1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 #include <sys/types.h> 29 #include <sys/kmem.h> 30 #include <sys/conf.h> 31 #include <sys/ddi.h> 32 #include <sys/sunddi.h> 33 #include <sys/fm/protocol.h> 34 #include <sys/fm/util.h> 35 #include <sys/modctl.h> 36 #include <sys/disp.h> 37 #include <sys/stat.h> 38 #include <sys/ddi_impldefs.h> 39 #include <sys/vmem.h> 40 #include <sys/iommutsb.h> 41 #include <sys/cpuvar.h> 42 #include <sys/ivintr.h> 43 #include <sys/byteorder.h> 44 #include <sys/hotplug/pci/pciehpc.h> 45 #include <px_obj.h> 46 #include <pcie_pwr.h> 47 #include "px_tools_var.h" 48 #include <px_regs.h> 49 #include <px_csr.h> 50 #include <sys/machsystm.h> 51 #include "px_lib4u.h" 52 #include "px_err.h" 53 #include "oberon_regs.h" 54 55 #pragma weak jbus_stst_order 56 57 extern void jbus_stst_order(); 58 59 ulong_t px_mmu_dvma_end = 0xfffffffful; 60 uint_t px_ranges_phi_mask = 0xfffffffful; 61 uint64_t *px_oberon_ubc_scratch_regs; 62 uint64_t px_paddr_mask; 63 64 static int px_goto_l23ready(px_t *px_p); 65 static int px_goto_l0(px_t *px_p); 66 static int px_pre_pwron_check(px_t *px_p); 67 static uint32_t px_identity_init(px_t *px_p); 68 static boolean_t px_cpr_callb(void *arg, int code); 69 static uint_t px_cb_intr(caddr_t arg); 70 71 /* 72 * px_lib_map_registers 73 * 74 * This function is called from the attach routine to map the registers 75 * accessed by this driver. 76 * 77 * used by: px_attach() 78 * 79 * return value: DDI_FAILURE on failure 80 */ 81 int 82 px_lib_map_regs(pxu_t *pxu_p, dev_info_t *dip) 83 { 84 ddi_device_acc_attr_t attr; 85 px_reg_bank_t reg_bank = PX_REG_CSR; 86 87 DBG(DBG_ATTACH, dip, "px_lib_map_regs: pxu_p:0x%p, dip 0x%p\n", 88 pxu_p, dip); 89 90 attr.devacc_attr_version = DDI_DEVICE_ATTR_V0; 91 attr.devacc_attr_dataorder = DDI_STRICTORDER_ACC; 92 attr.devacc_attr_endian_flags = DDI_NEVERSWAP_ACC; 93 94 /* 95 * PCI CSR Base 96 */ 97 if (ddi_regs_map_setup(dip, reg_bank, &pxu_p->px_address[reg_bank], 98 0, 0, &attr, &pxu_p->px_ac[reg_bank]) != DDI_SUCCESS) { 99 goto fail; 100 } 101 102 reg_bank++; 103 104 /* 105 * XBUS CSR Base 106 */ 107 if (ddi_regs_map_setup(dip, reg_bank, &pxu_p->px_address[reg_bank], 108 0, 0, &attr, &pxu_p->px_ac[reg_bank]) != DDI_SUCCESS) { 109 goto fail; 110 } 111 112 pxu_p->px_address[reg_bank] -= FIRE_CONTROL_STATUS; 113 114 done: 115 for (; reg_bank >= PX_REG_CSR; reg_bank--) { 116 DBG(DBG_ATTACH, dip, "reg_bank 0x%x address 0x%p\n", 117 reg_bank, pxu_p->px_address[reg_bank]); 118 } 119 120 return (DDI_SUCCESS); 121 122 fail: 123 cmn_err(CE_WARN, "%s%d: unable to map reg entry %d\n", 124 ddi_driver_name(dip), ddi_get_instance(dip), reg_bank); 125 126 for (reg_bank--; reg_bank >= PX_REG_CSR; reg_bank--) { 127 pxu_p->px_address[reg_bank] = NULL; 128 ddi_regs_map_free(&pxu_p->px_ac[reg_bank]); 129 } 130 131 return (DDI_FAILURE); 132 } 133 134 /* 135 * px_lib_unmap_regs: 136 * 137 * This routine unmaps the registers mapped by map_px_registers. 138 * 139 * used by: px_detach(), and error conditions in px_attach() 140 * 141 * return value: none 142 */ 143 void 144 px_lib_unmap_regs(pxu_t *pxu_p) 145 { 146 int i; 147 148 for (i = 0; i < PX_REG_MAX; i++) { 149 if (pxu_p->px_ac[i]) 150 ddi_regs_map_free(&pxu_p->px_ac[i]); 151 } 152 } 153 154 int 155 px_lib_dev_init(dev_info_t *dip, devhandle_t *dev_hdl) 156 { 157 158 caddr_t xbc_csr_base, csr_base; 159 px_dvma_range_prop_t px_dvma_range; 160 pxu_t *pxu_p; 161 uint8_t chip_mask; 162 px_t *px_p = DIP_TO_STATE(dip); 163 px_chip_type_t chip_type = px_identity_init(px_p); 164 165 DBG(DBG_ATTACH, dip, "px_lib_dev_init: dip 0x%p", dip); 166 167 if (chip_type == PX_CHIP_UNIDENTIFIED) { 168 cmn_err(CE_WARN, "%s%d: Unrecognized Hardware Version\n", 169 NAMEINST(dip)); 170 return (DDI_FAILURE); 171 } 172 173 chip_mask = BITMASK(chip_type); 174 px_paddr_mask = (chip_type == PX_CHIP_FIRE) ? MMU_FIRE_PADDR_MASK : 175 MMU_OBERON_PADDR_MASK; 176 177 /* 178 * Allocate platform specific structure and link it to 179 * the px state structure. 180 */ 181 pxu_p = kmem_zalloc(sizeof (pxu_t), KM_SLEEP); 182 pxu_p->chip_type = chip_type; 183 pxu_p->portid = ddi_getprop(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS, 184 "portid", -1); 185 186 /* Map in the registers */ 187 if (px_lib_map_regs(pxu_p, dip) == DDI_FAILURE) { 188 kmem_free(pxu_p, sizeof (pxu_t)); 189 190 return (DDI_FAILURE); 191 } 192 193 xbc_csr_base = (caddr_t)pxu_p->px_address[PX_REG_XBC]; 194 csr_base = (caddr_t)pxu_p->px_address[PX_REG_CSR]; 195 196 pxu_p->tsb_cookie = iommu_tsb_alloc(pxu_p->portid); 197 pxu_p->tsb_size = iommu_tsb_cookie_to_size(pxu_p->tsb_cookie); 198 pxu_p->tsb_vaddr = iommu_tsb_cookie_to_va(pxu_p->tsb_cookie); 199 200 pxu_p->tsb_paddr = va_to_pa(pxu_p->tsb_vaddr); 201 202 /* 203 * Create "virtual-dma" property to support child devices 204 * needing to know DVMA range. 205 */ 206 px_dvma_range.dvma_base = (uint32_t)px_mmu_dvma_end + 1 207 - ((pxu_p->tsb_size >> 3) << MMU_PAGE_SHIFT); 208 px_dvma_range.dvma_len = (uint32_t) 209 px_mmu_dvma_end - px_dvma_range.dvma_base + 1; 210 211 (void) ddi_prop_create(DDI_DEV_T_NONE, dip, DDI_PROP_CANSLEEP, 212 "virtual-dma", (caddr_t)&px_dvma_range, 213 sizeof (px_dvma_range_prop_t)); 214 /* 215 * Initilize all fire hardware specific blocks. 216 */ 217 hvio_cb_init(xbc_csr_base, pxu_p); 218 hvio_ib_init(csr_base, pxu_p); 219 hvio_pec_init(csr_base, pxu_p); 220 hvio_mmu_init(csr_base, pxu_p); 221 222 px_p->px_plat_p = (void *)pxu_p; 223 224 /* 225 * Initialize all the interrupt handlers 226 */ 227 switch (PX_CHIP_TYPE(pxu_p)) { 228 case PX_CHIP_OBERON: 229 /* 230 * Oberon hotplug uses SPARE3 field in ILU Error Log Enable 231 * register to indicate the status of leaf reset, 232 * we need to preserve the value of this bit, and keep it in 233 * px_ilu_log_mask to reflect the state of the bit 234 */ 235 if (CSR_BR(csr_base, ILU_ERROR_LOG_ENABLE, SPARE3)) 236 px_ilu_log_mask |= (1ull << 237 ILU_ERROR_LOG_ENABLE_SPARE3); 238 else 239 px_ilu_log_mask &= ~(1ull << 240 ILU_ERROR_LOG_ENABLE_SPARE3); 241 242 px_err_reg_setup_pcie(chip_mask, csr_base, PX_ERR_ENABLE); 243 px_fabric_die_rc_ue |= PCIE_AER_UCE_UC; 244 break; 245 246 case PX_CHIP_FIRE: 247 px_err_reg_setup_pcie(chip_mask, csr_base, PX_ERR_ENABLE); 248 break; 249 250 default: 251 cmn_err(CE_WARN, "%s%d: PX primary bus Unknown\n", 252 ddi_driver_name(dip), ddi_get_instance(dip)); 253 return (DDI_FAILURE); 254 } 255 256 /* Initilize device handle */ 257 *dev_hdl = (devhandle_t)csr_base; 258 259 DBG(DBG_ATTACH, dip, "px_lib_dev_init: dev_hdl 0x%llx\n", *dev_hdl); 260 261 return (DDI_SUCCESS); 262 } 263 264 int 265 px_lib_dev_fini(dev_info_t *dip) 266 { 267 caddr_t csr_base; 268 uint8_t chip_mask; 269 px_t *px_p = DIP_TO_STATE(dip); 270 pxu_t *pxu_p = (pxu_t *)px_p->px_plat_p; 271 272 DBG(DBG_DETACH, dip, "px_lib_dev_fini: dip 0x%p\n", dip); 273 274 /* 275 * Deinitialize all the interrupt handlers 276 */ 277 switch (PX_CHIP_TYPE(pxu_p)) { 278 case PX_CHIP_OBERON: 279 case PX_CHIP_FIRE: 280 chip_mask = BITMASK(PX_CHIP_TYPE(pxu_p)); 281 csr_base = (caddr_t)pxu_p->px_address[PX_REG_CSR]; 282 px_err_reg_setup_pcie(chip_mask, csr_base, PX_ERR_DISABLE); 283 break; 284 285 default: 286 cmn_err(CE_WARN, "%s%d: PX primary bus Unknown\n", 287 ddi_driver_name(dip), ddi_get_instance(dip)); 288 return (DDI_FAILURE); 289 } 290 291 iommu_tsb_free(pxu_p->tsb_cookie); 292 293 px_lib_unmap_regs((pxu_t *)px_p->px_plat_p); 294 kmem_free(px_p->px_plat_p, sizeof (pxu_t)); 295 px_p->px_plat_p = NULL; 296 297 return (DDI_SUCCESS); 298 } 299 300 /*ARGSUSED*/ 301 int 302 px_lib_intr_devino_to_sysino(dev_info_t *dip, devino_t devino, 303 sysino_t *sysino) 304 { 305 px_t *px_p = DIP_TO_STATE(dip); 306 pxu_t *pxu_p = (pxu_t *)px_p->px_plat_p; 307 uint64_t ret; 308 309 DBG(DBG_LIB_INT, dip, "px_lib_intr_devino_to_sysino: dip 0x%p " 310 "devino 0x%x\n", dip, devino); 311 312 if ((ret = hvio_intr_devino_to_sysino(DIP_TO_HANDLE(dip), 313 pxu_p, devino, sysino)) != H_EOK) { 314 DBG(DBG_LIB_INT, dip, 315 "hvio_intr_devino_to_sysino failed, ret 0x%lx\n", ret); 316 return (DDI_FAILURE); 317 } 318 319 DBG(DBG_LIB_INT, dip, "px_lib_intr_devino_to_sysino: sysino 0x%llx\n", 320 *sysino); 321 322 return (DDI_SUCCESS); 323 } 324 325 /*ARGSUSED*/ 326 int 327 px_lib_intr_getvalid(dev_info_t *dip, sysino_t sysino, 328 intr_valid_state_t *intr_valid_state) 329 { 330 uint64_t ret; 331 332 DBG(DBG_LIB_INT, dip, "px_lib_intr_getvalid: dip 0x%p sysino 0x%llx\n", 333 dip, sysino); 334 335 if ((ret = hvio_intr_getvalid(DIP_TO_HANDLE(dip), 336 sysino, intr_valid_state)) != H_EOK) { 337 DBG(DBG_LIB_INT, dip, "hvio_intr_getvalid failed, ret 0x%lx\n", 338 ret); 339 return (DDI_FAILURE); 340 } 341 342 DBG(DBG_LIB_INT, dip, "px_lib_intr_getvalid: intr_valid_state 0x%x\n", 343 *intr_valid_state); 344 345 return (DDI_SUCCESS); 346 } 347 348 /*ARGSUSED*/ 349 int 350 px_lib_intr_setvalid(dev_info_t *dip, sysino_t sysino, 351 intr_valid_state_t intr_valid_state) 352 { 353 uint64_t ret; 354 355 DBG(DBG_LIB_INT, dip, "px_lib_intr_setvalid: dip 0x%p sysino 0x%llx " 356 "intr_valid_state 0x%x\n", dip, sysino, intr_valid_state); 357 358 if ((ret = hvio_intr_setvalid(DIP_TO_HANDLE(dip), 359 sysino, intr_valid_state)) != H_EOK) { 360 DBG(DBG_LIB_INT, dip, "hvio_intr_setvalid failed, ret 0x%lx\n", 361 ret); 362 return (DDI_FAILURE); 363 } 364 365 return (DDI_SUCCESS); 366 } 367 368 /*ARGSUSED*/ 369 int 370 px_lib_intr_getstate(dev_info_t *dip, sysino_t sysino, 371 intr_state_t *intr_state) 372 { 373 uint64_t ret; 374 375 DBG(DBG_LIB_INT, dip, "px_lib_intr_getstate: dip 0x%p sysino 0x%llx\n", 376 dip, sysino); 377 378 if ((ret = hvio_intr_getstate(DIP_TO_HANDLE(dip), 379 sysino, intr_state)) != H_EOK) { 380 DBG(DBG_LIB_INT, dip, "hvio_intr_getstate failed, ret 0x%lx\n", 381 ret); 382 return (DDI_FAILURE); 383 } 384 385 DBG(DBG_LIB_INT, dip, "px_lib_intr_getstate: intr_state 0x%x\n", 386 *intr_state); 387 388 return (DDI_SUCCESS); 389 } 390 391 /*ARGSUSED*/ 392 int 393 px_lib_intr_setstate(dev_info_t *dip, sysino_t sysino, 394 intr_state_t intr_state) 395 { 396 uint64_t ret; 397 398 DBG(DBG_LIB_INT, dip, "px_lib_intr_setstate: dip 0x%p sysino 0x%llx " 399 "intr_state 0x%x\n", dip, sysino, intr_state); 400 401 if ((ret = hvio_intr_setstate(DIP_TO_HANDLE(dip), 402 sysino, intr_state)) != H_EOK) { 403 DBG(DBG_LIB_INT, dip, "hvio_intr_setstate failed, ret 0x%lx\n", 404 ret); 405 return (DDI_FAILURE); 406 } 407 408 return (DDI_SUCCESS); 409 } 410 411 /*ARGSUSED*/ 412 int 413 px_lib_intr_gettarget(dev_info_t *dip, sysino_t sysino, cpuid_t *cpuid) 414 { 415 px_t *px_p = DIP_TO_STATE(dip); 416 pxu_t *pxu_p = (pxu_t *)px_p->px_plat_p; 417 uint64_t ret; 418 419 DBG(DBG_LIB_INT, dip, "px_lib_intr_gettarget: dip 0x%p sysino 0x%llx\n", 420 dip, sysino); 421 422 if ((ret = hvio_intr_gettarget(DIP_TO_HANDLE(dip), pxu_p, 423 sysino, cpuid)) != H_EOK) { 424 DBG(DBG_LIB_INT, dip, "hvio_intr_gettarget failed, ret 0x%lx\n", 425 ret); 426 return (DDI_FAILURE); 427 } 428 429 DBG(DBG_LIB_INT, dip, "px_lib_intr_gettarget: cpuid 0x%x\n", cpuid); 430 431 return (DDI_SUCCESS); 432 } 433 434 /*ARGSUSED*/ 435 int 436 px_lib_intr_settarget(dev_info_t *dip, sysino_t sysino, cpuid_t cpuid) 437 { 438 px_t *px_p = DIP_TO_STATE(dip); 439 pxu_t *pxu_p = (pxu_t *)px_p->px_plat_p; 440 uint64_t ret; 441 442 DBG(DBG_LIB_INT, dip, "px_lib_intr_settarget: dip 0x%p sysino 0x%llx " 443 "cpuid 0x%x\n", dip, sysino, cpuid); 444 445 if ((ret = hvio_intr_settarget(DIP_TO_HANDLE(dip), pxu_p, 446 sysino, cpuid)) != H_EOK) { 447 DBG(DBG_LIB_INT, dip, "hvio_intr_settarget failed, ret 0x%lx\n", 448 ret); 449 return (DDI_FAILURE); 450 } 451 452 return (DDI_SUCCESS); 453 } 454 455 /*ARGSUSED*/ 456 int 457 px_lib_intr_reset(dev_info_t *dip) 458 { 459 devino_t ino; 460 sysino_t sysino; 461 462 DBG(DBG_LIB_INT, dip, "px_lib_intr_reset: dip 0x%p\n", dip); 463 464 /* Reset all Interrupts */ 465 for (ino = 0; ino < INTERRUPT_MAPPING_ENTRIES; ino++) { 466 if (px_lib_intr_devino_to_sysino(dip, ino, 467 &sysino) != DDI_SUCCESS) 468 return (BF_FATAL); 469 470 if (px_lib_intr_setstate(dip, sysino, 471 INTR_IDLE_STATE) != DDI_SUCCESS) 472 return (BF_FATAL); 473 } 474 475 return (BF_NONE); 476 } 477 478 /*ARGSUSED*/ 479 int 480 px_lib_iommu_map(dev_info_t *dip, tsbid_t tsbid, pages_t pages, 481 io_attributes_t attr, void *addr, size_t pfn_index, int flags) 482 { 483 px_t *px_p = DIP_TO_STATE(dip); 484 pxu_t *pxu_p = (pxu_t *)px_p->px_plat_p; 485 uint64_t ret; 486 487 DBG(DBG_LIB_DMA, dip, "px_lib_iommu_map: dip 0x%p tsbid 0x%llx " 488 "pages 0x%x attr 0x%x addr 0x%p pfn_index 0x%llx flags 0x%x\n", 489 dip, tsbid, pages, attr, addr, pfn_index, flags); 490 491 if ((ret = hvio_iommu_map(px_p->px_dev_hdl, pxu_p, tsbid, pages, 492 attr, addr, pfn_index, flags)) != H_EOK) { 493 DBG(DBG_LIB_DMA, dip, 494 "px_lib_iommu_map failed, ret 0x%lx\n", ret); 495 return (DDI_FAILURE); 496 } 497 498 return (DDI_SUCCESS); 499 } 500 501 /*ARGSUSED*/ 502 int 503 px_lib_iommu_demap(dev_info_t *dip, tsbid_t tsbid, pages_t pages) 504 { 505 px_t *px_p = DIP_TO_STATE(dip); 506 pxu_t *pxu_p = (pxu_t *)px_p->px_plat_p; 507 uint64_t ret; 508 509 DBG(DBG_LIB_DMA, dip, "px_lib_iommu_demap: dip 0x%p tsbid 0x%llx " 510 "pages 0x%x\n", dip, tsbid, pages); 511 512 if ((ret = hvio_iommu_demap(px_p->px_dev_hdl, pxu_p, tsbid, pages)) 513 != H_EOK) { 514 DBG(DBG_LIB_DMA, dip, 515 "px_lib_iommu_demap failed, ret 0x%lx\n", ret); 516 517 return (DDI_FAILURE); 518 } 519 520 return (DDI_SUCCESS); 521 } 522 523 /*ARGSUSED*/ 524 int 525 px_lib_iommu_getmap(dev_info_t *dip, tsbid_t tsbid, io_attributes_t *attr_p, 526 r_addr_t *r_addr_p) 527 { 528 px_t *px_p = DIP_TO_STATE(dip); 529 pxu_t *pxu_p = (pxu_t *)px_p->px_plat_p; 530 uint64_t ret; 531 532 DBG(DBG_LIB_DMA, dip, "px_lib_iommu_getmap: dip 0x%p tsbid 0x%llx\n", 533 dip, tsbid); 534 535 if ((ret = hvio_iommu_getmap(DIP_TO_HANDLE(dip), pxu_p, tsbid, 536 attr_p, r_addr_p)) != H_EOK) { 537 DBG(DBG_LIB_DMA, dip, 538 "hvio_iommu_getmap failed, ret 0x%lx\n", ret); 539 540 return ((ret == H_ENOMAP) ? DDI_DMA_NOMAPPING:DDI_FAILURE); 541 } 542 543 DBG(DBG_LIB_DMA, dip, "px_lib_iommu_getmap: attr 0x%x r_addr 0x%llx\n", 544 *attr_p, *r_addr_p); 545 546 return (DDI_SUCCESS); 547 } 548 549 550 /* 551 * Checks dma attributes against system bypass ranges 552 * The bypass range is determined by the hardware. Return them so the 553 * common code can do generic checking against them. 554 */ 555 /*ARGSUSED*/ 556 int 557 px_lib_dma_bypass_rngchk(dev_info_t *dip, ddi_dma_attr_t *attr_p, 558 uint64_t *lo_p, uint64_t *hi_p) 559 { 560 px_t *px_p = DIP_TO_STATE(dip); 561 pxu_t *pxu_p = (pxu_t *)px_p->px_plat_p; 562 563 *lo_p = hvio_get_bypass_base(pxu_p); 564 *hi_p = hvio_get_bypass_end(pxu_p); 565 566 return (DDI_SUCCESS); 567 } 568 569 570 /*ARGSUSED*/ 571 int 572 px_lib_iommu_getbypass(dev_info_t *dip, r_addr_t ra, io_attributes_t attr, 573 io_addr_t *io_addr_p) 574 { 575 uint64_t ret; 576 px_t *px_p = DIP_TO_STATE(dip); 577 pxu_t *pxu_p = (pxu_t *)px_p->px_plat_p; 578 579 DBG(DBG_LIB_DMA, dip, "px_lib_iommu_getbypass: dip 0x%p ra 0x%llx " 580 "attr 0x%x\n", dip, ra, attr); 581 582 if ((ret = hvio_iommu_getbypass(DIP_TO_HANDLE(dip), pxu_p, ra, 583 attr, io_addr_p)) != H_EOK) { 584 DBG(DBG_LIB_DMA, dip, 585 "hvio_iommu_getbypass failed, ret 0x%lx\n", ret); 586 return (DDI_FAILURE); 587 } 588 589 DBG(DBG_LIB_DMA, dip, "px_lib_iommu_getbypass: io_addr 0x%llx\n", 590 *io_addr_p); 591 592 return (DDI_SUCCESS); 593 } 594 595 /* 596 * bus dma sync entry point. 597 */ 598 /*ARGSUSED*/ 599 int 600 px_lib_dma_sync(dev_info_t *dip, dev_info_t *rdip, ddi_dma_handle_t handle, 601 off_t off, size_t len, uint_t cache_flags) 602 { 603 ddi_dma_impl_t *mp = (ddi_dma_impl_t *)handle; 604 px_t *px_p = DIP_TO_STATE(dip); 605 pxu_t *pxu_p = (pxu_t *)px_p->px_plat_p; 606 607 DBG(DBG_LIB_DMA, dip, "px_lib_dma_sync: dip 0x%p rdip 0x%p " 608 "handle 0x%llx off 0x%x len 0x%x flags 0x%x\n", 609 dip, rdip, handle, off, len, cache_flags); 610 611 /* 612 * No flush needed for Oberon 613 */ 614 if (PX_CHIP_TYPE(pxu_p) == PX_CHIP_OBERON) 615 return (DDI_SUCCESS); 616 617 /* 618 * jbus_stst_order is found only in certain cpu modules. 619 * Just return success if not present. 620 */ 621 if (&jbus_stst_order == NULL) 622 return (DDI_SUCCESS); 623 624 if (!(mp->dmai_flags & PX_DMAI_FLAGS_INUSE)) { 625 cmn_err(CE_WARN, "%s%d: Unbound dma handle %p.", 626 ddi_driver_name(rdip), ddi_get_instance(rdip), (void *)mp); 627 628 return (DDI_FAILURE); 629 } 630 631 if (mp->dmai_flags & PX_DMAI_FLAGS_NOSYNC) 632 return (DDI_SUCCESS); 633 634 /* 635 * No flush needed when sending data from memory to device. 636 * Nothing to do to "sync" memory to what device would already see. 637 */ 638 if (!(mp->dmai_rflags & DDI_DMA_READ) || 639 ((cache_flags & PX_DMA_SYNC_DDI_FLAGS) == DDI_DMA_SYNC_FORDEV)) 640 return (DDI_SUCCESS); 641 642 /* 643 * Perform necessary cpu workaround to ensure jbus ordering. 644 * CPU's internal "invalidate FIFOs" are flushed. 645 */ 646 647 #if !defined(lint) 648 kpreempt_disable(); 649 #endif 650 jbus_stst_order(); 651 #if !defined(lint) 652 kpreempt_enable(); 653 #endif 654 return (DDI_SUCCESS); 655 } 656 657 /* 658 * MSIQ Functions: 659 */ 660 /*ARGSUSED*/ 661 int 662 px_lib_msiq_init(dev_info_t *dip) 663 { 664 px_t *px_p = DIP_TO_STATE(dip); 665 pxu_t *pxu_p = (pxu_t *)px_p->px_plat_p; 666 px_msiq_state_t *msiq_state_p = &px_p->px_ib_p->ib_msiq_state; 667 px_dvma_addr_t pg_index; 668 size_t size; 669 int ret; 670 671 DBG(DBG_LIB_MSIQ, dip, "px_lib_msiq_init: dip 0x%p\n", dip); 672 673 /* 674 * Map the EQ memory into the Fire MMU (has to be 512KB aligned) 675 * and then initialize the base address register. 676 * 677 * Allocate entries from Fire IOMMU so that the resulting address 678 * is properly aligned. Calculate the index of the first allocated 679 * entry. Note: The size of the mapping is assumed to be a multiple 680 * of the page size. 681 */ 682 size = msiq_state_p->msiq_cnt * 683 msiq_state_p->msiq_rec_cnt * sizeof (msiq_rec_t); 684 685 pxu_p->msiq_mapped_p = vmem_xalloc(px_p->px_mmu_p->mmu_dvma_map, 686 size, (512 * 1024), 0, 0, NULL, NULL, VM_NOSLEEP | VM_BESTFIT); 687 688 if (pxu_p->msiq_mapped_p == NULL) 689 return (DDI_FAILURE); 690 691 pg_index = MMU_PAGE_INDEX(px_p->px_mmu_p, 692 MMU_BTOP((ulong_t)pxu_p->msiq_mapped_p)); 693 694 if ((ret = px_lib_iommu_map(px_p->px_dip, PCI_TSBID(0, pg_index), 695 MMU_BTOP(size), PCI_MAP_ATTR_WRITE, msiq_state_p->msiq_buf_p, 696 0, MMU_MAP_BUF)) != DDI_SUCCESS) { 697 DBG(DBG_LIB_MSIQ, dip, 698 "hvio_msiq_init failed, ret 0x%lx\n", ret); 699 700 (void) px_lib_msiq_fini(dip); 701 return (DDI_FAILURE); 702 } 703 704 (void) hvio_msiq_init(DIP_TO_HANDLE(dip), pxu_p); 705 706 return (DDI_SUCCESS); 707 } 708 709 /*ARGSUSED*/ 710 int 711 px_lib_msiq_fini(dev_info_t *dip) 712 { 713 px_t *px_p = DIP_TO_STATE(dip); 714 pxu_t *pxu_p = (pxu_t *)px_p->px_plat_p; 715 px_msiq_state_t *msiq_state_p = &px_p->px_ib_p->ib_msiq_state; 716 px_dvma_addr_t pg_index; 717 size_t size; 718 719 DBG(DBG_LIB_MSIQ, dip, "px_lib_msiq_fini: dip 0x%p\n", dip); 720 721 /* 722 * Unmap and free the EQ memory that had been mapped 723 * into the Fire IOMMU. 724 */ 725 size = msiq_state_p->msiq_cnt * 726 msiq_state_p->msiq_rec_cnt * sizeof (msiq_rec_t); 727 728 pg_index = MMU_PAGE_INDEX(px_p->px_mmu_p, 729 MMU_BTOP((ulong_t)pxu_p->msiq_mapped_p)); 730 731 (void) px_lib_iommu_demap(px_p->px_dip, 732 PCI_TSBID(0, pg_index), MMU_BTOP(size)); 733 734 /* Free the entries from the Fire MMU */ 735 vmem_xfree(px_p->px_mmu_p->mmu_dvma_map, 736 (void *)pxu_p->msiq_mapped_p, size); 737 738 return (DDI_SUCCESS); 739 } 740 741 /*ARGSUSED*/ 742 int 743 px_lib_msiq_info(dev_info_t *dip, msiqid_t msiq_id, r_addr_t *ra_p, 744 uint_t *msiq_rec_cnt_p) 745 { 746 px_t *px_p = DIP_TO_STATE(dip); 747 px_msiq_state_t *msiq_state_p = &px_p->px_ib_p->ib_msiq_state; 748 size_t msiq_size; 749 750 DBG(DBG_LIB_MSIQ, dip, "px_msiq_info: dip 0x%p msiq_id 0x%x\n", 751 dip, msiq_id); 752 753 msiq_size = msiq_state_p->msiq_rec_cnt * sizeof (msiq_rec_t); 754 ra_p = (r_addr_t *)((caddr_t)msiq_state_p->msiq_buf_p + 755 (msiq_id * msiq_size)); 756 757 *msiq_rec_cnt_p = msiq_state_p->msiq_rec_cnt; 758 759 DBG(DBG_LIB_MSIQ, dip, "px_msiq_info: ra_p 0x%p msiq_rec_cnt 0x%x\n", 760 ra_p, *msiq_rec_cnt_p); 761 762 return (DDI_SUCCESS); 763 } 764 765 /*ARGSUSED*/ 766 int 767 px_lib_msiq_getvalid(dev_info_t *dip, msiqid_t msiq_id, 768 pci_msiq_valid_state_t *msiq_valid_state) 769 { 770 uint64_t ret; 771 772 DBG(DBG_LIB_MSIQ, dip, "px_lib_msiq_getvalid: dip 0x%p msiq_id 0x%x\n", 773 dip, msiq_id); 774 775 if ((ret = hvio_msiq_getvalid(DIP_TO_HANDLE(dip), 776 msiq_id, msiq_valid_state)) != H_EOK) { 777 DBG(DBG_LIB_MSIQ, dip, 778 "hvio_msiq_getvalid failed, ret 0x%lx\n", ret); 779 return (DDI_FAILURE); 780 } 781 782 DBG(DBG_LIB_MSIQ, dip, "px_lib_msiq_getvalid: msiq_valid_state 0x%x\n", 783 *msiq_valid_state); 784 785 return (DDI_SUCCESS); 786 } 787 788 /*ARGSUSED*/ 789 int 790 px_lib_msiq_setvalid(dev_info_t *dip, msiqid_t msiq_id, 791 pci_msiq_valid_state_t msiq_valid_state) 792 { 793 uint64_t ret; 794 795 DBG(DBG_LIB_MSIQ, dip, "px_lib_msiq_setvalid: dip 0x%p msiq_id 0x%x " 796 "msiq_valid_state 0x%x\n", dip, msiq_id, msiq_valid_state); 797 798 if ((ret = hvio_msiq_setvalid(DIP_TO_HANDLE(dip), 799 msiq_id, msiq_valid_state)) != H_EOK) { 800 DBG(DBG_LIB_MSIQ, dip, 801 "hvio_msiq_setvalid failed, ret 0x%lx\n", ret); 802 return (DDI_FAILURE); 803 } 804 805 return (DDI_SUCCESS); 806 } 807 808 /*ARGSUSED*/ 809 int 810 px_lib_msiq_getstate(dev_info_t *dip, msiqid_t msiq_id, 811 pci_msiq_state_t *msiq_state) 812 { 813 uint64_t ret; 814 815 DBG(DBG_LIB_MSIQ, dip, "px_lib_msiq_getstate: dip 0x%p msiq_id 0x%x\n", 816 dip, msiq_id); 817 818 if ((ret = hvio_msiq_getstate(DIP_TO_HANDLE(dip), 819 msiq_id, msiq_state)) != H_EOK) { 820 DBG(DBG_LIB_MSIQ, dip, 821 "hvio_msiq_getstate failed, ret 0x%lx\n", ret); 822 return (DDI_FAILURE); 823 } 824 825 DBG(DBG_LIB_MSIQ, dip, "px_lib_msiq_getstate: msiq_state 0x%x\n", 826 *msiq_state); 827 828 return (DDI_SUCCESS); 829 } 830 831 /*ARGSUSED*/ 832 int 833 px_lib_msiq_setstate(dev_info_t *dip, msiqid_t msiq_id, 834 pci_msiq_state_t msiq_state) 835 { 836 uint64_t ret; 837 838 DBG(DBG_LIB_MSIQ, dip, "px_lib_msiq_setstate: dip 0x%p msiq_id 0x%x " 839 "msiq_state 0x%x\n", dip, msiq_id, msiq_state); 840 841 if ((ret = hvio_msiq_setstate(DIP_TO_HANDLE(dip), 842 msiq_id, msiq_state)) != H_EOK) { 843 DBG(DBG_LIB_MSIQ, dip, 844 "hvio_msiq_setstate failed, ret 0x%lx\n", ret); 845 return (DDI_FAILURE); 846 } 847 848 return (DDI_SUCCESS); 849 } 850 851 /*ARGSUSED*/ 852 int 853 px_lib_msiq_gethead(dev_info_t *dip, msiqid_t msiq_id, 854 msiqhead_t *msiq_head) 855 { 856 uint64_t ret; 857 858 DBG(DBG_LIB_MSIQ, dip, "px_lib_msiq_gethead: dip 0x%p msiq_id 0x%x\n", 859 dip, msiq_id); 860 861 if ((ret = hvio_msiq_gethead(DIP_TO_HANDLE(dip), 862 msiq_id, msiq_head)) != H_EOK) { 863 DBG(DBG_LIB_MSIQ, dip, 864 "hvio_msiq_gethead failed, ret 0x%lx\n", ret); 865 return (DDI_FAILURE); 866 } 867 868 DBG(DBG_LIB_MSIQ, dip, "px_lib_msiq_gethead: msiq_head 0x%x\n", 869 *msiq_head); 870 871 return (DDI_SUCCESS); 872 } 873 874 /*ARGSUSED*/ 875 int 876 px_lib_msiq_sethead(dev_info_t *dip, msiqid_t msiq_id, 877 msiqhead_t msiq_head) 878 { 879 uint64_t ret; 880 881 DBG(DBG_LIB_MSIQ, dip, "px_lib_msiq_sethead: dip 0x%p msiq_id 0x%x " 882 "msiq_head 0x%x\n", dip, msiq_id, msiq_head); 883 884 if ((ret = hvio_msiq_sethead(DIP_TO_HANDLE(dip), 885 msiq_id, msiq_head)) != H_EOK) { 886 DBG(DBG_LIB_MSIQ, dip, 887 "hvio_msiq_sethead failed, ret 0x%lx\n", ret); 888 return (DDI_FAILURE); 889 } 890 891 return (DDI_SUCCESS); 892 } 893 894 /*ARGSUSED*/ 895 int 896 px_lib_msiq_gettail(dev_info_t *dip, msiqid_t msiq_id, 897 msiqtail_t *msiq_tail) 898 { 899 uint64_t ret; 900 901 DBG(DBG_LIB_MSIQ, dip, "px_lib_msiq_gettail: dip 0x%p msiq_id 0x%x\n", 902 dip, msiq_id); 903 904 if ((ret = hvio_msiq_gettail(DIP_TO_HANDLE(dip), 905 msiq_id, msiq_tail)) != H_EOK) { 906 DBG(DBG_LIB_MSIQ, dip, 907 "hvio_msiq_gettail failed, ret 0x%lx\n", ret); 908 return (DDI_FAILURE); 909 } 910 911 DBG(DBG_LIB_MSIQ, dip, "px_lib_msiq_gettail: msiq_tail 0x%x\n", 912 *msiq_tail); 913 914 return (DDI_SUCCESS); 915 } 916 917 /*ARGSUSED*/ 918 void 919 px_lib_get_msiq_rec(dev_info_t *dip, msiqhead_t *msiq_head_p, 920 msiq_rec_t *msiq_rec_p) 921 { 922 eq_rec_t *eq_rec_p = (eq_rec_t *)msiq_head_p; 923 924 DBG(DBG_LIB_MSIQ, dip, "px_lib_get_msiq_rec: dip 0x%p eq_rec_p 0x%p\n", 925 dip, eq_rec_p); 926 927 if (!eq_rec_p->eq_rec_fmt_type) { 928 /* Set msiq_rec_type to zero */ 929 msiq_rec_p->msiq_rec_type = 0; 930 931 return; 932 } 933 934 DBG(DBG_LIB_MSIQ, dip, "px_lib_get_msiq_rec: EQ RECORD, " 935 "eq_rec_rid 0x%llx eq_rec_fmt_type 0x%llx " 936 "eq_rec_len 0x%llx eq_rec_addr0 0x%llx " 937 "eq_rec_addr1 0x%llx eq_rec_data0 0x%llx " 938 "eq_rec_data1 0x%llx\n", eq_rec_p->eq_rec_rid, 939 eq_rec_p->eq_rec_fmt_type, eq_rec_p->eq_rec_len, 940 eq_rec_p->eq_rec_addr0, eq_rec_p->eq_rec_addr1, 941 eq_rec_p->eq_rec_data0, eq_rec_p->eq_rec_data1); 942 943 /* 944 * Only upper 4 bits of eq_rec_fmt_type is used 945 * to identify the EQ record type. 946 */ 947 switch (eq_rec_p->eq_rec_fmt_type >> 3) { 948 case EQ_REC_MSI32: 949 msiq_rec_p->msiq_rec_type = MSI32_REC; 950 951 msiq_rec_p->msiq_rec_data.msi.msi_data = 952 eq_rec_p->eq_rec_data0; 953 break; 954 case EQ_REC_MSI64: 955 msiq_rec_p->msiq_rec_type = MSI64_REC; 956 957 msiq_rec_p->msiq_rec_data.msi.msi_data = 958 eq_rec_p->eq_rec_data0; 959 break; 960 case EQ_REC_MSG: 961 msiq_rec_p->msiq_rec_type = MSG_REC; 962 963 msiq_rec_p->msiq_rec_data.msg.msg_route = 964 eq_rec_p->eq_rec_fmt_type & 7; 965 msiq_rec_p->msiq_rec_data.msg.msg_targ = eq_rec_p->eq_rec_rid; 966 msiq_rec_p->msiq_rec_data.msg.msg_code = eq_rec_p->eq_rec_data0; 967 break; 968 default: 969 cmn_err(CE_WARN, "%s%d: px_lib_get_msiq_rec: " 970 "0x%x is an unknown EQ record type", 971 ddi_driver_name(dip), ddi_get_instance(dip), 972 (int)eq_rec_p->eq_rec_fmt_type); 973 break; 974 } 975 976 msiq_rec_p->msiq_rec_rid = eq_rec_p->eq_rec_rid; 977 msiq_rec_p->msiq_rec_msi_addr = ((eq_rec_p->eq_rec_addr1 << 16) | 978 (eq_rec_p->eq_rec_addr0 << 2)); 979 } 980 981 /*ARGSUSED*/ 982 void 983 px_lib_clr_msiq_rec(dev_info_t *dip, msiqhead_t *msiq_head_p) 984 { 985 eq_rec_t *eq_rec_p = (eq_rec_t *)msiq_head_p; 986 987 DBG(DBG_LIB_MSIQ, dip, "px_lib_clr_msiq_rec: dip 0x%p eq_rec_p 0x%p\n", 988 dip, eq_rec_p); 989 990 if (eq_rec_p->eq_rec_fmt_type) { 991 /* Zero out eq_rec_fmt_type field */ 992 eq_rec_p->eq_rec_fmt_type = 0; 993 } 994 } 995 996 /* 997 * MSI Functions: 998 */ 999 /*ARGSUSED*/ 1000 int 1001 px_lib_msi_init(dev_info_t *dip) 1002 { 1003 px_t *px_p = DIP_TO_STATE(dip); 1004 px_msi_state_t *msi_state_p = &px_p->px_ib_p->ib_msi_state; 1005 uint64_t ret; 1006 1007 DBG(DBG_LIB_MSI, dip, "px_lib_msi_init: dip 0x%p\n", dip); 1008 1009 if ((ret = hvio_msi_init(DIP_TO_HANDLE(dip), 1010 msi_state_p->msi_addr32, msi_state_p->msi_addr64)) != H_EOK) { 1011 DBG(DBG_LIB_MSIQ, dip, "px_lib_msi_init failed, ret 0x%lx\n", 1012 ret); 1013 return (DDI_FAILURE); 1014 } 1015 1016 return (DDI_SUCCESS); 1017 } 1018 1019 /*ARGSUSED*/ 1020 int 1021 px_lib_msi_getmsiq(dev_info_t *dip, msinum_t msi_num, 1022 msiqid_t *msiq_id) 1023 { 1024 uint64_t ret; 1025 1026 DBG(DBG_LIB_MSI, dip, "px_lib_msi_getmsiq: dip 0x%p msi_num 0x%x\n", 1027 dip, msi_num); 1028 1029 if ((ret = hvio_msi_getmsiq(DIP_TO_HANDLE(dip), 1030 msi_num, msiq_id)) != H_EOK) { 1031 DBG(DBG_LIB_MSI, dip, 1032 "hvio_msi_getmsiq failed, ret 0x%lx\n", ret); 1033 return (DDI_FAILURE); 1034 } 1035 1036 DBG(DBG_LIB_MSI, dip, "px_lib_msi_getmsiq: msiq_id 0x%x\n", 1037 *msiq_id); 1038 1039 return (DDI_SUCCESS); 1040 } 1041 1042 /*ARGSUSED*/ 1043 int 1044 px_lib_msi_setmsiq(dev_info_t *dip, msinum_t msi_num, 1045 msiqid_t msiq_id, msi_type_t msitype) 1046 { 1047 uint64_t ret; 1048 1049 DBG(DBG_LIB_MSI, dip, "px_lib_msi_setmsiq: dip 0x%p msi_num 0x%x " 1050 "msq_id 0x%x\n", dip, msi_num, msiq_id); 1051 1052 if ((ret = hvio_msi_setmsiq(DIP_TO_HANDLE(dip), 1053 msi_num, msiq_id)) != H_EOK) { 1054 DBG(DBG_LIB_MSI, dip, 1055 "hvio_msi_setmsiq failed, ret 0x%lx\n", ret); 1056 return (DDI_FAILURE); 1057 } 1058 1059 return (DDI_SUCCESS); 1060 } 1061 1062 /*ARGSUSED*/ 1063 int 1064 px_lib_msi_getvalid(dev_info_t *dip, msinum_t msi_num, 1065 pci_msi_valid_state_t *msi_valid_state) 1066 { 1067 uint64_t ret; 1068 1069 DBG(DBG_LIB_MSI, dip, "px_lib_msi_getvalid: dip 0x%p msi_num 0x%x\n", 1070 dip, msi_num); 1071 1072 if ((ret = hvio_msi_getvalid(DIP_TO_HANDLE(dip), 1073 msi_num, msi_valid_state)) != H_EOK) { 1074 DBG(DBG_LIB_MSI, dip, 1075 "hvio_msi_getvalid failed, ret 0x%lx\n", ret); 1076 return (DDI_FAILURE); 1077 } 1078 1079 DBG(DBG_LIB_MSI, dip, "px_lib_msi_getvalid: msiq_id 0x%x\n", 1080 *msi_valid_state); 1081 1082 return (DDI_SUCCESS); 1083 } 1084 1085 /*ARGSUSED*/ 1086 int 1087 px_lib_msi_setvalid(dev_info_t *dip, msinum_t msi_num, 1088 pci_msi_valid_state_t msi_valid_state) 1089 { 1090 uint64_t ret; 1091 1092 DBG(DBG_LIB_MSI, dip, "px_lib_msi_setvalid: dip 0x%p msi_num 0x%x " 1093 "msi_valid_state 0x%x\n", dip, msi_num, msi_valid_state); 1094 1095 if ((ret = hvio_msi_setvalid(DIP_TO_HANDLE(dip), 1096 msi_num, msi_valid_state)) != H_EOK) { 1097 DBG(DBG_LIB_MSI, dip, 1098 "hvio_msi_setvalid failed, ret 0x%lx\n", ret); 1099 return (DDI_FAILURE); 1100 } 1101 1102 return (DDI_SUCCESS); 1103 } 1104 1105 /*ARGSUSED*/ 1106 int 1107 px_lib_msi_getstate(dev_info_t *dip, msinum_t msi_num, 1108 pci_msi_state_t *msi_state) 1109 { 1110 uint64_t ret; 1111 1112 DBG(DBG_LIB_MSI, dip, "px_lib_msi_getstate: dip 0x%p msi_num 0x%x\n", 1113 dip, msi_num); 1114 1115 if ((ret = hvio_msi_getstate(DIP_TO_HANDLE(dip), 1116 msi_num, msi_state)) != H_EOK) { 1117 DBG(DBG_LIB_MSI, dip, 1118 "hvio_msi_getstate failed, ret 0x%lx\n", ret); 1119 return (DDI_FAILURE); 1120 } 1121 1122 DBG(DBG_LIB_MSI, dip, "px_lib_msi_getstate: msi_state 0x%x\n", 1123 *msi_state); 1124 1125 return (DDI_SUCCESS); 1126 } 1127 1128 /*ARGSUSED*/ 1129 int 1130 px_lib_msi_setstate(dev_info_t *dip, msinum_t msi_num, 1131 pci_msi_state_t msi_state) 1132 { 1133 uint64_t ret; 1134 1135 DBG(DBG_LIB_MSI, dip, "px_lib_msi_setstate: dip 0x%p msi_num 0x%x " 1136 "msi_state 0x%x\n", dip, msi_num, msi_state); 1137 1138 if ((ret = hvio_msi_setstate(DIP_TO_HANDLE(dip), 1139 msi_num, msi_state)) != H_EOK) { 1140 DBG(DBG_LIB_MSI, dip, 1141 "hvio_msi_setstate failed, ret 0x%lx\n", ret); 1142 return (DDI_FAILURE); 1143 } 1144 1145 return (DDI_SUCCESS); 1146 } 1147 1148 /* 1149 * MSG Functions: 1150 */ 1151 /*ARGSUSED*/ 1152 int 1153 px_lib_msg_getmsiq(dev_info_t *dip, pcie_msg_type_t msg_type, 1154 msiqid_t *msiq_id) 1155 { 1156 uint64_t ret; 1157 1158 DBG(DBG_LIB_MSG, dip, "px_lib_msg_getmsiq: dip 0x%p msg_type 0x%x\n", 1159 dip, msg_type); 1160 1161 if ((ret = hvio_msg_getmsiq(DIP_TO_HANDLE(dip), 1162 msg_type, msiq_id)) != H_EOK) { 1163 DBG(DBG_LIB_MSG, dip, 1164 "hvio_msg_getmsiq failed, ret 0x%lx\n", ret); 1165 return (DDI_FAILURE); 1166 } 1167 1168 DBG(DBG_LIB_MSI, dip, "px_lib_msg_getmsiq: msiq_id 0x%x\n", 1169 *msiq_id); 1170 1171 return (DDI_SUCCESS); 1172 } 1173 1174 /*ARGSUSED*/ 1175 int 1176 px_lib_msg_setmsiq(dev_info_t *dip, pcie_msg_type_t msg_type, 1177 msiqid_t msiq_id) 1178 { 1179 uint64_t ret; 1180 1181 DBG(DBG_LIB_MSG, dip, "px_lib_msi_setstate: dip 0x%p msg_type 0x%x " 1182 "msiq_id 0x%x\n", dip, msg_type, msiq_id); 1183 1184 if ((ret = hvio_msg_setmsiq(DIP_TO_HANDLE(dip), 1185 msg_type, msiq_id)) != H_EOK) { 1186 DBG(DBG_LIB_MSG, dip, 1187 "hvio_msg_setmsiq failed, ret 0x%lx\n", ret); 1188 return (DDI_FAILURE); 1189 } 1190 1191 return (DDI_SUCCESS); 1192 } 1193 1194 /*ARGSUSED*/ 1195 int 1196 px_lib_msg_getvalid(dev_info_t *dip, pcie_msg_type_t msg_type, 1197 pcie_msg_valid_state_t *msg_valid_state) 1198 { 1199 uint64_t ret; 1200 1201 DBG(DBG_LIB_MSG, dip, "px_lib_msg_getvalid: dip 0x%p msg_type 0x%x\n", 1202 dip, msg_type); 1203 1204 if ((ret = hvio_msg_getvalid(DIP_TO_HANDLE(dip), msg_type, 1205 msg_valid_state)) != H_EOK) { 1206 DBG(DBG_LIB_MSG, dip, 1207 "hvio_msg_getvalid failed, ret 0x%lx\n", ret); 1208 return (DDI_FAILURE); 1209 } 1210 1211 DBG(DBG_LIB_MSI, dip, "px_lib_msg_getvalid: msg_valid_state 0x%x\n", 1212 *msg_valid_state); 1213 1214 return (DDI_SUCCESS); 1215 } 1216 1217 /*ARGSUSED*/ 1218 int 1219 px_lib_msg_setvalid(dev_info_t *dip, pcie_msg_type_t msg_type, 1220 pcie_msg_valid_state_t msg_valid_state) 1221 { 1222 uint64_t ret; 1223 1224 DBG(DBG_LIB_MSG, dip, "px_lib_msg_setvalid: dip 0x%p msg_type 0x%x " 1225 "msg_valid_state 0x%x\n", dip, msg_type, msg_valid_state); 1226 1227 if ((ret = hvio_msg_setvalid(DIP_TO_HANDLE(dip), msg_type, 1228 msg_valid_state)) != H_EOK) { 1229 DBG(DBG_LIB_MSG, dip, 1230 "hvio_msg_setvalid failed, ret 0x%lx\n", ret); 1231 return (DDI_FAILURE); 1232 } 1233 1234 return (DDI_SUCCESS); 1235 } 1236 1237 /* 1238 * Suspend/Resume Functions: 1239 * Currently unsupported by hypervisor 1240 */ 1241 int 1242 px_lib_suspend(dev_info_t *dip) 1243 { 1244 px_t *px_p = DIP_TO_STATE(dip); 1245 pxu_t *pxu_p = (pxu_t *)px_p->px_plat_p; 1246 px_cb_t *cb_p = PX2CB(px_p); 1247 devhandle_t dev_hdl, xbus_dev_hdl; 1248 uint64_t ret = H_EOK; 1249 1250 DBG(DBG_DETACH, dip, "px_lib_suspend: dip 0x%p\n", dip); 1251 1252 dev_hdl = (devhandle_t)pxu_p->px_address[PX_REG_CSR]; 1253 xbus_dev_hdl = (devhandle_t)pxu_p->px_address[PX_REG_XBC]; 1254 1255 if ((ret = hvio_suspend(dev_hdl, pxu_p)) != H_EOK) 1256 goto fail; 1257 1258 if (--cb_p->attachcnt == 0) { 1259 ret = hvio_cb_suspend(xbus_dev_hdl, pxu_p); 1260 if (ret != H_EOK) 1261 cb_p->attachcnt++; 1262 } 1263 pxu_p->cpr_flag = PX_ENTERED_CPR; 1264 1265 fail: 1266 return ((ret != H_EOK) ? DDI_FAILURE: DDI_SUCCESS); 1267 } 1268 1269 void 1270 px_lib_resume(dev_info_t *dip) 1271 { 1272 px_t *px_p = DIP_TO_STATE(dip); 1273 pxu_t *pxu_p = (pxu_t *)px_p->px_plat_p; 1274 px_cb_t *cb_p = PX2CB(px_p); 1275 devhandle_t dev_hdl, xbus_dev_hdl; 1276 devino_t pec_ino = px_p->px_inos[PX_INTR_PEC]; 1277 devino_t xbc_ino = px_p->px_inos[PX_INTR_XBC]; 1278 1279 DBG(DBG_ATTACH, dip, "px_lib_resume: dip 0x%p\n", dip); 1280 1281 dev_hdl = (devhandle_t)pxu_p->px_address[PX_REG_CSR]; 1282 xbus_dev_hdl = (devhandle_t)pxu_p->px_address[PX_REG_XBC]; 1283 1284 if (++cb_p->attachcnt == 1) 1285 hvio_cb_resume(dev_hdl, xbus_dev_hdl, xbc_ino, pxu_p); 1286 1287 hvio_resume(dev_hdl, pec_ino, pxu_p); 1288 } 1289 1290 /* 1291 * Generate a unique Oberon UBC ID based on the Logicial System Board and 1292 * the IO Channel from the portid property field. 1293 */ 1294 static uint64_t 1295 oberon_get_ubc_id(dev_info_t *dip) 1296 { 1297 px_t *px_p = DIP_TO_STATE(dip); 1298 pxu_t *pxu_p = (pxu_t *)px_p->px_plat_p; 1299 uint64_t ubc_id; 1300 1301 /* 1302 * Generate a unique 6 bit UBC ID using the 2 IO_Channel#[1:0] bits and 1303 * the 4 LSB_ID[3:0] bits from the Oberon's portid property. 1304 */ 1305 ubc_id = (((pxu_p->portid >> OBERON_PORT_ID_IOC) & 1306 OBERON_PORT_ID_IOC_MASK) | (((pxu_p->portid >> 1307 OBERON_PORT_ID_LSB) & OBERON_PORT_ID_LSB_MASK) 1308 << OBERON_UBC_ID_LSB)); 1309 1310 return (ubc_id); 1311 } 1312 1313 /* 1314 * Oberon does not have a UBC scratch register, so alloc an array of scratch 1315 * registers when needed and use a unique UBC ID as an index. This code 1316 * can be simplified if we use a pre-allocated array. They are currently 1317 * being dynamically allocated because it's only needed by the Oberon. 1318 */ 1319 static void 1320 oberon_set_cb(dev_info_t *dip, uint64_t val) 1321 { 1322 uint64_t ubc_id; 1323 1324 if (px_oberon_ubc_scratch_regs == NULL) 1325 px_oberon_ubc_scratch_regs = 1326 (uint64_t *)kmem_zalloc(sizeof (uint64_t)* 1327 OBERON_UBC_ID_MAX, KM_SLEEP); 1328 1329 ubc_id = oberon_get_ubc_id(dip); 1330 1331 px_oberon_ubc_scratch_regs[ubc_id] = val; 1332 1333 /* 1334 * Check if any scratch registers are still in use. If all scratch 1335 * registers are currently set to zero, then deallocate the scratch 1336 * register array. 1337 */ 1338 for (ubc_id = 0; ubc_id < OBERON_UBC_ID_MAX; ubc_id++) { 1339 if (px_oberon_ubc_scratch_regs[ubc_id] != NULL) 1340 return; 1341 } 1342 1343 /* 1344 * All scratch registers are set to zero so deallocate the scratch 1345 * register array and set the pointer to NULL. 1346 */ 1347 kmem_free(px_oberon_ubc_scratch_regs, 1348 (sizeof (uint64_t)*OBERON_UBC_ID_MAX)); 1349 1350 px_oberon_ubc_scratch_regs = NULL; 1351 } 1352 1353 /* 1354 * Oberon does not have a UBC scratch register, so use an allocated array of 1355 * scratch registers and use the unique UBC ID as an index into that array. 1356 */ 1357 static uint64_t 1358 oberon_get_cb(dev_info_t *dip) 1359 { 1360 uint64_t ubc_id; 1361 1362 if (px_oberon_ubc_scratch_regs == NULL) 1363 return (0); 1364 1365 ubc_id = oberon_get_ubc_id(dip); 1366 1367 return (px_oberon_ubc_scratch_regs[ubc_id]); 1368 } 1369 1370 /* 1371 * Misc Functions: 1372 * Currently unsupported by hypervisor 1373 */ 1374 static uint64_t 1375 px_get_cb(dev_info_t *dip) 1376 { 1377 px_t *px_p = DIP_TO_STATE(dip); 1378 pxu_t *pxu_p = (pxu_t *)px_p->px_plat_p; 1379 1380 /* 1381 * Oberon does not currently have Scratchpad registers. 1382 */ 1383 if (PX_CHIP_TYPE(pxu_p) == PX_CHIP_OBERON) 1384 return (oberon_get_cb(dip)); 1385 1386 return (CSR_XR((caddr_t)pxu_p->px_address[PX_REG_XBC], JBUS_SCRATCH_1)); 1387 } 1388 1389 static void 1390 px_set_cb(dev_info_t *dip, uint64_t val) 1391 { 1392 px_t *px_p = DIP_TO_STATE(dip); 1393 pxu_t *pxu_p = (pxu_t *)px_p->px_plat_p; 1394 1395 /* 1396 * Oberon does not currently have Scratchpad registers. 1397 */ 1398 if (PX_CHIP_TYPE(pxu_p) == PX_CHIP_OBERON) { 1399 oberon_set_cb(dip, val); 1400 return; 1401 } 1402 1403 CSR_XS((caddr_t)pxu_p->px_address[PX_REG_XBC], JBUS_SCRATCH_1, val); 1404 } 1405 1406 /*ARGSUSED*/ 1407 int 1408 px_lib_map_vconfig(dev_info_t *dip, 1409 ddi_map_req_t *mp, pci_config_offset_t off, 1410 pci_regspec_t *rp, caddr_t *addrp) 1411 { 1412 /* 1413 * No special config space access services in this layer. 1414 */ 1415 return (DDI_FAILURE); 1416 } 1417 1418 void 1419 px_lib_map_attr_check(ddi_map_req_t *mp) 1420 { 1421 ddi_acc_hdl_t *hp = mp->map_handlep; 1422 1423 /* fire does not accept byte masks from PIO store merge */ 1424 if (hp->ah_acc.devacc_attr_dataorder == DDI_STORECACHING_OK_ACC) 1425 hp->ah_acc.devacc_attr_dataorder = DDI_STRICTORDER_ACC; 1426 } 1427 1428 /* This function is called only by poke, caut put and pxtool poke. */ 1429 void 1430 px_lib_clr_errs(px_t *px_p, dev_info_t *rdip, uint64_t addr) 1431 { 1432 px_pec_t *pec_p = px_p->px_pec_p; 1433 dev_info_t *rpdip = px_p->px_dip; 1434 int rc_err, fab_err, i; 1435 int acctype = pec_p->pec_safeacc_type; 1436 ddi_fm_error_t derr; 1437 px_ranges_t *ranges_p; 1438 int range_len; 1439 uint32_t addr_high, addr_low; 1440 pcie_req_id_t bdf = 0; 1441 1442 /* Create the derr */ 1443 bzero(&derr, sizeof (ddi_fm_error_t)); 1444 derr.fme_version = DDI_FME_VERSION; 1445 derr.fme_ena = fm_ena_generate(0, FM_ENA_FMT1); 1446 derr.fme_flag = acctype; 1447 1448 if (acctype == DDI_FM_ERR_EXPECTED) { 1449 derr.fme_status = DDI_FM_NONFATAL; 1450 ndi_fm_acc_err_set(pec_p->pec_acc_hdl, &derr); 1451 } 1452 1453 mutex_enter(&px_p->px_fm_mutex); 1454 1455 /* send ereport/handle/clear fire registers */ 1456 rc_err = px_err_cmn_intr(px_p, &derr, PX_LIB_CALL, PX_FM_BLOCK_ALL); 1457 1458 /* Figure out if this is a cfg or mem32 access */ 1459 addr_high = (uint32_t)(addr >> 32); 1460 addr_low = (uint32_t)addr; 1461 range_len = px_p->px_ranges_length / sizeof (px_ranges_t); 1462 i = 0; 1463 for (ranges_p = px_p->px_ranges_p; i < range_len; i++, ranges_p++) { 1464 if (ranges_p->parent_high == addr_high) { 1465 switch (ranges_p->child_high & PCI_ADDR_MASK) { 1466 case PCI_ADDR_CONFIG: 1467 bdf = (pcie_req_id_t)(addr_low >> 12); 1468 addr_low = 0; 1469 break; 1470 case PCI_ADDR_MEM32: 1471 if (rdip) 1472 (void) pcie_get_bdf_from_dip(rdip, 1473 &bdf); 1474 else 1475 bdf = NULL; 1476 break; 1477 } 1478 break; 1479 } 1480 } 1481 1482 px_rp_en_q(px_p, bdf, addr_low, NULL); 1483 1484 /* 1485 * XXX - Current code scans the fabric for all px_tool accesses. 1486 * In future, do not scan fabric for px_tool access to IO Root Nexus 1487 */ 1488 fab_err = pf_scan_fabric(rpdip, &derr, px_p->px_dq_p, 1489 &px_p->px_dq_tail); 1490 1491 mutex_exit(&px_p->px_fm_mutex); 1492 1493 px_err_panic(rc_err, PX_RC, fab_err); 1494 } 1495 1496 #ifdef DEBUG 1497 int px_peekfault_cnt = 0; 1498 int px_pokefault_cnt = 0; 1499 #endif /* DEBUG */ 1500 1501 /*ARGSUSED*/ 1502 static int 1503 px_lib_do_poke(dev_info_t *dip, dev_info_t *rdip, 1504 peekpoke_ctlops_t *in_args) 1505 { 1506 px_t *px_p = DIP_TO_STATE(dip); 1507 px_pec_t *pec_p = px_p->px_pec_p; 1508 int err = DDI_SUCCESS; 1509 on_trap_data_t otd; 1510 1511 mutex_enter(&pec_p->pec_pokefault_mutex); 1512 pec_p->pec_ontrap_data = &otd; 1513 pec_p->pec_safeacc_type = DDI_FM_ERR_POKE; 1514 1515 /* Set up protected environment. */ 1516 if (!on_trap(&otd, OT_DATA_ACCESS)) { 1517 uintptr_t tramp = otd.ot_trampoline; 1518 1519 otd.ot_trampoline = (uintptr_t)&poke_fault; 1520 err = do_poke(in_args->size, (void *)in_args->dev_addr, 1521 (void *)in_args->host_addr); 1522 otd.ot_trampoline = tramp; 1523 } else 1524 err = DDI_FAILURE; 1525 1526 px_lib_clr_errs(px_p, rdip, in_args->dev_addr); 1527 1528 if (otd.ot_trap & OT_DATA_ACCESS) 1529 err = DDI_FAILURE; 1530 1531 /* Take down protected environment. */ 1532 no_trap(); 1533 1534 pec_p->pec_ontrap_data = NULL; 1535 pec_p->pec_safeacc_type = DDI_FM_ERR_UNEXPECTED; 1536 mutex_exit(&pec_p->pec_pokefault_mutex); 1537 1538 #ifdef DEBUG 1539 if (err == DDI_FAILURE) 1540 px_pokefault_cnt++; 1541 #endif 1542 return (err); 1543 } 1544 1545 /*ARGSUSED*/ 1546 static int 1547 px_lib_do_caut_put(dev_info_t *dip, dev_info_t *rdip, 1548 peekpoke_ctlops_t *cautacc_ctlops_arg) 1549 { 1550 size_t size = cautacc_ctlops_arg->size; 1551 uintptr_t dev_addr = cautacc_ctlops_arg->dev_addr; 1552 uintptr_t host_addr = cautacc_ctlops_arg->host_addr; 1553 ddi_acc_impl_t *hp = (ddi_acc_impl_t *)cautacc_ctlops_arg->handle; 1554 size_t repcount = cautacc_ctlops_arg->repcount; 1555 uint_t flags = cautacc_ctlops_arg->flags; 1556 1557 px_t *px_p = DIP_TO_STATE(dip); 1558 px_pec_t *pec_p = px_p->px_pec_p; 1559 int err = DDI_SUCCESS; 1560 1561 /* 1562 * Note that i_ndi_busop_access_enter ends up grabbing the pokefault 1563 * mutex. 1564 */ 1565 i_ndi_busop_access_enter(hp->ahi_common.ah_dip, (ddi_acc_handle_t)hp); 1566 1567 pec_p->pec_ontrap_data = (on_trap_data_t *)hp->ahi_err->err_ontrap; 1568 pec_p->pec_safeacc_type = DDI_FM_ERR_EXPECTED; 1569 hp->ahi_err->err_expected = DDI_FM_ERR_EXPECTED; 1570 1571 if (!i_ddi_ontrap((ddi_acc_handle_t)hp)) { 1572 for (; repcount; repcount--) { 1573 switch (size) { 1574 1575 case sizeof (uint8_t): 1576 i_ddi_put8(hp, (uint8_t *)dev_addr, 1577 *(uint8_t *)host_addr); 1578 break; 1579 1580 case sizeof (uint16_t): 1581 i_ddi_put16(hp, (uint16_t *)dev_addr, 1582 *(uint16_t *)host_addr); 1583 break; 1584 1585 case sizeof (uint32_t): 1586 i_ddi_put32(hp, (uint32_t *)dev_addr, 1587 *(uint32_t *)host_addr); 1588 break; 1589 1590 case sizeof (uint64_t): 1591 i_ddi_put64(hp, (uint64_t *)dev_addr, 1592 *(uint64_t *)host_addr); 1593 break; 1594 } 1595 1596 host_addr += size; 1597 1598 if (flags == DDI_DEV_AUTOINCR) 1599 dev_addr += size; 1600 1601 px_lib_clr_errs(px_p, rdip, dev_addr); 1602 1603 if (pec_p->pec_ontrap_data->ot_trap & OT_DATA_ACCESS) { 1604 err = DDI_FAILURE; 1605 #ifdef DEBUG 1606 px_pokefault_cnt++; 1607 #endif 1608 break; 1609 } 1610 } 1611 } 1612 1613 i_ddi_notrap((ddi_acc_handle_t)hp); 1614 pec_p->pec_ontrap_data = NULL; 1615 pec_p->pec_safeacc_type = DDI_FM_ERR_UNEXPECTED; 1616 i_ndi_busop_access_exit(hp->ahi_common.ah_dip, (ddi_acc_handle_t)hp); 1617 hp->ahi_err->err_expected = DDI_FM_ERR_UNEXPECTED; 1618 1619 return (err); 1620 } 1621 1622 1623 int 1624 px_lib_ctlops_poke(dev_info_t *dip, dev_info_t *rdip, 1625 peekpoke_ctlops_t *in_args) 1626 { 1627 return (in_args->handle ? px_lib_do_caut_put(dip, rdip, in_args) : 1628 px_lib_do_poke(dip, rdip, in_args)); 1629 } 1630 1631 1632 /*ARGSUSED*/ 1633 static int 1634 px_lib_do_peek(dev_info_t *dip, peekpoke_ctlops_t *in_args) 1635 { 1636 px_t *px_p = DIP_TO_STATE(dip); 1637 px_pec_t *pec_p = px_p->px_pec_p; 1638 int err = DDI_SUCCESS; 1639 on_trap_data_t otd; 1640 1641 mutex_enter(&pec_p->pec_pokefault_mutex); 1642 mutex_enter(&px_p->px_fm_mutex); 1643 pec_p->pec_safeacc_type = DDI_FM_ERR_PEEK; 1644 mutex_exit(&px_p->px_fm_mutex); 1645 1646 if (!on_trap(&otd, OT_DATA_ACCESS)) { 1647 uintptr_t tramp = otd.ot_trampoline; 1648 1649 otd.ot_trampoline = (uintptr_t)&peek_fault; 1650 err = do_peek(in_args->size, (void *)in_args->dev_addr, 1651 (void *)in_args->host_addr); 1652 otd.ot_trampoline = tramp; 1653 } else 1654 err = DDI_FAILURE; 1655 1656 no_trap(); 1657 pec_p->pec_safeacc_type = DDI_FM_ERR_UNEXPECTED; 1658 mutex_exit(&pec_p->pec_pokefault_mutex); 1659 1660 #ifdef DEBUG 1661 if (err == DDI_FAILURE) 1662 px_peekfault_cnt++; 1663 #endif 1664 return (err); 1665 } 1666 1667 1668 static int 1669 px_lib_do_caut_get(dev_info_t *dip, peekpoke_ctlops_t *cautacc_ctlops_arg) 1670 { 1671 size_t size = cautacc_ctlops_arg->size; 1672 uintptr_t dev_addr = cautacc_ctlops_arg->dev_addr; 1673 uintptr_t host_addr = cautacc_ctlops_arg->host_addr; 1674 ddi_acc_impl_t *hp = (ddi_acc_impl_t *)cautacc_ctlops_arg->handle; 1675 size_t repcount = cautacc_ctlops_arg->repcount; 1676 uint_t flags = cautacc_ctlops_arg->flags; 1677 1678 px_t *px_p = DIP_TO_STATE(dip); 1679 px_pec_t *pec_p = px_p->px_pec_p; 1680 int err = DDI_SUCCESS; 1681 1682 /* 1683 * Note that i_ndi_busop_access_enter ends up grabbing the pokefault 1684 * mutex. 1685 */ 1686 i_ndi_busop_access_enter(hp->ahi_common.ah_dip, (ddi_acc_handle_t)hp); 1687 1688 pec_p->pec_ontrap_data = (on_trap_data_t *)hp->ahi_err->err_ontrap; 1689 pec_p->pec_safeacc_type = DDI_FM_ERR_EXPECTED; 1690 hp->ahi_err->err_expected = DDI_FM_ERR_EXPECTED; 1691 1692 if (repcount == 1) { 1693 if (!i_ddi_ontrap((ddi_acc_handle_t)hp)) { 1694 i_ddi_caut_get(size, (void *)dev_addr, 1695 (void *)host_addr); 1696 } else { 1697 int i; 1698 uint8_t *ff_addr = (uint8_t *)host_addr; 1699 for (i = 0; i < size; i++) 1700 *ff_addr++ = 0xff; 1701 1702 err = DDI_FAILURE; 1703 #ifdef DEBUG 1704 px_peekfault_cnt++; 1705 #endif 1706 } 1707 } else { 1708 if (!i_ddi_ontrap((ddi_acc_handle_t)hp)) { 1709 for (; repcount; repcount--) { 1710 i_ddi_caut_get(size, (void *)dev_addr, 1711 (void *)host_addr); 1712 1713 host_addr += size; 1714 1715 if (flags == DDI_DEV_AUTOINCR) 1716 dev_addr += size; 1717 } 1718 } else { 1719 err = DDI_FAILURE; 1720 #ifdef DEBUG 1721 px_peekfault_cnt++; 1722 #endif 1723 } 1724 } 1725 1726 i_ddi_notrap((ddi_acc_handle_t)hp); 1727 pec_p->pec_ontrap_data = NULL; 1728 pec_p->pec_safeacc_type = DDI_FM_ERR_UNEXPECTED; 1729 i_ndi_busop_access_exit(hp->ahi_common.ah_dip, (ddi_acc_handle_t)hp); 1730 hp->ahi_err->err_expected = DDI_FM_ERR_UNEXPECTED; 1731 1732 return (err); 1733 } 1734 1735 /*ARGSUSED*/ 1736 int 1737 px_lib_ctlops_peek(dev_info_t *dip, dev_info_t *rdip, 1738 peekpoke_ctlops_t *in_args, void *result) 1739 { 1740 result = (void *)in_args->host_addr; 1741 return (in_args->handle ? px_lib_do_caut_get(dip, in_args) : 1742 px_lib_do_peek(dip, in_args)); 1743 } 1744 1745 /* 1746 * implements PPM interface 1747 */ 1748 int 1749 px_lib_pmctl(int cmd, px_t *px_p) 1750 { 1751 ASSERT((cmd & ~PPMREQ_MASK) == PPMREQ); 1752 switch (cmd) { 1753 case PPMREQ_PRE_PWR_OFF: 1754 /* 1755 * Currently there is no device power management for 1756 * the root complex (fire). When there is we need to make 1757 * sure that it is at full power before trying to send the 1758 * PME_Turn_Off message. 1759 */ 1760 DBG(DBG_PWR, px_p->px_dip, 1761 "ioctl: request to send PME_Turn_Off\n"); 1762 return (px_goto_l23ready(px_p)); 1763 1764 case PPMREQ_PRE_PWR_ON: 1765 DBG(DBG_PWR, px_p->px_dip, "ioctl: PRE_PWR_ON request\n"); 1766 return (px_pre_pwron_check(px_p)); 1767 1768 case PPMREQ_POST_PWR_ON: 1769 DBG(DBG_PWR, px_p->px_dip, "ioctl: POST_PWR_ON request\n"); 1770 return (px_goto_l0(px_p)); 1771 1772 default: 1773 return (DDI_FAILURE); 1774 } 1775 } 1776 1777 /* 1778 * sends PME_Turn_Off message to put the link in L2/L3 ready state. 1779 * called by px_ioctl. 1780 * returns DDI_SUCCESS or DDI_FAILURE 1781 * 1. Wait for link to be in L1 state (link status reg) 1782 * 2. write to PME_Turn_off reg to boradcast 1783 * 3. set timeout 1784 * 4. If timeout, return failure. 1785 * 5. If PM_TO_Ack, wait till link is in L2/L3 ready 1786 */ 1787 static int 1788 px_goto_l23ready(px_t *px_p) 1789 { 1790 pcie_pwr_t *pwr_p; 1791 pxu_t *pxu_p = (pxu_t *)px_p->px_plat_p; 1792 caddr_t csr_base = (caddr_t)pxu_p->px_address[PX_REG_CSR]; 1793 int ret = DDI_SUCCESS; 1794 clock_t end, timeleft; 1795 int mutex_held = 1; 1796 1797 /* If no PM info, return failure */ 1798 if (!PCIE_PMINFO(px_p->px_dip) || 1799 !(pwr_p = PCIE_NEXUS_PMINFO(px_p->px_dip))) 1800 return (DDI_FAILURE); 1801 1802 mutex_enter(&pwr_p->pwr_lock); 1803 mutex_enter(&px_p->px_l23ready_lock); 1804 /* Clear the PME_To_ACK receieved flag */ 1805 px_p->px_pm_flags &= ~PX_PMETOACK_RECVD; 1806 /* 1807 * When P25 is the downstream device, after receiving 1808 * PME_To_ACK, fire will go to Detect state, which causes 1809 * the link down event. Inform FMA that this is expected. 1810 * In case of all other cards complaint with the pci express 1811 * spec, this will happen when the power is re-applied. FMA 1812 * code will clear this flag after one instance of LDN. Since 1813 * there will not be a LDN event for the spec compliant cards, 1814 * we need to clear the flag after receiving PME_To_ACK. 1815 */ 1816 px_p->px_pm_flags |= PX_LDN_EXPECTED; 1817 if (px_send_pme_turnoff(csr_base) != DDI_SUCCESS) { 1818 ret = DDI_FAILURE; 1819 goto l23ready_done; 1820 } 1821 px_p->px_pm_flags |= PX_PME_TURNOFF_PENDING; 1822 1823 end = ddi_get_lbolt() + drv_usectohz(px_pme_to_ack_timeout); 1824 while (!(px_p->px_pm_flags & PX_PMETOACK_RECVD)) { 1825 timeleft = cv_timedwait(&px_p->px_l23ready_cv, 1826 &px_p->px_l23ready_lock, end); 1827 /* 1828 * if cv_timedwait returns -1, it is either 1829 * 1) timed out or 1830 * 2) there was a pre-mature wakeup but by the time 1831 * cv_timedwait is called again end < lbolt i.e. 1832 * end is in the past. 1833 * 3) By the time we make first cv_timedwait call, 1834 * end < lbolt is true. 1835 */ 1836 if (timeleft == -1) 1837 break; 1838 } 1839 if (!(px_p->px_pm_flags & PX_PMETOACK_RECVD)) { 1840 /* 1841 * Either timedout or interrupt didn't get a 1842 * chance to grab the mutex and set the flag. 1843 * release the mutex and delay for sometime. 1844 * This will 1) give a chance for interrupt to 1845 * set the flag 2) creates a delay between two 1846 * consequetive requests. 1847 */ 1848 mutex_exit(&px_p->px_l23ready_lock); 1849 delay(drv_usectohz(50 * PX_MSEC_TO_USEC)); 1850 mutex_held = 0; 1851 if (!(px_p->px_pm_flags & PX_PMETOACK_RECVD)) { 1852 ret = DDI_FAILURE; 1853 DBG(DBG_PWR, px_p->px_dip, " Timed out while waiting" 1854 " for PME_TO_ACK\n"); 1855 } 1856 } 1857 px_p->px_pm_flags &= 1858 ~(PX_PME_TURNOFF_PENDING | PX_PMETOACK_RECVD | PX_LDN_EXPECTED); 1859 1860 l23ready_done: 1861 if (mutex_held) 1862 mutex_exit(&px_p->px_l23ready_lock); 1863 /* 1864 * Wait till link is in L1 idle, if sending PME_Turn_Off 1865 * was succesful. 1866 */ 1867 if (ret == DDI_SUCCESS) { 1868 if (px_link_wait4l1idle(csr_base) != DDI_SUCCESS) { 1869 DBG(DBG_PWR, px_p->px_dip, " Link is not at L1" 1870 " even though we received PME_To_ACK.\n"); 1871 /* 1872 * Workaround for hardware bug with P25. 1873 * Due to a hardware bug with P25, link state 1874 * will be Detect state rather than L1 after 1875 * link is transitioned to L23Ready state. Since 1876 * we don't know whether link is L23ready state 1877 * without Fire's state being L1_idle, we delay 1878 * here just to make sure that we wait till link 1879 * is transitioned to L23Ready state. 1880 */ 1881 delay(drv_usectohz(100 * PX_MSEC_TO_USEC)); 1882 } 1883 pwr_p->pwr_link_lvl = PM_LEVEL_L3; 1884 1885 } 1886 mutex_exit(&pwr_p->pwr_lock); 1887 return (ret); 1888 } 1889 1890 /* 1891 * Message interrupt handler intended to be shared for both 1892 * PME and PME_TO_ACK msg handling, currently only handles 1893 * PME_To_ACK message. 1894 */ 1895 uint_t 1896 px_pmeq_intr(caddr_t arg) 1897 { 1898 px_t *px_p = (px_t *)arg; 1899 1900 DBG(DBG_PWR, px_p->px_dip, " PME_To_ACK received \n"); 1901 mutex_enter(&px_p->px_l23ready_lock); 1902 cv_broadcast(&px_p->px_l23ready_cv); 1903 if (px_p->px_pm_flags & PX_PME_TURNOFF_PENDING) { 1904 px_p->px_pm_flags |= PX_PMETOACK_RECVD; 1905 } else { 1906 /* 1907 * This maybe the second ack received. If so then, 1908 * we should be receiving it during wait4L1 stage. 1909 */ 1910 px_p->px_pmetoack_ignored++; 1911 } 1912 mutex_exit(&px_p->px_l23ready_lock); 1913 return (DDI_INTR_CLAIMED); 1914 } 1915 1916 static int 1917 px_pre_pwron_check(px_t *px_p) 1918 { 1919 pcie_pwr_t *pwr_p; 1920 1921 /* If no PM info, return failure */ 1922 if (!PCIE_PMINFO(px_p->px_dip) || 1923 !(pwr_p = PCIE_NEXUS_PMINFO(px_p->px_dip))) 1924 return (DDI_FAILURE); 1925 1926 /* 1927 * For the spec compliant downstream cards link down 1928 * is expected when the device is powered on. 1929 */ 1930 px_p->px_pm_flags |= PX_LDN_EXPECTED; 1931 return (pwr_p->pwr_link_lvl == PM_LEVEL_L3 ? DDI_SUCCESS : DDI_FAILURE); 1932 } 1933 1934 static int 1935 px_goto_l0(px_t *px_p) 1936 { 1937 pcie_pwr_t *pwr_p; 1938 pxu_t *pxu_p = (pxu_t *)px_p->px_plat_p; 1939 caddr_t csr_base = (caddr_t)pxu_p->px_address[PX_REG_CSR]; 1940 int ret = DDI_SUCCESS; 1941 uint64_t time_spent = 0; 1942 1943 /* If no PM info, return failure */ 1944 if (!PCIE_PMINFO(px_p->px_dip) || 1945 !(pwr_p = PCIE_NEXUS_PMINFO(px_p->px_dip))) 1946 return (DDI_FAILURE); 1947 1948 mutex_enter(&pwr_p->pwr_lock); 1949 /* 1950 * The following link retrain activity will cause LDN and LUP event. 1951 * Receiving LDN prior to receiving LUP is expected, not an error in 1952 * this case. Receiving LUP indicates link is fully up to support 1953 * powering up down stream device, and of course any further LDN and 1954 * LUP outside this context will be error. 1955 */ 1956 px_p->px_lup_pending = 1; 1957 if (px_link_retrain(csr_base) != DDI_SUCCESS) { 1958 ret = DDI_FAILURE; 1959 goto l0_done; 1960 } 1961 1962 /* LUP event takes the order of 15ms amount of time to occur */ 1963 for (; px_p->px_lup_pending && (time_spent < px_lup_poll_to); 1964 time_spent += px_lup_poll_interval) 1965 drv_usecwait(px_lup_poll_interval); 1966 if (px_p->px_lup_pending) 1967 ret = DDI_FAILURE; 1968 l0_done: 1969 px_enable_detect_quiet(csr_base); 1970 if (ret == DDI_SUCCESS) 1971 pwr_p->pwr_link_lvl = PM_LEVEL_L0; 1972 mutex_exit(&pwr_p->pwr_lock); 1973 return (ret); 1974 } 1975 1976 /* 1977 * Extract the drivers binding name to identify which chip we're binding to. 1978 * Whenever a new bus bridge is created, the driver alias entry should be 1979 * added here to identify the device if needed. If a device isn't added, 1980 * the identity defaults to PX_CHIP_UNIDENTIFIED. 1981 */ 1982 static uint32_t 1983 px_identity_init(px_t *px_p) 1984 { 1985 dev_info_t *dip = px_p->px_dip; 1986 char *name = ddi_binding_name(dip); 1987 uint32_t revision = 0; 1988 1989 revision = ddi_prop_get_int(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS, 1990 "module-revision#", 0); 1991 1992 /* Check for Fire driver binding name */ 1993 if (strcmp(name, "pciex108e,80f0") == 0) { 1994 DBG(DBG_ATTACH, dip, "px_identity_init: %s%d: " 1995 "(FIRE), module-revision %d\n", NAMEINST(dip), 1996 revision); 1997 1998 return ((revision >= FIRE_MOD_REV_20) ? 1999 PX_CHIP_FIRE : PX_CHIP_UNIDENTIFIED); 2000 } 2001 2002 /* Check for Oberon driver binding name */ 2003 if (strcmp(name, "pciex108e,80f8") == 0) { 2004 DBG(DBG_ATTACH, dip, "px_identity_init: %s%d: " 2005 "(OBERON), module-revision %d\n", NAMEINST(dip), 2006 revision); 2007 2008 return (PX_CHIP_OBERON); 2009 } 2010 2011 DBG(DBG_ATTACH, dip, "%s%d: Unknown PCI Express Host bridge %s %x\n", 2012 ddi_driver_name(dip), ddi_get_instance(dip), name, revision); 2013 2014 return (PX_CHIP_UNIDENTIFIED); 2015 } 2016 2017 int 2018 px_err_add_intr(px_fault_t *px_fault_p) 2019 { 2020 dev_info_t *dip = px_fault_p->px_fh_dip; 2021 px_t *px_p = DIP_TO_STATE(dip); 2022 2023 VERIFY(add_ivintr(px_fault_p->px_fh_sysino, PX_ERR_PIL, 2024 (intrfunc)px_fault_p->px_err_func, (caddr_t)px_fault_p, 2025 NULL, NULL) == 0); 2026 2027 px_ib_intr_enable(px_p, intr_dist_cpuid(), px_fault_p->px_intr_ino); 2028 2029 return (DDI_SUCCESS); 2030 } 2031 2032 void 2033 px_err_rem_intr(px_fault_t *px_fault_p) 2034 { 2035 dev_info_t *dip = px_fault_p->px_fh_dip; 2036 px_t *px_p = DIP_TO_STATE(dip); 2037 2038 px_ib_intr_disable(px_p->px_ib_p, px_fault_p->px_intr_ino, 2039 IB_INTR_WAIT); 2040 2041 VERIFY(rem_ivintr(px_fault_p->px_fh_sysino, PX_ERR_PIL) == 0); 2042 } 2043 2044 /* 2045 * px_cb_add_intr() - Called from attach(9E) to create CB if not yet 2046 * created, to add CB interrupt vector always, but enable only once. 2047 */ 2048 int 2049 px_cb_add_intr(px_fault_t *fault_p) 2050 { 2051 px_t *px_p = DIP_TO_STATE(fault_p->px_fh_dip); 2052 pxu_t *pxu_p = (pxu_t *)px_p->px_plat_p; 2053 px_cb_t *cb_p = (px_cb_t *)px_get_cb(fault_p->px_fh_dip); 2054 px_cb_list_t *pxl, *pxl_new; 2055 cpuid_t cpuid; 2056 2057 2058 if (cb_p == NULL) { 2059 cb_p = kmem_zalloc(sizeof (px_cb_t), KM_SLEEP); 2060 mutex_init(&cb_p->cb_mutex, NULL, MUTEX_DRIVER, NULL); 2061 cb_p->px_cb_func = px_cb_intr; 2062 pxu_p->px_cb_p = cb_p; 2063 px_set_cb(fault_p->px_fh_dip, (uint64_t)cb_p); 2064 2065 /* px_lib_dev_init allows only FIRE and OBERON */ 2066 px_err_reg_enable( 2067 (pxu_p->chip_type == PX_CHIP_FIRE) ? 2068 PX_ERR_JBC : PX_ERR_UBC, 2069 pxu_p->px_address[PX_REG_XBC]); 2070 } else 2071 pxu_p->px_cb_p = cb_p; 2072 2073 mutex_enter(&cb_p->cb_mutex); 2074 2075 VERIFY(add_ivintr(fault_p->px_fh_sysino, PX_ERR_PIL, 2076 (intrfunc)cb_p->px_cb_func, (caddr_t)cb_p, NULL, NULL) == 0); 2077 2078 if (cb_p->pxl == NULL) { 2079 2080 cpuid = intr_dist_cpuid(), 2081 px_ib_intr_enable(px_p, cpuid, fault_p->px_intr_ino); 2082 2083 pxl = kmem_zalloc(sizeof (px_cb_list_t), KM_SLEEP); 2084 pxl->pxp = px_p; 2085 2086 cb_p->pxl = pxl; 2087 cb_p->sysino = fault_p->px_fh_sysino; 2088 cb_p->cpuid = cpuid; 2089 2090 } else { 2091 /* 2092 * Find the last pxl or 2093 * stop short at encoutering a redundent, or 2094 * both. 2095 */ 2096 pxl = cb_p->pxl; 2097 for (; !(pxl->pxp == px_p) && pxl->next; pxl = pxl->next); 2098 if (pxl->pxp == px_p) { 2099 cmn_err(CE_WARN, "px_cb_add_intr: reregister sysino " 2100 "%lx by px_p 0x%p\n", cb_p->sysino, (void *)px_p); 2101 return (DDI_FAILURE); 2102 } 2103 2104 /* add to linked list */ 2105 pxl_new = kmem_zalloc(sizeof (px_cb_list_t), KM_SLEEP); 2106 pxl_new->pxp = px_p; 2107 pxl->next = pxl_new; 2108 } 2109 cb_p->attachcnt++; 2110 2111 mutex_exit(&cb_p->cb_mutex); 2112 2113 return (DDI_SUCCESS); 2114 } 2115 2116 /* 2117 * px_cb_rem_intr() - Called from detach(9E) to remove its CB 2118 * interrupt vector, to shift proxy to the next available px, 2119 * or disable CB interrupt when itself is the last. 2120 */ 2121 void 2122 px_cb_rem_intr(px_fault_t *fault_p) 2123 { 2124 px_t *px_p = DIP_TO_STATE(fault_p->px_fh_dip), *pxp; 2125 pxu_t *pxu_p = (pxu_t *)px_p->px_plat_p; 2126 px_cb_t *cb_p = PX2CB(px_p); 2127 px_cb_list_t *pxl, *prev; 2128 px_fault_t *f_p; 2129 2130 ASSERT(cb_p->pxl); 2131 2132 /* De-list the target px, move the next px up */ 2133 2134 mutex_enter(&cb_p->cb_mutex); 2135 2136 pxl = cb_p->pxl; 2137 if (pxl->pxp == px_p) { 2138 cb_p->pxl = pxl->next; 2139 } else { 2140 prev = pxl; 2141 pxl = pxl->next; 2142 for (; pxl && (pxl->pxp != px_p); prev = pxl, pxl = pxl->next); 2143 if (!pxl) { 2144 cmn_err(CE_WARN, "px_cb_rem_intr: can't find px_p 0x%p " 2145 "in registered CB list.", (void *)px_p); 2146 return; 2147 } 2148 prev->next = pxl->next; 2149 } 2150 kmem_free(pxl, sizeof (px_cb_list_t)); 2151 2152 if (fault_p->px_fh_sysino == cb_p->sysino) { 2153 px_ib_intr_disable(px_p->px_ib_p, fault_p->px_intr_ino, 2154 IB_INTR_WAIT); 2155 2156 if (cb_p->pxl) { 2157 pxp = cb_p->pxl->pxp; 2158 f_p = &pxp->px_cb_fault; 2159 cb_p->sysino = f_p->px_fh_sysino; 2160 2161 PX_INTR_ENABLE(pxp->px_dip, cb_p->sysino, cb_p->cpuid); 2162 (void) px_lib_intr_setstate(pxp->px_dip, cb_p->sysino, 2163 INTR_IDLE_STATE); 2164 } 2165 } 2166 2167 VERIFY(rem_ivintr(fault_p->px_fh_sysino, PX_ERR_PIL) == 0); 2168 pxu_p->px_cb_p = NULL; 2169 cb_p->attachcnt--; 2170 if (cb_p->pxl) { 2171 mutex_exit(&cb_p->cb_mutex); 2172 return; 2173 } 2174 mutex_exit(&cb_p->cb_mutex); 2175 2176 /* px_lib_dev_init allows only FIRE and OBERON */ 2177 px_err_reg_disable( 2178 (pxu_p->chip_type == PX_CHIP_FIRE) ? PX_ERR_JBC : PX_ERR_UBC, 2179 pxu_p->px_address[PX_REG_XBC]); 2180 2181 mutex_destroy(&cb_p->cb_mutex); 2182 px_set_cb(fault_p->px_fh_dip, 0ull); 2183 kmem_free(cb_p, sizeof (px_cb_t)); 2184 } 2185 2186 /* 2187 * px_cb_intr() - sun4u only, CB interrupt dispatcher 2188 */ 2189 uint_t 2190 px_cb_intr(caddr_t arg) 2191 { 2192 px_cb_t *cb_p = (px_cb_t *)arg; 2193 px_cb_list_t *pxl = cb_p->pxl; 2194 px_t *pxp = pxl ? pxl->pxp : NULL; 2195 px_fault_t *fault_p; 2196 2197 while (pxl && pxp && (pxp->px_state != PX_ATTACHED)) { 2198 pxl = pxl->next; 2199 pxp = (pxl) ? pxl->pxp : NULL; 2200 } 2201 2202 if (pxp) { 2203 fault_p = &pxp->px_cb_fault; 2204 return (fault_p->px_err_func((caddr_t)fault_p)); 2205 } else 2206 return (DDI_INTR_UNCLAIMED); 2207 } 2208 2209 /* 2210 * px_cb_intr_redist() - sun4u only, CB interrupt redistribution 2211 */ 2212 void 2213 px_cb_intr_redist(px_t *px_p) 2214 { 2215 px_fault_t *f_p = &px_p->px_cb_fault; 2216 px_cb_t *cb_p = PX2CB(px_p); 2217 devino_t ino = px_p->px_inos[PX_INTR_XBC]; 2218 cpuid_t cpuid; 2219 2220 /* Make sure there is an interrupt control block setup. */ 2221 if (!cb_p) 2222 return; 2223 2224 mutex_enter(&cb_p->cb_mutex); 2225 2226 if (cb_p->sysino != f_p->px_fh_sysino) { 2227 mutex_exit(&cb_p->cb_mutex); 2228 return; 2229 } 2230 2231 cb_p->cpuid = cpuid = intr_dist_cpuid(); 2232 px_ib_intr_dist_en(px_p->px_dip, cpuid, ino, B_FALSE); 2233 2234 mutex_exit(&cb_p->cb_mutex); 2235 } 2236 2237 #ifdef FMA 2238 void 2239 px_fill_rc_status(px_fault_t *px_fault_p, pciex_rc_error_regs_t *rc_status) 2240 { 2241 /* populate the rc_status by reading the registers - TBD */ 2242 } 2243 #endif /* FMA */ 2244 2245 /* 2246 * Unprotected raw reads/writes of fabric device's config space. 2247 * Only used for temporary PCI-E Fabric Error Handling. 2248 */ 2249 uint32_t 2250 px_fab_get(px_t *px_p, pcie_req_id_t bdf, uint16_t offset) 2251 { 2252 px_ranges_t *rp = px_p->px_ranges_p; 2253 uint64_t range_prop, base_addr; 2254 int bank = PCI_REG_ADDR_G(PCI_ADDR_CONFIG); 2255 uint32_t val; 2256 2257 /* Get Fire's Physical Base Address */ 2258 range_prop = px_get_range_prop(px_p, rp, bank); 2259 2260 /* Get config space first. */ 2261 base_addr = range_prop + PX_BDF_TO_CFGADDR(bdf, offset); 2262 2263 val = ldphysio(base_addr); 2264 2265 return (LE_32(val)); 2266 } 2267 2268 void 2269 px_fab_set(px_t *px_p, pcie_req_id_t bdf, uint16_t offset, 2270 uint32_t val) { 2271 px_ranges_t *rp = px_p->px_ranges_p; 2272 uint64_t range_prop, base_addr; 2273 int bank = PCI_REG_ADDR_G(PCI_ADDR_CONFIG); 2274 2275 /* Get Fire's Physical Base Address */ 2276 range_prop = px_get_range_prop(px_p, rp, bank); 2277 2278 /* Get config space first. */ 2279 base_addr = range_prop + PX_BDF_TO_CFGADDR(bdf, offset); 2280 2281 stphysio(base_addr, LE_32(val)); 2282 } 2283 2284 /* 2285 * cpr callback 2286 * 2287 * disable fabric error msg interrupt prior to suspending 2288 * all device drivers; re-enable fabric error msg interrupt 2289 * after all devices are resumed. 2290 */ 2291 static boolean_t 2292 px_cpr_callb(void *arg, int code) 2293 { 2294 px_t *px_p = (px_t *)arg; 2295 px_ib_t *ib_p = px_p->px_ib_p; 2296 px_pec_t *pec_p = px_p->px_pec_p; 2297 pxu_t *pxu_p = (pxu_t *)px_p->px_plat_p; 2298 caddr_t csr_base; 2299 devino_t ce_ino, nf_ino, f_ino; 2300 px_ino_t *ce_ino_p, *nf_ino_p, *f_ino_p; 2301 uint64_t imu_log_enable, imu_intr_enable; 2302 uint64_t imu_log_mask, imu_intr_mask; 2303 2304 ce_ino = px_msiqid_to_devino(px_p, pec_p->pec_corr_msg_msiq_id); 2305 nf_ino = px_msiqid_to_devino(px_p, pec_p->pec_non_fatal_msg_msiq_id); 2306 f_ino = px_msiqid_to_devino(px_p, pec_p->pec_fatal_msg_msiq_id); 2307 csr_base = (caddr_t)pxu_p->px_address[PX_REG_CSR]; 2308 2309 imu_log_enable = CSR_XR(csr_base, IMU_ERROR_LOG_ENABLE); 2310 imu_intr_enable = CSR_XR(csr_base, IMU_INTERRUPT_ENABLE); 2311 2312 imu_log_mask = BITMASK(IMU_ERROR_LOG_ENABLE_FATAL_MES_NOT_EN_LOG_EN) | 2313 BITMASK(IMU_ERROR_LOG_ENABLE_NONFATAL_MES_NOT_EN_LOG_EN) | 2314 BITMASK(IMU_ERROR_LOG_ENABLE_COR_MES_NOT_EN_LOG_EN); 2315 2316 imu_intr_mask = 2317 BITMASK(IMU_INTERRUPT_ENABLE_FATAL_MES_NOT_EN_S_INT_EN) | 2318 BITMASK(IMU_INTERRUPT_ENABLE_NONFATAL_MES_NOT_EN_S_INT_EN) | 2319 BITMASK(IMU_INTERRUPT_ENABLE_COR_MES_NOT_EN_S_INT_EN) | 2320 BITMASK(IMU_INTERRUPT_ENABLE_FATAL_MES_NOT_EN_P_INT_EN) | 2321 BITMASK(IMU_INTERRUPT_ENABLE_NONFATAL_MES_NOT_EN_P_INT_EN) | 2322 BITMASK(IMU_INTERRUPT_ENABLE_COR_MES_NOT_EN_P_INT_EN); 2323 2324 switch (code) { 2325 case CB_CODE_CPR_CHKPT: 2326 /* disable imu rbne on corr/nonfatal/fatal errors */ 2327 CSR_XS(csr_base, IMU_ERROR_LOG_ENABLE, 2328 imu_log_enable & (~imu_log_mask)); 2329 2330 CSR_XS(csr_base, IMU_INTERRUPT_ENABLE, 2331 imu_intr_enable & (~imu_intr_mask)); 2332 2333 /* disable CORR intr mapping */ 2334 px_ib_intr_disable(ib_p, ce_ino, IB_INTR_NOWAIT); 2335 2336 /* disable NON FATAL intr mapping */ 2337 px_ib_intr_disable(ib_p, nf_ino, IB_INTR_NOWAIT); 2338 2339 /* disable FATAL intr mapping */ 2340 px_ib_intr_disable(ib_p, f_ino, IB_INTR_NOWAIT); 2341 2342 break; 2343 2344 case CB_CODE_CPR_RESUME: 2345 pxu_p->cpr_flag = PX_NOT_CPR; 2346 mutex_enter(&ib_p->ib_ino_lst_mutex); 2347 2348 ce_ino_p = px_ib_locate_ino(ib_p, ce_ino); 2349 nf_ino_p = px_ib_locate_ino(ib_p, nf_ino); 2350 f_ino_p = px_ib_locate_ino(ib_p, f_ino); 2351 2352 /* enable CORR intr mapping */ 2353 if (ce_ino_p) 2354 px_ib_intr_enable(px_p, ce_ino_p->ino_cpuid, ce_ino); 2355 else 2356 cmn_err(CE_WARN, "px_cpr_callb: RESUME unable to " 2357 "reenable PCIe Correctable msg intr.\n"); 2358 2359 /* enable NON FATAL intr mapping */ 2360 if (nf_ino_p) 2361 px_ib_intr_enable(px_p, nf_ino_p->ino_cpuid, nf_ino); 2362 else 2363 cmn_err(CE_WARN, "px_cpr_callb: RESUME unable to " 2364 "reenable PCIe Non Fatal msg intr.\n"); 2365 2366 /* enable FATAL intr mapping */ 2367 if (f_ino_p) 2368 px_ib_intr_enable(px_p, f_ino_p->ino_cpuid, f_ino); 2369 else 2370 cmn_err(CE_WARN, "px_cpr_callb: RESUME unable to " 2371 "reenable PCIe Fatal msg intr.\n"); 2372 2373 mutex_exit(&ib_p->ib_ino_lst_mutex); 2374 2375 /* enable corr/nonfatal/fatal not enable error */ 2376 CSR_XS(csr_base, IMU_ERROR_LOG_ENABLE, (imu_log_enable | 2377 (imu_log_mask & px_imu_log_mask))); 2378 CSR_XS(csr_base, IMU_INTERRUPT_ENABLE, (imu_intr_enable | 2379 (imu_intr_mask & px_imu_intr_mask))); 2380 2381 break; 2382 } 2383 2384 return (B_TRUE); 2385 } 2386 2387 uint64_t 2388 px_get_rng_parent_hi_mask(px_t *px_p) 2389 { 2390 pxu_t *pxu_p = (pxu_t *)px_p->px_plat_p; 2391 uint64_t mask; 2392 2393 switch (PX_CHIP_TYPE(pxu_p)) { 2394 case PX_CHIP_OBERON: 2395 mask = OBERON_RANGE_PROP_MASK; 2396 break; 2397 case PX_CHIP_FIRE: 2398 mask = PX_RANGE_PROP_MASK; 2399 break; 2400 default: 2401 mask = PX_RANGE_PROP_MASK; 2402 } 2403 2404 return (mask); 2405 } 2406 2407 /* 2408 * fetch chip's range propery's value 2409 */ 2410 uint64_t 2411 px_get_range_prop(px_t *px_p, px_ranges_t *rp, int bank) 2412 { 2413 uint64_t mask, range_prop; 2414 2415 mask = px_get_rng_parent_hi_mask(px_p); 2416 range_prop = (((uint64_t)(rp[bank].parent_high & mask)) << 32) | 2417 rp[bank].parent_low; 2418 2419 return (range_prop); 2420 } 2421 2422 /* 2423 * add cpr callback 2424 */ 2425 void 2426 px_cpr_add_callb(px_t *px_p) 2427 { 2428 px_p->px_cprcb_id = callb_add(px_cpr_callb, (void *)px_p, 2429 CB_CL_CPR_POST_USER, "px_cpr"); 2430 } 2431 2432 /* 2433 * remove cpr callback 2434 */ 2435 void 2436 px_cpr_rem_callb(px_t *px_p) 2437 { 2438 (void) callb_delete(px_p->px_cprcb_id); 2439 } 2440 2441 /*ARGSUSED*/ 2442 static uint_t 2443 px_hp_intr(caddr_t arg1, caddr_t arg2) 2444 { 2445 px_t *px_p = (px_t *)arg1; 2446 int rval; 2447 2448 rval = pciehpc_intr(px_p->px_dip); 2449 2450 #ifdef DEBUG 2451 if (rval == DDI_INTR_UNCLAIMED) 2452 cmn_err(CE_WARN, "%s%d: UNCLAIMED intr\n", 2453 ddi_driver_name(px_p->px_dip), 2454 ddi_get_instance(px_p->px_dip)); 2455 #endif 2456 2457 return (rval); 2458 } 2459 2460 int 2461 px_lib_hotplug_init(dev_info_t *dip, void *arg) 2462 { 2463 px_t *px_p = DIP_TO_STATE(dip); 2464 uint64_t ret; 2465 2466 if ((ret = hvio_hotplug_init(dip, arg)) == DDI_SUCCESS) { 2467 sysino_t sysino; 2468 2469 if (px_lib_intr_devino_to_sysino(px_p->px_dip, 2470 px_p->px_inos[PX_INTR_HOTPLUG], &sysino) != 2471 DDI_SUCCESS) { 2472 #ifdef DEBUG 2473 cmn_err(CE_WARN, "%s%d: devino_to_sysino fails\n", 2474 ddi_driver_name(px_p->px_dip), 2475 ddi_get_instance(px_p->px_dip)); 2476 #endif 2477 return (DDI_FAILURE); 2478 } 2479 2480 VERIFY(add_ivintr(sysino, PX_PCIEHP_PIL, 2481 (intrfunc)px_hp_intr, (caddr_t)px_p, NULL, NULL) == 0); 2482 } 2483 2484 return (ret); 2485 } 2486 2487 void 2488 px_lib_hotplug_uninit(dev_info_t *dip) 2489 { 2490 if (hvio_hotplug_uninit(dip) == DDI_SUCCESS) { 2491 px_t *px_p = DIP_TO_STATE(dip); 2492 sysino_t sysino; 2493 2494 if (px_lib_intr_devino_to_sysino(px_p->px_dip, 2495 px_p->px_inos[PX_INTR_HOTPLUG], &sysino) != 2496 DDI_SUCCESS) { 2497 #ifdef DEBUG 2498 cmn_err(CE_WARN, "%s%d: devino_to_sysino fails\n", 2499 ddi_driver_name(px_p->px_dip), 2500 ddi_get_instance(px_p->px_dip)); 2501 #endif 2502 return; 2503 } 2504 2505 VERIFY(rem_ivintr(sysino, PX_PCIEHP_PIL) == 0); 2506 } 2507 } 2508 2509 boolean_t 2510 px_lib_is_in_drain_state(px_t *px_p) 2511 { 2512 pxu_t *pxu_p = (pxu_t *)px_p->px_plat_p; 2513 caddr_t csr_base = (caddr_t)pxu_p->px_address[PX_REG_CSR]; 2514 uint64_t drain_status; 2515 2516 if (PX_CHIP_TYPE(pxu_p) == PX_CHIP_OBERON) { 2517 drain_status = CSR_BR(csr_base, DRAIN_CONTROL_STATUS, DRAIN); 2518 } else { 2519 drain_status = CSR_BR(csr_base, TLU_STATUS, DRAIN); 2520 } 2521 2522 return (drain_status); 2523 } 2524 2525 pcie_req_id_t 2526 px_lib_get_bdf(px_t *px_p) 2527 { 2528 pxu_t *pxu_p = (pxu_t *)px_p->px_plat_p; 2529 caddr_t csr_base = (caddr_t)pxu_p->px_address[PX_REG_CSR]; 2530 pcie_req_id_t bdf; 2531 2532 bdf = CSR_BR(csr_base, DMC_PCI_EXPRESS_CONFIGURATION, REQ_ID); 2533 2534 return (bdf); 2535 } 2536