xref: /titanic_52/usr/src/uts/sun4v/io/vds.c (revision f5b8369cda74e0ace2c6b634f8a29c372bac1b79)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2010 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 /*
28  * Virtual disk server
29  */
30 
31 
32 #include <sys/types.h>
33 #include <sys/conf.h>
34 #include <sys/crc32.h>
35 #include <sys/ddi.h>
36 #include <sys/dkio.h>
37 #include <sys/file.h>
38 #include <sys/fs/hsfs_isospec.h>
39 #include <sys/mdeg.h>
40 #include <sys/mhd.h>
41 #include <sys/modhash.h>
42 #include <sys/note.h>
43 #include <sys/pathname.h>
44 #include <sys/sdt.h>
45 #include <sys/sunddi.h>
46 #include <sys/sunldi.h>
47 #include <sys/sysmacros.h>
48 #include <sys/vio_common.h>
49 #include <sys/vio_util.h>
50 #include <sys/vdsk_mailbox.h>
51 #include <sys/vdsk_common.h>
52 #include <sys/vtoc.h>
53 #include <sys/vfs.h>
54 #include <sys/stat.h>
55 #include <sys/scsi/impl/uscsi.h>
56 #include <sys/ontrap.h>
57 #include <vm/seg_map.h>
58 
59 #define	ONE_MEGABYTE	(1ULL << 20)
60 #define	ONE_GIGABYTE	(1ULL << 30)
61 #define	ONE_TERABYTE	(1ULL << 40)
62 
63 /* Virtual disk server initialization flags */
64 #define	VDS_LDI			0x01
65 #define	VDS_MDEG		0x02
66 
67 /* Virtual disk server tunable parameters */
68 #define	VDS_RETRIES		5
69 #define	VDS_LDC_DELAY		1000 /* 1 msecs */
70 #define	VDS_DEV_DELAY		10000000 /* 10 secs */
71 #define	VDS_NCHAINS		32
72 
73 /* Identification parameters for MD, synthetic dkio(7i) structures, etc. */
74 #define	VDS_NAME		"virtual-disk-server"
75 
76 #define	VD_NAME			"vd"
77 #define	VD_VOLUME_NAME		"vdisk"
78 #define	VD_ASCIILABEL		"Virtual Disk"
79 
80 #define	VD_CHANNEL_ENDPOINT	"channel-endpoint"
81 #define	VD_ID_PROP		"id"
82 #define	VD_BLOCK_DEVICE_PROP	"vds-block-device"
83 #define	VD_BLOCK_DEVICE_OPTS	"vds-block-device-opts"
84 #define	VD_REG_PROP		"reg"
85 
86 /* Virtual disk initialization flags */
87 #define	VD_DISK_READY		0x01
88 #define	VD_LOCKING		0x02
89 #define	VD_LDC			0x04
90 #define	VD_DRING		0x08
91 #define	VD_SID			0x10
92 #define	VD_SEQ_NUM		0x20
93 #define	VD_SETUP_ERROR		0x40
94 
95 /* Number of backup labels */
96 #define	VD_DSKIMG_NUM_BACKUP	5
97 
98 /* Timeout for SCSI I/O */
99 #define	VD_SCSI_RDWR_TIMEOUT	30	/* 30 secs */
100 
101 /*
102  * Default number of threads for the I/O queue. In many cases, we will not
103  * receive more than 8 I/O requests at the same time. However there are
104  * cases (for example during the OS installation) where we can have a lot
105  * more (up to the limit of the DRing size).
106  */
107 #define	VD_IOQ_NTHREADS		8
108 
109 /* Maximum number of logical partitions */
110 #define	VD_MAXPART	(NDKMAP + 1)
111 
112 /*
113  * By Solaris convention, slice/partition 2 represents the entire disk;
114  * unfortunately, this convention does not appear to be codified.
115  */
116 #define	VD_ENTIRE_DISK_SLICE	2
117 
118 /* Logical block address for EFI */
119 #define	VD_EFI_LBA_GPT		1	/* LBA of the GPT */
120 #define	VD_EFI_LBA_GPE		2	/* LBA of the GPE */
121 
122 #define	VD_EFI_DEV_SET(dev, vdsk, ioctl)	\
123 	VDSK_EFI_DEV_SET(dev, vdsk, ioctl,	\
124 	    (vdsk)->vdisk_bsize, (vdsk)->vdisk_size)
125 
126 /*
127  * Flags defining the behavior for flushing asynchronous writes used to
128  * performed some write I/O requests.
129  *
130  * The VD_AWFLUSH_IMMEDIATE enables immediate flushing of asynchronous
131  * writes. This ensures that data are committed to the backend when the I/O
132  * request reply is sent to the guest domain so this prevents any data to
133  * be lost in case a service domain unexpectedly crashes.
134  *
135  * The flag VD_AWFLUSH_DEFER indicates that flushing is deferred to another
136  * thread while the request is immediatly marked as completed. In that case,
137  * a guest domain can a receive a reply that its write request is completed
138  * while data haven't been flushed to disk yet.
139  *
140  * Flags VD_AWFLUSH_IMMEDIATE and VD_AWFLUSH_DEFER are mutually exclusive.
141  */
142 #define	VD_AWFLUSH_IMMEDIATE	0x01	/* immediate flushing */
143 #define	VD_AWFLUSH_DEFER	0x02	/* defer flushing */
144 #define	VD_AWFLUSH_GROUP	0x04	/* group requests before flushing */
145 
146 /* Driver types */
147 typedef enum vd_driver {
148 	VD_DRIVER_UNKNOWN = 0,	/* driver type unknown  */
149 	VD_DRIVER_DISK,		/* disk driver */
150 	VD_DRIVER_VOLUME	/* volume driver */
151 } vd_driver_t;
152 
153 #define	VD_DRIVER_NAME_LEN	64
154 
155 #define	VDS_NUM_DRIVERS	(sizeof (vds_driver_types) / sizeof (vd_driver_type_t))
156 
157 typedef struct vd_driver_type {
158 	char name[VD_DRIVER_NAME_LEN];	/* driver name */
159 	vd_driver_t type;		/* driver type (disk or volume) */
160 } vd_driver_type_t;
161 
162 /*
163  * There is no reliable way to determine if a device is representing a disk
164  * or a volume, especially with pseudo devices. So we maintain a list of well
165  * known drivers and the type of device they represent (either a disk or a
166  * volume).
167  *
168  * The list can be extended by adding a "driver-type-list" entry in vds.conf
169  * with the following syntax:
170  *
171  * 	driver-type-list="<driver>:<type>", ... ,"<driver>:<type>";
172  *
173  * Where:
174  *	<driver> is the name of a driver (limited to 64 characters)
175  *	<type> is either the string "disk" or "volume"
176  *
177  * Invalid entries in "driver-type-list" will be ignored.
178  *
179  * For example, the following line in vds.conf:
180  *
181  * 	driver-type-list="foo:disk","bar:volume";
182  *
183  * defines that "foo" is a disk driver, and driver "bar" is a volume driver.
184  *
185  * When a list is defined in vds.conf, it is checked before the built-in list
186  * (vds_driver_types[]) so that any definition from this list can be overriden
187  * using vds.conf.
188  */
189 vd_driver_type_t vds_driver_types[] = {
190 	{ "dad",	VD_DRIVER_DISK },	/* Solaris */
191 	{ "did",	VD_DRIVER_DISK },	/* Sun Cluster */
192 	{ "dlmfdrv",	VD_DRIVER_DISK },	/* Hitachi HDLM */
193 	{ "emcp",	VD_DRIVER_DISK },	/* EMC Powerpath */
194 	{ "lofi",	VD_DRIVER_VOLUME },	/* Solaris */
195 	{ "md",		VD_DRIVER_VOLUME },	/* Solaris - SVM */
196 	{ "sd",		VD_DRIVER_DISK },	/* Solaris */
197 	{ "ssd",	VD_DRIVER_DISK },	/* Solaris */
198 	{ "vdc",	VD_DRIVER_DISK },	/* Solaris */
199 	{ "vxdmp",	VD_DRIVER_DISK },	/* Veritas */
200 	{ "vxio",	VD_DRIVER_VOLUME },	/* Veritas - VxVM */
201 	{ "zfs",	VD_DRIVER_VOLUME }	/* Solaris */
202 };
203 
204 /* Return a cpp token as a string */
205 #define	STRINGIZE(token)	#token
206 
207 /*
208  * Print a message prefixed with the current function name to the message log
209  * (and optionally to the console for verbose boots); these macros use cpp's
210  * concatenation of string literals and C99 variable-length-argument-list
211  * macros
212  */
213 #define	PRN(...)	_PRN("?%s():  "__VA_ARGS__, "")
214 #define	_PRN(format, ...)					\
215 	cmn_err(CE_CONT, format"%s", __func__, __VA_ARGS__)
216 
217 /* Return a pointer to the "i"th vdisk dring element */
218 #define	VD_DRING_ELEM(i)	((vd_dring_entry_t *)(void *)	\
219 	    (vd->dring + (i)*vd->descriptor_size))
220 
221 /* Return the virtual disk client's type as a string (for use in messages) */
222 #define	VD_CLIENT(vd)							\
223 	(((vd)->xfer_mode == VIO_DESC_MODE) ? "in-band client" :	\
224 	    (((vd)->xfer_mode == VIO_DRING_MODE_V1_0) ? "dring client" :    \
225 		(((vd)->xfer_mode == 0) ? "null client" :		\
226 		    "unsupported client")))
227 
228 /* Read disk label from a disk image */
229 #define	VD_DSKIMG_LABEL_READ(vd, labelp) \
230 	vd_dskimg_rw(vd, VD_SLICE_NONE, VD_OP_BREAD, (caddr_t)labelp, \
231 	    0, sizeof (struct dk_label))
232 
233 /* Write disk label to a disk image */
234 #define	VD_DSKIMG_LABEL_WRITE(vd, labelp)	\
235 	vd_dskimg_rw(vd, VD_SLICE_NONE, VD_OP_BWRITE, (caddr_t)labelp, \
236 	    0, sizeof (struct dk_label))
237 
238 /* Identify if a backend is a disk image */
239 #define	VD_DSKIMG(vd)	((vd)->vdisk_type == VD_DISK_TYPE_DISK &&	\
240 	((vd)->file || (vd)->volume))
241 
242 /* Next index in a write queue */
243 #define	VD_WRITE_INDEX_NEXT(vd, id)		\
244 	((((id) + 1) >= vd->dring_len)? 0 : (id) + 1)
245 
246 /* Message for disk access rights reset failure */
247 #define	VD_RESET_ACCESS_FAILURE_MSG \
248 	"Fail to reset disk access rights for disk %s"
249 
250 /*
251  * Specification of an MD node passed to the MDEG to filter any
252  * 'vport' nodes that do not belong to the specified node. This
253  * template is copied for each vds instance and filled in with
254  * the appropriate 'cfg-handle' value before being passed to the MDEG.
255  */
256 static mdeg_prop_spec_t	vds_prop_template[] = {
257 	{ MDET_PROP_STR,	"name",		VDS_NAME },
258 	{ MDET_PROP_VAL,	"cfg-handle",	NULL },
259 	{ MDET_LIST_END,	NULL, 		NULL }
260 };
261 
262 #define	VDS_SET_MDEG_PROP_INST(specp, val) (specp)[1].ps_val = (val);
263 
264 /*
265  * Matching criteria passed to the MDEG to register interest
266  * in changes to 'virtual-device-port' nodes identified by their
267  * 'id' property.
268  */
269 static md_prop_match_t	vd_prop_match[] = {
270 	{ MDET_PROP_VAL,	VD_ID_PROP },
271 	{ MDET_LIST_END,	NULL }
272 };
273 
274 static mdeg_node_match_t vd_match = {"virtual-device-port",
275 				    vd_prop_match};
276 
277 /*
278  * Options for the VD_BLOCK_DEVICE_OPTS property.
279  */
280 #define	VD_OPT_RDONLY		0x1	/* read-only  */
281 #define	VD_OPT_SLICE		0x2	/* single slice */
282 #define	VD_OPT_EXCLUSIVE	0x4	/* exclusive access */
283 
284 #define	VD_OPTION_NLEN	128
285 
286 typedef struct vd_option {
287 	char vdo_name[VD_OPTION_NLEN];
288 	uint64_t vdo_value;
289 } vd_option_t;
290 
291 vd_option_t vd_bdev_options[] = {
292 	{ "ro",		VD_OPT_RDONLY },
293 	{ "slice", 	VD_OPT_SLICE },
294 	{ "excl",	VD_OPT_EXCLUSIVE }
295 };
296 
297 /* Debugging macros */
298 #ifdef DEBUG
299 
300 static int	vd_msglevel = 0;
301 
302 #define	PR0 if (vd_msglevel > 0)	PRN
303 #define	PR1 if (vd_msglevel > 1)	PRN
304 #define	PR2 if (vd_msglevel > 2)	PRN
305 
306 #define	VD_DUMP_DRING_ELEM(elem)					\
307 	PR0("dst:%x op:%x st:%u nb:%lx addr:%lx ncook:%u\n",		\
308 	    elem->hdr.dstate,						\
309 	    elem->payload.operation,					\
310 	    elem->payload.status,					\
311 	    elem->payload.nbytes,					\
312 	    elem->payload.addr,						\
313 	    elem->payload.ncookies);
314 
315 char *
316 vd_decode_state(int state)
317 {
318 	char *str;
319 
320 #define	CASE_STATE(_s)	case _s: str = #_s; break;
321 
322 	switch (state) {
323 	CASE_STATE(VD_STATE_INIT)
324 	CASE_STATE(VD_STATE_VER)
325 	CASE_STATE(VD_STATE_ATTR)
326 	CASE_STATE(VD_STATE_DRING)
327 	CASE_STATE(VD_STATE_RDX)
328 	CASE_STATE(VD_STATE_DATA)
329 	default: str = "unknown"; break;
330 	}
331 
332 #undef CASE_STATE
333 
334 	return (str);
335 }
336 
337 void
338 vd_decode_tag(vio_msg_t *msg)
339 {
340 	char *tstr, *sstr, *estr;
341 
342 #define	CASE_TYPE(_s)	case _s: tstr = #_s; break;
343 
344 	switch (msg->tag.vio_msgtype) {
345 	CASE_TYPE(VIO_TYPE_CTRL)
346 	CASE_TYPE(VIO_TYPE_DATA)
347 	CASE_TYPE(VIO_TYPE_ERR)
348 	default: tstr = "unknown"; break;
349 	}
350 
351 #undef CASE_TYPE
352 
353 #define	CASE_SUBTYPE(_s) case _s: sstr = #_s; break;
354 
355 	switch (msg->tag.vio_subtype) {
356 	CASE_SUBTYPE(VIO_SUBTYPE_INFO)
357 	CASE_SUBTYPE(VIO_SUBTYPE_ACK)
358 	CASE_SUBTYPE(VIO_SUBTYPE_NACK)
359 	default: sstr = "unknown"; break;
360 	}
361 
362 #undef CASE_SUBTYPE
363 
364 #define	CASE_ENV(_s)	case _s: estr = #_s; break;
365 
366 	switch (msg->tag.vio_subtype_env) {
367 	CASE_ENV(VIO_VER_INFO)
368 	CASE_ENV(VIO_ATTR_INFO)
369 	CASE_ENV(VIO_DRING_REG)
370 	CASE_ENV(VIO_DRING_UNREG)
371 	CASE_ENV(VIO_RDX)
372 	CASE_ENV(VIO_PKT_DATA)
373 	CASE_ENV(VIO_DESC_DATA)
374 	CASE_ENV(VIO_DRING_DATA)
375 	default: estr = "unknown"; break;
376 	}
377 
378 #undef CASE_ENV
379 
380 	PR1("(%x/%x/%x) message : (%s/%s/%s)",
381 	    msg->tag.vio_msgtype, msg->tag.vio_subtype,
382 	    msg->tag.vio_subtype_env, tstr, sstr, estr);
383 }
384 
385 #else	/* !DEBUG */
386 
387 #define	PR0(...)
388 #define	PR1(...)
389 #define	PR2(...)
390 
391 #define	VD_DUMP_DRING_ELEM(elem)
392 
393 #define	vd_decode_state(_s)	(NULL)
394 #define	vd_decode_tag(_s)	(NULL)
395 
396 #endif	/* DEBUG */
397 
398 
399 /*
400  * Soft state structure for a vds instance
401  */
402 typedef struct vds {
403 	uint_t		initialized;	/* driver inst initialization flags */
404 	dev_info_t	*dip;		/* driver inst devinfo pointer */
405 	ldi_ident_t	ldi_ident;	/* driver's identifier for LDI */
406 	mod_hash_t	*vd_table;	/* table of virtual disks served */
407 	mdeg_node_spec_t *ispecp;	/* mdeg node specification */
408 	mdeg_handle_t	mdeg;		/* handle for MDEG operations  */
409 	vd_driver_type_t *driver_types;	/* extra driver types (from vds.conf) */
410 	int 		num_drivers;	/* num of extra driver types */
411 } vds_t;
412 
413 /*
414  * Types of descriptor-processing tasks
415  */
416 typedef enum vd_task_type {
417 	VD_NONFINAL_RANGE_TASK,	/* task for intermediate descriptor in range */
418 	VD_FINAL_RANGE_TASK,	/* task for last in a range of descriptors */
419 } vd_task_type_t;
420 
421 /*
422  * Structure describing the task for processing a descriptor
423  */
424 typedef struct vd_task {
425 	struct vd		*vd;		/* vd instance task is for */
426 	vd_task_type_t		type;		/* type of descriptor task */
427 	int			index;		/* dring elem index for task */
428 	vio_msg_t		*msg;		/* VIO message task is for */
429 	size_t			msglen;		/* length of message content */
430 	vd_dring_payload_t	*request;	/* request task will perform */
431 	struct buf		buf;		/* buf(9s) for I/O request */
432 	ldc_mem_handle_t	mhdl;		/* task memory handle */
433 	int			status;		/* status of processing task */
434 	int	(*completef)(struct vd_task *task); /* completion func ptr */
435 	uint32_t		write_index;	/* index in the write_queue */
436 } vd_task_t;
437 
438 /*
439  * Soft state structure for a virtual disk instance
440  */
441 typedef struct vd {
442 	uint64_t		id;		/* vdisk id */
443 	uint_t			initialized;	/* vdisk initialization flags */
444 	uint64_t		operations;	/* bitmask of VD_OPs exported */
445 	vio_ver_t		version;	/* ver negotiated with client */
446 	vds_t			*vds;		/* server for this vdisk */
447 	ddi_taskq_t		*startq;	/* queue for I/O start tasks */
448 	ddi_taskq_t		*completionq;	/* queue for completion tasks */
449 	ddi_taskq_t		*ioq;		/* queue for I/O */
450 	uint32_t		write_index;	/* next write index */
451 	buf_t			**write_queue;	/* queue for async writes */
452 	ldi_handle_t		ldi_handle[V_NUMPAR];	/* LDI slice handles */
453 	char			device_path[MAXPATHLEN + 1]; /* vdisk device */
454 	dev_t			dev[V_NUMPAR];	/* dev numbers for slices */
455 	int			open_flags;	/* open flags */
456 	uint_t			nslices;	/* number of slices we export */
457 	size_t			vdisk_size;	/* number of blocks in vdisk */
458 	size_t			vdisk_bsize;	/* blk size of the vdisk */
459 	vd_disk_type_t		vdisk_type;	/* slice or entire disk */
460 	vd_disk_label_t		vdisk_label;	/* EFI or VTOC label */
461 	vd_media_t		vdisk_media;	/* media type of backing dev. */
462 	boolean_t		is_atapi_dev;	/* Is this an IDE CD-ROM dev? */
463 	ushort_t		max_xfer_sz;	/* max xfer size in DEV_BSIZE */
464 	size_t			backend_bsize;	/* blk size of backend device */
465 	int			vio_bshift;	/* shift for blk convertion */
466 	boolean_t		volume;		/* is vDisk backed by volume */
467 	boolean_t		zvol;		/* is vDisk backed by a zvol */
468 	boolean_t		file;		/* is vDisk backed by a file? */
469 	boolean_t		scsi;		/* is vDisk backed by scsi? */
470 	vnode_t			*file_vnode;	/* file vnode */
471 	size_t			dskimg_size;	/* size of disk image */
472 	ddi_devid_t		dskimg_devid;	/* devid for disk image */
473 	int			efi_reserved;	/* EFI reserved slice */
474 	caddr_t			flabel;		/* fake label for slice type */
475 	uint_t			flabel_size;	/* fake label size */
476 	uint_t			flabel_limit;	/* limit of the fake label */
477 	struct dk_geom		dk_geom;	/* synthetic for slice type */
478 	struct extvtoc		vtoc;		/* synthetic for slice type */
479 	vd_slice_t		slices[VD_MAXPART]; /* logical partitions */
480 	boolean_t		ownership;	/* disk ownership status */
481 	ldc_status_t		ldc_state;	/* LDC connection state */
482 	ldc_handle_t		ldc_handle;	/* handle for LDC comm */
483 	size_t			max_msglen;	/* largest LDC message len */
484 	vd_state_t		state;		/* client handshake state */
485 	uint8_t			xfer_mode;	/* transfer mode with client */
486 	uint32_t		sid;		/* client's session ID */
487 	uint64_t		seq_num;	/* message sequence number */
488 	uint64_t		dring_ident;	/* identifier of dring */
489 	ldc_dring_handle_t	dring_handle;	/* handle for dring ops */
490 	uint32_t		descriptor_size;	/* num bytes in desc */
491 	uint32_t		dring_len;	/* number of dring elements */
492 	uint8_t			dring_mtype;	/* dring mem map type */
493 	caddr_t			dring;		/* address of dring */
494 	caddr_t			vio_msgp;	/* vio msg staging buffer */
495 	vd_task_t		inband_task;	/* task for inband descriptor */
496 	vd_task_t		*dring_task;	/* tasks dring elements */
497 
498 	kmutex_t		lock;		/* protects variables below */
499 	boolean_t		enabled;	/* is vdisk enabled? */
500 	boolean_t		reset_state;	/* reset connection state? */
501 	boolean_t		reset_ldc;	/* reset LDC channel? */
502 } vd_t;
503 
504 /*
505  * Macros to manipulate the fake label (flabel) for single slice disks.
506  *
507  * If we fake a VTOC label then the fake label consists of only one block
508  * containing the VTOC label (struct dk_label).
509  *
510  * If we fake an EFI label then the fake label consists of a blank block
511  * followed by a GPT (efi_gpt_t) and a GPE (efi_gpe_t).
512  *
513  */
514 #define	VD_LABEL_VTOC_SIZE(lba)					\
515 	P2ROUNDUP(sizeof (struct dk_label), (lba))
516 
517 #define	VD_LABEL_EFI_SIZE(lba)					\
518 	P2ROUNDUP(2 * (lba) + sizeof (efi_gpe_t) * VD_MAXPART,	\
519 	    (lba))
520 
521 #define	VD_LABEL_VTOC(vd)	\
522 		((struct dk_label *)(void *)((vd)->flabel))
523 
524 #define	VD_LABEL_EFI_GPT(vd, lba)	\
525 		((efi_gpt_t *)(void *)((vd)->flabel + (lba)))
526 #define	VD_LABEL_EFI_GPE(vd, lba)	\
527 		((efi_gpe_t *)(void *)((vd)->flabel + 2 * (lba)))
528 
529 
530 typedef struct vds_operation {
531 	char	*namep;
532 	uint8_t	operation;
533 	int	(*start)(vd_task_t *task);
534 	int	(*complete)(vd_task_t *task);
535 } vds_operation_t;
536 
537 typedef struct vd_ioctl {
538 	uint8_t		operation;		/* vdisk operation */
539 	const char	*operation_name;	/* vdisk operation name */
540 	size_t		nbytes;			/* size of operation buffer */
541 	int		cmd;			/* corresponding ioctl cmd */
542 	const char	*cmd_name;		/* ioctl cmd name */
543 	void		*arg;			/* ioctl cmd argument */
544 	/* convert input vd_buf to output ioctl_arg */
545 	int		(*copyin)(void *vd_buf, size_t, void *ioctl_arg);
546 	/* convert input ioctl_arg to output vd_buf */
547 	void		(*copyout)(void *ioctl_arg, void *vd_buf);
548 	/* write is true if the operation writes any data to the backend */
549 	boolean_t	write;
550 } vd_ioctl_t;
551 
552 /* Define trivial copyin/copyout conversion function flag */
553 #define	VD_IDENTITY_IN	((int (*)(void *, size_t, void *))-1)
554 #define	VD_IDENTITY_OUT	((void (*)(void *, void *))-1)
555 
556 
557 static int	vds_ldc_retries = VDS_RETRIES;
558 static int	vds_ldc_delay = VDS_LDC_DELAY;
559 static int	vds_dev_retries = VDS_RETRIES;
560 static int	vds_dev_delay = VDS_DEV_DELAY;
561 static void	*vds_state;
562 
563 static short	vd_scsi_rdwr_timeout = VD_SCSI_RDWR_TIMEOUT;
564 static int	vd_scsi_debug = USCSI_SILENT;
565 
566 /*
567  * Number of threads in the taskq handling vdisk I/O. This can be set up to
568  * the size of the DRing which is the maximum number of I/O we can receive
569  * in parallel. Note that using a high number of threads can improve performance
570  * but this is going to consume a lot of resources if there are many vdisks.
571  */
572 static int	vd_ioq_nthreads = VD_IOQ_NTHREADS;
573 
574 /*
575  * Tunable to define the behavior for flushing asynchronous writes used to
576  * performed some write I/O requests. The default behavior is to group as
577  * much asynchronous writes as possible and to flush them immediatly.
578  *
579  * If the tunable is set to 0 then explicit flushing is disabled. In that
580  * case, data will be flushed by traditional mechanism (like fsflush) but
581  * this might not happen immediatly.
582  *
583  */
584 static int	vd_awflush = VD_AWFLUSH_IMMEDIATE | VD_AWFLUSH_GROUP;
585 
586 /*
587  * Tunable to define the behavior of the service domain if the vdisk server
588  * fails to reset disk exclusive access when a LDC channel is reset. When a
589  * LDC channel is reset the vdisk server will try to reset disk exclusive
590  * access by releasing any SCSI-2 reservation or resetting the disk. If these
591  * actions fail then the default behavior (vd_reset_access_failure = 0) is to
592  * print a warning message. This default behavior can be changed by setting
593  * the vd_reset_access_failure variable to A_REBOOT (= 0x1) and that will
594  * cause the service domain to reboot, or A_DUMP (= 0x5) and that will cause
595  * the service domain to panic. In both cases, the reset of the service domain
596  * should trigger a reset SCSI buses and hopefully clear any SCSI-2 reservation.
597  */
598 static int 	vd_reset_access_failure = 0;
599 
600 /*
601  * Tunable for backward compatibility. When this variable is set to B_TRUE,
602  * all disk volumes (ZFS, SVM, VxvM volumes) will be exported as single
603  * slice disks whether or not they have the "slice" option set. This is
604  * to provide a simple backward compatibility mechanism when upgrading
605  * the vds driver and using a domain configuration created before the
606  * "slice" option was available.
607  */
608 static boolean_t vd_volume_force_slice = B_FALSE;
609 
610 /*
611  * The label of disk images created with some earlier versions of the virtual
612  * disk software is not entirely correct and have an incorrect v_sanity field
613  * (usually 0) instead of VTOC_SANE. This creates a compatibility problem with
614  * these images because we are now validating that the disk label (and the
615  * sanity) is correct when a disk image is opened.
616  *
617  * This tunable is set to false to not validate the sanity field and ensure
618  * compatibility. If the tunable is set to true, we will do a strict checking
619  * of the sanity but this can create compatibility problems with old disk
620  * images.
621  */
622 static boolean_t vd_dskimg_validate_sanity = B_FALSE;
623 
624 /*
625  * Enables the use of LDC_DIRECT_MAP when mapping in imported descriptor rings.
626  */
627 static boolean_t vd_direct_mapped_drings = B_TRUE;
628 
629 /*
630  * When a backend is exported as a single-slice disk then we entirely fake
631  * its disk label. So it can be exported either with a VTOC label or with
632  * an EFI label. If vd_slice_label is set to VD_DISK_LABEL_VTOC then all
633  * single-slice disks will be exported with a VTOC label; and if it is set
634  * to VD_DISK_LABEL_EFI then all single-slice disks will be exported with
635  * an EFI label.
636  *
637  * If vd_slice_label is set to VD_DISK_LABEL_UNK and the backend is a disk
638  * or volume device then it will be exported with the same type of label as
639  * defined on the device. Otherwise if the backend is a file then it will
640  * exported with the disk label type set in the vd_file_slice_label variable.
641  *
642  * Note that if the backend size is greater than 1TB then it will always be
643  * exported with an EFI label no matter what the setting is.
644  */
645 static vd_disk_label_t vd_slice_label = VD_DISK_LABEL_UNK;
646 
647 static vd_disk_label_t vd_file_slice_label = VD_DISK_LABEL_VTOC;
648 
649 /*
650  * Tunable for backward compatibility. If this variable is set to B_TRUE then
651  * single-slice disks are exported as disks with only one slice instead of
652  * faking a complete disk partitioning.
653  */
654 static boolean_t vd_slice_single_slice = B_FALSE;
655 
656 /*
657  * Supported protocol version pairs, from highest (newest) to lowest (oldest)
658  *
659  * Each supported major version should appear only once, paired with (and only
660  * with) its highest supported minor version number (as the protocol requires
661  * supporting all lower minor version numbers as well)
662  */
663 static const vio_ver_t	vds_version[] = {{1, 1}};
664 static const size_t	vds_num_versions =
665     sizeof (vds_version)/sizeof (vds_version[0]);
666 
667 static void vd_free_dring_task(vd_t *vdp);
668 static int vd_setup_vd(vd_t *vd);
669 static int vd_setup_single_slice_disk(vd_t *vd);
670 static int vd_setup_slice_image(vd_t *vd);
671 static int vd_setup_disk_image(vd_t *vd);
672 static int vd_backend_check_size(vd_t *vd);
673 static boolean_t vd_enabled(vd_t *vd);
674 static ushort_t vd_lbl2cksum(struct dk_label *label);
675 static int vd_dskimg_validate_geometry(vd_t *vd);
676 static boolean_t vd_dskimg_is_iso_image(vd_t *vd);
677 static void vd_set_exported_operations(vd_t *vd);
678 static void vd_reset_access(vd_t *vd);
679 static int vd_backend_ioctl(vd_t *vd, int cmd, caddr_t arg);
680 static int vds_efi_alloc_and_read(vd_t *, efi_gpt_t **, efi_gpe_t **);
681 static void vds_efi_free(vd_t *, efi_gpt_t *, efi_gpe_t *);
682 static void vds_driver_types_free(vds_t *vds);
683 static void vd_vtocgeom_to_label(struct extvtoc *vtoc, struct dk_geom *geom,
684     struct dk_label *label);
685 static void vd_label_to_vtocgeom(struct dk_label *label, struct extvtoc *vtoc,
686     struct dk_geom *geom);
687 static boolean_t vd_slice_geom_isvalid(vd_t *vd, struct dk_geom *geom);
688 static boolean_t vd_slice_vtoc_isvalid(vd_t *vd, struct extvtoc *vtoc);
689 
690 extern int is_pseudo_device(dev_info_t *);
691 
692 /*
693  * Function:
694  *	vd_get_readable_size
695  *
696  * Description:
697  * 	Convert a given size in bytes to a human readable format in
698  * 	kilobytes, megabytes, gigabytes or terabytes.
699  *
700  * Parameters:
701  *	full_size	- the size to convert in bytes.
702  *	size		- the converted size.
703  *	unit		- the unit of the converted size: 'K' (kilobyte),
704  *			  'M' (Megabyte), 'G' (Gigabyte), 'T' (Terabyte).
705  *
706  * Return Code:
707  *	none
708  */
709 static void
710 vd_get_readable_size(size_t full_size, size_t *size, char *unit)
711 {
712 	if (full_size < (1ULL << 20)) {
713 		*size = full_size >> 10;
714 		*unit = 'K'; /* Kilobyte */
715 	} else if (full_size < (1ULL << 30)) {
716 		*size = full_size >> 20;
717 		*unit = 'M'; /* Megabyte */
718 	} else if (full_size < (1ULL << 40)) {
719 		*size = full_size >> 30;
720 		*unit = 'G'; /* Gigabyte */
721 	} else {
722 		*size = full_size >> 40;
723 		*unit = 'T'; /* Terabyte */
724 	}
725 }
726 
727 /*
728  * Function:
729  *	vd_dskimg_io_params
730  *
731  * Description:
732  * 	Convert virtual disk I/O parameters (slice, block, length) to
733  *	(offset, length) relative to the disk image and according to
734  *	the virtual disk partitioning.
735  *
736  * Parameters:
737  *	vd		- disk on which the operation is performed.
738  *	slice		- slice to which is the I/O parameters apply.
739  *			  VD_SLICE_NONE indicates that parameters are
740  *			  are relative to the entire virtual disk.
741  *	blkp		- pointer to the starting block relative to the
742  *			  slice; return the starting block relative to
743  *			  the disk image.
744  *	lenp		- pointer to the number of bytes requested; return
745  *			  the number of bytes that can effectively be used.
746  *
747  * Return Code:
748  *	0		- I/O parameters have been successfully converted;
749  *			  blkp and lenp point to the converted values.
750  *	ENODATA		- no data are available for the given I/O parameters;
751  *			  This occurs if the starting block is past the limit
752  *			  of the slice.
753  *	EINVAL		- I/O parameters are invalid.
754  */
755 static int
756 vd_dskimg_io_params(vd_t *vd, int slice, size_t *blkp, size_t *lenp)
757 {
758 	size_t blk = *blkp;
759 	size_t len = *lenp;
760 	size_t offset, maxlen;
761 
762 	ASSERT(vd->file || VD_DSKIMG(vd));
763 	ASSERT(len > 0);
764 	ASSERT(vd->vdisk_bsize == DEV_BSIZE);
765 
766 	/*
767 	 * If a file is exported as a slice then we don't care about the vtoc.
768 	 * In that case, the vtoc is a fake mainly to make newfs happy and we
769 	 * handle any I/O as a raw disk access so that we can have access to the
770 	 * entire backend.
771 	 */
772 	if (vd->vdisk_type == VD_DISK_TYPE_SLICE || slice == VD_SLICE_NONE) {
773 		/* raw disk access */
774 		offset = blk * DEV_BSIZE;
775 		if (offset >= vd->dskimg_size) {
776 			/* offset past the end of the disk */
777 			PR0("offset (0x%lx) >= size (0x%lx)",
778 			    offset, vd->dskimg_size);
779 			return (ENODATA);
780 		}
781 		maxlen = vd->dskimg_size - offset;
782 	} else {
783 		ASSERT(slice >= 0 && slice < V_NUMPAR);
784 
785 		/*
786 		 * v1.0 vDisk clients depended on the server not verifying
787 		 * the label of a unformatted disk.  This "feature" is
788 		 * maintained for backward compatibility but all versions
789 		 * from v1.1 onwards must do the right thing.
790 		 */
791 		if (vd->vdisk_label == VD_DISK_LABEL_UNK &&
792 		    vio_ver_is_supported(vd->version, 1, 1)) {
793 			(void) vd_dskimg_validate_geometry(vd);
794 			if (vd->vdisk_label == VD_DISK_LABEL_UNK) {
795 				PR0("Unknown disk label, can't do I/O "
796 				    "from slice %d", slice);
797 				return (EINVAL);
798 			}
799 		}
800 
801 		if (vd->vdisk_label == VD_DISK_LABEL_VTOC) {
802 			ASSERT(vd->vtoc.v_sectorsz == DEV_BSIZE);
803 		} else {
804 			ASSERT(vd->vdisk_label == VD_DISK_LABEL_EFI);
805 		}
806 
807 		if (blk >= vd->slices[slice].nblocks) {
808 			/* address past the end of the slice */
809 			PR0("req_addr (0x%lx) >= psize (0x%lx)",
810 			    blk, vd->slices[slice].nblocks);
811 			return (ENODATA);
812 		}
813 
814 		offset = (vd->slices[slice].start + blk) * DEV_BSIZE;
815 		maxlen = (vd->slices[slice].nblocks - blk) * DEV_BSIZE;
816 	}
817 
818 	/*
819 	 * If the requested size is greater than the size
820 	 * of the partition, truncate the read/write.
821 	 */
822 	if (len > maxlen) {
823 		PR0("I/O size truncated to %lu bytes from %lu bytes",
824 		    maxlen, len);
825 		len = maxlen;
826 	}
827 
828 	/*
829 	 * We have to ensure that we are reading/writing into the mmap
830 	 * range. If we have a partial disk image (e.g. an image of
831 	 * s0 instead s2) the system can try to access slices that
832 	 * are not included into the disk image.
833 	 */
834 	if ((offset + len) > vd->dskimg_size) {
835 		PR0("offset + nbytes (0x%lx + 0x%lx) > "
836 		    "dskimg_size (0x%lx)", offset, len, vd->dskimg_size);
837 		return (EINVAL);
838 	}
839 
840 	*blkp = offset / DEV_BSIZE;
841 	*lenp = len;
842 
843 	return (0);
844 }
845 
846 /*
847  * Function:
848  *	vd_dskimg_rw
849  *
850  * Description:
851  * 	Read or write to a disk image. It handles the case where the disk
852  *	image is a file or a volume exported as a full disk or a file
853  *	exported as single-slice disk. Read or write to volumes exported as
854  *	single slice disks are done by directly using the ldi interface.
855  *
856  * Parameters:
857  *	vd		- disk on which the operation is performed.
858  *	slice		- slice on which the operation is performed,
859  *			  VD_SLICE_NONE indicates that the operation
860  *			  is done using an absolute disk offset.
861  *	operation	- operation to execute: read (VD_OP_BREAD) or
862  *			  write (VD_OP_BWRITE).
863  *	data		- buffer where data are read to or written from.
864  *	blk		- starting block for the operation.
865  *	len		- number of bytes to read or write.
866  *
867  * Return Code:
868  *	n >= 0		- success, n indicates the number of bytes read
869  *			  or written.
870  *	-1		- error.
871  */
872 static ssize_t
873 vd_dskimg_rw(vd_t *vd, int slice, int operation, caddr_t data, size_t offset,
874     size_t len)
875 {
876 	ssize_t resid;
877 	struct buf buf;
878 	int status;
879 
880 	ASSERT(vd->file || VD_DSKIMG(vd));
881 	ASSERT(len > 0);
882 	ASSERT(vd->vdisk_bsize == DEV_BSIZE);
883 
884 	if ((status = vd_dskimg_io_params(vd, slice, &offset, &len)) != 0)
885 		return ((status == ENODATA)? 0: -1);
886 
887 	if (vd->volume) {
888 
889 		bioinit(&buf);
890 		buf.b_flags	= B_BUSY |
891 		    ((operation == VD_OP_BREAD)? B_READ : B_WRITE);
892 		buf.b_bcount	= len;
893 		buf.b_lblkno	= offset;
894 		buf.b_edev 	= vd->dev[0];
895 		buf.b_un.b_addr = data;
896 
897 		/*
898 		 * We use ldi_strategy() and not ldi_read()/ldi_write() because
899 		 * the read/write functions of the underlying driver may try to
900 		 * lock pages of the data buffer, and this requires the data
901 		 * buffer to be kmem_alloc'ed (and not allocated on the stack).
902 		 *
903 		 * Also using ldi_strategy() ensures that writes are immediatly
904 		 * commited and not cached as this may be the case with
905 		 * ldi_write() (for example with a ZFS volume).
906 		 */
907 		if (ldi_strategy(vd->ldi_handle[0], &buf) != 0) {
908 			biofini(&buf);
909 			return (-1);
910 		}
911 
912 		if (biowait(&buf) != 0) {
913 			biofini(&buf);
914 			return (-1);
915 		}
916 
917 		resid = buf.b_resid;
918 		biofini(&buf);
919 
920 		ASSERT(resid <= len);
921 		return (len - resid);
922 	}
923 
924 	ASSERT(vd->file);
925 
926 	status = vn_rdwr((operation == VD_OP_BREAD)? UIO_READ : UIO_WRITE,
927 	    vd->file_vnode, data, len, offset * DEV_BSIZE, UIO_SYSSPACE, FSYNC,
928 	    RLIM64_INFINITY, kcred, &resid);
929 
930 	if (status != 0)
931 		return (-1);
932 
933 	return (len);
934 }
935 
936 /*
937  * Function:
938  *	vd_build_default_label
939  *
940  * Description:
941  *	Return a default label for a given disk size. This is used when the disk
942  *	does not have a valid VTOC so that the user can get a valid default
943  *	configuration. The default label has all slice sizes set to 0 (except
944  *	slice 2 which is the entire disk) to force the user to write a valid
945  *	label onto the disk image.
946  *
947  * Parameters:
948  *	disk_size	- the disk size in bytes
949  *	bsize		- the disk block size in bytes
950  *	label		- the returned default label.
951  *
952  * Return Code:
953  *	none.
954  */
955 static void
956 vd_build_default_label(size_t disk_size, size_t bsize, struct dk_label *label)
957 {
958 	size_t size;
959 	char unit;
960 
961 	ASSERT(bsize > 0);
962 
963 	bzero(label, sizeof (struct dk_label));
964 
965 	/*
966 	 * Ideally we would like the cylinder size (nsect * nhead) to be the
967 	 * same whatever the disk size is. That way the VTOC label could be
968 	 * easily updated in case the disk size is increased (keeping the
969 	 * same cylinder size allows to preserve the existing partitioning
970 	 * when updating the VTOC label). But it is not possible to have
971 	 * a fixed cylinder size and to cover all disk size.
972 	 *
973 	 * So we define different cylinder sizes depending on the disk size.
974 	 * The cylinder size is chosen so that we don't have too few cylinders
975 	 * for a small disk image, or so many on a big disk image that you
976 	 * waste space for backup superblocks or cylinder group structures.
977 	 * Also we must have a resonable number of cylinders and sectors so
978 	 * that newfs can run using default values.
979 	 *
980 	 *	+-----------+--------+---------+--------+
981 	 *	| disk_size |  < 2MB | 2MB-4GB | >= 8GB |
982 	 *	+-----------+--------+---------+--------+
983 	 *	| nhead	    |	 1   |	   1   |    96  |
984 	 *	| nsect	    |  200   |   600   |   768  |
985 	 *	+-----------+--------+---------+--------+
986 	 *
987 	 * Other parameters are computed from these values:
988 	 *
989 	 * 	pcyl = disk_size / (nhead * nsect * 512)
990 	 * 	acyl = (pcyl > 2)? 2 : 0
991 	 * 	ncyl = pcyl - acyl
992 	 *
993 	 * The maximum number of cylinder is 65535 so this allows to define a
994 	 * geometry for a disk size up to 65535 * 96 * 768 * 512 = 2.24 TB
995 	 * which is more than enough to cover the maximum size allowed by the
996 	 * extended VTOC format (2TB).
997 	 */
998 
999 	if (disk_size >= 8 * ONE_GIGABYTE) {
1000 
1001 		label->dkl_nhead = 96;
1002 		label->dkl_nsect = 768;
1003 
1004 	} else if (disk_size >= 2 * ONE_MEGABYTE) {
1005 
1006 		label->dkl_nhead = 1;
1007 		label->dkl_nsect = 600;
1008 
1009 	} else {
1010 
1011 		label->dkl_nhead = 1;
1012 		label->dkl_nsect = 200;
1013 	}
1014 
1015 	label->dkl_pcyl = disk_size /
1016 	    (label->dkl_nsect * label->dkl_nhead * bsize);
1017 
1018 	if (label->dkl_pcyl == 0)
1019 		label->dkl_pcyl = 1;
1020 
1021 	label->dkl_acyl = 0;
1022 
1023 	if (label->dkl_pcyl > 2)
1024 		label->dkl_acyl = 2;
1025 
1026 	label->dkl_ncyl = label->dkl_pcyl - label->dkl_acyl;
1027 	label->dkl_write_reinstruct = 0;
1028 	label->dkl_read_reinstruct = 0;
1029 	label->dkl_rpm = 7200;
1030 	label->dkl_apc = 0;
1031 	label->dkl_intrlv = 0;
1032 
1033 	PR0("requested disk size: %ld bytes\n", disk_size);
1034 	PR0("setup: ncyl=%d nhead=%d nsec=%d\n", label->dkl_pcyl,
1035 	    label->dkl_nhead, label->dkl_nsect);
1036 	PR0("provided disk size: %ld bytes\n", (uint64_t)
1037 	    (label->dkl_pcyl * label->dkl_nhead *
1038 	    label->dkl_nsect * bsize));
1039 
1040 	vd_get_readable_size(disk_size, &size, &unit);
1041 
1042 	/*
1043 	 * We must have a correct label name otherwise format(1m) will
1044 	 * not recognized the disk as labeled.
1045 	 */
1046 	(void) snprintf(label->dkl_asciilabel, LEN_DKL_ASCII,
1047 	    "SUN-DiskImage-%ld%cB cyl %d alt %d hd %d sec %d",
1048 	    size, unit,
1049 	    label->dkl_ncyl, label->dkl_acyl, label->dkl_nhead,
1050 	    label->dkl_nsect);
1051 
1052 	/* default VTOC */
1053 	label->dkl_vtoc.v_version = V_EXTVERSION;
1054 	label->dkl_vtoc.v_nparts = V_NUMPAR;
1055 	label->dkl_vtoc.v_sanity = VTOC_SANE;
1056 	label->dkl_vtoc.v_part[VD_ENTIRE_DISK_SLICE].p_tag = V_BACKUP;
1057 	label->dkl_map[VD_ENTIRE_DISK_SLICE].dkl_cylno = 0;
1058 	label->dkl_map[VD_ENTIRE_DISK_SLICE].dkl_nblk = label->dkl_ncyl *
1059 	    label->dkl_nhead * label->dkl_nsect;
1060 	label->dkl_magic = DKL_MAGIC;
1061 	label->dkl_cksum = vd_lbl2cksum(label);
1062 }
1063 
1064 /*
1065  * Function:
1066  *	vd_dskimg_set_vtoc
1067  *
1068  * Description:
1069  *	Set the vtoc of a disk image by writing the label and backup
1070  *	labels into the disk image backend.
1071  *
1072  * Parameters:
1073  *	vd		- disk on which the operation is performed.
1074  *	label		- the data to be written.
1075  *
1076  * Return Code:
1077  *	0		- success.
1078  *	n > 0		- error, n indicates the errno code.
1079  */
1080 static int
1081 vd_dskimg_set_vtoc(vd_t *vd, struct dk_label *label)
1082 {
1083 	size_t blk, sec, cyl, head, cnt;
1084 
1085 	ASSERT(VD_DSKIMG(vd));
1086 
1087 	if (VD_DSKIMG_LABEL_WRITE(vd, label) < 0) {
1088 		PR0("fail to write disk label");
1089 		return (EIO);
1090 	}
1091 
1092 	/*
1093 	 * Backup labels are on the last alternate cylinder's
1094 	 * first five odd sectors.
1095 	 */
1096 	if (label->dkl_acyl == 0) {
1097 		PR0("no alternate cylinder, can not store backup labels");
1098 		return (0);
1099 	}
1100 
1101 	cyl = label->dkl_ncyl  + label->dkl_acyl - 1;
1102 	head = label->dkl_nhead - 1;
1103 
1104 	blk = (cyl * ((label->dkl_nhead * label->dkl_nsect) - label->dkl_apc)) +
1105 	    (head * label->dkl_nsect);
1106 
1107 	/*
1108 	 * Write the backup labels. Make sure we don't try to write past
1109 	 * the last cylinder.
1110 	 */
1111 	sec = 1;
1112 
1113 	for (cnt = 0; cnt < VD_DSKIMG_NUM_BACKUP; cnt++) {
1114 
1115 		if (sec >= label->dkl_nsect) {
1116 			PR0("not enough sector to store all backup labels");
1117 			return (0);
1118 		}
1119 
1120 		if (vd_dskimg_rw(vd, VD_SLICE_NONE, VD_OP_BWRITE,
1121 		    (caddr_t)label, blk + sec, sizeof (struct dk_label)) < 0) {
1122 			PR0("error writing backup label at block %lu\n",
1123 			    blk + sec);
1124 			return (EIO);
1125 		}
1126 
1127 		PR1("wrote backup label at block %lu\n", blk + sec);
1128 
1129 		sec += 2;
1130 	}
1131 
1132 	return (0);
1133 }
1134 
1135 /*
1136  * Function:
1137  *	vd_dskimg_get_devid_block
1138  *
1139  * Description:
1140  *	Return the block number where the device id is stored.
1141  *
1142  * Parameters:
1143  *	vd		- disk on which the operation is performed.
1144  *	blkp		- pointer to the block number
1145  *
1146  * Return Code:
1147  *	0		- success
1148  *	ENOSPC		- disk has no space to store a device id
1149  */
1150 static int
1151 vd_dskimg_get_devid_block(vd_t *vd, size_t *blkp)
1152 {
1153 	diskaddr_t spc, head, cyl;
1154 
1155 	ASSERT(VD_DSKIMG(vd));
1156 
1157 	if (vd->vdisk_label == VD_DISK_LABEL_UNK) {
1158 		/*
1159 		 * If no label is defined we don't know where to find
1160 		 * a device id.
1161 		 */
1162 		return (ENOSPC);
1163 	}
1164 
1165 	if (vd->vdisk_label == VD_DISK_LABEL_EFI) {
1166 		/*
1167 		 * For an EFI disk, the devid is at the beginning of
1168 		 * the reserved slice
1169 		 */
1170 		if (vd->efi_reserved == -1) {
1171 			PR0("EFI disk has no reserved slice");
1172 			return (ENOSPC);
1173 		}
1174 
1175 		*blkp = vd->slices[vd->efi_reserved].start;
1176 		return (0);
1177 	}
1178 
1179 	ASSERT(vd->vdisk_label == VD_DISK_LABEL_VTOC);
1180 
1181 	/* this geometry doesn't allow us to have a devid */
1182 	if (vd->dk_geom.dkg_acyl < 2) {
1183 		PR0("not enough alternate cylinder available for devid "
1184 		    "(acyl=%u)", vd->dk_geom.dkg_acyl);
1185 		return (ENOSPC);
1186 	}
1187 
1188 	/* the devid is in on the track next to the last cylinder */
1189 	cyl = vd->dk_geom.dkg_ncyl + vd->dk_geom.dkg_acyl - 2;
1190 	spc = vd->dk_geom.dkg_nhead * vd->dk_geom.dkg_nsect;
1191 	head = vd->dk_geom.dkg_nhead - 1;
1192 
1193 	*blkp = (cyl * (spc - vd->dk_geom.dkg_apc)) +
1194 	    (head * vd->dk_geom.dkg_nsect) + 1;
1195 
1196 	return (0);
1197 }
1198 
1199 /*
1200  * Return the checksum of a disk block containing an on-disk devid.
1201  */
1202 static uint_t
1203 vd_dkdevid2cksum(struct dk_devid *dkdevid)
1204 {
1205 	uint_t chksum, *ip;
1206 	int i;
1207 
1208 	chksum = 0;
1209 	ip = (void *)dkdevid;
1210 	for (i = 0; i < ((DEV_BSIZE - sizeof (int)) / sizeof (int)); i++)
1211 		chksum ^= ip[i];
1212 
1213 	return (chksum);
1214 }
1215 
1216 /*
1217  * Function:
1218  *	vd_dskimg_read_devid
1219  *
1220  * Description:
1221  *	Read the device id stored on a disk image.
1222  *
1223  * Parameters:
1224  *	vd		- disk on which the operation is performed.
1225  *	devid		- the return address of the device ID.
1226  *
1227  * Return Code:
1228  *	0		- success
1229  *	EIO		- I/O error while trying to access the disk image
1230  *	EINVAL		- no valid device id was found
1231  *	ENOSPC		- disk has no space to store a device id
1232  */
1233 static int
1234 vd_dskimg_read_devid(vd_t *vd, ddi_devid_t *devid)
1235 {
1236 	struct dk_devid *dkdevid;
1237 	size_t blk;
1238 	uint_t chksum;
1239 	int status, sz;
1240 
1241 	ASSERT(vd->vdisk_bsize == DEV_BSIZE);
1242 
1243 	if ((status = vd_dskimg_get_devid_block(vd, &blk)) != 0)
1244 		return (status);
1245 
1246 	dkdevid = kmem_zalloc(DEV_BSIZE, KM_SLEEP);
1247 
1248 	/* get the devid */
1249 	if ((vd_dskimg_rw(vd, VD_SLICE_NONE, VD_OP_BREAD, (caddr_t)dkdevid, blk,
1250 	    DEV_BSIZE)) < 0) {
1251 		PR0("error reading devid block at %lu", blk);
1252 		status = EIO;
1253 		goto done;
1254 	}
1255 
1256 	/* validate the revision */
1257 	if ((dkdevid->dkd_rev_hi != DK_DEVID_REV_MSB) ||
1258 	    (dkdevid->dkd_rev_lo != DK_DEVID_REV_LSB)) {
1259 		PR0("invalid devid found at block %lu (bad revision)", blk);
1260 		status = EINVAL;
1261 		goto done;
1262 	}
1263 
1264 	/* compute checksum */
1265 	chksum = vd_dkdevid2cksum(dkdevid);
1266 
1267 	/* compare the checksums */
1268 	if (DKD_GETCHKSUM(dkdevid) != chksum) {
1269 		PR0("invalid devid found at block %lu (bad checksum)", blk);
1270 		status = EINVAL;
1271 		goto done;
1272 	}
1273 
1274 	/* validate the device id */
1275 	if (ddi_devid_valid((ddi_devid_t)&dkdevid->dkd_devid) != DDI_SUCCESS) {
1276 		PR0("invalid devid found at block %lu", blk);
1277 		status = EINVAL;
1278 		goto done;
1279 	}
1280 
1281 	PR1("devid read at block %lu", blk);
1282 
1283 	sz = ddi_devid_sizeof((ddi_devid_t)&dkdevid->dkd_devid);
1284 	*devid = kmem_alloc(sz, KM_SLEEP);
1285 	bcopy(&dkdevid->dkd_devid, *devid, sz);
1286 
1287 done:
1288 	kmem_free(dkdevid, DEV_BSIZE);
1289 	return (status);
1290 
1291 }
1292 
1293 /*
1294  * Function:
1295  *	vd_dskimg_write_devid
1296  *
1297  * Description:
1298  *	Write a device id into disk image.
1299  *
1300  * Parameters:
1301  *	vd		- disk on which the operation is performed.
1302  *	devid		- the device ID to store.
1303  *
1304  * Return Code:
1305  *	0		- success
1306  *	EIO		- I/O error while trying to access the disk image
1307  *	ENOSPC		- disk has no space to store a device id
1308  */
1309 static int
1310 vd_dskimg_write_devid(vd_t *vd, ddi_devid_t devid)
1311 {
1312 	struct dk_devid *dkdevid;
1313 	uint_t chksum;
1314 	size_t blk;
1315 	int status;
1316 
1317 	ASSERT(vd->vdisk_bsize == DEV_BSIZE);
1318 
1319 	if (devid == NULL) {
1320 		/* nothing to write */
1321 		return (0);
1322 	}
1323 
1324 	if ((status = vd_dskimg_get_devid_block(vd, &blk)) != 0)
1325 		return (status);
1326 
1327 	dkdevid = kmem_zalloc(DEV_BSIZE, KM_SLEEP);
1328 
1329 	/* set revision */
1330 	dkdevid->dkd_rev_hi = DK_DEVID_REV_MSB;
1331 	dkdevid->dkd_rev_lo = DK_DEVID_REV_LSB;
1332 
1333 	/* copy devid */
1334 	bcopy(devid, &dkdevid->dkd_devid, ddi_devid_sizeof(devid));
1335 
1336 	/* compute checksum */
1337 	chksum = vd_dkdevid2cksum(dkdevid);
1338 
1339 	/* set checksum */
1340 	DKD_FORMCHKSUM(chksum, dkdevid);
1341 
1342 	/* store the devid */
1343 	if ((status = vd_dskimg_rw(vd, VD_SLICE_NONE, VD_OP_BWRITE,
1344 	    (caddr_t)dkdevid, blk, DEV_BSIZE)) < 0) {
1345 		PR0("Error writing devid block at %lu", blk);
1346 		status = EIO;
1347 	} else {
1348 		PR1("devid written at block %lu", blk);
1349 		status = 0;
1350 	}
1351 
1352 	kmem_free(dkdevid, DEV_BSIZE);
1353 	return (status);
1354 }
1355 
1356 /*
1357  * Function:
1358  *	vd_do_scsi_rdwr
1359  *
1360  * Description:
1361  * 	Read or write to a SCSI disk using an absolute disk offset.
1362  *
1363  * Parameters:
1364  *	vd		- disk on which the operation is performed.
1365  *	operation	- operation to execute: read (VD_OP_BREAD) or
1366  *			  write (VD_OP_BWRITE).
1367  *	data		- buffer where data are read to or written from.
1368  *	blk		- starting block for the operation.
1369  *	len		- number of bytes to read or write.
1370  *
1371  * Return Code:
1372  *	0		- success
1373  *	n != 0		- error.
1374  */
1375 static int
1376 vd_do_scsi_rdwr(vd_t *vd, int operation, caddr_t data, size_t blk, size_t len)
1377 {
1378 	struct uscsi_cmd ucmd;
1379 	union scsi_cdb cdb;
1380 	int nsectors, nblk;
1381 	int max_sectors;
1382 	int status, rval;
1383 
1384 	ASSERT(!vd->file);
1385 	ASSERT(!vd->volume);
1386 	ASSERT(vd->vdisk_bsize > 0);
1387 
1388 	max_sectors = vd->max_xfer_sz;
1389 	nblk = (len / vd->vdisk_bsize);
1390 
1391 	if (len % vd->vdisk_bsize != 0)
1392 		return (EINVAL);
1393 
1394 	/*
1395 	 * Build and execute the uscsi ioctl.  We build a group0, group1
1396 	 * or group4 command as necessary, since some targets
1397 	 * do not support group1 commands.
1398 	 */
1399 	while (nblk) {
1400 
1401 		bzero(&ucmd, sizeof (ucmd));
1402 		bzero(&cdb, sizeof (cdb));
1403 
1404 		nsectors = (max_sectors < nblk) ? max_sectors : nblk;
1405 
1406 		/*
1407 		 * Some of the optical drives on sun4v machines are ATAPI
1408 		 * devices which use Group 1 Read/Write commands so we need
1409 		 * to explicitly check a flag which is set when a domain
1410 		 * is bound.
1411 		 */
1412 		if (blk < (2 << 20) && nsectors <= 0xff && !vd->is_atapi_dev) {
1413 			FORMG0ADDR(&cdb, blk);
1414 			FORMG0COUNT(&cdb, (uchar_t)nsectors);
1415 			ucmd.uscsi_cdblen = CDB_GROUP0;
1416 		} else if (blk > 0xffffffff) {
1417 			FORMG4LONGADDR(&cdb, blk);
1418 			FORMG4COUNT(&cdb, nsectors);
1419 			ucmd.uscsi_cdblen = CDB_GROUP4;
1420 			cdb.scc_cmd |= SCMD_GROUP4;
1421 		} else {
1422 			FORMG1ADDR(&cdb, blk);
1423 			FORMG1COUNT(&cdb, nsectors);
1424 			ucmd.uscsi_cdblen = CDB_GROUP1;
1425 			cdb.scc_cmd |= SCMD_GROUP1;
1426 		}
1427 		ucmd.uscsi_cdb = (caddr_t)&cdb;
1428 		ucmd.uscsi_bufaddr = data;
1429 		ucmd.uscsi_buflen = nsectors * vd->backend_bsize;
1430 		ucmd.uscsi_timeout = vd_scsi_rdwr_timeout;
1431 		/*
1432 		 * Set flags so that the command is isolated from normal
1433 		 * commands and no error message is printed.
1434 		 */
1435 		ucmd.uscsi_flags = USCSI_ISOLATE | USCSI_SILENT;
1436 
1437 		if (operation == VD_OP_BREAD) {
1438 			cdb.scc_cmd |= SCMD_READ;
1439 			ucmd.uscsi_flags |= USCSI_READ;
1440 		} else {
1441 			cdb.scc_cmd |= SCMD_WRITE;
1442 		}
1443 
1444 		status = ldi_ioctl(vd->ldi_handle[VD_ENTIRE_DISK_SLICE],
1445 		    USCSICMD, (intptr_t)&ucmd, (vd->open_flags | FKIOCTL),
1446 		    kcred, &rval);
1447 
1448 		if (status == 0)
1449 			status = ucmd.uscsi_status;
1450 
1451 		if (status != 0)
1452 			break;
1453 
1454 		/*
1455 		 * Check if partial DMA breakup is required. If so, reduce
1456 		 * the request size by half and retry the last request.
1457 		 */
1458 		if (ucmd.uscsi_resid == ucmd.uscsi_buflen) {
1459 			max_sectors >>= 1;
1460 			if (max_sectors <= 0) {
1461 				status = EIO;
1462 				break;
1463 			}
1464 			continue;
1465 		}
1466 
1467 		if (ucmd.uscsi_resid != 0) {
1468 			status = EIO;
1469 			break;
1470 		}
1471 
1472 		blk += nsectors;
1473 		nblk -= nsectors;
1474 		data += nsectors * vd->vdisk_bsize;
1475 	}
1476 
1477 	return (status);
1478 }
1479 
1480 /*
1481  * Function:
1482  *	vd_scsi_rdwr
1483  *
1484  * Description:
1485  * 	Wrapper function to read or write to a SCSI disk using an absolute
1486  *	disk offset. It checks the blocksize of the underlying device and,
1487  *	if necessary, adjusts the buffers accordingly before calling
1488  *	vd_do_scsi_rdwr() to do the actual read or write.
1489  *
1490  * Parameters:
1491  *	vd		- disk on which the operation is performed.
1492  *	operation	- operation to execute: read (VD_OP_BREAD) or
1493  *			  write (VD_OP_BWRITE).
1494  *	data		- buffer where data are read to or written from.
1495  *	blk		- starting block for the operation.
1496  *	len		- number of bytes to read or write.
1497  *
1498  * Return Code:
1499  *	0		- success
1500  *	n != 0		- error.
1501  */
1502 static int
1503 vd_scsi_rdwr(vd_t *vd, int operation, caddr_t data, size_t vblk, size_t vlen)
1504 {
1505 	int	rv;
1506 
1507 	size_t	pblk;	/* physical device block number of data on device */
1508 	size_t	delta;	/* relative offset between pblk and vblk */
1509 	size_t	pnblk;	/* number of physical blocks to be read from device */
1510 	size_t	plen;	/* length of data to be read from physical device */
1511 	char	*buf;	/* buffer area to fit physical device's block size */
1512 
1513 	if (vd->backend_bsize == 0) {
1514 		/*
1515 		 * The block size was not available during the attach,
1516 		 * try to update it now.
1517 		 */
1518 		if (vd_backend_check_size(vd) != 0)
1519 			return (EIO);
1520 	}
1521 
1522 	/*
1523 	 * If the vdisk block size and the block size of the underlying device
1524 	 * match we can skip straight to vd_do_scsi_rdwr(), otherwise we need
1525 	 * to create a buffer large enough to handle the device's block size
1526 	 * and adjust the block to be read from and the amount of data to
1527 	 * read to correspond with the device's block size.
1528 	 */
1529 	if (vd->vdisk_bsize == vd->backend_bsize)
1530 		return (vd_do_scsi_rdwr(vd, operation, data, vblk, vlen));
1531 
1532 	if (vd->vdisk_bsize > vd->backend_bsize)
1533 		return (EINVAL);
1534 
1535 	/*
1536 	 * Writing of physical block sizes larger than the virtual block size
1537 	 * is not supported. This would be added if/when support for guests
1538 	 * writing to DVDs is implemented.
1539 	 */
1540 	if (operation == VD_OP_BWRITE)
1541 		return (ENOTSUP);
1542 
1543 	/* BEGIN CSTYLED */
1544 	/*
1545 	 * Below is a diagram showing the relationship between the physical
1546 	 * and virtual blocks. If the virtual blocks marked by 'X' below are
1547 	 * requested, then the physical blocks denoted by 'Y' are read.
1548 	 *
1549 	 *           vblk
1550 	 *             |      vlen
1551 	 *             |<--------------->|
1552 	 *             v                 v
1553 	 *  --+--+--+--+--+--+--+--+--+--+--+--+--+--+--+-   virtual disk:
1554 	 *    |  |  |  |XX|XX|XX|XX|XX|XX|  |  |  |  |  |  } block size is
1555 	 *  --+--+--+--+--+--+--+--+--+--+--+--+--+--+--+-   vd->vdisk_bsize
1556 	 *          :  :                 :  :
1557 	 *         >:==:< delta          :  :
1558 	 *          :  :                 :  :
1559 	 *  --+-----+-----+-----+-----+-----+-----+-----+--   physical disk:
1560 	 *    |     |YY:YY|YYYYY|YYYYY|YY:YY|     |     |   } block size is
1561 	 *  --+-----+-----+-----+-----+-----+-----+-----+--   vd->backend_bsize
1562 	 *          ^                       ^
1563 	 *          |<--------------------->|
1564 	 *          |         plen
1565 	 *         pblk
1566 	 */
1567 	/* END CSTYLED */
1568 	pblk = (vblk * vd->vdisk_bsize) / vd->backend_bsize;
1569 	delta = (vblk * vd->vdisk_bsize) - (pblk * vd->backend_bsize);
1570 	pnblk = ((delta + vlen - 1) / vd->backend_bsize) + 1;
1571 	plen = pnblk * vd->backend_bsize;
1572 
1573 	PR2("vblk %lx:pblk %lx: vlen %ld:plen %ld", vblk, pblk, vlen, plen);
1574 
1575 	buf = kmem_zalloc(sizeof (caddr_t) * plen, KM_SLEEP);
1576 	rv = vd_do_scsi_rdwr(vd, operation, (caddr_t)buf, pblk, plen);
1577 	bcopy(buf + delta, data, vlen);
1578 
1579 	kmem_free(buf, sizeof (caddr_t) * plen);
1580 
1581 	return (rv);
1582 }
1583 
1584 /*
1585  * Function:
1586  *	vd_slice_flabel_read
1587  *
1588  * Description:
1589  *	This function simulates a read operation from the fake label of
1590  *	a single-slice disk.
1591  *
1592  * Parameters:
1593  *	vd		- single-slice disk to read from
1594  *	data		- buffer where data should be read to
1595  *	offset		- offset in byte where the read should start
1596  *	length		- number of bytes to read
1597  *
1598  * Return Code:
1599  *	n >= 0		- success, n indicates the number of bytes read
1600  *	-1		- error
1601  */
1602 static ssize_t
1603 vd_slice_flabel_read(vd_t *vd, caddr_t data, size_t offset, size_t length)
1604 {
1605 	size_t n = 0;
1606 	uint_t limit = vd->flabel_limit * vd->vdisk_bsize;
1607 
1608 	ASSERT(vd->vdisk_type == VD_DISK_TYPE_SLICE);
1609 	ASSERT(vd->flabel != NULL);
1610 
1611 	/* if offset is past the fake label limit there's nothing to read */
1612 	if (offset >= limit)
1613 		return (0);
1614 
1615 	/* data with offset 0 to flabel_size are read from flabel */
1616 	if (offset < vd->flabel_size) {
1617 
1618 		if (offset + length <= vd->flabel_size) {
1619 			bcopy(vd->flabel + offset, data, length);
1620 			return (length);
1621 		}
1622 
1623 		n = vd->flabel_size - offset;
1624 		bcopy(vd->flabel + offset, data, n);
1625 		data += n;
1626 	}
1627 
1628 	/* data with offset from flabel_size to flabel_limit are all zeros */
1629 	if (offset + length <= limit) {
1630 		bzero(data, length - n);
1631 		return (length);
1632 	}
1633 
1634 	bzero(data, limit - offset - n);
1635 	return (limit - offset);
1636 }
1637 
1638 /*
1639  * Function:
1640  *	vd_slice_flabel_write
1641  *
1642  * Description:
1643  *	This function simulates a write operation to the fake label of
1644  *	a single-slice disk. Write operations are actually faked and return
1645  *	success although the label is never changed. This is mostly to
1646  *	simulate a successful label update.
1647  *
1648  * Parameters:
1649  *	vd		- single-slice disk to write to
1650  *	data		- buffer where data should be written from
1651  *	offset		- offset in byte where the write should start
1652  *	length		- number of bytes to written
1653  *
1654  * Return Code:
1655  *	n >= 0		- success, n indicates the number of bytes written
1656  *	-1		- error
1657  */
1658 static ssize_t
1659 vd_slice_flabel_write(vd_t *vd, caddr_t data, size_t offset, size_t length)
1660 {
1661 	uint_t limit = vd->flabel_limit * vd->vdisk_bsize;
1662 	struct dk_label *label;
1663 	struct dk_geom geom;
1664 	struct extvtoc vtoc;
1665 
1666 	ASSERT(vd->vdisk_type == VD_DISK_TYPE_SLICE);
1667 	ASSERT(vd->flabel != NULL);
1668 
1669 	if (offset >= limit)
1670 		return (0);
1671 
1672 	/*
1673 	 * If this is a request to overwrite the VTOC disk label, check that
1674 	 * the new label is similar to the previous one and return that the
1675 	 * write was successful, but note that nothing is actually overwritten.
1676 	 */
1677 	if (vd->vdisk_label == VD_DISK_LABEL_VTOC &&
1678 	    offset == 0 && length == vd->vdisk_bsize) {
1679 		label = (void *)data;
1680 
1681 		/* check that this is a valid label */
1682 		if (label->dkl_magic != DKL_MAGIC ||
1683 		    label->dkl_cksum != vd_lbl2cksum(label))
1684 			return (-1);
1685 
1686 		/* check the vtoc and geometry */
1687 		vd_label_to_vtocgeom(label, &vtoc, &geom);
1688 		if (vd_slice_geom_isvalid(vd, &geom) &&
1689 		    vd_slice_vtoc_isvalid(vd, &vtoc))
1690 			return (length);
1691 	}
1692 
1693 	/* fail any other write */
1694 	return (-1);
1695 }
1696 
1697 /*
1698  * Function:
1699  *	vd_slice_fake_rdwr
1700  *
1701  * Description:
1702  *	This function simulates a raw read or write operation to a single-slice
1703  *	disk. It only handles the faked part of the operation i.e. I/Os to
1704  *	blocks which have no mapping with the vdisk backend (I/Os to the
1705  *	beginning and to the end of the vdisk).
1706  *
1707  *	The function returns 0 is the operation	is completed and it has been
1708  *	entirely handled as a fake read or write. In that case, lengthp points
1709  *	to the number of bytes not read or written. Values returned by datap
1710  *	and blkp are undefined.
1711  *
1712  *	If the fake operation has succeeded but the read or write is not
1713  *	complete (i.e. the read/write operation extends beyond the blocks
1714  *	we fake) then the function returns EAGAIN and datap, blkp and lengthp
1715  *	pointers points to the parameters for completing the operation.
1716  *
1717  *	In case of an error, for example if the slice is empty or parameters
1718  *	are invalid, then the function returns a non-zero value different
1719  *	from EAGAIN. In that case, the returned values of datap, blkp and
1720  *	lengthp are undefined.
1721  *
1722  * Parameters:
1723  *	vd		- single-slice disk on which the operation is performed
1724  *	slice		- slice on which the operation is performed,
1725  *			  VD_SLICE_NONE indicates that the operation
1726  *			  is done using an absolute disk offset.
1727  *	operation	- operation to execute: read (VD_OP_BREAD) or
1728  *			  write (VD_OP_BWRITE).
1729  *	datap		- pointer to the buffer where data are read to
1730  *			  or written from. Return the pointer where remaining
1731  *			  data have to be read to or written from.
1732  *	blkp		- pointer to the starting block for the operation.
1733  *			  Return the starting block relative to the vdisk
1734  *			  backend for the remaining operation.
1735  *	lengthp		- pointer to the number of bytes to read or write.
1736  *			  This should be a multiple of vdisk_bsize. Return the
1737  *			  remaining number of bytes to read or write.
1738  *
1739  * Return Code:
1740  *	0		- read/write operation is completed
1741  *	EAGAIN		- read/write operation is not completed
1742  *	other values	- error
1743  */
1744 static int
1745 vd_slice_fake_rdwr(vd_t *vd, int slice, int operation, caddr_t *datap,
1746     size_t *blkp, size_t *lengthp)
1747 {
1748 	struct dk_label *label;
1749 	caddr_t data;
1750 	size_t blk, length, csize;
1751 	size_t ablk, asize, aoff, alen;
1752 	ssize_t n;
1753 	int sec, status;
1754 	size_t bsize = vd->vdisk_bsize;
1755 
1756 	ASSERT(vd->vdisk_type == VD_DISK_TYPE_SLICE);
1757 	ASSERT(slice != 0);
1758 
1759 	data = *datap;
1760 	blk = *blkp;
1761 	length = *lengthp;
1762 
1763 	/*
1764 	 * If this is not a raw I/O or an I/O from a full disk slice then
1765 	 * this is an I/O to/from an empty slice.
1766 	 */
1767 	if (slice != VD_SLICE_NONE &&
1768 	    (slice != VD_ENTIRE_DISK_SLICE ||
1769 	    vd->vdisk_label != VD_DISK_LABEL_VTOC) &&
1770 	    (slice != VD_EFI_WD_SLICE ||
1771 	    vd->vdisk_label != VD_DISK_LABEL_EFI)) {
1772 		return (EIO);
1773 	}
1774 
1775 	if (length % bsize != 0)
1776 		return (EINVAL);
1777 
1778 	/* handle any I/O with the fake label */
1779 	if (operation == VD_OP_BWRITE)
1780 		n = vd_slice_flabel_write(vd, data, blk * bsize, length);
1781 	else
1782 		n = vd_slice_flabel_read(vd, data, blk * bsize, length);
1783 
1784 	if (n == -1)
1785 		return (EINVAL);
1786 
1787 	ASSERT(n % bsize == 0);
1788 
1789 	/* adjust I/O arguments */
1790 	data += n;
1791 	blk += n / bsize;
1792 	length -= n;
1793 
1794 	/* check if there's something else to process */
1795 	if (length == 0) {
1796 		status = 0;
1797 		goto done;
1798 	}
1799 
1800 	if (vd->vdisk_label == VD_DISK_LABEL_VTOC &&
1801 	    slice == VD_ENTIRE_DISK_SLICE) {
1802 		status = EAGAIN;
1803 		goto done;
1804 	}
1805 
1806 	if (vd->vdisk_label == VD_DISK_LABEL_EFI) {
1807 		asize = EFI_MIN_RESV_SIZE + (EFI_MIN_ARRAY_SIZE / bsize) + 1;
1808 		ablk = vd->vdisk_size - asize;
1809 	} else {
1810 		ASSERT(vd->vdisk_label == VD_DISK_LABEL_VTOC);
1811 		ASSERT(vd->dk_geom.dkg_apc == 0);
1812 
1813 		csize = vd->dk_geom.dkg_nhead * vd->dk_geom.dkg_nsect;
1814 		ablk = vd->dk_geom.dkg_ncyl * csize;
1815 		asize = vd->dk_geom.dkg_acyl * csize;
1816 	}
1817 
1818 	alen = length / bsize;
1819 	aoff = blk;
1820 
1821 	/* if we have reached the last block then the I/O is completed */
1822 	if (aoff == ablk + asize) {
1823 		status = 0;
1824 		goto done;
1825 	}
1826 
1827 	/* if we are past the last block then return an error */
1828 	if (aoff > ablk + asize)
1829 		return (EIO);
1830 
1831 	/* check if there is any I/O to end of the disk */
1832 	if (aoff + alen < ablk) {
1833 		status = EAGAIN;
1834 		goto done;
1835 	}
1836 
1837 	/* we don't allow any write to the end of the disk */
1838 	if (operation == VD_OP_BWRITE)
1839 		return (EIO);
1840 
1841 	if (aoff < ablk) {
1842 		alen -= (ablk - aoff);
1843 		aoff = ablk;
1844 	}
1845 
1846 	if (aoff + alen > ablk + asize) {
1847 		alen = ablk + asize - aoff;
1848 	}
1849 
1850 	alen *= bsize;
1851 
1852 	if (operation == VD_OP_BREAD) {
1853 		bzero(data + (aoff - blk) * bsize, alen);
1854 
1855 		if (vd->vdisk_label == VD_DISK_LABEL_VTOC) {
1856 			/* check if we read backup labels */
1857 			label = VD_LABEL_VTOC(vd);
1858 			ablk += (label->dkl_acyl - 1) * csize +
1859 			    (label->dkl_nhead - 1) * label->dkl_nsect;
1860 
1861 			for (sec = 1; (sec < 5 * 2 + 1); sec += 2) {
1862 
1863 				if (ablk + sec >= blk &&
1864 				    ablk + sec < blk + (length / bsize)) {
1865 					bcopy(label, data +
1866 					    (ablk + sec - blk) * bsize,
1867 					    sizeof (struct dk_label));
1868 				}
1869 			}
1870 		}
1871 	}
1872 
1873 	length -= alen;
1874 
1875 	status = (length == 0)? 0: EAGAIN;
1876 
1877 done:
1878 	ASSERT(length == 0 || blk >= vd->flabel_limit);
1879 
1880 	/*
1881 	 * Return the parameters for the remaining I/O. The starting block is
1882 	 * adjusted so that it is relative to the vdisk backend.
1883 	 */
1884 	*datap = data;
1885 	*blkp = blk - vd->flabel_limit;
1886 	*lengthp = length;
1887 
1888 	return (status);
1889 }
1890 
1891 static int
1892 vd_flush_write(vd_t *vd)
1893 {
1894 	int status, rval;
1895 
1896 	if (vd->file) {
1897 		status = VOP_FSYNC(vd->file_vnode, FSYNC, kcred, NULL);
1898 	} else {
1899 		status = ldi_ioctl(vd->ldi_handle[0], DKIOCFLUSHWRITECACHE,
1900 		    NULL, vd->open_flags | FKIOCTL, kcred, &rval);
1901 	}
1902 
1903 	return (status);
1904 }
1905 
1906 static void
1907 vd_bio_task(void *arg)
1908 {
1909 	struct buf *buf = (struct buf *)arg;
1910 	vd_task_t *task = (vd_task_t *)buf->b_private;
1911 	vd_t *vd = task->vd;
1912 	ssize_t resid;
1913 	int status;
1914 
1915 	ASSERT(vd->vdisk_bsize == DEV_BSIZE);
1916 
1917 	if (vd->zvol) {
1918 
1919 		status = ldi_strategy(vd->ldi_handle[0], buf);
1920 
1921 	} else {
1922 
1923 		ASSERT(vd->file);
1924 
1925 		status = vn_rdwr((buf->b_flags & B_READ)? UIO_READ : UIO_WRITE,
1926 		    vd->file_vnode, buf->b_un.b_addr, buf->b_bcount,
1927 		    buf->b_lblkno * DEV_BSIZE, UIO_SYSSPACE, 0,
1928 		    RLIM64_INFINITY, kcred, &resid);
1929 
1930 		if (status == 0) {
1931 			buf->b_resid = resid;
1932 			biodone(buf);
1933 			return;
1934 		}
1935 	}
1936 
1937 	if (status != 0) {
1938 		bioerror(buf, status);
1939 		biodone(buf);
1940 	}
1941 }
1942 
1943 /*
1944  * We define our own biodone function so that buffers used for
1945  * asynchronous writes are not released when biodone() is called.
1946  */
1947 static int
1948 vd_biodone(struct buf *bp)
1949 {
1950 	ASSERT((bp->b_flags & B_DONE) == 0);
1951 	ASSERT(SEMA_HELD(&bp->b_sem));
1952 
1953 	bp->b_flags |= B_DONE;
1954 	sema_v(&bp->b_io);
1955 
1956 	return (0);
1957 }
1958 
1959 /*
1960  * Return Values
1961  *	EINPROGRESS	- operation was successfully started
1962  *	EIO		- encountered LDC (aka. task error)
1963  *	0		- operation completed successfully
1964  *
1965  * Side Effect
1966  *     sets request->status = <disk operation status>
1967  */
1968 static int
1969 vd_start_bio(vd_task_t *task)
1970 {
1971 	int			rv, status = 0;
1972 	vd_t			*vd		= task->vd;
1973 	vd_dring_payload_t	*request	= task->request;
1974 	struct buf		*buf		= &task->buf;
1975 	uint8_t			mtype;
1976 	int 			slice;
1977 	char			*bufaddr = 0;
1978 	size_t			buflen;
1979 	size_t			offset, length, nbytes;
1980 
1981 	ASSERT(vd != NULL);
1982 	ASSERT(request != NULL);
1983 
1984 	slice = request->slice;
1985 
1986 	ASSERT(slice == VD_SLICE_NONE || slice < vd->nslices);
1987 	ASSERT((request->operation == VD_OP_BREAD) ||
1988 	    (request->operation == VD_OP_BWRITE));
1989 
1990 	if (request->nbytes == 0) {
1991 		/* no service for trivial requests */
1992 		request->status = EINVAL;
1993 		return (0);
1994 	}
1995 
1996 	PR1("%s %lu bytes at block %lu",
1997 	    (request->operation == VD_OP_BREAD) ? "Read" : "Write",
1998 	    request->nbytes, request->addr);
1999 
2000 	/*
2001 	 * We have to check the open flags because the functions processing
2002 	 * the read/write request will not do it.
2003 	 */
2004 	if (request->operation == VD_OP_BWRITE && !(vd->open_flags & FWRITE)) {
2005 		PR0("write fails because backend is opened read-only");
2006 		request->nbytes = 0;
2007 		request->status = EROFS;
2008 		return (0);
2009 	}
2010 
2011 	mtype = LDC_SHADOW_MAP;
2012 
2013 	/* Map memory exported by client */
2014 	status = ldc_mem_map(task->mhdl, request->cookie, request->ncookies,
2015 	    mtype, (request->operation == VD_OP_BREAD) ? LDC_MEM_W : LDC_MEM_R,
2016 	    &bufaddr, NULL);
2017 	if (status != 0) {
2018 		PR0("ldc_mem_map() returned err %d ", status);
2019 		return (EIO);
2020 	}
2021 
2022 	/*
2023 	 * The buffer size has to be 8-byte aligned, so the client should have
2024 	 * sent a buffer which size is roundup to the next 8-byte aligned value.
2025 	 */
2026 	buflen = P2ROUNDUP(request->nbytes, 8);
2027 
2028 	status = ldc_mem_acquire(task->mhdl, 0, buflen);
2029 	if (status != 0) {
2030 		(void) ldc_mem_unmap(task->mhdl);
2031 		PR0("ldc_mem_acquire() returned err %d ", status);
2032 		return (EIO);
2033 	}
2034 
2035 	offset = request->addr;
2036 	nbytes = request->nbytes;
2037 	length = nbytes;
2038 
2039 	/* default number of byte returned by the I/O */
2040 	request->nbytes = 0;
2041 
2042 	if (vd->vdisk_type == VD_DISK_TYPE_SLICE) {
2043 
2044 		if (slice != 0) {
2045 			/* handle any fake I/O */
2046 			rv = vd_slice_fake_rdwr(vd, slice, request->operation,
2047 			    &bufaddr, &offset, &length);
2048 
2049 			/* record the number of bytes from the fake I/O */
2050 			request->nbytes = nbytes - length;
2051 
2052 			if (rv == 0) {
2053 				request->status = 0;
2054 				goto io_done;
2055 			}
2056 
2057 			if (rv != EAGAIN) {
2058 				request->nbytes = 0;
2059 				request->status = EIO;
2060 				goto io_done;
2061 			}
2062 
2063 			/*
2064 			 * If we return with EAGAIN then this means that there
2065 			 * are still data to read or write.
2066 			 */
2067 			ASSERT(length != 0);
2068 
2069 			/*
2070 			 * We need to continue the I/O from the slice backend to
2071 			 * complete the request. The variables bufaddr, offset
2072 			 * and length have been adjusted to have the right
2073 			 * information to do the remaining I/O from the backend.
2074 			 * The backend is entirely mapped to slice 0 so we just
2075 			 * have to complete the I/O from that slice.
2076 			 */
2077 			slice = 0;
2078 		}
2079 
2080 	} else if (vd->volume || vd->file) {
2081 
2082 		rv = vd_dskimg_io_params(vd, slice, &offset, &length);
2083 		if (rv != 0) {
2084 			request->status = (rv == ENODATA)? 0: EIO;
2085 			goto io_done;
2086 		}
2087 		slice = 0;
2088 
2089 	} else if (slice == VD_SLICE_NONE) {
2090 
2091 		/*
2092 		 * This is not a disk image so it is a real disk. We
2093 		 * assume that the underlying device driver supports
2094 		 * USCSICMD ioctls. This is the case of all SCSI devices
2095 		 * (sd, ssd...).
2096 		 *
2097 		 * In the future if we have non-SCSI disks we would need
2098 		 * to invoke the appropriate function to do I/O using an
2099 		 * absolute disk offset (for example using DIOCTL_RWCMD
2100 		 * for IDE disks).
2101 		 */
2102 		rv = vd_scsi_rdwr(vd, request->operation, bufaddr, offset,
2103 		    length);
2104 		if (rv != 0) {
2105 			request->status = EIO;
2106 		} else {
2107 			request->nbytes = length;
2108 			request->status = 0;
2109 		}
2110 		goto io_done;
2111 	}
2112 
2113 	/* Start the block I/O */
2114 	bioinit(buf);
2115 	buf->b_flags	= B_BUSY;
2116 	buf->b_bcount	= length;
2117 	buf->b_lblkno	= offset;
2118 	buf->b_bufsize	= buflen;
2119 	buf->b_edev 	= vd->dev[slice];
2120 	buf->b_un.b_addr = bufaddr;
2121 	buf->b_iodone	= vd_biodone;
2122 
2123 	if (vd->file || vd->zvol) {
2124 		/*
2125 		 * I/O to a file are dispatched to an I/O queue, so that several
2126 		 * I/Os can be processed in parallel. We also do that for ZFS
2127 		 * volumes because the ZFS volume strategy() function will only
2128 		 * return after the I/O is completed (instead of just starting
2129 		 * the I/O).
2130 		 */
2131 
2132 		if (request->operation == VD_OP_BREAD) {
2133 			buf->b_flags |= B_READ;
2134 		} else {
2135 			/*
2136 			 * For ZFS volumes and files, we do an asynchronous
2137 			 * write and we will wait for the completion of the
2138 			 * write in vd_complete_bio() by flushing the volume
2139 			 * or file.
2140 			 *
2141 			 * This done for performance reasons, so that we can
2142 			 * group together several write requests into a single
2143 			 * flush operation.
2144 			 */
2145 			buf->b_flags |= B_WRITE | B_ASYNC;
2146 
2147 			/*
2148 			 * We keep track of the write so that we can group
2149 			 * requests when flushing. The write queue has the
2150 			 * same number of slots as the dring so this prevents
2151 			 * the write queue from wrapping and overwriting
2152 			 * existing entries: if the write queue gets full
2153 			 * then that means that the dring is full so we stop
2154 			 * receiving new requests until an existing request
2155 			 * is processed, removed from the write queue and
2156 			 * then from the dring.
2157 			 */
2158 			task->write_index = vd->write_index;
2159 			vd->write_queue[task->write_index] = buf;
2160 			vd->write_index =
2161 			    VD_WRITE_INDEX_NEXT(vd, vd->write_index);
2162 		}
2163 
2164 		buf->b_private = task;
2165 
2166 		ASSERT(vd->ioq != NULL);
2167 
2168 		request->status = 0;
2169 		(void) ddi_taskq_dispatch(task->vd->ioq, vd_bio_task, buf,
2170 		    DDI_SLEEP);
2171 
2172 	} else {
2173 
2174 		if (request->operation == VD_OP_BREAD) {
2175 			buf->b_flags |= B_READ;
2176 		} else {
2177 			buf->b_flags |= B_WRITE;
2178 		}
2179 
2180 		/* convert VIO block number to buf block number */
2181 		buf->b_lblkno = offset << vd->vio_bshift;
2182 
2183 		request->status = ldi_strategy(vd->ldi_handle[slice], buf);
2184 	}
2185 
2186 	/*
2187 	 * This is to indicate to the caller that the request
2188 	 * needs to be finished by vd_complete_bio() by calling
2189 	 * biowait() there and waiting for that to return before
2190 	 * triggering the notification of the vDisk client.
2191 	 *
2192 	 * This is necessary when writing to real disks as
2193 	 * otherwise calls to ldi_strategy() would be serialized
2194 	 * behind the calls to biowait() and performance would
2195 	 * suffer.
2196 	 */
2197 	if (request->status == 0)
2198 		return (EINPROGRESS);
2199 
2200 	biofini(buf);
2201 
2202 io_done:
2203 	/* Clean up after error or completion */
2204 	rv = ldc_mem_release(task->mhdl, 0, buflen);
2205 	if (rv) {
2206 		PR0("ldc_mem_release() returned err %d ", rv);
2207 		status = EIO;
2208 	}
2209 	rv = ldc_mem_unmap(task->mhdl);
2210 	if (rv) {
2211 		PR0("ldc_mem_unmap() returned err %d ", rv);
2212 		status = EIO;
2213 	}
2214 
2215 	return (status);
2216 }
2217 
2218 /*
2219  * This function should only be called from vd_notify to ensure that requests
2220  * are responded to in the order that they are received.
2221  */
2222 static int
2223 send_msg(ldc_handle_t ldc_handle, void *msg, size_t msglen)
2224 {
2225 	int	status;
2226 	size_t	nbytes;
2227 
2228 	do {
2229 		nbytes = msglen;
2230 		status = ldc_write(ldc_handle, msg, &nbytes);
2231 		if (status != EWOULDBLOCK)
2232 			break;
2233 		drv_usecwait(vds_ldc_delay);
2234 	} while (status == EWOULDBLOCK);
2235 
2236 	if (status != 0) {
2237 		if (status != ECONNRESET)
2238 			PR0("ldc_write() returned errno %d", status);
2239 		return (status);
2240 	} else if (nbytes != msglen) {
2241 		PR0("ldc_write() performed only partial write");
2242 		return (EIO);
2243 	}
2244 
2245 	PR1("SENT %lu bytes", msglen);
2246 	return (0);
2247 }
2248 
2249 static void
2250 vd_need_reset(vd_t *vd, boolean_t reset_ldc)
2251 {
2252 	mutex_enter(&vd->lock);
2253 	vd->reset_state	= B_TRUE;
2254 	vd->reset_ldc	= reset_ldc;
2255 	mutex_exit(&vd->lock);
2256 }
2257 
2258 /*
2259  * Reset the state of the connection with a client, if needed; reset the LDC
2260  * transport as well, if needed.  This function should only be called from the
2261  * "vd_recv_msg", as it waits for tasks - otherwise a deadlock can occur.
2262  */
2263 static void
2264 vd_reset_if_needed(vd_t *vd)
2265 {
2266 	int	status = 0;
2267 
2268 	mutex_enter(&vd->lock);
2269 	if (!vd->reset_state) {
2270 		ASSERT(!vd->reset_ldc);
2271 		mutex_exit(&vd->lock);
2272 		return;
2273 	}
2274 	mutex_exit(&vd->lock);
2275 
2276 	PR0("Resetting connection state with %s", VD_CLIENT(vd));
2277 
2278 	/*
2279 	 * Let any asynchronous I/O complete before possibly pulling the rug
2280 	 * out from under it; defer checking vd->reset_ldc, as one of the
2281 	 * asynchronous tasks might set it
2282 	 */
2283 	if (vd->ioq != NULL)
2284 		ddi_taskq_wait(vd->ioq);
2285 	ddi_taskq_wait(vd->completionq);
2286 
2287 	status = vd_flush_write(vd);
2288 	if (status) {
2289 		PR0("flushwrite returned error %d", status);
2290 	}
2291 
2292 	if ((vd->initialized & VD_DRING) &&
2293 	    ((status = ldc_mem_dring_unmap(vd->dring_handle)) != 0))
2294 		PR0("ldc_mem_dring_unmap() returned errno %d", status);
2295 
2296 	vd_free_dring_task(vd);
2297 
2298 	/* Free the staging buffer for msgs */
2299 	if (vd->vio_msgp != NULL) {
2300 		kmem_free(vd->vio_msgp, vd->max_msglen);
2301 		vd->vio_msgp = NULL;
2302 	}
2303 
2304 	/* Free the inband message buffer */
2305 	if (vd->inband_task.msg != NULL) {
2306 		kmem_free(vd->inband_task.msg, vd->max_msglen);
2307 		vd->inband_task.msg = NULL;
2308 	}
2309 
2310 	mutex_enter(&vd->lock);
2311 
2312 	if (vd->reset_ldc)
2313 		PR0("taking down LDC channel");
2314 	if (vd->reset_ldc && ((status = ldc_down(vd->ldc_handle)) != 0))
2315 		PR0("ldc_down() returned errno %d", status);
2316 
2317 	/* Reset exclusive access rights */
2318 	vd_reset_access(vd);
2319 
2320 	vd->initialized	&= ~(VD_SID | VD_SEQ_NUM | VD_DRING);
2321 	vd->state	= VD_STATE_INIT;
2322 	vd->max_msglen	= sizeof (vio_msg_t);	/* baseline vio message size */
2323 
2324 	/* Allocate the staging buffer */
2325 	vd->vio_msgp = kmem_alloc(vd->max_msglen, KM_SLEEP);
2326 
2327 	PR0("calling ldc_up\n");
2328 	(void) ldc_up(vd->ldc_handle);
2329 
2330 	vd->reset_state	= B_FALSE;
2331 	vd->reset_ldc	= B_FALSE;
2332 
2333 	mutex_exit(&vd->lock);
2334 }
2335 
2336 static void vd_recv_msg(void *arg);
2337 
2338 static void
2339 vd_mark_in_reset(vd_t *vd)
2340 {
2341 	int status;
2342 
2343 	PR0("vd_mark_in_reset: marking vd in reset\n");
2344 
2345 	vd_need_reset(vd, B_FALSE);
2346 	status = ddi_taskq_dispatch(vd->startq, vd_recv_msg, vd, DDI_SLEEP);
2347 	if (status == DDI_FAILURE) {
2348 		PR0("cannot schedule task to recv msg\n");
2349 		vd_need_reset(vd, B_TRUE);
2350 		return;
2351 	}
2352 }
2353 
2354 static int
2355 vd_mark_elem_done(vd_t *vd, int idx, int elem_status, int elem_nbytes)
2356 {
2357 	boolean_t		accepted;
2358 	int			status;
2359 	on_trap_data_t		otd;
2360 	vd_dring_entry_t	*elem = VD_DRING_ELEM(idx);
2361 
2362 	if (vd->reset_state)
2363 		return (0);
2364 
2365 	/* Acquire the element */
2366 	if ((status = VIO_DRING_ACQUIRE(&otd, vd->dring_mtype,
2367 	    vd->dring_handle, idx, idx)) != 0) {
2368 		if (status == ECONNRESET) {
2369 			vd_mark_in_reset(vd);
2370 			return (0);
2371 		} else {
2372 			return (status);
2373 		}
2374 	}
2375 
2376 	/* Set the element's status and mark it done */
2377 	accepted = (elem->hdr.dstate == VIO_DESC_ACCEPTED);
2378 	if (accepted) {
2379 		elem->payload.nbytes	= elem_nbytes;
2380 		elem->payload.status	= elem_status;
2381 		elem->hdr.dstate	= VIO_DESC_DONE;
2382 	} else {
2383 		/* Perhaps client timed out waiting for I/O... */
2384 		PR0("element %u no longer \"accepted\"", idx);
2385 		VD_DUMP_DRING_ELEM(elem);
2386 	}
2387 	/* Release the element */
2388 	if ((status = VIO_DRING_RELEASE(vd->dring_mtype,
2389 	    vd->dring_handle, idx, idx)) != 0) {
2390 		if (status == ECONNRESET) {
2391 			vd_mark_in_reset(vd);
2392 			return (0);
2393 		} else {
2394 			PR0("VIO_DRING_RELEASE() returned errno %d",
2395 			    status);
2396 			return (status);
2397 		}
2398 	}
2399 
2400 	return (accepted ? 0 : EINVAL);
2401 }
2402 
2403 /*
2404  * Return Values
2405  *	0	- operation completed successfully
2406  *	EIO	- encountered LDC / task error
2407  *
2408  * Side Effect
2409  *	sets request->status = <disk operation status>
2410  */
2411 static int
2412 vd_complete_bio(vd_task_t *task)
2413 {
2414 	int			status		= 0;
2415 	int			rv		= 0;
2416 	vd_t			*vd		= task->vd;
2417 	vd_dring_payload_t	*request	= task->request;
2418 	struct buf		*buf		= &task->buf;
2419 	int			wid, nwrites;
2420 
2421 
2422 	ASSERT(vd != NULL);
2423 	ASSERT(request != NULL);
2424 	ASSERT(task->msg != NULL);
2425 	ASSERT(task->msglen >= sizeof (*task->msg));
2426 
2427 	if (buf->b_flags & B_DONE) {
2428 		/*
2429 		 * If the I/O is already done then we don't call biowait()
2430 		 * because biowait() might already have been called when
2431 		 * flushing a previous asynchronous write. So we just
2432 		 * retrieve the status of the request.
2433 		 */
2434 		request->status = geterror(buf);
2435 	} else {
2436 		/*
2437 		 * Wait for the I/O. For synchronous I/O, biowait() will return
2438 		 * when the I/O has completed. For asynchronous write, it will
2439 		 * return the write has been submitted to the backend, but it
2440 		 * may not have been committed.
2441 		 */
2442 		request->status = biowait(buf);
2443 	}
2444 
2445 	if (buf->b_flags & B_ASYNC) {
2446 		/*
2447 		 * Asynchronous writes are used when writing to a file or a
2448 		 * ZFS volume. In that case the bio notification indicates
2449 		 * that the write has started. We have to flush the backend
2450 		 * to ensure that the write has been committed before marking
2451 		 * the request as completed.
2452 		 */
2453 		ASSERT(task->request->operation == VD_OP_BWRITE);
2454 
2455 		wid = task->write_index;
2456 
2457 		/* check if write has been already flushed */
2458 		if (vd->write_queue[wid] != NULL) {
2459 
2460 			vd->write_queue[wid] = NULL;
2461 			wid = VD_WRITE_INDEX_NEXT(vd, wid);
2462 
2463 			/*
2464 			 * Because flushing is time consuming, it is worth
2465 			 * waiting for any other writes so that they can be
2466 			 * included in this single flush request.
2467 			 */
2468 			if (vd_awflush & VD_AWFLUSH_GROUP) {
2469 				nwrites = 1;
2470 				while (vd->write_queue[wid] != NULL) {
2471 					(void) biowait(vd->write_queue[wid]);
2472 					vd->write_queue[wid] = NULL;
2473 					wid = VD_WRITE_INDEX_NEXT(vd, wid);
2474 					nwrites++;
2475 				}
2476 				DTRACE_PROBE2(flushgrp, vd_task_t *, task,
2477 				    int, nwrites);
2478 			}
2479 
2480 			if (vd_awflush & VD_AWFLUSH_IMMEDIATE) {
2481 				request->status = vd_flush_write(vd);
2482 			} else if (vd_awflush & VD_AWFLUSH_DEFER) {
2483 				(void) taskq_dispatch(system_taskq,
2484 				    (void (*)(void *))vd_flush_write, vd,
2485 				    DDI_SLEEP);
2486 				request->status = 0;
2487 			}
2488 		}
2489 	}
2490 
2491 	/* Update the number of bytes read/written */
2492 	request->nbytes += buf->b_bcount - buf->b_resid;
2493 
2494 	/* Release the buffer */
2495 	if (!vd->reset_state)
2496 		status = ldc_mem_release(task->mhdl, 0, buf->b_bufsize);
2497 	if (status) {
2498 		PR0("ldc_mem_release() returned errno %d copying to "
2499 		    "client", status);
2500 		if (status == ECONNRESET) {
2501 			vd_mark_in_reset(vd);
2502 		}
2503 		rv = EIO;
2504 	}
2505 
2506 	/* Unmap the memory, even if in reset */
2507 	status = ldc_mem_unmap(task->mhdl);
2508 	if (status) {
2509 		PR0("ldc_mem_unmap() returned errno %d copying to client",
2510 		    status);
2511 		if (status == ECONNRESET) {
2512 			vd_mark_in_reset(vd);
2513 		}
2514 		rv = EIO;
2515 	}
2516 
2517 	biofini(buf);
2518 
2519 	return (rv);
2520 }
2521 
2522 /*
2523  * Description:
2524  *	This function is called by the two functions called by a taskq
2525  *	[ vd_complete_notify() and vd_serial_notify()) ] to send the
2526  *	message to the client.
2527  *
2528  * Parameters:
2529  *	arg 	- opaque pointer to structure containing task to be completed
2530  *
2531  * Return Values
2532  *	None
2533  */
2534 static void
2535 vd_notify(vd_task_t *task)
2536 {
2537 	int	status;
2538 
2539 	ASSERT(task != NULL);
2540 	ASSERT(task->vd != NULL);
2541 
2542 	/*
2543 	 * Send the "ack" or "nack" back to the client; if sending the message
2544 	 * via LDC fails, arrange to reset both the connection state and LDC
2545 	 * itself
2546 	 */
2547 	PR2("Sending %s",
2548 	    (task->msg->tag.vio_subtype == VIO_SUBTYPE_ACK) ? "ACK" : "NACK");
2549 
2550 	status = send_msg(task->vd->ldc_handle, task->msg, task->msglen);
2551 	switch (status) {
2552 	case 0:
2553 		break;
2554 	case ECONNRESET:
2555 		vd_mark_in_reset(task->vd);
2556 		break;
2557 	default:
2558 		PR0("initiating full reset");
2559 		vd_need_reset(task->vd, B_TRUE);
2560 		break;
2561 	}
2562 
2563 	DTRACE_PROBE1(task__end, vd_task_t *, task);
2564 }
2565 
2566 /*
2567  * Description:
2568  *	Mark the Dring entry as Done and (if necessary) send an ACK/NACK to
2569  *	the vDisk client
2570  *
2571  * Parameters:
2572  *	task 		- structure containing the request sent from client
2573  *
2574  * Return Values
2575  *	None
2576  */
2577 static void
2578 vd_complete_notify(vd_task_t *task)
2579 {
2580 	int			status		= 0;
2581 	vd_t			*vd		= task->vd;
2582 	vd_dring_payload_t	*request	= task->request;
2583 
2584 	/* Update the dring element for a dring client */
2585 	if (!vd->reset_state && (vd->xfer_mode == VIO_DRING_MODE_V1_0)) {
2586 		status = vd_mark_elem_done(vd, task->index,
2587 		    request->status, request->nbytes);
2588 		if (status == ECONNRESET)
2589 			vd_mark_in_reset(vd);
2590 		else if (status == EACCES)
2591 			vd_need_reset(vd, B_TRUE);
2592 	}
2593 
2594 	/*
2595 	 * If a transport error occurred while marking the element done or
2596 	 * previously while executing the task, arrange to "nack" the message
2597 	 * when the final task in the descriptor element range completes
2598 	 */
2599 	if ((status != 0) || (task->status != 0))
2600 		task->msg->tag.vio_subtype = VIO_SUBTYPE_NACK;
2601 
2602 	/*
2603 	 * Only the final task for a range of elements will respond to and
2604 	 * free the message
2605 	 */
2606 	if (task->type == VD_NONFINAL_RANGE_TASK) {
2607 		return;
2608 	}
2609 
2610 	/*
2611 	 * We should only send an ACK/NACK here if we are not currently in
2612 	 * reset as, depending on how we reset, the dring may have been
2613 	 * blown away and we don't want to ACK/NACK a message that isn't
2614 	 * there.
2615 	 */
2616 	if (!vd->reset_state)
2617 		vd_notify(task);
2618 }
2619 
2620 /*
2621  * Description:
2622  *	This is the basic completion function called to handle inband data
2623  *	requests and handshake messages. All it needs to do is trigger a
2624  *	message to the client that the request is completed.
2625  *
2626  * Parameters:
2627  *	arg 	- opaque pointer to structure containing task to be completed
2628  *
2629  * Return Values
2630  *	None
2631  */
2632 static void
2633 vd_serial_notify(void *arg)
2634 {
2635 	vd_task_t		*task = (vd_task_t *)arg;
2636 
2637 	ASSERT(task != NULL);
2638 	vd_notify(task);
2639 }
2640 
2641 /* ARGSUSED */
2642 static int
2643 vd_geom2dk_geom(void *vd_buf, size_t vd_buf_len, void *ioctl_arg)
2644 {
2645 	VD_GEOM2DK_GEOM((vd_geom_t *)vd_buf, (struct dk_geom *)ioctl_arg);
2646 	return (0);
2647 }
2648 
2649 /* ARGSUSED */
2650 static int
2651 vd_vtoc2vtoc(void *vd_buf, size_t vd_buf_len, void *ioctl_arg)
2652 {
2653 	VD_VTOC2VTOC((vd_vtoc_t *)vd_buf, (struct extvtoc *)ioctl_arg);
2654 	return (0);
2655 }
2656 
2657 static void
2658 dk_geom2vd_geom(void *ioctl_arg, void *vd_buf)
2659 {
2660 	DK_GEOM2VD_GEOM((struct dk_geom *)ioctl_arg, (vd_geom_t *)vd_buf);
2661 }
2662 
2663 static void
2664 vtoc2vd_vtoc(void *ioctl_arg, void *vd_buf)
2665 {
2666 	VTOC2VD_VTOC((struct extvtoc *)ioctl_arg, (vd_vtoc_t *)vd_buf);
2667 }
2668 
2669 static int
2670 vd_get_efi_in(void *vd_buf, size_t vd_buf_len, void *ioctl_arg)
2671 {
2672 	vd_efi_t *vd_efi = (vd_efi_t *)vd_buf;
2673 	dk_efi_t *dk_efi = (dk_efi_t *)ioctl_arg;
2674 	size_t data_len;
2675 
2676 	data_len = vd_buf_len - (sizeof (vd_efi_t) - sizeof (uint64_t));
2677 	if (vd_efi->length > data_len)
2678 		return (EINVAL);
2679 
2680 	dk_efi->dki_lba = vd_efi->lba;
2681 	dk_efi->dki_length = vd_efi->length;
2682 	dk_efi->dki_data = kmem_zalloc(vd_efi->length, KM_SLEEP);
2683 	return (0);
2684 }
2685 
2686 static void
2687 vd_get_efi_out(void *ioctl_arg, void *vd_buf)
2688 {
2689 	int len;
2690 	vd_efi_t *vd_efi = (vd_efi_t *)vd_buf;
2691 	dk_efi_t *dk_efi = (dk_efi_t *)ioctl_arg;
2692 
2693 	len = vd_efi->length;
2694 	DK_EFI2VD_EFI(dk_efi, vd_efi);
2695 	kmem_free(dk_efi->dki_data, len);
2696 }
2697 
2698 static int
2699 vd_set_efi_in(void *vd_buf, size_t vd_buf_len, void *ioctl_arg)
2700 {
2701 	vd_efi_t *vd_efi = (vd_efi_t *)vd_buf;
2702 	dk_efi_t *dk_efi = (dk_efi_t *)ioctl_arg;
2703 	size_t data_len;
2704 
2705 	data_len = vd_buf_len - (sizeof (vd_efi_t) - sizeof (uint64_t));
2706 	if (vd_efi->length > data_len)
2707 		return (EINVAL);
2708 
2709 	dk_efi->dki_data = kmem_alloc(vd_efi->length, KM_SLEEP);
2710 	VD_EFI2DK_EFI(vd_efi, dk_efi);
2711 	return (0);
2712 }
2713 
2714 static void
2715 vd_set_efi_out(void *ioctl_arg, void *vd_buf)
2716 {
2717 	vd_efi_t *vd_efi = (vd_efi_t *)vd_buf;
2718 	dk_efi_t *dk_efi = (dk_efi_t *)ioctl_arg;
2719 
2720 	kmem_free(dk_efi->dki_data, vd_efi->length);
2721 }
2722 
2723 static int
2724 vd_scsicmd_in(void *vd_buf, size_t vd_buf_len, void *ioctl_arg)
2725 {
2726 	size_t vd_scsi_len;
2727 	vd_scsi_t *vd_scsi = (vd_scsi_t *)vd_buf;
2728 	struct uscsi_cmd *uscsi = (struct uscsi_cmd *)ioctl_arg;
2729 
2730 	/* check buffer size */
2731 	vd_scsi_len = VD_SCSI_SIZE;
2732 	vd_scsi_len += P2ROUNDUP(vd_scsi->cdb_len, sizeof (uint64_t));
2733 	vd_scsi_len += P2ROUNDUP(vd_scsi->sense_len, sizeof (uint64_t));
2734 	vd_scsi_len += P2ROUNDUP(vd_scsi->datain_len, sizeof (uint64_t));
2735 	vd_scsi_len += P2ROUNDUP(vd_scsi->dataout_len, sizeof (uint64_t));
2736 
2737 	ASSERT(vd_scsi_len % sizeof (uint64_t) == 0);
2738 
2739 	if (vd_buf_len < vd_scsi_len)
2740 		return (EINVAL);
2741 
2742 	/* set flags */
2743 	uscsi->uscsi_flags = vd_scsi_debug;
2744 
2745 	if (vd_scsi->options & VD_SCSI_OPT_NORETRY) {
2746 		uscsi->uscsi_flags |= USCSI_ISOLATE;
2747 		uscsi->uscsi_flags |= USCSI_DIAGNOSE;
2748 	}
2749 
2750 	/* task attribute */
2751 	switch (vd_scsi->task_attribute) {
2752 	case VD_SCSI_TASK_ACA:
2753 		uscsi->uscsi_flags |= USCSI_HEAD;
2754 		break;
2755 	case VD_SCSI_TASK_HQUEUE:
2756 		uscsi->uscsi_flags |= USCSI_HTAG;
2757 		break;
2758 	case VD_SCSI_TASK_ORDERED:
2759 		uscsi->uscsi_flags |= USCSI_OTAG;
2760 		break;
2761 	default:
2762 		uscsi->uscsi_flags |= USCSI_NOTAG;
2763 		break;
2764 	}
2765 
2766 	/* timeout */
2767 	uscsi->uscsi_timeout = vd_scsi->timeout;
2768 
2769 	/* cdb data */
2770 	uscsi->uscsi_cdb = (caddr_t)VD_SCSI_DATA_CDB(vd_scsi);
2771 	uscsi->uscsi_cdblen = vd_scsi->cdb_len;
2772 
2773 	/* sense buffer */
2774 	if (vd_scsi->sense_len != 0) {
2775 		uscsi->uscsi_flags |= USCSI_RQENABLE;
2776 		uscsi->uscsi_rqbuf = (caddr_t)VD_SCSI_DATA_SENSE(vd_scsi);
2777 		uscsi->uscsi_rqlen = vd_scsi->sense_len;
2778 	}
2779 
2780 	if (vd_scsi->datain_len != 0 && vd_scsi->dataout_len != 0) {
2781 		/* uscsi does not support read/write request */
2782 		return (EINVAL);
2783 	}
2784 
2785 	/* request data-in */
2786 	if (vd_scsi->datain_len != 0) {
2787 		uscsi->uscsi_flags |= USCSI_READ;
2788 		uscsi->uscsi_buflen = vd_scsi->datain_len;
2789 		uscsi->uscsi_bufaddr = (char *)VD_SCSI_DATA_IN(vd_scsi);
2790 	}
2791 
2792 	/* request data-out */
2793 	if (vd_scsi->dataout_len != 0) {
2794 		uscsi->uscsi_buflen = vd_scsi->dataout_len;
2795 		uscsi->uscsi_bufaddr = (char *)VD_SCSI_DATA_OUT(vd_scsi);
2796 	}
2797 
2798 	return (0);
2799 }
2800 
2801 static void
2802 vd_scsicmd_out(void *ioctl_arg, void *vd_buf)
2803 {
2804 	vd_scsi_t *vd_scsi = (vd_scsi_t *)vd_buf;
2805 	struct uscsi_cmd *uscsi = (struct uscsi_cmd *)ioctl_arg;
2806 
2807 	/* output fields */
2808 	vd_scsi->cmd_status = uscsi->uscsi_status;
2809 
2810 	/* sense data */
2811 	if ((uscsi->uscsi_flags & USCSI_RQENABLE) &&
2812 	    (uscsi->uscsi_status == STATUS_CHECK ||
2813 	    uscsi->uscsi_status == STATUS_TERMINATED)) {
2814 		vd_scsi->sense_status = uscsi->uscsi_rqstatus;
2815 		if (uscsi->uscsi_rqstatus == STATUS_GOOD)
2816 			vd_scsi->sense_len -= uscsi->uscsi_rqresid;
2817 		else
2818 			vd_scsi->sense_len = 0;
2819 	} else {
2820 		vd_scsi->sense_len = 0;
2821 	}
2822 
2823 	if (uscsi->uscsi_status != STATUS_GOOD) {
2824 		vd_scsi->dataout_len = 0;
2825 		vd_scsi->datain_len = 0;
2826 		return;
2827 	}
2828 
2829 	if (uscsi->uscsi_flags & USCSI_READ) {
2830 		/* request data (read) */
2831 		vd_scsi->datain_len -= uscsi->uscsi_resid;
2832 		vd_scsi->dataout_len = 0;
2833 	} else {
2834 		/* request data (write) */
2835 		vd_scsi->datain_len = 0;
2836 		vd_scsi->dataout_len -= uscsi->uscsi_resid;
2837 	}
2838 }
2839 
2840 static ushort_t
2841 vd_lbl2cksum(struct dk_label *label)
2842 {
2843 	int	count;
2844 	ushort_t sum, *sp;
2845 
2846 	count =	(sizeof (struct dk_label)) / (sizeof (short)) - 1;
2847 	sp = (ushort_t *)label;
2848 	sum = 0;
2849 	while (count--) {
2850 		sum ^= *sp++;
2851 	}
2852 
2853 	return (sum);
2854 }
2855 
2856 /*
2857  * Copy information from a vtoc and dk_geom structures to a dk_label structure.
2858  */
2859 static void
2860 vd_vtocgeom_to_label(struct extvtoc *vtoc, struct dk_geom *geom,
2861     struct dk_label *label)
2862 {
2863 	int i;
2864 
2865 	ASSERT(vtoc->v_nparts == V_NUMPAR);
2866 	ASSERT(vtoc->v_sanity == VTOC_SANE);
2867 
2868 	bzero(label, sizeof (struct dk_label));
2869 
2870 	label->dkl_ncyl = geom->dkg_ncyl;
2871 	label->dkl_acyl = geom->dkg_acyl;
2872 	label->dkl_pcyl = geom->dkg_pcyl;
2873 	label->dkl_nhead = geom->dkg_nhead;
2874 	label->dkl_nsect = geom->dkg_nsect;
2875 	label->dkl_intrlv = geom->dkg_intrlv;
2876 	label->dkl_apc = geom->dkg_apc;
2877 	label->dkl_rpm = geom->dkg_rpm;
2878 	label->dkl_write_reinstruct = geom->dkg_write_reinstruct;
2879 	label->dkl_read_reinstruct = geom->dkg_read_reinstruct;
2880 
2881 	label->dkl_vtoc.v_nparts = V_NUMPAR;
2882 	label->dkl_vtoc.v_sanity = VTOC_SANE;
2883 	label->dkl_vtoc.v_version = vtoc->v_version;
2884 	for (i = 0; i < V_NUMPAR; i++) {
2885 		label->dkl_vtoc.v_timestamp[i] = vtoc->timestamp[i];
2886 		label->dkl_vtoc.v_part[i].p_tag = vtoc->v_part[i].p_tag;
2887 		label->dkl_vtoc.v_part[i].p_flag = vtoc->v_part[i].p_flag;
2888 		label->dkl_map[i].dkl_cylno = vtoc->v_part[i].p_start /
2889 		    (label->dkl_nhead * label->dkl_nsect);
2890 		label->dkl_map[i].dkl_nblk = vtoc->v_part[i].p_size;
2891 	}
2892 
2893 	/*
2894 	 * The bootinfo array can not be copied with bcopy() because
2895 	 * elements are of type long in vtoc (so 64-bit) and of type
2896 	 * int in dk_vtoc (so 32-bit).
2897 	 */
2898 	label->dkl_vtoc.v_bootinfo[0] = vtoc->v_bootinfo[0];
2899 	label->dkl_vtoc.v_bootinfo[1] = vtoc->v_bootinfo[1];
2900 	label->dkl_vtoc.v_bootinfo[2] = vtoc->v_bootinfo[2];
2901 	bcopy(vtoc->v_asciilabel, label->dkl_asciilabel, LEN_DKL_ASCII);
2902 	bcopy(vtoc->v_volume, label->dkl_vtoc.v_volume, LEN_DKL_VVOL);
2903 
2904 	/* re-compute checksum */
2905 	label->dkl_magic = DKL_MAGIC;
2906 	label->dkl_cksum = vd_lbl2cksum(label);
2907 }
2908 
2909 /*
2910  * Copy information from a dk_label structure to a vtoc and dk_geom structures.
2911  */
2912 static void
2913 vd_label_to_vtocgeom(struct dk_label *label, struct extvtoc *vtoc,
2914     struct dk_geom *geom)
2915 {
2916 	int i;
2917 
2918 	bzero(vtoc, sizeof (struct extvtoc));
2919 	bzero(geom, sizeof (struct dk_geom));
2920 
2921 	geom->dkg_ncyl = label->dkl_ncyl;
2922 	geom->dkg_acyl = label->dkl_acyl;
2923 	geom->dkg_nhead = label->dkl_nhead;
2924 	geom->dkg_nsect = label->dkl_nsect;
2925 	geom->dkg_intrlv = label->dkl_intrlv;
2926 	geom->dkg_apc = label->dkl_apc;
2927 	geom->dkg_rpm = label->dkl_rpm;
2928 	geom->dkg_pcyl = label->dkl_pcyl;
2929 	geom->dkg_write_reinstruct = label->dkl_write_reinstruct;
2930 	geom->dkg_read_reinstruct = label->dkl_read_reinstruct;
2931 
2932 	vtoc->v_sanity = label->dkl_vtoc.v_sanity;
2933 	vtoc->v_version = label->dkl_vtoc.v_version;
2934 	vtoc->v_sectorsz = DEV_BSIZE;
2935 	vtoc->v_nparts = label->dkl_vtoc.v_nparts;
2936 
2937 	for (i = 0; i < vtoc->v_nparts; i++) {
2938 		vtoc->v_part[i].p_tag = label->dkl_vtoc.v_part[i].p_tag;
2939 		vtoc->v_part[i].p_flag = label->dkl_vtoc.v_part[i].p_flag;
2940 		vtoc->v_part[i].p_start = label->dkl_map[i].dkl_cylno *
2941 		    (label->dkl_nhead * label->dkl_nsect);
2942 		vtoc->v_part[i].p_size = label->dkl_map[i].dkl_nblk;
2943 		vtoc->timestamp[i] = label->dkl_vtoc.v_timestamp[i];
2944 	}
2945 
2946 	/*
2947 	 * The bootinfo array can not be copied with bcopy() because
2948 	 * elements are of type long in vtoc (so 64-bit) and of type
2949 	 * int in dk_vtoc (so 32-bit).
2950 	 */
2951 	vtoc->v_bootinfo[0] = label->dkl_vtoc.v_bootinfo[0];
2952 	vtoc->v_bootinfo[1] = label->dkl_vtoc.v_bootinfo[1];
2953 	vtoc->v_bootinfo[2] = label->dkl_vtoc.v_bootinfo[2];
2954 	bcopy(label->dkl_asciilabel, vtoc->v_asciilabel, LEN_DKL_ASCII);
2955 	bcopy(label->dkl_vtoc.v_volume, vtoc->v_volume, LEN_DKL_VVOL);
2956 }
2957 
2958 /*
2959  * Check if a geometry is valid for a single-slice disk. A geometry is
2960  * considered valid if the main attributes of the geometry match with the
2961  * attributes of the fake geometry we have created.
2962  */
2963 static boolean_t
2964 vd_slice_geom_isvalid(vd_t *vd, struct dk_geom *geom)
2965 {
2966 	ASSERT(vd->vdisk_type == VD_DISK_TYPE_SLICE);
2967 	ASSERT(vd->vdisk_label == VD_DISK_LABEL_VTOC);
2968 
2969 	if (geom->dkg_ncyl != vd->dk_geom.dkg_ncyl ||
2970 	    geom->dkg_acyl != vd->dk_geom.dkg_acyl ||
2971 	    geom->dkg_nsect != vd->dk_geom.dkg_nsect ||
2972 	    geom->dkg_pcyl != vd->dk_geom.dkg_pcyl)
2973 		return (B_FALSE);
2974 
2975 	return (B_TRUE);
2976 }
2977 
2978 /*
2979  * Check if a vtoc is valid for a single-slice disk. A vtoc is considered
2980  * valid if the main attributes of the vtoc match with the attributes of the
2981  * fake vtoc we have created.
2982  */
2983 static boolean_t
2984 vd_slice_vtoc_isvalid(vd_t *vd, struct extvtoc *vtoc)
2985 {
2986 	size_t csize;
2987 	int i;
2988 
2989 	ASSERT(vd->vdisk_type == VD_DISK_TYPE_SLICE);
2990 	ASSERT(vd->vdisk_label == VD_DISK_LABEL_VTOC);
2991 
2992 	if (vtoc->v_sanity != vd->vtoc.v_sanity ||
2993 	    vtoc->v_version != vd->vtoc.v_version ||
2994 	    vtoc->v_nparts != vd->vtoc.v_nparts ||
2995 	    strcmp(vtoc->v_volume, vd->vtoc.v_volume) != 0 ||
2996 	    strcmp(vtoc->v_asciilabel, vd->vtoc.v_asciilabel) != 0)
2997 		return (B_FALSE);
2998 
2999 	/* slice 2 should be unchanged */
3000 	if (vtoc->v_part[VD_ENTIRE_DISK_SLICE].p_start !=
3001 	    vd->vtoc.v_part[VD_ENTIRE_DISK_SLICE].p_start ||
3002 	    vtoc->v_part[VD_ENTIRE_DISK_SLICE].p_size !=
3003 	    vd->vtoc.v_part[VD_ENTIRE_DISK_SLICE].p_size)
3004 		return (B_FALSE);
3005 
3006 	/*
3007 	 * Slice 0 should be mostly unchanged and cover most of the disk.
3008 	 * However we allow some flexibility wrt to the start and the size
3009 	 * of this slice mainly because we can't exactly know how it will
3010 	 * be defined by the OS installer.
3011 	 *
3012 	 * We allow slice 0 to be defined as starting on any of the first
3013 	 * 4 cylinders.
3014 	 */
3015 	csize = vd->dk_geom.dkg_nhead * vd->dk_geom.dkg_nsect;
3016 
3017 	if (vtoc->v_part[0].p_start > 4 * csize ||
3018 	    vtoc->v_part[0].p_size > vtoc->v_part[VD_ENTIRE_DISK_SLICE].p_size)
3019 			return (B_FALSE);
3020 
3021 	if (vd->vtoc.v_part[0].p_size >= 4 * csize &&
3022 	    vtoc->v_part[0].p_size < vd->vtoc.v_part[0].p_size - 4 *csize)
3023 			return (B_FALSE);
3024 
3025 	/* any other slice should have a size of 0 */
3026 	for (i = 1; i < vtoc->v_nparts; i++) {
3027 		if (i != VD_ENTIRE_DISK_SLICE &&
3028 		    vtoc->v_part[i].p_size != 0)
3029 			return (B_FALSE);
3030 	}
3031 
3032 	return (B_TRUE);
3033 }
3034 
3035 /*
3036  * Handle ioctls to a disk slice.
3037  *
3038  * Return Values
3039  *	0	- Indicates that there are no errors in disk operations
3040  *	ENOTSUP	- Unknown disk label type or unsupported DKIO ioctl
3041  *	EINVAL	- Not enough room to copy the EFI label
3042  *
3043  */
3044 static int
3045 vd_do_slice_ioctl(vd_t *vd, int cmd, void *ioctl_arg)
3046 {
3047 	dk_efi_t *dk_ioc;
3048 	struct extvtoc *vtoc;
3049 	struct dk_geom *geom;
3050 	size_t len, lba;
3051 
3052 	ASSERT(vd->vdisk_type == VD_DISK_TYPE_SLICE);
3053 
3054 	if (cmd == DKIOCFLUSHWRITECACHE)
3055 		return (vd_flush_write(vd));
3056 
3057 	switch (vd->vdisk_label) {
3058 
3059 	/* ioctls for a single slice disk with a VTOC label */
3060 	case VD_DISK_LABEL_VTOC:
3061 
3062 		switch (cmd) {
3063 
3064 		case DKIOCGGEOM:
3065 			ASSERT(ioctl_arg != NULL);
3066 			bcopy(&vd->dk_geom, ioctl_arg, sizeof (vd->dk_geom));
3067 			return (0);
3068 
3069 		case DKIOCGEXTVTOC:
3070 			ASSERT(ioctl_arg != NULL);
3071 			bcopy(&vd->vtoc, ioctl_arg, sizeof (vd->vtoc));
3072 			return (0);
3073 
3074 		case DKIOCSGEOM:
3075 			ASSERT(ioctl_arg != NULL);
3076 			if (vd_slice_single_slice)
3077 				return (ENOTSUP);
3078 
3079 			/* fake success only if new geometry is valid */
3080 			geom = (struct dk_geom *)ioctl_arg;
3081 			if (!vd_slice_geom_isvalid(vd, geom))
3082 				return (EINVAL);
3083 
3084 			return (0);
3085 
3086 		case DKIOCSEXTVTOC:
3087 			ASSERT(ioctl_arg != NULL);
3088 			if (vd_slice_single_slice)
3089 				return (ENOTSUP);
3090 
3091 			/* fake sucess only if the new vtoc is valid */
3092 			vtoc = (struct extvtoc *)ioctl_arg;
3093 			if (!vd_slice_vtoc_isvalid(vd, vtoc))
3094 				return (EINVAL);
3095 
3096 			return (0);
3097 
3098 		default:
3099 			return (ENOTSUP);
3100 		}
3101 
3102 	/* ioctls for a single slice disk with an EFI label */
3103 	case VD_DISK_LABEL_EFI:
3104 
3105 		if (cmd != DKIOCGETEFI && cmd != DKIOCSETEFI)
3106 			return (ENOTSUP);
3107 
3108 		ASSERT(ioctl_arg != NULL);
3109 		dk_ioc = (dk_efi_t *)ioctl_arg;
3110 
3111 		len = dk_ioc->dki_length;
3112 		lba = dk_ioc->dki_lba;
3113 
3114 		if ((lba != VD_EFI_LBA_GPT && lba != VD_EFI_LBA_GPE) ||
3115 		    (lba == VD_EFI_LBA_GPT && len < sizeof (efi_gpt_t)) ||
3116 		    (lba == VD_EFI_LBA_GPE && len < sizeof (efi_gpe_t)))
3117 			return (EINVAL);
3118 
3119 		switch (cmd) {
3120 		case DKIOCGETEFI:
3121 			len = vd_slice_flabel_read(vd,
3122 			    (caddr_t)dk_ioc->dki_data,
3123 			    lba * vd->vdisk_bsize, len);
3124 
3125 			ASSERT(len > 0);
3126 
3127 			return (0);
3128 
3129 		case DKIOCSETEFI:
3130 			if (vd_slice_single_slice)
3131 				return (ENOTSUP);
3132 
3133 			/* we currently don't support writing EFI */
3134 			return (EIO);
3135 		}
3136 
3137 	default:
3138 		/* Unknown disk label type */
3139 		return (ENOTSUP);
3140 	}
3141 }
3142 
3143 static int
3144 vds_efi_alloc_and_read(vd_t *vd, efi_gpt_t **gpt, efi_gpe_t **gpe)
3145 {
3146 	vd_efi_dev_t edev;
3147 	int status;
3148 
3149 	VD_EFI_DEV_SET(edev, vd, (vd_efi_ioctl_func)vd_backend_ioctl);
3150 
3151 	status = vd_efi_alloc_and_read(&edev, gpt, gpe);
3152 
3153 	return (status);
3154 }
3155 
3156 static void
3157 vds_efi_free(vd_t *vd, efi_gpt_t *gpt, efi_gpe_t *gpe)
3158 {
3159 	vd_efi_dev_t edev;
3160 
3161 	VD_EFI_DEV_SET(edev, vd, (vd_efi_ioctl_func)vd_backend_ioctl);
3162 
3163 	vd_efi_free(&edev, gpt, gpe);
3164 }
3165 
3166 static int
3167 vd_dskimg_validate_efi(vd_t *vd)
3168 {
3169 	efi_gpt_t *gpt;
3170 	efi_gpe_t *gpe;
3171 	int i, nparts, status;
3172 	struct uuid efi_reserved = EFI_RESERVED;
3173 
3174 	if ((status = vds_efi_alloc_and_read(vd, &gpt, &gpe)) != 0)
3175 		return (status);
3176 
3177 	bzero(&vd->vtoc, sizeof (struct extvtoc));
3178 	bzero(&vd->dk_geom, sizeof (struct dk_geom));
3179 	bzero(vd->slices, sizeof (vd_slice_t) * VD_MAXPART);
3180 
3181 	vd->efi_reserved = -1;
3182 
3183 	nparts = gpt->efi_gpt_NumberOfPartitionEntries;
3184 
3185 	for (i = 0; i < nparts && i < VD_MAXPART; i++) {
3186 
3187 		if (gpe[i].efi_gpe_StartingLBA == 0 &&
3188 		    gpe[i].efi_gpe_EndingLBA == 0) {
3189 			continue;
3190 		}
3191 
3192 		vd->slices[i].start = gpe[i].efi_gpe_StartingLBA;
3193 		vd->slices[i].nblocks = gpe[i].efi_gpe_EndingLBA -
3194 		    gpe[i].efi_gpe_StartingLBA + 1;
3195 
3196 		if (bcmp(&gpe[i].efi_gpe_PartitionTypeGUID, &efi_reserved,
3197 		    sizeof (struct uuid)) == 0)
3198 			vd->efi_reserved = i;
3199 
3200 	}
3201 
3202 	ASSERT(vd->vdisk_size != 0);
3203 	vd->slices[VD_EFI_WD_SLICE].start = 0;
3204 	vd->slices[VD_EFI_WD_SLICE].nblocks = vd->vdisk_size;
3205 
3206 	vds_efi_free(vd, gpt, gpe);
3207 
3208 	return (status);
3209 }
3210 
3211 /*
3212  * Function:
3213  *	vd_dskimg_validate_geometry
3214  *
3215  * Description:
3216  *	Read the label and validate the geometry of a disk image. The driver
3217  *	label, vtoc and geometry information are updated according to the
3218  *	label read from the disk image.
3219  *
3220  *	If no valid label is found, the label is set to unknown and the
3221  *	function returns EINVAL, but a default vtoc and geometry are provided
3222  *	to the driver. If an EFI label is found, ENOTSUP is returned.
3223  *
3224  * Parameters:
3225  *	vd	- disk on which the operation is performed.
3226  *
3227  * Return Code:
3228  *	0	- success.
3229  *	EIO	- error reading the label from the disk image.
3230  *	EINVAL	- unknown disk label.
3231  *	ENOTSUP	- geometry not applicable (EFI label).
3232  */
3233 static int
3234 vd_dskimg_validate_geometry(vd_t *vd)
3235 {
3236 	struct dk_label label;
3237 	struct dk_geom *geom = &vd->dk_geom;
3238 	struct extvtoc *vtoc = &vd->vtoc;
3239 	int i;
3240 	int status = 0;
3241 
3242 	ASSERT(VD_DSKIMG(vd));
3243 
3244 	if (VD_DSKIMG_LABEL_READ(vd, &label) < 0)
3245 		return (EIO);
3246 
3247 	if (label.dkl_magic != DKL_MAGIC ||
3248 	    label.dkl_cksum != vd_lbl2cksum(&label) ||
3249 	    (vd_dskimg_validate_sanity &&
3250 	    label.dkl_vtoc.v_sanity != VTOC_SANE) ||
3251 	    label.dkl_vtoc.v_nparts != V_NUMPAR) {
3252 
3253 		if (vd_dskimg_validate_efi(vd) == 0) {
3254 			vd->vdisk_label = VD_DISK_LABEL_EFI;
3255 			return (ENOTSUP);
3256 		}
3257 
3258 		vd->vdisk_label = VD_DISK_LABEL_UNK;
3259 		vd_build_default_label(vd->dskimg_size, vd->vdisk_bsize,
3260 		    &label);
3261 		status = EINVAL;
3262 	} else {
3263 		vd->vdisk_label = VD_DISK_LABEL_VTOC;
3264 	}
3265 
3266 	/* Update the driver geometry and vtoc */
3267 	vd_label_to_vtocgeom(&label, vtoc, geom);
3268 
3269 	/* Update logical partitions */
3270 	bzero(vd->slices, sizeof (vd_slice_t) * VD_MAXPART);
3271 	if (vd->vdisk_label != VD_DISK_LABEL_UNK) {
3272 		for (i = 0; i < vtoc->v_nparts; i++) {
3273 			vd->slices[i].start = vtoc->v_part[i].p_start;
3274 			vd->slices[i].nblocks = vtoc->v_part[i].p_size;
3275 		}
3276 	}
3277 
3278 	return (status);
3279 }
3280 
3281 /*
3282  * Handle ioctls to a disk image.
3283  *
3284  * Return Values
3285  *	0	- Indicates that there are no errors
3286  *	!= 0	- Disk operation returned an error
3287  */
3288 static int
3289 vd_do_dskimg_ioctl(vd_t *vd, int cmd, void *ioctl_arg)
3290 {
3291 	struct dk_label label;
3292 	struct dk_geom *geom;
3293 	struct extvtoc *vtoc;
3294 	dk_efi_t *efi;
3295 	int rc;
3296 
3297 	ASSERT(VD_DSKIMG(vd));
3298 
3299 	switch (cmd) {
3300 
3301 	case DKIOCGGEOM:
3302 		ASSERT(ioctl_arg != NULL);
3303 		geom = (struct dk_geom *)ioctl_arg;
3304 
3305 		rc = vd_dskimg_validate_geometry(vd);
3306 		if (rc != 0 && rc != EINVAL)
3307 			return (rc);
3308 		bcopy(&vd->dk_geom, geom, sizeof (struct dk_geom));
3309 		return (0);
3310 
3311 	case DKIOCGEXTVTOC:
3312 		ASSERT(ioctl_arg != NULL);
3313 		vtoc = (struct extvtoc *)ioctl_arg;
3314 
3315 		rc = vd_dskimg_validate_geometry(vd);
3316 		if (rc != 0 && rc != EINVAL)
3317 			return (rc);
3318 		bcopy(&vd->vtoc, vtoc, sizeof (struct extvtoc));
3319 		return (0);
3320 
3321 	case DKIOCSGEOM:
3322 		ASSERT(ioctl_arg != NULL);
3323 		geom = (struct dk_geom *)ioctl_arg;
3324 
3325 		if (geom->dkg_nhead == 0 || geom->dkg_nsect == 0)
3326 			return (EINVAL);
3327 
3328 		/*
3329 		 * The current device geometry is not updated, just the driver
3330 		 * "notion" of it. The device geometry will be effectively
3331 		 * updated when a label is written to the device during a next
3332 		 * DKIOCSEXTVTOC.
3333 		 */
3334 		bcopy(ioctl_arg, &vd->dk_geom, sizeof (vd->dk_geom));
3335 		return (0);
3336 
3337 	case DKIOCSEXTVTOC:
3338 		ASSERT(ioctl_arg != NULL);
3339 		ASSERT(vd->dk_geom.dkg_nhead != 0 &&
3340 		    vd->dk_geom.dkg_nsect != 0);
3341 		vtoc = (struct extvtoc *)ioctl_arg;
3342 
3343 		if (vtoc->v_sanity != VTOC_SANE ||
3344 		    vtoc->v_sectorsz != DEV_BSIZE ||
3345 		    vtoc->v_nparts != V_NUMPAR)
3346 			return (EINVAL);
3347 
3348 		vd_vtocgeom_to_label(vtoc, &vd->dk_geom, &label);
3349 
3350 		/* write label to the disk image */
3351 		if ((rc = vd_dskimg_set_vtoc(vd, &label)) != 0)
3352 			return (rc);
3353 
3354 		break;
3355 
3356 	case DKIOCFLUSHWRITECACHE:
3357 		return (vd_flush_write(vd));
3358 
3359 	case DKIOCGETEFI:
3360 		ASSERT(ioctl_arg != NULL);
3361 		efi = (dk_efi_t *)ioctl_arg;
3362 
3363 		if (vd_dskimg_rw(vd, VD_SLICE_NONE, VD_OP_BREAD,
3364 		    (caddr_t)efi->dki_data, efi->dki_lba, efi->dki_length) < 0)
3365 			return (EIO);
3366 
3367 		return (0);
3368 
3369 	case DKIOCSETEFI:
3370 		ASSERT(ioctl_arg != NULL);
3371 		efi = (dk_efi_t *)ioctl_arg;
3372 
3373 		if (vd_dskimg_rw(vd, VD_SLICE_NONE, VD_OP_BWRITE,
3374 		    (caddr_t)efi->dki_data, efi->dki_lba, efi->dki_length) < 0)
3375 			return (EIO);
3376 
3377 		break;
3378 
3379 
3380 	default:
3381 		return (ENOTSUP);
3382 	}
3383 
3384 	ASSERT(cmd == DKIOCSEXTVTOC || cmd == DKIOCSETEFI);
3385 
3386 	/* label has changed, revalidate the geometry */
3387 	(void) vd_dskimg_validate_geometry(vd);
3388 
3389 	/*
3390 	 * The disk geometry may have changed, so we need to write
3391 	 * the devid (if there is one) so that it is stored at the
3392 	 * right location.
3393 	 */
3394 	if (vd_dskimg_write_devid(vd, vd->dskimg_devid) != 0) {
3395 		PR0("Fail to write devid");
3396 	}
3397 
3398 	return (0);
3399 }
3400 
3401 static int
3402 vd_backend_ioctl(vd_t *vd, int cmd, caddr_t arg)
3403 {
3404 	int rval = 0, status;
3405 	struct vtoc vtoc;
3406 
3407 	/*
3408 	 * Call the appropriate function to execute the ioctl depending
3409 	 * on the type of vdisk.
3410 	 */
3411 	if (vd->vdisk_type == VD_DISK_TYPE_SLICE) {
3412 
3413 		/* slice, file or volume exported as a single slice disk */
3414 		status = vd_do_slice_ioctl(vd, cmd, arg);
3415 
3416 	} else if (VD_DSKIMG(vd)) {
3417 
3418 		/* file or volume exported as a full disk */
3419 		status = vd_do_dskimg_ioctl(vd, cmd, arg);
3420 
3421 	} else {
3422 
3423 		/* disk device exported as a full disk */
3424 		status = ldi_ioctl(vd->ldi_handle[0], cmd, (intptr_t)arg,
3425 		    vd->open_flags | FKIOCTL, kcred, &rval);
3426 
3427 		/*
3428 		 * By default VTOC ioctls are done using ioctls for the
3429 		 * extended VTOC. Some drivers (in particular non-Sun drivers)
3430 		 * may not support these ioctls. In that case, we fallback to
3431 		 * the regular VTOC ioctls.
3432 		 */
3433 		if (status == ENOTTY) {
3434 			switch (cmd) {
3435 
3436 			case DKIOCGEXTVTOC:
3437 				cmd = DKIOCGVTOC;
3438 				status = ldi_ioctl(vd->ldi_handle[0], cmd,
3439 				    (intptr_t)&vtoc, vd->open_flags | FKIOCTL,
3440 				    kcred, &rval);
3441 				vtoctoextvtoc(vtoc,
3442 				    (*(struct extvtoc *)(void *)arg));
3443 				break;
3444 
3445 			case DKIOCSEXTVTOC:
3446 				cmd = DKIOCSVTOC;
3447 				extvtoctovtoc((*(struct extvtoc *)(void *)arg),
3448 				    vtoc);
3449 				status = ldi_ioctl(vd->ldi_handle[0], cmd,
3450 				    (intptr_t)&vtoc, vd->open_flags | FKIOCTL,
3451 				    kcred, &rval);
3452 				break;
3453 			}
3454 		}
3455 	}
3456 
3457 #ifdef DEBUG
3458 	if (rval != 0) {
3459 		PR0("ioctl %x set rval = %d, which is not being returned"
3460 		    " to caller", cmd, rval);
3461 	}
3462 #endif /* DEBUG */
3463 
3464 	return (status);
3465 }
3466 
3467 /*
3468  * Description:
3469  *	This is the function that processes the ioctl requests (farming it
3470  *	out to functions that handle slices, files or whole disks)
3471  *
3472  * Return Values
3473  *     0		- ioctl operation completed successfully
3474  *     != 0		- The LDC error value encountered
3475  *			  (propagated back up the call stack as a task error)
3476  *
3477  * Side Effect
3478  *     sets request->status to the return value of the ioctl function.
3479  */
3480 static int
3481 vd_do_ioctl(vd_t *vd, vd_dring_payload_t *request, void* buf, vd_ioctl_t *ioctl)
3482 {
3483 	int	status = 0;
3484 	size_t	nbytes = request->nbytes;	/* modifiable copy */
3485 
3486 
3487 	ASSERT(request->slice < vd->nslices);
3488 	PR0("Performing %s", ioctl->operation_name);
3489 
3490 	/* Get data from client and convert, if necessary */
3491 	if (ioctl->copyin != NULL)  {
3492 		ASSERT(nbytes != 0 && buf != NULL);
3493 		PR1("Getting \"arg\" data from client");
3494 		if ((status = ldc_mem_copy(vd->ldc_handle, buf, 0, &nbytes,
3495 		    request->cookie, request->ncookies,
3496 		    LDC_COPY_IN)) != 0) {
3497 			PR0("ldc_mem_copy() returned errno %d "
3498 			    "copying from client", status);
3499 			return (status);
3500 		}
3501 
3502 		/* Convert client's data, if necessary */
3503 		if (ioctl->copyin == VD_IDENTITY_IN) {
3504 			/* use client buffer */
3505 			ioctl->arg = buf;
3506 		} else {
3507 			/* convert client vdisk operation data to ioctl data */
3508 			status = (ioctl->copyin)(buf, nbytes,
3509 			    (void *)ioctl->arg);
3510 			if (status != 0) {
3511 				request->status = status;
3512 				return (0);
3513 			}
3514 		}
3515 	}
3516 
3517 	if (ioctl->operation == VD_OP_SCSICMD) {
3518 		struct uscsi_cmd *uscsi = (struct uscsi_cmd *)ioctl->arg;
3519 
3520 		/* check write permission */
3521 		if (!(vd->open_flags & FWRITE) &&
3522 		    !(uscsi->uscsi_flags & USCSI_READ)) {
3523 			PR0("uscsi fails because backend is opened read-only");
3524 			request->status = EROFS;
3525 			return (0);
3526 		}
3527 	}
3528 
3529 	/*
3530 	 * Send the ioctl to the disk backend.
3531 	 */
3532 	request->status = vd_backend_ioctl(vd, ioctl->cmd, ioctl->arg);
3533 
3534 	if (request->status != 0) {
3535 		PR0("ioctl(%s) = errno %d", ioctl->cmd_name, request->status);
3536 		if (ioctl->operation == VD_OP_SCSICMD &&
3537 		    ((struct uscsi_cmd *)ioctl->arg)->uscsi_status != 0)
3538 			/*
3539 			 * USCSICMD has reported an error and the uscsi_status
3540 			 * field is not zero. This means that the SCSI command
3541 			 * has completed but it has an error. So we should
3542 			 * mark the VD operation has succesfully completed
3543 			 * and clients can check the SCSI status field for
3544 			 * SCSI errors.
3545 			 */
3546 			request->status = 0;
3547 		else
3548 			return (0);
3549 	}
3550 
3551 	/* Convert data and send to client, if necessary */
3552 	if (ioctl->copyout != NULL)  {
3553 		ASSERT(nbytes != 0 && buf != NULL);
3554 		PR1("Sending \"arg\" data to client");
3555 
3556 		/* Convert ioctl data to vdisk operation data, if necessary */
3557 		if (ioctl->copyout != VD_IDENTITY_OUT)
3558 			(ioctl->copyout)((void *)ioctl->arg, buf);
3559 
3560 		if ((status = ldc_mem_copy(vd->ldc_handle, buf, 0, &nbytes,
3561 		    request->cookie, request->ncookies,
3562 		    LDC_COPY_OUT)) != 0) {
3563 			PR0("ldc_mem_copy() returned errno %d "
3564 			    "copying to client", status);
3565 			return (status);
3566 		}
3567 	}
3568 
3569 	return (status);
3570 }
3571 
3572 #define	RNDSIZE(expr) P2ROUNDUP(sizeof (expr), sizeof (uint64_t))
3573 
3574 /*
3575  * Description:
3576  *	This generic function is called by the task queue to complete
3577  *	the processing of the tasks. The specific completion function
3578  *	is passed in as a field in the task pointer.
3579  *
3580  * Parameters:
3581  *	arg 	- opaque pointer to structure containing task to be completed
3582  *
3583  * Return Values
3584  *	None
3585  */
3586 static void
3587 vd_complete(void *arg)
3588 {
3589 	vd_task_t	*task = (vd_task_t *)arg;
3590 
3591 	ASSERT(task != NULL);
3592 	ASSERT(task->status == EINPROGRESS);
3593 	ASSERT(task->completef != NULL);
3594 
3595 	task->status = task->completef(task);
3596 	if (task->status)
3597 		PR0("%s: Error %d completing task", __func__, task->status);
3598 
3599 	/* Now notify the vDisk client */
3600 	vd_complete_notify(task);
3601 }
3602 
3603 static int
3604 vd_ioctl(vd_task_t *task)
3605 {
3606 	int			i, status;
3607 	void			*buf = NULL;
3608 	struct dk_geom		dk_geom = {0};
3609 	struct extvtoc		vtoc = {0};
3610 	struct dk_efi		dk_efi = {0};
3611 	struct uscsi_cmd	uscsi = {0};
3612 	vd_t			*vd		= task->vd;
3613 	vd_dring_payload_t	*request	= task->request;
3614 	vd_ioctl_t		ioctl[] = {
3615 		/* Command (no-copy) operations */
3616 		{VD_OP_FLUSH, STRINGIZE(VD_OP_FLUSH), 0,
3617 		    DKIOCFLUSHWRITECACHE, STRINGIZE(DKIOCFLUSHWRITECACHE),
3618 		    NULL, NULL, NULL, B_TRUE},
3619 
3620 		/* "Get" (copy-out) operations */
3621 		{VD_OP_GET_WCE, STRINGIZE(VD_OP_GET_WCE), RNDSIZE(int),
3622 		    DKIOCGETWCE, STRINGIZE(DKIOCGETWCE),
3623 		    NULL, VD_IDENTITY_IN, VD_IDENTITY_OUT, B_FALSE},
3624 		{VD_OP_GET_DISKGEOM, STRINGIZE(VD_OP_GET_DISKGEOM),
3625 		    RNDSIZE(vd_geom_t),
3626 		    DKIOCGGEOM, STRINGIZE(DKIOCGGEOM),
3627 		    &dk_geom, NULL, dk_geom2vd_geom, B_FALSE},
3628 		{VD_OP_GET_VTOC, STRINGIZE(VD_OP_GET_VTOC), RNDSIZE(vd_vtoc_t),
3629 		    DKIOCGEXTVTOC, STRINGIZE(DKIOCGEXTVTOC),
3630 		    &vtoc, NULL, vtoc2vd_vtoc, B_FALSE},
3631 		{VD_OP_GET_EFI, STRINGIZE(VD_OP_GET_EFI), RNDSIZE(vd_efi_t),
3632 		    DKIOCGETEFI, STRINGIZE(DKIOCGETEFI),
3633 		    &dk_efi, vd_get_efi_in, vd_get_efi_out, B_FALSE},
3634 
3635 		/* "Set" (copy-in) operations */
3636 		{VD_OP_SET_WCE, STRINGIZE(VD_OP_SET_WCE), RNDSIZE(int),
3637 		    DKIOCSETWCE, STRINGIZE(DKIOCSETWCE),
3638 		    NULL, VD_IDENTITY_IN, VD_IDENTITY_OUT, B_TRUE},
3639 		{VD_OP_SET_DISKGEOM, STRINGIZE(VD_OP_SET_DISKGEOM),
3640 		    RNDSIZE(vd_geom_t),
3641 		    DKIOCSGEOM, STRINGIZE(DKIOCSGEOM),
3642 		    &dk_geom, vd_geom2dk_geom, NULL, B_TRUE},
3643 		{VD_OP_SET_VTOC, STRINGIZE(VD_OP_SET_VTOC), RNDSIZE(vd_vtoc_t),
3644 		    DKIOCSEXTVTOC, STRINGIZE(DKIOCSEXTVTOC),
3645 		    &vtoc, vd_vtoc2vtoc, NULL, B_TRUE},
3646 		{VD_OP_SET_EFI, STRINGIZE(VD_OP_SET_EFI), RNDSIZE(vd_efi_t),
3647 		    DKIOCSETEFI, STRINGIZE(DKIOCSETEFI),
3648 		    &dk_efi, vd_set_efi_in, vd_set_efi_out, B_TRUE},
3649 
3650 		{VD_OP_SCSICMD, STRINGIZE(VD_OP_SCSICMD), RNDSIZE(vd_scsi_t),
3651 		    USCSICMD, STRINGIZE(USCSICMD),
3652 		    &uscsi, vd_scsicmd_in, vd_scsicmd_out, B_FALSE},
3653 	};
3654 	size_t		nioctls = (sizeof (ioctl))/(sizeof (ioctl[0]));
3655 
3656 
3657 	ASSERT(vd != NULL);
3658 	ASSERT(request != NULL);
3659 	ASSERT(request->slice < vd->nslices);
3660 
3661 	/*
3662 	 * Determine ioctl corresponding to caller's "operation" and
3663 	 * validate caller's "nbytes"
3664 	 */
3665 	for (i = 0; i < nioctls; i++) {
3666 		if (request->operation == ioctl[i].operation) {
3667 			/* LDC memory operations require 8-byte multiples */
3668 			ASSERT(ioctl[i].nbytes % sizeof (uint64_t) == 0);
3669 
3670 			if (request->operation == VD_OP_GET_EFI ||
3671 			    request->operation == VD_OP_SET_EFI ||
3672 			    request->operation == VD_OP_SCSICMD) {
3673 				if (request->nbytes >= ioctl[i].nbytes)
3674 					break;
3675 				PR0("%s:  Expected at least nbytes = %lu, "
3676 				    "got %lu", ioctl[i].operation_name,
3677 				    ioctl[i].nbytes, request->nbytes);
3678 				return (EINVAL);
3679 			}
3680 
3681 			if (request->nbytes != ioctl[i].nbytes) {
3682 				PR0("%s:  Expected nbytes = %lu, got %lu",
3683 				    ioctl[i].operation_name, ioctl[i].nbytes,
3684 				    request->nbytes);
3685 				return (EINVAL);
3686 			}
3687 
3688 			break;
3689 		}
3690 	}
3691 	ASSERT(i < nioctls);	/* because "operation" already validated */
3692 
3693 	if (!(vd->open_flags & FWRITE) && ioctl[i].write) {
3694 		PR0("%s fails because backend is opened read-only",
3695 		    ioctl[i].operation_name);
3696 		request->status = EROFS;
3697 		return (0);
3698 	}
3699 
3700 	if (request->nbytes)
3701 		buf = kmem_zalloc(request->nbytes, KM_SLEEP);
3702 	status = vd_do_ioctl(vd, request, buf, &ioctl[i]);
3703 	if (request->nbytes)
3704 		kmem_free(buf, request->nbytes);
3705 
3706 	return (status);
3707 }
3708 
3709 static int
3710 vd_get_devid(vd_task_t *task)
3711 {
3712 	vd_t *vd = task->vd;
3713 	vd_dring_payload_t *request = task->request;
3714 	vd_devid_t *vd_devid;
3715 	impl_devid_t *devid;
3716 	int status, bufid_len, devid_len, len, sz;
3717 	int bufbytes;
3718 
3719 	PR1("Get Device ID, nbytes=%ld", request->nbytes);
3720 
3721 	if (vd->vdisk_type == VD_DISK_TYPE_SLICE) {
3722 		/*
3723 		 * We don't support devid for single-slice disks because we
3724 		 * have no space to store a fabricated devid and for physical
3725 		 * disk slices, we can't use the devid of the disk otherwise
3726 		 * exporting multiple slices from the same disk will produce
3727 		 * the same devids.
3728 		 */
3729 		PR2("No Device ID for slices");
3730 		request->status = ENOTSUP;
3731 		return (0);
3732 	}
3733 
3734 	if (VD_DSKIMG(vd)) {
3735 		if (vd->dskimg_devid == NULL) {
3736 			PR2("No Device ID");
3737 			request->status = ENOENT;
3738 			return (0);
3739 		} else {
3740 			sz = ddi_devid_sizeof(vd->dskimg_devid);
3741 			devid = kmem_alloc(sz, KM_SLEEP);
3742 			bcopy(vd->dskimg_devid, devid, sz);
3743 		}
3744 	} else {
3745 		if (ddi_lyr_get_devid(vd->dev[request->slice],
3746 		    (ddi_devid_t *)&devid) != DDI_SUCCESS) {
3747 			PR2("No Device ID");
3748 			request->status = ENOENT;
3749 			return (0);
3750 		}
3751 	}
3752 
3753 	bufid_len = request->nbytes - sizeof (vd_devid_t) + 1;
3754 	devid_len = DEVID_GETLEN(devid);
3755 
3756 	/*
3757 	 * Save the buffer size here for use in deallocation.
3758 	 * The actual number of bytes copied is returned in
3759 	 * the 'nbytes' field of the request structure.
3760 	 */
3761 	bufbytes = request->nbytes;
3762 
3763 	vd_devid = kmem_zalloc(bufbytes, KM_SLEEP);
3764 	vd_devid->length = devid_len;
3765 	vd_devid->type = DEVID_GETTYPE(devid);
3766 
3767 	len = (devid_len > bufid_len)? bufid_len : devid_len;
3768 
3769 	bcopy(devid->did_id, vd_devid->id, len);
3770 
3771 	request->status = 0;
3772 
3773 	/* LDC memory operations require 8-byte multiples */
3774 	ASSERT(request->nbytes % sizeof (uint64_t) == 0);
3775 
3776 	if ((status = ldc_mem_copy(vd->ldc_handle, (caddr_t)vd_devid, 0,
3777 	    &request->nbytes, request->cookie, request->ncookies,
3778 	    LDC_COPY_OUT)) != 0) {
3779 		PR0("ldc_mem_copy() returned errno %d copying to client",
3780 		    status);
3781 	}
3782 	PR1("post mem_copy: nbytes=%ld", request->nbytes);
3783 
3784 	kmem_free(vd_devid, bufbytes);
3785 	ddi_devid_free((ddi_devid_t)devid);
3786 
3787 	return (status);
3788 }
3789 
3790 static int
3791 vd_scsi_reset(vd_t *vd)
3792 {
3793 	int rval, status;
3794 	struct uscsi_cmd uscsi = { 0 };
3795 
3796 	uscsi.uscsi_flags = vd_scsi_debug | USCSI_RESET;
3797 	uscsi.uscsi_timeout = vd_scsi_rdwr_timeout;
3798 
3799 	status = ldi_ioctl(vd->ldi_handle[0], USCSICMD, (intptr_t)&uscsi,
3800 	    (vd->open_flags | FKIOCTL), kcred, &rval);
3801 
3802 	return (status);
3803 }
3804 
3805 static int
3806 vd_reset(vd_task_t *task)
3807 {
3808 	vd_t *vd = task->vd;
3809 	vd_dring_payload_t *request = task->request;
3810 
3811 	ASSERT(request->operation == VD_OP_RESET);
3812 	ASSERT(vd->scsi);
3813 
3814 	PR0("Performing VD_OP_RESET");
3815 
3816 	if (request->nbytes != 0) {
3817 		PR0("VD_OP_RESET:  Expected nbytes = 0, got %lu",
3818 		    request->nbytes);
3819 		return (EINVAL);
3820 	}
3821 
3822 	request->status = vd_scsi_reset(vd);
3823 
3824 	return (0);
3825 }
3826 
3827 static int
3828 vd_get_capacity(vd_task_t *task)
3829 {
3830 	int rv;
3831 	size_t nbytes;
3832 	vd_t *vd = task->vd;
3833 	vd_dring_payload_t *request = task->request;
3834 	vd_capacity_t vd_cap = { 0 };
3835 
3836 	ASSERT(request->operation == VD_OP_GET_CAPACITY);
3837 
3838 	PR0("Performing VD_OP_GET_CAPACITY");
3839 
3840 	nbytes = request->nbytes;
3841 
3842 	if (nbytes != RNDSIZE(vd_capacity_t)) {
3843 		PR0("VD_OP_GET_CAPACITY:  Expected nbytes = %lu, got %lu",
3844 		    RNDSIZE(vd_capacity_t), nbytes);
3845 		return (EINVAL);
3846 	}
3847 
3848 	/*
3849 	 * Check the backend size in case it has changed. If the check fails
3850 	 * then we will return the last known size.
3851 	 */
3852 
3853 	(void) vd_backend_check_size(vd);
3854 	ASSERT(vd->vdisk_size != 0);
3855 
3856 	request->status = 0;
3857 
3858 	vd_cap.vdisk_block_size = vd->vdisk_bsize;
3859 	vd_cap.vdisk_size = vd->vdisk_size;
3860 
3861 	if ((rv = ldc_mem_copy(vd->ldc_handle, (char *)&vd_cap, 0, &nbytes,
3862 	    request->cookie, request->ncookies, LDC_COPY_OUT)) != 0) {
3863 		PR0("ldc_mem_copy() returned errno %d copying to client", rv);
3864 		return (rv);
3865 	}
3866 
3867 	return (0);
3868 }
3869 
3870 static int
3871 vd_get_access(vd_task_t *task)
3872 {
3873 	uint64_t access;
3874 	int rv, rval = 0;
3875 	size_t nbytes;
3876 	vd_t *vd = task->vd;
3877 	vd_dring_payload_t *request = task->request;
3878 
3879 	ASSERT(request->operation == VD_OP_GET_ACCESS);
3880 	ASSERT(vd->scsi);
3881 
3882 	PR0("Performing VD_OP_GET_ACCESS");
3883 
3884 	nbytes = request->nbytes;
3885 
3886 	if (nbytes != sizeof (uint64_t)) {
3887 		PR0("VD_OP_GET_ACCESS:  Expected nbytes = %lu, got %lu",
3888 		    sizeof (uint64_t), nbytes);
3889 		return (EINVAL);
3890 	}
3891 
3892 	request->status = ldi_ioctl(vd->ldi_handle[request->slice], MHIOCSTATUS,
3893 	    NULL, (vd->open_flags | FKIOCTL), kcred, &rval);
3894 
3895 	if (request->status != 0)
3896 		return (0);
3897 
3898 	access = (rval == 0)? VD_ACCESS_ALLOWED : VD_ACCESS_DENIED;
3899 
3900 	if ((rv = ldc_mem_copy(vd->ldc_handle, (char *)&access, 0, &nbytes,
3901 	    request->cookie, request->ncookies, LDC_COPY_OUT)) != 0) {
3902 		PR0("ldc_mem_copy() returned errno %d copying to client", rv);
3903 		return (rv);
3904 	}
3905 
3906 	return (0);
3907 }
3908 
3909 static int
3910 vd_set_access(vd_task_t *task)
3911 {
3912 	uint64_t flags;
3913 	int rv, rval;
3914 	size_t nbytes;
3915 	vd_t *vd = task->vd;
3916 	vd_dring_payload_t *request = task->request;
3917 
3918 	ASSERT(request->operation == VD_OP_SET_ACCESS);
3919 	ASSERT(vd->scsi);
3920 
3921 	nbytes = request->nbytes;
3922 
3923 	if (nbytes != sizeof (uint64_t)) {
3924 		PR0("VD_OP_SET_ACCESS:  Expected nbytes = %lu, got %lu",
3925 		    sizeof (uint64_t), nbytes);
3926 		return (EINVAL);
3927 	}
3928 
3929 	if ((rv = ldc_mem_copy(vd->ldc_handle, (char *)&flags, 0, &nbytes,
3930 	    request->cookie, request->ncookies, LDC_COPY_IN)) != 0) {
3931 		PR0("ldc_mem_copy() returned errno %d copying from client", rv);
3932 		return (rv);
3933 	}
3934 
3935 	if (flags == VD_ACCESS_SET_CLEAR) {
3936 		PR0("Performing VD_OP_SET_ACCESS (CLEAR)");
3937 		request->status = ldi_ioctl(vd->ldi_handle[request->slice],
3938 		    MHIOCRELEASE, NULL, (vd->open_flags | FKIOCTL), kcred,
3939 		    &rval);
3940 		if (request->status == 0)
3941 			vd->ownership = B_FALSE;
3942 		return (0);
3943 	}
3944 
3945 	/*
3946 	 * As per the VIO spec, the PREEMPT and PRESERVE flags are only valid
3947 	 * when the EXCLUSIVE flag is set.
3948 	 */
3949 	if (!(flags & VD_ACCESS_SET_EXCLUSIVE)) {
3950 		PR0("Invalid VD_OP_SET_ACCESS flags: 0x%lx", flags);
3951 		request->status = EINVAL;
3952 		return (0);
3953 	}
3954 
3955 	switch (flags & (VD_ACCESS_SET_PREEMPT | VD_ACCESS_SET_PRESERVE)) {
3956 
3957 	case VD_ACCESS_SET_PREEMPT | VD_ACCESS_SET_PRESERVE:
3958 		/*
3959 		 * Flags EXCLUSIVE and PREEMPT and PRESERVE. We have to
3960 		 * acquire exclusive access rights, preserve them and we
3961 		 * can use preemption. So we can use the MHIOCTKNOWN ioctl.
3962 		 */
3963 		PR0("Performing VD_OP_SET_ACCESS (EXCLUSIVE|PREEMPT|PRESERVE)");
3964 		request->status = ldi_ioctl(vd->ldi_handle[request->slice],
3965 		    MHIOCTKOWN, NULL, (vd->open_flags | FKIOCTL), kcred, &rval);
3966 		break;
3967 
3968 	case VD_ACCESS_SET_PRESERVE:
3969 		/*
3970 		 * Flags EXCLUSIVE and PRESERVE. We have to acquire exclusive
3971 		 * access rights and preserve them, but not preempt any other
3972 		 * host. So we need to use the MHIOCTKOWN ioctl to enable the
3973 		 * "preserve" feature but we can not called it directly
3974 		 * because it uses preemption. So before that, we use the
3975 		 * MHIOCQRESERVE ioctl to ensure we can get exclusive rights
3976 		 * without preempting anyone.
3977 		 */
3978 		PR0("Performing VD_OP_SET_ACCESS (EXCLUSIVE|PRESERVE)");
3979 		request->status = ldi_ioctl(vd->ldi_handle[request->slice],
3980 		    MHIOCQRESERVE, NULL, (vd->open_flags | FKIOCTL), kcred,
3981 		    &rval);
3982 		if (request->status != 0)
3983 			break;
3984 		request->status = ldi_ioctl(vd->ldi_handle[request->slice],
3985 		    MHIOCTKOWN, NULL, (vd->open_flags | FKIOCTL), kcred, &rval);
3986 		break;
3987 
3988 	case VD_ACCESS_SET_PREEMPT:
3989 		/*
3990 		 * Flags EXCLUSIVE and PREEMPT. We have to acquire exclusive
3991 		 * access rights and we can use preemption. So we try to do
3992 		 * a SCSI reservation, if it fails we reset the disk to clear
3993 		 * any reservation and we try to reserve again.
3994 		 */
3995 		PR0("Performing VD_OP_SET_ACCESS (EXCLUSIVE|PREEMPT)");
3996 		request->status = ldi_ioctl(vd->ldi_handle[request->slice],
3997 		    MHIOCQRESERVE, NULL, (vd->open_flags | FKIOCTL), kcred,
3998 		    &rval);
3999 		if (request->status == 0)
4000 			break;
4001 
4002 		/* reset the disk */
4003 		(void) vd_scsi_reset(vd);
4004 
4005 		/* try again even if the reset has failed */
4006 		request->status = ldi_ioctl(vd->ldi_handle[request->slice],
4007 		    MHIOCQRESERVE, NULL, (vd->open_flags | FKIOCTL), kcred,
4008 		    &rval);
4009 		break;
4010 
4011 	case 0:
4012 		/* Flag EXCLUSIVE only. Just issue a SCSI reservation */
4013 		PR0("Performing VD_OP_SET_ACCESS (EXCLUSIVE)");
4014 		request->status = ldi_ioctl(vd->ldi_handle[request->slice],
4015 		    MHIOCQRESERVE, NULL, (vd->open_flags | FKIOCTL), kcred,
4016 		    &rval);
4017 		break;
4018 	}
4019 
4020 	if (request->status == 0)
4021 		vd->ownership = B_TRUE;
4022 	else
4023 		PR0("VD_OP_SET_ACCESS: error %d", request->status);
4024 
4025 	return (0);
4026 }
4027 
4028 static void
4029 vd_reset_access(vd_t *vd)
4030 {
4031 	int status, rval;
4032 
4033 	if (vd->file || vd->volume || !vd->ownership)
4034 		return;
4035 
4036 	PR0("Releasing disk ownership");
4037 	status = ldi_ioctl(vd->ldi_handle[0], MHIOCRELEASE, NULL,
4038 	    (vd->open_flags | FKIOCTL), kcred, &rval);
4039 
4040 	/*
4041 	 * An EACCES failure means that there is a reservation conflict,
4042 	 * so we are not the owner of the disk anymore.
4043 	 */
4044 	if (status == 0 || status == EACCES) {
4045 		vd->ownership = B_FALSE;
4046 		return;
4047 	}
4048 
4049 	PR0("Fail to release ownership, error %d", status);
4050 
4051 	/*
4052 	 * We have failed to release the ownership, try to reset the disk
4053 	 * to release reservations.
4054 	 */
4055 	PR0("Resetting disk");
4056 	status = vd_scsi_reset(vd);
4057 
4058 	if (status != 0)
4059 		PR0("Fail to reset disk, error %d", status);
4060 
4061 	/* whatever the result of the reset is, we try the release again */
4062 	status = ldi_ioctl(vd->ldi_handle[0], MHIOCRELEASE, NULL,
4063 	    (vd->open_flags | FKIOCTL), kcred, &rval);
4064 
4065 	if (status == 0 || status == EACCES) {
4066 		vd->ownership = B_FALSE;
4067 		return;
4068 	}
4069 
4070 	PR0("Fail to release ownership, error %d", status);
4071 
4072 	/*
4073 	 * At this point we have done our best to try to reset the
4074 	 * access rights to the disk and we don't know if we still
4075 	 * own a reservation and if any mechanism to preserve the
4076 	 * ownership is still in place. The ultimate solution would
4077 	 * be to reset the system but this is usually not what we
4078 	 * want to happen.
4079 	 */
4080 
4081 	if (vd_reset_access_failure == A_REBOOT) {
4082 		cmn_err(CE_WARN, VD_RESET_ACCESS_FAILURE_MSG
4083 		    ", rebooting the system", vd->device_path);
4084 		(void) uadmin(A_SHUTDOWN, AD_BOOT, NULL);
4085 	} else if (vd_reset_access_failure == A_DUMP) {
4086 		panic(VD_RESET_ACCESS_FAILURE_MSG, vd->device_path);
4087 	}
4088 
4089 	cmn_err(CE_WARN, VD_RESET_ACCESS_FAILURE_MSG, vd->device_path);
4090 }
4091 
4092 /*
4093  * Define the supported operations once the functions for performing them have
4094  * been defined
4095  */
4096 static const vds_operation_t	vds_operation[] = {
4097 #define	X(_s)	#_s, _s
4098 	{X(VD_OP_BREAD),	vd_start_bio,	vd_complete_bio},
4099 	{X(VD_OP_BWRITE),	vd_start_bio,	vd_complete_bio},
4100 	{X(VD_OP_FLUSH),	vd_ioctl,	NULL},
4101 	{X(VD_OP_GET_WCE),	vd_ioctl,	NULL},
4102 	{X(VD_OP_SET_WCE),	vd_ioctl,	NULL},
4103 	{X(VD_OP_GET_VTOC),	vd_ioctl,	NULL},
4104 	{X(VD_OP_SET_VTOC),	vd_ioctl,	NULL},
4105 	{X(VD_OP_GET_DISKGEOM),	vd_ioctl,	NULL},
4106 	{X(VD_OP_SET_DISKGEOM),	vd_ioctl,	NULL},
4107 	{X(VD_OP_GET_EFI),	vd_ioctl,	NULL},
4108 	{X(VD_OP_SET_EFI),	vd_ioctl,	NULL},
4109 	{X(VD_OP_GET_DEVID),	vd_get_devid,	NULL},
4110 	{X(VD_OP_SCSICMD),	vd_ioctl,	NULL},
4111 	{X(VD_OP_RESET),	vd_reset,	NULL},
4112 	{X(VD_OP_GET_CAPACITY),	vd_get_capacity, NULL},
4113 	{X(VD_OP_SET_ACCESS),	vd_set_access,	NULL},
4114 	{X(VD_OP_GET_ACCESS),	vd_get_access,	NULL},
4115 #undef	X
4116 };
4117 
4118 static const size_t	vds_noperations =
4119 	(sizeof (vds_operation))/(sizeof (vds_operation[0]));
4120 
4121 /*
4122  * Process a task specifying a client I/O request
4123  *
4124  * Parameters:
4125  *	task 		- structure containing the request sent from client
4126  *
4127  * Return Value
4128  *	0	- success
4129  *	ENOTSUP	- Unknown/Unsupported VD_OP_XXX operation
4130  *	EINVAL	- Invalid disk slice
4131  *	!= 0	- some other non-zero return value from start function
4132  */
4133 static int
4134 vd_do_process_task(vd_task_t *task)
4135 {
4136 	int			i;
4137 	vd_t			*vd		= task->vd;
4138 	vd_dring_payload_t	*request	= task->request;
4139 
4140 	ASSERT(vd != NULL);
4141 	ASSERT(request != NULL);
4142 
4143 	/* Find the requested operation */
4144 	for (i = 0; i < vds_noperations; i++) {
4145 		if (request->operation == vds_operation[i].operation) {
4146 			/* all operations should have a start func */
4147 			ASSERT(vds_operation[i].start != NULL);
4148 
4149 			task->completef = vds_operation[i].complete;
4150 			break;
4151 		}
4152 	}
4153 
4154 	/*
4155 	 * We need to check that the requested operation is permitted
4156 	 * for the particular client that sent it or that the loop above
4157 	 * did not complete without finding the operation type (indicating
4158 	 * that the requested operation is unknown/unimplemented)
4159 	 */
4160 	if ((VD_OP_SUPPORTED(vd->operations, request->operation) == B_FALSE) ||
4161 	    (i == vds_noperations)) {
4162 		PR0("Unsupported operation %u", request->operation);
4163 		request->status = ENOTSUP;
4164 		return (0);
4165 	}
4166 
4167 	/* Range-check slice */
4168 	if (request->slice >= vd->nslices &&
4169 	    ((vd->vdisk_type != VD_DISK_TYPE_DISK && vd_slice_single_slice) ||
4170 	    request->slice != VD_SLICE_NONE)) {
4171 		PR0("Invalid \"slice\" %u (max %u) for virtual disk",
4172 		    request->slice, (vd->nslices - 1));
4173 		request->status = EINVAL;
4174 		return (0);
4175 	}
4176 
4177 	/*
4178 	 * Call the function pointer that starts the operation.
4179 	 */
4180 	return (vds_operation[i].start(task));
4181 }
4182 
4183 /*
4184  * Description:
4185  *	This function is called by both the in-band and descriptor ring
4186  *	message processing functions paths to actually execute the task
4187  *	requested by the vDisk client. It in turn calls its worker
4188  *	function, vd_do_process_task(), to carry our the request.
4189  *
4190  *	Any transport errors (e.g. LDC errors, vDisk protocol errors) are
4191  *	saved in the 'status' field of the task and are propagated back
4192  *	up the call stack to trigger a NACK
4193  *
4194  *	Any request errors (e.g. ENOTTY from an ioctl) are saved in
4195  *	the 'status' field of the request and result in an ACK being sent
4196  *	by the completion handler.
4197  *
4198  * Parameters:
4199  *	task 		- structure containing the request sent from client
4200  *
4201  * Return Value
4202  *	0		- successful synchronous request.
4203  *	!= 0		- transport error (e.g. LDC errors, vDisk protocol)
4204  *	EINPROGRESS	- task will be finished in a completion handler
4205  */
4206 static int
4207 vd_process_task(vd_task_t *task)
4208 {
4209 	vd_t	*vd = task->vd;
4210 	int	status;
4211 
4212 	DTRACE_PROBE1(task__start, vd_task_t *, task);
4213 
4214 	task->status =  vd_do_process_task(task);
4215 
4216 	/*
4217 	 * If the task processing function returned EINPROGRESS indicating
4218 	 * that the task needs completing then schedule a taskq entry to
4219 	 * finish it now.
4220 	 *
4221 	 * Otherwise the task processing function returned either zero
4222 	 * indicating that the task was finished in the start function (and we
4223 	 * don't need to wait in a completion function) or the start function
4224 	 * returned an error - in both cases all that needs to happen is the
4225 	 * notification to the vDisk client higher up the call stack.
4226 	 * If the task was using a Descriptor Ring, we need to mark it as done
4227 	 * at this stage.
4228 	 */
4229 	if (task->status == EINPROGRESS) {
4230 		/* Queue a task to complete the operation */
4231 		(void) ddi_taskq_dispatch(vd->completionq, vd_complete,
4232 		    task, DDI_SLEEP);
4233 		return (EINPROGRESS);
4234 	}
4235 
4236 	if (!vd->reset_state && (vd->xfer_mode == VIO_DRING_MODE_V1_0)) {
4237 		/* Update the dring element if it's a dring client */
4238 		status = vd_mark_elem_done(vd, task->index,
4239 		    task->request->status, task->request->nbytes);
4240 		if (status == ECONNRESET)
4241 			vd_mark_in_reset(vd);
4242 		else if (status == EACCES)
4243 			vd_need_reset(vd, B_TRUE);
4244 	}
4245 
4246 	return (task->status);
4247 }
4248 
4249 /*
4250  * Return true if the "type", "subtype", and "env" fields of the "tag" first
4251  * argument match the corresponding remaining arguments; otherwise, return false
4252  */
4253 boolean_t
4254 vd_msgtype(vio_msg_tag_t *tag, int type, int subtype, int env)
4255 {
4256 	return ((tag->vio_msgtype == type) &&
4257 	    (tag->vio_subtype == subtype) &&
4258 	    (tag->vio_subtype_env == env)) ? B_TRUE : B_FALSE;
4259 }
4260 
4261 /*
4262  * Check whether the major/minor version specified in "ver_msg" is supported
4263  * by this server.
4264  */
4265 static boolean_t
4266 vds_supported_version(vio_ver_msg_t *ver_msg)
4267 {
4268 	for (int i = 0; i < vds_num_versions; i++) {
4269 		ASSERT(vds_version[i].major > 0);
4270 		ASSERT((i == 0) ||
4271 		    (vds_version[i].major < vds_version[i-1].major));
4272 
4273 		/*
4274 		 * If the major versions match, adjust the minor version, if
4275 		 * necessary, down to the highest value supported by this
4276 		 * server and return true so this message will get "ack"ed;
4277 		 * the client should also support all minor versions lower
4278 		 * than the value it sent
4279 		 */
4280 		if (ver_msg->ver_major == vds_version[i].major) {
4281 			if (ver_msg->ver_minor > vds_version[i].minor) {
4282 				PR0("Adjusting minor version from %u to %u",
4283 				    ver_msg->ver_minor, vds_version[i].minor);
4284 				ver_msg->ver_minor = vds_version[i].minor;
4285 			}
4286 			return (B_TRUE);
4287 		}
4288 
4289 		/*
4290 		 * If the message contains a higher major version number, set
4291 		 * the message's major/minor versions to the current values
4292 		 * and return false, so this message will get "nack"ed with
4293 		 * these values, and the client will potentially try again
4294 		 * with the same or a lower version
4295 		 */
4296 		if (ver_msg->ver_major > vds_version[i].major) {
4297 			ver_msg->ver_major = vds_version[i].major;
4298 			ver_msg->ver_minor = vds_version[i].minor;
4299 			return (B_FALSE);
4300 		}
4301 
4302 		/*
4303 		 * Otherwise, the message's major version is less than the
4304 		 * current major version, so continue the loop to the next
4305 		 * (lower) supported version
4306 		 */
4307 	}
4308 
4309 	/*
4310 	 * No common version was found; "ground" the version pair in the
4311 	 * message to terminate negotiation
4312 	 */
4313 	ver_msg->ver_major = 0;
4314 	ver_msg->ver_minor = 0;
4315 	return (B_FALSE);
4316 }
4317 
4318 /*
4319  * Process a version message from a client.  vds expects to receive version
4320  * messages from clients seeking service, but never issues version messages
4321  * itself; therefore, vds can ACK or NACK client version messages, but does
4322  * not expect to receive version-message ACKs or NACKs (and will treat such
4323  * messages as invalid).
4324  */
4325 static int
4326 vd_process_ver_msg(vd_t *vd, vio_msg_t *msg, size_t msglen)
4327 {
4328 	vio_ver_msg_t	*ver_msg = (vio_ver_msg_t *)msg;
4329 
4330 
4331 	ASSERT(msglen >= sizeof (msg->tag));
4332 
4333 	if (!vd_msgtype(&msg->tag, VIO_TYPE_CTRL, VIO_SUBTYPE_INFO,
4334 	    VIO_VER_INFO)) {
4335 		return (ENOMSG);	/* not a version message */
4336 	}
4337 
4338 	if (msglen != sizeof (*ver_msg)) {
4339 		PR0("Expected %lu-byte version message; "
4340 		    "received %lu bytes", sizeof (*ver_msg), msglen);
4341 		return (EBADMSG);
4342 	}
4343 
4344 	if (ver_msg->dev_class != VDEV_DISK) {
4345 		PR0("Expected device class %u (disk); received %u",
4346 		    VDEV_DISK, ver_msg->dev_class);
4347 		return (EBADMSG);
4348 	}
4349 
4350 	/*
4351 	 * We're talking to the expected kind of client; set our device class
4352 	 * for "ack/nack" back to the client
4353 	 */
4354 	ver_msg->dev_class = VDEV_DISK_SERVER;
4355 
4356 	/*
4357 	 * Check whether the (valid) version message specifies a version
4358 	 * supported by this server.  If the version is not supported, return
4359 	 * EBADMSG so the message will get "nack"ed; vds_supported_version()
4360 	 * will have updated the message with a supported version for the
4361 	 * client to consider
4362 	 */
4363 	if (!vds_supported_version(ver_msg))
4364 		return (EBADMSG);
4365 
4366 
4367 	/*
4368 	 * A version has been agreed upon; use the client's SID for
4369 	 * communication on this channel now
4370 	 */
4371 	ASSERT(!(vd->initialized & VD_SID));
4372 	vd->sid = ver_msg->tag.vio_sid;
4373 	vd->initialized |= VD_SID;
4374 
4375 	/*
4376 	 * Store the negotiated major and minor version values in the "vd" data
4377 	 * structure so that we can check if certain operations are supported
4378 	 * by the client.
4379 	 */
4380 	vd->version.major = ver_msg->ver_major;
4381 	vd->version.minor = ver_msg->ver_minor;
4382 
4383 	PR0("Using major version %u, minor version %u",
4384 	    ver_msg->ver_major, ver_msg->ver_minor);
4385 	return (0);
4386 }
4387 
4388 static void
4389 vd_set_exported_operations(vd_t *vd)
4390 {
4391 	vd->operations = 0;	/* clear field */
4392 
4393 	/*
4394 	 * We need to check from the highest version supported to the
4395 	 * lowest because versions with a higher minor number implicitly
4396 	 * support versions with a lower minor number.
4397 	 */
4398 	if (vio_ver_is_supported(vd->version, 1, 1)) {
4399 		ASSERT(vd->open_flags & FREAD);
4400 		vd->operations |= VD_OP_MASK_READ | (1 << VD_OP_GET_CAPACITY);
4401 
4402 		if (vd->open_flags & FWRITE)
4403 			vd->operations |= VD_OP_MASK_WRITE;
4404 
4405 		if (vd->scsi)
4406 			vd->operations |= VD_OP_MASK_SCSI;
4407 
4408 		if (VD_DSKIMG(vd) && vd_dskimg_is_iso_image(vd)) {
4409 			/*
4410 			 * can't write to ISO images, make sure that write
4411 			 * support is not set in case administrator did not
4412 			 * use "options=ro" when doing an ldm add-vdsdev
4413 			 */
4414 			vd->operations &= ~VD_OP_MASK_WRITE;
4415 		}
4416 	} else if (vio_ver_is_supported(vd->version, 1, 0)) {
4417 		vd->operations = VD_OP_MASK_READ | VD_OP_MASK_WRITE;
4418 	}
4419 
4420 	/* we should have already agreed on a version */
4421 	ASSERT(vd->operations != 0);
4422 }
4423 
4424 static int
4425 vd_process_attr_msg(vd_t *vd, vio_msg_t *msg, size_t msglen)
4426 {
4427 	vd_attr_msg_t	*attr_msg = (vd_attr_msg_t *)msg;
4428 	int		status, retry = 0;
4429 
4430 
4431 	ASSERT(msglen >= sizeof (msg->tag));
4432 
4433 	if (!vd_msgtype(&msg->tag, VIO_TYPE_CTRL, VIO_SUBTYPE_INFO,
4434 	    VIO_ATTR_INFO)) {
4435 		PR0("Message is not an attribute message");
4436 		return (ENOMSG);
4437 	}
4438 
4439 	if (msglen != sizeof (*attr_msg)) {
4440 		PR0("Expected %lu-byte attribute message; "
4441 		    "received %lu bytes", sizeof (*attr_msg), msglen);
4442 		return (EBADMSG);
4443 	}
4444 
4445 	if (attr_msg->max_xfer_sz == 0) {
4446 		PR0("Received maximum transfer size of 0 from client");
4447 		return (EBADMSG);
4448 	}
4449 
4450 	if ((attr_msg->xfer_mode != VIO_DESC_MODE) &&
4451 	    (attr_msg->xfer_mode != VIO_DRING_MODE_V1_0)) {
4452 		PR0("Client requested unsupported transfer mode");
4453 		return (EBADMSG);
4454 	}
4455 
4456 	/*
4457 	 * check if the underlying disk is ready, if not try accessing
4458 	 * the device again. Open the vdisk device and extract info
4459 	 * about it, as this is needed to respond to the attr info msg
4460 	 */
4461 	if ((vd->initialized & VD_DISK_READY) == 0) {
4462 		PR0("Retry setting up disk (%s)", vd->device_path);
4463 		do {
4464 			status = vd_setup_vd(vd);
4465 			if (status != EAGAIN || ++retry > vds_dev_retries)
4466 				break;
4467 
4468 			/* incremental delay */
4469 			delay(drv_usectohz(vds_dev_delay));
4470 
4471 			/* if vdisk is no longer enabled - return error */
4472 			if (!vd_enabled(vd))
4473 				return (ENXIO);
4474 
4475 		} while (status == EAGAIN);
4476 
4477 		if (status)
4478 			return (ENXIO);
4479 
4480 		vd->initialized |= VD_DISK_READY;
4481 		ASSERT(vd->nslices > 0 && vd->nslices <= V_NUMPAR);
4482 		PR0("vdisk_type = %s, volume = %s, file = %s, nslices = %u",
4483 		    ((vd->vdisk_type == VD_DISK_TYPE_DISK) ? "disk" : "slice"),
4484 		    (vd->volume ? "yes" : "no"),
4485 		    (vd->file ? "yes" : "no"),
4486 		    vd->nslices);
4487 	}
4488 
4489 	/* Success:  valid message and transfer mode */
4490 	vd->xfer_mode = attr_msg->xfer_mode;
4491 
4492 	if (vd->xfer_mode == VIO_DESC_MODE) {
4493 
4494 		/*
4495 		 * The vd_dring_inband_msg_t contains one cookie; need room
4496 		 * for up to n-1 more cookies, where "n" is the number of full
4497 		 * pages plus possibly one partial page required to cover
4498 		 * "max_xfer_sz".  Add room for one more cookie if
4499 		 * "max_xfer_sz" isn't an integral multiple of the page size.
4500 		 * Must first get the maximum transfer size in bytes.
4501 		 */
4502 		size_t	max_xfer_bytes = attr_msg->vdisk_block_size ?
4503 		    attr_msg->vdisk_block_size * attr_msg->max_xfer_sz :
4504 		    attr_msg->max_xfer_sz;
4505 		size_t	max_inband_msglen =
4506 		    sizeof (vd_dring_inband_msg_t) +
4507 		    ((max_xfer_bytes/PAGESIZE +
4508 		    ((max_xfer_bytes % PAGESIZE) ? 1 : 0))*
4509 		    (sizeof (ldc_mem_cookie_t)));
4510 
4511 		/*
4512 		 * Set the maximum expected message length to
4513 		 * accommodate in-band-descriptor messages with all
4514 		 * their cookies
4515 		 */
4516 		vd->max_msglen = MAX(vd->max_msglen, max_inband_msglen);
4517 
4518 		/*
4519 		 * Initialize the data structure for processing in-band I/O
4520 		 * request descriptors
4521 		 */
4522 		vd->inband_task.vd	= vd;
4523 		vd->inband_task.msg	= kmem_alloc(vd->max_msglen, KM_SLEEP);
4524 		vd->inband_task.index	= 0;
4525 		vd->inband_task.type	= VD_FINAL_RANGE_TASK;	/* range == 1 */
4526 	}
4527 
4528 	/* Return the device's block size and max transfer size to the client */
4529 	attr_msg->vdisk_block_size	= vd->vdisk_bsize;
4530 	attr_msg->max_xfer_sz		= vd->max_xfer_sz;
4531 
4532 	attr_msg->vdisk_size = vd->vdisk_size;
4533 	attr_msg->vdisk_type = (vd_slice_single_slice)? vd->vdisk_type :
4534 	    VD_DISK_TYPE_DISK;
4535 	attr_msg->vdisk_media = vd->vdisk_media;
4536 
4537 	/* Discover and save the list of supported VD_OP_XXX operations */
4538 	vd_set_exported_operations(vd);
4539 	attr_msg->operations = vd->operations;
4540 
4541 	PR0("%s", VD_CLIENT(vd));
4542 
4543 	ASSERT(vd->dring_task == NULL);
4544 
4545 	return (0);
4546 }
4547 
4548 static int
4549 vd_process_dring_reg_msg(vd_t *vd, vio_msg_t *msg, size_t msglen)
4550 {
4551 	int			status;
4552 	size_t			expected;
4553 	ldc_mem_info_t		dring_minfo;
4554 	uint8_t			mtype;
4555 	vio_dring_reg_msg_t	*reg_msg = (vio_dring_reg_msg_t *)msg;
4556 
4557 
4558 	ASSERT(msglen >= sizeof (msg->tag));
4559 
4560 	if (!vd_msgtype(&msg->tag, VIO_TYPE_CTRL, VIO_SUBTYPE_INFO,
4561 	    VIO_DRING_REG)) {
4562 		PR0("Message is not a register-dring message");
4563 		return (ENOMSG);
4564 	}
4565 
4566 	if (msglen < sizeof (*reg_msg)) {
4567 		PR0("Expected at least %lu-byte register-dring message; "
4568 		    "received %lu bytes", sizeof (*reg_msg), msglen);
4569 		return (EBADMSG);
4570 	}
4571 
4572 	expected = sizeof (*reg_msg) +
4573 	    (reg_msg->ncookies - 1)*(sizeof (reg_msg->cookie[0]));
4574 	if (msglen != expected) {
4575 		PR0("Expected %lu-byte register-dring message; "
4576 		    "received %lu bytes", expected, msglen);
4577 		return (EBADMSG);
4578 	}
4579 
4580 	if (vd->initialized & VD_DRING) {
4581 		PR0("A dring was previously registered; only support one");
4582 		return (EBADMSG);
4583 	}
4584 
4585 	if (reg_msg->num_descriptors > INT32_MAX) {
4586 		PR0("reg_msg->num_descriptors = %u; must be <= %u (%s)",
4587 		    reg_msg->ncookies, INT32_MAX, STRINGIZE(INT32_MAX));
4588 		return (EBADMSG);
4589 	}
4590 
4591 	if (reg_msg->ncookies != 1) {
4592 		/*
4593 		 * In addition to fixing the assertion in the success case
4594 		 * below, supporting drings which require more than one
4595 		 * "cookie" requires increasing the value of vd->max_msglen
4596 		 * somewhere in the code path prior to receiving the message
4597 		 * which results in calling this function.  Note that without
4598 		 * making this change, the larger message size required to
4599 		 * accommodate multiple cookies cannot be successfully
4600 		 * received, so this function will not even get called.
4601 		 * Gracefully accommodating more dring cookies might
4602 		 * reasonably demand exchanging an additional attribute or
4603 		 * making a minor protocol adjustment
4604 		 */
4605 		PR0("reg_msg->ncookies = %u != 1", reg_msg->ncookies);
4606 		return (EBADMSG);
4607 	}
4608 
4609 	if (vd_direct_mapped_drings)
4610 		mtype = LDC_DIRECT_MAP;
4611 	else
4612 		mtype = LDC_SHADOW_MAP;
4613 
4614 	status = ldc_mem_dring_map(vd->ldc_handle, reg_msg->cookie,
4615 	    reg_msg->ncookies, reg_msg->num_descriptors,
4616 	    reg_msg->descriptor_size, mtype, &vd->dring_handle);
4617 	if (status != 0) {
4618 		PR0("ldc_mem_dring_map() returned errno %d", status);
4619 		return (status);
4620 	}
4621 
4622 	/*
4623 	 * To remove the need for this assertion, must call
4624 	 * ldc_mem_dring_nextcookie() successfully ncookies-1 times after a
4625 	 * successful call to ldc_mem_dring_map()
4626 	 */
4627 	ASSERT(reg_msg->ncookies == 1);
4628 
4629 	if ((status =
4630 	    ldc_mem_dring_info(vd->dring_handle, &dring_minfo)) != 0) {
4631 		PR0("ldc_mem_dring_info() returned errno %d", status);
4632 		if ((status = ldc_mem_dring_unmap(vd->dring_handle)) != 0)
4633 			PR0("ldc_mem_dring_unmap() returned errno %d", status);
4634 		return (status);
4635 	}
4636 
4637 	if (dring_minfo.vaddr == NULL) {
4638 		PR0("Descriptor ring virtual address is NULL");
4639 		return (ENXIO);
4640 	}
4641 
4642 
4643 	/* Initialize for valid message and mapped dring */
4644 	vd->initialized |= VD_DRING;
4645 	vd->dring_ident = 1;	/* "There Can Be Only One" */
4646 	vd->dring = dring_minfo.vaddr;
4647 	vd->descriptor_size = reg_msg->descriptor_size;
4648 	vd->dring_len = reg_msg->num_descriptors;
4649 	vd->dring_mtype = dring_minfo.mtype;
4650 	reg_msg->dring_ident = vd->dring_ident;
4651 	PR1("descriptor size = %u, dring length = %u",
4652 	    vd->descriptor_size, vd->dring_len);
4653 
4654 	/*
4655 	 * Allocate and initialize a "shadow" array of data structures for
4656 	 * tasks to process I/O requests in dring elements
4657 	 */
4658 	vd->dring_task =
4659 	    kmem_zalloc((sizeof (*vd->dring_task)) * vd->dring_len, KM_SLEEP);
4660 	for (int i = 0; i < vd->dring_len; i++) {
4661 		vd->dring_task[i].vd		= vd;
4662 		vd->dring_task[i].index		= i;
4663 
4664 		status = ldc_mem_alloc_handle(vd->ldc_handle,
4665 		    &(vd->dring_task[i].mhdl));
4666 		if (status) {
4667 			PR0("ldc_mem_alloc_handle() returned err %d ", status);
4668 			return (ENXIO);
4669 		}
4670 
4671 		/*
4672 		 * The descriptor payload varies in length. Calculate its
4673 		 * size by subtracting the header size from the total
4674 		 * descriptor size.
4675 		 */
4676 		vd->dring_task[i].request = kmem_zalloc((vd->descriptor_size -
4677 		    sizeof (vio_dring_entry_hdr_t)), KM_SLEEP);
4678 		vd->dring_task[i].msg = kmem_alloc(vd->max_msglen, KM_SLEEP);
4679 	}
4680 
4681 	if (vd->file || vd->zvol) {
4682 		vd->write_queue =
4683 		    kmem_zalloc(sizeof (buf_t *) * vd->dring_len, KM_SLEEP);
4684 	}
4685 
4686 	return (0);
4687 }
4688 
4689 static int
4690 vd_process_dring_unreg_msg(vd_t *vd, vio_msg_t *msg, size_t msglen)
4691 {
4692 	vio_dring_unreg_msg_t	*unreg_msg = (vio_dring_unreg_msg_t *)msg;
4693 
4694 
4695 	ASSERT(msglen >= sizeof (msg->tag));
4696 
4697 	if (!vd_msgtype(&msg->tag, VIO_TYPE_CTRL, VIO_SUBTYPE_INFO,
4698 	    VIO_DRING_UNREG)) {
4699 		PR0("Message is not an unregister-dring message");
4700 		return (ENOMSG);
4701 	}
4702 
4703 	if (msglen != sizeof (*unreg_msg)) {
4704 		PR0("Expected %lu-byte unregister-dring message; "
4705 		    "received %lu bytes", sizeof (*unreg_msg), msglen);
4706 		return (EBADMSG);
4707 	}
4708 
4709 	if (unreg_msg->dring_ident != vd->dring_ident) {
4710 		PR0("Expected dring ident %lu; received %lu",
4711 		    vd->dring_ident, unreg_msg->dring_ident);
4712 		return (EBADMSG);
4713 	}
4714 
4715 	return (0);
4716 }
4717 
4718 static int
4719 process_rdx_msg(vio_msg_t *msg, size_t msglen)
4720 {
4721 	ASSERT(msglen >= sizeof (msg->tag));
4722 
4723 	if (!vd_msgtype(&msg->tag, VIO_TYPE_CTRL, VIO_SUBTYPE_INFO, VIO_RDX)) {
4724 		PR0("Message is not an RDX message");
4725 		return (ENOMSG);
4726 	}
4727 
4728 	if (msglen != sizeof (vio_rdx_msg_t)) {
4729 		PR0("Expected %lu-byte RDX message; received %lu bytes",
4730 		    sizeof (vio_rdx_msg_t), msglen);
4731 		return (EBADMSG);
4732 	}
4733 
4734 	PR0("Valid RDX message");
4735 	return (0);
4736 }
4737 
4738 static int
4739 vd_check_seq_num(vd_t *vd, uint64_t seq_num)
4740 {
4741 	if ((vd->initialized & VD_SEQ_NUM) && (seq_num != vd->seq_num + 1)) {
4742 		PR0("Received seq_num %lu; expected %lu",
4743 		    seq_num, (vd->seq_num + 1));
4744 		PR0("initiating soft reset");
4745 		vd_need_reset(vd, B_FALSE);
4746 		return (1);
4747 	}
4748 
4749 	vd->seq_num = seq_num;
4750 	vd->initialized |= VD_SEQ_NUM;	/* superfluous after first time... */
4751 	return (0);
4752 }
4753 
4754 /*
4755  * Return the expected size of an inband-descriptor message with all the
4756  * cookies it claims to include
4757  */
4758 static size_t
4759 expected_inband_size(vd_dring_inband_msg_t *msg)
4760 {
4761 	return ((sizeof (*msg)) +
4762 	    (msg->payload.ncookies - 1)*(sizeof (msg->payload.cookie[0])));
4763 }
4764 
4765 /*
4766  * Process an in-band descriptor message:  used with clients like OBP, with
4767  * which vds exchanges descriptors within VIO message payloads, rather than
4768  * operating on them within a descriptor ring
4769  */
4770 static int
4771 vd_process_desc_msg(vd_t *vd, vio_msg_t *msg, size_t msglen)
4772 {
4773 	size_t			expected;
4774 	vd_dring_inband_msg_t	*desc_msg = (vd_dring_inband_msg_t *)msg;
4775 
4776 
4777 	ASSERT(msglen >= sizeof (msg->tag));
4778 
4779 	if (!vd_msgtype(&msg->tag, VIO_TYPE_DATA, VIO_SUBTYPE_INFO,
4780 	    VIO_DESC_DATA)) {
4781 		PR1("Message is not an in-band-descriptor message");
4782 		return (ENOMSG);
4783 	}
4784 
4785 	if (msglen < sizeof (*desc_msg)) {
4786 		PR0("Expected at least %lu-byte descriptor message; "
4787 		    "received %lu bytes", sizeof (*desc_msg), msglen);
4788 		return (EBADMSG);
4789 	}
4790 
4791 	if (msglen != (expected = expected_inband_size(desc_msg))) {
4792 		PR0("Expected %lu-byte descriptor message; "
4793 		    "received %lu bytes", expected, msglen);
4794 		return (EBADMSG);
4795 	}
4796 
4797 	if (vd_check_seq_num(vd, desc_msg->hdr.seq_num) != 0)
4798 		return (EBADMSG);
4799 
4800 	/*
4801 	 * Valid message:  Set up the in-band descriptor task and process the
4802 	 * request.  Arrange to acknowledge the client's message, unless an
4803 	 * error processing the descriptor task results in setting
4804 	 * VIO_SUBTYPE_NACK
4805 	 */
4806 	PR1("Valid in-band-descriptor message");
4807 	msg->tag.vio_subtype = VIO_SUBTYPE_ACK;
4808 
4809 	ASSERT(vd->inband_task.msg != NULL);
4810 
4811 	bcopy(msg, vd->inband_task.msg, msglen);
4812 	vd->inband_task.msglen	= msglen;
4813 
4814 	/*
4815 	 * The task request is now the payload of the message
4816 	 * that was just copied into the body of the task.
4817 	 */
4818 	desc_msg = (vd_dring_inband_msg_t *)vd->inband_task.msg;
4819 	vd->inband_task.request	= &desc_msg->payload;
4820 
4821 	return (vd_process_task(&vd->inband_task));
4822 }
4823 
4824 static int
4825 vd_process_element(vd_t *vd, vd_task_type_t type, uint32_t idx,
4826     vio_msg_t *msg, size_t msglen)
4827 {
4828 	int			status;
4829 	boolean_t		ready;
4830 	on_trap_data_t		otd;
4831 	vd_dring_entry_t	*elem = VD_DRING_ELEM(idx);
4832 
4833 	/* Accept the updated dring element */
4834 	if ((status = VIO_DRING_ACQUIRE(&otd, vd->dring_mtype,
4835 	    vd->dring_handle, idx, idx)) != 0) {
4836 		return (status);
4837 	}
4838 	ready = (elem->hdr.dstate == VIO_DESC_READY);
4839 	if (ready) {
4840 		elem->hdr.dstate = VIO_DESC_ACCEPTED;
4841 		bcopy(&elem->payload, vd->dring_task[idx].request,
4842 		    (vd->descriptor_size - sizeof (vio_dring_entry_hdr_t)));
4843 	} else {
4844 		PR0("descriptor %u not ready", idx);
4845 		VD_DUMP_DRING_ELEM(elem);
4846 	}
4847 	if ((status = VIO_DRING_RELEASE(vd->dring_mtype,
4848 	    vd->dring_handle, idx, idx)) != 0) {
4849 		PR0("VIO_DRING_RELEASE() returned errno %d", status);
4850 		return (status);
4851 	}
4852 	if (!ready)
4853 		return (EBUSY);
4854 
4855 
4856 	/* Initialize a task and process the accepted element */
4857 	PR1("Processing dring element %u", idx);
4858 	vd->dring_task[idx].type	= type;
4859 
4860 	/* duplicate msg buf for cookies etc. */
4861 	bcopy(msg, vd->dring_task[idx].msg, msglen);
4862 
4863 	vd->dring_task[idx].msglen	= msglen;
4864 	return (vd_process_task(&vd->dring_task[idx]));
4865 }
4866 
4867 static int
4868 vd_process_element_range(vd_t *vd, int start, int end,
4869     vio_msg_t *msg, size_t msglen)
4870 {
4871 	int		i, n, nelem, status = 0;
4872 	boolean_t	inprogress = B_FALSE;
4873 	vd_task_type_t	type;
4874 
4875 
4876 	ASSERT(start >= 0);
4877 	ASSERT(end >= 0);
4878 
4879 	/*
4880 	 * Arrange to acknowledge the client's message, unless an error
4881 	 * processing one of the dring elements results in setting
4882 	 * VIO_SUBTYPE_NACK
4883 	 */
4884 	msg->tag.vio_subtype = VIO_SUBTYPE_ACK;
4885 
4886 	/*
4887 	 * Process the dring elements in the range
4888 	 */
4889 	nelem = ((end < start) ? end + vd->dring_len : end) - start + 1;
4890 	for (i = start, n = nelem; n > 0; i = (i + 1) % vd->dring_len, n--) {
4891 		((vio_dring_msg_t *)msg)->end_idx = i;
4892 		type = (n == 1) ? VD_FINAL_RANGE_TASK : VD_NONFINAL_RANGE_TASK;
4893 		status = vd_process_element(vd, type, i, msg, msglen);
4894 		if (status == EINPROGRESS)
4895 			inprogress = B_TRUE;
4896 		else if (status != 0)
4897 			break;
4898 	}
4899 
4900 	/*
4901 	 * If some, but not all, operations of a multi-element range are in
4902 	 * progress, wait for other operations to complete before returning
4903 	 * (which will result in "ack" or "nack" of the message).  Note that
4904 	 * all outstanding operations will need to complete, not just the ones
4905 	 * corresponding to the current range of dring elements; howevever, as
4906 	 * this situation is an error case, performance is less critical.
4907 	 */
4908 	if ((nelem > 1) && (status != EINPROGRESS) && inprogress) {
4909 		if (vd->ioq != NULL)
4910 			ddi_taskq_wait(vd->ioq);
4911 		ddi_taskq_wait(vd->completionq);
4912 	}
4913 
4914 	return (status);
4915 }
4916 
4917 static int
4918 vd_process_dring_msg(vd_t *vd, vio_msg_t *msg, size_t msglen)
4919 {
4920 	vio_dring_msg_t	*dring_msg = (vio_dring_msg_t *)msg;
4921 
4922 
4923 	ASSERT(msglen >= sizeof (msg->tag));
4924 
4925 	if (!vd_msgtype(&msg->tag, VIO_TYPE_DATA, VIO_SUBTYPE_INFO,
4926 	    VIO_DRING_DATA)) {
4927 		PR1("Message is not a dring-data message");
4928 		return (ENOMSG);
4929 	}
4930 
4931 	if (msglen != sizeof (*dring_msg)) {
4932 		PR0("Expected %lu-byte dring message; received %lu bytes",
4933 		    sizeof (*dring_msg), msglen);
4934 		return (EBADMSG);
4935 	}
4936 
4937 	if (vd_check_seq_num(vd, dring_msg->seq_num) != 0)
4938 		return (EBADMSG);
4939 
4940 	if (dring_msg->dring_ident != vd->dring_ident) {
4941 		PR0("Expected dring ident %lu; received ident %lu",
4942 		    vd->dring_ident, dring_msg->dring_ident);
4943 		return (EBADMSG);
4944 	}
4945 
4946 	if (dring_msg->start_idx >= vd->dring_len) {
4947 		PR0("\"start_idx\" = %u; must be less than %u",
4948 		    dring_msg->start_idx, vd->dring_len);
4949 		return (EBADMSG);
4950 	}
4951 
4952 	if ((dring_msg->end_idx < 0) ||
4953 	    (dring_msg->end_idx >= vd->dring_len)) {
4954 		PR0("\"end_idx\" = %u; must be >= 0 and less than %u",
4955 		    dring_msg->end_idx, vd->dring_len);
4956 		return (EBADMSG);
4957 	}
4958 
4959 	/* Valid message; process range of updated dring elements */
4960 	PR1("Processing descriptor range, start = %u, end = %u",
4961 	    dring_msg->start_idx, dring_msg->end_idx);
4962 	return (vd_process_element_range(vd, dring_msg->start_idx,
4963 	    dring_msg->end_idx, msg, msglen));
4964 }
4965 
4966 static int
4967 recv_msg(ldc_handle_t ldc_handle, void *msg, size_t *nbytes)
4968 {
4969 	int	retry, status;
4970 	size_t	size = *nbytes;
4971 
4972 
4973 	for (retry = 0, status = ETIMEDOUT;
4974 	    retry < vds_ldc_retries && status == ETIMEDOUT;
4975 	    retry++) {
4976 		PR1("ldc_read() attempt %d", (retry + 1));
4977 		*nbytes = size;
4978 		status = ldc_read(ldc_handle, msg, nbytes);
4979 	}
4980 
4981 	if (status) {
4982 		PR0("ldc_read() returned errno %d", status);
4983 		if (status != ECONNRESET)
4984 			return (ENOMSG);
4985 		return (status);
4986 	} else if (*nbytes == 0) {
4987 		PR1("ldc_read() returned 0 and no message read");
4988 		return (ENOMSG);
4989 	}
4990 
4991 	PR1("RCVD %lu-byte message", *nbytes);
4992 	return (0);
4993 }
4994 
4995 static int
4996 vd_do_process_msg(vd_t *vd, vio_msg_t *msg, size_t msglen)
4997 {
4998 	int		status;
4999 
5000 
5001 	PR1("Processing (%x/%x/%x) message", msg->tag.vio_msgtype,
5002 	    msg->tag.vio_subtype, msg->tag.vio_subtype_env);
5003 #ifdef	DEBUG
5004 	vd_decode_tag(msg);
5005 #endif
5006 
5007 	/*
5008 	 * Validate session ID up front, since it applies to all messages
5009 	 * once set
5010 	 */
5011 	if ((msg->tag.vio_sid != vd->sid) && (vd->initialized & VD_SID)) {
5012 		PR0("Expected SID %u, received %u", vd->sid,
5013 		    msg->tag.vio_sid);
5014 		return (EBADMSG);
5015 	}
5016 
5017 	PR1("\tWhile in state %d (%s)", vd->state, vd_decode_state(vd->state));
5018 
5019 	/*
5020 	 * Process the received message based on connection state
5021 	 */
5022 	switch (vd->state) {
5023 	case VD_STATE_INIT:	/* expect version message */
5024 		if ((status = vd_process_ver_msg(vd, msg, msglen)) != 0)
5025 			return (status);
5026 
5027 		/* Version negotiated, move to that state */
5028 		vd->state = VD_STATE_VER;
5029 		return (0);
5030 
5031 	case VD_STATE_VER:	/* expect attribute message */
5032 		if ((status = vd_process_attr_msg(vd, msg, msglen)) != 0)
5033 			return (status);
5034 
5035 		/* Attributes exchanged, move to that state */
5036 		vd->state = VD_STATE_ATTR;
5037 		return (0);
5038 
5039 	case VD_STATE_ATTR:
5040 		switch (vd->xfer_mode) {
5041 		case VIO_DESC_MODE:	/* expect RDX message */
5042 			if ((status = process_rdx_msg(msg, msglen)) != 0)
5043 				return (status);
5044 
5045 			/* Ready to receive in-band descriptors */
5046 			vd->state = VD_STATE_DATA;
5047 			return (0);
5048 
5049 		case VIO_DRING_MODE_V1_0:  /* expect register-dring message */
5050 			if ((status =
5051 			    vd_process_dring_reg_msg(vd, msg, msglen)) != 0)
5052 				return (status);
5053 
5054 			/* One dring negotiated, move to that state */
5055 			vd->state = VD_STATE_DRING;
5056 			return (0);
5057 
5058 		default:
5059 			ASSERT("Unsupported transfer mode");
5060 			PR0("Unsupported transfer mode");
5061 			return (ENOTSUP);
5062 		}
5063 
5064 	case VD_STATE_DRING:	/* expect RDX, register-dring, or unreg-dring */
5065 		if ((status = process_rdx_msg(msg, msglen)) == 0) {
5066 			/* Ready to receive data */
5067 			vd->state = VD_STATE_DATA;
5068 			return (0);
5069 		} else if (status != ENOMSG) {
5070 			return (status);
5071 		}
5072 
5073 
5074 		/*
5075 		 * If another register-dring message is received, stay in
5076 		 * dring state in case the client sends RDX; although the
5077 		 * protocol allows multiple drings, this server does not
5078 		 * support using more than one
5079 		 */
5080 		if ((status =
5081 		    vd_process_dring_reg_msg(vd, msg, msglen)) != ENOMSG)
5082 			return (status);
5083 
5084 		/*
5085 		 * Acknowledge an unregister-dring message, but reset the
5086 		 * connection anyway:  Although the protocol allows
5087 		 * unregistering drings, this server cannot serve a vdisk
5088 		 * without its only dring
5089 		 */
5090 		status = vd_process_dring_unreg_msg(vd, msg, msglen);
5091 		return ((status == 0) ? ENOTSUP : status);
5092 
5093 	case VD_STATE_DATA:
5094 		switch (vd->xfer_mode) {
5095 		case VIO_DESC_MODE:	/* expect in-band-descriptor message */
5096 			return (vd_process_desc_msg(vd, msg, msglen));
5097 
5098 		case VIO_DRING_MODE_V1_0: /* expect dring-data or unreg-dring */
5099 			/*
5100 			 * Typically expect dring-data messages, so handle
5101 			 * them first
5102 			 */
5103 			if ((status = vd_process_dring_msg(vd, msg,
5104 			    msglen)) != ENOMSG)
5105 				return (status);
5106 
5107 			/*
5108 			 * Acknowledge an unregister-dring message, but reset
5109 			 * the connection anyway:  Although the protocol
5110 			 * allows unregistering drings, this server cannot
5111 			 * serve a vdisk without its only dring
5112 			 */
5113 			status = vd_process_dring_unreg_msg(vd, msg, msglen);
5114 			return ((status == 0) ? ENOTSUP : status);
5115 
5116 		default:
5117 			ASSERT("Unsupported transfer mode");
5118 			PR0("Unsupported transfer mode");
5119 			return (ENOTSUP);
5120 		}
5121 
5122 	default:
5123 		ASSERT("Invalid client connection state");
5124 		PR0("Invalid client connection state");
5125 		return (ENOTSUP);
5126 	}
5127 }
5128 
5129 static int
5130 vd_process_msg(vd_t *vd, vio_msg_t *msg, size_t msglen)
5131 {
5132 	int		status;
5133 	boolean_t	reset_ldc = B_FALSE;
5134 	vd_task_t	task;
5135 
5136 	/*
5137 	 * Check that the message is at least big enough for a "tag", so that
5138 	 * message processing can proceed based on tag-specified message type
5139 	 */
5140 	if (msglen < sizeof (vio_msg_tag_t)) {
5141 		PR0("Received short (%lu-byte) message", msglen);
5142 		/* Can't "nack" short message, so drop the big hammer */
5143 		PR0("initiating full reset");
5144 		vd_need_reset(vd, B_TRUE);
5145 		return (EBADMSG);
5146 	}
5147 
5148 	/*
5149 	 * Process the message
5150 	 */
5151 	switch (status = vd_do_process_msg(vd, msg, msglen)) {
5152 	case 0:
5153 		/* "ack" valid, successfully-processed messages */
5154 		msg->tag.vio_subtype = VIO_SUBTYPE_ACK;
5155 		break;
5156 
5157 	case EINPROGRESS:
5158 		/* The completion handler will "ack" or "nack" the message */
5159 		return (EINPROGRESS);
5160 	case ENOMSG:
5161 		PR0("Received unexpected message");
5162 		_NOTE(FALLTHROUGH);
5163 	case EBADMSG:
5164 	case ENOTSUP:
5165 		/* "transport" error will cause NACK of invalid messages */
5166 		msg->tag.vio_subtype = VIO_SUBTYPE_NACK;
5167 		break;
5168 
5169 	default:
5170 		/* "transport" error will cause NACK of invalid messages */
5171 		msg->tag.vio_subtype = VIO_SUBTYPE_NACK;
5172 		/* An LDC error probably occurred, so try resetting it */
5173 		reset_ldc = B_TRUE;
5174 		break;
5175 	}
5176 
5177 	PR1("\tResulting in state %d (%s)", vd->state,
5178 	    vd_decode_state(vd->state));
5179 
5180 	/* populate the task so we can dispatch it on the taskq */
5181 	task.vd = vd;
5182 	task.msg = msg;
5183 	task.msglen = msglen;
5184 
5185 	/*
5186 	 * Queue a task to send the notification that the operation completed.
5187 	 * We need to ensure that requests are responded to in the correct
5188 	 * order and since the taskq is processed serially this ordering
5189 	 * is maintained.
5190 	 */
5191 	(void) ddi_taskq_dispatch(vd->completionq, vd_serial_notify,
5192 	    &task, DDI_SLEEP);
5193 
5194 	/*
5195 	 * To ensure handshake negotiations do not happen out of order, such
5196 	 * requests that come through this path should not be done in parallel
5197 	 * so we need to wait here until the response is sent to the client.
5198 	 */
5199 	ddi_taskq_wait(vd->completionq);
5200 
5201 	/* Arrange to reset the connection for nack'ed or failed messages */
5202 	if ((status != 0) || reset_ldc) {
5203 		PR0("initiating %s reset",
5204 		    (reset_ldc) ? "full" : "soft");
5205 		vd_need_reset(vd, reset_ldc);
5206 	}
5207 
5208 	return (status);
5209 }
5210 
5211 static boolean_t
5212 vd_enabled(vd_t *vd)
5213 {
5214 	boolean_t	enabled;
5215 
5216 	mutex_enter(&vd->lock);
5217 	enabled = vd->enabled;
5218 	mutex_exit(&vd->lock);
5219 	return (enabled);
5220 }
5221 
5222 static void
5223 vd_recv_msg(void *arg)
5224 {
5225 	vd_t	*vd = (vd_t *)arg;
5226 	int	rv = 0, status = 0;
5227 
5228 	ASSERT(vd != NULL);
5229 
5230 	PR2("New task to receive incoming message(s)");
5231 
5232 
5233 	while (vd_enabled(vd) && status == 0) {
5234 		size_t		msglen, msgsize;
5235 		ldc_status_t	lstatus;
5236 
5237 		/*
5238 		 * Receive and process a message
5239 		 */
5240 		vd_reset_if_needed(vd);	/* can change vd->max_msglen */
5241 
5242 		/*
5243 		 * check if channel is UP - else break out of loop
5244 		 */
5245 		status = ldc_status(vd->ldc_handle, &lstatus);
5246 		if (lstatus != LDC_UP) {
5247 			PR0("channel not up (status=%d), exiting recv loop\n",
5248 			    lstatus);
5249 			break;
5250 		}
5251 
5252 		ASSERT(vd->max_msglen != 0);
5253 
5254 		msgsize = vd->max_msglen; /* stable copy for alloc/free */
5255 		msglen	= msgsize;	  /* actual len after recv_msg() */
5256 
5257 		status = recv_msg(vd->ldc_handle, vd->vio_msgp, &msglen);
5258 		switch (status) {
5259 		case 0:
5260 			rv = vd_process_msg(vd, (void *)vd->vio_msgp, msglen);
5261 			/* check if max_msglen changed */
5262 			if (msgsize != vd->max_msglen) {
5263 				PR0("max_msglen changed 0x%lx to 0x%lx bytes\n",
5264 				    msgsize, vd->max_msglen);
5265 				kmem_free(vd->vio_msgp, msgsize);
5266 				vd->vio_msgp =
5267 				    kmem_alloc(vd->max_msglen, KM_SLEEP);
5268 			}
5269 			if (rv == EINPROGRESS)
5270 				continue;
5271 			break;
5272 
5273 		case ENOMSG:
5274 			break;
5275 
5276 		case ECONNRESET:
5277 			PR0("initiating soft reset (ECONNRESET)\n");
5278 			vd_need_reset(vd, B_FALSE);
5279 			status = 0;
5280 			break;
5281 
5282 		default:
5283 			/* Probably an LDC failure; arrange to reset it */
5284 			PR0("initiating full reset (status=0x%x)", status);
5285 			vd_need_reset(vd, B_TRUE);
5286 			break;
5287 		}
5288 	}
5289 
5290 	PR2("Task finished");
5291 }
5292 
5293 static uint_t
5294 vd_handle_ldc_events(uint64_t event, caddr_t arg)
5295 {
5296 	vd_t	*vd = (vd_t *)(void *)arg;
5297 	int	status;
5298 
5299 	ASSERT(vd != NULL);
5300 
5301 	if (!vd_enabled(vd))
5302 		return (LDC_SUCCESS);
5303 
5304 	if (event & LDC_EVT_DOWN) {
5305 		PR0("LDC_EVT_DOWN: LDC channel went down");
5306 
5307 		vd_need_reset(vd, B_TRUE);
5308 		status = ddi_taskq_dispatch(vd->startq, vd_recv_msg, vd,
5309 		    DDI_SLEEP);
5310 		if (status == DDI_FAILURE) {
5311 			PR0("cannot schedule task to recv msg\n");
5312 			vd_need_reset(vd, B_TRUE);
5313 		}
5314 	}
5315 
5316 	if (event & LDC_EVT_RESET) {
5317 		PR0("LDC_EVT_RESET: LDC channel was reset");
5318 
5319 		if (vd->state != VD_STATE_INIT) {
5320 			PR0("scheduling full reset");
5321 			vd_need_reset(vd, B_FALSE);
5322 			status = ddi_taskq_dispatch(vd->startq, vd_recv_msg,
5323 			    vd, DDI_SLEEP);
5324 			if (status == DDI_FAILURE) {
5325 				PR0("cannot schedule task to recv msg\n");
5326 				vd_need_reset(vd, B_TRUE);
5327 			}
5328 
5329 		} else {
5330 			PR0("channel already reset, ignoring...\n");
5331 			PR0("doing ldc up...\n");
5332 			(void) ldc_up(vd->ldc_handle);
5333 		}
5334 
5335 		return (LDC_SUCCESS);
5336 	}
5337 
5338 	if (event & LDC_EVT_UP) {
5339 		PR0("EVT_UP: LDC is up\nResetting client connection state");
5340 		PR0("initiating soft reset");
5341 		vd_need_reset(vd, B_FALSE);
5342 		status = ddi_taskq_dispatch(vd->startq, vd_recv_msg,
5343 		    vd, DDI_SLEEP);
5344 		if (status == DDI_FAILURE) {
5345 			PR0("cannot schedule task to recv msg\n");
5346 			vd_need_reset(vd, B_TRUE);
5347 			return (LDC_SUCCESS);
5348 		}
5349 	}
5350 
5351 	if (event & LDC_EVT_READ) {
5352 		int	status;
5353 
5354 		PR1("New data available");
5355 		/* Queue a task to receive the new data */
5356 		status = ddi_taskq_dispatch(vd->startq, vd_recv_msg, vd,
5357 		    DDI_SLEEP);
5358 
5359 		if (status == DDI_FAILURE) {
5360 			PR0("cannot schedule task to recv msg\n");
5361 			vd_need_reset(vd, B_TRUE);
5362 		}
5363 	}
5364 
5365 	return (LDC_SUCCESS);
5366 }
5367 
5368 static uint_t
5369 vds_check_for_vd(mod_hash_key_t key, mod_hash_val_t *val, void *arg)
5370 {
5371 	_NOTE(ARGUNUSED(key, val))
5372 	(*((uint_t *)arg))++;
5373 	return (MH_WALK_TERMINATE);
5374 }
5375 
5376 
5377 static int
5378 vds_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
5379 {
5380 	uint_t	vd_present = 0;
5381 	minor_t	instance;
5382 	vds_t	*vds;
5383 
5384 
5385 	switch (cmd) {
5386 	case DDI_DETACH:
5387 		/* the real work happens below */
5388 		break;
5389 	case DDI_SUSPEND:
5390 		PR0("No action required for DDI_SUSPEND");
5391 		return (DDI_SUCCESS);
5392 	default:
5393 		PR0("Unrecognized \"cmd\"");
5394 		return (DDI_FAILURE);
5395 	}
5396 
5397 	ASSERT(cmd == DDI_DETACH);
5398 	instance = ddi_get_instance(dip);
5399 	if ((vds = ddi_get_soft_state(vds_state, instance)) == NULL) {
5400 		PR0("Could not get state for instance %u", instance);
5401 		ddi_soft_state_free(vds_state, instance);
5402 		return (DDI_FAILURE);
5403 	}
5404 
5405 	/* Do no detach when serving any vdisks */
5406 	mod_hash_walk(vds->vd_table, vds_check_for_vd, &vd_present);
5407 	if (vd_present) {
5408 		PR0("Not detaching because serving vdisks");
5409 		return (DDI_FAILURE);
5410 	}
5411 
5412 	PR0("Detaching");
5413 	if (vds->initialized & VDS_MDEG) {
5414 		(void) mdeg_unregister(vds->mdeg);
5415 		kmem_free(vds->ispecp->specp, sizeof (vds_prop_template));
5416 		kmem_free(vds->ispecp, sizeof (mdeg_node_spec_t));
5417 		vds->ispecp = NULL;
5418 		vds->mdeg = NULL;
5419 	}
5420 
5421 	vds_driver_types_free(vds);
5422 
5423 	if (vds->initialized & VDS_LDI)
5424 		(void) ldi_ident_release(vds->ldi_ident);
5425 	mod_hash_destroy_hash(vds->vd_table);
5426 	ddi_soft_state_free(vds_state, instance);
5427 	return (DDI_SUCCESS);
5428 }
5429 
5430 /*
5431  * Description:
5432  *	This function checks to see if the disk image being used as a
5433  *	virtual disk is an ISO image. An ISO image is a special case
5434  *	which can be booted/installed from like a CD/DVD.
5435  *
5436  * Parameters:
5437  *	vd		- disk on which the operation is performed.
5438  *
5439  * Return Code:
5440  *	B_TRUE		- The disk image is an ISO 9660 compliant image
5441  *	B_FALSE		- just a regular disk image
5442  */
5443 static boolean_t
5444 vd_dskimg_is_iso_image(vd_t *vd)
5445 {
5446 	char	iso_buf[ISO_SECTOR_SIZE];
5447 	int	i, rv;
5448 	uint_t	sec;
5449 
5450 	ASSERT(VD_DSKIMG(vd));
5451 
5452 	/*
5453 	 * If we have already discovered and saved this info we can
5454 	 * short-circuit the check and avoid reading the disk image.
5455 	 */
5456 	if (vd->vdisk_media == VD_MEDIA_DVD || vd->vdisk_media == VD_MEDIA_CD)
5457 		return (B_TRUE);
5458 
5459 	/*
5460 	 * We wish to read the sector that should contain the 2nd ISO volume
5461 	 * descriptor. The second field in this descriptor is called the
5462 	 * Standard Identifier and is set to CD001 for a CD-ROM compliant
5463 	 * to the ISO 9660 standard.
5464 	 */
5465 	sec = (ISO_VOLDESC_SEC * ISO_SECTOR_SIZE) / vd->vdisk_bsize;
5466 	rv = vd_dskimg_rw(vd, VD_SLICE_NONE, VD_OP_BREAD, (caddr_t)iso_buf,
5467 	    sec, ISO_SECTOR_SIZE);
5468 
5469 	if (rv < 0)
5470 		return (B_FALSE);
5471 
5472 	for (i = 0; i < ISO_ID_STRLEN; i++) {
5473 		if (ISO_STD_ID(iso_buf)[i] != ISO_ID_STRING[i])
5474 			return (B_FALSE);
5475 	}
5476 
5477 	return (B_TRUE);
5478 }
5479 
5480 /*
5481  * Description:
5482  *	This function checks to see if the virtual device is an ATAPI
5483  *	device. ATAPI devices use Group 1 Read/Write commands, so
5484  *	any USCSI calls vds makes need to take this into account.
5485  *
5486  * Parameters:
5487  *	vd		- disk on which the operation is performed.
5488  *
5489  * Return Code:
5490  *	B_TRUE		- The virtual disk is backed by an ATAPI device
5491  *	B_FALSE		- not an ATAPI device (presumably SCSI)
5492  */
5493 static boolean_t
5494 vd_is_atapi_device(vd_t *vd)
5495 {
5496 	boolean_t	is_atapi = B_FALSE;
5497 	char		*variantp;
5498 	int		rv;
5499 
5500 	ASSERT(vd->ldi_handle[0] != NULL);
5501 	ASSERT(!vd->file);
5502 
5503 	rv = ldi_prop_lookup_string(vd->ldi_handle[0],
5504 	    (LDI_DEV_T_ANY | DDI_PROP_DONTPASS), "variant", &variantp);
5505 	if (rv == DDI_PROP_SUCCESS) {
5506 		PR0("'variant' property exists for %s", vd->device_path);
5507 		if (strcmp(variantp, "atapi") == 0)
5508 			is_atapi = B_TRUE;
5509 		ddi_prop_free(variantp);
5510 	}
5511 
5512 	rv = ldi_prop_exists(vd->ldi_handle[0], LDI_DEV_T_ANY, "atapi");
5513 	if (rv) {
5514 		PR0("'atapi' property exists for %s", vd->device_path);
5515 		is_atapi = B_TRUE;
5516 	}
5517 
5518 	return (is_atapi);
5519 }
5520 
5521 static int
5522 vd_setup_full_disk(vd_t *vd)
5523 {
5524 	int		status;
5525 	major_t		major = getmajor(vd->dev[0]);
5526 	minor_t		minor = getminor(vd->dev[0]) - VD_ENTIRE_DISK_SLICE;
5527 
5528 	ASSERT(vd->vdisk_type == VD_DISK_TYPE_DISK);
5529 
5530 	/* set the disk size, block size and the media type of the disk */
5531 	status = vd_backend_check_size(vd);
5532 
5533 	if (status != 0) {
5534 		if (!vd->scsi) {
5535 			/* unexpected failure */
5536 			PRN("Check size failed for %s (errno %d)",
5537 			    vd->device_path, status);
5538 			return (EIO);
5539 		}
5540 
5541 		/*
5542 		 * The function can fail for SCSI disks which are present but
5543 		 * reserved by another system. In that case, we don't know the
5544 		 * size of the disk and the block size.
5545 		 */
5546 		vd->vdisk_size = VD_SIZE_UNKNOWN;
5547 		vd->vdisk_bsize = 0;
5548 		vd->backend_bsize = 0;
5549 		vd->vdisk_media = VD_MEDIA_FIXED;
5550 	}
5551 
5552 	/* Move dev number and LDI handle to entire-disk-slice array elements */
5553 	vd->dev[VD_ENTIRE_DISK_SLICE]		= vd->dev[0];
5554 	vd->dev[0]				= 0;
5555 	vd->ldi_handle[VD_ENTIRE_DISK_SLICE]	= vd->ldi_handle[0];
5556 	vd->ldi_handle[0]			= NULL;
5557 
5558 	/* Initialize device numbers for remaining slices and open them */
5559 	for (int slice = 0; slice < vd->nslices; slice++) {
5560 		/*
5561 		 * Skip the entire-disk slice, as it's already open and its
5562 		 * device known
5563 		 */
5564 		if (slice == VD_ENTIRE_DISK_SLICE)
5565 			continue;
5566 		ASSERT(vd->dev[slice] == 0);
5567 		ASSERT(vd->ldi_handle[slice] == NULL);
5568 
5569 		/*
5570 		 * Construct the device number for the current slice
5571 		 */
5572 		vd->dev[slice] = makedevice(major, (minor + slice));
5573 
5574 		/*
5575 		 * Open all slices of the disk to serve them to the client.
5576 		 * Slices are opened exclusively to prevent other threads or
5577 		 * processes in the service domain from performing I/O to
5578 		 * slices being accessed by a client.  Failure to open a slice
5579 		 * results in vds not serving this disk, as the client could
5580 		 * attempt (and should be able) to access any slice immediately.
5581 		 * Any slices successfully opened before a failure will get
5582 		 * closed by vds_destroy_vd() as a result of the error returned
5583 		 * by this function.
5584 		 *
5585 		 * We need to do the open with FNDELAY so that opening an empty
5586 		 * slice does not fail.
5587 		 */
5588 		PR0("Opening device major %u, minor %u = slice %u",
5589 		    major, minor, slice);
5590 
5591 		/*
5592 		 * Try to open the device. This can fail for example if we are
5593 		 * opening an empty slice. So in case of a failure, we try the
5594 		 * open again but this time with the FNDELAY flag.
5595 		 */
5596 		status = ldi_open_by_dev(&vd->dev[slice], OTYP_BLK,
5597 		    vd->open_flags, kcred, &vd->ldi_handle[slice],
5598 		    vd->vds->ldi_ident);
5599 
5600 		if (status != 0) {
5601 			status = ldi_open_by_dev(&vd->dev[slice], OTYP_BLK,
5602 			    vd->open_flags | FNDELAY, kcred,
5603 			    &vd->ldi_handle[slice], vd->vds->ldi_ident);
5604 		}
5605 
5606 		if (status != 0) {
5607 			PRN("ldi_open_by_dev() returned errno %d "
5608 			    "for slice %u", status, slice);
5609 			/* vds_destroy_vd() will close any open slices */
5610 			vd->ldi_handle[slice] = NULL;
5611 			return (status);
5612 		}
5613 	}
5614 
5615 	return (0);
5616 }
5617 
5618 /*
5619  * When a slice or a volume is exported as a single-slice disk, we want
5620  * the disk backend (i.e. the slice or volume) to be entirely mapped as
5621  * a slice without the addition of any metadata.
5622  *
5623  * So when exporting the disk as a VTOC disk, we fake a disk with the following
5624  * layout:
5625  *                flabel +--- flabel_limit
5626  *                 <->   V
5627  *                 0 1   C                          D  E
5628  *                 +-+---+--------------------------+--+
5629  *  virtual disk:  |L|XXX|           slice 0        |AA|
5630  *                 +-+---+--------------------------+--+
5631  *                  ^    :                          :
5632  *                  |    :                          :
5633  *      VTOC LABEL--+    :                          :
5634  *                       +--------------------------+
5635  *  disk backend:        |     slice/volume/file    |
5636  *                       +--------------------------+
5637  *                       0                          N
5638  *
5639  * N is the number of blocks in the slice/volume/file.
5640  *
5641  * We simulate a disk with N+M blocks, where M is the number of blocks
5642  * simluated at the beginning and at the end of the disk (blocks 0-C
5643  * and D-E).
5644  *
5645  * The first blocks (0 to C-1) are emulated and can not be changed. Blocks C
5646  * to D defines slice 0 and are mapped to the backend. Finally we emulate 2
5647  * alternate cylinders at the end of the disk (blocks D-E). In summary we have:
5648  *
5649  * - block 0 (L) returns a fake VTOC label
5650  * - blocks 1 to C-1 (X) are unused and return 0
5651  * - blocks C to D-1 are mapped to the exported slice or volume
5652  * - blocks D and E (A) are blocks defining alternate cylinders (2 cylinders)
5653  *
5654  * Note: because we define a fake disk geometry, it is possible that the length
5655  * of the backend is not a multiple of the size of cylinder, in that case the
5656  * very end of the backend will not map to any block of the virtual disk.
5657  */
5658 static int
5659 vd_setup_partition_vtoc(vd_t *vd)
5660 {
5661 	char *device_path = vd->device_path;
5662 	char unit;
5663 	size_t size, csize;
5664 
5665 	/* Initialize dk_geom structure for single-slice device */
5666 	if (vd->dk_geom.dkg_nsect == 0) {
5667 		PRN("%s geometry claims 0 sectors per track", device_path);
5668 		return (EIO);
5669 	}
5670 	if (vd->dk_geom.dkg_nhead == 0) {
5671 		PRN("%s geometry claims 0 heads", device_path);
5672 		return (EIO);
5673 	}
5674 
5675 	/* size of a cylinder in block */
5676 	csize = vd->dk_geom.dkg_nhead * vd->dk_geom.dkg_nsect;
5677 
5678 	/*
5679 	 * Add extra cylinders: we emulate the first cylinder (which contains
5680 	 * the disk label).
5681 	 */
5682 	vd->dk_geom.dkg_ncyl = vd->vdisk_size / csize + 1;
5683 
5684 	/* we emulate 2 alternate cylinders */
5685 	vd->dk_geom.dkg_acyl = 2;
5686 	vd->dk_geom.dkg_pcyl = vd->dk_geom.dkg_ncyl + vd->dk_geom.dkg_acyl;
5687 
5688 
5689 	/* Initialize vtoc structure for single-slice device */
5690 	bzero(vd->vtoc.v_part, sizeof (vd->vtoc.v_part));
5691 	vd->vtoc.v_part[0].p_tag = V_UNASSIGNED;
5692 	vd->vtoc.v_part[0].p_flag = 0;
5693 	/*
5694 	 * Partition 0 starts on cylinder 1 and its size has to be
5695 	 * a multiple of a number of cylinder.
5696 	 */
5697 	vd->vtoc.v_part[0].p_start = csize; /* start on cylinder 1 */
5698 	vd->vtoc.v_part[0].p_size = (vd->vdisk_size / csize) * csize;
5699 
5700 	if (vd_slice_single_slice) {
5701 		vd->vtoc.v_nparts = 1;
5702 		bcopy(VD_ASCIILABEL, vd->vtoc.v_asciilabel,
5703 		    MIN(sizeof (VD_ASCIILABEL),
5704 		    sizeof (vd->vtoc.v_asciilabel)));
5705 		bcopy(VD_VOLUME_NAME, vd->vtoc.v_volume,
5706 		    MIN(sizeof (VD_VOLUME_NAME), sizeof (vd->vtoc.v_volume)));
5707 	} else {
5708 		/* adjust the number of slices */
5709 		vd->nslices = V_NUMPAR;
5710 		vd->vtoc.v_nparts = V_NUMPAR;
5711 
5712 		/* define slice 2 representing the entire disk */
5713 		vd->vtoc.v_part[VD_ENTIRE_DISK_SLICE].p_tag = V_BACKUP;
5714 		vd->vtoc.v_part[VD_ENTIRE_DISK_SLICE].p_flag = 0;
5715 		vd->vtoc.v_part[VD_ENTIRE_DISK_SLICE].p_start = 0;
5716 		vd->vtoc.v_part[VD_ENTIRE_DISK_SLICE].p_size =
5717 		    vd->dk_geom.dkg_ncyl * csize;
5718 
5719 		vd_get_readable_size(vd->vdisk_size * vd->vdisk_bsize,
5720 		    &size, &unit);
5721 
5722 		/*
5723 		 * Set some attributes of the geometry to what format(1m) uses
5724 		 * so that writing a default label using format(1m) does not
5725 		 * produce any error.
5726 		 */
5727 		vd->dk_geom.dkg_bcyl = 0;
5728 		vd->dk_geom.dkg_intrlv = 1;
5729 		vd->dk_geom.dkg_write_reinstruct = 0;
5730 		vd->dk_geom.dkg_read_reinstruct = 0;
5731 
5732 		/*
5733 		 * We must have a correct label name otherwise format(1m) will
5734 		 * not recognized the disk as labeled.
5735 		 */
5736 		(void) snprintf(vd->vtoc.v_asciilabel, LEN_DKL_ASCII,
5737 		    "SUN-DiskSlice-%ld%cB cyl %d alt %d hd %d sec %d",
5738 		    size, unit,
5739 		    vd->dk_geom.dkg_ncyl, vd->dk_geom.dkg_acyl,
5740 		    vd->dk_geom.dkg_nhead, vd->dk_geom.dkg_nsect);
5741 		bzero(vd->vtoc.v_volume, sizeof (vd->vtoc.v_volume));
5742 
5743 		/* create a fake label from the vtoc and geometry */
5744 		vd->flabel_limit = (uint_t)csize;
5745 		vd->flabel_size = VD_LABEL_VTOC_SIZE(vd->vdisk_bsize);
5746 		vd->flabel = kmem_zalloc(vd->flabel_size, KM_SLEEP);
5747 		vd_vtocgeom_to_label(&vd->vtoc, &vd->dk_geom,
5748 		    VD_LABEL_VTOC(vd));
5749 	}
5750 
5751 	/* adjust the vdisk_size, we emulate 3 cylinders */
5752 	vd->vdisk_size += csize * 3;
5753 
5754 	return (0);
5755 }
5756 
5757 /*
5758  * When a slice, volume or file is exported as a single-slice disk, we want
5759  * the disk backend (i.e. the slice, volume or file) to be entirely mapped
5760  * as a slice without the addition of any metadata.
5761  *
5762  * So when exporting the disk as an EFI disk, we fake a disk with the following
5763  * layout: (assuming the block size is 512 bytes)
5764  *
5765  *                  flabel        +--- flabel_limit
5766  *                 <------>       v
5767  *                 0 1 2  L      34                        34+N      P
5768  *                 +-+-+--+-------+--------------------------+-------+
5769  *  virtual disk:  |X|T|EE|XXXXXXX|           slice 0        |RRRRRRR|
5770  *                 +-+-+--+-------+--------------------------+-------+
5771  *                    ^ ^         :                          :
5772  *                    | |         :                          :
5773  *                GPT-+ +-GPE     :                          :
5774  *                                +--------------------------+
5775  *  disk backend:                 |     slice/volume/file    |
5776  *                                +--------------------------+
5777  *                                0                          N
5778  *
5779  * N is the number of blocks in the slice/volume/file.
5780  *
5781  * We simulate a disk with N+M blocks, where M is the number of blocks
5782  * simluated at the beginning and at the end of the disk (blocks 0-34
5783  * and 34+N-P).
5784  *
5785  * The first 34 blocks (0 to 33) are emulated and can not be changed. Blocks 34
5786  * to 34+N defines slice 0 and are mapped to the exported backend, and we
5787  * emulate some blocks at the end of the disk (blocks 34+N to P) as a the EFI
5788  * reserved partition.
5789  *
5790  * - block 0 (X) is unused and return 0
5791  * - block 1 (T) returns a fake EFI GPT (via DKIOCGETEFI)
5792  * - blocks 2 to L-1 (E) defines a fake EFI GPE (via DKIOCGETEFI)
5793  * - blocks L to 33 (X) are unused and return 0
5794  * - blocks 34 to 34+N are mapped to the exported slice, volume or file
5795  * - blocks 34+N+1 to P define a fake reserved partition and backup label, it
5796  *   returns 0
5797  *
5798  * Note: if the backend size is not a multiple of the vdisk block size then
5799  * the very end of the backend will not map to any block of the virtual disk.
5800  */
5801 static int
5802 vd_setup_partition_efi(vd_t *vd)
5803 {
5804 	efi_gpt_t *gpt;
5805 	efi_gpe_t *gpe;
5806 	struct uuid uuid = EFI_USR;
5807 	struct uuid efi_reserved = EFI_RESERVED;
5808 	uint32_t crc;
5809 	uint64_t s0_start, s0_end, first_u_lba;
5810 	size_t bsize;
5811 
5812 	ASSERT(vd->vdisk_bsize > 0);
5813 
5814 	bsize = vd->vdisk_bsize;
5815 	/*
5816 	 * The minimum size for the label is 16K (EFI_MIN_ARRAY_SIZE)
5817 	 * for GPEs plus one block for the GPT and one for PMBR.
5818 	 */
5819 	first_u_lba = (EFI_MIN_ARRAY_SIZE / bsize) + 2;
5820 	vd->flabel_limit = (uint_t)first_u_lba;
5821 	vd->flabel_size = VD_LABEL_EFI_SIZE(bsize);
5822 	vd->flabel = kmem_zalloc(vd->flabel_size, KM_SLEEP);
5823 	gpt = VD_LABEL_EFI_GPT(vd, bsize);
5824 	gpe = VD_LABEL_EFI_GPE(vd, bsize);
5825 
5826 	/*
5827 	 * Adjust the vdisk_size, we emulate the first few blocks
5828 	 * for the disk label.
5829 	 */
5830 	vd->vdisk_size += first_u_lba;
5831 	s0_start = first_u_lba;
5832 	s0_end = vd->vdisk_size - 1;
5833 
5834 	gpt->efi_gpt_Signature = LE_64(EFI_SIGNATURE);
5835 	gpt->efi_gpt_Revision = LE_32(EFI_VERSION_CURRENT);
5836 	gpt->efi_gpt_HeaderSize = LE_32(sizeof (efi_gpt_t));
5837 	gpt->efi_gpt_FirstUsableLBA = LE_64(first_u_lba);
5838 	gpt->efi_gpt_PartitionEntryLBA = LE_64(2ULL);
5839 	gpt->efi_gpt_SizeOfPartitionEntry = LE_32(sizeof (efi_gpe_t));
5840 
5841 	UUID_LE_CONVERT(gpe[0].efi_gpe_PartitionTypeGUID, uuid);
5842 	gpe[0].efi_gpe_StartingLBA = LE_64(s0_start);
5843 	gpe[0].efi_gpe_EndingLBA = LE_64(s0_end);
5844 
5845 	if (vd_slice_single_slice) {
5846 		gpt->efi_gpt_NumberOfPartitionEntries = LE_32(1);
5847 	} else {
5848 		/* adjust the number of slices */
5849 		gpt->efi_gpt_NumberOfPartitionEntries = LE_32(VD_MAXPART);
5850 		vd->nslices = V_NUMPAR;
5851 
5852 		/* define a fake reserved partition */
5853 		UUID_LE_CONVERT(gpe[VD_MAXPART - 1].efi_gpe_PartitionTypeGUID,
5854 		    efi_reserved);
5855 		gpe[VD_MAXPART - 1].efi_gpe_StartingLBA =
5856 		    LE_64(s0_end + 1);
5857 		gpe[VD_MAXPART - 1].efi_gpe_EndingLBA =
5858 		    LE_64(s0_end + EFI_MIN_RESV_SIZE);
5859 
5860 		/* adjust the vdisk_size to include the reserved slice */
5861 		vd->vdisk_size += EFI_MIN_RESV_SIZE;
5862 	}
5863 
5864 	gpt->efi_gpt_LastUsableLBA = LE_64(vd->vdisk_size - 1);
5865 
5866 	/* adjust the vdisk size for the backup GPT and GPE */
5867 	vd->vdisk_size += (EFI_MIN_ARRAY_SIZE / bsize) + 1;
5868 	gpt->efi_gpt_AlternateLBA = LE_64(vd->vdisk_size - 1);
5869 
5870 	CRC32(crc, gpe, sizeof (efi_gpe_t) * VD_MAXPART, -1U, crc32_table);
5871 	gpt->efi_gpt_PartitionEntryArrayCRC32 = LE_32(~crc);
5872 
5873 	CRC32(crc, gpt, sizeof (efi_gpt_t), -1U, crc32_table);
5874 	gpt->efi_gpt_HeaderCRC32 = LE_32(~crc);
5875 
5876 	return (0);
5877 }
5878 
5879 /*
5880  * Setup for a virtual disk whose backend is a file (exported as a single slice
5881  * or as a full disk). In that case, the backend is accessed using the vnode
5882  * interface.
5883  */
5884 static int
5885 vd_setup_backend_vnode(vd_t *vd)
5886 {
5887 	int 		rval, status;
5888 	dev_t		dev;
5889 	char		*file_path = vd->device_path;
5890 	ldi_handle_t	lhandle;
5891 	struct dk_cinfo	dk_cinfo;
5892 
5893 	ASSERT(!vd->volume);
5894 
5895 	if ((status = vn_open(file_path, UIO_SYSSPACE, vd->open_flags | FOFFMAX,
5896 	    0, &vd->file_vnode, 0, 0)) != 0) {
5897 		PRN("vn_open(%s) = errno %d", file_path, status);
5898 		return (status);
5899 	}
5900 
5901 	/*
5902 	 * We set vd->file now so that vds_destroy_vd will take care of
5903 	 * closing the file and releasing the vnode in case of an error.
5904 	 */
5905 	vd->file = B_TRUE;
5906 
5907 	vd->max_xfer_sz = maxphys / DEV_BSIZE; /* default transfer size */
5908 
5909 	/*
5910 	 * Get max_xfer_sz from the device where the file is.
5911 	 */
5912 	dev = vd->file_vnode->v_vfsp->vfs_dev;
5913 	PR0("underlying device of %s = (%d, %d)\n", file_path,
5914 	    getmajor(dev), getminor(dev));
5915 
5916 	status = ldi_open_by_dev(&dev, OTYP_BLK, FREAD, kcred, &lhandle,
5917 	    vd->vds->ldi_ident);
5918 
5919 	if (status != 0) {
5920 		PR0("ldi_open() returned errno %d for underlying device",
5921 		    status);
5922 	} else {
5923 		if ((status = ldi_ioctl(lhandle, DKIOCINFO,
5924 		    (intptr_t)&dk_cinfo, (vd->open_flags | FKIOCTL), kcred,
5925 		    &rval)) != 0) {
5926 			PR0("ldi_ioctl(DKIOCINFO) returned errno %d for "
5927 			    "underlying device", status);
5928 		} else {
5929 			/*
5930 			 * Store the device's max transfer size for
5931 			 * return to the client
5932 			 */
5933 			vd->max_xfer_sz = dk_cinfo.dki_maxtransfer;
5934 		}
5935 
5936 		PR0("close the underlying device");
5937 		(void) ldi_close(lhandle, FREAD, kcred);
5938 	}
5939 
5940 	PR0("using file %s on device (%d, %d), max_xfer = %u blks",
5941 	    file_path, getmajor(dev), getminor(dev), vd->max_xfer_sz);
5942 
5943 	if (vd->vdisk_type == VD_DISK_TYPE_SLICE)
5944 		status = vd_setup_slice_image(vd);
5945 	else
5946 		status = vd_setup_disk_image(vd);
5947 
5948 	return (status);
5949 }
5950 
5951 static int
5952 vd_setup_slice_image(vd_t *vd)
5953 {
5954 	struct dk_label label;
5955 	int status;
5956 
5957 	if ((status = vd_backend_check_size(vd)) != 0) {
5958 		PRN("Check size failed for %s (errno %d)",
5959 		    vd->device_path, status);
5960 		return (EIO);
5961 	}
5962 
5963 	vd->vdisk_media = VD_MEDIA_FIXED;
5964 	vd->vdisk_label = (vd_slice_label == VD_DISK_LABEL_UNK)?
5965 	    vd_file_slice_label : vd_slice_label;
5966 
5967 	if (vd->vdisk_label == VD_DISK_LABEL_EFI ||
5968 	    vd->dskimg_size >= 2 * ONE_TERABYTE) {
5969 		status = vd_setup_partition_efi(vd);
5970 	} else {
5971 		/*
5972 		 * We build a default label to get a geometry for
5973 		 * the vdisk. Then the partition setup function will
5974 		 * adjust the vtoc so that it defines a single-slice
5975 		 * disk.
5976 		 */
5977 		vd_build_default_label(vd->dskimg_size, vd->vdisk_bsize,
5978 		    &label);
5979 		vd_label_to_vtocgeom(&label, &vd->vtoc, &vd->dk_geom);
5980 		status = vd_setup_partition_vtoc(vd);
5981 	}
5982 
5983 	return (status);
5984 }
5985 
5986 static int
5987 vd_setup_disk_image(vd_t *vd)
5988 {
5989 	int status;
5990 	char *backend_path = vd->device_path;
5991 
5992 	if ((status = vd_backend_check_size(vd)) != 0) {
5993 		PRN("Check size failed for %s (errno %d)",
5994 		    backend_path, status);
5995 		return (EIO);
5996 	}
5997 
5998 	/* size should be at least sizeof(dk_label) */
5999 	if (vd->dskimg_size < sizeof (struct dk_label)) {
6000 		PRN("Size of file has to be at least %ld bytes",
6001 		    sizeof (struct dk_label));
6002 		return (EIO);
6003 	}
6004 
6005 	/*
6006 	 * Find and validate the geometry of a disk image.
6007 	 */
6008 	status = vd_dskimg_validate_geometry(vd);
6009 	if (status != 0 && status != EINVAL && status != ENOTSUP) {
6010 		PRN("Failed to read label from %s", backend_path);
6011 		return (EIO);
6012 	}
6013 
6014 	if (vd_dskimg_is_iso_image(vd)) {
6015 		/*
6016 		 * Indicate whether to call this a CD or DVD from the size
6017 		 * of the ISO image (images for both drive types are stored
6018 		 * in the ISO-9600 format). CDs can store up to just under 1Gb
6019 		 */
6020 		if ((vd->vdisk_size * vd->vdisk_bsize) > ONE_GIGABYTE)
6021 			vd->vdisk_media = VD_MEDIA_DVD;
6022 		else
6023 			vd->vdisk_media = VD_MEDIA_CD;
6024 	} else {
6025 		vd->vdisk_media = VD_MEDIA_FIXED;
6026 	}
6027 
6028 	/* Setup devid for the disk image */
6029 
6030 	if (vd->vdisk_label != VD_DISK_LABEL_UNK) {
6031 
6032 		status = vd_dskimg_read_devid(vd, &vd->dskimg_devid);
6033 
6034 		if (status == 0) {
6035 			/* a valid devid was found */
6036 			return (0);
6037 		}
6038 
6039 		if (status != EINVAL) {
6040 			/*
6041 			 * There was an error while trying to read the devid.
6042 			 * So this disk image may have a devid but we are
6043 			 * unable to read it.
6044 			 */
6045 			PR0("can not read devid for %s", backend_path);
6046 			vd->dskimg_devid = NULL;
6047 			return (0);
6048 		}
6049 	}
6050 
6051 	/*
6052 	 * No valid device id was found so we create one. Note that a failure
6053 	 * to create a device id is not fatal and does not prevent the disk
6054 	 * image from being attached.
6055 	 */
6056 	PR1("creating devid for %s", backend_path);
6057 
6058 	if (ddi_devid_init(vd->vds->dip, DEVID_FAB, NULL, 0,
6059 	    &vd->dskimg_devid) != DDI_SUCCESS) {
6060 		PR0("fail to create devid for %s", backend_path);
6061 		vd->dskimg_devid = NULL;
6062 		return (0);
6063 	}
6064 
6065 	/*
6066 	 * Write devid to the disk image. The devid is stored into the disk
6067 	 * image if we have a valid label; otherwise the devid will be stored
6068 	 * when the user writes a valid label.
6069 	 */
6070 	if (vd->vdisk_label != VD_DISK_LABEL_UNK) {
6071 		if (vd_dskimg_write_devid(vd, vd->dskimg_devid) != 0) {
6072 			PR0("fail to write devid for %s", backend_path);
6073 			ddi_devid_free(vd->dskimg_devid);
6074 			vd->dskimg_devid = NULL;
6075 		}
6076 	}
6077 
6078 	return (0);
6079 }
6080 
6081 
6082 /*
6083  * Description:
6084  *	Open a device using its device path (supplied by ldm(1m))
6085  *
6086  * Parameters:
6087  *	vd 	- pointer to structure containing the vDisk info
6088  *	flags	- open flags
6089  *
6090  * Return Value
6091  *	0	- success
6092  *	!= 0	- some other non-zero return value from ldi(9F) functions
6093  */
6094 static int
6095 vd_open_using_ldi_by_name(vd_t *vd, int flags)
6096 {
6097 	int		status;
6098 	char		*device_path = vd->device_path;
6099 
6100 	/* Attempt to open device */
6101 	status = ldi_open_by_name(device_path, flags, kcred,
6102 	    &vd->ldi_handle[0], vd->vds->ldi_ident);
6103 
6104 	/*
6105 	 * The open can fail for example if we are opening an empty slice.
6106 	 * In case of a failure, we try the open again but this time with
6107 	 * the FNDELAY flag.
6108 	 */
6109 	if (status != 0)
6110 		status = ldi_open_by_name(device_path, flags | FNDELAY,
6111 		    kcred, &vd->ldi_handle[0], vd->vds->ldi_ident);
6112 
6113 	if (status != 0) {
6114 		PR0("ldi_open_by_name(%s) = errno %d", device_path, status);
6115 		vd->ldi_handle[0] = NULL;
6116 		return (status);
6117 	}
6118 
6119 	return (0);
6120 }
6121 
6122 /*
6123  * Setup for a virtual disk which backend is a device (a physical disk,
6124  * slice or volume device) exported as a full disk or as a slice. In these
6125  * cases, the backend is accessed using the LDI interface.
6126  */
6127 static int
6128 vd_setup_backend_ldi(vd_t *vd)
6129 {
6130 	int		rval, status;
6131 	struct dk_cinfo	dk_cinfo;
6132 	char		*device_path = vd->device_path;
6133 
6134 	/* device has been opened by vd_identify_dev() */
6135 	ASSERT(vd->ldi_handle[0] != NULL);
6136 	ASSERT(vd->dev[0] != NULL);
6137 
6138 	vd->file = B_FALSE;
6139 
6140 	/* Verify backing device supports dk_cinfo */
6141 	if ((status = ldi_ioctl(vd->ldi_handle[0], DKIOCINFO,
6142 	    (intptr_t)&dk_cinfo, (vd->open_flags | FKIOCTL), kcred,
6143 	    &rval)) != 0) {
6144 		PRN("ldi_ioctl(DKIOCINFO) returned errno %d for %s",
6145 		    status, device_path);
6146 		return (status);
6147 	}
6148 	if (dk_cinfo.dki_partition >= V_NUMPAR) {
6149 		PRN("slice %u >= maximum slice %u for %s",
6150 		    dk_cinfo.dki_partition, V_NUMPAR, device_path);
6151 		return (EIO);
6152 	}
6153 
6154 	/*
6155 	 * The device has been opened read-only by vd_identify_dev(), re-open
6156 	 * it read-write if the write flag is set and we don't have an optical
6157 	 * device such as a CD-ROM, which, for now, we do not permit writes to
6158 	 * and thus should not export write operations to the client.
6159 	 *
6160 	 * Future: if/when we implement support for guest domains writing to
6161 	 * optical devices we will need to do further checking of the media type
6162 	 * to distinguish between read-only and writable discs.
6163 	 */
6164 	if (dk_cinfo.dki_ctype == DKC_CDROM) {
6165 
6166 		vd->open_flags &= ~FWRITE;
6167 
6168 	} else if (vd->open_flags & FWRITE) {
6169 
6170 		(void) ldi_close(vd->ldi_handle[0], vd->open_flags & ~FWRITE,
6171 		    kcred);
6172 		status = vd_open_using_ldi_by_name(vd, vd->open_flags);
6173 		if (status != 0) {
6174 			PR0("Failed to open (%s) = errno %d",
6175 			    device_path, status);
6176 			return (status);
6177 		}
6178 	}
6179 
6180 	/* Store the device's max transfer size for return to the client */
6181 	vd->max_xfer_sz = dk_cinfo.dki_maxtransfer;
6182 
6183 	/*
6184 	 * We need to work out if it's an ATAPI (IDE CD-ROM) or SCSI device so
6185 	 * that we can use the correct CDB group when sending USCSI commands.
6186 	 */
6187 	vd->is_atapi_dev = vd_is_atapi_device(vd);
6188 
6189 	/*
6190 	 * Export a full disk.
6191 	 *
6192 	 * The exported device can be either a volume, a disk or a CD/DVD
6193 	 * device.  We export a device as a full disk if we have an entire
6194 	 * disk slice (slice 2) and if this slice is exported as a full disk
6195 	 * and not as a single slice disk. A CD or DVD device is exported
6196 	 * as a full disk (even if it isn't s2). A volume is exported as a
6197 	 * full disk as long as the "slice" option is not specified.
6198 	 */
6199 	if (vd->vdisk_type == VD_DISK_TYPE_DISK) {
6200 
6201 		if (vd->volume) {
6202 			/* setup disk image */
6203 			return (vd_setup_disk_image(vd));
6204 		}
6205 
6206 		if (dk_cinfo.dki_partition == VD_ENTIRE_DISK_SLICE ||
6207 		    dk_cinfo.dki_ctype == DKC_CDROM) {
6208 			ASSERT(!vd->volume);
6209 			if (dk_cinfo.dki_ctype == DKC_SCSI_CCS)
6210 				vd->scsi = B_TRUE;
6211 			return (vd_setup_full_disk(vd));
6212 		}
6213 	}
6214 
6215 	/*
6216 	 * Export a single slice disk.
6217 	 *
6218 	 * The exported device can be either a volume device or a disk slice. If
6219 	 * it is a disk slice different from slice 2 then it is always exported
6220 	 * as a single slice disk even if the "slice" option is not specified.
6221 	 * If it is disk slice 2 or a volume device then it is exported as a
6222 	 * single slice disk only if the "slice" option is specified.
6223 	 */
6224 	return (vd_setup_single_slice_disk(vd));
6225 }
6226 
6227 static int
6228 vd_setup_single_slice_disk(vd_t *vd)
6229 {
6230 	int status, rval;
6231 	struct dk_label label;
6232 	char *device_path = vd->device_path;
6233 	struct vtoc vtoc;
6234 
6235 	vd->vdisk_media = VD_MEDIA_FIXED;
6236 
6237 	if (vd->volume) {
6238 		ASSERT(vd->vdisk_type == VD_DISK_TYPE_SLICE);
6239 	}
6240 
6241 	/*
6242 	 * We export the slice as a single slice disk even if the "slice"
6243 	 * option was not specified.
6244 	 */
6245 	vd->vdisk_type  = VD_DISK_TYPE_SLICE;
6246 	vd->nslices	= 1;
6247 
6248 	/* Get size of backing device */
6249 	if ((status = vd_backend_check_size(vd)) != 0) {
6250 		PRN("Check size failed for %s (errno %d)", device_path, status);
6251 		return (EIO);
6252 	}
6253 
6254 	/*
6255 	 * When exporting a slice or a device as a single slice disk, we don't
6256 	 * care about any partitioning exposed by the backend. The goal is just
6257 	 * to export the backend as a flat storage. We provide a fake partition
6258 	 * table (either a VTOC or EFI), which presents only one slice, to
6259 	 * accommodate tools expecting a disk label. The selection of the label
6260 	 * type (VTOC or EFI) depends on the value of the vd_slice_label
6261 	 * variable.
6262 	 */
6263 	if (vd_slice_label == VD_DISK_LABEL_EFI ||
6264 	    vd->vdisk_size >= ONE_TERABYTE / vd->vdisk_bsize) {
6265 		vd->vdisk_label = VD_DISK_LABEL_EFI;
6266 	} else {
6267 		status = ldi_ioctl(vd->ldi_handle[0], DKIOCGEXTVTOC,
6268 		    (intptr_t)&vd->vtoc, (vd->open_flags | FKIOCTL),
6269 		    kcred, &rval);
6270 
6271 		if (status == ENOTTY) {
6272 			/* try with the non-extended vtoc ioctl */
6273 			status = ldi_ioctl(vd->ldi_handle[0], DKIOCGVTOC,
6274 			    (intptr_t)&vtoc, (vd->open_flags | FKIOCTL),
6275 			    kcred, &rval);
6276 			vtoctoextvtoc(vtoc, vd->vtoc);
6277 		}
6278 
6279 		if (status == 0) {
6280 			status = ldi_ioctl(vd->ldi_handle[0], DKIOCGGEOM,
6281 			    (intptr_t)&vd->dk_geom, (vd->open_flags | FKIOCTL),
6282 			    kcred, &rval);
6283 
6284 			if (status != 0) {
6285 				PRN("ldi_ioctl(DKIOCGEOM) returned errno %d "
6286 				    "for %s", status, device_path);
6287 				return (status);
6288 			}
6289 			vd->vdisk_label = VD_DISK_LABEL_VTOC;
6290 
6291 		} else if (vd_slice_label == VD_DISK_LABEL_VTOC) {
6292 
6293 			vd->vdisk_label = VD_DISK_LABEL_VTOC;
6294 			vd_build_default_label(vd->vdisk_size * vd->vdisk_bsize,
6295 			    vd->vdisk_bsize, &label);
6296 			vd_label_to_vtocgeom(&label, &vd->vtoc, &vd->dk_geom);
6297 
6298 		} else {
6299 			vd->vdisk_label = VD_DISK_LABEL_EFI;
6300 		}
6301 	}
6302 
6303 	if (vd->vdisk_label == VD_DISK_LABEL_VTOC) {
6304 		/* export with a fake VTOC label */
6305 		status = vd_setup_partition_vtoc(vd);
6306 
6307 	} else {
6308 		/* export with a fake EFI label */
6309 		status = vd_setup_partition_efi(vd);
6310 	}
6311 
6312 	return (status);
6313 }
6314 
6315 /*
6316  * This function is invoked when setting up the vdisk backend and to process
6317  * the VD_OP_GET_CAPACITY operation. It checks the backend size and set the
6318  * following attributes of the vd structure:
6319  *
6320  * - vdisk_bsize: block size for the virtual disk used by the VIO protocol. Its
6321  *   value is 512 bytes (DEV_BSIZE) when the backend is a file, a volume or a
6322  *   CD/DVD. When the backend is a disk or a disk slice then it has the value
6323  *   of the logical block size of that disk (as returned by the DKIOCGMEDIAINFO
6324  *   ioctl). This block size is expected to be a power of 2 and a multiple of
6325  *   512.
6326  *
6327  * - vdisk_size: size of the virtual disk expressed as a number of vdisk_bsize
6328  *   blocks.
6329  *
6330  * vdisk_size and vdisk_bsize are sent to the vdisk client during the connection
6331  * handshake and in the result of a VD_OP_GET_CAPACITY operation.
6332  *
6333  * - backend_bsize: block size of the backend device. backend_bsize has the same
6334  *   value as vdisk_bsize except when the backend is a CD/DVD. In that case,
6335  *   vdisk_bsize is set to 512 (DEV_BSIZE) while backend_bsize is set to the
6336  *   effective logical block size of the CD/DVD (usually 2048).
6337  *
6338  * - dskimg_size: size of the backend when the backend is a disk image. This
6339  *   attribute is set only when the backend is a file or a volume, otherwise it
6340  *   is unused.
6341  *
6342  * - vio_bshift: number of bit to shift to convert a VIO block number (which
6343  *   uses a block size of vdisk_bsize) to a buf(9s) block number (which uses a
6344  *   block size of 512 bytes) i.e. we have vdisk_bsize = 512 x 2 ^ vio_bshift
6345  *
6346  * - vdisk_media: media of the virtual disk. This function only sets this
6347  *   attribute for physical disk and CD/DVD. For other backend types, this
6348  *   attribute is set in the setup function of the backend.
6349  */
6350 static int
6351 vd_backend_check_size(vd_t *vd)
6352 {
6353 	size_t backend_size, backend_bsize, vdisk_bsize;
6354 	size_t old_size, new_size;
6355 	struct dk_minfo minfo;
6356 	vattr_t vattr;
6357 	int rval, rv, media, nshift = 0;
6358 	uint32_t n;
6359 
6360 	if (vd->file) {
6361 
6362 		/* file (slice or full disk) */
6363 		vattr.va_mask = AT_SIZE;
6364 		rv = VOP_GETATTR(vd->file_vnode, &vattr, 0, kcred, NULL);
6365 		if (rv != 0) {
6366 			PR0("VOP_GETATTR(%s) = errno %d", vd->device_path, rv);
6367 			return (rv);
6368 		}
6369 		backend_size = vattr.va_size;
6370 		backend_bsize = DEV_BSIZE;
6371 		vdisk_bsize = DEV_BSIZE;
6372 
6373 	} else if (vd->volume) {
6374 
6375 		/* volume (slice or full disk) */
6376 		rv = ldi_get_size(vd->ldi_handle[0], &backend_size);
6377 		if (rv != DDI_SUCCESS) {
6378 			PR0("ldi_get_size() failed for %s", vd->device_path);
6379 			return (EIO);
6380 		}
6381 		backend_bsize = DEV_BSIZE;
6382 		vdisk_bsize = DEV_BSIZE;
6383 
6384 	} else {
6385 
6386 		/* physical disk or slice */
6387 		rv = ldi_ioctl(vd->ldi_handle[0], DKIOCGMEDIAINFO,
6388 		    (intptr_t)&minfo, (vd->open_flags | FKIOCTL),
6389 		    kcred, &rval);
6390 		if (rv != 0) {
6391 			PR0("DKIOCGMEDIAINFO failed for %s (err=%d)",
6392 			    vd->device_path, rv);
6393 			return (rv);
6394 		}
6395 
6396 		if (vd->vdisk_type == VD_DISK_TYPE_SLICE) {
6397 			rv = ldi_get_size(vd->ldi_handle[0], &backend_size);
6398 			if (rv != DDI_SUCCESS) {
6399 				PR0("ldi_get_size() failed for %s",
6400 				    vd->device_path);
6401 				return (EIO);
6402 			}
6403 		} else {
6404 			ASSERT(vd->vdisk_type == VD_DISK_TYPE_DISK);
6405 			backend_size = minfo.dki_capacity * minfo.dki_lbsize;
6406 		}
6407 
6408 		backend_bsize = minfo.dki_lbsize;
6409 		media = DK_MEDIATYPE2VD_MEDIATYPE(minfo.dki_media_type);
6410 
6411 		/*
6412 		 * If the device is a CD or a DVD then we force the vdisk block
6413 		 * size to 512 bytes (DEV_BSIZE). In that case, vdisk_bsize can
6414 		 * be different from backend_size.
6415 		 */
6416 		if (media == VD_MEDIA_CD || media == VD_MEDIA_DVD)
6417 			vdisk_bsize = DEV_BSIZE;
6418 		else
6419 			vdisk_bsize = backend_bsize;
6420 	}
6421 
6422 	/* check vdisk block size */
6423 	if (vdisk_bsize == 0 || vdisk_bsize % DEV_BSIZE != 0)
6424 		return (EINVAL);
6425 
6426 	old_size = vd->vdisk_size;
6427 	new_size = backend_size / vdisk_bsize;
6428 
6429 	/* check if size has changed */
6430 	if (old_size != VD_SIZE_UNKNOWN && old_size == new_size &&
6431 	    vd->vdisk_bsize == vdisk_bsize)
6432 		return (0);
6433 
6434 	/* cache info for blk conversion */
6435 	for (n = vdisk_bsize / DEV_BSIZE; n > 1; n >>= 1) {
6436 		if ((n & 0x1) != 0) {
6437 			/* blk_size is not a power of 2 */
6438 			return (EINVAL);
6439 		}
6440 		nshift++;
6441 	}
6442 
6443 	vd->vio_bshift = nshift;
6444 	vd->vdisk_size = new_size;
6445 	vd->vdisk_bsize = vdisk_bsize;
6446 	vd->backend_bsize = backend_bsize;
6447 
6448 	if (vd->file || vd->volume)
6449 		vd->dskimg_size = backend_size;
6450 
6451 	/*
6452 	 * If we are exporting a single-slice disk and the size of the backend
6453 	 * has changed then we regenerate the partition setup so that the
6454 	 * partitioning matches with the new disk backend size.
6455 	 */
6456 
6457 	if (vd->vdisk_type == VD_DISK_TYPE_SLICE) {
6458 		/* slice or file or device exported as a slice */
6459 		if (vd->vdisk_label == VD_DISK_LABEL_VTOC) {
6460 			rv = vd_setup_partition_vtoc(vd);
6461 			if (rv != 0) {
6462 				PR0("vd_setup_partition_vtoc() failed for %s "
6463 				    "(err = %d)", vd->device_path, rv);
6464 				return (rv);
6465 			}
6466 		} else {
6467 			rv = vd_setup_partition_efi(vd);
6468 			if (rv != 0) {
6469 				PR0("vd_setup_partition_efi() failed for %s "
6470 				    "(err = %d)", vd->device_path, rv);
6471 				return (rv);
6472 			}
6473 		}
6474 
6475 	} else if (!vd->file && !vd->volume) {
6476 		/* physical disk */
6477 		ASSERT(vd->vdisk_type == VD_DISK_TYPE_DISK);
6478 		vd->vdisk_media = media;
6479 	}
6480 
6481 	return (0);
6482 }
6483 
6484 /*
6485  * Description:
6486  *	Open a device using its device path and identify if this is
6487  *	a disk device or a volume device.
6488  *
6489  * Parameters:
6490  *	vd 	- pointer to structure containing the vDisk info
6491  *	dtype	- return the driver type of the device
6492  *
6493  * Return Value
6494  *	0	- success
6495  *	!= 0	- some other non-zero return value from ldi(9F) functions
6496  */
6497 static int
6498 vd_identify_dev(vd_t *vd, int *dtype)
6499 {
6500 	int status, i;
6501 	char *device_path = vd->device_path;
6502 	char *drv_name;
6503 	int drv_type;
6504 	vds_t *vds = vd->vds;
6505 
6506 	status = vd_open_using_ldi_by_name(vd, vd->open_flags & ~FWRITE);
6507 	if (status != 0) {
6508 		PR0("Failed to open (%s) = errno %d", device_path, status);
6509 		return (status);
6510 	}
6511 
6512 	/* Get device number of backing device */
6513 	if ((status = ldi_get_dev(vd->ldi_handle[0], &vd->dev[0])) != 0) {
6514 		PRN("ldi_get_dev() returned errno %d for %s",
6515 		    status, device_path);
6516 		return (status);
6517 	}
6518 
6519 	/*
6520 	 * We start by looking if the driver is in the list from vds.conf
6521 	 * so that we can override the built-in list using vds.conf.
6522 	 */
6523 	drv_name = ddi_major_to_name(getmajor(vd->dev[0]));
6524 	drv_type = VD_DRIVER_UNKNOWN;
6525 
6526 	/* check vds.conf list */
6527 	for (i = 0; i < vds->num_drivers; i++) {
6528 		if (vds->driver_types[i].type == VD_DRIVER_UNKNOWN) {
6529 			/* ignore invalid entries */
6530 			continue;
6531 		}
6532 		if (strcmp(drv_name, vds->driver_types[i].name) == 0) {
6533 			drv_type = vds->driver_types[i].type;
6534 			goto done;
6535 		}
6536 	}
6537 
6538 	/* check built-in list */
6539 	for (i = 0; i < VDS_NUM_DRIVERS; i++) {
6540 		if (strcmp(drv_name, vds_driver_types[i].name) == 0) {
6541 			drv_type = vds_driver_types[i].type;
6542 			goto done;
6543 		}
6544 	}
6545 
6546 done:
6547 	PR0("driver %s identified as %s", drv_name,
6548 	    (drv_type == VD_DRIVER_DISK)? "DISK" :
6549 	    (drv_type == VD_DRIVER_VOLUME)? "VOLUME" : "UNKNOWN");
6550 
6551 	if (strcmp(drv_name, "zfs") == 0)
6552 		vd->zvol = B_TRUE;
6553 
6554 	*dtype = drv_type;
6555 
6556 	return (0);
6557 }
6558 
6559 static int
6560 vd_setup_vd(vd_t *vd)
6561 {
6562 	int		status, drv_type, pseudo;
6563 	dev_info_t	*dip;
6564 	vnode_t 	*vnp;
6565 	char		*path = vd->device_path;
6566 	char		tq_name[TASKQ_NAMELEN];
6567 
6568 	/* make sure the vdisk backend is valid */
6569 	if ((status = lookupname(path, UIO_SYSSPACE,
6570 	    FOLLOW, NULLVPP, &vnp)) != 0) {
6571 		PR0("Cannot lookup %s errno %d", path, status);
6572 		goto done;
6573 	}
6574 
6575 	switch (vnp->v_type) {
6576 	case VREG:
6577 		/*
6578 		 * Backend is a file so it is exported as a full disk or as a
6579 		 * single slice disk using the vnode interface.
6580 		 */
6581 		VN_RELE(vnp);
6582 		vd->volume = B_FALSE;
6583 		status = vd_setup_backend_vnode(vd);
6584 		break;
6585 
6586 	case VBLK:
6587 	case VCHR:
6588 		/*
6589 		 * Backend is a device. In that case, it is exported using the
6590 		 * LDI interface, and it is exported either as a single-slice
6591 		 * disk or as a full disk depending on the "slice" option and
6592 		 * on the type of device.
6593 		 *
6594 		 * - A volume device is exported as a single-slice disk if the
6595 		 *   "slice" is specified, otherwise it is exported as a full
6596 		 *   disk.
6597 		 *
6598 		 * - A disk slice (different from slice 2) is always exported
6599 		 *   as a single slice disk using the LDI interface.
6600 		 *
6601 		 * - The slice 2 of a disk is exported as a single slice disk
6602 		 *   if the "slice" option is specified, otherwise the entire
6603 		 *   disk will be exported.
6604 		 *
6605 		 * - The slice of a CD or DVD is exported as single slice disk
6606 		 *   if the "slice" option is specified, otherwise the entire
6607 		 *   disk will be exported.
6608 		 */
6609 
6610 		/* check if this is a pseudo device */
6611 		if ((dip = ddi_hold_devi_by_instance(getmajor(vnp->v_rdev),
6612 		    dev_to_instance(vnp->v_rdev), 0))  == NULL) {
6613 			PRN("%s is no longer accessible", path);
6614 			VN_RELE(vnp);
6615 			status = EIO;
6616 			break;
6617 		}
6618 		pseudo = is_pseudo_device(dip);
6619 		ddi_release_devi(dip);
6620 		VN_RELE(vnp);
6621 
6622 		if ((status = vd_identify_dev(vd, &drv_type)) != 0) {
6623 			if (status != ENODEV && status != ENXIO &&
6624 			    status != ENOENT && status != EROFS) {
6625 				PRN("%s identification failed with status %d",
6626 				    path, status);
6627 				status = EIO;
6628 			}
6629 			break;
6630 		}
6631 
6632 		/*
6633 		 * If the driver hasn't been identified then we consider that
6634 		 * pseudo devices are volumes and other devices are disks.
6635 		 */
6636 		if (drv_type == VD_DRIVER_VOLUME ||
6637 		    (drv_type == VD_DRIVER_UNKNOWN && pseudo)) {
6638 			vd->volume = B_TRUE;
6639 		}
6640 
6641 		/*
6642 		 * If this is a volume device then its usage depends if the
6643 		 * "slice" option is set or not. If the "slice" option is set
6644 		 * then the volume device will be exported as a single slice,
6645 		 * otherwise it will be exported as a full disk.
6646 		 *
6647 		 * For backward compatibility, if vd_volume_force_slice is set
6648 		 * then we always export volume devices as slices.
6649 		 */
6650 		if (vd->volume && vd_volume_force_slice) {
6651 			vd->vdisk_type = VD_DISK_TYPE_SLICE;
6652 			vd->nslices = 1;
6653 		}
6654 
6655 		status = vd_setup_backend_ldi(vd);
6656 		break;
6657 
6658 	default:
6659 		PRN("Unsupported vdisk backend %s", path);
6660 		VN_RELE(vnp);
6661 		status = EBADF;
6662 	}
6663 
6664 done:
6665 	if (status != 0) {
6666 		/*
6667 		 * If the error is retryable print an error message only
6668 		 * during the first try.
6669 		 */
6670 		if (status == ENXIO || status == ENODEV ||
6671 		    status == ENOENT || status == EROFS) {
6672 			if (!(vd->initialized & VD_SETUP_ERROR)) {
6673 				PRN("%s is currently inaccessible (error %d)",
6674 				    path, status);
6675 			}
6676 			status = EAGAIN;
6677 		} else {
6678 			PRN("%s can not be exported as a virtual disk "
6679 			    "(error %d)", path, status);
6680 		}
6681 		vd->initialized |= VD_SETUP_ERROR;
6682 
6683 	} else if (vd->initialized & VD_SETUP_ERROR) {
6684 		/* print a message only if we previously had an error */
6685 		PRN("%s is now online", path);
6686 		vd->initialized &= ~VD_SETUP_ERROR;
6687 	}
6688 
6689 	/*
6690 	 * For file or ZFS volume we also need an I/O queue.
6691 	 *
6692 	 * The I/O task queue is initialized here and not in vds_do_init_vd()
6693 	 * (as the start and completion queues) because vd_setup_vd() will be
6694 	 * call again if the backend is not available, and we need to know if
6695 	 * the backend is a ZFS volume or a file.
6696 	 */
6697 	if ((vd->file || vd->zvol) && vd->ioq == NULL) {
6698 		(void) snprintf(tq_name, sizeof (tq_name), "vd_ioq%lu", vd->id);
6699 
6700 		if ((vd->ioq = ddi_taskq_create(vd->vds->dip, tq_name,
6701 		    vd_ioq_nthreads, TASKQ_DEFAULTPRI, 0)) == NULL) {
6702 			PRN("Could not create io task queue");
6703 			return (EIO);
6704 		}
6705 	}
6706 
6707 	return (status);
6708 }
6709 
6710 static int
6711 vds_do_init_vd(vds_t *vds, uint64_t id, char *device_path, uint64_t options,
6712     uint64_t ldc_id, vd_t **vdp)
6713 {
6714 	char			tq_name[TASKQ_NAMELEN];
6715 	int			status;
6716 	ddi_iblock_cookie_t	iblock = NULL;
6717 	ldc_attr_t		ldc_attr;
6718 	vd_t			*vd;
6719 
6720 
6721 	ASSERT(vds != NULL);
6722 	ASSERT(device_path != NULL);
6723 	ASSERT(vdp != NULL);
6724 	PR0("Adding vdisk for %s", device_path);
6725 
6726 	if ((vd = kmem_zalloc(sizeof (*vd), KM_NOSLEEP)) == NULL) {
6727 		PRN("No memory for virtual disk");
6728 		return (EAGAIN);
6729 	}
6730 	*vdp = vd;	/* assign here so vds_destroy_vd() can cleanup later */
6731 	vd->id = id;
6732 	vd->vds = vds;
6733 	(void) strncpy(vd->device_path, device_path, MAXPATHLEN);
6734 
6735 	/* Setup open flags */
6736 	vd->open_flags = FREAD;
6737 
6738 	if (!(options & VD_OPT_RDONLY))
6739 		vd->open_flags |= FWRITE;
6740 
6741 	if (options & VD_OPT_EXCLUSIVE)
6742 		vd->open_flags |= FEXCL;
6743 
6744 	/* Setup disk type */
6745 	if (options & VD_OPT_SLICE) {
6746 		vd->vdisk_type = VD_DISK_TYPE_SLICE;
6747 		vd->nslices = 1;
6748 	} else {
6749 		vd->vdisk_type = VD_DISK_TYPE_DISK;
6750 		vd->nslices = V_NUMPAR;
6751 	}
6752 
6753 	/* default disk label */
6754 	vd->vdisk_label = VD_DISK_LABEL_UNK;
6755 
6756 	/* Open vdisk and initialize parameters */
6757 	if ((status = vd_setup_vd(vd)) == 0) {
6758 		vd->initialized |= VD_DISK_READY;
6759 
6760 		ASSERT(vd->nslices > 0 && vd->nslices <= V_NUMPAR);
6761 		PR0("vdisk_type = %s, volume = %s, file = %s, nslices = %u",
6762 		    ((vd->vdisk_type == VD_DISK_TYPE_DISK) ? "disk" : "slice"),
6763 		    (vd->volume ? "yes" : "no"), (vd->file ? "yes" : "no"),
6764 		    vd->nslices);
6765 	} else {
6766 		if (status != EAGAIN)
6767 			return (status);
6768 	}
6769 
6770 	/* Initialize locking */
6771 	if (ddi_get_soft_iblock_cookie(vds->dip, DDI_SOFTINT_MED,
6772 	    &iblock) != DDI_SUCCESS) {
6773 		PRN("Could not get iblock cookie.");
6774 		return (EIO);
6775 	}
6776 
6777 	mutex_init(&vd->lock, NULL, MUTEX_DRIVER, iblock);
6778 	vd->initialized |= VD_LOCKING;
6779 
6780 
6781 	/* Create start and completion task queues for the vdisk */
6782 	(void) snprintf(tq_name, sizeof (tq_name), "vd_startq%lu", id);
6783 	PR1("tq_name = %s", tq_name);
6784 	if ((vd->startq = ddi_taskq_create(vds->dip, tq_name, 1,
6785 	    TASKQ_DEFAULTPRI, 0)) == NULL) {
6786 		PRN("Could not create task queue");
6787 		return (EIO);
6788 	}
6789 	(void) snprintf(tq_name, sizeof (tq_name), "vd_completionq%lu", id);
6790 	PR1("tq_name = %s", tq_name);
6791 	if ((vd->completionq = ddi_taskq_create(vds->dip, tq_name, 1,
6792 	    TASKQ_DEFAULTPRI, 0)) == NULL) {
6793 		PRN("Could not create task queue");
6794 		return (EIO);
6795 	}
6796 
6797 	/* Allocate the staging buffer */
6798 	vd->max_msglen = sizeof (vio_msg_t);	/* baseline vio message size */
6799 	vd->vio_msgp = kmem_alloc(vd->max_msglen, KM_SLEEP);
6800 
6801 	vd->enabled = 1;	/* before callback can dispatch to startq */
6802 
6803 
6804 	/* Bring up LDC */
6805 	ldc_attr.devclass	= LDC_DEV_BLK_SVC;
6806 	ldc_attr.instance	= ddi_get_instance(vds->dip);
6807 	ldc_attr.mode		= LDC_MODE_UNRELIABLE;
6808 	ldc_attr.mtu		= VD_LDC_MTU;
6809 	if ((status = ldc_init(ldc_id, &ldc_attr, &vd->ldc_handle)) != 0) {
6810 		PRN("Could not initialize LDC channel %lx, "
6811 		    "init failed with error %d", ldc_id, status);
6812 		return (status);
6813 	}
6814 	vd->initialized |= VD_LDC;
6815 
6816 	if ((status = ldc_reg_callback(vd->ldc_handle, vd_handle_ldc_events,
6817 	    (caddr_t)vd)) != 0) {
6818 		PRN("Could not initialize LDC channel %lu,"
6819 		    "reg_callback failed with error %d", ldc_id, status);
6820 		return (status);
6821 	}
6822 
6823 	if ((status = ldc_open(vd->ldc_handle)) != 0) {
6824 		PRN("Could not initialize LDC channel %lu,"
6825 		    "open failed with error %d", ldc_id, status);
6826 		return (status);
6827 	}
6828 
6829 	if ((status = ldc_up(vd->ldc_handle)) != 0) {
6830 		PR0("ldc_up() returned errno %d", status);
6831 	}
6832 
6833 	/* Allocate the inband task memory handle */
6834 	status = ldc_mem_alloc_handle(vd->ldc_handle, &(vd->inband_task.mhdl));
6835 	if (status) {
6836 		PRN("Could not initialize LDC channel %lu,"
6837 		    "alloc_handle failed with error %d", ldc_id, status);
6838 		return (ENXIO);
6839 	}
6840 
6841 	/* Add the successfully-initialized vdisk to the server's table */
6842 	if (mod_hash_insert(vds->vd_table, (mod_hash_key_t)id, vd) != 0) {
6843 		PRN("Error adding vdisk ID %lu to table", id);
6844 		return (EIO);
6845 	}
6846 
6847 	/* store initial state */
6848 	vd->state = VD_STATE_INIT;
6849 
6850 	return (0);
6851 }
6852 
6853 static void
6854 vd_free_dring_task(vd_t *vdp)
6855 {
6856 	if (vdp->dring_task != NULL) {
6857 		ASSERT(vdp->dring_len != 0);
6858 		/* Free all dring_task memory handles */
6859 		for (int i = 0; i < vdp->dring_len; i++) {
6860 			(void) ldc_mem_free_handle(vdp->dring_task[i].mhdl);
6861 			kmem_free(vdp->dring_task[i].request,
6862 			    (vdp->descriptor_size -
6863 			    sizeof (vio_dring_entry_hdr_t)));
6864 			vdp->dring_task[i].request = NULL;
6865 			kmem_free(vdp->dring_task[i].msg, vdp->max_msglen);
6866 			vdp->dring_task[i].msg = NULL;
6867 		}
6868 		kmem_free(vdp->dring_task,
6869 		    (sizeof (*vdp->dring_task)) * vdp->dring_len);
6870 		vdp->dring_task = NULL;
6871 	}
6872 
6873 	if (vdp->write_queue != NULL) {
6874 		kmem_free(vdp->write_queue, sizeof (buf_t *) * vdp->dring_len);
6875 		vdp->write_queue = NULL;
6876 	}
6877 }
6878 
6879 /*
6880  * Destroy the state associated with a virtual disk
6881  */
6882 static void
6883 vds_destroy_vd(void *arg)
6884 {
6885 	vd_t	*vd = (vd_t *)arg;
6886 	int	retry = 0, rv;
6887 
6888 	if (vd == NULL)
6889 		return;
6890 
6891 	PR0("Destroying vdisk state");
6892 
6893 	/* Disable queuing requests for the vdisk */
6894 	if (vd->initialized & VD_LOCKING) {
6895 		mutex_enter(&vd->lock);
6896 		vd->enabled = 0;
6897 		mutex_exit(&vd->lock);
6898 	}
6899 
6900 	/* Drain and destroy start queue (*before* destroying ioq) */
6901 	if (vd->startq != NULL)
6902 		ddi_taskq_destroy(vd->startq);	/* waits for queued tasks */
6903 
6904 	/* Drain and destroy the I/O queue (*before* destroying completionq) */
6905 	if (vd->ioq != NULL)
6906 		ddi_taskq_destroy(vd->ioq);
6907 
6908 	/* Drain and destroy completion queue (*before* shutting down LDC) */
6909 	if (vd->completionq != NULL)
6910 		ddi_taskq_destroy(vd->completionq);	/* waits for tasks */
6911 
6912 	vd_free_dring_task(vd);
6913 
6914 	/* Free the inband task memory handle */
6915 	(void) ldc_mem_free_handle(vd->inband_task.mhdl);
6916 
6917 	/* Shut down LDC */
6918 	if (vd->initialized & VD_LDC) {
6919 		/* unmap the dring */
6920 		if (vd->initialized & VD_DRING)
6921 			(void) ldc_mem_dring_unmap(vd->dring_handle);
6922 
6923 		/* close LDC channel - retry on EAGAIN */
6924 		while ((rv = ldc_close(vd->ldc_handle)) == EAGAIN) {
6925 			if (++retry > vds_ldc_retries) {
6926 				PR0("Timed out closing channel");
6927 				break;
6928 			}
6929 			drv_usecwait(vds_ldc_delay);
6930 		}
6931 		if (rv == 0) {
6932 			(void) ldc_unreg_callback(vd->ldc_handle);
6933 			(void) ldc_fini(vd->ldc_handle);
6934 		} else {
6935 			/*
6936 			 * Closing the LDC channel has failed. Ideally we should
6937 			 * fail here but there is no Zeus level infrastructure
6938 			 * to handle this. The MD has already been changed and
6939 			 * we have to do the close. So we try to do as much
6940 			 * clean up as we can.
6941 			 */
6942 			(void) ldc_set_cb_mode(vd->ldc_handle, LDC_CB_DISABLE);
6943 			while (ldc_unreg_callback(vd->ldc_handle) == EAGAIN)
6944 				drv_usecwait(vds_ldc_delay);
6945 		}
6946 	}
6947 
6948 	/* Free the staging buffer for msgs */
6949 	if (vd->vio_msgp != NULL) {
6950 		kmem_free(vd->vio_msgp, vd->max_msglen);
6951 		vd->vio_msgp = NULL;
6952 	}
6953 
6954 	/* Free the inband message buffer */
6955 	if (vd->inband_task.msg != NULL) {
6956 		kmem_free(vd->inband_task.msg, vd->max_msglen);
6957 		vd->inband_task.msg = NULL;
6958 	}
6959 
6960 	if (vd->file) {
6961 		/* Close file */
6962 		(void) VOP_CLOSE(vd->file_vnode, vd->open_flags, 1,
6963 		    0, kcred, NULL);
6964 		VN_RELE(vd->file_vnode);
6965 	} else {
6966 		/* Close any open backing-device slices */
6967 		for (uint_t slice = 0; slice < V_NUMPAR; slice++) {
6968 			if (vd->ldi_handle[slice] != NULL) {
6969 				PR0("Closing slice %u", slice);
6970 				(void) ldi_close(vd->ldi_handle[slice],
6971 				    vd->open_flags, kcred);
6972 			}
6973 		}
6974 	}
6975 
6976 	/* Free disk image devid */
6977 	if (vd->dskimg_devid != NULL)
6978 		ddi_devid_free(vd->dskimg_devid);
6979 
6980 	/* Free any fake label */
6981 	if (vd->flabel) {
6982 		kmem_free(vd->flabel, vd->flabel_size);
6983 		vd->flabel = NULL;
6984 		vd->flabel_size = 0;
6985 	}
6986 
6987 	/* Free lock */
6988 	if (vd->initialized & VD_LOCKING)
6989 		mutex_destroy(&vd->lock);
6990 
6991 	/* Finally, free the vdisk structure itself */
6992 	kmem_free(vd, sizeof (*vd));
6993 }
6994 
6995 static int
6996 vds_init_vd(vds_t *vds, uint64_t id, char *device_path, uint64_t options,
6997     uint64_t ldc_id)
6998 {
6999 	int	status;
7000 	vd_t	*vd = NULL;
7001 
7002 
7003 	if ((status = vds_do_init_vd(vds, id, device_path, options,
7004 	    ldc_id, &vd)) != 0)
7005 		vds_destroy_vd(vd);
7006 
7007 	return (status);
7008 }
7009 
7010 static int
7011 vds_do_get_ldc_id(md_t *md, mde_cookie_t vd_node, mde_cookie_t *channel,
7012     uint64_t *ldc_id)
7013 {
7014 	int	num_channels;
7015 
7016 
7017 	/* Look for channel endpoint child(ren) of the vdisk MD node */
7018 	if ((num_channels = md_scan_dag(md, vd_node,
7019 	    md_find_name(md, VD_CHANNEL_ENDPOINT),
7020 	    md_find_name(md, "fwd"), channel)) <= 0) {
7021 		PRN("No \"%s\" found for virtual disk", VD_CHANNEL_ENDPOINT);
7022 		return (-1);
7023 	}
7024 
7025 	/* Get the "id" value for the first channel endpoint node */
7026 	if (md_get_prop_val(md, channel[0], VD_ID_PROP, ldc_id) != 0) {
7027 		PRN("No \"%s\" property found for \"%s\" of vdisk",
7028 		    VD_ID_PROP, VD_CHANNEL_ENDPOINT);
7029 		return (-1);
7030 	}
7031 
7032 	if (num_channels > 1) {
7033 		PRN("Using ID of first of multiple channels for this vdisk");
7034 	}
7035 
7036 	return (0);
7037 }
7038 
7039 static int
7040 vds_get_ldc_id(md_t *md, mde_cookie_t vd_node, uint64_t *ldc_id)
7041 {
7042 	int		num_nodes, status;
7043 	size_t		size;
7044 	mde_cookie_t	*channel;
7045 
7046 
7047 	if ((num_nodes = md_node_count(md)) <= 0) {
7048 		PRN("Invalid node count in Machine Description subtree");
7049 		return (-1);
7050 	}
7051 	size = num_nodes*(sizeof (*channel));
7052 	channel = kmem_zalloc(size, KM_SLEEP);
7053 	status = vds_do_get_ldc_id(md, vd_node, channel, ldc_id);
7054 	kmem_free(channel, size);
7055 
7056 	return (status);
7057 }
7058 
7059 /*
7060  * Function:
7061  *	vds_get_options
7062  *
7063  * Description:
7064  * 	Parse the options of a vds node. Options are defined as an array
7065  *	of strings in the vds-block-device-opts property of the vds node
7066  *	in the machine description. Options are returned as a bitmask. The
7067  *	mapping between the bitmask options and the options strings from the
7068  *	machine description is defined in the vd_bdev_options[] array.
7069  *
7070  *	The vds-block-device-opts property is optional. If a vds has no such
7071  *	property then no option is defined.
7072  *
7073  * Parameters:
7074  *	md		- machine description.
7075  *	vd_node		- vds node in the machine description for which
7076  *			  options have to be parsed.
7077  *	options		- the returned options.
7078  *
7079  * Return Code:
7080  *	none.
7081  */
7082 static void
7083 vds_get_options(md_t *md, mde_cookie_t vd_node, uint64_t *options)
7084 {
7085 	char	*optstr, *opt;
7086 	int	len, n, i;
7087 
7088 	*options = 0;
7089 
7090 	if (md_get_prop_data(md, vd_node, VD_BLOCK_DEVICE_OPTS,
7091 	    (uint8_t **)&optstr, &len) != 0) {
7092 		PR0("No options found");
7093 		return;
7094 	}
7095 
7096 	/* parse options */
7097 	opt = optstr;
7098 	n = sizeof (vd_bdev_options) / sizeof (vd_option_t);
7099 
7100 	while (opt < optstr + len) {
7101 		for (i = 0; i < n; i++) {
7102 			if (strncmp(vd_bdev_options[i].vdo_name,
7103 			    opt, VD_OPTION_NLEN) == 0) {
7104 				*options |= vd_bdev_options[i].vdo_value;
7105 				break;
7106 			}
7107 		}
7108 
7109 		if (i < n) {
7110 			PR0("option: %s", opt);
7111 		} else {
7112 			PRN("option %s is unknown or unsupported", opt);
7113 		}
7114 
7115 		opt += strlen(opt) + 1;
7116 	}
7117 }
7118 
7119 static void
7120 vds_driver_types_free(vds_t *vds)
7121 {
7122 	if (vds->driver_types != NULL) {
7123 		kmem_free(vds->driver_types, sizeof (vd_driver_type_t) *
7124 		    vds->num_drivers);
7125 		vds->driver_types = NULL;
7126 		vds->num_drivers = 0;
7127 	}
7128 }
7129 
7130 /*
7131  * Update the driver type list with information from vds.conf.
7132  */
7133 static void
7134 vds_driver_types_update(vds_t *vds)
7135 {
7136 	char **list, *s;
7137 	uint_t i, num, count = 0, len;
7138 
7139 	if (ddi_prop_lookup_string_array(DDI_DEV_T_ANY, vds->dip,
7140 	    DDI_PROP_DONTPASS, "driver-type-list", &list, &num) !=
7141 	    DDI_PROP_SUCCESS)
7142 		return;
7143 
7144 	/*
7145 	 * We create a driver_types list with as many as entries as there
7146 	 * is in the driver-type-list from vds.conf. However only valid
7147 	 * entries will be populated (i.e. entries from driver-type-list
7148 	 * with a valid syntax). Invalid entries will be left blank so
7149 	 * they will have no driver name and the driver type will be
7150 	 * VD_DRIVER_UNKNOWN (= 0).
7151 	 */
7152 	vds->num_drivers = num;
7153 	vds->driver_types = kmem_zalloc(sizeof (vd_driver_type_t) * num,
7154 	    KM_SLEEP);
7155 
7156 	for (i = 0; i < num; i++) {
7157 
7158 		s = strchr(list[i], ':');
7159 
7160 		if (s == NULL) {
7161 			PRN("vds.conf: driver-type-list, entry %d (%s): "
7162 			    "a colon is expected in the entry",
7163 			    i, list[i]);
7164 			continue;
7165 		}
7166 
7167 		len = (uintptr_t)s - (uintptr_t)list[i];
7168 
7169 		if (len == 0) {
7170 			PRN("vds.conf: driver-type-list, entry %d (%s): "
7171 			    "the driver name is empty",
7172 			    i, list[i]);
7173 			continue;
7174 		}
7175 
7176 		if (len >= VD_DRIVER_NAME_LEN) {
7177 			PRN("vds.conf: driver-type-list, entry %d (%s): "
7178 			    "the driver name is too long",
7179 			    i, list[i]);
7180 			continue;
7181 		}
7182 
7183 		if (strcmp(s + 1, "disk") == 0) {
7184 
7185 			vds->driver_types[i].type = VD_DRIVER_DISK;
7186 
7187 		} else if (strcmp(s + 1, "volume") == 0) {
7188 
7189 			vds->driver_types[i].type = VD_DRIVER_VOLUME;
7190 
7191 		} else {
7192 			PRN("vds.conf: driver-type-list, entry %d (%s): "
7193 			    "the driver type is invalid",
7194 			    i, list[i]);
7195 			continue;
7196 		}
7197 
7198 		(void) strncpy(vds->driver_types[i].name, list[i], len);
7199 
7200 		PR0("driver-type-list, entry %d (%s) added",
7201 		    i, list[i]);
7202 
7203 		count++;
7204 	}
7205 
7206 	ddi_prop_free(list);
7207 
7208 	if (count == 0) {
7209 		/* nothing was added, clean up */
7210 		vds_driver_types_free(vds);
7211 	}
7212 }
7213 
7214 static void
7215 vds_add_vd(vds_t *vds, md_t *md, mde_cookie_t vd_node)
7216 {
7217 	char		*device_path = NULL;
7218 	uint64_t	id = 0, ldc_id = 0, options = 0;
7219 
7220 	if (md_get_prop_val(md, vd_node, VD_ID_PROP, &id) != 0) {
7221 		PRN("Error getting vdisk \"%s\"", VD_ID_PROP);
7222 		return;
7223 	}
7224 	PR0("Adding vdisk ID %lu", id);
7225 	if (md_get_prop_str(md, vd_node, VD_BLOCK_DEVICE_PROP,
7226 	    &device_path) != 0) {
7227 		PRN("Error getting vdisk \"%s\"", VD_BLOCK_DEVICE_PROP);
7228 		return;
7229 	}
7230 
7231 	vds_get_options(md, vd_node, &options);
7232 
7233 	if (vds_get_ldc_id(md, vd_node, &ldc_id) != 0) {
7234 		PRN("Error getting LDC ID for vdisk %lu", id);
7235 		return;
7236 	}
7237 
7238 	if (vds_init_vd(vds, id, device_path, options, ldc_id) != 0) {
7239 		PRN("Failed to add vdisk ID %lu", id);
7240 		if (mod_hash_destroy(vds->vd_table, (mod_hash_key_t)id) != 0)
7241 			PRN("No vDisk entry found for vdisk ID %lu", id);
7242 		return;
7243 	}
7244 }
7245 
7246 static void
7247 vds_remove_vd(vds_t *vds, md_t *md, mde_cookie_t vd_node)
7248 {
7249 	uint64_t	id = 0;
7250 
7251 
7252 	if (md_get_prop_val(md, vd_node, VD_ID_PROP, &id) != 0) {
7253 		PRN("Unable to get \"%s\" property from vdisk's MD node",
7254 		    VD_ID_PROP);
7255 		return;
7256 	}
7257 	PR0("Removing vdisk ID %lu", id);
7258 	if (mod_hash_destroy(vds->vd_table, (mod_hash_key_t)id) != 0)
7259 		PRN("No vdisk entry found for vdisk ID %lu", id);
7260 }
7261 
7262 static void
7263 vds_change_vd(vds_t *vds, md_t *prev_md, mde_cookie_t prev_vd_node,
7264     md_t *curr_md, mde_cookie_t curr_vd_node)
7265 {
7266 	char		*curr_dev, *prev_dev;
7267 	uint64_t	curr_id = 0, curr_ldc_id = 0, curr_options = 0;
7268 	uint64_t	prev_id = 0, prev_ldc_id = 0, prev_options = 0;
7269 	size_t		len;
7270 
7271 
7272 	/* Validate that vdisk ID has not changed */
7273 	if (md_get_prop_val(prev_md, prev_vd_node, VD_ID_PROP, &prev_id) != 0) {
7274 		PRN("Error getting previous vdisk \"%s\" property",
7275 		    VD_ID_PROP);
7276 		return;
7277 	}
7278 	if (md_get_prop_val(curr_md, curr_vd_node, VD_ID_PROP, &curr_id) != 0) {
7279 		PRN("Error getting current vdisk \"%s\" property", VD_ID_PROP);
7280 		return;
7281 	}
7282 	if (curr_id != prev_id) {
7283 		PRN("Not changing vdisk:  ID changed from %lu to %lu",
7284 		    prev_id, curr_id);
7285 		return;
7286 	}
7287 
7288 	/* Validate that LDC ID has not changed */
7289 	if (vds_get_ldc_id(prev_md, prev_vd_node, &prev_ldc_id) != 0) {
7290 		PRN("Error getting LDC ID for vdisk %lu", prev_id);
7291 		return;
7292 	}
7293 
7294 	if (vds_get_ldc_id(curr_md, curr_vd_node, &curr_ldc_id) != 0) {
7295 		PRN("Error getting LDC ID for vdisk %lu", curr_id);
7296 		return;
7297 	}
7298 	if (curr_ldc_id != prev_ldc_id) {
7299 		_NOTE(NOTREACHED);	/* lint is confused */
7300 		PRN("Not changing vdisk:  "
7301 		    "LDC ID changed from %lu to %lu", prev_ldc_id, curr_ldc_id);
7302 		return;
7303 	}
7304 
7305 	/* Determine whether device path has changed */
7306 	if (md_get_prop_str(prev_md, prev_vd_node, VD_BLOCK_DEVICE_PROP,
7307 	    &prev_dev) != 0) {
7308 		PRN("Error getting previous vdisk \"%s\"",
7309 		    VD_BLOCK_DEVICE_PROP);
7310 		return;
7311 	}
7312 	if (md_get_prop_str(curr_md, curr_vd_node, VD_BLOCK_DEVICE_PROP,
7313 	    &curr_dev) != 0) {
7314 		PRN("Error getting current vdisk \"%s\"", VD_BLOCK_DEVICE_PROP);
7315 		return;
7316 	}
7317 	if (((len = strlen(curr_dev)) == strlen(prev_dev)) &&
7318 	    (strncmp(curr_dev, prev_dev, len) == 0))
7319 		return;	/* no relevant (supported) change */
7320 
7321 	/* Validate that options have not changed */
7322 	vds_get_options(prev_md, prev_vd_node, &prev_options);
7323 	vds_get_options(curr_md, curr_vd_node, &curr_options);
7324 	if (prev_options != curr_options) {
7325 		PRN("Not changing vdisk:  options changed from %lx to %lx",
7326 		    prev_options, curr_options);
7327 		return;
7328 	}
7329 
7330 	PR0("Changing vdisk ID %lu", prev_id);
7331 
7332 	/* Remove old state, which will close vdisk and reset */
7333 	if (mod_hash_destroy(vds->vd_table, (mod_hash_key_t)prev_id) != 0)
7334 		PRN("No entry found for vdisk ID %lu", prev_id);
7335 
7336 	/* Re-initialize vdisk with new state */
7337 	if (vds_init_vd(vds, curr_id, curr_dev, curr_options,
7338 	    curr_ldc_id) != 0) {
7339 		PRN("Failed to change vdisk ID %lu", curr_id);
7340 		return;
7341 	}
7342 }
7343 
7344 static int
7345 vds_process_md(void *arg, mdeg_result_t *md)
7346 {
7347 	int	i;
7348 	vds_t	*vds = arg;
7349 
7350 
7351 	if (md == NULL)
7352 		return (MDEG_FAILURE);
7353 	ASSERT(vds != NULL);
7354 
7355 	for (i = 0; i < md->removed.nelem; i++)
7356 		vds_remove_vd(vds, md->removed.mdp, md->removed.mdep[i]);
7357 	for (i = 0; i < md->match_curr.nelem; i++)
7358 		vds_change_vd(vds, md->match_prev.mdp, md->match_prev.mdep[i],
7359 		    md->match_curr.mdp, md->match_curr.mdep[i]);
7360 	for (i = 0; i < md->added.nelem; i++)
7361 		vds_add_vd(vds, md->added.mdp, md->added.mdep[i]);
7362 
7363 	return (MDEG_SUCCESS);
7364 }
7365 
7366 
7367 static int
7368 vds_do_attach(dev_info_t *dip)
7369 {
7370 	int			status, sz;
7371 	int			cfg_handle;
7372 	minor_t			instance = ddi_get_instance(dip);
7373 	vds_t			*vds;
7374 	mdeg_prop_spec_t	*pspecp;
7375 	mdeg_node_spec_t	*ispecp;
7376 
7377 	/*
7378 	 * The "cfg-handle" property of a vds node in an MD contains the MD's
7379 	 * notion of "instance", or unique identifier, for that node; OBP
7380 	 * stores the value of the "cfg-handle" MD property as the value of
7381 	 * the "reg" property on the node in the device tree it builds from
7382 	 * the MD and passes to Solaris.  Thus, we look up the devinfo node's
7383 	 * "reg" property value to uniquely identify this device instance when
7384 	 * registering with the MD event-generation framework.  If the "reg"
7385 	 * property cannot be found, the device tree state is presumably so
7386 	 * broken that there is no point in continuing.
7387 	 */
7388 	if (!ddi_prop_exists(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS,
7389 	    VD_REG_PROP)) {
7390 		PRN("vds \"%s\" property does not exist", VD_REG_PROP);
7391 		return (DDI_FAILURE);
7392 	}
7393 
7394 	/* Get the MD instance for later MDEG registration */
7395 	cfg_handle = ddi_prop_get_int(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS,
7396 	    VD_REG_PROP, -1);
7397 
7398 	if (ddi_soft_state_zalloc(vds_state, instance) != DDI_SUCCESS) {
7399 		PRN("Could not allocate state for instance %u", instance);
7400 		return (DDI_FAILURE);
7401 	}
7402 
7403 	if ((vds = ddi_get_soft_state(vds_state, instance)) == NULL) {
7404 		PRN("Could not get state for instance %u", instance);
7405 		ddi_soft_state_free(vds_state, instance);
7406 		return (DDI_FAILURE);
7407 	}
7408 
7409 	vds->dip	= dip;
7410 	vds->vd_table	= mod_hash_create_ptrhash("vds_vd_table", VDS_NCHAINS,
7411 	    vds_destroy_vd, sizeof (void *));
7412 
7413 	ASSERT(vds->vd_table != NULL);
7414 
7415 	if ((status = ldi_ident_from_dip(dip, &vds->ldi_ident)) != 0) {
7416 		PRN("ldi_ident_from_dip() returned errno %d", status);
7417 		return (DDI_FAILURE);
7418 	}
7419 	vds->initialized |= VDS_LDI;
7420 
7421 	/* Register for MD updates */
7422 	sz = sizeof (vds_prop_template);
7423 	pspecp = kmem_alloc(sz, KM_SLEEP);
7424 	bcopy(vds_prop_template, pspecp, sz);
7425 
7426 	VDS_SET_MDEG_PROP_INST(pspecp, cfg_handle);
7427 
7428 	/* initialize the complete prop spec structure */
7429 	ispecp = kmem_zalloc(sizeof (mdeg_node_spec_t), KM_SLEEP);
7430 	ispecp->namep = "virtual-device";
7431 	ispecp->specp = pspecp;
7432 
7433 	if (mdeg_register(ispecp, &vd_match, vds_process_md, vds,
7434 	    &vds->mdeg) != MDEG_SUCCESS) {
7435 		PRN("Unable to register for MD updates");
7436 		kmem_free(ispecp, sizeof (mdeg_node_spec_t));
7437 		kmem_free(pspecp, sz);
7438 		return (DDI_FAILURE);
7439 	}
7440 
7441 	vds->ispecp = ispecp;
7442 	vds->initialized |= VDS_MDEG;
7443 
7444 	/* Prevent auto-detaching so driver is available whenever MD changes */
7445 	if (ddi_prop_update_int(DDI_DEV_T_NONE, dip, DDI_NO_AUTODETACH, 1) !=
7446 	    DDI_PROP_SUCCESS) {
7447 		PRN("failed to set \"%s\" property for instance %u",
7448 		    DDI_NO_AUTODETACH, instance);
7449 	}
7450 
7451 	/* read any user defined driver types from conf file and update list */
7452 	vds_driver_types_update(vds);
7453 
7454 	ddi_report_dev(dip);
7455 	return (DDI_SUCCESS);
7456 }
7457 
7458 static int
7459 vds_attach(dev_info_t *dip, ddi_attach_cmd_t cmd)
7460 {
7461 	int	status;
7462 
7463 	switch (cmd) {
7464 	case DDI_ATTACH:
7465 		PR0("Attaching");
7466 		if ((status = vds_do_attach(dip)) != DDI_SUCCESS)
7467 			(void) vds_detach(dip, DDI_DETACH);
7468 		return (status);
7469 	case DDI_RESUME:
7470 		PR0("No action required for DDI_RESUME");
7471 		return (DDI_SUCCESS);
7472 	default:
7473 		return (DDI_FAILURE);
7474 	}
7475 }
7476 
7477 static struct dev_ops vds_ops = {
7478 	DEVO_REV,	/* devo_rev */
7479 	0,		/* devo_refcnt */
7480 	ddi_no_info,	/* devo_getinfo */
7481 	nulldev,	/* devo_identify */
7482 	nulldev,	/* devo_probe */
7483 	vds_attach,	/* devo_attach */
7484 	vds_detach,	/* devo_detach */
7485 	nodev,		/* devo_reset */
7486 	NULL,		/* devo_cb_ops */
7487 	NULL,		/* devo_bus_ops */
7488 	nulldev,	/* devo_power */
7489 	ddi_quiesce_not_needed,	/* devo_quiesce */
7490 };
7491 
7492 static struct modldrv modldrv = {
7493 	&mod_driverops,
7494 	"virtual disk server",
7495 	&vds_ops,
7496 };
7497 
7498 static struct modlinkage modlinkage = {
7499 	MODREV_1,
7500 	&modldrv,
7501 	NULL
7502 };
7503 
7504 
7505 int
7506 _init(void)
7507 {
7508 	int		status;
7509 
7510 	if ((status = ddi_soft_state_init(&vds_state, sizeof (vds_t), 1)) != 0)
7511 		return (status);
7512 
7513 	if ((status = mod_install(&modlinkage)) != 0) {
7514 		ddi_soft_state_fini(&vds_state);
7515 		return (status);
7516 	}
7517 
7518 	return (0);
7519 }
7520 
7521 int
7522 _info(struct modinfo *modinfop)
7523 {
7524 	return (mod_info(&modlinkage, modinfop));
7525 }
7526 
7527 int
7528 _fini(void)
7529 {
7530 	int	status;
7531 
7532 	if ((status = mod_remove(&modlinkage)) != 0)
7533 		return (status);
7534 	ddi_soft_state_fini(&vds_state);
7535 	return (0);
7536 }
7537