1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2010 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #include <sys/types.h> 28 #include <sys/errno.h> 29 #include <sys/debug.h> 30 #include <sys/time.h> 31 #include <sys/sysmacros.h> 32 #include <sys/systm.h> 33 #include <sys/user.h> 34 #include <sys/stropts.h> 35 #include <sys/stream.h> 36 #include <sys/strlog.h> 37 #include <sys/strsubr.h> 38 #include <sys/cmn_err.h> 39 #include <sys/cpu.h> 40 #include <sys/kmem.h> 41 #include <sys/conf.h> 42 #include <sys/ddi.h> 43 #include <sys/sunddi.h> 44 #include <sys/ksynch.h> 45 #include <sys/stat.h> 46 #include <sys/kstat.h> 47 #include <sys/vtrace.h> 48 #include <sys/strsun.h> 49 #include <sys/dlpi.h> 50 #include <sys/ethernet.h> 51 #include <net/if.h> 52 #include <sys/varargs.h> 53 #include <sys/machsystm.h> 54 #include <sys/modctl.h> 55 #include <sys/modhash.h> 56 #include <sys/mac_provider.h> 57 #include <sys/mac_ether.h> 58 #include <sys/taskq.h> 59 #include <sys/note.h> 60 #include <sys/mach_descrip.h> 61 #include <sys/mac_provider.h> 62 #include <sys/mdeg.h> 63 #include <sys/ldc.h> 64 #include <sys/vsw_fdb.h> 65 #include <sys/vsw.h> 66 #include <sys/vio_mailbox.h> 67 #include <sys/vnet_mailbox.h> 68 #include <sys/vnet_common.h> 69 #include <sys/vio_util.h> 70 #include <sys/sdt.h> 71 #include <sys/atomic.h> 72 #include <sys/callb.h> 73 #include <sys/vlan.h> 74 75 /* 76 * Function prototypes. 77 */ 78 static int vsw_attach(dev_info_t *, ddi_attach_cmd_t); 79 static int vsw_detach(dev_info_t *, ddi_detach_cmd_t); 80 static int vsw_unattach(vsw_t *vswp); 81 static int vsw_get_md_physname(vsw_t *, md_t *, mde_cookie_t, char *); 82 static int vsw_get_md_smodes(vsw_t *, md_t *, mde_cookie_t, uint8_t *); 83 void vsw_destroy_rxpools(void *); 84 85 /* MDEG routines */ 86 static int vsw_mdeg_register(vsw_t *vswp); 87 static void vsw_mdeg_unregister(vsw_t *vswp); 88 static int vsw_mdeg_cb(void *cb_argp, mdeg_result_t *); 89 static int vsw_port_mdeg_cb(void *cb_argp, mdeg_result_t *); 90 static int vsw_get_initial_md_properties(vsw_t *vswp, md_t *, mde_cookie_t); 91 static int vsw_read_mdprops(vsw_t *vswp); 92 static void vsw_vlan_read_ids(void *arg, int type, md_t *mdp, 93 mde_cookie_t node, uint16_t *pvidp, vsw_vlanid_t **vidspp, 94 uint16_t *nvidsp, uint16_t *default_idp); 95 static void vsw_port_read_bandwidth(vsw_port_t *portp, md_t *mdp, 96 mde_cookie_t node, uint64_t *bw); 97 static int vsw_port_read_props(vsw_port_t *portp, vsw_t *vswp, 98 md_t *mdp, mde_cookie_t *node); 99 static void vsw_read_pri_eth_types(vsw_t *vswp, md_t *mdp, 100 mde_cookie_t node); 101 static void vsw_mtu_read(vsw_t *vswp, md_t *mdp, mde_cookie_t node, 102 uint32_t *mtu); 103 static int vsw_mtu_update(vsw_t *vswp, uint32_t mtu); 104 static void vsw_linkprop_read(vsw_t *vswp, md_t *mdp, mde_cookie_t node, 105 boolean_t *pls); 106 static void vsw_bandwidth_read(vsw_t *vswp, md_t *mdp, mde_cookie_t node, 107 uint64_t *bw); 108 static void vsw_update_md_prop(vsw_t *, md_t *, mde_cookie_t); 109 static void vsw_save_lmacaddr(vsw_t *vswp, uint64_t macaddr); 110 static boolean_t vsw_cmp_vids(vsw_vlanid_t *vids1, 111 vsw_vlanid_t *vids2, int nvids); 112 113 /* Mac driver related routines */ 114 static int vsw_mac_register(vsw_t *); 115 static int vsw_mac_unregister(vsw_t *); 116 static int vsw_m_stat(void *, uint_t, uint64_t *); 117 static void vsw_m_stop(void *arg); 118 static int vsw_m_start(void *arg); 119 static int vsw_m_unicst(void *arg, const uint8_t *); 120 static int vsw_m_multicst(void *arg, boolean_t, const uint8_t *); 121 static int vsw_m_promisc(void *arg, boolean_t); 122 static mblk_t *vsw_m_tx(void *arg, mblk_t *); 123 void vsw_mac_link_update(vsw_t *vswp, link_state_t link_state); 124 void vsw_mac_rx(vsw_t *vswp, mac_resource_handle_t mrh, 125 mblk_t *mp, vsw_macrx_flags_t flags); 126 void vsw_physlink_state_update(vsw_t *vswp); 127 128 /* 129 * Functions imported from other files. 130 */ 131 extern void vsw_setup_switching_thread(void *arg); 132 extern int vsw_setup_switching_start(vsw_t *vswp); 133 extern void vsw_setup_switching_stop(vsw_t *vswp); 134 extern int vsw_setup_switching(vsw_t *); 135 extern void vsw_switch_frame_nop(vsw_t *vswp, mblk_t *mp, int caller, 136 vsw_port_t *port, mac_resource_handle_t mrh); 137 extern int vsw_add_mcst(vsw_t *, uint8_t, uint64_t, void *); 138 extern int vsw_del_mcst(vsw_t *, uint8_t, uint64_t, void *); 139 extern void vsw_del_mcst_vsw(vsw_t *); 140 extern mcst_addr_t *vsw_del_addr(uint8_t devtype, void *arg, uint64_t addr); 141 extern void vsw_detach_ports(vsw_t *vswp); 142 extern int vsw_port_add(vsw_t *vswp, md_t *mdp, mde_cookie_t *node); 143 extern int vsw_port_detach(vsw_t *vswp, int p_instance); 144 static int vsw_port_update(vsw_t *vswp, md_t *curr_mdp, mde_cookie_t curr_mdex, 145 md_t *prev_mdp, mde_cookie_t prev_mdex); 146 extern int vsw_port_attach(vsw_port_t *port); 147 extern vsw_port_t *vsw_lookup_port(vsw_t *vswp, int p_instance); 148 extern int vsw_mac_open(vsw_t *vswp); 149 extern void vsw_mac_close(vsw_t *vswp); 150 extern void vsw_mac_cleanup_ports(vsw_t *vswp); 151 extern void vsw_unset_addrs(vsw_t *vswp); 152 extern void vsw_setup_switching_post_process(vsw_t *vswp); 153 extern void vsw_create_vlans(void *arg, int type); 154 extern void vsw_destroy_vlans(void *arg, int type); 155 extern void vsw_vlan_add_ids(void *arg, int type); 156 extern void vsw_vlan_remove_ids(void *arg, int type); 157 extern void vsw_vlan_unaware_port_reset(vsw_port_t *portp); 158 extern uint32_t vsw_vlan_frame_untag(void *arg, int type, mblk_t **np, 159 mblk_t **npt); 160 extern mblk_t *vsw_vlan_frame_pretag(void *arg, int type, mblk_t *mp); 161 extern void vsw_hio_cleanup(vsw_t *vswp); 162 extern void vsw_hio_start_ports(vsw_t *vswp); 163 extern void vsw_hio_port_update(vsw_port_t *portp, boolean_t hio_enabled); 164 extern int vsw_mac_multicast_add(vsw_t *, vsw_port_t *, mcst_addr_t *, int); 165 extern void vsw_mac_multicast_remove(vsw_t *, vsw_port_t *, mcst_addr_t *, int); 166 extern void vsw_mac_port_reconfig_vlans(vsw_port_t *portp, uint16_t new_pvid, 167 vsw_vlanid_t *new_vids, int new_nvids); 168 extern int vsw_mac_client_init(vsw_t *vswp, vsw_port_t *port, int type); 169 extern void vsw_mac_client_cleanup(vsw_t *vswp, vsw_port_t *port, int type); 170 extern void vsw_if_mac_reconfig(vsw_t *vswp, boolean_t update_vlans, 171 uint16_t new_pvid, vsw_vlanid_t *new_vids, int new_nvids); 172 extern void vsw_reset_ports(vsw_t *vswp); 173 extern void vsw_port_reset(vsw_port_t *portp); 174 extern void vsw_physlink_update_ports(vsw_t *vswp); 175 extern void vsw_update_bandwidth(vsw_t *vswp, vsw_port_t *port, int type, 176 uint64_t maxbw); 177 178 /* 179 * Internal tunables. 180 */ 181 int vsw_num_handshakes = VNET_NUM_HANDSHAKES; /* # of handshake attempts */ 182 int vsw_wretries = 100; /* # of write attempts */ 183 int vsw_desc_delay = 0; /* delay in us */ 184 int vsw_read_attempts = 5; /* # of reads of descriptor */ 185 int vsw_setup_switching_delay = 3; /* setup sw timeout interval in sec */ 186 int vsw_mac_open_retries = 300; /* max # of mac_open() retries */ 187 /* 300*3 = 900sec(15min) of max tmout */ 188 int vsw_ldc_tx_delay = 5; /* delay(ticks) for tx retries */ 189 int vsw_ldc_tx_retries = 10; /* # of ldc tx retries */ 190 int vsw_ldc_retries = 5; /* # of ldc_close() retries */ 191 int vsw_ldc_delay = 1000; /* 1 ms delay for ldc_close() */ 192 boolean_t vsw_ldc_rxthr_enabled = B_TRUE; /* LDC Rx thread enabled */ 193 boolean_t vsw_ldc_txthr_enabled = B_TRUE; /* LDC Tx thread enabled */ 194 int vsw_rxpool_cleanup_delay = 100000; /* 100ms */ 195 196 197 uint32_t vsw_fdb_nchains = 8; /* # of chains in fdb hash table */ 198 uint32_t vsw_vlan_nchains = 4; /* # of chains in vlan id hash table */ 199 uint32_t vsw_ethermtu = 1500; /* mtu of the device */ 200 201 /* delay in usec to wait for all references on a fdb entry to be dropped */ 202 uint32_t vsw_fdbe_refcnt_delay = 10; 203 204 /* 205 * Default vlan id. This is only used internally when the "default-vlan-id" 206 * property is not present in the MD device node. Therefore, this should not be 207 * used as a tunable; if this value is changed, the corresponding variable 208 * should be updated to the same value in all vnets connected to this vsw. 209 */ 210 uint16_t vsw_default_vlan_id = 1; 211 212 /* 213 * Workaround for a version handshake bug in obp's vnet. 214 * If vsw initiates version negotiation starting from the highest version, 215 * obp sends a nack and terminates version handshake. To workaround 216 * this, we do not initiate version handshake when the channel comes up. 217 * Instead, we wait for the peer to send its version info msg and go through 218 * the version protocol exchange. If we successfully negotiate a version, 219 * before sending the ack, we send our version info msg to the peer 220 * using the <major,minor> version that we are about to ack. 221 */ 222 boolean_t vsw_obp_ver_proto_workaround = B_TRUE; 223 224 /* 225 * In the absence of "priority-ether-types" property in MD, the following 226 * internal tunable can be set to specify a single priority ethertype. 227 */ 228 uint64_t vsw_pri_eth_type = 0; 229 230 /* 231 * Number of transmit priority buffers that are preallocated per device. 232 * This number is chosen to be a small value to throttle transmission 233 * of priority packets. Note: Must be a power of 2 for vio_create_mblks(). 234 */ 235 uint32_t vsw_pri_tx_nmblks = 64; 236 237 /* 238 * Number of RARP packets sent to announce macaddr to the physical switch, 239 * after vsw's physical device is changed dynamically or after a guest (client 240 * vnet) is live migrated in. 241 */ 242 uint32_t vsw_publish_macaddr_count = 3; 243 244 boolean_t vsw_hio_enabled = B_TRUE; /* Enable/disable HybridIO */ 245 int vsw_hio_max_cleanup_retries = 10; /* Max retries for HybridIO cleanp */ 246 int vsw_hio_cleanup_delay = 10000; /* 10ms */ 247 248 /* Number of transmit descriptors - must be power of 2 */ 249 uint32_t vsw_ntxds = VSW_RING_NUM_EL; 250 251 /* 252 * Max number of mblks received in one receive operation. 253 */ 254 uint32_t vsw_chain_len = (VSW_NUM_MBLKS * 0.6); 255 256 /* 257 * Internal tunables for receive buffer pools, that is, the size and number of 258 * mblks for each pool. At least 3 sizes must be specified if these are used. 259 * The sizes must be specified in increasing order. Non-zero value of the first 260 * size will be used as a hint to use these values instead of the algorithm 261 * that determines the sizes based on MTU. 262 */ 263 uint32_t vsw_mblk_size1 = 0; 264 uint32_t vsw_mblk_size2 = 0; 265 uint32_t vsw_mblk_size3 = 0; 266 uint32_t vsw_mblk_size4 = 0; 267 uint32_t vsw_num_mblks1 = VSW_NUM_MBLKS; /* number of mblks for pool1 */ 268 uint32_t vsw_num_mblks2 = VSW_NUM_MBLKS; /* number of mblks for pool2 */ 269 uint32_t vsw_num_mblks3 = VSW_NUM_MBLKS; /* number of mblks for pool3 */ 270 uint32_t vsw_num_mblks4 = VSW_NUM_MBLKS; /* number of mblks for pool4 */ 271 272 /* 273 * Set this to non-zero to enable additional internal receive buffer pools 274 * based on the MTU of the device for better performance at the cost of more 275 * memory consumption. This is turned off by default, to use allocb(9F) for 276 * receive buffer allocations of sizes > 2K. 277 */ 278 boolean_t vsw_jumbo_rxpools = B_FALSE; 279 280 /* 281 * vsw_max_tx_qcount is the maximum # of packets that can be queued 282 * before the tx worker thread begins processing the queue. Its value 283 * is chosen to be 4x the default length of tx descriptor ring. 284 */ 285 uint32_t vsw_max_tx_qcount = 4 * VSW_RING_NUM_EL; 286 287 /* 288 * MAC callbacks 289 */ 290 static mac_callbacks_t vsw_m_callbacks = { 291 0, 292 vsw_m_stat, 293 vsw_m_start, 294 vsw_m_stop, 295 vsw_m_promisc, 296 vsw_m_multicst, 297 vsw_m_unicst, 298 vsw_m_tx 299 }; 300 301 static struct cb_ops vsw_cb_ops = { 302 nulldev, /* cb_open */ 303 nulldev, /* cb_close */ 304 nodev, /* cb_strategy */ 305 nodev, /* cb_print */ 306 nodev, /* cb_dump */ 307 nodev, /* cb_read */ 308 nodev, /* cb_write */ 309 nodev, /* cb_ioctl */ 310 nodev, /* cb_devmap */ 311 nodev, /* cb_mmap */ 312 nodev, /* cb_segmap */ 313 nochpoll, /* cb_chpoll */ 314 ddi_prop_op, /* cb_prop_op */ 315 NULL, /* cb_stream */ 316 D_MP, /* cb_flag */ 317 CB_REV, /* rev */ 318 nodev, /* int (*cb_aread)() */ 319 nodev /* int (*cb_awrite)() */ 320 }; 321 322 static struct dev_ops vsw_ops = { 323 DEVO_REV, /* devo_rev */ 324 0, /* devo_refcnt */ 325 NULL, /* devo_getinfo */ 326 nulldev, /* devo_identify */ 327 nulldev, /* devo_probe */ 328 vsw_attach, /* devo_attach */ 329 vsw_detach, /* devo_detach */ 330 nodev, /* devo_reset */ 331 &vsw_cb_ops, /* devo_cb_ops */ 332 (struct bus_ops *)NULL, /* devo_bus_ops */ 333 ddi_power /* devo_power */ 334 }; 335 336 extern struct mod_ops mod_driverops; 337 static struct modldrv vswmodldrv = { 338 &mod_driverops, 339 "sun4v Virtual Switch", 340 &vsw_ops, 341 }; 342 343 #define LDC_ENTER_LOCK(ldcp) \ 344 mutex_enter(&((ldcp)->ldc_cblock));\ 345 mutex_enter(&((ldcp)->ldc_rxlock));\ 346 mutex_enter(&((ldcp)->ldc_txlock)); 347 #define LDC_EXIT_LOCK(ldcp) \ 348 mutex_exit(&((ldcp)->ldc_txlock));\ 349 mutex_exit(&((ldcp)->ldc_rxlock));\ 350 mutex_exit(&((ldcp)->ldc_cblock)); 351 352 /* Driver soft state ptr */ 353 static void *vsw_state; 354 355 /* 356 * Linked list of "vsw_t" structures - one per instance. 357 */ 358 vsw_t *vsw_head = NULL; 359 krwlock_t vsw_rw; 360 361 /* 362 * Property names 363 */ 364 static char vdev_propname[] = "virtual-device"; 365 static char vsw_propname[] = "virtual-network-switch"; 366 static char physdev_propname[] = "vsw-phys-dev"; 367 static char smode_propname[] = "vsw-switch-mode"; 368 static char macaddr_propname[] = "local-mac-address"; 369 static char remaddr_propname[] = "remote-mac-address"; 370 static char ldcids_propname[] = "ldc-ids"; 371 static char chan_propname[] = "channel-endpoint"; 372 static char id_propname[] = "id"; 373 static char reg_propname[] = "reg"; 374 static char pri_types_propname[] = "priority-ether-types"; 375 static char vsw_pvid_propname[] = "port-vlan-id"; 376 static char vsw_vid_propname[] = "vlan-id"; 377 static char vsw_dvid_propname[] = "default-vlan-id"; 378 static char port_pvid_propname[] = "remote-port-vlan-id"; 379 static char port_vid_propname[] = "remote-vlan-id"; 380 static char hybrid_propname[] = "hybrid"; 381 static char vsw_mtu_propname[] = "mtu"; 382 static char vsw_linkprop_propname[] = "linkprop"; 383 static char vsw_maxbw_propname[] = "maxbw"; 384 static char port_maxbw_propname[] = "maxbw"; 385 386 /* 387 * Matching criteria passed to the MDEG to register interest 388 * in changes to 'virtual-device-port' nodes identified by their 389 * 'id' property. 390 */ 391 static md_prop_match_t vport_prop_match[] = { 392 { MDET_PROP_VAL, "id" }, 393 { MDET_LIST_END, NULL } 394 }; 395 396 static mdeg_node_match_t vport_match = { "virtual-device-port", 397 vport_prop_match }; 398 399 /* 400 * Matching criteria passed to the MDEG to register interest 401 * in changes to 'virtual-device' nodes (i.e. vsw nodes) identified 402 * by their 'name' and 'cfg-handle' properties. 403 */ 404 static md_prop_match_t vdev_prop_match[] = { 405 { MDET_PROP_STR, "name" }, 406 { MDET_PROP_VAL, "cfg-handle" }, 407 { MDET_LIST_END, NULL } 408 }; 409 410 static mdeg_node_match_t vdev_match = { "virtual-device", 411 vdev_prop_match }; 412 413 414 /* 415 * Specification of an MD node passed to the MDEG to filter any 416 * 'vport' nodes that do not belong to the specified node. This 417 * template is copied for each vsw instance and filled in with 418 * the appropriate 'cfg-handle' value before being passed to the MDEG. 419 */ 420 static mdeg_prop_spec_t vsw_prop_template[] = { 421 { MDET_PROP_STR, "name", vsw_propname }, 422 { MDET_PROP_VAL, "cfg-handle", NULL }, 423 { MDET_LIST_END, NULL, NULL } 424 }; 425 426 #define VSW_SET_MDEG_PROP_INST(specp, val) (specp)[1].ps_val = (val); 427 428 #ifdef DEBUG 429 /* 430 * Print debug messages - set to 0x1f to enable all msgs 431 * or 0x0 to turn all off. 432 */ 433 int vswdbg = 0x0; 434 435 /* 436 * debug levels: 437 * 0x01: Function entry/exit tracing 438 * 0x02: Internal function messages 439 * 0x04: Verbose internal messages 440 * 0x08: Warning messages 441 * 0x10: Error messages 442 */ 443 444 void 445 vswdebug(vsw_t *vswp, const char *fmt, ...) 446 { 447 char buf[512]; 448 va_list ap; 449 450 va_start(ap, fmt); 451 (void) vsprintf(buf, fmt, ap); 452 va_end(ap); 453 454 if (vswp == NULL) 455 cmn_err(CE_CONT, "%s\n", buf); 456 else 457 cmn_err(CE_CONT, "vsw%d: %s\n", vswp->instance, buf); 458 } 459 460 #endif /* DEBUG */ 461 462 static struct modlinkage modlinkage = { 463 MODREV_1, 464 &vswmodldrv, 465 NULL 466 }; 467 468 int 469 _init(void) 470 { 471 int status; 472 473 rw_init(&vsw_rw, NULL, RW_DRIVER, NULL); 474 475 status = ddi_soft_state_init(&vsw_state, sizeof (vsw_t), 1); 476 if (status != 0) { 477 return (status); 478 } 479 480 mac_init_ops(&vsw_ops, DRV_NAME); 481 status = mod_install(&modlinkage); 482 if (status != 0) { 483 ddi_soft_state_fini(&vsw_state); 484 } 485 return (status); 486 } 487 488 int 489 _fini(void) 490 { 491 int status; 492 493 status = mod_remove(&modlinkage); 494 if (status != 0) 495 return (status); 496 mac_fini_ops(&vsw_ops); 497 ddi_soft_state_fini(&vsw_state); 498 499 rw_destroy(&vsw_rw); 500 501 return (status); 502 } 503 504 int 505 _info(struct modinfo *modinfop) 506 { 507 return (mod_info(&modlinkage, modinfop)); 508 } 509 510 static int 511 vsw_attach(dev_info_t *dip, ddi_attach_cmd_t cmd) 512 { 513 vsw_t *vswp; 514 int instance; 515 char hashname[MAXNAMELEN]; 516 char qname[TASKQ_NAMELEN]; 517 vsw_attach_progress_t progress = PROG_init; 518 int rv; 519 520 switch (cmd) { 521 case DDI_ATTACH: 522 break; 523 case DDI_RESUME: 524 /* nothing to do for this non-device */ 525 return (DDI_SUCCESS); 526 case DDI_PM_RESUME: 527 default: 528 return (DDI_FAILURE); 529 } 530 531 instance = ddi_get_instance(dip); 532 if (ddi_soft_state_zalloc(vsw_state, instance) != DDI_SUCCESS) { 533 DERR(NULL, "vsw%d: ddi_soft_state_zalloc failed", instance); 534 return (DDI_FAILURE); 535 } 536 vswp = ddi_get_soft_state(vsw_state, instance); 537 538 if (vswp == NULL) { 539 DERR(NULL, "vsw%d: ddi_get_soft_state failed", instance); 540 goto vsw_attach_fail; 541 } 542 543 vswp->dip = dip; 544 vswp->instance = instance; 545 vswp->phys_link_state = LINK_STATE_UNKNOWN; 546 ddi_set_driver_private(dip, (caddr_t)vswp); 547 548 mutex_init(&vswp->mac_lock, NULL, MUTEX_DRIVER, NULL); 549 mutex_init(&vswp->mca_lock, NULL, MUTEX_DRIVER, NULL); 550 mutex_init(&vswp->sw_thr_lock, NULL, MUTEX_DRIVER, NULL); 551 cv_init(&vswp->sw_thr_cv, NULL, CV_DRIVER, NULL); 552 rw_init(&vswp->maccl_rwlock, NULL, RW_DRIVER, NULL); 553 rw_init(&vswp->if_lockrw, NULL, RW_DRIVER, NULL); 554 rw_init(&vswp->mfdbrw, NULL, RW_DRIVER, NULL); 555 rw_init(&vswp->plist.lockrw, NULL, RW_DRIVER, NULL); 556 557 progress |= PROG_locks; 558 559 rv = vsw_read_mdprops(vswp); 560 if (rv != 0) 561 goto vsw_attach_fail; 562 563 progress |= PROG_readmd; 564 565 /* setup the unicast forwarding database */ 566 (void) snprintf(hashname, MAXNAMELEN, "vsw_unicst_table-%d", 567 vswp->instance); 568 D2(vswp, "creating unicast hash table (%s)...", hashname); 569 vswp->fdb_nchains = vsw_fdb_nchains; 570 vswp->fdb_hashp = mod_hash_create_ptrhash(hashname, vswp->fdb_nchains, 571 mod_hash_null_valdtor, sizeof (void *)); 572 vsw_create_vlans((void *)vswp, VSW_LOCALDEV); 573 progress |= PROG_fdb; 574 575 /* setup the multicast fowarding database */ 576 (void) snprintf(hashname, MAXNAMELEN, "vsw_mcst_table-%d", 577 vswp->instance); 578 D2(vswp, "creating multicast hash table %s)...", hashname); 579 vswp->mfdb = mod_hash_create_ptrhash(hashname, vsw_fdb_nchains, 580 mod_hash_null_valdtor, sizeof (void *)); 581 582 progress |= PROG_mfdb; 583 584 /* 585 * Create the taskq which will process all the VIO 586 * control messages. 587 */ 588 (void) snprintf(qname, TASKQ_NAMELEN, "vsw_taskq%d", vswp->instance); 589 if ((vswp->taskq_p = ddi_taskq_create(vswp->dip, qname, 1, 590 TASKQ_DEFAULTPRI, 0)) == NULL) { 591 cmn_err(CE_WARN, "!vsw%d: Unable to create task queue", 592 vswp->instance); 593 goto vsw_attach_fail; 594 } 595 596 progress |= PROG_taskq; 597 598 (void) snprintf(qname, TASKQ_NAMELEN, "vsw_rxp_taskq%d", 599 vswp->instance); 600 if ((vswp->rxp_taskq = ddi_taskq_create(vswp->dip, qname, 1, 601 TASKQ_DEFAULTPRI, 0)) == NULL) { 602 cmn_err(CE_WARN, "!vsw%d: Unable to create rxp task queue", 603 vswp->instance); 604 goto vsw_attach_fail; 605 } 606 607 progress |= PROG_rxp_taskq; 608 609 /* prevent auto-detaching */ 610 if (ddi_prop_update_int(DDI_DEV_T_NONE, vswp->dip, 611 DDI_NO_AUTODETACH, 1) != DDI_SUCCESS) { 612 cmn_err(CE_NOTE, "!Unable to set \"%s\" property for " 613 "instance %u", DDI_NO_AUTODETACH, instance); 614 } 615 616 /* 617 * The null switching function is set to avoid panic until 618 * switch mode is setup. 619 */ 620 vswp->vsw_switch_frame = vsw_switch_frame_nop; 621 622 /* 623 * Setup the required switching mode, based on the mdprops that we read 624 * earlier. We start a thread to do this, to avoid calling mac_open() 625 * directly from attach(). 626 */ 627 rv = vsw_setup_switching_start(vswp); 628 if (rv != 0) { 629 goto vsw_attach_fail; 630 } 631 632 progress |= PROG_swmode; 633 634 /* Register with mac layer as a provider */ 635 rv = vsw_mac_register(vswp); 636 if (rv != 0) 637 goto vsw_attach_fail; 638 639 progress |= PROG_macreg; 640 641 /* 642 * Now we have everything setup, register an interest in 643 * specific MD nodes. 644 * 645 * The callback is invoked in 2 cases, firstly if upon mdeg 646 * registration there are existing nodes which match our specified 647 * criteria, and secondly if the MD is changed (and again, there 648 * are nodes which we are interested in present within it. Note 649 * that our callback will be invoked even if our specified nodes 650 * have not actually changed). 651 * 652 */ 653 rv = vsw_mdeg_register(vswp); 654 if (rv != 0) 655 goto vsw_attach_fail; 656 657 progress |= PROG_mdreg; 658 659 vswp->attach_progress = progress; 660 661 WRITE_ENTER(&vsw_rw); 662 vswp->next = vsw_head; 663 vsw_head = vswp; 664 RW_EXIT(&vsw_rw); 665 666 ddi_report_dev(vswp->dip); 667 return (DDI_SUCCESS); 668 669 vsw_attach_fail: 670 DERR(NULL, "vsw_attach: failed"); 671 672 vswp->attach_progress = progress; 673 (void) vsw_unattach(vswp); 674 ddi_soft_state_free(vsw_state, instance); 675 return (DDI_FAILURE); 676 } 677 678 static int 679 vsw_detach(dev_info_t *dip, ddi_detach_cmd_t cmd) 680 { 681 vsw_t **vswpp, *vswp; 682 int instance; 683 684 instance = ddi_get_instance(dip); 685 vswp = ddi_get_soft_state(vsw_state, instance); 686 687 if (vswp == NULL) { 688 return (DDI_FAILURE); 689 } 690 691 switch (cmd) { 692 case DDI_DETACH: 693 break; 694 case DDI_SUSPEND: 695 case DDI_PM_SUSPEND: 696 default: 697 return (DDI_FAILURE); 698 } 699 700 D2(vswp, "detaching instance %d", instance); 701 702 if (vsw_unattach(vswp) != 0) { 703 return (DDI_FAILURE); 704 } 705 706 ddi_remove_minor_node(dip, NULL); 707 708 WRITE_ENTER(&vsw_rw); 709 for (vswpp = &vsw_head; *vswpp; vswpp = &(*vswpp)->next) { 710 if (*vswpp == vswp) { 711 *vswpp = vswp->next; 712 break; 713 } 714 } 715 RW_EXIT(&vsw_rw); 716 717 ddi_soft_state_free(vsw_state, instance); 718 719 return (DDI_SUCCESS); 720 } 721 722 /* 723 * Common routine to handle vsw_attach() failure and vsw_detach(). Note that 724 * the only reason this function could fail is if mac_unregister() fails. 725 * Otherwise, this function must ensure that all resources are freed and return 726 * success. 727 */ 728 static int 729 vsw_unattach(vsw_t *vswp) 730 { 731 vsw_attach_progress_t progress; 732 733 progress = vswp->attach_progress; 734 735 /* 736 * Unregister from the gldv3 subsystem. This can fail, in particular 737 * if there are still any open references to this mac device; in which 738 * case we just return failure without continuing to detach further. 739 */ 740 if (progress & PROG_macreg) { 741 if (vsw_mac_unregister(vswp) != 0) { 742 cmn_err(CE_WARN, "!vsw%d: Unable to detach from " 743 "MAC layer", vswp->instance); 744 return (1); 745 } 746 progress &= ~PROG_macreg; 747 } 748 749 /* 750 * Now that we have unregistered from gldv3, we must finish all other 751 * steps and successfully return from this function; otherwise we will 752 * end up leaving the device in a broken/unusable state. 753 * 754 * If we have registered with mdeg, unregister now to stop further 755 * callbacks to this vsw device and/or its ports. Then, detach any 756 * existing ports. 757 */ 758 if (progress & PROG_mdreg) { 759 vsw_mdeg_unregister(vswp); 760 vsw_detach_ports(vswp); 761 progress &= ~PROG_mdreg; 762 } 763 764 /* 765 * If we have started a thread to setup the switching mode, stop it, if 766 * it is still running. If it has finished setting up the switching 767 * mode, then we need to clean up some additional things if we are 768 * running in L2 mode: first free up any hybrid resources; then stop 769 * and close the underlying physical device. Note that we would have 770 * already released all per mac_client resources (ucast, mcast addrs, 771 * hio-shares etc) as all the ports are detached and if the vsw device 772 * itself was in use as an interface, it has been unplumbed (otherwise 773 * mac_unregister() above would fail). 774 */ 775 if (progress & PROG_swmode) { 776 777 vsw_setup_switching_stop(vswp); 778 779 if (vswp->hio_capable == B_TRUE) { 780 vsw_hio_cleanup(vswp); 781 vswp->hio_capable = B_FALSE; 782 } 783 784 mutex_enter(&vswp->mac_lock); 785 vsw_mac_close(vswp); 786 mutex_exit(&vswp->mac_lock); 787 788 progress &= ~PROG_swmode; 789 } 790 791 /* 792 * We now destroy the taskq used to clean up rx mblk pools that 793 * couldn't be destroyed when the ports/channels were detached. 794 * We implicitly wait for those tasks to complete in 795 * ddi_taskq_destroy(). 796 */ 797 if (progress & PROG_rxp_taskq) { 798 ddi_taskq_destroy(vswp->rxp_taskq); 799 progress &= ~PROG_rxp_taskq; 800 } 801 802 /* 803 * By now any pending tasks have finished and the underlying 804 * ldc's have been destroyed, so its safe to delete the control 805 * message taskq. 806 */ 807 if (progress & PROG_taskq) { 808 ddi_taskq_destroy(vswp->taskq_p); 809 progress &= ~PROG_taskq; 810 } 811 812 /* Destroy the multicast hash table */ 813 if (progress & PROG_mfdb) { 814 mod_hash_destroy_hash(vswp->mfdb); 815 progress &= ~PROG_mfdb; 816 } 817 818 /* Destroy the vlan hash table and fdb */ 819 if (progress & PROG_fdb) { 820 vsw_destroy_vlans(vswp, VSW_LOCALDEV); 821 mod_hash_destroy_hash(vswp->fdb_hashp); 822 progress &= ~PROG_fdb; 823 } 824 825 if (progress & PROG_readmd) { 826 if (VSW_PRI_ETH_DEFINED(vswp)) { 827 kmem_free(vswp->pri_types, 828 sizeof (uint16_t) * vswp->pri_num_types); 829 (void) vio_destroy_mblks(vswp->pri_tx_vmp); 830 } 831 progress &= ~PROG_readmd; 832 } 833 834 if (progress & PROG_locks) { 835 rw_destroy(&vswp->plist.lockrw); 836 rw_destroy(&vswp->mfdbrw); 837 rw_destroy(&vswp->if_lockrw); 838 rw_destroy(&vswp->maccl_rwlock); 839 cv_destroy(&vswp->sw_thr_cv); 840 mutex_destroy(&vswp->sw_thr_lock); 841 mutex_destroy(&vswp->mca_lock); 842 mutex_destroy(&vswp->mac_lock); 843 progress &= ~PROG_locks; 844 } 845 846 vswp->attach_progress = progress; 847 848 return (0); 849 } 850 851 void 852 vsw_destroy_rxpools(void *arg) 853 { 854 vio_mblk_pool_t *poolp = (vio_mblk_pool_t *)arg; 855 vio_mblk_pool_t *npoolp; 856 857 while (poolp != NULL) { 858 npoolp = poolp->nextp; 859 while (vio_destroy_mblks(poolp) != 0) { 860 drv_usecwait(vsw_rxpool_cleanup_delay); 861 } 862 poolp = npoolp; 863 } 864 } 865 866 /* 867 * Get the value of the "vsw-phys-dev" property in the specified 868 * node. This property is the name of the physical device that 869 * the virtual switch will use to talk to the outside world. 870 * 871 * Note it is valid for this property to be NULL (but the property 872 * itself must exist). Callers of this routine should verify that 873 * the value returned is what they expected (i.e. either NULL or non NULL). 874 * 875 * On success returns value of the property in region pointed to by 876 * the 'name' argument, and with return value of 0. Otherwise returns 1. 877 */ 878 static int 879 vsw_get_md_physname(vsw_t *vswp, md_t *mdp, mde_cookie_t node, char *name) 880 { 881 int len = 0; 882 int instance; 883 char *physname = NULL; 884 char *dev; 885 const char *dev_name; 886 char myname[MAXNAMELEN]; 887 888 dev_name = ddi_driver_name(vswp->dip); 889 instance = ddi_get_instance(vswp->dip); 890 (void) snprintf(myname, MAXNAMELEN, "%s%d", dev_name, instance); 891 892 if (md_get_prop_data(mdp, node, physdev_propname, 893 (uint8_t **)(&physname), &len) != 0) { 894 cmn_err(CE_WARN, "!vsw%d: Unable to get name(s) of physical " 895 "device(s) from MD", vswp->instance); 896 return (1); 897 } else if ((strlen(physname) + 1) > LIFNAMSIZ) { 898 cmn_err(CE_WARN, "!vsw%d: %s is too long a device name", 899 vswp->instance, physname); 900 return (1); 901 } else if (strcmp(myname, physname) == 0) { 902 /* 903 * Prevent the vswitch from opening itself as the 904 * network device. 905 */ 906 cmn_err(CE_WARN, "!vsw%d: %s is an invalid device name", 907 vswp->instance, physname); 908 return (1); 909 } else { 910 (void) strncpy(name, physname, strlen(physname) + 1); 911 D2(vswp, "%s: using first device specified (%s)", 912 __func__, physname); 913 } 914 915 #ifdef DEBUG 916 /* 917 * As a temporary measure to aid testing we check to see if there 918 * is a vsw.conf file present. If there is we use the value of the 919 * vsw_physname property in the file as the name of the physical 920 * device, overriding the value from the MD. 921 * 922 * There may be multiple devices listed, but for the moment 923 * we just use the first one. 924 */ 925 if (ddi_prop_lookup_string(DDI_DEV_T_ANY, vswp->dip, 0, 926 "vsw_physname", &dev) == DDI_PROP_SUCCESS) { 927 if ((strlen(dev) + 1) > LIFNAMSIZ) { 928 cmn_err(CE_WARN, "vsw%d: %s is too long a device name", 929 vswp->instance, dev); 930 ddi_prop_free(dev); 931 return (1); 932 } else { 933 cmn_err(CE_NOTE, "vsw%d: Using device name (%s) from " 934 "config file", vswp->instance, dev); 935 936 (void) strncpy(name, dev, strlen(dev) + 1); 937 } 938 939 ddi_prop_free(dev); 940 } 941 #endif 942 943 return (0); 944 } 945 946 /* 947 * Read the 'vsw-switch-mode' property from the specified MD node. 948 * 949 * Returns 0 on success, otherwise returns 1. 950 */ 951 static int 952 vsw_get_md_smodes(vsw_t *vswp, md_t *mdp, mde_cookie_t node, uint8_t *mode) 953 { 954 int len = 0; 955 char *smode = NULL; 956 char *curr_mode = NULL; 957 958 D1(vswp, "%s: enter", __func__); 959 960 /* 961 * Get the switch-mode property. The modes are listed in 962 * decreasing order of preference, i.e. prefered mode is 963 * first item in list. 964 */ 965 len = 0; 966 if (md_get_prop_data(mdp, node, smode_propname, 967 (uint8_t **)(&smode), &len) != 0) { 968 /* 969 * Unable to get switch-mode property from MD, nothing 970 * more we can do. 971 */ 972 cmn_err(CE_WARN, "!vsw%d: Unable to get switch mode property" 973 " from the MD", vswp->instance); 974 return (1); 975 } 976 977 curr_mode = smode; 978 /* 979 * Modes of operation: 980 * 'switched' - layer 2 switching, underlying HW in 981 * programmed mode. 982 * 'promiscuous' - layer 2 switching, underlying HW in 983 * promiscuous mode. 984 * 'routed' - layer 3 (i.e. IP) routing, underlying HW 985 * in non-promiscuous mode. 986 */ 987 while (curr_mode < (smode + len)) { 988 D2(vswp, "%s: curr_mode = [%s]", __func__, curr_mode); 989 if (strcmp(curr_mode, "switched") == 0) { 990 *mode = VSW_LAYER2; 991 } else if (strcmp(curr_mode, "promiscuous") == 0) { 992 *mode = VSW_LAYER2 | VSW_LAYER2_PROMISC; 993 } else if (strcmp(curr_mode, "routed") == 0) { 994 *mode = VSW_LAYER3; 995 } else { 996 cmn_err(CE_WARN, "!vsw%d: Unknown switch mode %s, " 997 "setting to default switched mode", 998 vswp->instance, curr_mode); 999 *mode = VSW_LAYER2; 1000 } 1001 curr_mode += strlen(curr_mode) + 1; 1002 } 1003 1004 D2(vswp, "%s: %d mode", __func__, *mode); 1005 1006 D1(vswp, "%s: exit", __func__); 1007 1008 return (0); 1009 } 1010 1011 /* 1012 * Register with the MAC layer as a network device, so we 1013 * can be plumbed if necessary. 1014 */ 1015 static int 1016 vsw_mac_register(vsw_t *vswp) 1017 { 1018 mac_register_t *macp; 1019 int rv; 1020 1021 D1(vswp, "%s: enter", __func__); 1022 1023 if ((macp = mac_alloc(MAC_VERSION)) == NULL) 1024 return (EINVAL); 1025 macp->m_type_ident = MAC_PLUGIN_IDENT_ETHER; 1026 macp->m_driver = vswp; 1027 macp->m_dip = vswp->dip; 1028 macp->m_src_addr = (uint8_t *)&vswp->if_addr; 1029 macp->m_callbacks = &vsw_m_callbacks; 1030 macp->m_min_sdu = 0; 1031 macp->m_max_sdu = vswp->mtu; 1032 macp->m_margin = VLAN_TAGSZ; 1033 rv = mac_register(macp, &vswp->if_mh); 1034 mac_free(macp); 1035 if (rv != 0) { 1036 /* 1037 * Treat this as a non-fatal error as we may be 1038 * able to operate in some other mode. 1039 */ 1040 cmn_err(CE_NOTE, "!vsw%d: Unable to register as " 1041 "a provider with MAC layer", vswp->instance); 1042 return (rv); 1043 } 1044 1045 vswp->if_state |= VSW_IF_REG; 1046 1047 D1(vswp, "%s: exit", __func__); 1048 1049 return (rv); 1050 } 1051 1052 static int 1053 vsw_mac_unregister(vsw_t *vswp) 1054 { 1055 int rv = 0; 1056 1057 D1(vswp, "%s: enter", __func__); 1058 1059 WRITE_ENTER(&vswp->if_lockrw); 1060 1061 if (vswp->if_state & VSW_IF_REG) { 1062 rv = mac_unregister(vswp->if_mh); 1063 if (rv != 0) { 1064 DWARN(vswp, "%s: unable to unregister from MAC " 1065 "framework", __func__); 1066 1067 RW_EXIT(&vswp->if_lockrw); 1068 D1(vswp, "%s: fail exit", __func__); 1069 return (rv); 1070 } 1071 1072 /* mark i/f as down and unregistered */ 1073 vswp->if_state &= ~(VSW_IF_UP | VSW_IF_REG); 1074 } 1075 RW_EXIT(&vswp->if_lockrw); 1076 1077 D1(vswp, "%s: exit", __func__); 1078 1079 return (rv); 1080 } 1081 1082 static int 1083 vsw_m_stat(void *arg, uint_t stat, uint64_t *val) 1084 { 1085 vsw_t *vswp = (vsw_t *)arg; 1086 1087 D1(vswp, "%s: enter", __func__); 1088 1089 mutex_enter(&vswp->mac_lock); 1090 if (vswp->mh == NULL) { 1091 mutex_exit(&vswp->mac_lock); 1092 return (EINVAL); 1093 } 1094 1095 /* return stats from underlying device */ 1096 *val = mac_stat_get(vswp->mh, stat); 1097 1098 mutex_exit(&vswp->mac_lock); 1099 1100 return (0); 1101 } 1102 1103 static void 1104 vsw_m_stop(void *arg) 1105 { 1106 vsw_t *vswp = (vsw_t *)arg; 1107 1108 D1(vswp, "%s: enter", __func__); 1109 1110 WRITE_ENTER(&vswp->if_lockrw); 1111 vswp->if_state &= ~VSW_IF_UP; 1112 RW_EXIT(&vswp->if_lockrw); 1113 1114 /* Cleanup and close the mac client */ 1115 vsw_mac_client_cleanup(vswp, NULL, VSW_LOCALDEV); 1116 1117 D1(vswp, "%s: exit (state = %d)", __func__, vswp->if_state); 1118 } 1119 1120 static int 1121 vsw_m_start(void *arg) 1122 { 1123 int rv; 1124 vsw_t *vswp = (vsw_t *)arg; 1125 1126 D1(vswp, "%s: enter", __func__); 1127 1128 WRITE_ENTER(&vswp->if_lockrw); 1129 1130 vswp->if_state |= VSW_IF_UP; 1131 1132 if (vswp->switching_setup_done == B_FALSE) { 1133 /* 1134 * If the switching mode has not been setup yet, just 1135 * return. The unicast address will be programmed 1136 * after the physical device is successfully setup by the 1137 * timeout handler. 1138 */ 1139 RW_EXIT(&vswp->if_lockrw); 1140 return (0); 1141 } 1142 1143 /* if in layer2 mode, program unicast address. */ 1144 if (vswp->mh != NULL) { 1145 /* Init a mac client and program addresses */ 1146 rv = vsw_mac_client_init(vswp, NULL, VSW_LOCALDEV); 1147 if (rv != 0) { 1148 cmn_err(CE_NOTE, 1149 "!vsw%d: failed to program interface " 1150 "unicast address\n", vswp->instance); 1151 } 1152 } 1153 1154 RW_EXIT(&vswp->if_lockrw); 1155 1156 D1(vswp, "%s: exit (state = %d)", __func__, vswp->if_state); 1157 return (0); 1158 } 1159 1160 /* 1161 * Change the local interface address. 1162 * 1163 * Note: we don't support this entry point. The local 1164 * mac address of the switch can only be changed via its 1165 * MD node properties. 1166 */ 1167 static int 1168 vsw_m_unicst(void *arg, const uint8_t *macaddr) 1169 { 1170 _NOTE(ARGUNUSED(arg, macaddr)) 1171 1172 return (DDI_FAILURE); 1173 } 1174 1175 static int 1176 vsw_m_multicst(void *arg, boolean_t add, const uint8_t *mca) 1177 { 1178 vsw_t *vswp = (vsw_t *)arg; 1179 mcst_addr_t *mcst_p = NULL; 1180 uint64_t addr = 0x0; 1181 int i, ret = 0; 1182 1183 D1(vswp, "%s: enter", __func__); 1184 1185 /* 1186 * Convert address into form that can be used 1187 * as hash table key. 1188 */ 1189 for (i = 0; i < ETHERADDRL; i++) { 1190 addr = (addr << 8) | mca[i]; 1191 } 1192 1193 D2(vswp, "%s: addr = 0x%llx", __func__, addr); 1194 1195 if (add) { 1196 D2(vswp, "%s: adding multicast", __func__); 1197 if (vsw_add_mcst(vswp, VSW_LOCALDEV, addr, NULL) == 0) { 1198 /* 1199 * Update the list of multicast addresses 1200 * contained within the vsw_t structure to 1201 * include this new one. 1202 */ 1203 mcst_p = kmem_zalloc(sizeof (mcst_addr_t), KM_NOSLEEP); 1204 if (mcst_p == NULL) { 1205 DERR(vswp, "%s unable to alloc mem", __func__); 1206 (void) vsw_del_mcst(vswp, 1207 VSW_LOCALDEV, addr, NULL); 1208 return (1); 1209 } 1210 mcst_p->addr = addr; 1211 ether_copy(mca, &mcst_p->mca); 1212 1213 /* 1214 * Call into the underlying driver to program the 1215 * address into HW. 1216 */ 1217 ret = vsw_mac_multicast_add(vswp, NULL, mcst_p, 1218 VSW_LOCALDEV); 1219 if (ret != 0) { 1220 (void) vsw_del_mcst(vswp, 1221 VSW_LOCALDEV, addr, NULL); 1222 kmem_free(mcst_p, sizeof (*mcst_p)); 1223 return (ret); 1224 } 1225 1226 mutex_enter(&vswp->mca_lock); 1227 mcst_p->nextp = vswp->mcap; 1228 vswp->mcap = mcst_p; 1229 mutex_exit(&vswp->mca_lock); 1230 } else { 1231 cmn_err(CE_WARN, "!vsw%d: unable to add multicast " 1232 "address", vswp->instance); 1233 } 1234 return (ret); 1235 } 1236 1237 D2(vswp, "%s: removing multicast", __func__); 1238 /* 1239 * Remove the address from the hash table.. 1240 */ 1241 if (vsw_del_mcst(vswp, VSW_LOCALDEV, addr, NULL) == 0) { 1242 1243 /* 1244 * ..and then from the list maintained in the 1245 * vsw_t structure. 1246 */ 1247 mcst_p = vsw_del_addr(VSW_LOCALDEV, vswp, addr); 1248 ASSERT(mcst_p != NULL); 1249 1250 vsw_mac_multicast_remove(vswp, NULL, mcst_p, VSW_LOCALDEV); 1251 kmem_free(mcst_p, sizeof (*mcst_p)); 1252 } 1253 1254 D1(vswp, "%s: exit", __func__); 1255 1256 return (0); 1257 } 1258 1259 static int 1260 vsw_m_promisc(void *arg, boolean_t on) 1261 { 1262 vsw_t *vswp = (vsw_t *)arg; 1263 1264 D1(vswp, "%s: enter", __func__); 1265 1266 WRITE_ENTER(&vswp->if_lockrw); 1267 if (on) 1268 vswp->if_state |= VSW_IF_PROMISC; 1269 else 1270 vswp->if_state &= ~VSW_IF_PROMISC; 1271 RW_EXIT(&vswp->if_lockrw); 1272 1273 D1(vswp, "%s: exit", __func__); 1274 1275 return (0); 1276 } 1277 1278 static mblk_t * 1279 vsw_m_tx(void *arg, mblk_t *mp) 1280 { 1281 vsw_t *vswp = (vsw_t *)arg; 1282 1283 D1(vswp, "%s: enter", __func__); 1284 1285 mp = vsw_vlan_frame_pretag(vswp, VSW_LOCALDEV, mp); 1286 1287 if (mp == NULL) { 1288 return (NULL); 1289 } 1290 1291 vswp->vsw_switch_frame(vswp, mp, VSW_LOCALDEV, NULL, NULL); 1292 1293 D1(vswp, "%s: exit", __func__); 1294 1295 return (NULL); 1296 } 1297 1298 /* 1299 * Register for machine description (MD) updates. 1300 * 1301 * Returns 0 on success, 1 on failure. 1302 */ 1303 static int 1304 vsw_mdeg_register(vsw_t *vswp) 1305 { 1306 mdeg_prop_spec_t *pspecp; 1307 mdeg_node_spec_t *inst_specp; 1308 mdeg_handle_t mdeg_hdl, mdeg_port_hdl; 1309 size_t templatesz; 1310 int rv; 1311 1312 D1(vswp, "%s: enter", __func__); 1313 1314 /* 1315 * Allocate and initialize a per-instance copy 1316 * of the global property spec array that will 1317 * uniquely identify this vsw instance. 1318 */ 1319 templatesz = sizeof (vsw_prop_template); 1320 pspecp = kmem_zalloc(templatesz, KM_SLEEP); 1321 1322 bcopy(vsw_prop_template, pspecp, templatesz); 1323 1324 VSW_SET_MDEG_PROP_INST(pspecp, vswp->regprop); 1325 1326 /* initialize the complete prop spec structure */ 1327 inst_specp = kmem_zalloc(sizeof (mdeg_node_spec_t), KM_SLEEP); 1328 inst_specp->namep = "virtual-device"; 1329 inst_specp->specp = pspecp; 1330 1331 D2(vswp, "%s: instance %d registering with mdeg", __func__, 1332 vswp->regprop); 1333 /* 1334 * Register an interest in 'virtual-device' nodes with a 1335 * 'name' property of 'virtual-network-switch' 1336 */ 1337 rv = mdeg_register(inst_specp, &vdev_match, vsw_mdeg_cb, 1338 (void *)vswp, &mdeg_hdl); 1339 if (rv != MDEG_SUCCESS) { 1340 DERR(vswp, "%s: mdeg_register failed (%d) for vsw node", 1341 __func__, rv); 1342 goto mdeg_reg_fail; 1343 } 1344 1345 /* 1346 * Register an interest in 'vsw-port' nodes. 1347 */ 1348 rv = mdeg_register(inst_specp, &vport_match, vsw_port_mdeg_cb, 1349 (void *)vswp, &mdeg_port_hdl); 1350 if (rv != MDEG_SUCCESS) { 1351 DERR(vswp, "%s: mdeg_register failed (%d)\n", __func__, rv); 1352 (void) mdeg_unregister(mdeg_hdl); 1353 goto mdeg_reg_fail; 1354 } 1355 1356 /* save off data that will be needed later */ 1357 vswp->inst_spec = inst_specp; 1358 vswp->mdeg_hdl = mdeg_hdl; 1359 vswp->mdeg_port_hdl = mdeg_port_hdl; 1360 1361 D1(vswp, "%s: exit", __func__); 1362 return (0); 1363 1364 mdeg_reg_fail: 1365 cmn_err(CE_WARN, "!vsw%d: Unable to register MDEG callbacks", 1366 vswp->instance); 1367 kmem_free(pspecp, templatesz); 1368 kmem_free(inst_specp, sizeof (mdeg_node_spec_t)); 1369 1370 vswp->mdeg_hdl = NULL; 1371 vswp->mdeg_port_hdl = NULL; 1372 1373 return (1); 1374 } 1375 1376 static void 1377 vsw_mdeg_unregister(vsw_t *vswp) 1378 { 1379 D1(vswp, "vsw_mdeg_unregister: enter"); 1380 1381 if (vswp->mdeg_hdl != NULL) 1382 (void) mdeg_unregister(vswp->mdeg_hdl); 1383 1384 if (vswp->mdeg_port_hdl != NULL) 1385 (void) mdeg_unregister(vswp->mdeg_port_hdl); 1386 1387 if (vswp->inst_spec != NULL) { 1388 if (vswp->inst_spec->specp != NULL) { 1389 (void) kmem_free(vswp->inst_spec->specp, 1390 sizeof (vsw_prop_template)); 1391 vswp->inst_spec->specp = NULL; 1392 } 1393 1394 (void) kmem_free(vswp->inst_spec, sizeof (mdeg_node_spec_t)); 1395 vswp->inst_spec = NULL; 1396 } 1397 1398 D1(vswp, "vsw_mdeg_unregister: exit"); 1399 } 1400 1401 /* 1402 * Mdeg callback invoked for the vsw node itself. 1403 */ 1404 static int 1405 vsw_mdeg_cb(void *cb_argp, mdeg_result_t *resp) 1406 { 1407 vsw_t *vswp; 1408 md_t *mdp; 1409 mde_cookie_t node; 1410 uint64_t inst; 1411 char *node_name = NULL; 1412 1413 if (resp == NULL) 1414 return (MDEG_FAILURE); 1415 1416 vswp = (vsw_t *)cb_argp; 1417 1418 D1(vswp, "%s: added %d : removed %d : curr matched %d" 1419 " : prev matched %d", __func__, resp->added.nelem, 1420 resp->removed.nelem, resp->match_curr.nelem, 1421 resp->match_prev.nelem); 1422 1423 /* 1424 * We get an initial callback for this node as 'added' 1425 * after registering with mdeg. Note that we would have 1426 * already gathered information about this vsw node by 1427 * walking MD earlier during attach (in vsw_read_mdprops()). 1428 * So, there is a window where the properties of this 1429 * node might have changed when we get this initial 'added' 1430 * callback. We handle this as if an update occured 1431 * and invoke the same function which handles updates to 1432 * the properties of this vsw-node if any. 1433 * 1434 * A non-zero 'match' value indicates that the MD has been 1435 * updated and that a virtual-network-switch node is 1436 * present which may or may not have been updated. It is 1437 * up to the clients to examine their own nodes and 1438 * determine if they have changed. 1439 */ 1440 if (resp->added.nelem != 0) { 1441 1442 if (resp->added.nelem != 1) { 1443 cmn_err(CE_NOTE, "!vsw%d: number of nodes added " 1444 "invalid: %d\n", vswp->instance, resp->added.nelem); 1445 return (MDEG_FAILURE); 1446 } 1447 1448 mdp = resp->added.mdp; 1449 node = resp->added.mdep[0]; 1450 1451 } else if (resp->match_curr.nelem != 0) { 1452 1453 if (resp->match_curr.nelem != 1) { 1454 cmn_err(CE_NOTE, "!vsw%d: number of nodes updated " 1455 "invalid: %d\n", vswp->instance, 1456 resp->match_curr.nelem); 1457 return (MDEG_FAILURE); 1458 } 1459 1460 mdp = resp->match_curr.mdp; 1461 node = resp->match_curr.mdep[0]; 1462 1463 } else { 1464 return (MDEG_FAILURE); 1465 } 1466 1467 /* Validate name and instance */ 1468 if (md_get_prop_str(mdp, node, "name", &node_name) != 0) { 1469 DERR(vswp, "%s: unable to get node name\n", __func__); 1470 return (MDEG_FAILURE); 1471 } 1472 1473 /* is this a virtual-network-switch? */ 1474 if (strcmp(node_name, vsw_propname) != 0) { 1475 DERR(vswp, "%s: Invalid node name: %s\n", 1476 __func__, node_name); 1477 return (MDEG_FAILURE); 1478 } 1479 1480 if (md_get_prop_val(mdp, node, "cfg-handle", &inst)) { 1481 DERR(vswp, "%s: prop(cfg-handle) not found\n", 1482 __func__); 1483 return (MDEG_FAILURE); 1484 } 1485 1486 /* is this the right instance of vsw? */ 1487 if (inst != vswp->regprop) { 1488 DERR(vswp, "%s: Invalid cfg-handle: %lx\n", 1489 __func__, inst); 1490 return (MDEG_FAILURE); 1491 } 1492 1493 vsw_update_md_prop(vswp, mdp, node); 1494 1495 return (MDEG_SUCCESS); 1496 } 1497 1498 /* 1499 * Mdeg callback invoked for changes to the vsw-port nodes 1500 * under the vsw node. 1501 */ 1502 static int 1503 vsw_port_mdeg_cb(void *cb_argp, mdeg_result_t *resp) 1504 { 1505 vsw_t *vswp; 1506 int idx; 1507 md_t *mdp; 1508 mde_cookie_t node; 1509 uint64_t inst; 1510 int rv; 1511 1512 if ((resp == NULL) || (cb_argp == NULL)) 1513 return (MDEG_FAILURE); 1514 1515 vswp = (vsw_t *)cb_argp; 1516 1517 D2(vswp, "%s: added %d : removed %d : curr matched %d" 1518 " : prev matched %d", __func__, resp->added.nelem, 1519 resp->removed.nelem, resp->match_curr.nelem, 1520 resp->match_prev.nelem); 1521 1522 /* process added ports */ 1523 for (idx = 0; idx < resp->added.nelem; idx++) { 1524 mdp = resp->added.mdp; 1525 node = resp->added.mdep[idx]; 1526 1527 D2(vswp, "%s: adding node(%d) 0x%lx", __func__, idx, node); 1528 1529 if ((rv = vsw_port_add(vswp, mdp, &node)) != 0) { 1530 cmn_err(CE_WARN, "!vsw%d: Unable to add new port " 1531 "(0x%lx), err=%d", vswp->instance, node, rv); 1532 } 1533 } 1534 1535 /* process removed ports */ 1536 for (idx = 0; idx < resp->removed.nelem; idx++) { 1537 mdp = resp->removed.mdp; 1538 node = resp->removed.mdep[idx]; 1539 1540 if (md_get_prop_val(mdp, node, id_propname, &inst)) { 1541 DERR(vswp, "%s: prop(%s) not found in port(%d)", 1542 __func__, id_propname, idx); 1543 continue; 1544 } 1545 1546 D2(vswp, "%s: removing node(%d) 0x%lx", __func__, idx, node); 1547 1548 if (vsw_port_detach(vswp, inst) != 0) { 1549 cmn_err(CE_WARN, "!vsw%d: Unable to remove port %ld", 1550 vswp->instance, inst); 1551 } 1552 } 1553 1554 for (idx = 0; idx < resp->match_curr.nelem; idx++) { 1555 (void) vsw_port_update(vswp, resp->match_curr.mdp, 1556 resp->match_curr.mdep[idx], 1557 resp->match_prev.mdp, 1558 resp->match_prev.mdep[idx]); 1559 } 1560 1561 D1(vswp, "%s: exit", __func__); 1562 1563 return (MDEG_SUCCESS); 1564 } 1565 1566 /* 1567 * Scan the machine description for this instance of vsw 1568 * and read its properties. Called only from vsw_attach(). 1569 * Returns: 0 on success, 1 on failure. 1570 */ 1571 static int 1572 vsw_read_mdprops(vsw_t *vswp) 1573 { 1574 md_t *mdp = NULL; 1575 mde_cookie_t rootnode; 1576 mde_cookie_t *listp = NULL; 1577 uint64_t inst; 1578 uint64_t cfgh; 1579 char *name; 1580 int rv = 1; 1581 int num_nodes = 0; 1582 int num_devs = 0; 1583 int listsz = 0; 1584 int i; 1585 1586 /* 1587 * In each 'virtual-device' node in the MD there is a 1588 * 'cfg-handle' property which is the MD's concept of 1589 * an instance number (this may be completely different from 1590 * the device drivers instance #). OBP reads that value and 1591 * stores it in the 'reg' property of the appropriate node in 1592 * the device tree. We first read this reg property and use this 1593 * to compare against the 'cfg-handle' property of vsw nodes 1594 * in MD to get to this specific vsw instance and then read 1595 * other properties that we are interested in. 1596 * We also cache the value of 'reg' property and use it later 1597 * to register callbacks with mdeg (see vsw_mdeg_register()) 1598 */ 1599 inst = ddi_prop_get_int(DDI_DEV_T_ANY, vswp->dip, 1600 DDI_PROP_DONTPASS, reg_propname, -1); 1601 if (inst == -1) { 1602 cmn_err(CE_NOTE, "!vsw%d: Unable to read %s property from " 1603 "OBP device tree", vswp->instance, reg_propname); 1604 return (rv); 1605 } 1606 1607 vswp->regprop = inst; 1608 1609 if ((mdp = md_get_handle()) == NULL) { 1610 DWARN(vswp, "%s: cannot init MD\n", __func__); 1611 return (rv); 1612 } 1613 1614 num_nodes = md_node_count(mdp); 1615 ASSERT(num_nodes > 0); 1616 1617 listsz = num_nodes * sizeof (mde_cookie_t); 1618 listp = (mde_cookie_t *)kmem_zalloc(listsz, KM_SLEEP); 1619 1620 rootnode = md_root_node(mdp); 1621 1622 /* search for all "virtual_device" nodes */ 1623 num_devs = md_scan_dag(mdp, rootnode, 1624 md_find_name(mdp, vdev_propname), 1625 md_find_name(mdp, "fwd"), listp); 1626 if (num_devs <= 0) { 1627 DWARN(vswp, "%s: invalid num_devs:%d\n", __func__, num_devs); 1628 goto vsw_readmd_exit; 1629 } 1630 1631 /* 1632 * Now loop through the list of virtual-devices looking for 1633 * devices with name "virtual-network-switch" and for each 1634 * such device compare its instance with what we have from 1635 * the 'reg' property to find the right node in MD and then 1636 * read all its properties. 1637 */ 1638 for (i = 0; i < num_devs; i++) { 1639 1640 if (md_get_prop_str(mdp, listp[i], "name", &name) != 0) { 1641 DWARN(vswp, "%s: name property not found\n", 1642 __func__); 1643 goto vsw_readmd_exit; 1644 } 1645 1646 /* is this a virtual-network-switch? */ 1647 if (strcmp(name, vsw_propname) != 0) 1648 continue; 1649 1650 if (md_get_prop_val(mdp, listp[i], "cfg-handle", &cfgh) != 0) { 1651 DWARN(vswp, "%s: cfg-handle property not found\n", 1652 __func__); 1653 goto vsw_readmd_exit; 1654 } 1655 1656 /* is this the required instance of vsw? */ 1657 if (inst != cfgh) 1658 continue; 1659 1660 /* now read all properties of this vsw instance */ 1661 rv = vsw_get_initial_md_properties(vswp, mdp, listp[i]); 1662 break; 1663 } 1664 1665 vsw_readmd_exit: 1666 1667 kmem_free(listp, listsz); 1668 (void) md_fini_handle(mdp); 1669 return (rv); 1670 } 1671 1672 /* 1673 * Read the initial start-of-day values from the specified MD node. 1674 */ 1675 static int 1676 vsw_get_initial_md_properties(vsw_t *vswp, md_t *mdp, mde_cookie_t node) 1677 { 1678 uint64_t macaddr = 0; 1679 1680 D1(vswp, "%s: enter", __func__); 1681 1682 if (vsw_get_md_physname(vswp, mdp, node, vswp->physname) != 0) { 1683 return (1); 1684 } 1685 1686 /* mac address for vswitch device itself */ 1687 if (md_get_prop_val(mdp, node, macaddr_propname, &macaddr) != 0) { 1688 cmn_err(CE_WARN, "!vsw%d: Unable to get MAC address from MD", 1689 vswp->instance); 1690 return (1); 1691 } 1692 1693 vsw_save_lmacaddr(vswp, macaddr); 1694 1695 if (vsw_get_md_smodes(vswp, mdp, node, &vswp->smode)) { 1696 DWARN(vswp, "%s: Unable to read %s property from MD, " 1697 "defaulting to 'switched' mode", 1698 __func__, smode_propname); 1699 1700 vswp->smode = VSW_LAYER2; 1701 } 1702 1703 /* 1704 * Read the 'linkprop' property to know if this 1705 * vsw device wants to get physical link updates. 1706 */ 1707 vsw_linkprop_read(vswp, mdp, node, &vswp->pls_update); 1708 1709 /* read mtu */ 1710 vsw_mtu_read(vswp, mdp, node, &vswp->mtu); 1711 if (vswp->mtu < ETHERMTU || vswp->mtu > VNET_MAX_MTU) { 1712 vswp->mtu = ETHERMTU; 1713 } 1714 vswp->max_frame_size = vswp->mtu + sizeof (struct ether_header) + 1715 VLAN_TAGSZ; 1716 1717 /* read vlan id properties of this vsw instance */ 1718 vsw_vlan_read_ids(vswp, VSW_LOCALDEV, mdp, node, &vswp->pvid, 1719 &vswp->vids, &vswp->nvids, &vswp->default_vlan_id); 1720 1721 /* read priority-ether-types */ 1722 vsw_read_pri_eth_types(vswp, mdp, node); 1723 1724 /* read bandwidth property of this vsw instance */ 1725 vsw_bandwidth_read(vswp, mdp, node, &vswp->bandwidth); 1726 1727 D1(vswp, "%s: exit", __func__); 1728 return (0); 1729 } 1730 1731 /* 1732 * Read vlan id properties of the given MD node. 1733 * Arguments: 1734 * arg: device argument(vsw device or a port) 1735 * type: type of arg; VSW_LOCALDEV(vsw device) or VSW_VNETPORT(port) 1736 * mdp: machine description 1737 * node: md node cookie 1738 * 1739 * Returns: 1740 * pvidp: port-vlan-id of the node 1741 * vidspp: list of vlan-ids of the node 1742 * nvidsp: # of vlan-ids in the list 1743 * default_idp: default-vlan-id of the node(if node is vsw device) 1744 */ 1745 static void 1746 vsw_vlan_read_ids(void *arg, int type, md_t *mdp, mde_cookie_t node, 1747 uint16_t *pvidp, vsw_vlanid_t **vidspp, uint16_t *nvidsp, 1748 uint16_t *default_idp) 1749 { 1750 vsw_t *vswp; 1751 vsw_port_t *portp; 1752 char *pvid_propname; 1753 char *vid_propname; 1754 uint_t nvids = 0; 1755 uint32_t vids_size; 1756 int rv; 1757 int i; 1758 uint64_t *data; 1759 uint64_t val; 1760 int size; 1761 int inst; 1762 1763 if (type == VSW_LOCALDEV) { 1764 1765 vswp = (vsw_t *)arg; 1766 pvid_propname = vsw_pvid_propname; 1767 vid_propname = vsw_vid_propname; 1768 inst = vswp->instance; 1769 1770 } else if (type == VSW_VNETPORT) { 1771 1772 portp = (vsw_port_t *)arg; 1773 vswp = portp->p_vswp; 1774 pvid_propname = port_pvid_propname; 1775 vid_propname = port_vid_propname; 1776 inst = portp->p_instance; 1777 1778 } else { 1779 return; 1780 } 1781 1782 if (type == VSW_LOCALDEV && default_idp != NULL) { 1783 rv = md_get_prop_val(mdp, node, vsw_dvid_propname, &val); 1784 if (rv != 0) { 1785 DWARN(vswp, "%s: prop(%s) not found", __func__, 1786 vsw_dvid_propname); 1787 1788 *default_idp = vsw_default_vlan_id; 1789 } else { 1790 *default_idp = val & 0xFFF; 1791 D2(vswp, "%s: %s(%d): (%d)\n", __func__, 1792 vsw_dvid_propname, inst, *default_idp); 1793 } 1794 } 1795 1796 rv = md_get_prop_val(mdp, node, pvid_propname, &val); 1797 if (rv != 0) { 1798 DWARN(vswp, "%s: prop(%s) not found", __func__, pvid_propname); 1799 *pvidp = vsw_default_vlan_id; 1800 } else { 1801 1802 *pvidp = val & 0xFFF; 1803 D2(vswp, "%s: %s(%d): (%d)\n", __func__, 1804 pvid_propname, inst, *pvidp); 1805 } 1806 1807 rv = md_get_prop_data(mdp, node, vid_propname, (uint8_t **)&data, 1808 &size); 1809 if (rv != 0) { 1810 D2(vswp, "%s: prop(%s) not found", __func__, vid_propname); 1811 size = 0; 1812 } else { 1813 size /= sizeof (uint64_t); 1814 } 1815 nvids = size; 1816 1817 if (nvids != 0) { 1818 D2(vswp, "%s: %s(%d): ", __func__, vid_propname, inst); 1819 vids_size = sizeof (vsw_vlanid_t) * nvids; 1820 *vidspp = kmem_zalloc(vids_size, KM_SLEEP); 1821 for (i = 0; i < nvids; i++) { 1822 (*vidspp)[i].vl_vid = data[i] & 0xFFFF; 1823 (*vidspp)[i].vl_set = B_FALSE; 1824 D2(vswp, " %d ", (*vidspp)[i].vl_vid); 1825 } 1826 D2(vswp, "\n"); 1827 } 1828 1829 *nvidsp = nvids; 1830 } 1831 1832 static void 1833 vsw_port_read_bandwidth(vsw_port_t *portp, md_t *mdp, mde_cookie_t node, 1834 uint64_t *bw) 1835 { 1836 int rv; 1837 uint64_t val; 1838 vsw_t *vswp; 1839 1840 vswp = portp->p_vswp; 1841 1842 rv = md_get_prop_val(mdp, node, port_maxbw_propname, &val); 1843 1844 if (rv != 0) { 1845 *bw = 0; 1846 D3(vswp, "%s: prop(%s) not found\n", __func__, 1847 port_maxbw_propname); 1848 } else { 1849 *bw = val; 1850 D3(vswp, "%s: %s nodes found", __func__, port_maxbw_propname); 1851 } 1852 } 1853 1854 /* 1855 * This function reads "priority-ether-types" property from md. This property 1856 * is used to enable support for priority frames. Applications which need 1857 * guaranteed and timely delivery of certain high priority frames to/from 1858 * a vnet or vsw within ldoms, should configure this property by providing 1859 * the ether type(s) for which the priority facility is needed. 1860 * Normal data frames are delivered over a ldc channel using the descriptor 1861 * ring mechanism which is constrained by factors such as descriptor ring size, 1862 * the rate at which the ring is processed at the peer ldc end point, etc. 1863 * The priority mechanism provides an Out-Of-Band path to send/receive frames 1864 * as raw pkt data (VIO_PKT_DATA) messages over the channel, avoiding the 1865 * descriptor ring path and enables a more reliable and timely delivery of 1866 * frames to the peer. 1867 */ 1868 static void 1869 vsw_read_pri_eth_types(vsw_t *vswp, md_t *mdp, mde_cookie_t node) 1870 { 1871 int rv; 1872 uint16_t *types; 1873 uint64_t *data; 1874 int size; 1875 int i; 1876 size_t mblk_sz; 1877 1878 rv = md_get_prop_data(mdp, node, pri_types_propname, 1879 (uint8_t **)&data, &size); 1880 if (rv != 0) { 1881 /* 1882 * Property may not exist if we are running pre-ldoms1.1 f/w. 1883 * Check if 'vsw_pri_eth_type' has been set in that case. 1884 */ 1885 if (vsw_pri_eth_type != 0) { 1886 size = sizeof (vsw_pri_eth_type); 1887 data = &vsw_pri_eth_type; 1888 } else { 1889 D3(vswp, "%s: prop(%s) not found", __func__, 1890 pri_types_propname); 1891 size = 0; 1892 } 1893 } 1894 1895 if (size == 0) { 1896 vswp->pri_num_types = 0; 1897 return; 1898 } 1899 1900 /* 1901 * we have some priority-ether-types defined; 1902 * allocate a table of these types and also 1903 * allocate a pool of mblks to transmit these 1904 * priority packets. 1905 */ 1906 size /= sizeof (uint64_t); 1907 vswp->pri_num_types = size; 1908 vswp->pri_types = kmem_zalloc(size * sizeof (uint16_t), KM_SLEEP); 1909 for (i = 0, types = vswp->pri_types; i < size; i++) { 1910 types[i] = data[i] & 0xFFFF; 1911 } 1912 mblk_sz = (VIO_PKT_DATA_HDRSIZE + ETHERMAX + 7) & ~7; 1913 (void) vio_create_mblks(vsw_pri_tx_nmblks, mblk_sz, &vswp->pri_tx_vmp); 1914 } 1915 1916 static void 1917 vsw_mtu_read(vsw_t *vswp, md_t *mdp, mde_cookie_t node, uint32_t *mtu) 1918 { 1919 int rv; 1920 int inst; 1921 uint64_t val; 1922 char *mtu_propname; 1923 1924 mtu_propname = vsw_mtu_propname; 1925 inst = vswp->instance; 1926 1927 rv = md_get_prop_val(mdp, node, mtu_propname, &val); 1928 if (rv != 0) { 1929 D3(vswp, "%s: prop(%s) not found", __func__, mtu_propname); 1930 *mtu = vsw_ethermtu; 1931 } else { 1932 1933 *mtu = val & 0xFFFF; 1934 D2(vswp, "%s: %s(%d): (%d)\n", __func__, 1935 mtu_propname, inst, *mtu); 1936 } 1937 } 1938 1939 /* 1940 * Update the mtu of the vsw device. We first check if the device has been 1941 * plumbed and if so fail the mtu update. Otherwise, we continue to update the 1942 * new mtu and reset all ports to initiate handshake re-negotiation with peers 1943 * using the new mtu. 1944 */ 1945 static int 1946 vsw_mtu_update(vsw_t *vswp, uint32_t mtu) 1947 { 1948 int rv; 1949 1950 WRITE_ENTER(&vswp->if_lockrw); 1951 1952 if (vswp->if_state & VSW_IF_UP) { 1953 1954 RW_EXIT(&vswp->if_lockrw); 1955 1956 cmn_err(CE_NOTE, "!vsw%d: Unable to process mtu update" 1957 " as the device is plumbed\n", vswp->instance); 1958 return (EBUSY); 1959 1960 } else { 1961 1962 D2(vswp, "%s: curr_mtu(%d) new_mtu(%d)\n", 1963 __func__, vswp->mtu, mtu); 1964 1965 vswp->mtu = mtu; 1966 vswp->max_frame_size = vswp->mtu + 1967 sizeof (struct ether_header) + VLAN_TAGSZ; 1968 1969 rv = mac_maxsdu_update(vswp->if_mh, mtu); 1970 if (rv != 0) { 1971 cmn_err(CE_NOTE, 1972 "!vsw%d: Unable to update mtu with mac" 1973 " layer\n", vswp->instance); 1974 } 1975 1976 RW_EXIT(&vswp->if_lockrw); 1977 1978 /* Reset ports to renegotiate with the new mtu */ 1979 vsw_reset_ports(vswp); 1980 1981 } 1982 1983 return (0); 1984 } 1985 1986 static void 1987 vsw_linkprop_read(vsw_t *vswp, md_t *mdp, mde_cookie_t node, 1988 boolean_t *pls) 1989 { 1990 int rv; 1991 uint64_t val; 1992 char *linkpropname; 1993 1994 linkpropname = vsw_linkprop_propname; 1995 1996 rv = md_get_prop_val(mdp, node, linkpropname, &val); 1997 if (rv != 0) { 1998 D3(vswp, "%s: prop(%s) not found", __func__, linkpropname); 1999 *pls = B_FALSE; 2000 } else { 2001 2002 *pls = (val & 0x1) ? B_TRUE : B_FALSE; 2003 D2(vswp, "%s: %s(%d): (%d)\n", __func__, linkpropname, 2004 vswp->instance, *pls); 2005 } 2006 } 2007 2008 void 2009 vsw_mac_link_update(vsw_t *vswp, link_state_t link_state) 2010 { 2011 READ_ENTER(&vswp->if_lockrw); 2012 2013 if (vswp->if_state & VSW_IF_REG) { 2014 mac_link_update(vswp->if_mh, link_state); 2015 } 2016 2017 RW_EXIT(&vswp->if_lockrw); 2018 } 2019 2020 void 2021 vsw_physlink_state_update(vsw_t *vswp) 2022 { 2023 if (vswp->pls_update == B_TRUE) { 2024 vsw_mac_link_update(vswp, vswp->phys_link_state); 2025 } 2026 vsw_physlink_update_ports(vswp); 2027 } 2028 2029 static void 2030 vsw_bandwidth_read(vsw_t *vswp, md_t *mdp, mde_cookie_t node, uint64_t *bw) 2031 { 2032 /* read the vsw bandwidth from md */ 2033 int rv; 2034 uint64_t val; 2035 2036 rv = md_get_prop_val(mdp, node, vsw_maxbw_propname, &val); 2037 if (rv != 0) { 2038 *bw = 0; 2039 D3(vswp, "%s: prop(%s) not found", __func__, 2040 vsw_maxbw_propname); 2041 } else { 2042 *bw = val; 2043 D3(vswp, "%s: %s(%d): (%ld)\n", __func__, 2044 vsw_maxbw_propname, vswp->instance, *bw); 2045 } 2046 } 2047 2048 /* 2049 * Check to see if the relevant properties in the specified node have 2050 * changed, and if so take the appropriate action. 2051 * 2052 * If any of the properties are missing or invalid we don't take 2053 * any action, as this function should only be invoked when modifications 2054 * have been made to what we assume is a working configuration, which 2055 * we leave active. 2056 * 2057 * Note it is legal for this routine to be invoked even if none of the 2058 * properties in the port node within the MD have actually changed. 2059 */ 2060 static void 2061 vsw_update_md_prop(vsw_t *vswp, md_t *mdp, mde_cookie_t node) 2062 { 2063 char physname[LIFNAMSIZ]; 2064 char drv[LIFNAMSIZ]; 2065 uint_t ddi_instance; 2066 uint8_t new_smode; 2067 int i; 2068 uint64_t macaddr = 0; 2069 enum {MD_init = 0x1, 2070 MD_physname = 0x2, 2071 MD_macaddr = 0x4, 2072 MD_smode = 0x8, 2073 MD_vlans = 0x10, 2074 MD_mtu = 0x20, 2075 MD_pls = 0x40, 2076 MD_bw = 0x80} updated; 2077 int rv; 2078 uint16_t pvid; 2079 vsw_vlanid_t *vids; 2080 uint16_t nvids; 2081 uint32_t mtu; 2082 boolean_t pls_update; 2083 uint64_t maxbw; 2084 2085 updated = MD_init; 2086 2087 D1(vswp, "%s: enter", __func__); 2088 2089 /* 2090 * Check if name of physical device in MD has changed. 2091 */ 2092 if (vsw_get_md_physname(vswp, mdp, node, (char *)&physname) == 0) { 2093 /* 2094 * Do basic sanity check on new device name/instance, 2095 * if its non NULL. It is valid for the device name to 2096 * have changed from a non NULL to a NULL value, i.e. 2097 * the vsw is being changed to 'routed' mode. 2098 */ 2099 if ((strlen(physname) != 0) && 2100 (ddi_parse(physname, drv, 2101 &ddi_instance) != DDI_SUCCESS)) { 2102 cmn_err(CE_WARN, "!vsw%d: physical device %s is not" 2103 " a valid device name/instance", 2104 vswp->instance, physname); 2105 goto fail_reconf; 2106 } 2107 2108 if (strcmp(physname, vswp->physname)) { 2109 D2(vswp, "%s: device name changed from %s to %s", 2110 __func__, vswp->physname, physname); 2111 2112 updated |= MD_physname; 2113 } else { 2114 D2(vswp, "%s: device name unchanged at %s", 2115 __func__, vswp->physname); 2116 } 2117 } else { 2118 cmn_err(CE_WARN, "!vsw%d: Unable to read name of physical " 2119 "device from updated MD.", vswp->instance); 2120 goto fail_reconf; 2121 } 2122 2123 /* 2124 * Check if MAC address has changed. 2125 */ 2126 if (md_get_prop_val(mdp, node, macaddr_propname, &macaddr) != 0) { 2127 cmn_err(CE_WARN, "!vsw%d: Unable to get MAC address from MD", 2128 vswp->instance); 2129 goto fail_reconf; 2130 } else { 2131 uint64_t maddr = macaddr; 2132 READ_ENTER(&vswp->if_lockrw); 2133 for (i = ETHERADDRL - 1; i >= 0; i--) { 2134 if (vswp->if_addr.ether_addr_octet[i] 2135 != (macaddr & 0xFF)) { 2136 D2(vswp, "%s: octet[%d] 0x%x != 0x%x", 2137 __func__, i, 2138 vswp->if_addr.ether_addr_octet[i], 2139 (macaddr & 0xFF)); 2140 updated |= MD_macaddr; 2141 macaddr = maddr; 2142 break; 2143 } 2144 macaddr >>= 8; 2145 } 2146 RW_EXIT(&vswp->if_lockrw); 2147 if (updated & MD_macaddr) { 2148 vsw_save_lmacaddr(vswp, macaddr); 2149 } 2150 } 2151 2152 /* 2153 * Check if switching modes have changed. 2154 */ 2155 if (vsw_get_md_smodes(vswp, mdp, node, &new_smode)) { 2156 cmn_err(CE_WARN, "!vsw%d: Unable to read %s property from MD", 2157 vswp->instance, smode_propname); 2158 goto fail_reconf; 2159 } else { 2160 if (new_smode != vswp->smode) { 2161 D2(vswp, "%s: switching mode changed from %d to %d", 2162 __func__, vswp->smode, new_smode); 2163 2164 updated |= MD_smode; 2165 } 2166 } 2167 2168 /* Read the vlan ids */ 2169 vsw_vlan_read_ids(vswp, VSW_LOCALDEV, mdp, node, &pvid, &vids, 2170 &nvids, NULL); 2171 2172 /* Determine if there are any vlan id updates */ 2173 if ((pvid != vswp->pvid) || /* pvid changed? */ 2174 (nvids != vswp->nvids) || /* # of vids changed? */ 2175 ((nvids != 0) && (vswp->nvids != 0) && /* vids changed? */ 2176 !vsw_cmp_vids(vids, vswp->vids, nvids))) { 2177 updated |= MD_vlans; 2178 } 2179 2180 /* Read mtu */ 2181 vsw_mtu_read(vswp, mdp, node, &mtu); 2182 if (mtu != vswp->mtu) { 2183 if (mtu >= ETHERMTU && mtu <= VNET_MAX_MTU) { 2184 updated |= MD_mtu; 2185 } else { 2186 cmn_err(CE_NOTE, "!vsw%d: Unable to process mtu update" 2187 " as the specified value:%d is invalid\n", 2188 vswp->instance, mtu); 2189 } 2190 } 2191 2192 /* 2193 * Read the 'linkprop' property. 2194 */ 2195 vsw_linkprop_read(vswp, mdp, node, &pls_update); 2196 if (pls_update != vswp->pls_update) { 2197 updated |= MD_pls; 2198 } 2199 2200 /* Read bandwidth */ 2201 vsw_bandwidth_read(vswp, mdp, node, &maxbw); 2202 if (maxbw != vswp->bandwidth) { 2203 if (maxbw >= MRP_MAXBW_MINVAL || maxbw == 0) { 2204 updated |= MD_bw; 2205 } else { 2206 cmn_err(CE_NOTE, "!vsw%d: Unable to process bandwidth" 2207 " update as the specified value:%ld is invalid\n", 2208 vswp->instance, maxbw); 2209 } 2210 } 2211 2212 /* 2213 * Now make any changes which are needed... 2214 */ 2215 if (updated & MD_pls) { 2216 2217 /* save the updated property. */ 2218 vswp->pls_update = pls_update; 2219 2220 if (pls_update == B_FALSE) { 2221 /* 2222 * Phys link state update is now disabled for this vsw 2223 * interface. If we had previously reported a link-down 2224 * to the stack, undo that by sending a link-up. 2225 */ 2226 if (vswp->phys_link_state == LINK_STATE_DOWN) { 2227 vsw_mac_link_update(vswp, LINK_STATE_UP); 2228 } 2229 } else { 2230 /* 2231 * Phys link state update is now enabled. Send up an 2232 * update based on the current phys link state. 2233 */ 2234 if (vswp->smode & VSW_LAYER2) { 2235 vsw_mac_link_update(vswp, 2236 vswp->phys_link_state); 2237 } 2238 } 2239 2240 } 2241 2242 if (updated & (MD_physname | MD_smode | MD_mtu)) { 2243 2244 /* 2245 * Stop any pending thread to setup switching mode. 2246 */ 2247 vsw_setup_switching_stop(vswp); 2248 2249 /* Cleanup HybridIO */ 2250 vsw_hio_cleanup(vswp); 2251 2252 /* 2253 * Remove unicst, mcst addrs of vsw interface 2254 * and ports from the physdev. This also closes 2255 * the corresponding mac clients. 2256 */ 2257 vsw_unset_addrs(vswp); 2258 2259 /* 2260 * Stop, detach and close the old device.. 2261 */ 2262 mutex_enter(&vswp->mac_lock); 2263 vsw_mac_close(vswp); 2264 mutex_exit(&vswp->mac_lock); 2265 2266 /* 2267 * Update phys name. 2268 */ 2269 if (updated & MD_physname) { 2270 cmn_err(CE_NOTE, "!vsw%d: changing from %s to %s", 2271 vswp->instance, vswp->physname, physname); 2272 (void) strncpy(vswp->physname, 2273 physname, strlen(physname) + 1); 2274 } 2275 2276 /* 2277 * Update array with the new switch mode values. 2278 */ 2279 if (updated & MD_smode) { 2280 vswp->smode = new_smode; 2281 } 2282 2283 /* Update mtu */ 2284 if (updated & MD_mtu) { 2285 rv = vsw_mtu_update(vswp, mtu); 2286 if (rv != 0) { 2287 goto fail_update; 2288 } 2289 } 2290 2291 /* 2292 * ..and attach, start the new device. 2293 */ 2294 rv = vsw_setup_switching(vswp); 2295 if (rv == EAGAIN) { 2296 /* 2297 * Unable to setup switching mode. 2298 * As the error is EAGAIN, schedule a thread to retry 2299 * and return. Programming addresses of ports and 2300 * vsw interface will be done by the thread when the 2301 * switching setup completes successfully. 2302 */ 2303 if (vsw_setup_switching_start(vswp) != 0) { 2304 goto fail_update; 2305 } 2306 return; 2307 2308 } else if (rv) { 2309 goto fail_update; 2310 } 2311 2312 vsw_setup_switching_post_process(vswp); 2313 } else if (updated & MD_macaddr) { 2314 /* 2315 * We enter here if only MD_macaddr is exclusively updated. 2316 * If MD_physname and/or MD_smode are also updated, then 2317 * as part of that, we would have implicitly processed 2318 * MD_macaddr update (above). 2319 */ 2320 cmn_err(CE_NOTE, "!vsw%d: changing mac address to 0x%lx", 2321 vswp->instance, macaddr); 2322 2323 READ_ENTER(&vswp->if_lockrw); 2324 if (vswp->if_state & VSW_IF_UP) { 2325 /* reconfigure with new address */ 2326 vsw_if_mac_reconfig(vswp, B_FALSE, 0, NULL, 0); 2327 2328 /* 2329 * Notify the MAC layer of the changed address. 2330 */ 2331 mac_unicst_update(vswp->if_mh, 2332 (uint8_t *)&vswp->if_addr); 2333 2334 } 2335 RW_EXIT(&vswp->if_lockrw); 2336 2337 } 2338 2339 if (updated & MD_vlans) { 2340 /* Remove existing vlan ids from the hash table. */ 2341 vsw_vlan_remove_ids(vswp, VSW_LOCALDEV); 2342 2343 if (vswp->if_state & VSW_IF_UP) { 2344 vsw_if_mac_reconfig(vswp, B_TRUE, pvid, vids, nvids); 2345 } else { 2346 if (vswp->nvids != 0) { 2347 kmem_free(vswp->vids, 2348 sizeof (vsw_vlanid_t) * vswp->nvids); 2349 } 2350 vswp->vids = vids; 2351 vswp->nvids = nvids; 2352 vswp->pvid = pvid; 2353 } 2354 2355 /* add these new vlan ids into hash table */ 2356 vsw_vlan_add_ids(vswp, VSW_LOCALDEV); 2357 } else { 2358 if (nvids != 0) { 2359 kmem_free(vids, sizeof (vsw_vlanid_t) * nvids); 2360 } 2361 } 2362 2363 if (updated & MD_bw) { 2364 vsw_update_bandwidth(vswp, NULL, VSW_LOCALDEV, maxbw); 2365 } 2366 2367 return; 2368 2369 fail_reconf: 2370 cmn_err(CE_WARN, "!vsw%d: configuration unchanged", vswp->instance); 2371 return; 2372 2373 fail_update: 2374 cmn_err(CE_WARN, "!vsw%d: re-configuration failed", 2375 vswp->instance); 2376 } 2377 2378 /* 2379 * Read the port's md properties. 2380 */ 2381 static int 2382 vsw_port_read_props(vsw_port_t *portp, vsw_t *vswp, 2383 md_t *mdp, mde_cookie_t *node) 2384 { 2385 uint64_t ldc_id; 2386 uint8_t *addrp; 2387 int i, addrsz; 2388 int num_nodes = 0, nchan = 0; 2389 int listsz = 0; 2390 mde_cookie_t *listp = NULL; 2391 struct ether_addr ea; 2392 uint64_t macaddr; 2393 uint64_t inst = 0; 2394 uint64_t val; 2395 2396 if (md_get_prop_val(mdp, *node, id_propname, &inst)) { 2397 DWARN(vswp, "%s: prop(%s) not found", __func__, 2398 id_propname); 2399 return (1); 2400 } 2401 2402 /* 2403 * Find the channel endpoint node(s) (which should be under this 2404 * port node) which contain the channel id(s). 2405 */ 2406 if ((num_nodes = md_node_count(mdp)) <= 0) { 2407 DERR(vswp, "%s: invalid number of nodes found (%d)", 2408 __func__, num_nodes); 2409 return (1); 2410 } 2411 2412 D2(vswp, "%s: %d nodes found", __func__, num_nodes); 2413 2414 /* allocate enough space for node list */ 2415 listsz = num_nodes * sizeof (mde_cookie_t); 2416 listp = kmem_zalloc(listsz, KM_SLEEP); 2417 2418 nchan = md_scan_dag(mdp, *node, md_find_name(mdp, chan_propname), 2419 md_find_name(mdp, "fwd"), listp); 2420 2421 if (nchan <= 0) { 2422 DWARN(vswp, "%s: no %s nodes found", __func__, chan_propname); 2423 kmem_free(listp, listsz); 2424 return (1); 2425 } 2426 2427 D2(vswp, "%s: %d %s nodes found", __func__, nchan, chan_propname); 2428 2429 /* use property from first node found */ 2430 if (md_get_prop_val(mdp, listp[0], id_propname, &ldc_id)) { 2431 DWARN(vswp, "%s: prop(%s) not found\n", __func__, 2432 id_propname); 2433 kmem_free(listp, listsz); 2434 return (1); 2435 } 2436 2437 /* don't need list any more */ 2438 kmem_free(listp, listsz); 2439 2440 D2(vswp, "%s: ldc_id 0x%llx", __func__, ldc_id); 2441 2442 /* read mac-address property */ 2443 if (md_get_prop_data(mdp, *node, remaddr_propname, 2444 &addrp, &addrsz)) { 2445 DWARN(vswp, "%s: prop(%s) not found", 2446 __func__, remaddr_propname); 2447 return (1); 2448 } 2449 2450 if (addrsz < ETHERADDRL) { 2451 DWARN(vswp, "%s: invalid address size", __func__); 2452 return (1); 2453 } 2454 2455 macaddr = *((uint64_t *)addrp); 2456 D2(vswp, "%s: remote mac address 0x%llx", __func__, macaddr); 2457 2458 for (i = ETHERADDRL - 1; i >= 0; i--) { 2459 ea.ether_addr_octet[i] = macaddr & 0xFF; 2460 macaddr >>= 8; 2461 } 2462 2463 /* now update all properties into the port */ 2464 portp->p_vswp = vswp; 2465 portp->p_instance = inst; 2466 portp->addr_set = B_FALSE; 2467 ether_copy(&ea, &portp->p_macaddr); 2468 if (nchan > VSW_PORT_MAX_LDCS) { 2469 D2(vswp, "%s: using first of %d ldc ids", 2470 __func__, nchan); 2471 nchan = VSW_PORT_MAX_LDCS; 2472 } 2473 portp->num_ldcs = nchan; 2474 portp->ldc_ids = 2475 kmem_zalloc(sizeof (uint64_t) * nchan, KM_SLEEP); 2476 bcopy(&ldc_id, (portp->ldc_ids), sizeof (uint64_t) * nchan); 2477 2478 /* read vlan id properties of this port node */ 2479 vsw_vlan_read_ids(portp, VSW_VNETPORT, mdp, *node, &portp->pvid, 2480 &portp->vids, &portp->nvids, NULL); 2481 2482 /* Check if hybrid property is present */ 2483 if (md_get_prop_val(mdp, *node, hybrid_propname, &val) == 0) { 2484 D1(vswp, "%s: prop(%s) found\n", __func__, hybrid_propname); 2485 portp->p_hio_enabled = B_TRUE; 2486 } else { 2487 portp->p_hio_enabled = B_FALSE; 2488 } 2489 /* 2490 * Port hio capability determined after version 2491 * negotiation, i.e., when we know the peer is HybridIO capable. 2492 */ 2493 portp->p_hio_capable = B_FALSE; 2494 2495 /* Read bandwidth of this port */ 2496 vsw_port_read_bandwidth(portp, mdp, *node, &portp->p_bandwidth); 2497 2498 return (0); 2499 } 2500 2501 /* 2502 * Add a new port to the system. 2503 * 2504 * Returns 0 on success, 1 on failure. 2505 */ 2506 int 2507 vsw_port_add(vsw_t *vswp, md_t *mdp, mde_cookie_t *node) 2508 { 2509 vsw_port_t *portp; 2510 int rv; 2511 2512 portp = kmem_zalloc(sizeof (vsw_port_t), KM_SLEEP); 2513 2514 rv = vsw_port_read_props(portp, vswp, mdp, node); 2515 if (rv != 0) { 2516 kmem_free(portp, sizeof (*portp)); 2517 return (1); 2518 } 2519 2520 rv = vsw_port_attach(portp); 2521 if (rv != 0) { 2522 DERR(vswp, "%s: failed to attach port", __func__); 2523 return (1); 2524 } 2525 2526 return (0); 2527 } 2528 2529 static int 2530 vsw_port_update(vsw_t *vswp, md_t *curr_mdp, mde_cookie_t curr_mdex, 2531 md_t *prev_mdp, mde_cookie_t prev_mdex) 2532 { 2533 uint64_t cport_num; 2534 uint64_t pport_num; 2535 vsw_port_list_t *plistp; 2536 vsw_port_t *portp; 2537 uint16_t pvid; 2538 vsw_vlanid_t *vids; 2539 uint16_t nvids; 2540 uint64_t val; 2541 boolean_t hio_enabled = B_FALSE; 2542 uint64_t maxbw; 2543 enum {P_MD_init = 0x1, 2544 P_MD_vlans = 0x2, 2545 P_MD_hio = 0x4, 2546 P_MD_maxbw = 0x8} updated; 2547 2548 updated = P_MD_init; 2549 2550 /* 2551 * For now, we get port updates only if vlan ids changed. 2552 * We read the port num and do some sanity check. 2553 */ 2554 if (md_get_prop_val(curr_mdp, curr_mdex, id_propname, &cport_num)) { 2555 return (1); 2556 } 2557 2558 if (md_get_prop_val(prev_mdp, prev_mdex, id_propname, &pport_num)) { 2559 return (1); 2560 } 2561 if (cport_num != pport_num) 2562 return (1); 2563 2564 plistp = &(vswp->plist); 2565 2566 READ_ENTER(&plistp->lockrw); 2567 2568 portp = vsw_lookup_port(vswp, cport_num); 2569 if (portp == NULL) { 2570 RW_EXIT(&plistp->lockrw); 2571 return (1); 2572 } 2573 2574 /* Read the vlan ids */ 2575 vsw_vlan_read_ids(portp, VSW_VNETPORT, curr_mdp, curr_mdex, &pvid, 2576 &vids, &nvids, NULL); 2577 2578 /* Determine if there are any vlan id updates */ 2579 if ((pvid != portp->pvid) || /* pvid changed? */ 2580 (nvids != portp->nvids) || /* # of vids changed? */ 2581 ((nvids != 0) && (portp->nvids != 0) && /* vids changed? */ 2582 !vsw_cmp_vids(vids, portp->vids, nvids))) { 2583 updated |= P_MD_vlans; 2584 } 2585 2586 /* Check if hybrid property is present */ 2587 if (md_get_prop_val(curr_mdp, curr_mdex, hybrid_propname, &val) == 0) { 2588 D1(vswp, "%s: prop(%s) found\n", __func__, hybrid_propname); 2589 hio_enabled = B_TRUE; 2590 } 2591 2592 if (portp->p_hio_enabled != hio_enabled) { 2593 updated |= P_MD_hio; 2594 } 2595 2596 /* Check if maxbw property is present */ 2597 vsw_port_read_bandwidth(portp, curr_mdp, curr_mdex, &maxbw); 2598 if (maxbw != portp->p_bandwidth) { 2599 if (maxbw >= MRP_MAXBW_MINVAL || maxbw == 0) { 2600 updated |= P_MD_maxbw; 2601 } else { 2602 cmn_err(CE_NOTE, "!vsw%d: Unable to process bandwidth" 2603 " update for port %d as the specified value:%ld" 2604 " is invalid\n", 2605 vswp->instance, portp->p_instance, maxbw); 2606 } 2607 } 2608 2609 if (updated & P_MD_vlans) { 2610 /* Remove existing vlan ids from the hash table. */ 2611 vsw_vlan_remove_ids(portp, VSW_VNETPORT); 2612 2613 /* Reconfigure vlans with network device */ 2614 vsw_mac_port_reconfig_vlans(portp, pvid, vids, nvids); 2615 2616 /* add these new vlan ids into hash table */ 2617 vsw_vlan_add_ids(portp, VSW_VNETPORT); 2618 2619 /* reset the port if it is vlan unaware (ver < 1.3) */ 2620 vsw_vlan_unaware_port_reset(portp); 2621 } 2622 2623 if (updated & P_MD_hio) { 2624 vsw_hio_port_update(portp, hio_enabled); 2625 } 2626 2627 if (updated & P_MD_maxbw) { 2628 vsw_update_bandwidth(NULL, portp, VSW_VNETPORT, maxbw); 2629 } 2630 2631 RW_EXIT(&plistp->lockrw); 2632 2633 return (0); 2634 } 2635 2636 /* 2637 * vsw_mac_rx -- A common function to send packets to the interface. 2638 * By default this function check if the interface is UP or not, the 2639 * rest of the behaviour depends on the flags as below: 2640 * 2641 * VSW_MACRX_PROMISC -- Check if the promisc mode set or not. 2642 * VSW_MACRX_COPYMSG -- Make a copy of the message(s). 2643 * VSW_MACRX_FREEMSG -- Free if the messages cannot be sent up the stack. 2644 */ 2645 void 2646 vsw_mac_rx(vsw_t *vswp, mac_resource_handle_t mrh, 2647 mblk_t *mp, vsw_macrx_flags_t flags) 2648 { 2649 mblk_t *mpt; 2650 2651 D1(vswp, "%s:enter\n", __func__); 2652 READ_ENTER(&vswp->if_lockrw); 2653 /* Check if the interface is up */ 2654 if (!(vswp->if_state & VSW_IF_UP)) { 2655 RW_EXIT(&vswp->if_lockrw); 2656 /* Free messages only if FREEMSG flag specified */ 2657 if (flags & VSW_MACRX_FREEMSG) { 2658 freemsgchain(mp); 2659 } 2660 D1(vswp, "%s:exit\n", __func__); 2661 return; 2662 } 2663 /* 2664 * If PROMISC flag is passed, then check if 2665 * the interface is in the PROMISC mode. 2666 * If not, drop the messages. 2667 */ 2668 if (flags & VSW_MACRX_PROMISC) { 2669 if (!(vswp->if_state & VSW_IF_PROMISC)) { 2670 RW_EXIT(&vswp->if_lockrw); 2671 /* Free messages only if FREEMSG flag specified */ 2672 if (flags & VSW_MACRX_FREEMSG) { 2673 freemsgchain(mp); 2674 } 2675 D1(vswp, "%s:exit\n", __func__); 2676 return; 2677 } 2678 } 2679 RW_EXIT(&vswp->if_lockrw); 2680 /* 2681 * If COPYMSG flag is passed, then make a copy 2682 * of the message chain and send up the copy. 2683 */ 2684 if (flags & VSW_MACRX_COPYMSG) { 2685 mp = copymsgchain(mp); 2686 if (mp == NULL) { 2687 D1(vswp, "%s:exit\n", __func__); 2688 return; 2689 } 2690 } 2691 2692 D2(vswp, "%s: sending up stack", __func__); 2693 2694 mpt = NULL; 2695 (void) vsw_vlan_frame_untag(vswp, VSW_LOCALDEV, &mp, &mpt); 2696 if (mp != NULL) { 2697 mac_rx(vswp->if_mh, mrh, mp); 2698 } 2699 D1(vswp, "%s:exit\n", __func__); 2700 } 2701 2702 /* copy mac address of vsw into soft state structure */ 2703 static void 2704 vsw_save_lmacaddr(vsw_t *vswp, uint64_t macaddr) 2705 { 2706 int i; 2707 2708 WRITE_ENTER(&vswp->if_lockrw); 2709 for (i = ETHERADDRL - 1; i >= 0; i--) { 2710 vswp->if_addr.ether_addr_octet[i] = macaddr & 0xFF; 2711 macaddr >>= 8; 2712 } 2713 RW_EXIT(&vswp->if_lockrw); 2714 } 2715 2716 /* Compare VLAN ids, array size expected to be same. */ 2717 static boolean_t 2718 vsw_cmp_vids(vsw_vlanid_t *vids1, vsw_vlanid_t *vids2, int nvids) 2719 { 2720 int i, j; 2721 uint16_t vid; 2722 2723 for (i = 0; i < nvids; i++) { 2724 vid = vids1[i].vl_vid; 2725 for (j = 0; j < nvids; j++) { 2726 if (vid == vids2[i].vl_vid) 2727 break; 2728 } 2729 if (j == nvids) { 2730 return (B_FALSE); 2731 } 2732 } 2733 return (B_TRUE); 2734 } 2735