xref: /titanic_52/usr/src/uts/sun4u/cpu/us3_cheetahplus.c (revision ba4e3c84e6b9390bbf7df80b5f1d11dec34cc525)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License, Version 1.0 only
6  * (the "License").  You may not use this file except in compliance
7  * with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or http://www.opensolaris.org/os/licensing.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 /*
23  * Copyright 2005 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 #include <sys/types.h>
30 #include <sys/systm.h>
31 #include <sys/ddi.h>
32 #include <sys/sysmacros.h>
33 #include <sys/archsystm.h>
34 #include <sys/vmsystm.h>
35 #include <sys/machparam.h>
36 #include <sys/machsystm.h>
37 #include <sys/machthread.h>
38 #include <sys/cpu.h>
39 #include <sys/cmp.h>
40 #include <sys/elf_SPARC.h>
41 #include <vm/hat_sfmmu.h>
42 #include <vm/seg_kmem.h>
43 #include <sys/cpuvar.h>
44 #include <sys/cheetahregs.h>
45 #include <sys/us3_module.h>
46 #include <sys/async.h>
47 #include <sys/cmn_err.h>
48 #include <sys/debug.h>
49 #include <sys/dditypes.h>
50 #include <sys/prom_debug.h>
51 #include <sys/prom_plat.h>
52 #include <sys/cpu_module.h>
53 #include <sys/sysmacros.h>
54 #include <sys/intreg.h>
55 #include <sys/clock.h>
56 #include <sys/platform_module.h>
57 #include <sys/machtrap.h>
58 #include <sys/ontrap.h>
59 #include <sys/panic.h>
60 #include <sys/memlist.h>
61 #include <sys/bootconf.h>
62 #include <sys/ivintr.h>
63 #include <sys/atomic.h>
64 #include <sys/fm/protocol.h>
65 #include <sys/fm/cpu/UltraSPARC-III.h>
66 #include <sys/fm/util.h>
67 
68 #ifdef	CHEETAHPLUS_ERRATUM_25
69 #include <sys/cyclic.h>
70 #endif	/* CHEETAHPLUS_ERRATUM_25 */
71 
72 /*
73  * See comment above cpu_scrub_cpu_setup() for description
74  */
75 #define	SCRUBBER_NEITHER_CORE_ONLINE	0x0
76 #define	SCRUBBER_CORE_0_ONLINE		0x1
77 #define	SCRUBBER_CORE_1_ONLINE		0x2
78 #define	SCRUBBER_BOTH_CORES_ONLINE	(SCRUBBER_CORE_0_ONLINE | \
79 					SCRUBBER_CORE_1_ONLINE)
80 
81 static int pn_matching_valid_l2_line(uint64_t faddr, ch_ec_data_t *clo_l2_data);
82 static void cpu_async_log_tlb_parity_err(void *flt);
83 static cpu_t *cpu_get_sibling_core(cpu_t *cpup);
84 
85 
86 /*
87  * Setup trap handlers.
88  */
89 void
90 cpu_init_trap(void)
91 {
92 	CH_SET_TRAP(tt_pil15, ch_pil15_interrupt_instr);
93 
94 	CH_SET_TRAP(tt0_fecc, fecc_err_instr);
95 	CH_SET_TRAP(tt1_fecc, fecc_err_tl1_instr);
96 	CH_SET_TRAP(tt1_swtrap0, fecc_err_tl1_cont_instr);
97 
98 	CH_SET_TRAP(tt0_dperr, dcache_parity_instr);
99 	CH_SET_TRAP(tt1_dperr, dcache_parity_tl1_instr);
100 	CH_SET_TRAP(tt1_swtrap1, dcache_parity_tl1_cont_instr);
101 
102 	CH_SET_TRAP(tt0_iperr, icache_parity_instr);
103 	CH_SET_TRAP(tt1_iperr, icache_parity_tl1_instr);
104 	CH_SET_TRAP(tt1_swtrap2, icache_parity_tl1_cont_instr);
105 }
106 
107 /*
108  * Set the magic constants of the implementation.
109  */
110 /*ARGSUSED*/
111 void
112 cpu_fiximp(pnode_t dnode)
113 {
114 	int i, a;
115 	extern int vac_size, vac_shift;
116 	extern uint_t vac_mask;
117 
118 	dcache_size = CH_DCACHE_SIZE;
119 	dcache_linesize = CH_DCACHE_LSIZE;
120 
121 	icache_size = CHP_ICACHE_MAX_SIZE;
122 	icache_linesize = CHP_ICACHE_MIN_LSIZE;
123 
124 	ecache_size = CH_ECACHE_MAX_SIZE;
125 	ecache_alignsize = CH_ECACHE_MAX_LSIZE;
126 	ecache_associativity = CHP_ECACHE_MIN_NWAY;
127 
128 	/*
129 	 * ecache_setsize needs to maximum of all cpu ecache setsizes
130 	 */
131 	ecache_setsize = CHP_ECACHE_MAX_SETSIZE;
132 	ASSERT(ecache_setsize >= (ecache_size / ecache_associativity));
133 
134 	vac_size = CH_VAC_SIZE;
135 	vac_mask = MMU_PAGEMASK & (vac_size - 1);
136 	i = 0; a = vac_size;
137 	while (a >>= 1)
138 		++i;
139 	vac_shift = i;
140 	shm_alignment = vac_size;
141 	vac = 1;
142 }
143 
144 /*
145  * Use Panther values for Panther-only domains.
146  * See Panther PRM, 1.5.4 Cache Hierarchy
147  */
148 void
149 cpu_fix_allpanther(void)
150 {
151 	/* dcache same as Ch+ */
152 	icache_size = PN_ICACHE_SIZE;
153 	icache_linesize = PN_ICACHE_LSIZE;
154 	ecache_size = PN_L3_SIZE;
155 	ecache_alignsize = PN_L3_LINESIZE;
156 	ecache_associativity = PN_L3_NWAYS;
157 	ecache_setsize = PN_L3_SET_SIZE;
158 	ASSERT(ecache_setsize >= (ecache_size / ecache_associativity));
159 	/* vac same as Ch+ */
160 	/* fix hwcaps for USIV+-only domains */
161 	cpu_hwcap_flags |= AV_SPARC_POPC;
162 }
163 
164 void
165 send_mondo_set(cpuset_t set)
166 {
167 	int lo, busy, nack, shipped = 0;
168 	uint16_t i, cpuids[IDSR_BN_SETS];
169 	uint64_t idsr, nackmask = 0, busymask, curnack, curbusy;
170 	uint64_t starttick, endtick, tick, lasttick;
171 #if (NCPU > IDSR_BN_SETS)
172 	int index = 0;
173 	int ncpuids = 0;
174 #endif
175 #ifdef	CHEETAHPLUS_ERRATUM_25
176 	int recovered = 0;
177 	int cpuid;
178 #endif
179 
180 	ASSERT(!CPUSET_ISNULL(set));
181 	starttick = lasttick = gettick();
182 
183 #if (NCPU <= IDSR_BN_SETS)
184 	for (i = 0; i < NCPU; i++)
185 		if (CPU_IN_SET(set, i)) {
186 			shipit(i, shipped);
187 			nackmask |= IDSR_NACK_BIT(shipped);
188 			cpuids[shipped++] = i;
189 			CPUSET_DEL(set, i);
190 			if (CPUSET_ISNULL(set))
191 				break;
192 		}
193 	CPU_STATS_ADDQ(CPU, sys, xcalls, shipped);
194 #else
195 	for (i = 0; i < NCPU; i++)
196 		if (CPU_IN_SET(set, i)) {
197 			ncpuids++;
198 
199 			/*
200 			 * Ship only to the first (IDSR_BN_SETS) CPUs.  If we
201 			 * find we have shipped to more than (IDSR_BN_SETS)
202 			 * CPUs, set "index" to the highest numbered CPU in
203 			 * the set so we can ship to other CPUs a bit later on.
204 			 */
205 			if (shipped < IDSR_BN_SETS) {
206 				shipit(i, shipped);
207 				nackmask |= IDSR_NACK_BIT(shipped);
208 				cpuids[shipped++] = i;
209 				CPUSET_DEL(set, i);
210 				if (CPUSET_ISNULL(set))
211 					break;
212 			} else
213 				index = (int)i;
214 		}
215 
216 	CPU_STATS_ADDQ(CPU, sys, xcalls, ncpuids);
217 #endif
218 
219 	busymask = IDSR_NACK_TO_BUSY(nackmask);
220 	busy = nack = 0;
221 	endtick = starttick + xc_tick_limit;
222 	for (;;) {
223 		idsr = getidsr();
224 #if (NCPU <= IDSR_BN_SETS)
225 		if (idsr == 0)
226 			break;
227 #else
228 		if (idsr == 0 && shipped == ncpuids)
229 			break;
230 #endif
231 		tick = gettick();
232 		/*
233 		 * If there is a big jump between the current tick
234 		 * count and lasttick, we have probably hit a break
235 		 * point.  Adjust endtick accordingly to avoid panic.
236 		 */
237 		if (tick > (lasttick + xc_tick_jump_limit))
238 			endtick += (tick - lasttick);
239 		lasttick = tick;
240 		if (tick > endtick) {
241 			if (panic_quiesce)
242 				return;
243 #ifdef	CHEETAHPLUS_ERRATUM_25
244 			cpuid = -1;
245 			for (i = 0; i < IDSR_BN_SETS; i++) {
246 				if (idsr & (IDSR_NACK_BIT(i) |
247 				    IDSR_BUSY_BIT(i))) {
248 					cpuid = cpuids[i];
249 					break;
250 				}
251 			}
252 			if (cheetah_sendmondo_recover && cpuid != -1 &&
253 			    recovered == 0) {
254 				if (mondo_recover(cpuid, i)) {
255 					/*
256 					 * We claimed the whole memory or
257 					 * full scan is disabled.
258 					 */
259 					recovered++;
260 				}
261 				tick = gettick();
262 				endtick = tick + xc_tick_limit;
263 				lasttick = tick;
264 				/*
265 				 * Recheck idsr
266 				 */
267 				continue;
268 			} else
269 #endif	/* CHEETAHPLUS_ERRATUM_25 */
270 			{
271 				cmn_err(CE_CONT, "send mondo timeout "
272 				    "[%d NACK %d BUSY]\nIDSR 0x%"
273 				    "" PRIx64 "  cpuids:", nack, busy, idsr);
274 				for (i = 0; i < IDSR_BN_SETS; i++) {
275 					if (idsr & (IDSR_NACK_BIT(i) |
276 					    IDSR_BUSY_BIT(i))) {
277 						cmn_err(CE_CONT, " 0x%x",
278 						    cpuids[i]);
279 					}
280 				}
281 				cmn_err(CE_CONT, "\n");
282 				cmn_err(CE_PANIC, "send_mondo_set: timeout");
283 			}
284 		}
285 		curnack = idsr & nackmask;
286 		curbusy = idsr & busymask;
287 #if (NCPU > IDSR_BN_SETS)
288 		if (shipped < ncpuids) {
289 			uint64_t cpus_left;
290 			uint16_t next = (uint16_t)index;
291 
292 			cpus_left = ~(IDSR_NACK_TO_BUSY(curnack) | curbusy) &
293 				busymask;
294 
295 			if (cpus_left) {
296 				do {
297 					/*
298 					 * Sequence through and ship to the
299 					 * remainder of the CPUs in the system
300 					 * (e.g. other than the first
301 					 * (IDSR_BN_SETS)) in reverse order.
302 					 */
303 					lo = lowbit(cpus_left) - 1;
304 					i = IDSR_BUSY_IDX(lo);
305 					shipit(next, i);
306 					shipped++;
307 					cpuids[i] = next;
308 
309 					/*
310 					 * If we've processed all the CPUs,
311 					 * exit the loop now and save
312 					 * instructions.
313 					 */
314 					if (shipped == ncpuids)
315 						break;
316 
317 					for ((index = ((int)next - 1));
318 					    index >= 0; index--)
319 						if (CPU_IN_SET(set, index)) {
320 							next = (uint16_t)index;
321 							break;
322 						}
323 
324 					cpus_left &= ~(1ull << lo);
325 				} while (cpus_left);
326 #ifdef	CHEETAHPLUS_ERRATUM_25
327 				/*
328 				 * Clear recovered because we are sending to
329 				 * a new set of targets.
330 				 */
331 				recovered = 0;
332 #endif
333 				continue;
334 			}
335 		}
336 #endif
337 		if (curbusy) {
338 			busy++;
339 			continue;
340 		}
341 
342 #ifdef SEND_MONDO_STATS
343 		{
344 			int n = gettick() - starttick;
345 			if (n < 8192)
346 				x_nack_stimes[n >> 7]++;
347 		}
348 #endif
349 		while (gettick() < (tick + sys_clock_mhz))
350 			;
351 		do {
352 			lo = lowbit(curnack) - 1;
353 			i = IDSR_NACK_IDX(lo);
354 			shipit(cpuids[i], i);
355 			curnack &= ~(1ull << lo);
356 		} while (curnack);
357 		nack++;
358 		busy = 0;
359 	}
360 #ifdef SEND_MONDO_STATS
361 	{
362 		int n = gettick() - starttick;
363 		if (n < 8192)
364 			x_set_stimes[n >> 7]++;
365 		else
366 			x_set_ltimes[(n >> 13) & 0xf]++;
367 	}
368 	x_set_cpus[shipped]++;
369 #endif
370 }
371 
372 /*
373  * Handles error logging for implementation specific error types
374  */
375 /*ARGSUSED1*/
376 int
377 cpu_impl_async_log_err(void *flt, errorq_elem_t *eqep)
378 {
379 	ch_async_flt_t *ch_flt = (ch_async_flt_t *)flt;
380 	struct async_flt *aflt = (struct async_flt *)flt;
381 
382 	switch (ch_flt->flt_type) {
383 
384 	case CPU_IC_PARITY:
385 		cpu_async_log_ic_parity_err(flt);
386 		return (CH_ASYNC_LOG_DONE);
387 
388 	case CPU_DC_PARITY:
389 		cpu_async_log_dc_parity_err(flt);
390 		return (CH_ASYNC_LOG_DONE);
391 
392 	case CPU_DUE:
393 		cpu_log_err(aflt);
394 		cpu_page_retire(ch_flt);
395 		return (CH_ASYNC_LOG_DONE);
396 
397 	case CPU_ITLB_PARITY:
398 	case CPU_DTLB_PARITY:
399 		cpu_async_log_tlb_parity_err(flt);
400 		return (CH_ASYNC_LOG_DONE);
401 
402 	default:
403 		return (CH_ASYNC_LOG_UNKNOWN);
404 	}
405 }
406 
407 /*
408  * Figure out if Ecache is direct-mapped (Cheetah or Cheetah+ with Ecache
409  * control ECCR_ASSOC bit off or 2-way (Cheetah+ with ECCR_ASSOC on).
410  * We need to do this on the fly because we may have mixed Cheetah+'s with
411  * both direct and 2-way Ecaches. Panther only supports 4-way L3$.
412  */
413 int
414 cpu_ecache_nway(void)
415 {
416 	if (IS_PANTHER(cpunodes[CPU->cpu_id].implementation))
417 		return (PN_L3_NWAYS);
418 	return ((get_ecache_ctrl() & ECCR_ASSOC) ? 2 : 1);
419 }
420 
421 /*
422  * Note that these are entered into the table: Fatal Errors (PERR, IERR, ISAP,
423  * EMU, IMU) first, orphaned UCU/UCC, AFAR Overwrite policy, finally IVU, IVC.
424  * Afar overwrite policy is:
425  *   Class 4:
426  *      AFSR     -- UCC, UCU, TUE, TSCE, TUE_SH
427  *      AFSR_EXT -- L3_UCC, L3_UCU, L3_TUE, L3_TUE_SH
428  *   Class 3:
429  *      AFSR     -- UE, DUE, EDU, WDU, CPU
430  *      AFSR_EXT -- L3_EDU, L3_WDU, L3_CPU
431  *   Class 2:
432  *      AFSR     -- CE, EDC, EMC, WDC, CPC, THCE
433  *      AFSR_EXT -- L3_EDC, L3_WDC, L3_CPC, L3_THCE
434  *   Class 1:
435  *      AFSR     -- TO, DTO, BERR, DBERR
436  */
437 ecc_type_to_info_t ecc_type_to_info[] = {
438 
439 	/* Fatal Errors */
440 	C_AFSR_PERR,		"PERR ",	ECC_ALL_TRAPS,
441 		CPU_FATAL,	"PERR Fatal",
442 		FM_EREPORT_PAYLOAD_SYSTEM2,
443 		FM_EREPORT_CPU_USIII_PERR,
444 	C_AFSR_IERR,		"IERR ", 	ECC_ALL_TRAPS,
445 		CPU_FATAL,	"IERR Fatal",
446 		FM_EREPORT_PAYLOAD_SYSTEM2,
447 		FM_EREPORT_CPU_USIII_IERR,
448 	C_AFSR_ISAP,		"ISAP ",	ECC_ALL_TRAPS,
449 		CPU_FATAL,	"ISAP Fatal",
450 		FM_EREPORT_PAYLOAD_SYSTEM1,
451 		FM_EREPORT_CPU_USIII_ISAP,
452 	C_AFSR_L3_TUE_SH,	"L3_TUE_SH ", 	ECC_C_TRAP,
453 		CPU_FATAL,	"L3_TUE_SH Fatal",
454 		FM_EREPORT_PAYLOAD_L3_TAG_ECC,
455 		FM_EREPORT_CPU_USIII_L3_TUE_SH,
456 	C_AFSR_L3_TUE,		"L3_TUE ", 	ECC_C_TRAP,
457 		CPU_FATAL,	"L3_TUE Fatal",
458 		FM_EREPORT_PAYLOAD_L3_TAG_ECC,
459 		FM_EREPORT_CPU_USIII_L3_TUE,
460 	C_AFSR_TUE_SH,		"TUE_SH ", 	ECC_C_TRAP,
461 		CPU_FATAL,	"TUE_SH Fatal",
462 		FM_EREPORT_PAYLOAD_L2_TAG_ECC,
463 		FM_EREPORT_CPU_USIII_TUE_SH,
464 	C_AFSR_TUE,		"TUE ", 	ECC_ALL_TRAPS,
465 		CPU_FATAL,	"TUE Fatal",
466 		FM_EREPORT_PAYLOAD_L2_TAG_ECC,
467 		FM_EREPORT_CPU_USIII_TUE,
468 	C_AFSR_EMU,		"EMU ",		ECC_ASYNC_TRAPS,
469 		CPU_FATAL,	"EMU Fatal",
470 		FM_EREPORT_PAYLOAD_MEMORY,
471 		FM_EREPORT_CPU_USIII_EMU,
472 	C_AFSR_IMU,		"IMU ",		ECC_C_TRAP,
473 		CPU_FATAL,	"IMU Fatal",
474 		FM_EREPORT_PAYLOAD_SYSTEM1,
475 		FM_EREPORT_CPU_USIII_IMU,
476 
477 	/* L3$ Address parity errors are reported via the MECC bit */
478 	C_AFSR_L3_MECC,		"L3_MECC ",	ECC_MECC_TRAPS,
479 		CPU_L3_ADDR_PE,	"L3 Address Parity",
480 		FM_EREPORT_PAYLOAD_L3_DATA,
481 		FM_EREPORT_CPU_USIII_L3_MECC,
482 
483 	/* Orphaned UCC/UCU Errors */
484 	C_AFSR_L3_UCU,		"L3_OUCU ",	ECC_ORPH_TRAPS,
485 		CPU_ORPH,	"Orphaned L3_UCU",
486 		FM_EREPORT_PAYLOAD_L3_DATA,
487 		FM_EREPORT_CPU_USIII_L3_UCU,
488 	C_AFSR_L3_UCC,		"L3_OUCC ",	ECC_ORPH_TRAPS,
489 		CPU_ORPH,	"Orphaned L3_UCC",
490 		FM_EREPORT_PAYLOAD_L3_DATA,
491 		FM_EREPORT_CPU_USIII_L3_UCC,
492 	C_AFSR_UCU,		"OUCU ",	ECC_ORPH_TRAPS,
493 		CPU_ORPH,	"Orphaned UCU",
494 		FM_EREPORT_PAYLOAD_L2_DATA,
495 		FM_EREPORT_CPU_USIII_UCU,
496 	C_AFSR_UCC,		"OUCC ",	ECC_ORPH_TRAPS,
497 		CPU_ORPH,	"Orphaned UCC",
498 		FM_EREPORT_PAYLOAD_L2_DATA,
499 		FM_EREPORT_CPU_USIII_UCC,
500 
501 	/* UCU, UCC */
502 	C_AFSR_L3_UCU,		"L3_UCU ",	ECC_F_TRAP,
503 		CPU_UE_ECACHE,	"L3_UCU",
504 		FM_EREPORT_PAYLOAD_L3_DATA,
505 		FM_EREPORT_CPU_USIII_L3_UCU,
506 	C_AFSR_L3_UCC,		"L3_UCC ",	ECC_F_TRAP,
507 		CPU_CE_ECACHE,	"L3_UCC",
508 		FM_EREPORT_PAYLOAD_L3_DATA,
509 		FM_EREPORT_CPU_USIII_L3_UCC,
510 	C_AFSR_UCU,		"UCU ",		ECC_F_TRAP,
511 		CPU_UE_ECACHE,	"UCU",
512 		FM_EREPORT_PAYLOAD_L2_DATA,
513 		FM_EREPORT_CPU_USIII_UCU,
514 	C_AFSR_UCC,		"UCC ",		ECC_F_TRAP,
515 		CPU_CE_ECACHE,	"UCC",
516 		FM_EREPORT_PAYLOAD_L2_DATA,
517 		FM_EREPORT_CPU_USIII_UCC,
518 	C_AFSR_TSCE,		"TSCE ",	ECC_F_TRAP,
519 		CPU_CE_ECACHE,	"TSCE",
520 		FM_EREPORT_PAYLOAD_L2_TAG_ECC,
521 		FM_EREPORT_CPU_USIII_TSCE,
522 
523 	/* UE, EDU:ST, EDU:BLD, WDU, CPU */
524 	C_AFSR_UE,		"UE ",		ECC_ASYNC_TRAPS,
525 		CPU_UE,		"Uncorrectable system bus (UE)",
526 		FM_EREPORT_PAYLOAD_MEMORY,
527 		FM_EREPORT_CPU_USIII_UE,
528 	C_AFSR_L3_EDU,		"L3_EDU ",	ECC_C_TRAP,
529 		CPU_UE_ECACHE_RETIRE,	"L3_EDU:ST",
530 		FM_EREPORT_PAYLOAD_L3_DATA,
531 		FM_EREPORT_CPU_USIII_L3_EDUST,
532 	C_AFSR_L3_EDU,		"L3_EDU ",	ECC_D_TRAP,
533 		CPU_UE_ECACHE_RETIRE,	"L3_EDU:BLD",
534 		FM_EREPORT_PAYLOAD_L3_DATA,
535 		FM_EREPORT_CPU_USIII_L3_EDUBL,
536 	C_AFSR_L3_WDU,		"L3_WDU ",	ECC_C_TRAP,
537 		CPU_UE_ECACHE_RETIRE,	"L3_WDU",
538 		FM_EREPORT_PAYLOAD_L3_DATA,
539 		FM_EREPORT_CPU_USIII_L3_WDU,
540 	C_AFSR_L3_CPU,		"L3_CPU ",	ECC_C_TRAP,
541 		CPU_UE_ECACHE,	"L3_CPU",
542 		FM_EREPORT_PAYLOAD_L3_DATA,
543 		FM_EREPORT_CPU_USIII_L3_CPU,
544 	C_AFSR_EDU,		"EDU ",		ECC_C_TRAP,
545 		CPU_UE_ECACHE_RETIRE,	"EDU:ST",
546 		FM_EREPORT_PAYLOAD_L2_DATA,
547 		FM_EREPORT_CPU_USIII_EDUST,
548 	C_AFSR_EDU,		"EDU ",		ECC_D_TRAP,
549 		CPU_UE_ECACHE_RETIRE,	"EDU:BLD",
550 		FM_EREPORT_PAYLOAD_L2_DATA,
551 		FM_EREPORT_CPU_USIII_EDUBL,
552 	C_AFSR_WDU,		"WDU ",		ECC_C_TRAP,
553 		CPU_UE_ECACHE_RETIRE,	"WDU",
554 		FM_EREPORT_PAYLOAD_L2_DATA,
555 		FM_EREPORT_CPU_USIII_WDU,
556 	C_AFSR_CPU,		"CPU ",		ECC_C_TRAP,
557 		CPU_UE_ECACHE,	"CPU",
558 		FM_EREPORT_PAYLOAD_L2_DATA,
559 		FM_EREPORT_CPU_USIII_CPU,
560 	C_AFSR_DUE,		"DUE ",		ECC_C_TRAP,
561 		CPU_DUE,	"DUE",
562 		FM_EREPORT_PAYLOAD_MEMORY,
563 		FM_EREPORT_CPU_USIII_DUE,
564 
565 	/* CE, EDC, EMC, WDC, CPC */
566 	C_AFSR_CE,		"CE ",		ECC_C_TRAP,
567 		CPU_CE,		"Corrected system bus (CE)",
568 		FM_EREPORT_PAYLOAD_MEMORY,
569 		FM_EREPORT_CPU_USIII_CE,
570 	C_AFSR_L3_EDC,		"L3_EDC ",	ECC_C_TRAP,
571 		CPU_CE_ECACHE,	"L3_EDC",
572 		FM_EREPORT_PAYLOAD_L3_DATA,
573 		FM_EREPORT_CPU_USIII_L3_EDC,
574 	C_AFSR_EDC,		"EDC ",		ECC_C_TRAP,
575 		CPU_CE_ECACHE,	"EDC",
576 		FM_EREPORT_PAYLOAD_L2_DATA,
577 		FM_EREPORT_CPU_USIII_EDC,
578 	C_AFSR_EMC,		"EMC ",		ECC_C_TRAP,
579 		CPU_EMC,	"EMC",
580 		FM_EREPORT_PAYLOAD_MEMORY,
581 		FM_EREPORT_CPU_USIII_EMC,
582 	C_AFSR_L3_WDC,		"L3_WDC ",	ECC_C_TRAP,
583 		CPU_CE_ECACHE,	"L3_WDC",
584 		FM_EREPORT_PAYLOAD_L3_DATA,
585 		FM_EREPORT_CPU_USIII_L3_WDC,
586 	C_AFSR_L3_CPC,		"L3_CPC ",	ECC_C_TRAP,
587 		CPU_CE_ECACHE,	"L3_CPC",
588 		FM_EREPORT_PAYLOAD_L3_DATA,
589 		FM_EREPORT_CPU_USIII_L3_CPC,
590 	C_AFSR_L3_THCE,		"L3_THCE ",	ECC_C_TRAP,
591 		CPU_CE_ECACHE,	"L3_THCE",
592 		FM_EREPORT_PAYLOAD_L3_TAG_ECC,
593 		FM_EREPORT_CPU_USIII_L3_THCE,
594 	C_AFSR_WDC,		"WDC ",		ECC_C_TRAP,
595 		CPU_CE_ECACHE,	"WDC",
596 		FM_EREPORT_PAYLOAD_L2_DATA,
597 		FM_EREPORT_CPU_USIII_WDC,
598 	C_AFSR_CPC,		"CPC ",		ECC_C_TRAP,
599 		CPU_CE_ECACHE,	"CPC",
600 		FM_EREPORT_PAYLOAD_L2_DATA,
601 		FM_EREPORT_CPU_USIII_CPC,
602 	C_AFSR_THCE,		"THCE ",	ECC_C_TRAP,
603 		CPU_CE_ECACHE,	"THCE",
604 		FM_EREPORT_PAYLOAD_L2_TAG_ECC,
605 		FM_EREPORT_CPU_USIII_THCE,
606 
607 	/* TO, BERR */
608 	C_AFSR_TO,		"TO ",		ECC_ASYNC_TRAPS,
609 		CPU_TO,		"Timeout (TO)",
610 		FM_EREPORT_PAYLOAD_IO,
611 		FM_EREPORT_CPU_USIII_TO,
612 	C_AFSR_BERR,		"BERR ",	ECC_ASYNC_TRAPS,
613 		CPU_BERR,	"Bus Error (BERR)",
614 		FM_EREPORT_PAYLOAD_IO,
615 		FM_EREPORT_CPU_USIII_BERR,
616 	C_AFSR_DTO,		"DTO ",		ECC_C_TRAP,
617 		CPU_TO,		"Disrupting Timeout (DTO)",
618 		FM_EREPORT_PAYLOAD_IO,
619 		FM_EREPORT_CPU_USIII_DTO,
620 	C_AFSR_DBERR,		"DBERR ",	ECC_C_TRAP,
621 		CPU_BERR,	"Disrupting Bus Error (DBERR)",
622 		FM_EREPORT_PAYLOAD_IO,
623 		FM_EREPORT_CPU_USIII_DBERR,
624 
625 	/* IVU, IVC, IMC */
626 	C_AFSR_IVU,		"IVU ",		ECC_C_TRAP,
627 		CPU_IV,		"IVU",
628 		FM_EREPORT_PAYLOAD_SYSTEM1,
629 		FM_EREPORT_CPU_USIII_IVU,
630 	C_AFSR_IVC,		"IVC ",		ECC_C_TRAP,
631 		CPU_IV,		"IVC",
632 		FM_EREPORT_PAYLOAD_SYSTEM1,
633 		FM_EREPORT_CPU_USIII_IVC,
634 	C_AFSR_IMC,		"IMC ",		ECC_C_TRAP,
635 		CPU_IV,		"IMC",
636 		FM_EREPORT_PAYLOAD_SYSTEM1,
637 		FM_EREPORT_CPU_USIII_IMC,
638 
639 	0,			NULL,		0,
640 		0,		NULL,
641 		FM_EREPORT_PAYLOAD_UNKNOWN,
642 		FM_EREPORT_CPU_USIII_UNKNOWN,
643 };
644 
645 /*
646  * See Cheetah+ Delta PRM 10.9 and section P.6.1 of the Panther PRM
647  *   Class 4:
648  *      AFSR     -- UCC, UCU, TUE, TSCE, TUE_SH
649  *      AFSR_EXT -- L3_UCC, L3_UCU, L3_TUE, L3_TUE_SH
650  *   Class 3:
651  *      AFSR     -- UE, DUE, EDU, EMU, WDU, CPU
652  *      AFSR_EXT -- L3_EDU, L3_WDU, L3_CPU
653  *   Class 2:
654  *      AFSR     -- CE, EDC, EMC, WDC, CPC, THCE
655  *      AFSR_EXT -- L3_EDC, L3_WDC, L3_CPC, L3_THCE
656  *   Class 1:
657  *      AFSR     -- TO, DTO, BERR, DBERR
658  *      AFSR_EXT --
659  */
660 uint64_t afar_overwrite[] = {
661 	/* class 4: */
662 	C_AFSR_UCC | C_AFSR_UCU | C_AFSR_TUE | C_AFSR_TSCE | C_AFSR_TUE_SH |
663 	C_AFSR_L3_UCC | C_AFSR_L3_UCU | C_AFSR_L3_TUE | C_AFSR_L3_TUE_SH,
664 	/* class 3: */
665 	C_AFSR_UE | C_AFSR_DUE | C_AFSR_EDU | C_AFSR_EMU | C_AFSR_WDU |
666 	C_AFSR_CPU | C_AFSR_L3_EDU | C_AFSR_L3_WDU | C_AFSR_L3_CPU,
667 	/* class 2: */
668 	C_AFSR_CE | C_AFSR_EDC | C_AFSR_EMC | C_AFSR_WDC | C_AFSR_CPC |
669 	C_AFSR_THCE | C_AFSR_L3_EDC | C_AFSR_L3_WDC | C_AFSR_L3_CPC |
670 	C_AFSR_L3_THCE,
671 	/* class 1: */
672 	C_AFSR_TO | C_AFSR_DTO | C_AFSR_BERR | C_AFSR_DBERR,
673 
674 	0
675 };
676 
677 /*
678  * See Cheetah+ Delta PRM 10.9.
679  *   Class 2:  UE, DUE, IVU, EDU, WDU, UCU, CPU
680  *   Class 1:  CE, IVC, EDC, WDC, UCC, CPC
681  */
682 uint64_t esynd_overwrite[] = {
683 	/* class 2: */
684 	C_AFSR_UE | C_AFSR_DUE | C_AFSR_IVU | C_AFSR_EDU | C_AFSR_WDU |
685 	    C_AFSR_UCU | C_AFSR_CPU,
686 	/* class 1: */
687 	C_AFSR_CE | C_AFSR_IVC | C_AFSR_EDC | C_AFSR_WDC | C_AFSR_UCC |
688 	    C_AFSR_CPC,
689 	0
690 };
691 
692 /*
693  * In panther, the E_SYND overwrite policy changed a little bit
694  * by adding one more level.
695  *   class 3:
696  *      AFSR     -- UCU, UCC
697  *      AFSR_EXT -- L3_UCU, L3_UCC
698  *   Class 2:
699  *      AFSR     -- UE, DUE, IVU, EDU, WDU, CPU
700  *      AFSR_EXT -- L3_EDU, L3_WDU, L3_CPU
701  *   Class 1:
702  *      AFSR     -- CE, IVC, EDC, WDC, CPC
703  *      AFSR_EXT -- L3_EDC, L3_WDC, L3_CPC
704  */
705 uint64_t pn_esynd_overwrite[] = {
706 	/* class 3: */
707 	C_AFSR_UCU | C_AFSR_UCC |
708 	C_AFSR_L3_UCU | C_AFSR_L3_UCC,
709 	/* class 2: */
710 	C_AFSR_UE | C_AFSR_DUE | C_AFSR_IVU | C_AFSR_EDU | C_AFSR_WDU |
711 	    C_AFSR_CPU |
712 	C_AFSR_L3_EDU | C_AFSR_L3_WDU | C_AFSR_L3_CPU,
713 	/* class 1: */
714 	C_AFSR_CE | C_AFSR_IVC | C_AFSR_EDC | C_AFSR_WDC | C_AFSR_CPC |
715 	C_AFSR_L3_EDC | C_AFSR_L3_WDC | C_AFSR_L3_CPC,
716 
717 	0
718 };
719 
720 int
721 afsr_to_pn_esynd_status(uint64_t afsr, uint64_t afsr_bit)
722 {
723 	return (afsr_to_overw_status(afsr, afsr_bit, pn_esynd_overwrite));
724 }
725 
726 /*
727  * Prioritized list of Error bits for MSYND overwrite.
728  * See Cheetah PRM P.6.3
729  *   Class 2:  EMU
730  *   Class 1:  EMC
731  *
732  * Panther adds IMU and IMC.
733  */
734 uint64_t msynd_overwrite[] = {
735 	/* class 2: */
736 	C_AFSR_EMU | C_AFSR_IMU,
737 	/* class 1: */
738 	C_AFSR_EMC | C_AFSR_IMC,
739 
740 	0
741 };
742 
743 /*
744  * change cpu speed bits -- new speed will be normal-speed/divisor.
745  *
746  * The Jalapeno memory controllers are required to drain outstanding
747  * memory transactions within 32 JBus clocks in order to be ready
748  * to enter Estar mode.  In some corner cases however, that time
749  * fell short.
750  *
751  * A safe software solution is to force MCU to act like in Estar mode,
752  * then delay 1us (in ppm code) prior to assert J_CHNG_L signal.
753  * To reverse the effect, upon exiting Estar, software restores the
754  * MCU to its original state.
755  */
756 /* ARGSUSED1 */
757 void
758 cpu_change_speed(uint64_t divisor, uint64_t arg2)
759 {
760 	bus_config_eclk_t *bceclk;
761 	uint64_t		reg;
762 
763 	for (bceclk = bus_config_eclk; bceclk->divisor; bceclk++) {
764 		if (bceclk->divisor != divisor)
765 			continue;
766 		reg = get_safari_config();
767 		reg &= ~SAFARI_CONFIG_ECLK_MASK;
768 		reg |= bceclk->mask;
769 		set_safari_config(reg);
770 		CPU->cpu_m.divisor = (uchar_t)divisor;
771 		return;
772 	}
773 	/*
774 	 * We will reach here only if OBP and kernel don't agree on
775 	 * the speeds supported by the CPU.
776 	 */
777 	cmn_err(CE_WARN, "cpu_change_speed: bad divisor %" PRIu64, divisor);
778 }
779 
780 /*
781  * Cpu private initialization.  This includes allocating the cpu_private
782  * data structure, initializing it, and initializing the scrubber for this
783  * cpu.  This function calls cpu_init_ecache_scrub_dr to init the scrubber.
784  * We use kmem_cache_create for the cheetah private data structure because
785  * it needs to be allocated on a PAGESIZE (8192) byte boundary.
786  */
787 void
788 cpu_init_private(struct cpu *cp)
789 {
790 	cheetah_private_t *chprp;
791 	int i;
792 
793 	ASSERT(CPU_PRIVATE(cp) == NULL);
794 
795 	/* LINTED: E_TRUE_LOGICAL_EXPR */
796 	ASSERT((offsetof(cheetah_private_t, chpr_tl1_err_data) +
797 	    sizeof (ch_err_tl1_data_t) * CH_ERR_TL1_TLMAX) <= PAGESIZE);
798 
799 	/*
800 	 * Running with Cheetah CPUs in a Cheetah+, Jaguar, Panther or
801 	 * mixed Cheetah+/Jaguar/Panther machine is not a supported
802 	 * configuration. Attempting to do so may result in unpredictable
803 	 * failures (e.g. running Cheetah+ CPUs with Cheetah E$ disp flush)
804 	 * so don't allow it.
805 	 *
806 	 * This is just defensive code since this configuration mismatch
807 	 * should have been caught prior to OS execution.
808 	 */
809 	if (!(IS_CHEETAH_PLUS(cpunodes[cp->cpu_id].implementation) ||
810 	    IS_JAGUAR(cpunodes[cp->cpu_id].implementation) ||
811 	    IS_PANTHER(cpunodes[cp->cpu_id].implementation))) {
812 		cmn_err(CE_PANIC, "CPU%d: UltraSPARC-III not supported"
813 		    " on UltraSPARC-III+/IV/IV+ code\n", cp->cpu_id);
814 	}
815 
816 	/*
817 	 * If the ch_private_cache has not been created, create it.
818 	 */
819 	if (ch_private_cache == NULL) {
820 		ch_private_cache = kmem_cache_create("ch_private_cache",
821 		    sizeof (cheetah_private_t), PAGESIZE, NULL, NULL,
822 		    NULL, NULL, static_arena, 0);
823 	}
824 
825 	chprp = CPU_PRIVATE(cp) = kmem_cache_alloc(ch_private_cache, KM_SLEEP);
826 
827 	bzero(chprp, sizeof (cheetah_private_t));
828 	chprp->chpr_fecctl0_logout.clo_data.chd_afar = LOGOUT_INVALID;
829 	chprp->chpr_cecc_logout.clo_data.chd_afar = LOGOUT_INVALID;
830 	chprp->chpr_async_logout.clo_data.chd_afar = LOGOUT_INVALID;
831 	chprp->chpr_tlb_logout.tlo_addr = LOGOUT_INVALID;
832 	for (i = 0; i < CH_ERR_TL1_TLMAX; i++)
833 		chprp->chpr_tl1_err_data[i].ch_err_tl1_logout.clo_data.chd_afar
834 		    = LOGOUT_INVALID;
835 
836 	/* Panther has a larger Icache compared to cheetahplus or Jaguar */
837 	if (IS_PANTHER(cpunodes[cp->cpu_id].implementation)) {
838 		chprp->chpr_icache_size = PN_ICACHE_SIZE;
839 		chprp->chpr_icache_linesize = PN_ICACHE_LSIZE;
840 	} else {
841 		chprp->chpr_icache_size = CH_ICACHE_SIZE;
842 		chprp->chpr_icache_linesize = CH_ICACHE_LSIZE;
843 	}
844 
845 	cpu_init_ecache_scrub_dr(cp);
846 
847 	/*
848 	 * Panther's L2$ and E$ are shared between cores, so the scrubber is
849 	 * only needed on one of the cores.  At this point, we assume all cores
850 	 * are online, and we only enable the scrubber on core 0.
851 	 */
852 	if (IS_PANTHER(cpunodes[cp->cpu_id].implementation)) {
853 		chprp->chpr_scrub_misc.chsm_core_state =
854 		    SCRUBBER_BOTH_CORES_ONLINE;
855 		if (cp->cpu_id != (processorid_t)cmp_cpu_to_chip(cp->cpu_id)) {
856 			chprp->chpr_scrub_misc.chsm_enable[
857 			    CACHE_SCRUBBER_INFO_E] = 0;
858 		}
859 	}
860 
861 	chprp->chpr_ec_set_size = cpunodes[cp->cpu_id].ecache_size /
862 	    cpu_ecache_nway();
863 
864 	adjust_hw_copy_limits(cpunodes[cp->cpu_id].ecache_size);
865 	ch_err_tl1_paddrs[cp->cpu_id] = va_to_pa(chprp);
866 	ASSERT(ch_err_tl1_paddrs[cp->cpu_id] != -1);
867 }
868 
869 /*
870  * Clear the error state registers for this CPU.
871  * For Cheetah+/Jaguar, just clear the AFSR but
872  * for Panther we also have to clear the AFSR_EXT.
873  */
874 void
875 set_cpu_error_state(ch_cpu_errors_t *cpu_error_regs)
876 {
877 	set_asyncflt(cpu_error_regs->afsr & ~C_AFSR_FATAL_ERRS);
878 	if (IS_PANTHER(cpunodes[CPU->cpu_id].implementation)) {
879 		set_afsr_ext(cpu_error_regs->afsr_ext & ~C_AFSR_EXT_FATAL_ERRS);
880 	}
881 }
882 
883 void
884 pn_cpu_log_diag_l2_info(ch_async_flt_t *ch_flt) {
885 	struct async_flt *aflt = (struct async_flt *)ch_flt;
886 	ch_ec_data_t *l2_data = &ch_flt->flt_diag_data.chd_l2_data[0];
887 	uint64_t faddr = aflt->flt_addr;
888 	uint8_t log_way_mask = 0;
889 	int i;
890 
891 	/*
892 	 * Only Panther CPUs have the additional L2$ data that needs
893 	 * to be logged here
894 	 */
895 	if (!IS_PANTHER(cpunodes[aflt->flt_inst].implementation))
896 		return;
897 
898 	/*
899 	 * We'll use a simple bit mask to keep track of which way(s)
900 	 * of the stored cache line we want to log. The idea is to
901 	 * log the entry if it is a valid line and it matches our
902 	 * fault AFAR. If no match is found, we will simply log all
903 	 * the ways.
904 	 */
905 	for (i = 0; i < PN_L2_NWAYS; i++)
906 		if (pn_matching_valid_l2_line(faddr, &l2_data[i]))
907 			log_way_mask |= (1 << i);
908 
909 	/* If no matching valid lines were found, we log all ways */
910 	if (log_way_mask == 0)
911 		log_way_mask = (1 << PN_L2_NWAYS) - 1;
912 
913 	/* Log the cache lines */
914 	for (i = 0; i < PN_L2_NWAYS; i++)
915 		if (log_way_mask & (1 << i))
916 			l2_data[i].ec_logflag = EC_LOGFLAG_MAGIC;
917 }
918 
919 /*
920  * For this routine to return true, the L2 tag in question must be valid
921  * and the tag PA must match the fault address (faddr) assuming the correct
922  * index is being used.
923  */
924 static int
925 pn_matching_valid_l2_line(uint64_t faddr, ch_ec_data_t *clo_l2_data) {
926 	if ((!PN_L2_LINE_INVALID(clo_l2_data->ec_tag)) &&
927 	((faddr & P2ALIGN(C_AFAR_PA, PN_L2_SET_SIZE)) ==
928 	    PN_L2TAG_TO_PA(clo_l2_data->ec_tag)))
929 		return (1);
930 	return (0);
931 }
932 
933 /*
934  * This array is used to convert the 3 digit PgSz encoding (as used in
935  * various MMU registers such as MMU_TAG_ACCESS_EXT) into the corresponding
936  * page size.
937  */
938 static uint64_t tlb_pgsz_to_size[] = {
939 	/* 000 = 8KB: */
940 	0x2000,
941 	/* 001 = 64KB: */
942 	0x10000,
943 	/* 010 = 512KB: */
944 	0x80000,
945 	/* 011 = 4MB: */
946 	0x400000,
947 	/* 100 = 32MB: */
948 	0x2000000,
949 	/* 101 = 256MB: */
950 	0x10000000,
951 	/* undefined for encodings 110 and 111: */
952 	0, 0
953 };
954 
955 /*
956  * The itlb_parity_trap and dtlb_parity_trap handlers transfer control here
957  * after collecting logout information related to the TLB parity error and
958  * flushing the offending TTE entries from the ITLB or DTLB.
959  *
960  * DTLB traps which occur at TL>0 are not recoverable because we will most
961  * likely be corrupting some other trap handler's alternate globals. As
962  * such, we simply panic here when that happens. ITLB parity errors are
963  * not expected to happen at TL>0.
964  */
965 void
966 cpu_tlb_parity_error(struct regs *rp, ulong_t trap_va, ulong_t tlb_info) {
967 	ch_async_flt_t ch_flt;
968 	struct async_flt *aflt;
969 	pn_tlb_logout_t *tlop = NULL;
970 	int immu_parity = (tlb_info & PN_TLO_INFO_IMMU) != 0;
971 	int tl1_trap = (tlb_info & PN_TLO_INFO_TL1) != 0;
972 	char *error_class;
973 
974 	bzero(&ch_flt, sizeof (ch_async_flt_t));
975 
976 	/*
977 	 * Get the CPU log out info. If we can't find our CPU private
978 	 * pointer, or if the logout information does not correspond to
979 	 * this error, then we will have to make due without detailed
980 	 * logout information.
981 	 */
982 	if (CPU_PRIVATE(CPU)) {
983 		tlop = CPU_PRIVATE_PTR(CPU, chpr_tlb_logout);
984 		if ((tlop->tlo_addr != trap_va) ||
985 		    (tlop->tlo_info != tlb_info))
986 			tlop = NULL;
987 	}
988 
989 	if (tlop) {
990 		ch_flt.tlb_diag_data = *tlop;
991 
992 		/* Zero out + invalidate TLB logout. */
993 		bzero(tlop, sizeof (pn_tlb_logout_t));
994 		tlop->tlo_addr = LOGOUT_INVALID;
995 	} else {
996 		/*
997 		 * Copy what logout information we have and mark
998 		 * it incomplete.
999 		 */
1000 		ch_flt.flt_data_incomplete = 1;
1001 		ch_flt.tlb_diag_data.tlo_info = tlb_info;
1002 		ch_flt.tlb_diag_data.tlo_addr = trap_va;
1003 	}
1004 
1005 	/*
1006 	 * Log the error.
1007 	 */
1008 	aflt = (struct async_flt *)&ch_flt;
1009 	aflt->flt_id = gethrtime_waitfree();
1010 	aflt->flt_bus_id = getprocessorid();
1011 	aflt->flt_inst = CPU->cpu_id;
1012 	aflt->flt_pc = (caddr_t)rp->r_pc;
1013 	aflt->flt_addr = trap_va;
1014 	aflt->flt_prot = AFLT_PROT_NONE;
1015 	aflt->flt_class = CPU_FAULT;
1016 	aflt->flt_priv = (rp->r_tstate & TSTATE_PRIV) ?  1 : 0;
1017 	aflt->flt_tl = tl1_trap ? 1 : 0;
1018 	aflt->flt_panic = tl1_trap ? 1 : 0;
1019 
1020 	if (immu_parity) {
1021 		aflt->flt_status = ECC_ITLB_TRAP;
1022 		ch_flt.flt_type = CPU_ITLB_PARITY;
1023 		error_class = FM_EREPORT_CPU_USIII_ITLBPE;
1024 		aflt->flt_payload = FM_EREPORT_PAYLOAD_ITLB_PE;
1025 	} else {
1026 		aflt->flt_status = ECC_DTLB_TRAP;
1027 		ch_flt.flt_type = CPU_DTLB_PARITY;
1028 		error_class = FM_EREPORT_CPU_USIII_DTLBPE;
1029 		aflt->flt_payload = FM_EREPORT_PAYLOAD_DTLB_PE;
1030 	}
1031 
1032 	/*
1033 	 * The TLB entries have already been flushed by the TL1 trap
1034 	 * handler so at this point the only thing left to do is log
1035 	 * the error message.
1036 	 */
1037 	if (aflt->flt_panic) {
1038 		cpu_errorq_dispatch(error_class, (void *)&ch_flt,
1039 		    sizeof (ch_async_flt_t), ue_queue, aflt->flt_panic);
1040 		/*
1041 		 * Panic here if aflt->flt_panic has been set.  Enqueued
1042 		 * errors will be logged as part of the panic flow.
1043 		 */
1044 		fm_panic("%sError(s)", immu_parity ? "ITLBPE " : "DTLBPE ");
1045 	} else {
1046 		cpu_errorq_dispatch(error_class, (void *)&ch_flt,
1047 		    sizeof (ch_async_flt_t), ce_queue, aflt->flt_panic);
1048 	}
1049 }
1050 
1051 /*
1052  * This routine is called when a TLB parity error event is 'ue_drain'ed
1053  * or 'ce_drain'ed from the errorq.
1054  */
1055 void
1056 cpu_async_log_tlb_parity_err(void *flt) {
1057 	ch_async_flt_t *ch_flt = (ch_async_flt_t *)flt;
1058 	struct async_flt *aflt = (struct async_flt *)flt;
1059 #ifdef lint
1060 	aflt = aflt;
1061 #endif
1062 
1063 	/*
1064 	 * We only capture TLB information if we encountered
1065 	 * a TLB parity error and Panther is the only CPU which
1066 	 * can detect a TLB parity error.
1067 	 */
1068 	ASSERT(IS_PANTHER(cpunodes[aflt->flt_inst].implementation));
1069 	ASSERT((ch_flt->flt_type == CPU_ITLB_PARITY) ||
1070 	    (ch_flt->flt_type == CPU_DTLB_PARITY));
1071 
1072 	if (ch_flt->flt_data_incomplete == 0) {
1073 		if (ch_flt->flt_type == CPU_ITLB_PARITY)
1074 			ch_flt->tlb_diag_data.tlo_logflag = IT_LOGFLAG_MAGIC;
1075 		else /* parity error is in DTLB */
1076 			ch_flt->tlb_diag_data.tlo_logflag = DT_LOGFLAG_MAGIC;
1077 	}
1078 }
1079 
1080 /*
1081  * Add L1 Prefetch cache data to the ereport payload.
1082  */
1083 void
1084 cpu_payload_add_pcache(struct async_flt *aflt, nvlist_t *nvl)
1085 {
1086 	ch_async_flt_t *ch_flt = (ch_async_flt_t *)aflt;
1087 	ch_pc_data_t *pcp;
1088 	ch_pc_data_t pcdata[CH_PCACHE_NWAY];
1089 	uint_t nelem;
1090 	int i, ways_logged = 0;
1091 
1092 	/*
1093 	 * We only capture P$ information if we encountered
1094 	 * a P$ parity error and Panther is the only CPU which
1095 	 * can detect a P$ parity error.
1096 	 */
1097 	ASSERT(IS_PANTHER(cpunodes[aflt->flt_inst].implementation));
1098 	for (i = 0; i < CH_PCACHE_NWAY; i++) {
1099 		pcp = &ch_flt->parity_data.dpe.cpl_pc[i];
1100 		if (pcp->pc_logflag == PC_LOGFLAG_MAGIC) {
1101 			bcopy(pcp, &pcdata[ways_logged],
1102 				sizeof (ch_pc_data_t));
1103 			ways_logged++;
1104 		}
1105 	}
1106 
1107 	/*
1108 	 * Add the pcache data to the payload.
1109 	 */
1110 	fm_payload_set(nvl, FM_EREPORT_PAYLOAD_NAME_L1P_WAYS,
1111 	    DATA_TYPE_UINT8, (uint8_t)ways_logged, NULL);
1112 	if (ways_logged != 0) {
1113 		nelem = sizeof (ch_pc_data_t) / sizeof (uint64_t) * ways_logged;
1114 		fm_payload_set(nvl, FM_EREPORT_PAYLOAD_NAME_L1P_DATA,
1115 		    DATA_TYPE_UINT64_ARRAY, nelem, (uint64_t *)pcdata, NULL);
1116 	}
1117 }
1118 
1119 /*
1120  * Add TLB diagnostic data to the ereport payload.
1121  */
1122 void
1123 cpu_payload_add_tlb(struct async_flt *aflt, nvlist_t *nvl)
1124 {
1125 	ch_async_flt_t *ch_flt = (ch_async_flt_t *)aflt;
1126 	uint8_t num_entries, tlb_data_words;
1127 
1128 	/*
1129 	 * We only capture TLB information if we encountered
1130 	 * a TLB parity error and Panther is the only CPU which
1131 	 * can detect a TLB parity error.
1132 	 */
1133 	ASSERT(IS_PANTHER(cpunodes[aflt->flt_inst].implementation));
1134 	ASSERT((ch_flt->flt_type == CPU_ITLB_PARITY) ||
1135 	    (ch_flt->flt_type == CPU_DTLB_PARITY));
1136 
1137 	if (ch_flt->flt_type == CPU_ITLB_PARITY) {
1138 		num_entries = (uint8_t)(PN_ITLB_NWAYS * PN_NUM_512_ITLBS);
1139 		tlb_data_words = sizeof (ch_tte_entry_t) / sizeof (uint64_t) *
1140 		    num_entries;
1141 
1142 		/*
1143 		 * Add the TLB diagnostic data to the payload
1144 		 * if it was collected.
1145 		 */
1146 		if (ch_flt->tlb_diag_data.tlo_logflag == IT_LOGFLAG_MAGIC) {
1147 			fm_payload_set(nvl,
1148 			    FM_EREPORT_PAYLOAD_NAME_ITLB_ENTRIES,
1149 			    DATA_TYPE_UINT8, num_entries, NULL);
1150 			fm_payload_set(nvl, FM_EREPORT_PAYLOAD_NAME_ITLB_DATA,
1151 			    DATA_TYPE_UINT64_ARRAY, tlb_data_words,
1152 			    (uint64_t *)ch_flt->tlb_diag_data.tlo_itlb_tte,
1153 			    NULL);
1154 		}
1155 	} else {
1156 		num_entries = (uint8_t)(PN_DTLB_NWAYS * PN_NUM_512_DTLBS);
1157 		tlb_data_words = sizeof (ch_tte_entry_t) / sizeof (uint64_t) *
1158 		    num_entries;
1159 
1160 		fm_payload_set(nvl, FM_EREPORT_PAYLOAD_NAME_VA,
1161 		    DATA_TYPE_UINT64, ch_flt->tlb_diag_data.tlo_addr, NULL);
1162 
1163 		/*
1164 		 * Add the TLB diagnostic data to the payload
1165 		 * if it was collected.
1166 		 */
1167 		if (ch_flt->tlb_diag_data.tlo_logflag == DT_LOGFLAG_MAGIC) {
1168 			fm_payload_set(nvl,
1169 			    FM_EREPORT_PAYLOAD_NAME_DTLB_ENTRIES,
1170 			    DATA_TYPE_UINT8, num_entries, NULL);
1171 			fm_payload_set(nvl, FM_EREPORT_PAYLOAD_NAME_DTLB_DATA,
1172 			    DATA_TYPE_UINT64_ARRAY, tlb_data_words,
1173 			    (uint64_t *)ch_flt->tlb_diag_data.tlo_dtlb_tte,
1174 			    NULL);
1175 		}
1176 	}
1177 }
1178 
1179 /*
1180  * Panther Cache Scrubbing:
1181  *
1182  * In Jaguar, the E$ was split between cores, so the scrubber must run on both
1183  * cores.  For Panther, however, the L2$ and L3$ are shared across cores.
1184  * Therefore, the E$ scrubber only needs to run on one of the two cores.
1185  *
1186  * There are four possible states for the E$ scrubber:
1187  *
1188  * 0. If both cores are offline, add core 0 to cpu_offline_set so that
1189  *    the offline scrubber will run on it.
1190  * 1. If core 0 is online and core 1 off, we run the scrubber on core 0.
1191  * 2. If core 1 is online and core 0 off, we move the scrubber to run
1192  *    on core 1.
1193  * 3. If both cores are online, only run the scrubber on core 0.
1194  *
1195  * These states are enumerated by the SCRUBBER_[BOTH|CORE|NEITHER]_* defines
1196  * above.  One of those values is stored in
1197  * chpr_scrub_misc->chsm_core_state on each core.
1198  *
1199  * Also note that, for Panther, ecache_flush_line() will flush out the L2$
1200  * before the E$, so the L2$ will be scrubbed by the E$ scrubber.  No
1201  * additional code is necessary to scrub the L2$.
1202  *
1203  * For all cpu types, whenever a cpu or core is offlined, add it to
1204  * cpu_offline_set so the necessary scrubbers can still run.  This is still
1205  * necessary on Panther so the D$ scrubber can still run.
1206  */
1207 /*ARGSUSED*/
1208 int
1209 cpu_scrub_cpu_setup(cpu_setup_t what, int cpuid, void *arg)
1210 {
1211 	processorid_t core_0_id;
1212 	cpu_t *core_cpus[2];
1213 	ch_scrub_misc_t *core_scrub[2];
1214 	int old_state, i;
1215 	int new_state = SCRUBBER_NEITHER_CORE_ONLINE;
1216 
1217 	switch (what) {
1218 	case CPU_ON:
1219 	case CPU_INIT:
1220 		CPUSET_DEL(cpu_offline_set, cpuid);
1221 		break;
1222 	case CPU_OFF:
1223 		CPUSET_ADD(cpu_offline_set, cpuid);
1224 		break;
1225 	default:
1226 		return (0);
1227 	}
1228 
1229 	if (!IS_PANTHER(cpunodes[cpuid].implementation)) {
1230 		return (0);
1231 	}
1232 
1233 	/*
1234 	 * Update the chsm_enable[CACHE_SCRUBBER_INFO_E] value
1235 	 * if necessary
1236 	 */
1237 	core_0_id = cmp_cpu_to_chip(cpuid);
1238 	core_cpus[0] = cpu_get(core_0_id);
1239 	core_cpus[1] = cpu_get_sibling_core(core_cpus[0]);
1240 
1241 	for (i = 0; i < 2; i++) {
1242 		if (core_cpus[i] == NULL) {
1243 			/*
1244 			 * This may happen during DR - one core is offlined
1245 			 * and completely unconfigured before the second
1246 			 * core is offlined.  Give up and return quietly,
1247 			 * since the second core should quickly be removed
1248 			 * anyways.
1249 			 */
1250 			return (0);
1251 		}
1252 		core_scrub[i] = CPU_PRIVATE_PTR(core_cpus[i], chpr_scrub_misc);
1253 	}
1254 
1255 	if (cpuid == (processorid_t)cmp_cpu_to_chip(cpuid)) {
1256 		/* cpuid is core 0 */
1257 		if (cpu_is_active(core_cpus[1])) {
1258 			new_state |= SCRUBBER_CORE_1_ONLINE;
1259 		}
1260 		if (what != CPU_OFF) {
1261 			new_state |= SCRUBBER_CORE_0_ONLINE;
1262 		}
1263 	} else {
1264 		/* cpuid is core 1 */
1265 		if (cpu_is_active(core_cpus[0])) {
1266 			new_state |= SCRUBBER_CORE_0_ONLINE;
1267 		}
1268 		if (what != CPU_OFF) {
1269 			new_state |= SCRUBBER_CORE_1_ONLINE;
1270 		}
1271 	}
1272 
1273 	old_state = core_scrub[0]->chsm_core_state;
1274 
1275 	if (old_state == new_state) {
1276 		return (0);
1277 	}
1278 
1279 	if (old_state == SCRUBBER_CORE_1_ONLINE) {
1280 		/*
1281 		 * We need to move the scrubber state from core 1
1282 		 * back to core 0.  This data is not protected by
1283 		 * locks, but the worst that can happen is some
1284 		 * lines are scrubbed multiple times.  chsm_oustanding is
1285 		 * set to 0 to make sure an interrupt is scheduled the
1286 		 * first time through do_scrub().
1287 		 */
1288 		core_scrub[0]->chsm_flush_index[CACHE_SCRUBBER_INFO_E] =
1289 		    core_scrub[1]->chsm_flush_index[CACHE_SCRUBBER_INFO_E];
1290 		core_scrub[0]->chsm_outstanding[CACHE_SCRUBBER_INFO_E] = 0;
1291 	}
1292 
1293 	switch (new_state) {
1294 	case SCRUBBER_NEITHER_CORE_ONLINE:
1295 	case SCRUBBER_BOTH_CORES_ONLINE:
1296 	case SCRUBBER_CORE_0_ONLINE:
1297 		core_scrub[1]->chsm_enable[CACHE_SCRUBBER_INFO_E] = 0;
1298 		core_scrub[0]->chsm_enable[CACHE_SCRUBBER_INFO_E] = 1;
1299 		break;
1300 
1301 	case SCRUBBER_CORE_1_ONLINE:
1302 	default:
1303 		/*
1304 		 * We need to move the scrubber state from core 0
1305 		 * to core 1.
1306 		 */
1307 		core_scrub[1]->chsm_flush_index[CACHE_SCRUBBER_INFO_E] =
1308 		    core_scrub[0]->chsm_flush_index[CACHE_SCRUBBER_INFO_E];
1309 		core_scrub[1]->chsm_outstanding[CACHE_SCRUBBER_INFO_E] = 0;
1310 
1311 		core_scrub[0]->chsm_enable[CACHE_SCRUBBER_INFO_E] = 0;
1312 		core_scrub[1]->chsm_enable[CACHE_SCRUBBER_INFO_E] = 1;
1313 		break;
1314 	}
1315 
1316 	core_scrub[0]->chsm_core_state = new_state;
1317 	core_scrub[1]->chsm_core_state = new_state;
1318 	return (0);
1319 }
1320 
1321 /*
1322  * Returns a pointer to the cpu structure of the argument's sibling core.
1323  * If no sibling core can be found, return NULL.
1324  */
1325 static cpu_t *
1326 cpu_get_sibling_core(cpu_t *cpup)
1327 {
1328 	cpu_t *nextp;
1329 
1330 	if ((cpup == NULL) || (!cmp_cpu_is_cmp(cpup->cpu_id)))
1331 		return (NULL);
1332 
1333 	nextp = cpup->cpu_next_chip;
1334 	if ((nextp == NULL) || (nextp == cpup))
1335 		return (NULL);
1336 
1337 	return (nextp);
1338 }
1339