xref: /titanic_52/usr/src/uts/sun4u/serengeti/os/serengeti.c (revision 275c9da86e89f8abf71135cf63d9fc23671b2e60)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 #include <sys/time.h>
30 #include <sys/cpuvar.h>
31 #include <sys/dditypes.h>
32 #include <sys/ddipropdefs.h>
33 #include <sys/ddi_impldefs.h>
34 #include <sys/sunddi.h>
35 #include <sys/esunddi.h>
36 #include <sys/sunndi.h>
37 #include <sys/platform_module.h>
38 #include <sys/errno.h>
39 #include <sys/conf.h>
40 #include <sys/modctl.h>
41 #include <sys/promif.h>
42 #include <sys/promimpl.h>
43 #include <sys/prom_plat.h>
44 #include <sys/cmn_err.h>
45 #include <sys/sysmacros.h>
46 #include <sys/mem_cage.h>
47 #include <sys/kobj.h>
48 #include <sys/utsname.h>
49 #include <sys/cpu_sgnblk_defs.h>
50 #include <sys/atomic.h>
51 #include <sys/kdi_impl.h>
52 
53 #include <sys/sgsbbc.h>
54 #include <sys/sgsbbc_iosram.h>
55 #include <sys/sgsbbc_iosram_priv.h>
56 #include <sys/sgsbbc_mailbox.h>
57 #include <sys/sgsgn.h>
58 #include <sys/sgcn.h>
59 #include <sys/serengeti.h>
60 #include <sys/sgfrutypes.h>
61 #include <sys/machsystm.h>
62 #include <sys/sbd_ioctl.h>
63 #include <sys/sbd.h>
64 #include <sys/sbdp_mem.h>
65 
66 #include <sys/memnode.h>
67 #include <vm/vm_dep.h>
68 #include <vm/page.h>
69 
70 #include <sys/cheetahregs.h>
71 #include <sys/plat_ecc_unum.h>
72 #include <sys/plat_ecc_dimm.h>
73 
74 #include <sys/lgrp.h>
75 
76 static int sg_debug = 0;
77 
78 #ifdef DEBUG
79 #define	DCMNERR if (sg_debug) cmn_err
80 #else
81 #define	DCMNERR
82 #endif
83 
84 int (*p2get_mem_unum)(int, uint64_t, char *, int, int *);
85 
86 /* local functions */
87 static void cpu_sgn_update(ushort_t sgn, uchar_t state,
88     uchar_t sub_state, int cpuid);
89 
90 
91 /*
92  * Local data.
93  *
94  * iosram_write_ptr is a pointer to iosram_write().  Because of
95  * kernel dynamic linking, we can't get to the function by name,
96  * but we can look up its address, and store it in this variable
97  * instead.
98  *
99  * We include the extern for iosram_write() here not because we call
100  * it, but to force compilation errors if its prototype doesn't
101  * match the prototype of iosram_write_ptr.
102  *
103  * The same issues apply to iosram_read() and iosram_read_ptr.
104  */
105 /*CSTYLED*/
106 extern int   iosram_write     (int, uint32_t, caddr_t, uint32_t);
107 static int (*iosram_write_ptr)(int, uint32_t, caddr_t, uint32_t) = NULL;
108 /*CSTYLED*/
109 extern int   iosram_read     (int, uint32_t, caddr_t, uint32_t);
110 static int (*iosram_read_ptr)(int, uint32_t, caddr_t, uint32_t) = NULL;
111 
112 
113 /*
114  * Variable to indicate if the date should be obtained from the SC or not.
115  */
116 int todsg_use_sc = FALSE;	/* set the false at the beginning */
117 
118 /*
119  * Preallocation of spare tsb's for DR
120  *
121  * We don't allocate spares for Wildcat since TSBs should come
122  * out of memory local to the node.
123  */
124 #define	IOMMU_PER_SCHIZO	2
125 int serengeti_tsb_spares = (SG_MAX_IO_BDS * SG_SCHIZO_PER_IO_BD *
126 	IOMMU_PER_SCHIZO);
127 
128 /*
129  * sg_max_ncpus is the maximum number of CPUs supported on Serengeti.
130  * sg_max_ncpus is set to be smaller than NCPU to reduce the amount of
131  * memory the logs take up until we have a dynamic log memory allocation
132  * solution.
133  */
134 int sg_max_ncpus = (24 * 2);    /* (max # of processors * # of cores/proc) */
135 
136 /*
137  * variables to control mailbox message timeouts.
138  * These can be patched via /etc/system or mdb.
139  */
140 int	sbbc_mbox_default_timeout = MBOX_DEFAULT_TIMEOUT;
141 int	sbbc_mbox_min_timeout = MBOX_MIN_TIMEOUT;
142 
143 /* cached 'chosen' node_id */
144 pnode_t chosen_nodeid = (pnode_t)0;
145 
146 static void (*sg_ecc_taskq_func)(sbbc_ecc_mbox_t *) = NULL;
147 static int (*sg_ecc_mbox_func)(sbbc_ecc_mbox_t *) = NULL;
148 
149 /*
150  * Table that maps memory slices to a specific memnode.
151  */
152 int slice_to_memnode[SG_MAX_SLICE];
153 
154 plat_dimm_sid_board_t	domain_dimm_sids[SG_MAX_CPU_BDS];
155 
156 
157 int
158 set_platform_tsb_spares()
159 {
160 	return (MIN(serengeti_tsb_spares, MAX_UPA));
161 }
162 
163 #pragma weak mmu_init_large_pages
164 
165 void
166 set_platform_defaults(void)
167 {
168 	extern int watchdog_enable;
169 	extern uint64_t xc_tick_limit_scale;
170 	extern void mmu_init_large_pages(size_t);
171 
172 #ifdef DEBUG
173 	char *todsg_name = "todsg";
174 	ce_verbose_memory = 2;
175 	ce_verbose_other = 2;
176 #endif /* DEBUG */
177 
178 	watchdog_enable = TRUE;
179 	watchdog_available = TRUE;
180 
181 	cpu_sgn_func = cpu_sgn_update;
182 
183 #ifdef DEBUG
184 	/* tod_module_name should be set to "todsg" from OBP property */
185 	if (tod_module_name && (strcmp(tod_module_name, todsg_name) == 0))
186 		prom_printf("Using todsg driver\n");
187 	else {
188 		prom_printf("Force using todsg driver\n");
189 		tod_module_name = todsg_name;
190 	}
191 #endif /* DEBUG */
192 
193 	/* Serengeti does not support forthdebug */
194 	forthdebug_supported = 0;
195 
196 
197 	/*
198 	 * Some DR operations require the system to be sync paused.
199 	 * Sync pause on Serengeti could potentially take up to 4
200 	 * seconds to complete depending on the load on the SC.  To
201 	 * avoid send_mond panics during such operations, we need to
202 	 * increase xc_tick_limit to a larger value on Serengeti by
203 	 * setting xc_tick_limit_scale to 5.
204 	 */
205 	xc_tick_limit_scale = 5;
206 
207 	if ((mmu_page_sizes == max_mmu_page_sizes) &&
208 	    (mmu_ism_pagesize != DEFAULT_ISM_PAGESIZE)) {
209 		if (&mmu_init_large_pages)
210 			mmu_init_large_pages(mmu_ism_pagesize);
211 	}
212 }
213 
214 void
215 load_platform_modules(void)
216 {
217 	if (modload("misc", "pcihp") < 0) {
218 		cmn_err(CE_NOTE, "pcihp driver failed to load");
219 	}
220 }
221 
222 /*ARGSUSED*/
223 int
224 plat_cpu_poweron(struct cpu *cp)
225 {
226 	int (*serengeti_cpu_poweron)(struct cpu *) = NULL;
227 
228 	serengeti_cpu_poweron =
229 	    (int (*)(struct cpu *))modgetsymvalue("sbdp_cpu_poweron", 0);
230 
231 	if (serengeti_cpu_poweron == NULL)
232 		return (ENOTSUP);
233 	else
234 		return ((serengeti_cpu_poweron)(cp));
235 }
236 
237 /*ARGSUSED*/
238 int
239 plat_cpu_poweroff(struct cpu *cp)
240 {
241 	int (*serengeti_cpu_poweroff)(struct cpu *) = NULL;
242 
243 	serengeti_cpu_poweroff =
244 	    (int (*)(struct cpu *))modgetsymvalue("sbdp_cpu_poweroff", 0);
245 
246 	if (serengeti_cpu_poweroff == NULL)
247 		return (ENOTSUP);
248 	else
249 		return ((serengeti_cpu_poweroff)(cp));
250 }
251 
252 #ifdef DEBUG
253 pgcnt_t serengeti_cage_size_limit;
254 #endif
255 
256 /* Preferred minimum cage size (expressed in pages)... for DR */
257 pgcnt_t serengeti_minimum_cage_size = 0;
258 
259 void
260 set_platform_cage_params(void)
261 {
262 	extern pgcnt_t total_pages;
263 	extern struct memlist *phys_avail;
264 
265 	if (kernel_cage_enable) {
266 		pgcnt_t preferred_cage_size;
267 
268 		preferred_cage_size =
269 		    MAX(serengeti_minimum_cage_size, total_pages / 256);
270 #ifdef DEBUG
271 		if (serengeti_cage_size_limit)
272 			preferred_cage_size = serengeti_cage_size_limit;
273 #endif
274 		/*
275 		 * Post copies obp into the lowest slice.  This requires the
276 		 * cage to grow upwards
277 		 */
278 		kcage_range_init(phys_avail, KCAGE_UP, preferred_cage_size);
279 	}
280 
281 	kcage_startup_dir = KCAGE_UP;
282 
283 	/* Only note when the cage is off since it should always be on. */
284 	if (!kcage_on)
285 		cmn_err(CE_NOTE, "!DR Kernel Cage is DISABLED");
286 }
287 
288 #define	ALIGN(x, a)	((a) == 0 ? (uint64_t)(x) : \
289 	(((uint64_t)(x) + (uint64_t)(a) - 1l) & ~((uint64_t)(a) - 1l)))
290 
291 void
292 update_mem_bounds(int brd, uint64_t base, uint64_t sz)
293 {
294 	uint64_t	end;
295 	int		mnode;
296 
297 	end = base + sz - 1;
298 
299 	/*
300 	 * First see if this board already has a memnode associated
301 	 * with it.  If not, see if this slice has a memnode.  This
302 	 * covers the cases where a single slice covers multiple
303 	 * boards (cross-board interleaving) and where a single
304 	 * board has multiple slices (1+GB DIMMs).
305 	 */
306 	if ((mnode = plat_lgrphand_to_mem_node(brd)) == -1) {
307 		if ((mnode = slice_to_memnode[PA_2_SLICE(base)]) == -1)
308 			mnode = mem_node_alloc();
309 		plat_assign_lgrphand_to_mem_node(brd, mnode);
310 	}
311 
312 	/*
313 	 * Align base at 16GB boundary
314 	 */
315 	base = ALIGN(base, (1ul << PA_SLICE_SHIFT));
316 
317 	while (base < end) {
318 		slice_to_memnode[PA_2_SLICE(base)] = mnode;
319 		base += (1ul << PA_SLICE_SHIFT);
320 	}
321 }
322 
323 /*
324  * Dynamically detect memory slices in the system by decoding
325  * the cpu memory decoder registers at boot time.
326  */
327 void
328 plat_fill_mc(pnode_t nodeid)
329 {
330 	uint64_t	mc_addr, mask;
331 	uint64_t	mc_decode[SG_MAX_BANKS_PER_MC];
332 	uint64_t	base, size;
333 	uint32_t	regs[4];
334 	int		len;
335 	int		local_mc;
336 	int		portid;
337 	int		boardid;
338 	int		i;
339 
340 	if ((prom_getprop(nodeid, "portid", (caddr_t)&portid) < 0) ||
341 	    (portid == -1))
342 		return;
343 
344 	/*
345 	 * Decode the board number from the MC portid
346 	 */
347 	boardid = SG_PORTID_TO_BOARD_NUM(portid);
348 
349 	/*
350 	 * The "reg" property returns 4 32-bit values. The first two are
351 	 * combined to form a 64-bit address.  The second two are for a
352 	 * 64-bit size, but we don't actually need to look at that value.
353 	 */
354 	len = prom_getproplen(nodeid, "reg");
355 	if (len != (sizeof (uint32_t) * 4)) {
356 		prom_printf("Warning: malformed 'reg' property\n");
357 		return;
358 	}
359 	if (prom_getprop(nodeid, "reg", (caddr_t)regs) < 0)
360 		return;
361 	mc_addr = ((uint64_t)regs[0]) << 32;
362 	mc_addr |= (uint64_t)regs[1];
363 
364 	/*
365 	 * Figure out whether the memory controller we are examining
366 	 * belongs to this CPU or a different one.
367 	 */
368 	if (portid == cpunodes[CPU->cpu_id].portid)
369 		local_mc = 1;
370 	else
371 		local_mc = 0;
372 
373 	for (i = 0; i < SG_MAX_BANKS_PER_MC; i++) {
374 		mask = SG_REG_2_OFFSET(i);
375 
376 		/*
377 		 * If the memory controller is local to this CPU, we use
378 		 * the special ASI to read the decode registers.
379 		 * Otherwise, we load the values from a magic address in
380 		 * I/O space.
381 		 */
382 		if (local_mc)
383 			mc_decode[i] = lddmcdecode(mask & MC_OFFSET_MASK);
384 		else
385 			mc_decode[i] = lddphysio((mc_addr | mask));
386 
387 		if (mc_decode[i] >> MC_VALID_SHIFT) {
388 			/*
389 			 * The memory decode register is a bitmask field,
390 			 * so we can decode that into both a base and
391 			 * a span.
392 			 */
393 			base = MC_BASE(mc_decode[i]) << PHYS2UM_SHIFT;
394 			size = MC_UK2SPAN(mc_decode[i]);
395 			update_mem_bounds(boardid, base, size);
396 		}
397 	}
398 }
399 
400 /*
401  * This routine is run midway through the boot process.  By the time we get
402  * here, we know about all the active CPU boards in the system, and we have
403  * extracted information about each board's memory from the memory
404  * controllers.  We have also figured out which ranges of memory will be
405  * assigned to which memnodes, so we walk the slice table to build the table
406  * of memnodes.
407  */
408 /* ARGSUSED */
409 void
410 plat_build_mem_nodes(prom_memlist_t *list, size_t  nelems)
411 {
412 	int	slice;
413 	pfn_t	basepfn;
414 	pgcnt_t	npgs;
415 
416 	mem_node_pfn_shift = PFN_SLICE_SHIFT;
417 	mem_node_physalign = (1ull << PA_SLICE_SHIFT);
418 
419 	for (slice = 0; slice < SG_MAX_SLICE; slice++) {
420 		if (slice_to_memnode[slice] == -1)
421 			continue;
422 		basepfn = (uint64_t)slice << PFN_SLICE_SHIFT;
423 		npgs = 1ull << PFN_SLICE_SHIFT;
424 		mem_node_add_slice(basepfn, basepfn + npgs - 1);
425 	}
426 }
427 
428 int
429 plat_pfn_to_mem_node(pfn_t pfn)
430 {
431 	int node;
432 
433 	node = slice_to_memnode[PFN_2_SLICE(pfn)];
434 
435 	return (node);
436 }
437 
438 /*
439  * Serengeti support for lgroups.
440  *
441  * On Serengeti, an lgroup platform handle == board number.
442  *
443  * Mappings between lgroup handles and memnodes are managed
444  * in addition to mappings between memory slices and memnodes
445  * to support cross-board interleaving as well as multiple
446  * slices per board (e.g. >1GB DIMMs). The initial mapping
447  * of memnodes to lgroup handles is determined at boot time.
448  * A DR addition of memory adds a new mapping. A DR copy-rename
449  * swaps mappings.
450  */
451 
452 /*
453  * Macro for extracting the board number from the CPU id
454  */
455 #define	CPUID_TO_BOARD(id)	(((id) >> 2) & 0x7)
456 
457 /*
458  * Return the platform handle for the lgroup containing the given CPU
459  *
460  * For Serengeti, lgroup platform handle == board number
461  */
462 lgrp_handle_t
463 plat_lgrp_cpu_to_hand(processorid_t id)
464 {
465 	return (CPUID_TO_BOARD(id));
466 }
467 
468 /*
469  * Platform specific lgroup initialization
470  */
471 void
472 plat_lgrp_init(void)
473 {
474 	int i;
475 	extern uint32_t lgrp_expand_proc_thresh;
476 	extern uint32_t lgrp_expand_proc_diff;
477 
478 	/*
479 	 * Initialize lookup tables to invalid values so we catch
480 	 * any illegal use of them.
481 	 */
482 	for (i = 0; i < SG_MAX_SLICE; i++) {
483 		slice_to_memnode[i] = -1;
484 	}
485 
486 	/*
487 	 * Set tuneables for Serengeti architecture
488 	 *
489 	 * lgrp_expand_proc_thresh is the minimum load on the lgroups
490 	 * this process is currently running on before considering
491 	 * expanding threads to another lgroup.
492 	 *
493 	 * lgrp_expand_proc_diff determines how much less the remote lgroup
494 	 * must be loaded before expanding to it.
495 	 *
496 	 * Bandwidth is maximized on Serengeti by spreading load across
497 	 * the machine. The impact to inter-thread communication isn't
498 	 * too costly since remote latencies are relatively low.  These
499 	 * values equate to one CPU's load and so attempt to spread the
500 	 * load out across as many lgroups as possible one CPU at a time.
501 	 */
502 	lgrp_expand_proc_thresh = LGRP_LOADAVG_THREAD_MAX;
503 	lgrp_expand_proc_diff = LGRP_LOADAVG_THREAD_MAX;
504 }
505 
506 /*
507  * Platform notification of lgroup (re)configuration changes
508  */
509 /*ARGSUSED*/
510 void
511 plat_lgrp_config(lgrp_config_flag_t evt, uintptr_t arg)
512 {
513 	update_membounds_t	*umb;
514 	lgrp_config_mem_rename_t lmr;
515 	lgrp_handle_t		shand, thand;
516 	int			snode, tnode;
517 
518 	switch (evt) {
519 
520 	case LGRP_CONFIG_MEM_ADD:
521 		umb = (update_membounds_t *)arg;
522 		update_mem_bounds(umb->u_board, umb->u_base, umb->u_len);
523 
524 		break;
525 
526 	case LGRP_CONFIG_MEM_DEL:
527 		/* We don't have to do anything */
528 		break;
529 
530 	case LGRP_CONFIG_MEM_RENAME:
531 		/*
532 		 * During a DR copy-rename operation, all of the memory
533 		 * on one board is moved to another board -- but the
534 		 * addresses/pfns and memnodes don't change. This means
535 		 * the memory has changed locations without changing identity.
536 		 *
537 		 * Source is where we are copying from and target is where we
538 		 * are copying to.  After source memnode is copied to target
539 		 * memnode, the physical addresses of the target memnode are
540 		 * renamed to match what the source memnode had.  Then target
541 		 * memnode can be removed and source memnode can take its
542 		 * place.
543 		 *
544 		 * To do this, swap the lgroup handle to memnode mappings for
545 		 * the boards, so target lgroup will have source memnode and
546 		 * source lgroup will have empty target memnode which is where
547 		 * its memory will go (if any is added to it later).
548 		 *
549 		 * Then source memnode needs to be removed from its lgroup
550 		 * and added to the target lgroup where the memory was living
551 		 * but under a different name/memnode.  The memory was in the
552 		 * target memnode and now lives in the source memnode with
553 		 * different physical addresses even though it is the same
554 		 * memory.
555 		 */
556 		shand = arg & 0xffff;
557 		thand = (arg & 0xffff0000) >> 16;
558 		snode = plat_lgrphand_to_mem_node(shand);
559 		tnode = plat_lgrphand_to_mem_node(thand);
560 
561 		plat_assign_lgrphand_to_mem_node(thand, snode);
562 		plat_assign_lgrphand_to_mem_node(shand, tnode);
563 
564 		/*
565 		 * Remove source memnode of copy rename from its lgroup
566 		 * and add it to its new target lgroup
567 		 */
568 		lmr.lmem_rename_from = shand;
569 		lmr.lmem_rename_to = thand;
570 
571 		lgrp_config(LGRP_CONFIG_MEM_RENAME, (uintptr_t)snode,
572 		    (uintptr_t)&lmr);
573 
574 		break;
575 
576 	default:
577 		break;
578 	}
579 }
580 
581 /*
582  * Return latency between "from" and "to" lgroups
583  *
584  * This latency number can only be used for relative comparison
585  * between lgroups on the running system, cannot be used across platforms,
586  * and may not reflect the actual latency.  It is platform and implementation
587  * specific, so platform gets to decide its value.  It would be nice if the
588  * number was at least proportional to make comparisons more meaningful though.
589  * NOTE: The numbers below are supposed to be load latencies for uncached
590  * memory divided by 10.
591  */
592 int
593 plat_lgrp_latency(lgrp_handle_t from, lgrp_handle_t to)
594 {
595 	/*
596 	 * Return min remote latency when there are more than two lgroups
597 	 * (root and child) and getting latency between two different lgroups
598 	 * or root is involved
599 	 */
600 	if (lgrp_optimizations() && (from != to ||
601 	    from == LGRP_DEFAULT_HANDLE || to == LGRP_DEFAULT_HANDLE))
602 		return (28);
603 	else
604 		return (23);
605 }
606 
607 /* ARGSUSED */
608 void
609 plat_freelist_process(int mnode)
610 {
611 }
612 
613 /*
614  * Find dip for chosen IOSRAM
615  */
616 dev_info_t *
617 find_chosen_dip(void)
618 {
619 	dev_info_t	*dip;
620 	char		master_sbbc[MAXNAMELEN];
621 	pnode_t		nodeid;
622 	uint_t		tunnel;
623 
624 	/*
625 	 * find the /chosen SBBC node, prom interface will handle errors
626 	 */
627 	nodeid = prom_chosennode();
628 
629 	/*
630 	 * get the 'iosram' property from the /chosen node
631 	 */
632 	if (prom_getprop(nodeid, IOSRAM_CHOSEN_PROP, (caddr_t)&tunnel) <= 0) {
633 		SBBC_ERR(CE_PANIC, "No iosram property found! \n");
634 	}
635 
636 	if (prom_phandle_to_path((phandle_t)tunnel, master_sbbc,
637 	    sizeof (master_sbbc)) < 0) {
638 		SBBC_ERR1(CE_PANIC, "prom_phandle_to_path(%d) failed\n",
639 		    tunnel);
640 	}
641 
642 	chosen_nodeid = nodeid;
643 
644 	/*
645 	 * load and attach the sgsbbc driver.
646 	 * This will also attach all the sgsbbc driver instances
647 	 */
648 	if (i_ddi_attach_hw_nodes("sgsbbc") != DDI_SUCCESS) {
649 		cmn_err(CE_WARN, "sgsbbc failed to load\n");
650 	}
651 
652 	/* translate a path name to a dev_info_t */
653 	dip = e_ddi_hold_devi_by_path(master_sbbc, 0);
654 	if ((dip == NULL) || (ddi_get_nodeid(dip) != tunnel)) {
655 		cmn_err(CE_PANIC, "i_ddi_path_to_devi(%x) failed for SBBC\n",
656 		    tunnel);
657 	}
658 
659 	/* make sure devi_ref is ZERO */
660 	ndi_rele_devi(dip);
661 
662 	DCMNERR(CE_CONT, "Chosen IOSRAM is at %s \n", master_sbbc);
663 
664 	return (dip);
665 }
666 
667 void
668 load_platform_drivers(void)
669 {
670 	int ret;
671 
672 	/*
673 	 * Load and attach the mc-us3 memory driver.
674 	 */
675 	if (i_ddi_attach_hw_nodes("mc-us3") != DDI_SUCCESS)
676 		cmn_err(CE_WARN, "mc-us3 failed to load");
677 	else
678 		(void) ddi_hold_driver(ddi_name_to_major("mc-us3"));
679 
680 	/*
681 	 * Initialize the chosen IOSRAM before its clients
682 	 * are loaded.
683 	 */
684 	(void) find_chosen_dip();
685 
686 	/*
687 	 * Ideally, we'd do this in set_platform_defaults(), but
688 	 * at that point it's too early to look up symbols.
689 	 */
690 	iosram_write_ptr = (int (*)(int, uint32_t, caddr_t, uint32_t))
691 	    modgetsymvalue("iosram_write", 0);
692 
693 	if (iosram_write_ptr == NULL) {
694 		DCMNERR(CE_WARN, "load_platform_defaults: iosram_write()"
695 		    " not found; signatures will not be updated\n");
696 	} else {
697 		/*
698 		 * The iosram read ptr is only needed if we can actually
699 		 * write CPU signatures, so only bother setting it if we
700 		 * set a valid write pointer, above.
701 		 */
702 		iosram_read_ptr = (int (*)(int, uint32_t, caddr_t, uint32_t))
703 		    modgetsymvalue("iosram_read", 0);
704 
705 		if (iosram_read_ptr == NULL)
706 			DCMNERR(CE_WARN, "load_platform_defaults: iosram_read()"
707 			    " not found\n");
708 	}
709 
710 	/*
711 	 * Set todsg_use_sc to TRUE so that we will be getting date
712 	 * from the SC.
713 	 */
714 	todsg_use_sc = TRUE;
715 
716 	/*
717 	 * Now is a good time to activate hardware watchdog (if one exists).
718 	 */
719 	mutex_enter(&tod_lock);
720 	if (watchdog_enable)
721 		ret = tod_ops.tod_set_watchdog_timer(watchdog_timeout_seconds);
722 	mutex_exit(&tod_lock);
723 	if (ret != 0)
724 		printf("Hardware watchdog enabled\n");
725 
726 	/*
727 	 * Load and attach the schizo pci bus nexus driver.
728 	 */
729 	if (i_ddi_attach_hw_nodes("pcisch") != DDI_SUCCESS)
730 		cmn_err(CE_WARN, "pcisch failed to load");
731 
732 	plat_ecc_init();
733 }
734 
735 /*
736  * No platform drivers on this platform
737  */
738 char *platform_module_list[] = {
739 	(char *)0
740 };
741 
742 /*ARGSUSED*/
743 void
744 plat_tod_fault(enum tod_fault_type tod_bad)
745 {
746 }
747 int
748 plat_max_boards()
749 {
750 	return (SG_MAX_BDS);
751 }
752 int
753 plat_max_io_units_per_board()
754 {
755 	return (SG_MAX_IO_PER_BD);
756 }
757 int
758 plat_max_cmp_units_per_board()
759 {
760 	return (SG_MAX_CMPS_PER_BD);
761 }
762 int
763 plat_max_cpu_units_per_board()
764 {
765 	return (SG_MAX_CPUS_PER_BD);
766 }
767 
768 int
769 plat_max_mc_units_per_board()
770 {
771 	return (SG_MAX_CMPS_PER_BD); /* each CPU die has a memory controller */
772 }
773 
774 int
775 plat_max_mem_units_per_board()
776 {
777 	return (SG_MAX_MEM_PER_BD);
778 }
779 
780 int
781 plat_max_cpumem_boards(void)
782 {
783 	return (SG_MAX_CPU_BDS);
784 }
785 
786 int
787 set_platform_max_ncpus(void)
788 {
789 	return (sg_max_ncpus);
790 }
791 
792 void
793 plat_dmv_params(uint_t *hwint, uint_t *swint)
794 {
795 	*hwint = MAX_UPA;
796 	*swint = 0;
797 }
798 
799 /*
800  * Our nodename has been set, pass it along to the SC.
801  */
802 void
803 plat_nodename_set(void)
804 {
805 	sbbc_msg_t	req;	/* request */
806 	sbbc_msg_t	resp;	/* response */
807 	int		rv;	/* return value from call to mbox */
808 	struct nodename_info {
809 		int32_t	namelen;
810 		char	nodename[_SYS_NMLN];
811 	} nni;
812 	int (*sg_mbox)(sbbc_msg_t *, sbbc_msg_t *, time_t) = NULL;
813 
814 	/*
815 	 * find the symbol for the mailbox routine
816 	 */
817 	sg_mbox = (int (*)(sbbc_msg_t *, sbbc_msg_t *, time_t))
818 	    modgetsymvalue("sbbc_mbox_request_response", 0);
819 
820 	if (sg_mbox == NULL) {
821 		cmn_err(CE_NOTE, "!plat_nodename_set: sg_mbox not found\n");
822 		return;
823 	}
824 
825 	/*
826 	 * construct the message telling the SC our nodename
827 	 */
828 	(void) strcpy(nni.nodename, utsname.nodename);
829 	nni.namelen = (int32_t)strlen(nni.nodename);
830 
831 	req.msg_type.type = INFO_MBOX;
832 	req.msg_type.sub_type = INFO_MBOX_NODENAME;
833 	req.msg_status = 0;
834 	req.msg_len = (int)(nni.namelen + sizeof (nni.namelen));
835 	req.msg_bytes = 0;
836 	req.msg_buf = (caddr_t)&nni;
837 	req.msg_data[0] = 0;
838 	req.msg_data[1] = 0;
839 
840 	/*
841 	 * initialize the response back from the SC
842 	 */
843 	resp.msg_type.type = INFO_MBOX;
844 	resp.msg_type.sub_type = INFO_MBOX_NODENAME;
845 	resp.msg_status = 0;
846 	resp.msg_len = 0;
847 	resp.msg_bytes = 0;
848 	resp.msg_buf = (caddr_t)0;
849 	resp.msg_data[0] = 0;
850 	resp.msg_data[1] = 0;
851 
852 	/*
853 	 * ship it and check for success
854 	 */
855 	rv = (sg_mbox)(&req, &resp, sbbc_mbox_default_timeout);
856 
857 	if (rv != 0) {
858 		cmn_err(CE_NOTE, "!plat_nodename_set: sg_mbox retval %d\n", rv);
859 	} else if (resp.msg_status != 0) {
860 		cmn_err(CE_NOTE, "!plat_nodename_set: msg_status %d\n",
861 		    resp.msg_status);
862 	} else {
863 		DCMNERR(CE_NOTE, "!plat_nodename_set was successful\n");
864 
865 		/*
866 		 * It is necessary to exchange the capability bitmap
867 		 * with SC before sending any ecc error information and
868 		 * indictment. We are calling the plat_ecc_capability_send()
869 		 * here just after sending the nodename successfully.
870 		 */
871 		rv = plat_ecc_capability_send();
872 		if (rv == 0) {
873 			DCMNERR(CE_NOTE, "!plat_ecc_capability_send was"
874 			    " successful\n");
875 		}
876 	}
877 }
878 
879 /*
880  * flag to allow users switch between using OBP's
881  * prom_get_unum() and mc-us3 driver's p2get_mem_unum()
882  * (for main memory errors only).
883  */
884 int sg_use_prom_get_unum = 0;
885 
886 /*
887  * Debugging flag: set to 1 to call into obp for get_unum, or set it to 0
888  * to call into the unum cache system.  This is the E$ equivalent of
889  * sg_use_prom_get_unum.
890  */
891 int sg_use_prom_ecache_unum = 0;
892 
893 /* used for logging ECC errors to the SC */
894 #define	SG_MEMORY_ECC	1
895 #define	SG_ECACHE_ECC	2
896 #define	SG_UNKNOWN_ECC	(-1)
897 
898 /*
899  * plat_get_mem_unum() generates a string identifying either the
900  * memory or E$ DIMM(s) during error logging. Depending on whether
901  * the error is E$ or memory related, the appropriate support
902  * routine is called to assist in the string generation.
903  *
904  * - For main memory errors we can use the mc-us3 drivers p2getunum()
905  *   (or prom_get_unum() for debugging purposes).
906  *
907  * - For E$ errors we call sg_get_ecacheunum() to generate the unum (or
908  *   prom_serengeti_get_ecacheunum() for debugging purposes).
909  */
910 
911 static int
912 sg_prom_get_unum(int synd_code, uint64_t paddr, char *buf, int buflen,
913     int *lenp)
914 {
915 	if ((prom_get_unum(synd_code, (unsigned long long)paddr,
916 	    buf, buflen, lenp)) != 0)
917 		return (EIO);
918 	else if (*lenp <= 1)
919 		return (EINVAL);
920 	else
921 		return (0);
922 }
923 
924 /*ARGSUSED*/
925 int
926 plat_get_mem_unum(int synd_code, uint64_t flt_addr, int flt_bus_id,
927     int flt_in_memory, ushort_t flt_status, char *buf, int buflen, int *lenp)
928 {
929 	/*
930 	 * unum_func will either point to the memory drivers p2get_mem_unum()
931 	 * or to prom_get_unum() for memory errors.
932 	 */
933 	int (*unum_func)(int synd_code, uint64_t paddr, char *buf,
934 	    int buflen, int *lenp) = p2get_mem_unum;
935 
936 	/*
937 	 * check if it's a Memory or an Ecache error.
938 	 */
939 	if (flt_in_memory) {
940 		/*
941 		 * It's a main memory error.
942 		 *
943 		 * For debugging we allow the user to switch between
944 		 * using OBP's get_unum and the memory driver's get_unum
945 		 * so we create a pointer to the functions and switch
946 		 * depending on the sg_use_prom_get_unum flag.
947 		 */
948 		if (sg_use_prom_get_unum) {
949 			DCMNERR(CE_NOTE, "Using prom_get_unum from OBP");
950 			return (sg_prom_get_unum(synd_code,
951 			    P2ALIGN(flt_addr, 8), buf, buflen, lenp));
952 		} else if (unum_func != NULL) {
953 			return (unum_func(synd_code, P2ALIGN(flt_addr, 8),
954 			    buf, buflen, lenp));
955 		} else {
956 			return (ENOTSUP);
957 		}
958 	} else if (flt_status & ECC_ECACHE) {
959 		/*
960 		 * It's an E$ error.
961 		 */
962 		if (sg_use_prom_ecache_unum) {
963 			/*
964 			 * We call to OBP to handle this.
965 			 */
966 			DCMNERR(CE_NOTE,
967 			    "Using prom_serengeti_get_ecacheunum from OBP");
968 			if (prom_serengeti_get_ecacheunum(flt_bus_id,
969 			    P2ALIGN(flt_addr, 8), buf, buflen, lenp) != 0) {
970 				return (EIO);
971 			}
972 		} else {
973 			return (sg_get_ecacheunum(flt_bus_id, flt_addr,
974 			    buf, buflen, lenp));
975 		}
976 	} else {
977 		return (ENOTSUP);
978 	}
979 
980 	return (0);
981 }
982 
983 /*
984  * This platform hook gets called from mc_add_mem_unum_label() in the mc-us3
985  * driver giving each platform the opportunity to add platform
986  * specific label information to the unum for ECC error logging purposes.
987  */
988 void
989 plat_add_mem_unum_label(char *unum, int mcid, int bank, int dimm)
990 {
991 	char	new_unum[UNUM_NAMLEN] = "";
992 	int	node = SG_PORTID_TO_NODEID(mcid);
993 	int	board = SG_CPU_BD_PORTID_TO_BD_NUM(mcid);
994 	int	position = SG_PORTID_TO_CPU_POSN(mcid);
995 
996 	/*
997 	 * The mc-us3 driver deals with logical banks but for unum
998 	 * purposes we need to use physical banks so that the correct
999 	 * dimm can be physically located. Logical banks 0 and 2
1000 	 * make up physical bank 0. Logical banks 1 and 3 make up
1001 	 * physical bank 1. Here we do the necessary conversion.
1002 	 */
1003 	bank = (bank % 2);
1004 
1005 	if (dimm == -1) {
1006 		SG_SET_FRU_NAME_NODE(new_unum, node);
1007 		SG_SET_FRU_NAME_CPU_BOARD(new_unum, board);
1008 		SG_SET_FRU_NAME_MODULE(new_unum, position);
1009 		SG_SET_FRU_NAME_BANK(new_unum, bank);
1010 
1011 	} else {
1012 		SG_SET_FRU_NAME_NODE(new_unum, node);
1013 		SG_SET_FRU_NAME_CPU_BOARD(new_unum, board);
1014 		SG_SET_FRU_NAME_MODULE(new_unum, position);
1015 		SG_SET_FRU_NAME_BANK(new_unum, bank);
1016 		SG_SET_FRU_NAME_DIMM(new_unum, dimm);
1017 
1018 		strcat(new_unum, " ");
1019 		strcat(new_unum, unum);
1020 	}
1021 
1022 	strcpy(unum, new_unum);
1023 }
1024 
1025 int
1026 plat_get_cpu_unum(int cpuid, char *buf, int buflen, int *lenp)
1027 {
1028 	int	node = SG_PORTID_TO_NODEID(cpuid);
1029 	int	board = SG_CPU_BD_PORTID_TO_BD_NUM(cpuid);
1030 
1031 	if (snprintf(buf, buflen, "/N%d/%s%d", node,
1032 	    SG_HPU_TYPE_CPU_BOARD_ID, board) >= buflen) {
1033 		return (ENOSPC);
1034 	} else {
1035 		*lenp = strlen(buf);
1036 		return (0);
1037 	}
1038 }
1039 
1040 /*
1041  * We log all ECC events to the SC so we send a mailbox
1042  * message to the SC passing it the relevant data.
1043  * ECC mailbox messages are sent via a taskq mechanism to
1044  * prevent impaired system performance during ECC floods.
1045  * Indictments have already passed through a taskq, so they
1046  * are not queued here.
1047  */
1048 int
1049 plat_send_ecc_mailbox_msg(plat_ecc_message_type_t msg_type, void *datap)
1050 {
1051 	sbbc_ecc_mbox_t	*msgp;
1052 	size_t		msg_size;
1053 	uint16_t	msg_subtype;
1054 	int		sleep_flag, log_error;
1055 
1056 	if (sg_ecc_taskq_func == NULL) {
1057 		sg_ecc_taskq_func = (void (*)(sbbc_ecc_mbox_t *))
1058 		    modgetsymvalue("sbbc_mbox_queue_ecc_event", 0);
1059 		if (sg_ecc_taskq_func == NULL) {
1060 			cmn_err(CE_NOTE, "!plat_send_ecc_mailbox_msg: "
1061 			    "sbbc_mbox_queue_ecc_event not found");
1062 			return (ENODEV);
1063 		}
1064 	}
1065 	if (sg_ecc_mbox_func == NULL) {
1066 		sg_ecc_mbox_func = (int (*)(sbbc_ecc_mbox_t *))
1067 		    modgetsymvalue("sbbc_mbox_ecc_output", 0);
1068 		if (sg_ecc_mbox_func == NULL) {
1069 			cmn_err(CE_NOTE, "!plat_send_ecc_mailbox_msg: "
1070 			    "sbbc_mbox_ecc_output not found");
1071 			return (ENODEV);
1072 		}
1073 	}
1074 
1075 	/*
1076 	 * Initialize the request and response structures
1077 	 */
1078 	switch (msg_type) {
1079 	case PLAT_ECC_ERROR_MESSAGE:
1080 		msg_subtype = INFO_MBOX_ERROR_ECC;
1081 		msg_size = sizeof (plat_ecc_error_data_t);
1082 		sleep_flag = KM_NOSLEEP;
1083 		log_error = 1;
1084 		break;
1085 	case PLAT_ECC_ERROR2_MESSAGE:
1086 		msg_subtype = INFO_MBOX_ECC;
1087 		msg_size = sizeof (plat_ecc_error2_data_t);
1088 		sleep_flag = KM_NOSLEEP;
1089 		log_error = 1;
1090 		break;
1091 	case PLAT_ECC_INDICTMENT_MESSAGE:
1092 		msg_subtype = INFO_MBOX_ERROR_INDICT;
1093 		msg_size = sizeof (plat_ecc_indictment_data_t);
1094 		sleep_flag = KM_SLEEP;
1095 		log_error = 0;
1096 		break;
1097 	case PLAT_ECC_INDICTMENT2_MESSAGE:
1098 		msg_subtype = INFO_MBOX_ECC;
1099 		msg_size = sizeof (plat_ecc_indictment2_data_t);
1100 		sleep_flag = KM_SLEEP;
1101 		log_error = 0;
1102 		break;
1103 	case PLAT_ECC_CAPABILITY_MESSAGE:
1104 		msg_subtype = INFO_MBOX_ECC_CAP;
1105 		msg_size = sizeof (plat_capability_data_t) +
1106 		    strlen(utsname.release) + strlen(utsname.version) + 2;
1107 		sleep_flag = KM_SLEEP;
1108 		log_error = 0;
1109 		break;
1110 	case PLAT_ECC_DIMM_SID_MESSAGE:
1111 		msg_subtype = INFO_MBOX_ECC;
1112 		msg_size = sizeof (plat_dimm_sid_request_data_t);
1113 		sleep_flag = KM_SLEEP;
1114 		log_error = 0;
1115 		break;
1116 	default:
1117 		return (EINVAL);
1118 	}
1119 
1120 	msgp = (sbbc_ecc_mbox_t	*)kmem_zalloc(sizeof (sbbc_ecc_mbox_t),
1121 	    sleep_flag);
1122 	if (msgp == NULL) {
1123 		cmn_err(CE_NOTE, "!plat_send_ecc_mailbox_msg: "
1124 		    "unable to allocate sbbc_ecc_mbox");
1125 		return (ENOMEM);
1126 	}
1127 
1128 	msgp->ecc_log_error = log_error;
1129 
1130 	msgp->ecc_req.msg_type.type = INFO_MBOX;
1131 	msgp->ecc_req.msg_type.sub_type = msg_subtype;
1132 	msgp->ecc_req.msg_status = 0;
1133 	msgp->ecc_req.msg_len = (int)msg_size;
1134 	msgp->ecc_req.msg_bytes = 0;
1135 	msgp->ecc_req.msg_buf = (caddr_t)kmem_zalloc(msg_size, sleep_flag);
1136 	msgp->ecc_req.msg_data[0] = 0;
1137 	msgp->ecc_req.msg_data[1] = 0;
1138 
1139 	if (msgp->ecc_req.msg_buf == NULL) {
1140 		cmn_err(CE_NOTE, "!plat_send_ecc_mailbox_msg: "
1141 		    "unable to allocate request msg_buf");
1142 		kmem_free((void *)msgp, sizeof (sbbc_ecc_mbox_t));
1143 		return (ENOMEM);
1144 	}
1145 	bcopy(datap, (void *)msgp->ecc_req.msg_buf, msg_size);
1146 
1147 	/*
1148 	 * initialize the response back from the SC
1149 	 */
1150 	msgp->ecc_resp.msg_type.type = INFO_MBOX;
1151 	msgp->ecc_resp.msg_type.sub_type = msg_subtype;
1152 	msgp->ecc_resp.msg_status = 0;
1153 	msgp->ecc_resp.msg_len = 0;
1154 	msgp->ecc_resp.msg_bytes = 0;
1155 	msgp->ecc_resp.msg_buf = NULL;
1156 	msgp->ecc_resp.msg_data[0] = 0;
1157 	msgp->ecc_resp.msg_data[1] = 0;
1158 
1159 	switch (msg_type) {
1160 	case PLAT_ECC_ERROR_MESSAGE:
1161 	case PLAT_ECC_ERROR2_MESSAGE:
1162 		/*
1163 		 * For Error Messages, we go through a taskq.
1164 		 * Queue up the message for processing
1165 		 */
1166 		(*sg_ecc_taskq_func)(msgp);
1167 		return (0);
1168 
1169 	case PLAT_ECC_CAPABILITY_MESSAGE:
1170 		/*
1171 		 * For indictment and capability messages, we've already gone
1172 		 * through the taskq, so we can call the mailbox routine
1173 		 * directly.  Find the symbol for the routine that sends
1174 		 * the mailbox msg
1175 		 */
1176 		msgp->ecc_resp.msg_len = (int)msg_size;
1177 		msgp->ecc_resp.msg_buf = (caddr_t)kmem_zalloc(msg_size,
1178 		    sleep_flag);
1179 		/* FALLTHRU */
1180 
1181 	case PLAT_ECC_INDICTMENT_MESSAGE:
1182 	case PLAT_ECC_INDICTMENT2_MESSAGE:
1183 		return ((*sg_ecc_mbox_func)(msgp));
1184 
1185 	case PLAT_ECC_DIMM_SID_MESSAGE:
1186 		msgp->ecc_resp.msg_len = sizeof (plat_dimm_sid_board_data_t);
1187 		msgp->ecc_resp.msg_buf = (caddr_t)kmem_zalloc(
1188 		    sizeof (plat_dimm_sid_board_data_t), sleep_flag);
1189 		return ((*sg_ecc_mbox_func)(msgp));
1190 
1191 	default:
1192 		ASSERT(0);
1193 		return (EINVAL);
1194 	}
1195 }
1196 
1197 /*
1198  * m is redundant on serengeti as the multiplier is always 4
1199  */
1200 /*ARGSUSED*/
1201 int
1202 plat_make_fru_cpuid(int sb, int m, int proc)
1203 {
1204 	return (MAKE_CPUID(sb, proc));
1205 }
1206 
1207 /*
1208  * board number for a given proc
1209  */
1210 int
1211 plat_make_fru_boardnum(int proc)
1212 {
1213 	return (SG_CPU_BD_PORTID_TO_BD_NUM(proc));
1214 }
1215 
1216 static
1217 void
1218 cpu_sgn_update(ushort_t sig, uchar_t state, uchar_t sub_state, int cpuid)
1219 {
1220 	uint32_t signature = CPU_SIG_BLD(sig, state, sub_state);
1221 	sig_state_t current_sgn;
1222 	int i;
1223 
1224 	if (iosram_write_ptr == NULL) {
1225 		/*
1226 		 * If the IOSRAM write pointer isn't set, we won't be able
1227 		 * to write signatures to ANYTHING, so we may as well just
1228 		 * write out an error message (if desired) and exit this
1229 		 * routine now...
1230 		 */
1231 		DCMNERR(CE_WARN,
1232 		    "cpu_sgn_update: iosram_write() not found;"
1233 		    " cannot write signature 0x%x for CPU(s) or domain\n",
1234 		    signature);
1235 		return;
1236 	}
1237 
1238 
1239 	/*
1240 	 * Differentiate a panic reboot from a non-panic reboot in the
1241 	 * setting of the substate of the signature.
1242 	 *
1243 	 * If the new substate is REBOOT and we're rebooting due to a panic,
1244 	 * then set the new substate to a special value indicating a panic
1245 	 * reboot, SIGSUBST_PANIC_REBOOT.
1246 	 *
1247 	 * A panic reboot is detected by a current (previous) domain signature
1248 	 * state of SIGST_EXIT, and a new signature substate of SIGSUBST_REBOOT.
1249 	 * The domain signature state SIGST_EXIT is used as the panic flow
1250 	 * progresses.
1251 	 *
1252 	 * At the end of the panic flow, the reboot occurs but we should now
1253 	 * one that was involuntary, something that may be quite useful to know
1254 	 * at OBP level.
1255 	 */
1256 	if (sub_state == SIGSUBST_REBOOT) {
1257 		if (iosram_read_ptr == NULL) {
1258 			DCMNERR(CE_WARN,
1259 			    "cpu_sgn_update: iosram_read() not found;"
1260 			    " could not check current domain signature\n");
1261 		} else {
1262 			(void) (*iosram_read_ptr)(SBBC_SIGBLCK_KEY,
1263 			    SG_SGNBLK_DOMAINSIG_OFFSET,
1264 			    (char *)&current_sgn, sizeof (current_sgn));
1265 			if (current_sgn.state_t.state == SIGST_EXIT)
1266 				signature = CPU_SIG_BLD(sig, state,
1267 				    SIGSUBST_PANIC_REBOOT);
1268 		}
1269 	}
1270 
1271 	/*
1272 	 * cpuid == -1 indicates that the operation applies to all cpus.
1273 	 */
1274 	if (cpuid >= 0) {
1275 		(void) (*iosram_write_ptr)(SBBC_SIGBLCK_KEY,
1276 		    SG_SGNBLK_CPUSIG_OFFSET(cpuid), (char *)&signature,
1277 		    sizeof (signature));
1278 	} else {
1279 		for (i = 0; i < NCPU; i++) {
1280 			if (cpu[i] == NULL || !(cpu[i]->cpu_flags &
1281 			    (CPU_EXISTS|CPU_QUIESCED))) {
1282 				continue;
1283 			}
1284 			(void) (*iosram_write_ptr)(SBBC_SIGBLCK_KEY,
1285 			    SG_SGNBLK_CPUSIG_OFFSET(i), (char *)&signature,
1286 			    sizeof (signature));
1287 		}
1288 	}
1289 
1290 	if (state == SIGST_OFFLINE || state == SIGST_DETACHED) {
1291 		return;
1292 	}
1293 
1294 	(void) (*iosram_write_ptr)(SBBC_SIGBLCK_KEY,
1295 	    SG_SGNBLK_DOMAINSIG_OFFSET, (char *)&signature,
1296 	    sizeof (signature));
1297 }
1298 
1299 void
1300 startup_platform(void)
1301 {
1302 	/* set per-platform constants for mutex backoff */
1303 	mutex_backoff_base = 1;
1304 	mutex_cap_factor = 32;
1305 }
1306 
1307 /*
1308  * A routine to convert a number (represented as a string) to
1309  * the integer value it represents.
1310  */
1311 
1312 static int
1313 isdigit(int ch)
1314 {
1315 	return (ch >= '0' && ch <= '9');
1316 }
1317 
1318 #define	isspace(c)	((c) == ' ' || (c) == '\t' || (c) == '\n')
1319 
1320 static int
1321 strtoi(char *p, char **pos)
1322 {
1323 	int n;
1324 	int c, neg = 0;
1325 
1326 	if (!isdigit(c = *p)) {
1327 		while (isspace(c))
1328 			c = *++p;
1329 		switch (c) {
1330 			case '-':
1331 				neg++;
1332 				/* FALLTHROUGH */
1333 			case '+':
1334 			c = *++p;
1335 		}
1336 		if (!isdigit(c)) {
1337 			if (pos != NULL)
1338 				*pos = p;
1339 			return (0);
1340 		}
1341 	}
1342 	for (n = '0' - c; isdigit(c = *++p); ) {
1343 		n *= 10; /* two steps to avoid unnecessary overflow */
1344 		n += '0' - c; /* accum neg to avoid surprises at MAX */
1345 	}
1346 	if (pos != NULL)
1347 		*pos = p;
1348 	return (neg ? n : -n);
1349 }
1350 
1351 /*
1352  * Get the three parts of the Serengeti PROM version.
1353  * Used for feature readiness tests.
1354  *
1355  * Return 0 if version extracted successfully, -1 otherwise.
1356  */
1357 
1358 int
1359 sg_get_prom_version(int *sysp, int *intfp, int *bldp)
1360 {
1361 	int plen;
1362 	char vers[512];
1363 	static pnode_t node;
1364 	static char version[] = "version";
1365 	char *verp, *ep;
1366 
1367 	node = prom_finddevice("/openprom");
1368 	if (node == OBP_BADNODE)
1369 		return (-1);
1370 
1371 	plen = prom_getproplen(node, version);
1372 	if (plen <= 0 || plen >= sizeof (vers))
1373 		return (-1);
1374 	(void) prom_getprop(node, version, vers);
1375 	vers[plen] = '\0';
1376 
1377 	/* Make sure it's an OBP flashprom */
1378 	if (vers[0] != 'O' && vers[1] != 'B' && vers[2] != 'P') {
1379 		cmn_err(CE_WARN, "sg_get_prom_version: "
1380 		    "unknown <version> string in </openprom>\n");
1381 		return (-1);
1382 	}
1383 	verp = &vers[4];
1384 
1385 	*sysp = strtoi(verp, &ep);
1386 	if (ep == verp || *ep != '.')
1387 		return (-1);
1388 	verp = ep + 1;
1389 
1390 	*intfp = strtoi(verp, &ep);
1391 	if (ep == verp || *ep != '.')
1392 		return (-1);
1393 	verp = ep + 1;
1394 
1395 	*bldp = strtoi(verp, &ep);
1396 	if (ep == verp || (*ep != '\0' && !isspace(*ep)))
1397 		return (-1);
1398 	return (0);
1399 }
1400 
1401 /*
1402  * Return 0 if system board Dynamic Reconfiguration
1403  * is supported by the firmware, -1 otherwise.
1404  */
1405 int
1406 sg_prom_sb_dr_check(void)
1407 {
1408 	static int prom_res = 1;
1409 
1410 	if (prom_res == 1) {
1411 		int sys, intf, bld;
1412 		int rv;
1413 
1414 		rv = sg_get_prom_version(&sys, &intf, &bld);
1415 		if (rv == 0 && sys == 5 &&
1416 		    (intf >= 12 || (intf == 11 && bld >= 200))) {
1417 			prom_res = 0;
1418 		} else {
1419 			prom_res = -1;
1420 		}
1421 	}
1422 	return (prom_res);
1423 }
1424 
1425 /*
1426  * Return 0 if cPCI Dynamic Reconfiguration
1427  * is supported by the firmware, -1 otherwise.
1428  */
1429 int
1430 sg_prom_cpci_dr_check(void)
1431 {
1432 	/*
1433 	 * The version check is currently the same as for
1434 	 * system boards. Since the two DR sub-systems are
1435 	 * independent, this could change.
1436 	 */
1437 	return (sg_prom_sb_dr_check());
1438 }
1439 
1440 /*
1441  * KDI functions - used by the in-situ kernel debugger (kmdb) to perform
1442  * platform-specific operations.  These functions execute when the world is
1443  * stopped, and as such cannot make any blocking calls, hold locks, etc.
1444  * promif functions are a special case, and may be used.
1445  */
1446 
1447 /*
1448  * Our implementation of this KDI op updates the CPU signature in the system
1449  * controller.  Note that we set the signature to OBP_SIG, rather than DBG_SIG.
1450  * The Forth words we execute will, among other things, transform our OBP_SIG
1451  * into DBG_SIG.  They won't function properly if we try to use DBG_SIG.
1452  */
1453 static void
1454 sg_system_claim(void)
1455 {
1456 	prom_interpret("sigb-sig! my-sigb-sig!", OBP_SIG, OBP_SIG, 0, 0, 0);
1457 }
1458 
1459 static void
1460 sg_system_release(void)
1461 {
1462 	prom_interpret("sigb-sig! my-sigb-sig!", OS_SIG, OS_SIG, 0, 0, 0);
1463 }
1464 
1465 static void
1466 sg_console_claim(void)
1467 {
1468 	prom_serengeti_set_console_input(SGCN_OBP_STR);
1469 }
1470 
1471 static void
1472 sg_console_release(void)
1473 {
1474 	prom_serengeti_set_console_input(SGCN_CLNT_STR);
1475 }
1476 
1477 void
1478 plat_kdi_init(kdi_t *kdi)
1479 {
1480 	kdi->pkdi_system_claim = sg_system_claim;
1481 	kdi->pkdi_system_release = sg_system_release;
1482 	kdi->pkdi_console_claim = sg_console_claim;
1483 	kdi->pkdi_console_release = sg_console_release;
1484 }
1485