xref: /titanic_52/usr/src/uts/sun4u/starcat/os/starcat.c (revision c7158ae983f5a04c4a998f468ecefba6d23ba721)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 #include <sys/param.h>
29 #include <sys/systm.h>
30 #include <sys/sysmacros.h>
31 #include <sys/sunddi.h>
32 #include <sys/esunddi.h>
33 #include <sys/sunndi.h>
34 #include <sys/modctl.h>
35 #include <sys/promif.h>
36 #include <sys/machparam.h>
37 #include <sys/kobj.h>
38 #include <sys/cpuvar.h>
39 #include <sys/mem_cage.h>
40 #include <sys/promif.h>
41 #include <sys/promimpl.h>
42 #include <sys/platform_module.h>
43 #include <sys/errno.h>
44 #include <sys/cpu_sgnblk_defs.h>
45 #include <sys/iosramio.h>
46 #include <sys/domaind.h>
47 #include <sys/starcat.h>
48 #include <sys/machsystm.h>
49 #include <sys/bootconf.h>
50 #include <sys/memnode.h>
51 #include <vm/vm_dep.h>
52 #include <vm/page.h>
53 #include <sys/cheetahregs.h>
54 #include <sys/plat_ecc_unum.h>
55 #include <sys/plat_ecc_dimm.h>
56 #include <sys/lgrp.h>
57 #include <sys/dr.h>
58 #include <sys/post/scat_dcd.h>
59 #include <sys/kdi_impl.h>
60 #include <sys/iosramreg.h>
61 #include <sys/iosramvar.h>
62 #include <sys/mc-us3.h>
63 
64 /* Preallocation of spare tsb's for DR */
65 int starcat_tsb_spares = STARCAT_SPARE_TSB_MAX;
66 
67 /* Set the maximum number of slot0 + slot1 boards. .. for DR */
68 int starcat_boards = STARCAT_BDSET_MAX * STARCAT_BDSET_SLOT_MAX;
69 
70 /* Maximum number of cpus per board... for DR */
71 int starcat_cpu_per_board = MAX(STARCAT_SLOT0_CPU_MAX, STARCAT_SLOT1_CPU_MAX);
72 
73 /* Maximum number of mem-units per board... for DR */
74 int starcat_mem_per_board = MAX(STARCAT_SLOT0_MEM_MAX, STARCAT_SLOT1_MEM_MAX);
75 
76 /* Maximum number of io-units (buses) per board... for DR */
77 int starcat_io_per_board = 2 * MAX(STARCAT_SLOT0_IO_MAX, STARCAT_SLOT1_IO_MAX);
78 
79 /* Preferred minimum cage size (expressed in pages)... for DR */
80 pgcnt_t starcat_startup_cage_size = 0;
81 
82 /* Platform specific function to get unum information */
83 int (*p2get_mem_unum)(int, uint64_t, char *, int, int *);
84 
85 /* Memory for fcode claims.  16k times # maximum possible schizos */
86 #define	EFCODE_SIZE	(STARCAT_BDSET_MAX * 4 * 0x4000)
87 int efcode_size = EFCODE_SIZE;
88 
89 void sgn_update_all_cpus(ushort_t, uchar_t, uchar_t);
90 
91 /*
92  * The IOSRAM driver is loaded in load_platform_drivers() any cpu signature
93  * usage prior to that time will have not have a function to call.
94  */
95 static int (*iosram_rdp)(uint32_t key, uint32_t off, uint32_t len,
96 	    caddr_t dptr) = prom_starcat_iosram_read;
97 static int (*iosram_wrp)(uint32_t key, uint32_t off, uint32_t len,
98 	    caddr_t dptr) = prom_starcat_iosram_write;
99 
100 plat_dimm_sid_board_t	domain_dimm_sids[STARCAT_BDSET_MAX];
101 
102 /*
103  * set_platform_max_ncpus should return the maximum number of CPUs that the
104  * platform supports.  This function is called from check_cpus() to set the
105  * value of max_ncpus [see PSARC 1997/165 CPU Dynamic Reconfiguration].
106  * Data elements which are allocated based upon max_ncpus are all accessed
107  * via cpu_seqid and not physical IDs.  Previously, the value of max_ncpus
108  * was being set to the largest physical ID, which led to boot problems on
109  * systems with less than 1.25GB of memory.
110  */
111 
112 int
113 set_platform_max_ncpus(void)
114 {
115 	int n;
116 
117 	/*
118 	 * Convert number of slot0 + slot1 boards to number of expander brds
119 	 * and constrain the value to an architecturally plausible range
120 	 */
121 	n = MAX(starcat_boards, STARCAT_BDSET_MIN * STARCAT_BDSET_SLOT_MAX);
122 	n = MIN(n, STARCAT_BDSET_MAX * STARCAT_BDSET_SLOT_MAX);
123 	n = (n + STARCAT_BDSET_SLOT_MAX - 1) / STARCAT_BDSET_SLOT_MAX;
124 
125 	/* return maximum number of cpus possible on N expander boards */
126 	return (n * STARCAT_BDSET_CPU_MAX - STARCAT_SLOT1_CPU_MAX);
127 }
128 
129 int
130 set_platform_tsb_spares()
131 {
132 	return (MIN(starcat_tsb_spares, MAX_UPA));
133 }
134 
135 #pragma weak mmu_init_large_pages
136 
137 void
138 set_platform_defaults(void)
139 {
140 	extern char *tod_module_name;
141 	extern int ts_dispatch_extended;
142 	extern void cpu_sgn_update(ushort_t, uchar_t, uchar_t, int);
143 	extern int tsb_lgrp_affinity;
144 	extern int segkmem_reloc;
145 	extern void mmu_init_large_pages(size_t);
146 	extern int ncpunode;	/* number of CPUs detected by OBP */
147 
148 #ifdef DEBUG
149 	ce_verbose_memory = 2;
150 	ce_verbose_other = 2;
151 #endif
152 
153 	/* Set the CPU signature function pointer */
154 	cpu_sgn_func = cpu_sgn_update;
155 
156 	/* Set appropriate tod module for starcat */
157 	ASSERT(tod_module_name == NULL);
158 	tod_module_name = "todstarcat";
159 
160 	/*
161 	 * Use the alternate TS dispatch table, which is better
162 	 * tuned for large servers.
163 	 */
164 	if (ts_dispatch_extended == -1)
165 		ts_dispatch_extended = 1;
166 
167 	/*
168 	 * Use lgroup-aware TSB allocations on this platform,
169 	 * since they are a considerable performance win.
170 	 */
171 	tsb_lgrp_affinity = 1;
172 
173 	if ((mmu_page_sizes == max_mmu_page_sizes) &&
174 	    (mmu_ism_pagesize != DEFAULT_ISM_PAGESIZE)) {
175 		if (&mmu_init_large_pages)
176 			mmu_init_large_pages(mmu_ism_pagesize);
177 	}
178 
179 	/*
180 	 * KPR (kernel page relocation) is supported on this platform.
181 	 */
182 	if (hat_kpr_enabled && kernel_cage_enable && ncpunode >= 32) {
183 		segkmem_reloc = 1;
184 		cmn_err(CE_NOTE, "!Kernel Page Relocation is ENABLED");
185 	} else {
186 		cmn_err(CE_NOTE, "!Kernel Page Relocation is DISABLED");
187 	}
188 }
189 
190 #ifdef DEBUG
191 pgcnt_t starcat_cage_size_limit;
192 #endif
193 
194 void
195 set_platform_cage_params(void)
196 {
197 	extern pgcnt_t total_pages;
198 	extern struct memlist *phys_avail;
199 
200 	if (kernel_cage_enable) {
201 		pgcnt_t preferred_cage_size;
202 
203 		preferred_cage_size =
204 		    MAX(starcat_startup_cage_size, total_pages / 256);
205 
206 #ifdef DEBUG
207 		if (starcat_cage_size_limit)
208 			preferred_cage_size = starcat_cage_size_limit;
209 #endif
210 		/*
211 		 * Note: we are assuming that post has load the
212 		 * whole show in to the high end of memory. Having
213 		 * taken this leap, we copy the whole of phys_avail
214 		 * the glist and arrange for the cage to grow
215 		 * downward (descending pfns).
216 		 */
217 		kcage_range_init(phys_avail, KCAGE_DOWN, preferred_cage_size);
218 	}
219 
220 	if (kcage_on)
221 		cmn_err(CE_NOTE, "!DR Kernel Cage is ENABLED");
222 	else
223 		cmn_err(CE_NOTE, "!DR Kernel Cage is DISABLED");
224 }
225 
226 void
227 load_platform_modules(void)
228 {
229 	if (modload("misc", "pcihp") < 0) {
230 		cmn_err(CE_NOTE, "pcihp driver failed to load");
231 	}
232 }
233 
234 /*
235  * Starcat does not support power control of CPUs from the OS.
236  */
237 /*ARGSUSED*/
238 int
239 plat_cpu_poweron(struct cpu *cp)
240 {
241 	int (*starcat_cpu_poweron)(struct cpu *) = NULL;
242 
243 	starcat_cpu_poweron =
244 	    (int (*)(struct cpu *))kobj_getsymvalue("drmach_cpu_poweron", 0);
245 
246 	if (starcat_cpu_poweron == NULL)
247 		return (ENOTSUP);
248 	else
249 		return ((starcat_cpu_poweron)(cp));
250 }
251 
252 /*ARGSUSED*/
253 int
254 plat_cpu_poweroff(struct cpu *cp)
255 {
256 	int (*starcat_cpu_poweroff)(struct cpu *) = NULL;
257 
258 	starcat_cpu_poweroff =
259 	    (int (*)(struct cpu *))kobj_getsymvalue("drmach_cpu_poweroff", 0);
260 
261 	if (starcat_cpu_poweroff == NULL)
262 		return (ENOTSUP);
263 	else
264 		return ((starcat_cpu_poweroff)(cp));
265 }
266 
267 /*
268  * The following are currently private to Starcat DR
269  */
270 int
271 plat_max_boards()
272 {
273 	return (starcat_boards);
274 }
275 
276 int
277 plat_max_cpu_units_per_board()
278 {
279 	return (starcat_cpu_per_board);
280 }
281 
282 int
283 plat_max_mc_units_per_board()
284 {
285 	return (starcat_mem_per_board); /* each CPU has a memory controller */
286 }
287 
288 int
289 plat_max_mem_units_per_board()
290 {
291 	return (starcat_mem_per_board);
292 }
293 
294 int
295 plat_max_io_units_per_board()
296 {
297 	return (starcat_io_per_board);
298 }
299 
300 int
301 plat_max_cpumem_boards(void)
302 {
303 	return (STARCAT_BDSET_MAX);
304 }
305 
306 int
307 plat_pfn_to_mem_node(pfn_t pfn)
308 {
309 	return (pfn >> mem_node_pfn_shift);
310 }
311 
312 #define	STARCAT_MC_MEMBOARD_SHIFT 37	/* Boards on 128BG boundary */
313 
314 /* ARGSUSED */
315 void
316 plat_build_mem_nodes(prom_memlist_t *list, size_t nelems)
317 {
318 	size_t	elem;
319 	pfn_t	basepfn;
320 	pgcnt_t	npgs;
321 
322 	/*
323 	 * Starcat mem slices are always aligned on a 128GB boundary,
324 	 * fixed, and limited to one slice per expander due to design
325 	 * of the centerplane ASICs.
326 	 */
327 	mem_node_pfn_shift = STARCAT_MC_MEMBOARD_SHIFT - MMU_PAGESHIFT;
328 	mem_node_physalign = 0;
329 
330 	/*
331 	 * Boot install lists are arranged <addr, len>, <addr, len>, ...
332 	 */
333 	for (elem = 0; elem < nelems; list++, elem++) {
334 		basepfn = btop(list->addr);
335 		npgs = btop(list->size);
336 		mem_node_add_slice(basepfn, basepfn + npgs - 1);
337 	}
338 }
339 
340 /*
341  * Find the CPU associated with a slice at boot-time.
342  */
343 void
344 plat_fill_mc(pnode_t nodeid)
345 {
346 	int		len;
347 	uint64_t	mc_addr, mask;
348 	uint64_t	mc_decode[MAX_BANKS_PER_MC];
349 	uint32_t	regs[4];
350 	int		local_mc;
351 	int		portid;
352 	int		expnum;
353 	int		i;
354 
355 	/*
356 	 * Memory address decoding registers
357 	 * (see Chap 9 of SPARCV9 JSP-1 US-III implementation)
358 	 */
359 	const uint64_t	mc_decode_addr[MAX_BANKS_PER_MC] = {
360 		0x400028, 0x400010, 0x400018, 0x400020
361 	};
362 
363 	/*
364 	 * Starcat memory controller portid == global CPU id
365 	 */
366 	if ((prom_getprop(nodeid, "portid", (caddr_t)&portid) < 0) ||
367 	    (portid == -1))
368 		return;
369 
370 	expnum = STARCAT_CPUID_TO_EXPANDER(portid);
371 
372 	/*
373 	 * The "reg" property returns 4 32-bit values. The first two are
374 	 * combined to form a 64-bit address.  The second two are for a
375 	 * 64-bit size, but we don't actually need to look at that value.
376 	 */
377 	len = prom_getproplen(nodeid, "reg");
378 	if (len != (sizeof (uint32_t) * 4)) {
379 		prom_printf("Warning: malformed 'reg' property\n");
380 		return;
381 	}
382 	if (prom_getprop(nodeid, "reg", (caddr_t)regs) < 0)
383 		return;
384 	mc_addr = ((uint64_t)regs[0]) << 32;
385 	mc_addr |= (uint64_t)regs[1];
386 
387 	/*
388 	 * Figure out whether the memory controller we are examining
389 	 * belongs to this CPU/CMP or a different one.
390 	 */
391 	if (portid == cpunodes[CPU->cpu_id].portid)
392 		local_mc = 1;
393 	else
394 		local_mc = 0;
395 
396 	for (i = 0; i < MAX_BANKS_PER_MC; i++) {
397 
398 		mask = mc_decode_addr[i];
399 
400 		/*
401 		 * If the memory controller is local to this CPU, we use
402 		 * the special ASI to read the decode registers.
403 		 * Otherwise, we load the values from a magic address in
404 		 * I/O space.
405 		 */
406 		if (local_mc)
407 			mc_decode[i] = lddmcdecode(mask & MC_OFFSET_MASK);
408 		else
409 			mc_decode[i] = lddphysio((mc_addr | mask));
410 
411 		if (mc_decode[i] >> MC_VALID_SHIFT) {
412 			uint64_t base = MC_BASE(mc_decode[i]) << PHYS2UM_SHIFT;
413 			int sliceid = (base >> STARCAT_MC_MEMBOARD_SHIFT);
414 
415 			if (sliceid < max_mem_nodes) {
416 				/*
417 				 * Establish start-of-day mappings of
418 				 * lgroup platform handles to memnodes.
419 				 * Handle == Expander Number
420 				 * Memnode == Fixed 128GB Slice
421 				 */
422 				plat_assign_lgrphand_to_mem_node(expnum,
423 				    sliceid);
424 			}
425 		}
426 	}
427 }
428 
429 /*
430  * Starcat support for lgroups.
431  *
432  * On Starcat, an lgroup platform handle == expander number.
433  * For split-slot configurations (e.g. slot 0 and slot 1 boards
434  * in different domains) an MCPU board has only remote memory.
435  *
436  * The centerplane logic provides fixed 128GB memory slices
437  * each of which map to a memnode.  The initial mapping of
438  * memnodes to lgroup handles is determined at boot time.
439  * A DR addition of memory adds a new mapping. A DR copy-rename
440  * swaps mappings.
441  */
442 
443 /*
444  * Convert board number to expander number.
445  */
446 #define	BOARDNUM_2_EXPANDER(b)	(b >> 1)
447 
448 /*
449  * Return the number of boards configured with NULL LPA.
450  */
451 static int
452 check_for_null_lpa(void)
453 {
454 	gdcd_t	*gdcd;
455 	uint_t	exp, nlpa;
456 
457 	/*
458 	 * Read GDCD from IOSRAM.
459 	 * If this fails indicate a NULL LPA condition.
460 	 */
461 	if ((gdcd = kmem_zalloc(sizeof (gdcd_t), KM_NOSLEEP)) == NULL)
462 		return (EXP_COUNT+1);
463 
464 	if ((*iosram_rdp)(GDCD_MAGIC, 0, sizeof (gdcd_t), (caddr_t)gdcd) ||
465 	    (gdcd->h.dcd_magic != GDCD_MAGIC) ||
466 	    (gdcd->h.dcd_version != DCD_VERSION)) {
467 		kmem_free(gdcd, sizeof (gdcd_t));
468 		cmn_err(CE_WARN, "check_for_null_lpa: failed to access GDCD\n");
469 		return (EXP_COUNT+2);
470 	}
471 
472 	/*
473 	 * Check for NULL LPAs on all slot 0 boards in domain
474 	 * (i.e. in all expanders marked good for this domain).
475 	 */
476 	nlpa = 0;
477 	for (exp = 0; exp < EXP_COUNT; exp++) {
478 		if (RSV_GOOD(gdcd->dcd_slot[exp][0].l1ss_rsv) &&
479 		    (gdcd->dcd_slot[exp][0].l1ss_flags &
480 		    L1SSFLG_THIS_L1_NULL_PROC_LPA))
481 			nlpa++;
482 	}
483 
484 	kmem_free(gdcd, sizeof (gdcd_t));
485 	return (nlpa);
486 }
487 
488 /*
489  * Return the platform handle for the lgroup containing the given CPU
490  *
491  * For Starcat, lgroup platform handle == expander.
492  */
493 
494 extern int mpo_disabled;
495 extern lgrp_handle_t lgrp_default_handle;
496 int null_lpa_boards = -1;
497 
498 lgrp_handle_t
499 plat_lgrp_cpu_to_hand(processorid_t id)
500 {
501 	lgrp_handle_t		plathand;
502 
503 	plathand = STARCAT_CPUID_TO_EXPANDER(id);
504 
505 	/*
506 	 * Return the real platform handle for the CPU until
507 	 * such time as we know that MPO should be disabled.
508 	 * At that point, we set the "mpo_disabled" flag to true,
509 	 * and from that point on, return the default handle.
510 	 *
511 	 * By the time we know that MPO should be disabled, the
512 	 * first CPU will have already been added to a leaf
513 	 * lgroup, but that's ok. The common lgroup code will
514 	 * double check that the boot CPU is in the correct place,
515 	 * and in the case where mpo should be disabled, will move
516 	 * it to the root if necessary.
517 	 */
518 	if (mpo_disabled) {
519 		/* If MPO is disabled, return the default (UMA) handle */
520 		plathand = lgrp_default_handle;
521 	} else {
522 		if (null_lpa_boards > 0) {
523 			/* Determine if MPO should be disabled */
524 			mpo_disabled = 1;
525 			plathand = lgrp_default_handle;
526 		}
527 	}
528 	return (plathand);
529 }
530 
531 /*
532  * Platform specific lgroup initialization
533  */
534 void
535 plat_lgrp_init(void)
536 {
537 	extern uint32_t lgrp_expand_proc_thresh;
538 	extern uint32_t lgrp_expand_proc_diff;
539 
540 	/*
541 	 * Set tuneables for Starcat architecture
542 	 *
543 	 * lgrp_expand_proc_thresh is the minimum load on the lgroups
544 	 * this process is currently running on before considering
545 	 * expanding threads to another lgroup.
546 	 *
547 	 * lgrp_expand_proc_diff determines how much less the remote lgroup
548 	 * must be loaded before expanding to it.
549 	 *
550 	 * Since remote latencies can be costly, attempt to keep 3 threads
551 	 * within the same lgroup before expanding to the next lgroup.
552 	 */
553 	lgrp_expand_proc_thresh = LGRP_LOADAVG_THREAD_MAX * 3;
554 	lgrp_expand_proc_diff = LGRP_LOADAVG_THREAD_MAX;
555 }
556 
557 /*
558  * Platform notification of lgroup (re)configuration changes
559  */
560 /*ARGSUSED*/
561 void
562 plat_lgrp_config(lgrp_config_flag_t evt, uintptr_t arg)
563 {
564 	update_membounds_t	*umb;
565 	lgrp_config_mem_rename_t lmr;
566 	int			sbd, tbd;
567 	lgrp_handle_t		hand, shand, thand;
568 	int			mnode, snode, tnode;
569 
570 	if (mpo_disabled)
571 		return;
572 
573 	switch (evt) {
574 
575 	case LGRP_CONFIG_MEM_ADD:
576 		/*
577 		 * Establish the lgroup handle to memnode translation.
578 		 */
579 		umb = (update_membounds_t *)arg;
580 
581 		hand = BOARDNUM_2_EXPANDER(umb->u_board);
582 		mnode = plat_pfn_to_mem_node(umb->u_base >> MMU_PAGESHIFT);
583 		plat_assign_lgrphand_to_mem_node(hand, mnode);
584 
585 		break;
586 
587 	case LGRP_CONFIG_MEM_DEL:
588 		/* We don't have to do anything */
589 
590 		break;
591 
592 	case LGRP_CONFIG_MEM_RENAME:
593 		/*
594 		 * During a DR copy-rename operation, all of the memory
595 		 * on one board is moved to another board -- but the
596 		 * addresses/pfns and memnodes don't change. This means
597 		 * the memory has changed locations without changing identity.
598 		 *
599 		 * Source is where we are copying from and target is where we
600 		 * are copying to.  After source memnode is copied to target
601 		 * memnode, the physical addresses of the target memnode are
602 		 * renamed to match what the source memnode had.  Then target
603 		 * memnode can be removed and source memnode can take its
604 		 * place.
605 		 *
606 		 * To do this, swap the lgroup handle to memnode mappings for
607 		 * the boards, so target lgroup will have source memnode and
608 		 * source lgroup will have empty target memnode which is where
609 		 * its memory will go (if any is added to it later).
610 		 *
611 		 * Then source memnode needs to be removed from its lgroup
612 		 * and added to the target lgroup where the memory was living
613 		 * but under a different name/memnode.  The memory was in the
614 		 * target memnode and now lives in the source memnode with
615 		 * different physical addresses even though it is the same
616 		 * memory.
617 		 */
618 		sbd = arg & 0xffff;
619 		tbd = (arg & 0xffff0000) >> 16;
620 		shand = BOARDNUM_2_EXPANDER(sbd);
621 		thand = BOARDNUM_2_EXPANDER(tbd);
622 		snode = plat_lgrphand_to_mem_node(shand);
623 		tnode = plat_lgrphand_to_mem_node(thand);
624 
625 		plat_assign_lgrphand_to_mem_node(thand, snode);
626 		plat_assign_lgrphand_to_mem_node(shand, tnode);
627 
628 		lmr.lmem_rename_from = shand;
629 		lmr.lmem_rename_to = thand;
630 
631 		/*
632 		 * Remove source memnode of copy rename from its lgroup
633 		 * and add it to its new target lgroup
634 		 */
635 		lgrp_config(LGRP_CONFIG_MEM_RENAME, (uintptr_t)snode,
636 		    (uintptr_t)&lmr);
637 
638 		break;
639 
640 	default:
641 		break;
642 	}
643 }
644 
645 /*
646  * Return latency between "from" and "to" lgroups
647  *
648  * This latency number can only be used for relative comparison
649  * between lgroups on the running system, cannot be used across platforms,
650  * and may not reflect the actual latency.  It is platform and implementation
651  * specific, so platform gets to decide its value.  It would be nice if the
652  * number was at least proportional to make comparisons more meaningful though.
653  * NOTE: The numbers below are supposed to be load latencies for uncached
654  * memory divided by 10.
655  */
656 int
657 plat_lgrp_latency(lgrp_handle_t from, lgrp_handle_t to)
658 {
659 	/*
660 	 * Return min remote latency when there are more than two lgroups
661 	 * (root and child) and getting latency between two different lgroups
662 	 * or root is involved
663 	 */
664 	if (lgrp_optimizations() && (from != to ||
665 	    from == LGRP_DEFAULT_HANDLE || to == LGRP_DEFAULT_HANDLE))
666 		return (48);
667 	else
668 		return (28);
669 }
670 
671 /*
672  * Return platform handle for root lgroup
673  */
674 lgrp_handle_t
675 plat_lgrp_root_hand(void)
676 {
677 	if (mpo_disabled)
678 		return (lgrp_default_handle);
679 
680 	return (LGRP_DEFAULT_HANDLE);
681 }
682 
683 /* ARGSUSED */
684 void
685 plat_freelist_process(int mnode)
686 {
687 }
688 
689 void
690 load_platform_drivers(void)
691 {
692 	uint_t		tunnel;
693 	pnode_t		nodeid;
694 	dev_info_t	*chosen_devi;
695 	char		chosen_iosram[MAXNAMELEN];
696 
697 	/*
698 	 * Get /chosen node - that's where the tunnel property is
699 	 */
700 	nodeid = prom_chosennode();
701 
702 	/*
703 	 * Get the iosram property from the chosen node.
704 	 */
705 	if (prom_getprop(nodeid, IOSRAM_CHOSEN_PROP, (caddr_t)&tunnel) <= 0) {
706 		prom_printf("Unable to get iosram property\n");
707 		cmn_err(CE_PANIC, "Unable to get iosram property\n");
708 	}
709 
710 	if (prom_phandle_to_path((phandle_t)tunnel, chosen_iosram,
711 	    sizeof (chosen_iosram)) < 0) {
712 		(void) prom_printf("prom_phandle_to_path(0x%x) failed\n",
713 		    tunnel);
714 		cmn_err(CE_PANIC, "prom_phandle_to_path(0x%x) failed\n",
715 		    tunnel);
716 	}
717 
718 	/*
719 	 * Attach all driver instances along the iosram's device path
720 	 */
721 	if (i_ddi_attach_hw_nodes("iosram") != DDI_SUCCESS) {
722 		cmn_err(CE_WARN, "IOSRAM failed to load\n");
723 	}
724 
725 	if ((chosen_devi = e_ddi_hold_devi_by_path(chosen_iosram, 0)) == NULL) {
726 		(void) prom_printf("e_ddi_hold_devi_by_path(%s) failed\n",
727 		    chosen_iosram);
728 		cmn_err(CE_PANIC, "e_ddi_hold_devi_by_path(%s) failed\n",
729 		    chosen_iosram);
730 	}
731 	ndi_rele_devi(chosen_devi);
732 
733 	/*
734 	 * iosram driver is now loaded so we need to set our read and
735 	 * write pointers.
736 	 */
737 	iosram_rdp = (int (*)(uint32_t, uint32_t, uint32_t, caddr_t))
738 	    modgetsymvalue("iosram_rd", 0);
739 	iosram_wrp = (int (*)(uint32_t, uint32_t, uint32_t, caddr_t))
740 	    modgetsymvalue("iosram_wr", 0);
741 
742 	/*
743 	 * Need to check for null proc LPA after IOSRAM driver is loaded
744 	 * and before multiple lgroups created (when start_other_cpus() called)
745 	 */
746 	null_lpa_boards = check_for_null_lpa();
747 
748 	/* load and attach the axq driver */
749 	if (i_ddi_attach_hw_nodes("axq") != DDI_SUCCESS) {
750 		cmn_err(CE_WARN, "AXQ failed to load\n");
751 	}
752 
753 	/* load Starcat Solaris Mailbox Client driver */
754 	if (modload("misc", "scosmb") < 0) {
755 		cmn_err(CE_WARN, "SCOSMB failed to load\n");
756 	}
757 
758 	/* load the DR driver */
759 	if (i_ddi_attach_hw_nodes("dr") != DDI_SUCCESS) {
760 		cmn_err(CE_WARN, "dr failed to load");
761 	}
762 
763 	/*
764 	 * Load the mc-us3 memory driver.
765 	 */
766 	if (i_ddi_attach_hw_nodes("mc-us3") != DDI_SUCCESS)
767 		cmn_err(CE_WARN, "mc-us3 failed to load");
768 	else
769 		(void) ddi_hold_driver(ddi_name_to_major("mc-us3"));
770 
771 	/* Load the schizo pci bus nexus driver. */
772 	if (i_ddi_attach_hw_nodes("pcisch") != DDI_SUCCESS)
773 		cmn_err(CE_WARN, "pcisch failed to load");
774 
775 	plat_ecc_init();
776 }
777 
778 
779 /*
780  * No platform drivers on this platform
781  */
782 char *platform_module_list[] = {
783 	(char *)0
784 };
785 
786 
787 /*ARGSUSED*/
788 void
789 plat_tod_fault(enum tod_fault_type tod_bad)
790 {
791 }
792 
793 /*
794  * Update the signature(s) in the IOSRAM's domain data section.
795  */
796 void
797 cpu_sgn_update(ushort_t sgn, uchar_t state, uchar_t sub_state, int cpuid)
798 {
799 	sig_state_t new_sgn;
800 	sig_state_t current_sgn;
801 
802 	/*
803 	 * If the substate is REBOOT, then check for panic flow
804 	 */
805 	if (sub_state == SIGSUBST_REBOOT) {
806 		(*iosram_rdp)(DOMD_MAGIC, DOMD_DSTATE_OFFSET,
807 		    sizeof (sig_state_t), (caddr_t)&current_sgn);
808 		if (current_sgn.state_t.state == SIGST_EXIT)
809 			sub_state = SIGSUBST_PANIC_REBOOT;
810 	}
811 
812 	/*
813 	 * cpuid == -1 indicates that the operation applies to all cpus.
814 	 */
815 	if (cpuid < 0) {
816 		sgn_update_all_cpus(sgn, state, sub_state);
817 		return;
818 	}
819 
820 	new_sgn.signature = CPU_SIG_BLD(sgn, state, sub_state);
821 	(*iosram_wrp)(DOMD_MAGIC,
822 	    DOMD_CPUSIGS_OFFSET + cpuid * sizeof (sig_state_t),
823 	    sizeof (sig_state_t), (caddr_t)&new_sgn);
824 
825 	/*
826 	 * Under certain conditions we don't update the signature
827 	 * of the domain_state.
828 	 */
829 	if ((sgn == OS_SIG) &&
830 	    ((state == SIGST_OFFLINE) || (state == SIGST_DETACHED)))
831 		return;
832 	(*iosram_wrp)(DOMD_MAGIC, DOMD_DSTATE_OFFSET, sizeof (sig_state_t),
833 	    (caddr_t)&new_sgn);
834 }
835 
836 /*
837  * Update the signature(s) in the IOSRAM's domain data section for all CPUs.
838  */
839 void
840 sgn_update_all_cpus(ushort_t sgn, uchar_t state, uchar_t sub_state)
841 {
842 	sig_state_t new_sgn;
843 	int i = 0;
844 
845 	new_sgn.signature = CPU_SIG_BLD(sgn, state, sub_state);
846 
847 	/*
848 	 * First update the domain_state signature
849 	 */
850 	(*iosram_wrp)(DOMD_MAGIC, DOMD_DSTATE_OFFSET, sizeof (sig_state_t),
851 	    (caddr_t)&new_sgn);
852 
853 	for (i = 0; i < NCPU; i++) {
854 		if (cpu[i] != NULL && (cpu[i]->cpu_flags &
855 		    (CPU_EXISTS|CPU_QUIESCED))) {
856 			(*iosram_wrp)(DOMD_MAGIC,
857 			    DOMD_CPUSIGS_OFFSET + i * sizeof (sig_state_t),
858 			    sizeof (sig_state_t), (caddr_t)&new_sgn);
859 		}
860 	}
861 }
862 
863 ushort_t
864 get_cpu_sgn(int cpuid)
865 {
866 	sig_state_t cpu_sgn;
867 
868 	(*iosram_rdp)(DOMD_MAGIC,
869 	    DOMD_CPUSIGS_OFFSET + cpuid * sizeof (sig_state_t),
870 	    sizeof (sig_state_t), (caddr_t)&cpu_sgn);
871 
872 	return (cpu_sgn.state_t.sig);
873 }
874 
875 uchar_t
876 get_cpu_sgn_state(int cpuid)
877 {
878 	sig_state_t cpu_sgn;
879 
880 	(*iosram_rdp)(DOMD_MAGIC,
881 	    DOMD_CPUSIGS_OFFSET + cpuid * sizeof (sig_state_t),
882 	    sizeof (sig_state_t), (caddr_t)&cpu_sgn);
883 
884 	return (cpu_sgn.state_t.state);
885 }
886 
887 
888 /*
889  * Type of argument passed into plat_get_ecache_cpu via ddi_walk_devs
890  * for matching on specific CPU node in device tree
891  */
892 
893 typedef struct {
894 	char		*jnum;	/* output, kmem_alloc'd	if successful */
895 	int		cpuid;	/* input, to match cpuid/portid/upa-portid */
896 	uint_t		dimm;	/* input, index into ecache-dimm-label */
897 } plat_ecache_cpu_arg_t;
898 
899 
900 /*
901  * plat_get_ecache_cpu is called repeatedly by ddi_walk_devs with pointers
902  * to device tree nodes (dip) and to a plat_ecache_cpu_arg_t structure (arg).
903  * Returning DDI_WALK_CONTINUE tells ddi_walk_devs to keep going, returning
904  * DDI_WALK_TERMINATE ends the walk.  When the node for the specific CPU
905  * being searched for is found, the walk is done.  But before returning to
906  * ddi_walk_devs and plat_get_ecacheunum, we grab this CPU's ecache-dimm-label
907  * property and set the jnum member of the plat_ecache_cpu_arg_t structure to
908  * point to the label corresponding to this specific ecache DIMM.  It is up
909  * to plat_get_ecacheunum to kmem_free this string.
910  */
911 
912 static int
913 plat_get_ecache_cpu(dev_info_t *dip, void *arg)
914 {
915 	char			*devtype;
916 	plat_ecache_cpu_arg_t	*cpuarg;
917 	char			**dimm_labels;
918 	uint_t			numlabels;
919 	int			portid;
920 
921 	/*
922 	 * Check device_type, must be "cpu"
923 	 */
924 
925 	if (ddi_prop_lookup_string(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS,
926 	    "device_type", &devtype) != DDI_PROP_SUCCESS)
927 		return (DDI_WALK_CONTINUE);
928 
929 	if (strcmp(devtype, "cpu")) {
930 		ddi_prop_free((void *)devtype);
931 		return (DDI_WALK_CONTINUE);
932 	}
933 
934 	ddi_prop_free((void *)devtype);
935 
936 	/*
937 	 * Check cpuid, portid, upa-portid (in that order), must
938 	 * match the cpuid being sought
939 	 */
940 
941 	portid = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
942 	    DDI_PROP_DONTPASS, "cpuid", -1);
943 
944 	if (portid == -1)
945 		portid = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
946 		    DDI_PROP_DONTPASS, "portid", -1);
947 
948 	if (portid == -1)
949 		portid = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
950 		    DDI_PROP_DONTPASS, "upa-portid", -1);
951 
952 	cpuarg = (plat_ecache_cpu_arg_t *)arg;
953 
954 	if (portid != cpuarg->cpuid)
955 		return (DDI_WALK_CONTINUE);
956 
957 	/*
958 	 * Found the right CPU, fetch ecache-dimm-label property
959 	 */
960 
961 	if (ddi_prop_lookup_string_array(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS,
962 	    "ecache-dimm-label", &dimm_labels, &numlabels)
963 	    != DDI_PROP_SUCCESS) {
964 #ifdef	DEBUG
965 		cmn_err(CE_NOTE, "cpuid=%d missing ecache-dimm-label property",
966 		    portid);
967 #endif	/* DEBUG */
968 		return (DDI_WALK_TERMINATE);
969 	}
970 
971 	if (cpuarg->dimm < numlabels) {
972 		cpuarg->jnum = kmem_alloc(strlen(dimm_labels[cpuarg->dimm]) + 1,
973 		    KM_SLEEP);
974 		if (cpuarg->jnum != (char *)NULL)
975 			(void) strcpy(cpuarg->jnum, dimm_labels[cpuarg->dimm]);
976 #ifdef	DEBUG
977 		else
978 			cmn_err(CE_WARN,
979 			    "cannot kmem_alloc for ecache dimm label");
980 #endif	/* DEBUG */
981 	}
982 
983 	ddi_prop_free((void *)dimm_labels);
984 	return (DDI_WALK_TERMINATE);
985 }
986 
987 
988 /*
989  * Bit 4 of physical address indicates ecache 0 or 1
990  */
991 
992 #define	ECACHE_DIMM_MASK	0x10
993 
994 /*
995  * plat_get_ecacheunum is called to generate the unum for an ecache error.
996  * After some initialization, nearly all of the work is done by ddi_walk_devs
997  * and plat_get_ecache_cpu.
998  */
999 
1000 int
1001 plat_get_ecacheunum(int cpuid, unsigned long long physaddr, char *buf,
1002 		    int buflen, int *ustrlen)
1003 {
1004 	plat_ecache_cpu_arg_t	findcpu;
1005 	uint_t	expander, slot, proc;
1006 
1007 	findcpu.jnum = (char *)NULL;
1008 	findcpu.cpuid = cpuid;
1009 
1010 	/*
1011 	 * Bit 4 of physaddr equal 0 maps to E0 and 1 maps to E1
1012 	 * except for Panther and Jaguar where it indicates the reverse
1013 	 */
1014 	if (IS_PANTHER(cpunodes[CPU->cpu_id].implementation) ||
1015 	    IS_JAGUAR(cpunodes[CPU->cpu_id].implementation))
1016 		findcpu.dimm =  (physaddr & ECACHE_DIMM_MASK) ? 0 : 1;
1017 	else
1018 		findcpu.dimm =  (physaddr & ECACHE_DIMM_MASK) ? 1 : 0;
1019 
1020 	/*
1021 	 * Walk the device tree, find this specific CPU, and get the label
1022 	 * for this ecache, returned here in findcpu.jnum
1023 	 */
1024 
1025 	ddi_walk_devs(ddi_root_node(), plat_get_ecache_cpu, (void *)&findcpu);
1026 
1027 	if (findcpu.jnum == (char *)NULL)
1028 		return (-1);
1029 
1030 	expander = STARCAT_CPUID_TO_EXPANDER(cpuid);
1031 	slot = STARCAT_CPUID_TO_BOARDSLOT(cpuid);
1032 
1033 	/*
1034 	 * STARCAT_CPUID_TO_PORTID clears the CoreID bit so that
1035 	 * STARCAT_CPUID_TO_AGENT will return a physical proc (0 - 3).
1036 	 */
1037 	proc = STARCAT_CPUID_TO_AGENT(STARCAT_CPUID_TO_PORTID(cpuid));
1038 
1039 	/*
1040 	 * NOTE: Any modifications to the snprintf() call below will require
1041 	 * changing plat_log_fruid_error() as well!
1042 	 */
1043 	(void) snprintf(buf, buflen, "%s%u/P%u/E%u J%s", (slot ? "IO" : "SB"),
1044 	    expander, proc, findcpu.dimm, findcpu.jnum);
1045 
1046 	*ustrlen = strlen(buf);
1047 
1048 	kmem_free(findcpu.jnum, strlen(findcpu.jnum) + 1);
1049 
1050 	return (0);
1051 }
1052 
1053 /*ARGSUSED*/
1054 int
1055 plat_get_mem_unum(int synd_code, uint64_t flt_addr, int flt_bus_id,
1056     int flt_in_memory, ushort_t flt_status, char *buf, int buflen, int *lenp)
1057 {
1058 	int ret;
1059 
1060 	/*
1061 	 * check if it's a Memory or an Ecache error.
1062 	 */
1063 	if (flt_in_memory) {
1064 		if (p2get_mem_unum != NULL) {
1065 			return (p2get_mem_unum(synd_code, P2ALIGN(flt_addr, 8),
1066 			    buf, buflen, lenp));
1067 		} else {
1068 			return (ENOTSUP);
1069 		}
1070 	} else if (flt_status & ECC_ECACHE) {
1071 		if ((ret = plat_get_ecacheunum(flt_bus_id,
1072 		    P2ALIGN(flt_addr, 8), buf, buflen, lenp)) != 0)
1073 			return (EIO);
1074 	} else {
1075 		return (ENOTSUP);
1076 	}
1077 
1078 	return (ret);
1079 }
1080 
1081 static int (*ecc_mailbox_msg_func)(plat_ecc_message_type_t, void *) = NULL;
1082 
1083 /*
1084  * To keep OS mailbox handling localized, all we do is forward the call to the
1085  * scosmb module (if it is available).
1086  */
1087 int
1088 plat_send_ecc_mailbox_msg(plat_ecc_message_type_t msg_type, void *datap)
1089 {
1090 	/*
1091 	 * find the symbol for the mailbox sender routine in the scosmb module
1092 	 */
1093 	if (ecc_mailbox_msg_func == NULL)
1094 		ecc_mailbox_msg_func = (int (*)(plat_ecc_message_type_t,
1095 		    void *))modgetsymvalue("scosmb_log_ecc_error", 0);
1096 
1097 	/*
1098 	 * If the symbol was found, call it.  Otherwise, there is not much
1099 	 * else we can do and console messages will have to suffice.
1100 	 */
1101 	if (ecc_mailbox_msg_func)
1102 		return ((*ecc_mailbox_msg_func)(msg_type, datap));
1103 	else
1104 		return (ENODEV);
1105 }
1106 
1107 int
1108 plat_make_fru_cpuid(int sb, int m, int proc)
1109 {
1110 	return (MAKE_CPUID(sb, m, proc));
1111 }
1112 
1113 /*
1114  * board number for a given proc
1115  */
1116 int
1117 plat_make_fru_boardnum(int proc)
1118 {
1119 	return (STARCAT_CPUID_TO_EXPANDER(proc));
1120 }
1121 
1122 /*
1123  * This platform hook gets called from mc_add_mem_unum_label() in the mc-us3
1124  * driver giving each platform the opportunity to add platform
1125  * specific label information to the unum for ECC error logging purposes.
1126  */
1127 void
1128 plat_add_mem_unum_label(char *unum, int mcid, int bank, int dimm)
1129 {
1130 	char	new_unum[UNUM_NAMLEN];
1131 	uint_t	expander = STARCAT_CPUID_TO_EXPANDER(mcid);
1132 	uint_t	slot = STARCAT_CPUID_TO_BOARDSLOT(mcid);
1133 
1134 	/*
1135 	 * STARCAT_CPUID_TO_PORTID clears the CoreID bit so that
1136 	 * STARCAT_CPUID_TO_AGENT will return a physical proc (0 - 3).
1137 	 */
1138 	uint_t	proc = STARCAT_CPUID_TO_AGENT(STARCAT_CPUID_TO_PORTID(mcid));
1139 
1140 	/*
1141 	 * NOTE: Any modifications to the two sprintf() calls below will
1142 	 * require changing plat_log_fruid_error() as well!
1143 	 */
1144 	if (dimm == -1)
1145 		(void) snprintf(new_unum, UNUM_NAMLEN, "%s%u/P%u/B%d %s",
1146 		    (slot ? "IO" : "SB"), expander, proc, (bank & 0x1), unum);
1147 	else
1148 		(void) snprintf(new_unum, UNUM_NAMLEN, "%s%u/P%u/B%d/D%d %s",
1149 		    (slot ? "IO" : "SB"), expander,
1150 		    proc, (bank & 0x1), (dimm & 0x3), unum);
1151 
1152 	(void) strcpy(unum, new_unum);
1153 }
1154 
1155 int
1156 plat_get_cpu_unum(int cpuid, char *buf, int buflen, int *lenp)
1157 {
1158 	int	expander = STARCAT_CPUID_TO_EXPANDER(cpuid);
1159 	int	slot = STARCAT_CPUID_TO_BOARDSLOT(cpuid);
1160 
1161 	if (snprintf(buf, buflen, "%s%d", (slot ? "IO" : "SB"), expander)
1162 	    >= buflen) {
1163 		return (ENOSPC);
1164 	} else {
1165 		*lenp = strlen(buf);
1166 		return (0);
1167 	}
1168 }
1169 
1170 /*
1171  * This routine is used by the data bearing mondo (DMV) initialization
1172  * routine to determine the number of hardware and software DMV interrupts
1173  * that a platform supports.
1174  */
1175 void
1176 plat_dmv_params(uint_t *hwint, uint_t *swint)
1177 {
1178 	*hwint = STARCAT_DMV_HWINT;
1179 	*swint = 0;
1180 }
1181 
1182 /*
1183  * If provided, this function will be called whenever the nodename is updated.
1184  * To keep OS mailbox handling localized, all we do is forward the call to the
1185  * scosmb module (if it is available).
1186  */
1187 void
1188 plat_nodename_set(void)
1189 {
1190 	void (*nodename_update_func)(uint64_t) = NULL;
1191 
1192 	/*
1193 	 * find the symbol for the nodename update routine in the scosmb module
1194 	 */
1195 	nodename_update_func = (void (*)(uint64_t))
1196 	    modgetsymvalue("scosmb_update_nodename", 0);
1197 
1198 	/*
1199 	 * If the symbol was found, call it.  Otherwise, log a note (but not to
1200 	 * the console).
1201 	 */
1202 	if (nodename_update_func != NULL) {
1203 		nodename_update_func(0);
1204 	} else {
1205 		cmn_err(CE_NOTE,
1206 		    "!plat_nodename_set: scosmb_update_nodename not found\n");
1207 	}
1208 }
1209 
1210 caddr_t	efcode_vaddr = NULL;
1211 caddr_t efcode_paddr = NULL;
1212 /*
1213  * Preallocate enough memory for fcode claims.
1214  */
1215 
1216 caddr_t
1217 efcode_alloc(caddr_t alloc_base)
1218 {
1219 	caddr_t efcode_alloc_base = (caddr_t)roundup((uintptr_t)alloc_base,
1220 	    MMU_PAGESIZE);
1221 	caddr_t vaddr;
1222 
1223 	/*
1224 	 * allocate the physical memory schizo fcode.
1225 	 */
1226 	if ((vaddr = (caddr_t)BOP_ALLOC(bootops, efcode_alloc_base,
1227 	    efcode_size, MMU_PAGESIZE)) == NULL)
1228 		cmn_err(CE_PANIC, "Cannot allocate Efcode Memory");
1229 
1230 	efcode_vaddr = vaddr;
1231 
1232 	return (efcode_alloc_base + efcode_size);
1233 }
1234 
1235 caddr_t
1236 plat_startup_memlist(caddr_t alloc_base)
1237 {
1238 	caddr_t tmp_alloc_base;
1239 
1240 	tmp_alloc_base = efcode_alloc(alloc_base);
1241 	tmp_alloc_base = (caddr_t)roundup((uintptr_t)tmp_alloc_base,
1242 	    ecache_alignsize);
1243 	return (tmp_alloc_base);
1244 }
1245 
1246 /*
1247  * This is a helper function to determine if a given
1248  * node should be considered for a dr operation according
1249  * to predefined dr names. This is accomplished using
1250  * a function defined in drmach module. The drmach module
1251  * owns the definition of dr allowable names.
1252  * Formal Parameter: The name of a device node.
1253  * Expected Return Value: -1, device node name does not map to a valid dr name.
1254  *               A value greater or equal to 0, name is valid.
1255  */
1256 int
1257 starcat_dr_name(char *name)
1258 {
1259 	int (*drmach_name2type)(char *) = NULL;
1260 
1261 	/* Get a pointer to helper function in the dramch module. */
1262 	drmach_name2type =
1263 	    (int (*)(char *))kobj_getsymvalue("drmach_name2type_idx", 0);
1264 
1265 	if (drmach_name2type == NULL)
1266 		return (-1);
1267 
1268 	return ((*drmach_name2type)(name));
1269 }
1270 
1271 void
1272 startup_platform(void)
1273 {
1274 	/* set per platform constants for mutex backoff */
1275 	mutex_backoff_base = 2;
1276 	mutex_cap_factor = 64;
1277 }
1278 
1279 /*
1280  * KDI functions - used by the in-situ kernel debugger (kmdb) to perform
1281  * platform-specific operations.  These functions execute when the world is
1282  * stopped, and as such cannot make any blocking calls, hold locks, etc.
1283  * promif functions are a special case, and may be used.
1284  */
1285 
1286 static void
1287 starcat_system_claim(void)
1288 {
1289 	prom_interpret("sigb-sig! my-sigb-sig!", OBP_SIG, OBP_SIG, 0, 0, 0);
1290 }
1291 
1292 static void
1293 starcat_system_release(void)
1294 {
1295 	prom_interpret("sigb-sig! my-sigb-sig!", OS_SIG, OS_SIG, 0, 0, 0);
1296 }
1297 
1298 void
1299 plat_kdi_init(kdi_t *kdi)
1300 {
1301 	kdi->pkdi_system_claim = starcat_system_claim;
1302 	kdi->pkdi_system_release = starcat_system_release;
1303 }
1304 
1305 /*
1306  * This function returns 1 if large pages for kernel heap are supported
1307  * and 0 otherwise.
1308  *
1309  * Currently we disable lp kmem support if kpr is going to be enabled
1310  * because in the case of large pages hat_add_callback()/hat_delete_callback()
1311  * cause network performance degradation
1312  */
1313 int
1314 plat_lpkmem_is_supported(void)
1315 {
1316 	extern int segkmem_reloc;
1317 
1318 	if (hat_kpr_enabled && kernel_cage_enable &&
1319 	    (ncpunode >= 32 || segkmem_reloc == 1))
1320 		return (0);
1321 
1322 	return (1);
1323 }
1324