, sys_trap		! nofault little asi's
2207	  sub	%g0, 1, %g4
2208
2209#ifdef DEBUG_USER_TRAPTRACECTL
2210
2211.traptrace_freeze:
2212	mov	%l0, %g1 ; mov	%l1, %g2 ; mov	%l2, %g3 ; mov	%l4, %g4
2213	TT_TRACE_L(trace_win)
2214	mov	%g4, %l4 ; mov	%g3, %l2 ; mov	%g2, %l1 ; mov	%g1, %l0
2215	set	trap_freeze, %g1
2216	mov	1, %g2
2217	st	%g2, [%g1]
2218	FAST_TRAP_DONE
2219
2220.traptrace_unfreeze:
2221	set	trap_freeze, %g1
2222	st	%g0, [%g1]
2223	mov	%l0, %g1 ; mov	%l1, %g2 ; mov	%l2, %g3 ; mov	%l4, %g4
2224	TT_TRACE_L(trace_win)
2225	mov	%g4, %l4 ; mov	%g3, %l2 ; mov	%g2, %l1 ; mov	%g1, %l0
2226	FAST_TRAP_DONE
2227
2228#endif /* DEBUG_USER_TRAPTRACECTL */
2229
2230.getcc:
2231	CPU_ADDR(%g1, %g2)
2232	stx	%o0, [%g1 + CPU_TMP1]		! save %o0
2233	rdpr	%tstate, %g3			! get tstate
2234	srlx	%g3, PSR_TSTATE_CC_SHIFT, %o0	! shift ccr to V8 psr
2235	set	PSR_ICC, %g2
2236	and	%o0, %g2, %o0			! mask out the rest
2237	srl	%o0, PSR_ICC_SHIFT, %o0		! right justify
2238	wrpr	%g0, 0, %gl
2239	mov	%o0, %g1			! move ccr to normal %g1
2240	wrpr	%g0, 1, %gl
2241	! cannot assume globals retained their values after increasing %gl
2242	CPU_ADDR(%g1, %g2)
2243	ldx	[%g1 + CPU_TMP1], %o0		! restore %o0
2244	FAST_TRAP_DONE
2245
2246.setcc:
2247	CPU_ADDR(%g1, %g2)
2248	stx	%o0, [%g1 + CPU_TMP1]		! save %o0
2249	wrpr	%g0, 0, %gl
2250	mov	%g1, %o0
2251	wrpr	%g0, 1, %gl
2252	! cannot assume globals retained their values after increasing %gl
2253	CPU_ADDR(%g1, %g2)
2254	sll	%o0, PSR_ICC_SHIFT, %g2
2255	set	PSR_ICC, %g3
2256	and	%g2, %g3, %g2			! mask out rest
2257	sllx	%g2, PSR_TSTATE_CC_SHIFT, %g2
2258	rdpr	%tstate, %g3			! get tstate
2259	srl	%g3, 0, %g3			! clear upper word
2260	or	%g3, %g2, %g3			! or in new bits
2261	wrpr	%g3, %tstate
2262	ldx	[%g1 + CPU_TMP1], %o0		! restore %o0
2263	FAST_TRAP_DONE
2264
2265/*
2266 * getpsr(void)
2267 * Note that the xcc part of the ccr is not provided.
2268 * The V8 code shows why the V9 trap is not faster:
2269 * #define GETPSR_TRAP() \
2270 *      mov %psr, %i0; jmp %l2; rett %l2+4; nop;
2271 */
2272
2273	.type	.getpsr, #function
2274.getpsr:
2275	rdpr	%tstate, %g1			! get tstate
2276	srlx	%g1, PSR_TSTATE_CC_SHIFT, %o0	! shift ccr to V8 psr
2277	set	PSR_ICC, %g2
2278	and	%o0, %g2, %o0			! mask out the rest
2279
2280	rd	%fprs, %g1			! get fprs
2281	and	%g1, FPRS_FEF, %g2		! mask out dirty upper/lower
2282	sllx	%g2, PSR_FPRS_FEF_SHIFT, %g2	! shift fef to V8 psr.ef
2283	or	%o0, %g2, %o0			! or result into psr.ef
2284
2285	set	V9_PSR_IMPLVER, %g2		! SI assigned impl/ver: 0xef
2286	or	%o0, %g2, %o0			! or psr.impl/ver
2287	FAST_TRAP_DONE
2288	SET_SIZE(.getpsr)
2289
2290/*
2291 * setpsr(newpsr)
2292 * Note that there is no support for ccr.xcc in the V9 code.
2293 */
2294
2295	.type	.setpsr, #function
2296.setpsr:
2297	rdpr	%tstate, %g1			! get tstate
2298!	setx	TSTATE_V8_UBITS, %g2
2299	or 	%g0, CCR_ICC, %g3
2300	sllx	%g3, TSTATE_CCR_SHIFT, %g2
2301
2302	andn	%g1, %g2, %g1			! zero current user bits
2303	set	PSR_ICC, %g2
2304	and	%g2, %o0, %g2			! clear all but psr.icc bits
2305	sllx	%g2, PSR_TSTATE_CC_SHIFT, %g3	! shift to tstate.ccr.icc
2306	wrpr	%g1, %g3, %tstate		! write tstate
2307
2308	set	PSR_EF, %g2
2309	and	%g2, %o0, %g2			! clear all but fp enable bit
2310	srlx	%g2, PSR_FPRS_FEF_SHIFT, %g4	! shift ef to V9 fprs.fef
2311	wr	%g0, %g4, %fprs			! write fprs
2312
2313	CPU_ADDR(%g1, %g2)			! load CPU struct addr to %g1
2314	ldn	[%g1 + CPU_THREAD], %g2		! load thread pointer
2315	ldn	[%g2 + T_LWP], %g3		! load klwp pointer
2316	ldn	[%g3 + LWP_FPU], %g2		! get lwp_fpu pointer
2317	stuw	%g4, [%g2 + FPU_FPRS]		! write fef value to fpu_fprs
2318	srlx	%g4, 2, %g4			! shift fef value to bit 0
2319	stub	%g4, [%g2 + FPU_EN]		! write fef value to fpu_en
2320	FAST_TRAP_DONE
2321	SET_SIZE(.setpsr)
2322
2323/*
2324 * getlgrp
2325 * get home lgrpid on which the calling thread is currently executing.
2326 */
2327	.type	.getlgrp, #function
2328.getlgrp:
2329	! Thanks for the incredibly helpful comments
2330	CPU_ADDR(%g1, %g2)		! load CPU struct addr to %g1 using %g2
2331	ld	[%g1 + CPU_ID], %o0	! load cpu_id
2332	ldn	[%g1 + CPU_THREAD], %g2	! load thread pointer
2333	ldn	[%g2 + T_LPL], %g2	! load lpl pointer
2334	ld	[%g2 + LPL_LGRPID], %g1	! load lpl_lgrpid
2335	sra	%g1, 0, %o1
2336	FAST_TRAP_DONE
2337	SET_SIZE(.getlgrp)
2338
2339/*
2340 * Entry for old 4.x trap (trap 0).
2341 */
2342	ENTRY_NP(syscall_trap_4x)
2343	CPU_ADDR(%g1, %g2)		! load CPU struct addr to %g1 using %g2
2344	ldn	[%g1 + CPU_THREAD], %g2	! load thread pointer
2345	ldn	[%g2 + T_LWP], %g2	! load klwp pointer
2346	ld	[%g2 + PCB_TRAP0], %g2	! lwp->lwp_pcb.pcb_trap0addr
2347	brz,pn	%g2, 1f			! has it been set?
2348	st	%l0, [%g1 + CPU_TMP1]	! delay - save some locals
2349	st	%l1, [%g1 + CPU_TMP2]
2350	rdpr	%tnpc, %l1		! save old tnpc
2351	wrpr	%g0, %g2, %tnpc		! setup tnpc
2352
2353	mov	%g1, %l0		! save CPU struct addr
2354	wrpr	%g0, 0, %gl
2355	mov	%l1, %g6		! pass tnpc to user code in %g6
2356	wrpr	%g0, 1, %gl
2357	ld	[%l0 + CPU_TMP2], %l1	! restore locals
2358	ld	[%l0 + CPU_TMP1], %l0
2359	FAST_TRAP_DONE_CHK_INTR
23601:
2361	!
2362	! check for old syscall mmap which is the only different one which
2363	! must be the same.  Others are handled in the compatibility library.
2364	!
2365	mov	%g1, %l0		! save CPU struct addr
2366	wrpr	%g0, 0, %gl
2367	cmp	%g1, OSYS_mmap		! compare to old 4.x mmap
2368	movz	%icc, SYS_mmap, %g1
2369	wrpr	%g0, 1, %gl
2370	ld	[%l0 + CPU_TMP1], %l0
2371	SYSCALL(syscall_trap32)
2372	SET_SIZE(syscall_trap_4x)
2373
2374/*
2375 * Handler for software trap 9.
2376 * Set trap0 emulation address for old 4.x system call trap.
2377 * XXX - this should be a system call.
2378 */
2379	ENTRY_NP(set_trap0_addr)
2380	CPU_ADDR(%g1, %g2)		! load CPU struct addr to %g1 using %g2
2381	st	%l0, [%g1 + CPU_TMP1]	! save some locals
2382	st	%l1, [%g1 + CPU_TMP2]
2383	mov	%g1, %l0	! preserve CPU addr
2384	wrpr	%g0, 0, %gl
2385	mov	%g1, %l1
2386	wrpr	%g0, 1, %gl
2387	! cannot assume globals retained their values after increasing %gl
2388	ldn	[%l0 + CPU_THREAD], %g2	! load thread pointer
2389	ldn	[%g2 + T_LWP], %g2	! load klwp pointer
2390	andn	%l1, 3, %l1		! force alignment
2391	st	%l1, [%g2 + PCB_TRAP0]	! lwp->lwp_pcb.pcb_trap0addr
2392	ld	[%l0 + CPU_TMP2], %l1	! restore locals
2393	ld	[%l0 + CPU_TMP1], %l0
2394	FAST_TRAP_DONE
2395	SET_SIZE(set_trap0_addr)
2396
2397/*
2398 * mmu_trap_tl1
2399 * trap handler for unexpected mmu traps.
2400 * simply checks if the trap was a user lddf/stdf alignment trap, in which
2401 * case we go to fpu_trap or a user trap from the window handler, in which
2402 * case we go save the state on the pcb.  Otherwise, we go to ptl1_panic.
2403 */
2404	.type	mmu_trap_tl1, #function
2405mmu_trap_tl1:
2406#ifdef	TRAPTRACE
2407	TRACE_PTR(%g5, %g6)
2408	GET_TRACE_TICK(%g6)
2409	stxa	%g6, [%g5 + TRAP_ENT_TICK]%asi
2410	TRACE_SAVE_TL_GL_REGS(%g5, %g6)
2411	rdpr	%tt, %g6
2412	stha	%g6, [%g5 + TRAP_ENT_TT]%asi
2413	rdpr	%tstate, %g6
2414	stxa	%g6, [%g5 + TRAP_ENT_TSTATE]%asi
2415	stna	%sp, [%g5 + TRAP_ENT_SP]%asi
2416	stna	%g0, [%g5 + TRAP_ENT_TR]%asi
2417	rdpr	%tpc, %g6
2418	stna	%g6, [%g5 + TRAP_ENT_TPC]%asi
2419	MMU_FAULT_STATUS_AREA(%g6)
2420	ldx	[%g6 + MMFSA_D_ADDR], %g6
2421	stna	%g6, [%g5 + TRAP_ENT_F1]%asi !  MMU fault address
2422	CPU_PADDR(%g7, %g6);
2423	add	%g7, CPU_TL1_HDLR, %g7
2424	lda	[%g7]ASI_MEM, %g6
2425	stna	%g6, [%g5 + TRAP_ENT_F2]%asi
2426	MMU_FAULT_STATUS_AREA(%g6)
2427	ldx	[%g6 + MMFSA_D_TYPE], %g7 ! XXXQ should be a MMFSA_F_ constant?
2428	ldx	[%g6 + MMFSA_D_CTX], %g6
2429	sllx	%g6, SFSR_CTX_SHIFT, %g6
2430	or	%g6, %g7, %g6
2431	stna	%g6, [%g5 + TRAP_ENT_F3]%asi ! MMU context/type
2432	set	0xdeadbeef, %g6
2433	stna	%g6, [%g5 + TRAP_ENT_F4]%asi
2434	TRACE_NEXT(%g5, %g6, %g7)
2435#endif /* TRAPTRACE */
2436	CPU_PADDR(%g7, %g6);
2437	add     %g7, CPU_TL1_HDLR, %g7		! %g7 = &cpu_m.tl1_hdlr (PA)
2438	lda	[%g7]ASI_MEM, %g6
2439	brz,a,pt %g6, 1f
2440	  nop
2441	sta     %g0, [%g7]ASI_MEM
2442	! XXXQ need to setup registers for sfmmu_mmu_trap?
2443	ba,a,pt	%xcc, sfmmu_mmu_trap		! handle page faults
24441:
2445	rdpr	%tpc, %g7
2446	/* in user_rtt? */
2447	set	rtt_fill_start, %g6
2448	cmp	%g7, %g6
2449	blu,pn	%xcc, 6f
2450	 .empty
2451	set	rtt_fill_end, %g6
2452	cmp	%g7, %g6
2453	bgeu,pn %xcc, 6f
2454	 nop
2455	set	fault_rtt_fn1, %g7
2456	ba,a	7f
24576:
2458	! check to see if the trap pc is in a window spill/fill handling
2459	rdpr	%tpc, %g7
2460	/* tpc should be in the trap table */
2461	set	trap_table, %g6
2462	cmp	%g7, %g6
2463	blu,a,pn %xcc, ptl1_panic
2464	  mov	PTL1_BAD_MMUTRAP, %g1
2465	set	etrap_table, %g6
2466	cmp	%g7, %g6
2467	bgeu,a,pn %xcc, ptl1_panic
2468	  mov	PTL1_BAD_MMUTRAP, %g1
2469	! pc is inside the trap table, convert to trap type
2470	srl	%g7, 5, %g6		! XXXQ need #define
2471	and	%g6, 0x1ff, %g6		! XXXQ need #define
2472	! and check for a window trap type
2473	and	%g6, WTRAP_TTMASK, %g6
2474	cmp	%g6, WTRAP_TYPE
2475	bne,a,pn %xcc, ptl1_panic
2476	  mov	PTL1_BAD_MMUTRAP, %g1
2477	andn	%g7, WTRAP_ALIGN, %g7	/* 128 byte aligned */
2478	add	%g7, WTRAP_FAULTOFF, %g7
2479
24807:
2481	! Arguments are passed in the global set active after the
2482	! 'done' instruction. Before switching sets, must save
2483	! the calculated next pc
2484	wrpr	%g0, %g7, %tnpc
2485	wrpr	%g0, 1, %gl
2486	rdpr	%tt, %g5
2487	MMU_FAULT_STATUS_AREA(%g7)
2488	cmp	%g5, T_ALIGNMENT
2489	be,pn	%xcc, 1f
2490	ldx	[%g7 + MMFSA_D_ADDR], %g6
2491	ldx	[%g7 + MMFSA_D_CTX], %g7
2492	srlx	%g6, MMU_PAGESHIFT, %g6		/* align address */
2493	cmp	%g7, USER_CONTEXT_TYPE
2494	sllx	%g6, MMU_PAGESHIFT, %g6
2495	movgu	%icc, USER_CONTEXT_TYPE, %g7
2496	or	%g6, %g7, %g6			/* TAG_ACCESS */
24971:
2498	done
2499	SET_SIZE(mmu_trap_tl1)
2500
2501/*
2502 * Several traps use kmdb_trap and kmdb_trap_tl1 as their handlers.  These
2503 * traps are valid only when kmdb is loaded.  When the debugger is active,
2504 * the code below is rewritten to transfer control to the appropriate
2505 * debugger entry points.
2506 */
2507	.global	kmdb_trap
2508	.align	8
2509kmdb_trap:
2510	ba,a	trap_table0
2511	jmp	%g1 + 0
2512	nop
2513
2514	.global	kmdb_trap_tl1
2515	.align	8
2516kmdb_trap_tl1:
2517	ba,a	trap_table0
2518	jmp	%g1 + 0
2519	nop
2520
2521/*
2522 * This entry is copied from OBP's trap table during boot.
2523 */
2524	.global	obp_bpt
2525	.align	8
2526obp_bpt:
2527	NOT
2528
2529
2530
2531#ifdef	TRAPTRACE
2532/*
2533 * TRAPTRACE support.
2534 * labels here are branched to with "rd %pc, %g7" in the delay slot.
2535 * Return is done by "jmp %g7 + 4".
2536 */
2537
2538trace_dmmu:
2539	TRACE_PTR(%g3, %g6)
2540	GET_TRACE_TICK(%g6)
2541	stxa	%g6, [%g3 + TRAP_ENT_TICK]%asi
2542	TRACE_SAVE_TL_GL_REGS(%g3, %g6)
2543	rdpr	%tt, %g6
2544	stha	%g6, [%g3 + TRAP_ENT_TT]%asi
2545	rdpr	%tstate, %g6
2546	stxa	%g6, [%g3 + TRAP_ENT_TSTATE]%asi
2547	stna	%sp, [%g3 + TRAP_ENT_SP]%asi
2548	rdpr	%tpc, %g6
2549	stna	%g6, [%g3 + TRAP_ENT_TPC]%asi
2550	MMU_FAULT_STATUS_AREA(%g6)
2551	ldx	[%g6 + MMFSA_D_ADDR], %g4
2552	stxa	%g4, [%g3 + TRAP_ENT_TR]%asi
2553	ldx	[%g6 + MMFSA_D_CTX], %g4
2554	stxa	%g4, [%g3 + TRAP_ENT_F1]%asi
2555	ldx	[%g6 + MMFSA_D_TYPE], %g4
2556	stxa	%g4, [%g3 + TRAP_ENT_F2]%asi
2557	stxa	%g6, [%g3 + TRAP_ENT_F3]%asi
2558	stna	%g0, [%g3 + TRAP_ENT_F4]%asi
2559	TRACE_NEXT(%g3, %g4, %g5)
2560	jmp	%g7 + 4
2561	nop
2562
2563trace_immu:
2564	TRACE_PTR(%g3, %g6)
2565	GET_TRACE_TICK(%g6)
2566	stxa	%g6, [%g3 + TRAP_ENT_TICK]%asi
2567	TRACE_SAVE_TL_GL_REGS(%g3, %g6)
2568	rdpr	%tt, %g6
2569	stha	%g6, [%g3 + TRAP_ENT_TT]%asi
2570	rdpr	%tstate, %g6
2571	stxa	%g6, [%g3 + TRAP_ENT_TSTATE]%asi
2572	stna	%sp, [%g3 + TRAP_ENT_SP]%asi
2573	rdpr	%tpc, %g6
2574	stna	%g6, [%g3 + TRAP_ENT_TPC]%asi
2575	MMU_FAULT_STATUS_AREA(%g6)
2576	ldx	[%g6 + MMFSA_I_ADDR], %g4
2577	stxa	%g4, [%g3 + TRAP_ENT_TR]%asi
2578	ldx	[%g6 + MMFSA_I_CTX], %g4
2579	stxa	%g4, [%g3 + TRAP_ENT_F1]%asi
2580	ldx	[%g6 + MMFSA_I_TYPE], %g4
2581	stxa	%g4, [%g3 + TRAP_ENT_F2]%asi
2582	stxa	%g6, [%g3 + TRAP_ENT_F3]%asi
2583	stna	%g0, [%g3 + TRAP_ENT_F4]%asi
2584	TRACE_NEXT(%g3, %g4, %g5)
2585	jmp	%g7 + 4
2586	nop
2587
2588trace_gen:
2589	TRACE_PTR(%g3, %g6)
2590	GET_TRACE_TICK(%g6)
2591	stxa	%g6, [%g3 + TRAP_ENT_TICK]%asi
2592	TRACE_SAVE_TL_GL_REGS(%g3, %g6)
2593	rdpr	%tt, %g6
2594	stha	%g6, [%g3 + TRAP_ENT_TT]%asi
2595	rdpr	%tstate, %g6
2596	stxa	%g6, [%g3 + TRAP_ENT_TSTATE]%asi
2597	stna	%sp, [%g3 + TRAP_ENT_SP]%asi
2598	rdpr	%tpc, %g6
2599	stna	%g6, [%g3 + TRAP_ENT_TPC]%asi
2600	stna	%g0, [%g3 + TRAP_ENT_TR]%asi
2601	stna	%g0, [%g3 + TRAP_ENT_F1]%asi
2602	stna	%g0, [%g3 + TRAP_ENT_F2]%asi
2603	stna	%g0, [%g3 + TRAP_ENT_F3]%asi
2604	stna	%g0, [%g3 + TRAP_ENT_F4]%asi
2605	TRACE_NEXT(%g3, %g4, %g5)
2606	jmp	%g7 + 4
2607	nop
2608
2609trace_win:
2610	TRACE_WIN_INFO(0, %l0, %l1, %l2)
2611	! Keep the locals as clean as possible, caller cleans %l4
2612	clr	%l2
2613	clr	%l1
2614	jmp	%l4 + 4
2615	  clr	%l0
2616
2617/*
2618 * Trace a tsb hit
2619 * g1 = tsbe pointer (in/clobbered)
2620 * g2 = tag access register (in)
2621 * g3 - g4 = scratch (clobbered)
2622 * g5 = tsbe data (in)
2623 * g6 = scratch (clobbered)
2624 * g7 = pc we jumped here from (in)
2625 */
2626
2627	! Do not disturb %g5, it will be used after the trace
2628	ALTENTRY(trace_tsbhit)
2629	TRACE_TSBHIT(0)
2630	jmp	%g7 + 4
2631	nop
2632
2633/*
2634 * Trace a TSB miss
2635 *
2636 * g1 = tsb8k pointer (in)
2637 * g2 = tag access register (in)
2638 * g3 = tsb4m pointer (in)
2639 * g4 = tsbe tag (in/clobbered)
2640 * g5 - g6 = scratch (clobbered)
2641 * g7 = pc we jumped here from (in)
2642 */
2643	.global	trace_tsbmiss
2644trace_tsbmiss:
2645	membar	#Sync
2646	sethi	%hi(FLUSH_ADDR), %g6
2647	flush	%g6
2648	TRACE_PTR(%g5, %g6)
2649	GET_TRACE_TICK(%g6)
2650	stxa	%g6, [%g5 + TRAP_ENT_TICK]%asi
2651	stna	%g2, [%g5 + TRAP_ENT_SP]%asi		! tag access
2652	stna	%g4, [%g5 + TRAP_ENT_F1]%asi		! XXX? tsb tag
2653	rdpr	%tnpc, %g6
2654	stna	%g6, [%g5 + TRAP_ENT_F2]%asi
2655	stna	%g1, [%g5 + TRAP_ENT_F3]%asi		! tsb8k pointer
2656	rdpr	%tpc, %g6
2657	stna	%g6, [%g5 + TRAP_ENT_TPC]%asi
2658	TRACE_SAVE_TL_GL_REGS(%g5, %g6)
2659	rdpr	%tt, %g6
2660	or	%g6, TT_MMU_MISS, %g4
2661	stha	%g4, [%g5 + TRAP_ENT_TT]%asi
2662	mov	MMFSA_D_ADDR, %g4
2663	cmp	%g6, FAST_IMMU_MISS_TT
2664	move	%xcc, MMFSA_I_ADDR, %g4
2665	cmp	%g6, T_INSTR_MMU_MISS
2666	move	%xcc, MMFSA_I_ADDR, %g4
2667	MMU_FAULT_STATUS_AREA(%g6)
2668	ldx	[%g6 + %g4], %g6
2669	stxa	%g6, [%g5 + TRAP_ENT_TSTATE]%asi	! tag target
2670	cmp	%g4, MMFSA_D_ADDR
2671	move	%xcc, MMFSA_D_CTX, %g4
2672	movne	%xcc, MMFSA_I_CTX, %g4
2673	MMU_FAULT_STATUS_AREA(%g6)
2674	ldx	[%g6 + %g4], %g6
2675	stxa	%g6, [%g5 + TRAP_ENT_F4]%asi		! context ID
2676	stna	%g3, [%g5 + TRAP_ENT_TR]%asi		! tsb4m pointer
2677	TRACE_NEXT(%g5, %g4, %g6)
2678	jmp	%g7 + 4
2679	nop
2680
2681/*
2682 * g2 = tag access register (in)
2683 * g3 = ctx type (0, 1 or 2) (in) (not used)
2684 */
2685trace_dataprot:
2686	membar	#Sync
2687	sethi	%hi(FLUSH_ADDR), %g6
2688	flush	%g6
2689	TRACE_PTR(%g1, %g6)
2690	GET_TRACE_TICK(%g6)
2691	stxa	%g6, [%g1 + TRAP_ENT_TICK]%asi
2692	rdpr	%tpc, %g6
2693	stna	%g6, [%g1 + TRAP_ENT_TPC]%asi
2694	rdpr	%tstate, %g6
2695	stxa	%g6, [%g1 + TRAP_ENT_TSTATE]%asi
2696	stna	%g2, [%g1 + TRAP_ENT_SP]%asi		! tag access reg
2697	stna	%g0, [%g1 + TRAP_ENT_F1]%asi
2698	stna	%g0, [%g1 + TRAP_ENT_F2]%asi
2699	stna	%g0, [%g1 + TRAP_ENT_F3]%asi
2700	stna	%g0, [%g1 + TRAP_ENT_F4]%asi
2701	TRACE_SAVE_TL_GL_REGS(%g1, %g6)
2702	rdpr	%tt, %g6
2703	stha	%g6, [%g1 + TRAP_ENT_TT]%asi
2704	mov	MMFSA_D_CTX, %g4
2705	cmp	%g6, FAST_IMMU_MISS_TT
2706	move	%xcc, MMFSA_I_CTX, %g4
2707	cmp	%g6, T_INSTR_MMU_MISS
2708	move	%xcc, MMFSA_I_CTX, %g4
2709	MMU_FAULT_STATUS_AREA(%g6)
2710	ldx	[%g6 + %g4], %g6
2711	stxa	%g6, [%g1 + TRAP_ENT_TR]%asi	! context ID
2712	TRACE_NEXT(%g1, %g4, %g5)
2713	jmp	%g7 + 4
2714	nop
2715
2716#endif /* TRAPTRACE */
2717
2718/*
2719 * Handle watchdog reset trap. Enable the MMU using the MMU_ENABLE
2720 * HV service, which requires the return target to be specified as a VA
2721 * since we are enabling the MMU. We set the target to ptl1_panic.
2722 */
2723
2724	.type	.watchdog_trap, #function
2725.watchdog_trap:
2726	mov	1, %o0
2727	setx	ptl1_panic, %g2, %o1
2728	mov	MMU_ENABLE, %o5
2729	ta	FAST_TRAP
2730	done
2731	SET_SIZE(.watchdog_trap)
2732/*
2733 * synthesize for trap(): SFAR in %g2, SFSR in %g3
2734 */
2735	.type	.dmmu_exc_lddf_not_aligned, #function
2736.dmmu_exc_lddf_not_aligned:
2737	MMU_FAULT_STATUS_AREA(%g3)
2738	ldx	[%g3 + MMFSA_D_ADDR], %g2
2739	/* Fault type not available in MMU fault status area */
2740	mov	MMFSA_F_UNALIGN, %g1
2741	ldx	[%g3 + MMFSA_D_CTX], %g3
2742	sllx	%g3, SFSR_CTX_SHIFT, %g3
2743	btst	1, %sp
2744	bnz,pt	%xcc, .lddf_exception_not_aligned
2745	or	%g3, %g1, %g3			/* SFSR */
2746	ba,a,pt	%xcc, .mmu_exception_not_aligned
2747	SET_SIZE(.dmmu_exc_lddf_not_aligned)
2748
2749/*
2750 * synthesize for trap(): SFAR in %g2, SFSR in %g3
2751 */
2752	.type	.dmmu_exc_stdf_not_aligned, #function
2753.dmmu_exc_stdf_not_aligned:
2754	MMU_FAULT_STATUS_AREA(%g3)
2755	ldx	[%g3 + MMFSA_D_ADDR], %g2
2756	/* Fault type not available in MMU fault status area */
2757	mov	MMFSA_F_UNALIGN, %g1
2758	ldx	[%g3 + MMFSA_D_CTX], %g3
2759	sllx	%g3, SFSR_CTX_SHIFT, %g3
2760	btst	1, %sp
2761	bnz,pt	%xcc, .stdf_exception_not_aligned
2762	or	%g3, %g1, %g3			/* SFSR */
2763	ba,a,pt	%xcc, .mmu_exception_not_aligned
2764	SET_SIZE(.dmmu_exc_stdf_not_aligned)
2765
2766	.type	.dmmu_exception, #function
2767.dmmu_exception:
2768	MMU_FAULT_STATUS_AREA(%g3)
2769	ldx	[%g3 + MMFSA_D_ADDR], %g2
2770	ldx	[%g3 + MMFSA_D_TYPE], %g1
2771	ldx	[%g3 + MMFSA_D_CTX], %g4
2772	srlx	%g2, MMU_PAGESHIFT, %g2		/* align address */
2773	sllx	%g2, MMU_PAGESHIFT, %g2
2774	sllx	%g4, SFSR_CTX_SHIFT, %g3
2775	or	%g3, %g1, %g3			/* SFSR */
2776	cmp	%g4, USER_CONTEXT_TYPE
2777	movgeu	%icc, USER_CONTEXT_TYPE, %g4
2778	or	%g2, %g4, %g2			/* TAG_ACCESS */
2779	ba,pt	%xcc, .mmu_exception_end
2780	mov	T_DATA_EXCEPTION, %g1
2781	SET_SIZE(.dmmu_exception)
2782/*
2783 * expects offset into tsbmiss area in %g1 and return pc in %g7
2784 */
2785stat_mmu:
2786	CPU_INDEX(%g5, %g6)
2787	sethi	%hi(tsbmiss_area), %g6
2788	sllx	%g5, TSBMISS_SHIFT, %g5
2789	or	%g6, %lo(tsbmiss_area), %g6
2790	add	%g6, %g5, %g6		/* g6 = tsbmiss area */
2791	ld	[%g6 + %g1], %g5
2792	add	%g5, 1, %g5
2793	jmp	%g7 + 4
2794	st	%g5, [%g6 + %g1]
2795
2796
2797/*
2798 * fast_trap_done, fast_trap_done_chk_intr:
2799 *
2800 * Due to the design of UltraSPARC pipeline, pending interrupts are not
2801 * taken immediately after a RETRY or DONE instruction which causes IE to
2802 * go from 0 to 1. Instead, the instruction at %tpc or %tnpc is allowed
2803 * to execute first before taking any interrupts. If that instruction
2804 * results in other traps, and if the corresponding trap handler runs
2805 * entirely at TL=1 with interrupts disabled, then pending interrupts
2806 * won't be taken until after yet another instruction following the %tpc
2807 * or %tnpc.
2808 *
2809 * A malicious user program can use this feature to block out interrupts
2810 * for extended durations, which can result in send_mondo_timeout kernel
2811 * panic.
2812 *
2813 * This problem is addressed by servicing any pending interrupts via
2814 * sys_trap before returning back to the user mode from a fast trap
2815 * handler. The "done" instruction within a fast trap handler, which
2816 * runs entirely at TL=1 with interrupts disabled, is replaced with the
2817 * FAST_TRAP_DONE macro, which branches control to this fast_trap_done
2818 * entry point.
2819 *
2820 * We check for any pending interrupts here and force a sys_trap to
2821 * service those interrupts, if any. To minimize overhead, pending
2822 * interrupts are checked if the %tpc happens to be at 16K boundary,
2823 * which allows a malicious program to execute at most 4K consecutive
2824 * instructions before we service any pending interrupts. If a worst
2825 * case fast trap handler takes about 2 usec, then interrupts will be
2826 * blocked for at most 8 msec, less than a clock tick.
2827 *
2828 * For the cases where we don't know if the %tpc will cross a 16K
2829 * boundary, we can't use the above optimization and always process
2830 * any pending interrupts via fast_frap_done_chk_intr entry point.
2831 *
2832 * Entry Conditions:
2833 * 	%pstate		am:0 priv:1 ie:0
2834 * 			globals are AG (not normal globals)
2835 */
2836
2837	.global	fast_trap_done, fast_trap_done_chk_intr
2838fast_trap_done:
2839	rdpr	%tpc, %g5
2840	sethi	%hi(0xffffc000), %g6	! 1's complement of 0x3fff
2841	andncc	%g5, %g6, %g0		! check lower 14 bits of %tpc
2842	bz,pn	%icc, 1f		! branch if zero (lower 32 bits only)
2843	nop
2844	done
2845
2846fast_trap_done_chk_intr:
28471:	rd	SOFTINT, %g6
2848	brnz,pn	%g6, 2f		! branch if any pending intr
2849	nop
2850	done
2851
28522:
2853	/*
2854	 * We get here if there are any pending interrupts.
2855	 * Adjust %tpc/%tnpc as we'll be resuming via "retry"
2856	 * instruction.
2857	 */
2858	rdpr	%tnpc, %g5
2859	wrpr	%g0, %g5, %tpc
2860	add	%g5, 4, %g5
2861	wrpr	%g0, %g5, %tnpc
2862
2863	/*
2864	 * Force a dummy sys_trap call so that interrupts can be serviced.
2865	 */
2866	set	fast_trap_dummy_call, %g1
2867	ba,pt	%xcc, sys_trap
2868	  mov	-1, %g4
2869
2870fast_trap_dummy_call:
2871	retl
2872	nop
2873
2874/*
2875 * Currently the brand syscall interposition code is not enabled by
2876 * default.  Instead, when a branded zone is first booted the brand
2877 * infrastructure will patch the trap table so that the syscall
2878 * entry points are redirected to syscall_wrapper32 and syscall_wrapper
2879 * for ILP32 and LP64 syscalls respectively.  this is done in
2880 * brand_plat_interposition_enable().  Note that the syscall wrappers
2881 * below do not collect any trap trace data since the syscall hot patch
2882 * points are reached after trap trace data has already been collected.
2883 */
2884#define	BRAND_CALLBACK(callback_id)					    \
2885	CPU_ADDR(%g2, %g1)		/* load CPU struct addr to %g2	*/ ;\
2886	ldn	[%g2 + CPU_THREAD], %g3	/* load thread pointer		*/ ;\
2887	ldn	[%g3 + T_PROCP], %g3	/* get proc pointer		*/ ;\
2888	ldn	[%g3 + P_BRAND], %g3	/* get brand pointer		*/ ;\
2889	brz	%g3, 1f			/* No brand?  No callback. 	*/ ;\
2890	nop 								   ;\
2891	ldn	[%g3 + B_MACHOPS], %g3	/* get machops list		*/ ;\
2892	ldn	[%g3 + (callback_id << 3)], %g3 			   ;\
2893	brz	%g3, 1f							   ;\
2894	/*								    \
2895	 * This isn't pretty.  We want a low-latency way for the callback   \
2896	 * routine to decline to do anything.  We just pass in an address   \
2897	 * the routine can directly jmp back to, pretending that nothing    \
2898	 * has happened.						    \
2899	 * 								    \
2900	 * %g1: return address (where the brand handler jumps back to)	    \
2901	 * %g2: address of CPU structure				    \
2902	 * %g3: address of brand handler (where we will jump to)	    \
2903	 */								    \
2904	mov	%pc, %g1						   ;\
2905	add	%g1, 16, %g1						   ;\
2906	jmp	%g3							   ;\
2907	nop								   ;\
29081:
2909
2910	ENTRY_NP(syscall_wrapper32)
2911	BRAND_CALLBACK(BRAND_CB_SYSCALL32)
2912	SYSCALL_NOTT(syscall_trap32)
2913	SET_SIZE(syscall_wrapper32)
2914
2915	ENTRY_NP(syscall_wrapper)
2916	BRAND_CALLBACK(BRAND_CB_SYSCALL)
2917	SYSCALL_NOTT(syscall_trap)
2918	SET_SIZE(syscall_wrapper)
2919
2920#endif	/* lint */
2921