xref: /titanic_52/usr/src/uts/sun4u/cpu/opl_olympus.c (revision 9e3700df0ac0106c9153db91edd9fe719345aa3c)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 #include <sys/types.h>
29 #include <sys/systm.h>
30 #include <sys/ddi.h>
31 #include <sys/sysmacros.h>
32 #include <sys/archsystm.h>
33 #include <sys/vmsystm.h>
34 #include <sys/machparam.h>
35 #include <sys/machsystm.h>
36 #include <sys/machthread.h>
37 #include <sys/cpu.h>
38 #include <sys/cmp.h>
39 #include <sys/elf_SPARC.h>
40 #include <vm/vm_dep.h>
41 #include <vm/hat_sfmmu.h>
42 #include <vm/seg_kpm.h>
43 #include <sys/cpuvar.h>
44 #include <sys/opl_olympus_regs.h>
45 #include <sys/opl_module.h>
46 #include <sys/async.h>
47 #include <sys/cmn_err.h>
48 #include <sys/debug.h>
49 #include <sys/dditypes.h>
50 #include <sys/cpu_module.h>
51 #include <sys/sysmacros.h>
52 #include <sys/intreg.h>
53 #include <sys/clock.h>
54 #include <sys/platform_module.h>
55 #include <sys/ontrap.h>
56 #include <sys/panic.h>
57 #include <sys/memlist.h>
58 #include <sys/ndifm.h>
59 #include <sys/ddifm.h>
60 #include <sys/fm/protocol.h>
61 #include <sys/fm/util.h>
62 #include <sys/fm/cpu/SPARC64-VI.h>
63 #include <sys/dtrace.h>
64 #include <sys/watchpoint.h>
65 #include <sys/promif.h>
66 
67 /*
68  * Internal functions.
69  */
70 static int cpu_sync_log_err(void *flt);
71 static void cpu_payload_add_aflt(struct async_flt *, nvlist_t *, nvlist_t *);
72 static void opl_cpu_sync_error(struct regs *, ulong_t, ulong_t, uint_t, uint_t);
73 static int  cpu_flt_in_memory(opl_async_flt_t *, uint64_t);
74 
75 /*
76  * Error counters resetting interval.
77  */
78 static int opl_async_check_interval = 60;		/* 1 min */
79 
80 /*
81  * Maximum number of contexts for Olympus-C.
82  */
83 #define	MAX_NCTXS	(1 << 13)
84 
85 /* Will be set !NULL for SPARC64-VI and derivatives. */
86 static uchar_t ctx_pgsz_arr[MAX_NCTXS];
87 uchar_t *ctx_pgsz_array = ctx_pgsz_arr;
88 
89 /*
90  * PA[22:0] represent Displacement in Jupiter
91  * configuration space.
92  */
93 uint_t	root_phys_addr_lo_mask = 0x7fffffu;
94 
95 /*
96  * set in /etc/system to control logging of user BERR/TO's
97  */
98 int cpu_berr_to_verbose = 0;
99 
100 static int min_ecache_size;
101 static uint_t priv_hcl_1;
102 static uint_t priv_hcl_2;
103 static uint_t priv_hcl_4;
104 static uint_t priv_hcl_8;
105 
106 /*
107  * Olympus error log
108  */
109 static opl_errlog_t	*opl_err_log;
110 
111 /*
112  * UE is classified into four classes (MEM, CHANNEL, CPU, PATH).
113  * No any other ecc_type_info insertion is allowed in between the following
114  * four UE classess.
115  */
116 ecc_type_to_info_t ecc_type_to_info[] = {
117 	SFSR_UE,	"UE ",	(OPL_ECC_SYNC_TRAP), OPL_CPU_SYNC_UE,
118 	"Uncorrectable ECC",  FM_EREPORT_PAYLOAD_SYNC,
119 	FM_EREPORT_CPU_UE_MEM,
120 	SFSR_UE,	"UE ",	(OPL_ECC_SYNC_TRAP), OPL_CPU_SYNC_UE,
121 	"Uncorrectable ECC",  FM_EREPORT_PAYLOAD_SYNC,
122 	FM_EREPORT_CPU_UE_CHANNEL,
123 	SFSR_UE,	"UE ",	(OPL_ECC_SYNC_TRAP), OPL_CPU_SYNC_UE,
124 	"Uncorrectable ECC",  FM_EREPORT_PAYLOAD_SYNC,
125 	FM_EREPORT_CPU_UE_CPU,
126 	SFSR_UE,	"UE ",	(OPL_ECC_SYNC_TRAP), OPL_CPU_SYNC_UE,
127 	"Uncorrectable ECC",  FM_EREPORT_PAYLOAD_SYNC,
128 	FM_EREPORT_CPU_UE_PATH,
129 	SFSR_BERR, "BERR ", (OPL_ECC_SYNC_TRAP), OPL_CPU_SYNC_OTHERS,
130 	"Bus Error",  FM_EREPORT_PAYLOAD_SYNC,
131 	FM_EREPORT_CPU_BERR,
132 	SFSR_TO, "TO ", (OPL_ECC_SYNC_TRAP), OPL_CPU_SYNC_OTHERS,
133 	"Bus Timeout",  FM_EREPORT_PAYLOAD_SYNC,
134 	FM_EREPORT_CPU_BTO,
135 	SFSR_TLB_MUL, "TLB_MUL ", (OPL_ECC_SYNC_TRAP), OPL_CPU_SYNC_OTHERS,
136 	"TLB MultiHit",  FM_EREPORT_PAYLOAD_SYNC,
137 	FM_EREPORT_CPU_MTLB,
138 	SFSR_TLB_PRT, "TLB_PRT ", (OPL_ECC_SYNC_TRAP), OPL_CPU_SYNC_OTHERS,
139 	"TLB Parity",  FM_EREPORT_PAYLOAD_SYNC,
140 	FM_EREPORT_CPU_TLBP,
141 
142 	UGESR_IAUG_CRE, "IAUG_CRE", OPL_ECC_URGENT_TRAP, OPL_CPU_URGENT,
143 	"IAUG CRE",  FM_EREPORT_PAYLOAD_URGENT,
144 	FM_EREPORT_CPU_CRE,
145 	UGESR_IAUG_TSBCTXT, "IAUG_TSBCTXT",
146 	OPL_ECC_URGENT_TRAP, OPL_CPU_URGENT,
147 	"IAUG TSBCTXT",  FM_EREPORT_PAYLOAD_URGENT,
148 	FM_EREPORT_CPU_TSBCTX,
149 	UGESR_IUG_TSBP, "IUG_TSBP", OPL_ECC_URGENT_TRAP, OPL_CPU_URGENT,
150 	"IUG TSBP",  FM_EREPORT_PAYLOAD_URGENT,
151 	FM_EREPORT_CPU_TSBP,
152 	UGESR_IUG_PSTATE, "IUG_PSTATE", OPL_ECC_URGENT_TRAP, OPL_CPU_URGENT,
153 	"IUG PSTATE",  FM_EREPORT_PAYLOAD_URGENT,
154 	FM_EREPORT_CPU_PSTATE,
155 	UGESR_IUG_TSTATE, "IUG_TSTATE", OPL_ECC_URGENT_TRAP, OPL_CPU_URGENT,
156 	"IUG TSTATE",  FM_EREPORT_PAYLOAD_URGENT,
157 	FM_EREPORT_CPU_TSTATE,
158 	UGESR_IUG_F, "IUG_F", OPL_ECC_URGENT_TRAP, OPL_CPU_URGENT,
159 	"IUG FREG",  FM_EREPORT_PAYLOAD_URGENT,
160 	FM_EREPORT_CPU_IUG_F,
161 	UGESR_IUG_R, "IUG_R", OPL_ECC_URGENT_TRAP, OPL_CPU_URGENT,
162 	"IUG RREG",  FM_EREPORT_PAYLOAD_URGENT,
163 	FM_EREPORT_CPU_IUG_R,
164 	UGESR_AUG_SDC, "AUG_SDC", OPL_ECC_URGENT_TRAP, OPL_CPU_URGENT,
165 	"AUG SDC",  FM_EREPORT_PAYLOAD_URGENT,
166 	FM_EREPORT_CPU_SDC,
167 	UGESR_IUG_WDT, "IUG_WDT", OPL_ECC_URGENT_TRAP, OPL_CPU_URGENT,
168 	"IUG WDT",  FM_EREPORT_PAYLOAD_URGENT,
169 	FM_EREPORT_CPU_WDT,
170 	UGESR_IUG_DTLB, "IUG_DTLB", OPL_ECC_URGENT_TRAP, OPL_CPU_URGENT,
171 	"IUG DTLB",  FM_EREPORT_PAYLOAD_URGENT,
172 	FM_EREPORT_CPU_DTLB,
173 	UGESR_IUG_ITLB, "IUG_ITLB", OPL_ECC_URGENT_TRAP, OPL_CPU_URGENT,
174 	"IUG ITLB",  FM_EREPORT_PAYLOAD_URGENT,
175 	FM_EREPORT_CPU_ITLB,
176 	UGESR_IUG_COREERR, "IUG_COREERR",
177 	OPL_ECC_URGENT_TRAP, OPL_CPU_URGENT,
178 	"IUG COREERR",  FM_EREPORT_PAYLOAD_URGENT,
179 	FM_EREPORT_CPU_CORE,
180 	UGESR_MULTI_DAE, "MULTI_DAE", OPL_ECC_URGENT_TRAP, OPL_CPU_URGENT,
181 	"MULTI DAE",  FM_EREPORT_PAYLOAD_URGENT,
182 	FM_EREPORT_CPU_DAE,
183 	UGESR_MULTI_IAE, "MULTI_IAE", OPL_ECC_URGENT_TRAP, OPL_CPU_URGENT,
184 	"MULTI IAE",  FM_EREPORT_PAYLOAD_URGENT,
185 	FM_EREPORT_CPU_IAE,
186 	UGESR_MULTI_UGE, "MULTI_UGE", OPL_ECC_URGENT_TRAP, OPL_CPU_URGENT,
187 	"MULTI UGE",  FM_EREPORT_PAYLOAD_URGENT,
188 	FM_EREPORT_CPU_UGE,
189 	0,		NULL,		0,		0,
190 	NULL,  0,	   0,
191 };
192 
193 int (*p2get_mem_info)(int synd_code, uint64_t paddr,
194 		uint64_t *mem_sizep, uint64_t *seg_sizep, uint64_t *bank_sizep,
195 		int *segsp, int *banksp, int *mcidp);
196 
197 
198 /*
199  * Setup trap handlers for 0xA, 0x32, 0x40 trap types.
200  */
201 void
202 cpu_init_trap(void)
203 {
204 	OPL_SET_TRAP(tt0_iae, opl_serr_instr);
205 	OPL_SET_TRAP(tt1_iae, opl_serr_instr);
206 	OPL_SET_TRAP(tt0_dae, opl_serr_instr);
207 	OPL_SET_TRAP(tt1_dae, opl_serr_instr);
208 	OPL_SET_TRAP(tt0_asdat, opl_ugerr_instr);
209 	OPL_SET_TRAP(tt1_asdat, opl_ugerr_instr);
210 }
211 
212 static int
213 getintprop(pnode_t node, char *name, int deflt)
214 {
215 	int	value;
216 
217 	switch (prom_getproplen(node, name)) {
218 	case sizeof (int):
219 		(void) prom_getprop(node, name, (caddr_t)&value);
220 		break;
221 
222 	default:
223 		value = deflt;
224 		break;
225 	}
226 
227 	return (value);
228 }
229 
230 /*
231  * Set the magic constants of the implementation.
232  */
233 /*ARGSUSED*/
234 void
235 cpu_fiximp(pnode_t dnode)
236 {
237 	int i, a;
238 	extern int vac_size, vac_shift;
239 	extern uint_t vac_mask;
240 
241 	static struct {
242 		char	*name;
243 		int	*var;
244 		int	defval;
245 	} prop[] = {
246 		"l1-dcache-size", &dcache_size, OPL_DCACHE_SIZE,
247 		"l1-dcache-line-size", &dcache_linesize, OPL_DCACHE_LSIZE,
248 		"l1-icache-size", &icache_size, OPL_ICACHE_SIZE,
249 		"l1-icache-line-size", &icache_linesize, OPL_ICACHE_LSIZE,
250 		"l2-cache-size", &ecache_size, OPL_ECACHE_SIZE,
251 		"l2-cache-line-size", &ecache_alignsize, OPL_ECACHE_LSIZE,
252 		"l2-cache-associativity", &ecache_associativity, OPL_ECACHE_NWAY
253 	};
254 
255 	for (i = 0; i < sizeof (prop) / sizeof (prop[0]); i++)
256 		*prop[i].var = getintprop(dnode, prop[i].name, prop[i].defval);
257 
258 	ecache_setsize = ecache_size / ecache_associativity;
259 
260 	vac_size = OPL_VAC_SIZE;
261 	vac_mask = MMU_PAGEMASK & (vac_size - 1);
262 	i = 0; a = vac_size;
263 	while (a >>= 1)
264 		++i;
265 	vac_shift = i;
266 	shm_alignment = vac_size;
267 	vac = 1;
268 }
269 
270 void
271 send_mondo_set(cpuset_t set)
272 {
273 	int lo, busy, nack, shipped = 0;
274 	uint16_t i, cpuids[IDSR_BN_SETS];
275 	uint64_t idsr, nackmask = 0, busymask, curnack, curbusy;
276 	uint64_t starttick, endtick, tick, lasttick;
277 #if (NCPU > IDSR_BN_SETS)
278 	int index = 0;
279 	int ncpuids = 0;
280 #endif
281 #ifdef	OLYMPUS_ERRATA_XCALL
282 	int bn_sets = IDSR_BN_SETS;
283 	uint64_t ver;
284 
285 	ASSERT(NCPU > bn_sets);
286 #endif
287 
288 	ASSERT(!CPUSET_ISNULL(set));
289 	starttick = lasttick = gettick();
290 
291 #ifdef	OLYMPUS_ERRATA_XCALL
292 	ver = ultra_getver();
293 	if (((ULTRA_VER_IMPL(ver)) == OLYMPUS_C_IMPL) &&
294 		((OLYMPUS_REV_MASK(ver)) == OLYMPUS_C_A))
295 		bn_sets = 1;
296 #endif
297 
298 #if (NCPU <= IDSR_BN_SETS)
299 	for (i = 0; i < NCPU; i++)
300 		if (CPU_IN_SET(set, i)) {
301 			shipit(i, shipped);
302 			nackmask |= IDSR_NACK_BIT(shipped);
303 			cpuids[shipped++] = i;
304 			CPUSET_DEL(set, i);
305 			if (CPUSET_ISNULL(set))
306 				break;
307 		}
308 	CPU_STATS_ADDQ(CPU, sys, xcalls, shipped);
309 #else
310 	for (i = 0; i < NCPU; i++)
311 		if (CPU_IN_SET(set, i)) {
312 			ncpuids++;
313 
314 			/*
315 			 * Ship only to the first (IDSR_BN_SETS) CPUs.  If we
316 			 * find we have shipped to more than (IDSR_BN_SETS)
317 			 * CPUs, set "index" to the highest numbered CPU in
318 			 * the set so we can ship to other CPUs a bit later on.
319 			 */
320 #ifdef	OLYMPUS_ERRATA_XCALL
321 			if (shipped < bn_sets) {
322 #else
323 			if (shipped < IDSR_BN_SETS) {
324 #endif
325 				shipit(i, shipped);
326 				nackmask |= IDSR_NACK_BIT(shipped);
327 				cpuids[shipped++] = i;
328 				CPUSET_DEL(set, i);
329 				if (CPUSET_ISNULL(set))
330 					break;
331 			} else
332 				index = (int)i;
333 		}
334 
335 	CPU_STATS_ADDQ(CPU, sys, xcalls, ncpuids);
336 #endif
337 
338 	busymask = IDSR_NACK_TO_BUSY(nackmask);
339 	busy = nack = 0;
340 	endtick = starttick + xc_tick_limit;
341 	for (;;) {
342 		idsr = getidsr();
343 #if (NCPU <= IDSR_BN_SETS)
344 		if (idsr == 0)
345 			break;
346 #else
347 		if (idsr == 0 && shipped == ncpuids)
348 			break;
349 #endif
350 		tick = gettick();
351 		/*
352 		 * If there is a big jump between the current tick
353 		 * count and lasttick, we have probably hit a break
354 		 * point.  Adjust endtick accordingly to avoid panic.
355 		 */
356 		if (tick > (lasttick + xc_tick_jump_limit))
357 			endtick += (tick - lasttick);
358 		lasttick = tick;
359 		if (tick > endtick) {
360 			if (panic_quiesce)
361 				return;
362 			cmn_err(CE_CONT, "send mondo timeout "
363 				"[%d NACK %d BUSY]\nIDSR 0x%"
364 				"" PRIx64 "  cpuids:", nack, busy, idsr);
365 #ifdef	OLYMPUS_ERRATA_XCALL
366 			for (i = 0; i < bn_sets; i++) {
367 #else
368 			for (i = 0; i < IDSR_BN_SETS; i++) {
369 #endif
370 				if (idsr & (IDSR_NACK_BIT(i) |
371 				    IDSR_BUSY_BIT(i))) {
372 					cmn_err(CE_CONT, " 0x%x",
373 						cpuids[i]);
374 				}
375 			}
376 			cmn_err(CE_CONT, "\n");
377 			cmn_err(CE_PANIC, "send_mondo_set: timeout");
378 		}
379 		curnack = idsr & nackmask;
380 		curbusy = idsr & busymask;
381 #if (NCPU > IDSR_BN_SETS)
382 		if (shipped < ncpuids) {
383 			uint64_t cpus_left;
384 			uint16_t next = (uint16_t)index;
385 
386 			cpus_left = ~(IDSR_NACK_TO_BUSY(curnack) | curbusy) &
387 			    busymask;
388 
389 			if (cpus_left) {
390 				do {
391 					/*
392 					 * Sequence through and ship to the
393 					 * remainder of the CPUs in the system
394 					 * (e.g. other than the first
395 					 * (IDSR_BN_SETS)) in reverse order.
396 					 */
397 					lo = lowbit(cpus_left) - 1;
398 					i = IDSR_BUSY_IDX(lo);
399 					shipit(next, i);
400 					shipped++;
401 					cpuids[i] = next;
402 
403 					/*
404 					 * If we've processed all the CPUs,
405 					 * exit the loop now and save
406 					 * instructions.
407 					 */
408 					if (shipped == ncpuids)
409 						break;
410 
411 					for ((index = ((int)next - 1));
412 						index >= 0; index--)
413 						if (CPU_IN_SET(set, index)) {
414 							next = (uint16_t)index;
415 							break;
416 						}
417 
418 					cpus_left &= ~(1ull << lo);
419 				} while (cpus_left);
420 				continue;
421 			}
422 		}
423 #endif
424 		if (curbusy) {
425 			busy++;
426 			continue;
427 		}
428 
429 #ifdef SEND_MONDO_STATS
430 		{
431 			int n = gettick() - starttick;
432 			if (n < 8192)
433 				x_nack_stimes[n >> 7]++;
434 		}
435 #endif
436 		while (gettick() < (tick + sys_clock_mhz))
437 			;
438 		do {
439 			lo = lowbit(curnack) - 1;
440 			i = IDSR_NACK_IDX(lo);
441 			shipit(cpuids[i], i);
442 			curnack &= ~(1ull << lo);
443 		} while (curnack);
444 		nack++;
445 		busy = 0;
446 	}
447 #ifdef SEND_MONDO_STATS
448 	{
449 		int n = gettick() - starttick;
450 		if (n < 8192)
451 			x_set_stimes[n >> 7]++;
452 		else
453 			x_set_ltimes[(n >> 13) & 0xf]++;
454 	}
455 	x_set_cpus[shipped]++;
456 #endif
457 }
458 
459 /*
460  * Cpu private initialization.
461  */
462 void
463 cpu_init_private(struct cpu *cp)
464 {
465 	if (!(IS_OLYMPUS_C(cpunodes[cp->cpu_id].implementation))) {
466 		cmn_err(CE_PANIC, "CPU%d Impl %d: Only SPARC64-VI is supported",
467 			cp->cpu_id, cpunodes[cp->cpu_id].implementation);
468 	}
469 
470 	adjust_hw_copy_limits(cpunodes[cp->cpu_id].ecache_size);
471 }
472 
473 void
474 cpu_setup(void)
475 {
476 	extern int at_flags;
477 	extern int disable_delay_tlb_flush, delay_tlb_flush;
478 	extern int cpc_has_overflow_intr;
479 	extern int disable_text_largepages;
480 	extern int use_text_pgsz4m;
481 	uint64_t cpu0_log;
482 	extern	 uint64_t opl_cpu0_err_log;
483 
484 	/*
485 	 * Initialize Error log Scratch register for error handling.
486 	 */
487 
488 	cpu0_log = va_to_pa(&opl_cpu0_err_log);
489 	opl_error_setup(cpu0_log);
490 
491 	/*
492 	 * Enable MMU translating multiple page sizes for
493 	 * sITLB and sDTLB.
494 	 */
495 	opl_mpg_enable();
496 
497 	/*
498 	 * Setup chip-specific trap handlers.
499 	 */
500 	cpu_init_trap();
501 
502 	cache |= (CACHE_VAC | CACHE_PTAG | CACHE_IOCOHERENT);
503 
504 	at_flags = EF_SPARC_32PLUS | EF_SPARC_SUN_US1 | EF_SPARC_SUN_US3;
505 
506 	/*
507 	 * Use the maximum number of contexts available for SPARC64-VI
508 	 * unless it has been tuned for debugging.
509 	 * We are checking against 0 here since this value can be patched
510 	 * while booting.  It can not be patched via /etc/system since it
511 	 * will be patched too late and thus cause the system to panic.
512 	 */
513 	if (nctxs == 0)
514 		nctxs = MAX_NCTXS;
515 
516 	/*
517 	 * Due to the number of entries in the fully-associative tlb
518 	 * this may have to be tuned lower than in spitfire.
519 	 */
520 	pp_slots = MIN(8, MAXPP_SLOTS);
521 
522 	/*
523 	 * Block stores do not invalidate all pages of the d$, pagecopy
524 	 * et. al. need virtual translations with virtual coloring taken
525 	 * into consideration.  prefetch/ldd will pollute the d$ on the
526 	 * load side.
527 	 */
528 	pp_consistent_coloring = PPAGE_STORE_VCOLORING | PPAGE_LOADS_POLLUTE;
529 
530 	if (use_page_coloring) {
531 		do_pg_coloring = 1;
532 		if (use_virtual_coloring)
533 			do_virtual_coloring = 1;
534 	}
535 
536 	isa_list =
537 	    "sparcv9+vis2 sparcv9+vis sparcv9 "
538 	    "sparcv8plus+vis2 sparcv8plus+vis sparcv8plus "
539 	    "sparcv8 sparcv8-fsmuld sparcv7 sparc";
540 
541 	cpu_hwcap_flags = AV_SPARC_VIS | AV_SPARC_VIS2;
542 
543 	/*
544 	 * On SPARC64-VI, there's no hole in the virtual address space
545 	 */
546 	hole_start = hole_end = 0;
547 
548 	/*
549 	 * The kpm mapping window.
550 	 * kpm_size:
551 	 *	The size of a single kpm range.
552 	 *	The overall size will be: kpm_size * vac_colors.
553 	 * kpm_vbase:
554 	 *	The virtual start address of the kpm range within the kernel
555 	 *	virtual address space. kpm_vbase has to be kpm_size aligned.
556 	 */
557 	kpm_size = (size_t)(128ull * 1024 * 1024 * 1024 * 1024); /* 128TB */
558 	kpm_size_shift = 47;
559 	kpm_vbase = (caddr_t)0x8000000000000000ull; /* 8EB */
560 	kpm_smallpages = 1;
561 
562 	/*
563 	 * The traptrace code uses either %tick or %stick for
564 	 * timestamping.  We have %stick so we can use it.
565 	 */
566 	traptrace_use_stick = 1;
567 
568 	/*
569 	 * SPARC64-VI has a performance counter overflow interrupt
570 	 */
571 	cpc_has_overflow_intr = 1;
572 
573 	/*
574 	 * Use SPARC64-VI flush-all support
575 	 */
576 	if (!disable_delay_tlb_flush)
577 		delay_tlb_flush = 1;
578 
579 	/*
580 	 * Declare that this architecture/cpu combination does not support
581 	 * fpRAS.
582 	 */
583 	fpras_implemented = 0;
584 
585 	/*
586 	 * Enable 4M pages to be used for mapping user text by default.  Don't
587 	 * use large pages for initialized data segments since we may not know
588 	 * at exec() time what should be the preferred large page size for DTLB
589 	 * programming.
590 	 */
591 	use_text_pgsz4m = 1;
592 	disable_text_largepages = (1 << TTE64K) | (1 << TTE512K) |
593 	    (1 << TTE32M) | (1 << TTE256M);
594 }
595 
596 /*
597  * Called by setcpudelay
598  */
599 void
600 cpu_init_tick_freq(void)
601 {
602 	/*
603 	 * For SPARC64-VI we want to use the system clock rate as
604 	 * the basis for low level timing, due to support of mixed
605 	 * speed CPUs and power managment.
606 	 */
607 	if (system_clock_freq == 0)
608 		cmn_err(CE_PANIC, "setcpudelay: invalid system_clock_freq");
609 
610 	sys_tick_freq = system_clock_freq;
611 }
612 
613 #ifdef SEND_MONDO_STATS
614 uint32_t x_one_stimes[64];
615 uint32_t x_one_ltimes[16];
616 uint32_t x_set_stimes[64];
617 uint32_t x_set_ltimes[16];
618 uint32_t x_set_cpus[NCPU];
619 uint32_t x_nack_stimes[64];
620 #endif
621 
622 /*
623  * Note: A version of this function is used by the debugger via the KDI,
624  * and must be kept in sync with this version.  Any changes made to this
625  * function to support new chips or to accomodate errata must also be included
626  * in the KDI-specific version.  See us3_kdi.c.
627  */
628 void
629 send_one_mondo(int cpuid)
630 {
631 	int busy, nack;
632 	uint64_t idsr, starttick, endtick, tick, lasttick;
633 	uint64_t busymask;
634 
635 	CPU_STATS_ADDQ(CPU, sys, xcalls, 1);
636 	starttick = lasttick = gettick();
637 	shipit(cpuid, 0);
638 	endtick = starttick + xc_tick_limit;
639 	busy = nack = 0;
640 	busymask = IDSR_BUSY;
641 	for (;;) {
642 		idsr = getidsr();
643 		if (idsr == 0)
644 			break;
645 
646 		tick = gettick();
647 		/*
648 		 * If there is a big jump between the current tick
649 		 * count and lasttick, we have probably hit a break
650 		 * point.  Adjust endtick accordingly to avoid panic.
651 		 */
652 		if (tick > (lasttick + xc_tick_jump_limit))
653 			endtick += (tick - lasttick);
654 		lasttick = tick;
655 		if (tick > endtick) {
656 			if (panic_quiesce)
657 				return;
658 			cmn_err(CE_PANIC, "send mondo timeout "
659 				"(target 0x%x) [%d NACK %d BUSY]",
660 					cpuid, nack, busy);
661 		}
662 
663 		if (idsr & busymask) {
664 			busy++;
665 			continue;
666 		}
667 		drv_usecwait(1);
668 		shipit(cpuid, 0);
669 		nack++;
670 		busy = 0;
671 	}
672 #ifdef SEND_MONDO_STATS
673 	{
674 		int n = gettick() - starttick;
675 		if (n < 8192)
676 			x_one_stimes[n >> 7]++;
677 		else
678 			x_one_ltimes[(n >> 13) & 0xf]++;
679 	}
680 #endif
681 }
682 
683 /*
684  * init_mmu_page_sizes is set to one after the bootup time initialization
685  * via mmu_init_mmu_page_sizes, to indicate that mmu_page_sizes has a
686  * valid value.
687  *
688  * mmu_disable_ism_large_pages and mmu_disable_large_pages are the mmu-specific
689  * versions of disable_ism_large_pages and disable_large_pages, and feed back
690  * into those two hat variables at hat initialization time.
691  *
692  */
693 int init_mmu_page_sizes = 0;
694 static int mmu_disable_ism_large_pages = ((1 << TTE64K) |
695 	(1 << TTE512K) | (1 << TTE256M));
696 static int mmu_disable_large_pages = 0;
697 
698 /*
699  * Re-initialize mmu_page_sizes and friends, for SPARC64-VI mmu support.
700  * Called during very early bootup from check_cpus_set().
701  * Can be called to verify that mmu_page_sizes are set up correctly.
702  *
703  * Set Olympus defaults. We do not use the function parameter.
704  */
705 /*ARGSUSED*/
706 int
707 mmu_init_mmu_page_sizes(int32_t not_used)
708 {
709 	if (!init_mmu_page_sizes) {
710 		mmu_page_sizes = MMU_PAGE_SIZES;
711 		mmu_hashcnt = MAX_HASHCNT;
712 		mmu_ism_pagesize = MMU_PAGESIZE32M;
713 		mmu_exported_pagesize_mask = (1 << TTE8K) |
714 		    (1 << TTE64K) | (1 << TTE512K) | (1 << TTE4M) |
715 		    (1 << TTE32M) | (1 << TTE256M);
716 		init_mmu_page_sizes = 1;
717 		return (0);
718 	}
719 	return (1);
720 }
721 
722 /* SPARC64-VI worst case DTLB parameters */
723 #ifndef	LOCKED_DTLB_ENTRIES
724 #define	LOCKED_DTLB_ENTRIES	5	/* 2 user TSBs, 2 nucleus, + OBP */
725 #endif
726 #define	TOTAL_DTLB_ENTRIES	32
727 #define	AVAIL_32M_ENTRIES	0
728 #define	AVAIL_256M_ENTRIES	0
729 #define	AVAIL_DTLB_ENTRIES	(TOTAL_DTLB_ENTRIES - LOCKED_DTLB_ENTRIES)
730 static uint64_t ttecnt_threshold[MMU_PAGE_SIZES] = {
731 	AVAIL_DTLB_ENTRIES, AVAIL_DTLB_ENTRIES,
732 	AVAIL_DTLB_ENTRIES, AVAIL_DTLB_ENTRIES,
733 	AVAIL_DTLB_ENTRIES, AVAIL_DTLB_ENTRIES};
734 
735 size_t
736 mmu_map_pgsz(size_t pgsize)
737 {
738 	struct proc *p = curproc;
739 	struct as *as = p->p_as;
740 	struct hat *hat = as->a_hat;
741 	uint_t pgsz0, pgsz1;
742 	size_t size0, size1;
743 
744 	ASSERT(mmu_page_sizes == max_mmu_page_sizes);
745 	pgsz0 = hat->sfmmu_pgsz[0];
746 	pgsz1 = hat->sfmmu_pgsz[1];
747 	size0 = hw_page_array[pgsz0].hp_size;
748 	size1 = hw_page_array[pgsz1].hp_size;
749 	/* Allow use of a larger pagesize if neither TLB is reprogrammed. */
750 	if ((pgsz0 == TTE8K) && (pgsz1 == TTE8K)) {
751 		return (pgsize);
752 	/* Allow use of requested pagesize if TLB is reprogrammed to it. */
753 	} else if ((pgsize == size0) || (pgsize == size1)) {
754 		return (pgsize);
755 	/* Use larger reprogrammed TLB size if pgsize is atleast that big. */
756 	} else if (pgsz1 > pgsz0) {
757 		if (pgsize >= size1)
758 			return (size1);
759 	/* Use smaller reprogrammed TLB size if pgsize is atleast that big. */
760 	} else {
761 		if (pgsize >= size0)
762 			return (size0);
763 	}
764 	return (pgsize);
765 }
766 
767 /*
768  * The function returns the mmu-specific values for the
769  * hat's disable_large_pages and disable_ism_large_pages variables.
770  */
771 int
772 mmu_large_pages_disabled(uint_t flag)
773 {
774 	int pages_disable = 0;
775 
776 	if (flag == HAT_LOAD) {
777 		pages_disable =  mmu_disable_large_pages;
778 	} else if (flag == HAT_LOAD_SHARE) {
779 		pages_disable = mmu_disable_ism_large_pages;
780 	}
781 	return (pages_disable);
782 }
783 
784 /*
785  * mmu_init_large_pages is called with the desired ism_pagesize parameter.
786  * It may be called from set_platform_defaults, if some value other than 32M
787  * is desired.  mmu_ism_pagesize is the tunable.  If it has a bad value,
788  * then only warn, since it would be bad form to panic due to a user typo.
789  *
790  * The function re-initializes the mmu_disable_ism_large_pages variable.
791  */
792 void
793 mmu_init_large_pages(size_t ism_pagesize)
794 {
795 	switch (ism_pagesize) {
796 	case MMU_PAGESIZE4M:
797 		mmu_disable_ism_large_pages = ((1 << TTE64K) |
798 		    (1 << TTE512K) | (1 << TTE32M) | (1 << TTE256M));
799 		break;
800 	case MMU_PAGESIZE32M:
801 		mmu_disable_ism_large_pages = ((1 << TTE64K) |
802 		    (1 << TTE512K) | (1 << TTE256M));
803 		break;
804 	case MMU_PAGESIZE256M:
805 		mmu_disable_ism_large_pages = ((1 << TTE64K) |
806 		    (1 << TTE512K) | (1 << TTE32M));
807 		break;
808 	default:
809 		cmn_err(CE_WARN, "Unrecognized mmu_ism_pagesize value 0x%lx",
810 		    ism_pagesize);
811 		break;
812 	}
813 }
814 
815 /*ARGSUSED*/
816 uint_t
817 mmu_preferred_pgsz(struct hat *hat, caddr_t addr, size_t len)
818 {
819 	sfmmu_t *sfmmup = (sfmmu_t *)hat;
820 	uint_t pgsz0, pgsz1;
821 	uint_t szc, maxszc = mmu_page_sizes - 1;
822 	size_t pgsz;
823 	extern int disable_large_pages;
824 
825 	pgsz0 = (uint_t)sfmmup->sfmmu_pgsz[0];
826 	pgsz1 = (uint_t)sfmmup->sfmmu_pgsz[1];
827 
828 	/*
829 	 * If either of the TLBs are reprogrammed, choose
830 	 * the largest mapping size as the preferred size,
831 	 * if it fits the size and alignment constraints.
832 	 * Else return the largest mapping size that fits,
833 	 * if neither TLB is reprogrammed.
834 	 */
835 	if (pgsz0 > TTE8K || pgsz1 > TTE8K) {
836 		if (pgsz1 > pgsz0) {	/* First try pgsz1 */
837 			pgsz = hw_page_array[pgsz1].hp_size;
838 			if ((len >= pgsz) && IS_P2ALIGNED(addr, pgsz))
839 				return (pgsz1);
840 		}
841 		if (pgsz0 > TTE8K) {	/* Then try pgsz0, if !TTE8K */
842 			pgsz = hw_page_array[pgsz0].hp_size;
843 			if ((len >= pgsz) && IS_P2ALIGNED(addr, pgsz))
844 				return (pgsz0);
845 		}
846 	} else { /* Otherwise pick best fit if neither TLB is reprogrammed. */
847 		for (szc = maxszc; szc > TTE8K; szc--) {
848 			if (disable_large_pages & (1 << szc))
849 				continue;
850 
851 			pgsz = hw_page_array[szc].hp_size;
852 			if ((len >= pgsz) && IS_P2ALIGNED(addr, pgsz))
853 				return (szc);
854 		}
855 	}
856 	return (TTE8K);
857 }
858 
859 /*
860  * Function to reprogram the TLBs when page sizes used
861  * by a process change significantly.
862  */
863 void
864 mmu_setup_page_sizes(struct hat *hat, uint64_t *ttecnt)
865 {
866 	extern int page_szc(size_t);
867 	uint8_t pgsz0, pgsz1;
868 
869 	/*
870 	 * Don't program 2nd dtlb for kernel and ism hat
871 	 */
872 	if (hat->sfmmu_ismhat || hat == ksfmmup)
873 		return;
874 
875 	/*
876 	 * hat->sfmmu_pgsz[] is an array whose elements
877 	 * contain a sorted order of page sizes.  Element
878 	 * 0 is the most commonly used page size, followed
879 	 * by element 1, and so on.
880 	 *
881 	 * ttecnt[] is an array of per-page-size page counts
882 	 * mapped into the process.
883 	 *
884 	 * If the HAT's choice for page sizes is unsuitable,
885 	 * we can override it here.  The new values written
886 	 * to the array will be handed back to us later to
887 	 * do the actual programming of the TLB hardware.
888 	 *
889 	 */
890 	pgsz0 = (uint8_t)MIN(hat->sfmmu_pgsz[0], hat->sfmmu_pgsz[1]);
891 	pgsz1 = (uint8_t)MAX(hat->sfmmu_pgsz[0], hat->sfmmu_pgsz[1]);
892 
893 	/*
894 	 * This implements PAGESIZE programming of the sTLB
895 	 * if large TTE counts don't exceed the thresholds.
896 	 */
897 	if (ttecnt[pgsz0] < ttecnt_threshold[pgsz0])
898 		pgsz0 = page_szc(MMU_PAGESIZE);
899 	if (ttecnt[pgsz1] < ttecnt_threshold[pgsz1])
900 		pgsz1 = page_szc(MMU_PAGESIZE);
901 	hat->sfmmu_pgsz[0] = pgsz0;
902 	hat->sfmmu_pgsz[1] = pgsz1;
903 	/* otherwise, accept what the HAT chose for us */
904 }
905 
906 /*
907  * The HAT calls this function when an MMU context is allocated so that we
908  * can reprogram the large TLBs appropriately for the new process using
909  * the context.
910  *
911  * The caller must hold the HAT lock.
912  */
913 void
914 mmu_set_ctx_page_sizes(struct hat *hat)
915 {
916 	uint8_t pgsz0, pgsz1;
917 	uint8_t new_cext;
918 
919 	ASSERT(sfmmu_hat_lock_held(hat));
920 	/*
921 	 * Don't program 2nd dtlb for kernel and ism hat
922 	 */
923 	if (hat->sfmmu_ismhat || hat == ksfmmup)
924 		return;
925 
926 	/*
927 	 * If supported, reprogram the TLBs to a larger pagesize.
928 	 */
929 	pgsz0 = hat->sfmmu_pgsz[0];
930 	pgsz1 = hat->sfmmu_pgsz[1];
931 	ASSERT(pgsz0 < mmu_page_sizes);
932 	ASSERT(pgsz1 < mmu_page_sizes);
933 	new_cext = TAGACCEXT_MKSZPAIR(pgsz1, pgsz0);
934 	if (hat->sfmmu_cext != new_cext) {
935 		hat->sfmmu_cext = new_cext;
936 	}
937 	ctx_pgsz_array[hat->sfmmu_cnum] = hat->sfmmu_cext;
938 	/*
939 	 * sfmmu_setctx_sec() will take care of the
940 	 * rest of the dirty work for us.
941 	 */
942 }
943 
944 /*
945  * Return processor specific async error structure
946  * size used.
947  */
948 int
949 cpu_aflt_size(void)
950 {
951 	return (sizeof (opl_async_flt_t));
952 }
953 
954 /*
955  * The cpu_sync_log_err() function is called via the [uc]e_drain() function to
956  * post-process CPU events that are dequeued.  As such, it can be invoked
957  * from softint context, from AST processing in the trap() flow, or from the
958  * panic flow.  We decode the CPU-specific data, and take appropriate actions.
959  * Historically this entry point was used to log the actual cmn_err(9F) text;
960  * now with FMA it is used to prepare 'flt' to be converted into an ereport.
961  * With FMA this function now also returns a flag which indicates to the
962  * caller whether the ereport should be posted (1) or suppressed (0).
963  */
964 /*ARGSUSED*/
965 static int
966 cpu_sync_log_err(void *flt)
967 {
968 	opl_async_flt_t *opl_flt = (opl_async_flt_t *)flt;
969 	struct async_flt *aflt = (struct async_flt *)flt;
970 
971 	/*
972 	 * No extra processing of urgent error events.
973 	 * Always generate ereports for these events.
974 	 */
975 	if (aflt->flt_status == OPL_ECC_URGENT_TRAP)
976 		return (1);
977 
978 	/*
979 	 * Additional processing for synchronous errors.
980 	 */
981 	switch (opl_flt->flt_type) {
982 	case OPL_CPU_INV_SFSR:
983 		return (1);
984 
985 	case OPL_CPU_SYNC_UE:
986 		/*
987 		 * The validity: SFSR_MK_UE bit has been checked
988 		 * in opl_cpu_sync_error()
989 		 * No more check is required.
990 		 *
991 		 * opl_flt->flt_eid_mod and flt_eid_sid have been set by H/W,
992 		 * and they have been retrieved in cpu_queue_events()
993 		 */
994 
995 		if (opl_flt->flt_eid_mod == OPL_ERRID_MEM) {
996 			ASSERT(aflt->flt_in_memory);
997 			/*
998 			 * We want to skip logging only if ALL the following
999 			 * conditions are true:
1000 			 *
1001 			 *	1. We are not panicing already.
1002 			 *	2. The error is a memory error.
1003 			 *	3. There is only one error.
1004 			 *	4. The error is on a retired page.
1005 			 *	5. The error occurred under on_trap
1006 			 *	protection AFLT_PROT_EC
1007 			 */
1008 			if (!panicstr && aflt->flt_prot == AFLT_PROT_EC &&
1009 			    page_retire_check(aflt->flt_addr, NULL) == 0) {
1010 				/*
1011 				 * Do not log an error from
1012 				 * the retired page
1013 				 */
1014 				softcall(ecc_page_zero, (void *)aflt->flt_addr);
1015 				return (0);
1016 			}
1017 			if (!panicstr)
1018 				cpu_page_retire(opl_flt);
1019 		}
1020 		return (1);
1021 
1022 	case OPL_CPU_SYNC_OTHERS:
1023 		/*
1024 		 * For the following error cases, the processor HW does
1025 		 * not set the flt_eid_mod/flt_eid_sid. Instead, SW will attempt
1026 		 * to assign appropriate values here to reflect what we
1027 		 * think is the most likely cause of the problem w.r.t to
1028 		 * the particular error event.  For Buserr and timeout
1029 		 * error event, we will assign OPL_ERRID_CHANNEL as the
1030 		 * most likely reason.  For TLB parity or multiple hit
1031 		 * error events, we will assign the reason as
1032 		 * OPL_ERRID_CPU (cpu related problem) and set the
1033 		 * flt_eid_sid to point to the cpuid.
1034 		 */
1035 
1036 		if (opl_flt->flt_bit & (SFSR_BERR|SFSR_TO)) {
1037 			/*
1038 			 * flt_eid_sid will not be used for this case.
1039 			 */
1040 			opl_flt->flt_eid_mod = OPL_ERRID_CHANNEL;
1041 		}
1042 		if (opl_flt->flt_bit & (SFSR_TLB_MUL|SFSR_TLB_PRT)) {
1043 			    opl_flt->flt_eid_mod = OPL_ERRID_CPU;
1044 			    opl_flt->flt_eid_sid = aflt->flt_inst;
1045 		}
1046 
1047 		/*
1048 		 * In case of no effective error bit
1049 		 */
1050 		if ((opl_flt->flt_bit & SFSR_ERRS) == 0) {
1051 			    opl_flt->flt_eid_mod = OPL_ERRID_CPU;
1052 			    opl_flt->flt_eid_sid = aflt->flt_inst;
1053 		}
1054 		break;
1055 
1056 		default:
1057 			return (1);
1058 	}
1059 	return (1);
1060 }
1061 
1062 /*
1063  * Retire the bad page that may contain the flushed error.
1064  */
1065 void
1066 cpu_page_retire(opl_async_flt_t *opl_flt)
1067 {
1068 	struct async_flt *aflt = (struct async_flt *)opl_flt;
1069 	(void) page_retire(aflt->flt_addr, PR_UE);
1070 }
1071 
1072 /*
1073  * Invoked by error_init() early in startup and therefore before
1074  * startup_errorq() is called to drain any error Q -
1075  *
1076  * startup()
1077  *   startup_end()
1078  *     error_init()
1079  *       cpu_error_init()
1080  * errorq_init()
1081  *   errorq_drain()
1082  * start_other_cpus()
1083  *
1084  * The purpose of this routine is to create error-related taskqs.  Taskqs
1085  * are used for this purpose because cpu_lock can't be grabbed from interrupt
1086  * context.
1087  *
1088  */
1089 /*ARGSUSED*/
1090 void
1091 cpu_error_init(int items)
1092 {
1093 	opl_err_log = (opl_errlog_t *)
1094 	    kmem_alloc(ERRLOG_ALLOC_SZ, KM_SLEEP);
1095 	if ((uint64_t)opl_err_log & MMU_PAGEOFFSET)
1096 		cmn_err(CE_PANIC, "The base address of the error log "
1097 		    "is not page aligned");
1098 }
1099 
1100 /*
1101  * We route all errors through a single switch statement.
1102  */
1103 void
1104 cpu_ue_log_err(struct async_flt *aflt)
1105 {
1106 	switch (aflt->flt_class) {
1107 	case CPU_FAULT:
1108 		if (cpu_sync_log_err(aflt))
1109 			cpu_ereport_post(aflt);
1110 		break;
1111 
1112 	case BUS_FAULT:
1113 		bus_async_log_err(aflt);
1114 		break;
1115 
1116 	default:
1117 		cmn_err(CE_WARN, "discarding async error %p with invalid "
1118 		    "fault class (0x%x)", (void *)aflt, aflt->flt_class);
1119 		return;
1120 	}
1121 }
1122 
1123 /*
1124  * Routine for panic hook callback from panic_idle().
1125  *
1126  * Nothing to do here.
1127  */
1128 void
1129 cpu_async_panic_callb(void)
1130 {
1131 }
1132 
1133 /*
1134  * Routine to return a string identifying the physical name
1135  * associated with a memory/cache error.
1136  */
1137 /*ARGSUSED*/
1138 int
1139 cpu_get_mem_unum(int synd_status, ushort_t flt_synd, uint64_t flt_stat,
1140     uint64_t flt_addr, int flt_bus_id, int flt_in_memory,
1141     ushort_t flt_status, char *buf, int buflen, int *lenp)
1142 {
1143 	int synd_code;
1144 	int ret;
1145 
1146 	/*
1147 	 * An AFSR of -1 defaults to a memory syndrome.
1148 	 */
1149 	synd_code = (int)flt_synd;
1150 
1151 	if (&plat_get_mem_unum) {
1152 		if ((ret = plat_get_mem_unum(synd_code, flt_addr, flt_bus_id,
1153 			flt_in_memory, flt_status, buf, buflen, lenp)) != 0) {
1154 			buf[0] = '\0';
1155 			*lenp = 0;
1156 		}
1157 		return (ret);
1158 	}
1159 	buf[0] = '\0';
1160 	*lenp = 0;
1161 	return (ENOTSUP);
1162 }
1163 
1164 /*
1165  * Wrapper for cpu_get_mem_unum() routine that takes an
1166  * async_flt struct rather than explicit arguments.
1167  */
1168 int
1169 cpu_get_mem_unum_aflt(int synd_status, struct async_flt *aflt,
1170     char *buf, int buflen, int *lenp)
1171 {
1172 	/*
1173 	 * We always pass -1 so that cpu_get_mem_unum will interpret this as a
1174 	 * memory error.
1175 	 */
1176 	return (cpu_get_mem_unum(synd_status, aflt->flt_synd,
1177 	    (uint64_t)-1,
1178 	    aflt->flt_addr, aflt->flt_bus_id, aflt->flt_in_memory,
1179 	    aflt->flt_status, buf, buflen, lenp));
1180 }
1181 
1182 /*
1183  * This routine is a more generic interface to cpu_get_mem_unum()
1184  * that may be used by other modules (e.g. mm).
1185  */
1186 /*ARGSUSED*/
1187 int
1188 cpu_get_mem_name(uint64_t synd, uint64_t *afsr, uint64_t afar,
1189     char *buf, int buflen, int *lenp)
1190 {
1191 	int synd_status, flt_in_memory, ret;
1192 	ushort_t flt_status = 0;
1193 	char unum[UNUM_NAMLEN];
1194 
1195 	/*
1196 	 * Check for an invalid address.
1197 	 */
1198 	if (afar == (uint64_t)-1)
1199 		return (ENXIO);
1200 
1201 	if (synd == (uint64_t)-1)
1202 		synd_status = AFLT_STAT_INVALID;
1203 	else
1204 		synd_status = AFLT_STAT_VALID;
1205 
1206 	flt_in_memory = (*afsr & SFSR_MEMORY) &&
1207 		pf_is_memory(afar >> MMU_PAGESHIFT);
1208 
1209 	ret = cpu_get_mem_unum(synd_status, (ushort_t)synd, *afsr, afar,
1210 		CPU->cpu_id, flt_in_memory, flt_status, unum,
1211 		UNUM_NAMLEN, lenp);
1212 	if (ret != 0)
1213 		return (ret);
1214 
1215 	if (*lenp >= buflen)
1216 		return (ENAMETOOLONG);
1217 
1218 	(void) strncpy(buf, unum, buflen);
1219 
1220 	return (0);
1221 }
1222 
1223 /*
1224  * Routine to return memory information associated
1225  * with a physical address and syndrome.
1226  */
1227 /*ARGSUSED*/
1228 int
1229 cpu_get_mem_info(uint64_t synd, uint64_t afar,
1230     uint64_t *mem_sizep, uint64_t *seg_sizep, uint64_t *bank_sizep,
1231     int *segsp, int *banksp, int *mcidp)
1232 {
1233 	int synd_code = (int)synd;
1234 
1235 	if (afar == (uint64_t)-1)
1236 		return (ENXIO);
1237 
1238 	if (p2get_mem_info != NULL)
1239 		return ((p2get_mem_info)(synd_code, afar,
1240 			mem_sizep, seg_sizep, bank_sizep,
1241 			segsp, banksp, mcidp));
1242 	else
1243 		return (ENOTSUP);
1244 }
1245 
1246 /*
1247  * Routine to return a string identifying the physical
1248  * name associated with a cpuid.
1249  */
1250 int
1251 cpu_get_cpu_unum(int cpuid, char *buf, int buflen, int *lenp)
1252 {
1253 	int ret;
1254 	char unum[UNUM_NAMLEN];
1255 
1256 	if (&plat_get_cpu_unum) {
1257 		if ((ret = plat_get_cpu_unum(cpuid, unum, UNUM_NAMLEN, lenp))
1258 			!= 0)
1259 			return (ret);
1260 	} else {
1261 		return (ENOTSUP);
1262 	}
1263 
1264 	if (*lenp >= buflen)
1265 		return (ENAMETOOLONG);
1266 
1267 	(void) strncpy(buf, unum, *lenp);
1268 
1269 	return (0);
1270 }
1271 
1272 /*
1273  * This routine exports the name buffer size.
1274  */
1275 size_t
1276 cpu_get_name_bufsize()
1277 {
1278 	return (UNUM_NAMLEN);
1279 }
1280 
1281 /*
1282  * Flush the entire ecache by ASI_L2_CNTL.U2_FLUSH
1283  */
1284 void
1285 cpu_flush_ecache(void)
1286 {
1287 	flush_ecache(ecache_flushaddr, cpunodes[CPU->cpu_id].ecache_size,
1288 	    cpunodes[CPU->cpu_id].ecache_linesize);
1289 }
1290 
1291 static uint8_t
1292 flt_to_trap_type(struct async_flt *aflt)
1293 {
1294 	if (aflt->flt_status & OPL_ECC_ISYNC_TRAP)
1295 		return (TRAP_TYPE_ECC_I);
1296 	if (aflt->flt_status & OPL_ECC_DSYNC_TRAP)
1297 		return (TRAP_TYPE_ECC_D);
1298 	if (aflt->flt_status & OPL_ECC_URGENT_TRAP)
1299 		return (TRAP_TYPE_URGENT);
1300 	return (-1);
1301 }
1302 
1303 /*
1304  * Encode the data saved in the opl_async_flt_t struct into
1305  * the FM ereport payload.
1306  */
1307 /* ARGSUSED */
1308 static void
1309 cpu_payload_add_aflt(struct async_flt *aflt, nvlist_t *payload,
1310 		nvlist_t *resource)
1311 {
1312 	opl_async_flt_t *opl_flt = (opl_async_flt_t *)aflt;
1313 	char unum[UNUM_NAMLEN];
1314 	char sbuf[21]; /* sizeof (UINT64_MAX) + '\0' */
1315 	int len;
1316 
1317 
1318 	if (aflt->flt_payload & FM_EREPORT_PAYLOAD_FLAG_SFSR) {
1319 		fm_payload_set(payload, FM_EREPORT_PAYLOAD_NAME_SFSR,
1320 			DATA_TYPE_UINT64, aflt->flt_stat, NULL);
1321 	}
1322 	if (aflt->flt_payload & FM_EREPORT_PAYLOAD_FLAG_SFAR) {
1323 		fm_payload_set(payload, FM_EREPORT_PAYLOAD_NAME_SFAR,
1324 			DATA_TYPE_UINT64, aflt->flt_addr, NULL);
1325 	}
1326 	if (aflt->flt_payload & FM_EREPORT_PAYLOAD_FLAG_UGESR) {
1327 		fm_payload_set(payload, FM_EREPORT_PAYLOAD_NAME_UGESR,
1328 			DATA_TYPE_UINT64, aflt->flt_stat, NULL);
1329 	}
1330 	if (aflt->flt_payload & FM_EREPORT_PAYLOAD_FLAG_PC) {
1331 		fm_payload_set(payload, FM_EREPORT_PAYLOAD_NAME_PC,
1332 		    DATA_TYPE_UINT64, (uint64_t)aflt->flt_pc, NULL);
1333 	}
1334 	if (aflt->flt_payload & FM_EREPORT_PAYLOAD_FLAG_TL) {
1335 		fm_payload_set(payload, FM_EREPORT_PAYLOAD_NAME_TL,
1336 		    DATA_TYPE_UINT8, (uint8_t)aflt->flt_tl, NULL);
1337 	}
1338 	if (aflt->flt_payload & FM_EREPORT_PAYLOAD_FLAG_TT) {
1339 		fm_payload_set(payload, FM_EREPORT_PAYLOAD_NAME_TT,
1340 		    DATA_TYPE_UINT8, flt_to_trap_type(aflt), NULL);
1341 	}
1342 	if (aflt->flt_payload & FM_EREPORT_PAYLOAD_FLAG_PRIV) {
1343 		fm_payload_set(payload, FM_EREPORT_PAYLOAD_NAME_PRIV,
1344 		    DATA_TYPE_BOOLEAN_VALUE,
1345 		    (aflt->flt_priv ? B_TRUE : B_FALSE), NULL);
1346 	}
1347 	if (aflt->flt_payload & FM_EREPORT_PAYLOAD_FLAG_FLT_STATUS) {
1348 		fm_payload_set(payload, FM_EREPORT_PAYLOAD_NAME_FLT_STATUS,
1349 			DATA_TYPE_UINT64, (uint64_t)aflt->flt_status, NULL);
1350 	}
1351 
1352 	switch (opl_flt->flt_eid_mod) {
1353 	case OPL_ERRID_CPU:
1354 		(void) snprintf(sbuf, sizeof (sbuf), "%llX",
1355 			(u_longlong_t)cpunodes[opl_flt->flt_eid_sid].device_id);
1356 		(void) fm_fmri_cpu_set(resource, FM_CPU_SCHEME_VERSION,
1357 			NULL, opl_flt->flt_eid_sid,
1358 			(uint8_t *)&cpunodes[opl_flt->flt_eid_sid].version,
1359 			sbuf);
1360 		fm_payload_set(payload,
1361 			FM_EREPORT_PAYLOAD_NAME_RESOURCE,
1362 			DATA_TYPE_NVLIST, resource, NULL);
1363 		break;
1364 
1365 	case OPL_ERRID_CHANNEL:
1366 		/*
1367 		 * No resource is created but the cpumem DE will find
1368 		 * the defective path by retreiving EID from SFSR which is
1369 		 * included in the payload.
1370 		 */
1371 		break;
1372 
1373 	case OPL_ERRID_MEM:
1374 		(void) cpu_get_mem_unum_aflt(0, aflt, unum, UNUM_NAMLEN, &len);
1375 		(void) fm_fmri_mem_set(resource, FM_MEM_SCHEME_VERSION,
1376 			NULL, unum, NULL, (uint64_t)-1);
1377 		fm_payload_set(payload, FM_EREPORT_PAYLOAD_NAME_RESOURCE,
1378 			DATA_TYPE_NVLIST, resource, NULL);
1379 		break;
1380 
1381 	case OPL_ERRID_PATH:
1382 		/*
1383 		 * No resource is created but the cpumem DE will find
1384 		 * the defective path by retreiving EID from SFSR which is
1385 		 * included in the payload.
1386 		 */
1387 		break;
1388 	}
1389 }
1390 
1391 /*
1392  * Returns whether fault address is valid for this error bit and
1393  * whether the address is "in memory" (i.e. pf_is_memory returns 1).
1394  */
1395 /*ARGSUSED*/
1396 static int
1397 cpu_flt_in_memory(opl_async_flt_t *opl_flt, uint64_t t_afsr_bit)
1398 {
1399 	struct async_flt *aflt = (struct async_flt *)opl_flt;
1400 
1401 	if (aflt->flt_status & (OPL_ECC_SYNC_TRAP)) {
1402 		return ((t_afsr_bit & SFSR_MEMORY) &&
1403 		    pf_is_memory(aflt->flt_addr >> MMU_PAGESHIFT));
1404 	}
1405 	return (0);
1406 }
1407 
1408 /*
1409  * In OPL SCF does the stick synchronization.
1410  */
1411 void
1412 sticksync_slave(void)
1413 {
1414 }
1415 
1416 /*
1417  * In OPL SCF does the stick synchronization.
1418  */
1419 void
1420 sticksync_master(void)
1421 {
1422 }
1423 
1424 /*
1425  * Cpu private unitialization.  OPL cpus do not use the private area.
1426  */
1427 void
1428 cpu_uninit_private(struct cpu *cp)
1429 {
1430 	cmp_delete_cpu(cp->cpu_id);
1431 }
1432 
1433 /*
1434  * Always flush an entire cache.
1435  */
1436 void
1437 cpu_error_ecache_flush(void)
1438 {
1439 	cpu_flush_ecache();
1440 }
1441 
1442 void
1443 cpu_ereport_post(struct async_flt *aflt)
1444 {
1445 	char *cpu_type, buf[FM_MAX_CLASS];
1446 	nv_alloc_t *nva = NULL;
1447 	nvlist_t *ereport, *detector, *resource;
1448 	errorq_elem_t *eqep;
1449 	char sbuf[21]; /* sizeof (UINT64_MAX) + '\0' */
1450 
1451 	if (aflt->flt_panic || panicstr) {
1452 		eqep = errorq_reserve(ereport_errorq);
1453 		if (eqep == NULL)
1454 			return;
1455 		ereport = errorq_elem_nvl(ereport_errorq, eqep);
1456 		nva = errorq_elem_nva(ereport_errorq, eqep);
1457 	} else {
1458 		ereport = fm_nvlist_create(nva);
1459 	}
1460 
1461 	/*
1462 	 * Create the scheme "cpu" FMRI.
1463 	 */
1464 	detector = fm_nvlist_create(nva);
1465 	resource = fm_nvlist_create(nva);
1466 	switch (cpunodes[aflt->flt_inst].implementation) {
1467 	case OLYMPUS_C_IMPL:
1468 		cpu_type = FM_EREPORT_CPU_SPARC64_VI;
1469 		break;
1470 	default:
1471 		cpu_type = FM_EREPORT_CPU_UNSUPPORTED;
1472 		break;
1473 	}
1474 	(void) snprintf(sbuf, sizeof (sbuf), "%llX",
1475 	    (u_longlong_t)cpunodes[aflt->flt_inst].device_id);
1476 	(void) fm_fmri_cpu_set(detector, FM_CPU_SCHEME_VERSION, NULL,
1477 	    aflt->flt_inst, (uint8_t *)&cpunodes[aflt->flt_inst].version,
1478 	    sbuf);
1479 
1480 	/*
1481 	 * Encode all the common data into the ereport.
1482 	 */
1483 	(void) snprintf(buf, FM_MAX_CLASS, "%s.%s.%s",
1484 	    FM_ERROR_CPU, cpu_type, aflt->flt_erpt_class);
1485 
1486 	fm_ereport_set(ereport, FM_EREPORT_VERSION, buf,
1487 	    fm_ena_generate(aflt->flt_id, FM_ENA_FMT1), detector, NULL);
1488 
1489 	/*
1490 	 * Encode the error specific data that was saved in
1491 	 * the async_flt structure into the ereport.
1492 	 */
1493 	cpu_payload_add_aflt(aflt, ereport, resource);
1494 
1495 	if (aflt->flt_panic || panicstr) {
1496 		errorq_commit(ereport_errorq, eqep, ERRORQ_SYNC);
1497 	} else {
1498 		(void) fm_ereport_post(ereport, EVCH_TRYHARD);
1499 		fm_nvlist_destroy(ereport, FM_NVA_FREE);
1500 		fm_nvlist_destroy(detector, FM_NVA_FREE);
1501 		fm_nvlist_destroy(resource, FM_NVA_FREE);
1502 	}
1503 }
1504 
1505 void
1506 cpu_run_bus_error_handlers(struct async_flt *aflt, int expected)
1507 {
1508 	int status;
1509 	ddi_fm_error_t de;
1510 
1511 	bzero(&de, sizeof (ddi_fm_error_t));
1512 
1513 	de.fme_version = DDI_FME_VERSION;
1514 	de.fme_ena = fm_ena_generate(aflt->flt_id, FM_ENA_FMT1);
1515 	de.fme_flag = expected;
1516 	de.fme_bus_specific = (void *)aflt->flt_addr;
1517 	status = ndi_fm_handler_dispatch(ddi_root_node(), NULL, &de);
1518 	if ((aflt->flt_prot == AFLT_PROT_NONE) && (status == DDI_FM_FATAL))
1519 		aflt->flt_panic = 1;
1520 }
1521 
1522 void
1523 cpu_errorq_dispatch(char *error_class, void *payload, size_t payload_sz,
1524     errorq_t *eqp, uint_t flag)
1525 {
1526 	struct async_flt *aflt = (struct async_flt *)payload;
1527 
1528 	aflt->flt_erpt_class = error_class;
1529 	errorq_dispatch(eqp, payload, payload_sz, flag);
1530 }
1531 
1532 void
1533 adjust_hw_copy_limits(int ecache_size)
1534 {
1535 	/*
1536 	 * Set hw copy limits.
1537 	 *
1538 	 * /etc/system will be parsed later and can override one or more
1539 	 * of these settings.
1540 	 *
1541 	 * At this time, ecache size seems only mildly relevant.
1542 	 * We seem to run into issues with the d-cache and stalls
1543 	 * we see on misses.
1544 	 *
1545 	 * Cycle measurement indicates that 2 byte aligned copies fare
1546 	 * little better than doing things with VIS at around 512 bytes.
1547 	 * 4 byte aligned shows promise until around 1024 bytes. 8 Byte
1548 	 * aligned is faster whenever the source and destination data
1549 	 * in cache and the total size is less than 2 Kbytes.  The 2K
1550 	 * limit seems to be driven by the 2K write cache.
1551 	 * When more than 2K of copies are done in non-VIS mode, stores
1552 	 * backup in the write cache.  In VIS mode, the write cache is
1553 	 * bypassed, allowing faster cache-line writes aligned on cache
1554 	 * boundaries.
1555 	 *
1556 	 * In addition, in non-VIS mode, there is no prefetching, so
1557 	 * for larger copies, the advantage of prefetching to avoid even
1558 	 * occasional cache misses is enough to justify using the VIS code.
1559 	 *
1560 	 * During testing, it was discovered that netbench ran 3% slower
1561 	 * when hw_copy_limit_8 was 2K or larger.  Apparently for server
1562 	 * applications, data is only used once (copied to the output
1563 	 * buffer, then copied by the network device off the system).  Using
1564 	 * the VIS copy saves more L2 cache state.  Network copies are
1565 	 * around 1.3K to 1.5K in size for historical reasons.
1566 	 *
1567 	 * Therefore, a limit of 1K bytes will be used for the 8 byte
1568 	 * aligned copy even for large caches and 8 MB ecache.  The
1569 	 * infrastructure to allow different limits for different sized
1570 	 * caches is kept to allow further tuning in later releases.
1571 	 */
1572 
1573 	if (min_ecache_size == 0 && use_hw_bcopy) {
1574 		/*
1575 		 * First time through - should be before /etc/system
1576 		 * is read.
1577 		 * Could skip the checks for zero but this lets us
1578 		 * preserve any debugger rewrites.
1579 		 */
1580 		if (hw_copy_limit_1 == 0) {
1581 			hw_copy_limit_1 = VIS_COPY_THRESHOLD;
1582 			priv_hcl_1 = hw_copy_limit_1;
1583 		}
1584 		if (hw_copy_limit_2 == 0) {
1585 			hw_copy_limit_2 = 2 * VIS_COPY_THRESHOLD;
1586 			priv_hcl_2 = hw_copy_limit_2;
1587 		}
1588 		if (hw_copy_limit_4 == 0) {
1589 			hw_copy_limit_4 = 4 * VIS_COPY_THRESHOLD;
1590 			priv_hcl_4 = hw_copy_limit_4;
1591 		}
1592 		if (hw_copy_limit_8 == 0) {
1593 			hw_copy_limit_8 = 4 * VIS_COPY_THRESHOLD;
1594 			priv_hcl_8 = hw_copy_limit_8;
1595 		}
1596 		min_ecache_size = ecache_size;
1597 	} else {
1598 		/*
1599 		 * MP initialization. Called *after* /etc/system has
1600 		 * been parsed. One CPU has already been initialized.
1601 		 * Need to cater for /etc/system having scragged one
1602 		 * of our values.
1603 		 */
1604 		if (ecache_size == min_ecache_size) {
1605 			/*
1606 			 * Same size ecache. We do nothing unless we
1607 			 * have a pessimistic ecache setting. In that
1608 			 * case we become more optimistic (if the cache is
1609 			 * large enough).
1610 			 */
1611 			if (hw_copy_limit_8 == 4 * VIS_COPY_THRESHOLD) {
1612 				/*
1613 				 * Need to adjust hw_copy_limit* from our
1614 				 * pessimistic uniprocessor value to a more
1615 				 * optimistic UP value *iff* it hasn't been
1616 				 * reset.
1617 				 */
1618 				if ((ecache_size > 1048576) &&
1619 				    (priv_hcl_8 == hw_copy_limit_8)) {
1620 					if (ecache_size <= 2097152)
1621 						hw_copy_limit_8 = 4 *
1622 						    VIS_COPY_THRESHOLD;
1623 					else if (ecache_size <= 4194304)
1624 						hw_copy_limit_8 = 4 *
1625 						    VIS_COPY_THRESHOLD;
1626 					else
1627 						hw_copy_limit_8 = 4 *
1628 						    VIS_COPY_THRESHOLD;
1629 					priv_hcl_8 = hw_copy_limit_8;
1630 				}
1631 			}
1632 		} else if (ecache_size < min_ecache_size) {
1633 			/*
1634 			 * A different ecache size. Can this even happen?
1635 			 */
1636 			if (priv_hcl_8 == hw_copy_limit_8) {
1637 				/*
1638 				 * The previous value that we set
1639 				 * is unchanged (i.e., it hasn't been
1640 				 * scragged by /etc/system). Rewrite it.
1641 				 */
1642 				if (ecache_size <= 1048576)
1643 					hw_copy_limit_8 = 8 *
1644 					    VIS_COPY_THRESHOLD;
1645 				else if (ecache_size <= 2097152)
1646 					hw_copy_limit_8 = 8 *
1647 					    VIS_COPY_THRESHOLD;
1648 				else if (ecache_size <= 4194304)
1649 					hw_copy_limit_8 = 8 *
1650 					    VIS_COPY_THRESHOLD;
1651 				else
1652 					hw_copy_limit_8 = 10 *
1653 					    VIS_COPY_THRESHOLD;
1654 				priv_hcl_8 = hw_copy_limit_8;
1655 				min_ecache_size = ecache_size;
1656 			}
1657 		}
1658 	}
1659 }
1660 
1661 #define	VIS_BLOCKSIZE		64
1662 
1663 int
1664 dtrace_blksuword32_err(uintptr_t addr, uint32_t *data)
1665 {
1666 	int ret, watched;
1667 
1668 	watched = watch_disable_addr((void *)addr, VIS_BLOCKSIZE, S_WRITE);
1669 	ret = dtrace_blksuword32(addr, data, 0);
1670 	if (watched)
1671 		watch_enable_addr((void *)addr, VIS_BLOCKSIZE, S_WRITE);
1672 
1673 	return (ret);
1674 }
1675 
1676 void
1677 opl_cpu_reg_init()
1678 {
1679 	uint64_t	this_cpu_log;
1680 
1681 	/*
1682 	 * We do not need to re-initialize cpu0 registers.
1683 	 */
1684 	if (cpu[getprocessorid()] == &cpu0)
1685 		return;
1686 
1687 	/*
1688 	 * Initialize Error log Scratch register for error handling.
1689 	 */
1690 
1691 	this_cpu_log = va_to_pa((void*)(((uint64_t)opl_err_log) +
1692 		ERRLOG_BUFSZ * (getprocessorid())));
1693 	opl_error_setup(this_cpu_log);
1694 
1695 	/*
1696 	 * Enable MMU translating multiple page sizes for
1697 	 * sITLB and sDTLB.
1698 	 */
1699 	opl_mpg_enable();
1700 }
1701 
1702 /*
1703  * Queue one event in ue_queue based on ecc_type_to_info entry.
1704  */
1705 static void
1706 cpu_queue_one_event(opl_async_flt_t *opl_flt, char *reason,
1707     ecc_type_to_info_t *eccp)
1708 {
1709 	struct async_flt *aflt = (struct async_flt *)opl_flt;
1710 
1711 	if (reason &&
1712 	    strlen(reason) + strlen(eccp->ec_reason) < MAX_REASON_STRING) {
1713 		(void) strcat(reason, eccp->ec_reason);
1714 	}
1715 
1716 	opl_flt->flt_bit = eccp->ec_afsr_bit;
1717 	opl_flt->flt_type = eccp->ec_flt_type;
1718 	aflt->flt_in_memory = cpu_flt_in_memory(opl_flt, opl_flt->flt_bit);
1719 	aflt->flt_payload = eccp->ec_err_payload;
1720 
1721 	ASSERT(aflt->flt_status & (OPL_ECC_SYNC_TRAP|OPL_ECC_URGENT_TRAP));
1722 	cpu_errorq_dispatch(eccp->ec_err_class,
1723 		(void *)opl_flt, sizeof (opl_async_flt_t),
1724 		ue_queue,
1725 		aflt->flt_panic);
1726 }
1727 
1728 /*
1729  * Queue events on async event queue one event per error bit.
1730  * Return number of events queued.
1731  */
1732 int
1733 cpu_queue_events(opl_async_flt_t *opl_flt, char *reason, uint64_t t_afsr_errs)
1734 {
1735 	struct async_flt *aflt = (struct async_flt *)opl_flt;
1736 	ecc_type_to_info_t *eccp;
1737 	int nevents = 0;
1738 
1739 	/*
1740 	 * Queue expected errors, error bit and fault type must must match
1741 	 * in the ecc_type_to_info table.
1742 	 */
1743 	for (eccp = ecc_type_to_info; t_afsr_errs != 0 && eccp->ec_desc != NULL;
1744 		eccp++) {
1745 		if ((eccp->ec_afsr_bit & t_afsr_errs) != 0 &&
1746 		    (eccp->ec_flags & aflt->flt_status) != 0) {
1747 			/*
1748 			 * UE error event can be further
1749 			 * classified/breakdown into finer granularity
1750 			 * based on the flt_eid_mod value set by HW.  We do
1751 			 * special handling here so that we can report UE
1752 			 * error in finer granularity as ue_mem,
1753 			 * ue_channel, ue_cpu or ue_path.
1754 			 */
1755 			if (eccp->ec_flt_type == OPL_CPU_SYNC_UE) {
1756 				opl_flt->flt_eid_mod =
1757 					(aflt->flt_stat & SFSR_EID_MOD)
1758 					>> SFSR_EID_MOD_SHIFT;
1759 				opl_flt->flt_eid_sid =
1760 					(aflt->flt_stat & SFSR_EID_SID)
1761 					>> SFSR_EID_SID_SHIFT;
1762 				/*
1763 				 * Need to advance eccp pointer by flt_eid_mod
1764 				 * so that we get an appropriate ecc pointer
1765 				 *
1766 				 * EID			# of advances
1767 				 * ----------------------------------
1768 				 * OPL_ERRID_MEM	0
1769 				 * OPL_ERRID_CHANNEL	1
1770 				 * OPL_ERRID_CPU	2
1771 				 * OPL_ERRID_PATH	3
1772 				 */
1773 				eccp += opl_flt->flt_eid_mod;
1774 			}
1775 			cpu_queue_one_event(opl_flt, reason, eccp);
1776 			t_afsr_errs &= ~eccp->ec_afsr_bit;
1777 			nevents++;
1778 		}
1779 	}
1780 
1781 	return (nevents);
1782 }
1783 
1784 /*
1785  * Sync. error wrapper functions.
1786  * We use these functions in order to transfer here from the
1787  * nucleus trap handler information about trap type (data or
1788  * instruction) and trap level (0 or above 0). This way we
1789  * get rid of using SFSR's reserved bits.
1790  */
1791 
1792 #define	OPL_SYNC_TL0	0
1793 #define	OPL_SYNC_TL1	1
1794 #define	OPL_ISYNC_ERR	0
1795 #define	OPL_DSYNC_ERR	1
1796 
1797 void
1798 opl_cpu_isync_tl0_error(struct regs *rp, ulong_t p_sfar, ulong_t p_sfsr)
1799 {
1800 	uint64_t t_sfar = p_sfar;
1801 	uint64_t t_sfsr = p_sfsr;
1802 
1803 	opl_cpu_sync_error(rp, t_sfar, t_sfsr,
1804 	    OPL_SYNC_TL0, OPL_ISYNC_ERR);
1805 }
1806 
1807 void
1808 opl_cpu_isync_tl1_error(struct regs *rp, ulong_t p_sfar, ulong_t p_sfsr)
1809 {
1810 	uint64_t t_sfar = p_sfar;
1811 	uint64_t t_sfsr = p_sfsr;
1812 
1813 	opl_cpu_sync_error(rp, t_sfar, t_sfsr,
1814 	    OPL_SYNC_TL1, OPL_ISYNC_ERR);
1815 }
1816 
1817 void
1818 opl_cpu_dsync_tl0_error(struct regs *rp, ulong_t p_sfar, ulong_t p_sfsr)
1819 {
1820 	uint64_t t_sfar = p_sfar;
1821 	uint64_t t_sfsr = p_sfsr;
1822 
1823 	opl_cpu_sync_error(rp, t_sfar, t_sfsr,
1824 	    OPL_SYNC_TL0, OPL_DSYNC_ERR);
1825 }
1826 
1827 void
1828 opl_cpu_dsync_tl1_error(struct regs *rp, ulong_t p_sfar, ulong_t p_sfsr)
1829 {
1830 	uint64_t t_sfar = p_sfar;
1831 	uint64_t t_sfsr = p_sfsr;
1832 
1833 	opl_cpu_sync_error(rp, t_sfar, t_sfsr,
1834 	    OPL_SYNC_TL1, OPL_DSYNC_ERR);
1835 }
1836 
1837 /*
1838  * The fj sync err handler transfers control here for UE, BERR, TO, TLB_MUL
1839  * and TLB_PRT.
1840  * This function is designed based on cpu_deferred_error().
1841  */
1842 
1843 static void
1844 opl_cpu_sync_error(struct regs *rp, ulong_t t_sfar, ulong_t t_sfsr,
1845     uint_t tl, uint_t derr)
1846 {
1847 	opl_async_flt_t opl_flt;
1848 	struct async_flt *aflt;
1849 	int trampolined = 0;
1850 	char pr_reason[MAX_REASON_STRING];
1851 	uint64_t log_sfsr;
1852 	int expected = DDI_FM_ERR_UNEXPECTED;
1853 	ddi_acc_hdl_t *hp;
1854 
1855 	/*
1856 	 * We need to look at p_flag to determine if the thread detected an
1857 	 * error while dumping core.  We can't grab p_lock here, but it's ok
1858 	 * because we just need a consistent snapshot and we know that everyone
1859 	 * else will store a consistent set of bits while holding p_lock.  We
1860 	 * don't have to worry about a race because SDOCORE is set once prior
1861 	 * to doing i/o from the process's address space and is never cleared.
1862 	 */
1863 	uint_t pflag = ttoproc(curthread)->p_flag;
1864 
1865 	pr_reason[0] = '\0';
1866 
1867 	/*
1868 	 * handle the specific error
1869 	 */
1870 	bzero(&opl_flt, sizeof (opl_async_flt_t));
1871 	aflt = (struct async_flt *)&opl_flt;
1872 	aflt->flt_id = gethrtime_waitfree();
1873 	aflt->flt_bus_id = getprocessorid();
1874 	aflt->flt_inst = CPU->cpu_id;
1875 	aflt->flt_stat = t_sfsr;
1876 	aflt->flt_addr = t_sfar;
1877 	aflt->flt_pc = (caddr_t)rp->r_pc;
1878 	aflt->flt_prot = (uchar_t)AFLT_PROT_NONE;
1879 	aflt->flt_class = (uchar_t)CPU_FAULT;
1880 	aflt->flt_priv = (uchar_t)
1881 		(tl == 1 ? 1 : ((rp->r_tstate & TSTATE_PRIV) ?  1 : 0));
1882 	aflt->flt_tl = (uchar_t)tl;
1883 	aflt->flt_panic = (uchar_t)(tl != 0 || aft_testfatal != 0 ||
1884 	    (t_sfsr & (SFSR_TLB_MUL|SFSR_TLB_PRT)) != 0);
1885 	aflt->flt_core = (pflag & SDOCORE) ? 1 : 0;
1886 	aflt->flt_status = (derr) ? OPL_ECC_DSYNC_TRAP : OPL_ECC_ISYNC_TRAP;
1887 
1888 	/*
1889 	 * If SFSR.FV is not set, both SFSR and SFAR/SFPAR values are uncertain.
1890 	 * So, clear all error bits to avoid mis-handling and force the system
1891 	 * panicked.
1892 	 * We skip all the procedures below down to the panic message call.
1893 	 */
1894 	if (!(t_sfsr & SFSR_FV)) {
1895 		opl_flt.flt_type = OPL_CPU_INV_SFSR;
1896 		aflt->flt_panic = 1;
1897 		aflt->flt_payload = FM_EREPORT_PAYLOAD_SYNC;
1898 		cpu_errorq_dispatch(FM_EREPORT_CPU_INV_SFSR,
1899 			(void *)&opl_flt, sizeof (opl_async_flt_t), ue_queue,
1900 			aflt->flt_panic);
1901 		fm_panic("%sErrors(s)", "invalid SFSR");
1902 	}
1903 
1904 	/*
1905 	 * If either UE and MK bit is off, this is not valid UE error.
1906 	 * If it is not valid UE error, clear UE & MK_UE bits to prevent
1907 	 * mis-handling below.
1908 	 * aflt->flt_stat keeps the original bits as a reference.
1909 	 */
1910 	if ((t_sfsr & (SFSR_MK_UE|SFSR_UE)) !=
1911 	    (SFSR_MK_UE|SFSR_UE)) {
1912 		t_sfsr &= ~(SFSR_MK_UE|SFSR_UE);
1913 	}
1914 
1915 	/*
1916 	 * If the trap occurred in privileged mode at TL=0, we need to check to
1917 	 * see if we were executing in the kernel under on_trap() or t_lofault
1918 	 * protection.  If so, modify the saved registers so that we return
1919 	 * from the trap to the appropriate trampoline routine.
1920 	 */
1921 	if (!aflt->flt_panic && aflt->flt_priv && tl == 0) {
1922 		if (curthread->t_ontrap != NULL) {
1923 			on_trap_data_t *otp = curthread->t_ontrap;
1924 
1925 			if (otp->ot_prot & OT_DATA_EC) {
1926 				aflt->flt_prot = (uchar_t)AFLT_PROT_EC;
1927 				otp->ot_trap |= (ushort_t)OT_DATA_EC;
1928 				rp->r_pc = otp->ot_trampoline;
1929 				rp->r_npc = rp->r_pc + 4;
1930 				trampolined = 1;
1931 			}
1932 
1933 			if ((t_sfsr & (SFSR_TO | SFSR_BERR)) &&
1934 			    (otp->ot_prot & OT_DATA_ACCESS)) {
1935 				aflt->flt_prot = (uchar_t)AFLT_PROT_ACCESS;
1936 				otp->ot_trap |= (ushort_t)OT_DATA_ACCESS;
1937 				rp->r_pc = otp->ot_trampoline;
1938 				rp->r_npc = rp->r_pc + 4;
1939 				trampolined = 1;
1940 				/*
1941 				 * for peeks and caut_gets errors are expected
1942 				 */
1943 				hp = (ddi_acc_hdl_t *)otp->ot_handle;
1944 				if (!hp)
1945 					expected = DDI_FM_ERR_PEEK;
1946 				else if (hp->ah_acc.devacc_attr_access ==
1947 				    DDI_CAUTIOUS_ACC)
1948 					expected = DDI_FM_ERR_EXPECTED;
1949 			}
1950 
1951 		} else if (curthread->t_lofault) {
1952 			aflt->flt_prot = AFLT_PROT_COPY;
1953 			rp->r_g1 = EFAULT;
1954 			rp->r_pc = curthread->t_lofault;
1955 			rp->r_npc = rp->r_pc + 4;
1956 			trampolined = 1;
1957 		}
1958 	}
1959 
1960 	/*
1961 	 * If we're in user mode or we're doing a protected copy, we either
1962 	 * want the ASTON code below to send a signal to the user process
1963 	 * or we want to panic if aft_panic is set.
1964 	 *
1965 	 * If we're in privileged mode and we're not doing a copy, then we
1966 	 * need to check if we've trampolined.  If we haven't trampolined,
1967 	 * we should panic.
1968 	 */
1969 	if (!aflt->flt_priv || aflt->flt_prot == AFLT_PROT_COPY) {
1970 		if (t_sfsr & (SFSR_ERRS & ~(SFSR_BERR | SFSR_TO)))
1971 			aflt->flt_panic |= aft_panic;
1972 	} else if (!trampolined) {
1973 		aflt->flt_panic = 1;
1974 	}
1975 
1976 	/*
1977 	 * If we've trampolined due to a privileged TO or BERR, or if an
1978 	 * unprivileged TO or BERR occurred, we don't want to enqueue an
1979 	 * event for that TO or BERR.  Queue all other events (if any) besides
1980 	 * the TO/BERR.
1981 	 */
1982 	log_sfsr = t_sfsr;
1983 	if (trampolined) {
1984 		log_sfsr &= ~(SFSR_TO | SFSR_BERR);
1985 	} else if (!aflt->flt_priv) {
1986 		/*
1987 		 * User mode, suppress messages if
1988 		 * cpu_berr_to_verbose is not set.
1989 		 */
1990 		if (!cpu_berr_to_verbose)
1991 			log_sfsr &= ~(SFSR_TO | SFSR_BERR);
1992 	}
1993 
1994 	if (((log_sfsr & SFSR_ERRS) &&
1995 		(cpu_queue_events(&opl_flt, pr_reason, t_sfsr) == 0)) ||
1996 	    ((t_sfsr & SFSR_ERRS) == 0)) {
1997 		opl_flt.flt_type = OPL_CPU_INV_SFSR;
1998 		aflt->flt_payload = FM_EREPORT_PAYLOAD_SYNC;
1999 		cpu_errorq_dispatch(FM_EREPORT_CPU_INV_SFSR,
2000 			(void *)&opl_flt, sizeof (opl_async_flt_t), ue_queue,
2001 			aflt->flt_panic);
2002 	}
2003 
2004 	if (t_sfsr & (SFSR_UE|SFSR_TO|SFSR_BERR)) {
2005 		cpu_run_bus_error_handlers(aflt, expected);
2006 	}
2007 
2008 	/*
2009 	 * Panic here if aflt->flt_panic has been set.  Enqueued errors will
2010 	 * be logged as part of the panic flow.
2011 	 */
2012 	if (aflt->flt_panic) {
2013 		if (pr_reason[0] == 0)
2014 			strcpy(pr_reason, "invalid SFSR ");
2015 
2016 		fm_panic("%sErrors(s)", pr_reason);
2017 	}
2018 
2019 	/*
2020 	 * If we queued an error and we are going to return from the trap and
2021 	 * the error was in user mode or inside of a copy routine, set AST flag
2022 	 * so the queue will be drained before returning to user mode.  The
2023 	 * AST processing will also act on our failure policy.
2024 	 */
2025 	if (!aflt->flt_priv || aflt->flt_prot == AFLT_PROT_COPY) {
2026 		int pcb_flag = 0;
2027 
2028 		if (t_sfsr & (SFSR_ERRS &
2029 			~(SFSR_BERR | SFSR_TO)))
2030 			pcb_flag |= ASYNC_HWERR;
2031 
2032 		if (t_sfsr & SFSR_BERR)
2033 			pcb_flag |= ASYNC_BERR;
2034 
2035 		if (t_sfsr & SFSR_TO)
2036 			pcb_flag |= ASYNC_BTO;
2037 
2038 		ttolwp(curthread)->lwp_pcb.pcb_flags |= pcb_flag;
2039 		aston(curthread);
2040 	}
2041 }
2042 
2043 /*ARGSUSED*/
2044 void
2045 opl_cpu_urgent_error(struct regs *rp, ulong_t p_ugesr, ulong_t tl)
2046 {
2047 	opl_async_flt_t opl_flt;
2048 	struct async_flt *aflt;
2049 	char pr_reason[MAX_REASON_STRING];
2050 
2051 	/* normalize tl */
2052 	tl = (tl >= 2 ? 1 : 0);
2053 	pr_reason[0] = '\0';
2054 
2055 	bzero(&opl_flt, sizeof (opl_async_flt_t));
2056 	aflt = (struct async_flt *)&opl_flt;
2057 	aflt->flt_id = gethrtime_waitfree();
2058 	aflt->flt_bus_id = getprocessorid();
2059 	aflt->flt_inst = CPU->cpu_id;
2060 	aflt->flt_stat = p_ugesr;
2061 	aflt->flt_pc = (caddr_t)rp->r_pc;
2062 	aflt->flt_class = (uchar_t)CPU_FAULT;
2063 	aflt->flt_tl = tl;
2064 	aflt->flt_priv = (uchar_t)
2065 		(tl == 1 ? 1 : ((rp->r_tstate & TSTATE_PRIV) ?  1 : 0));
2066 	aflt->flt_status = OPL_ECC_URGENT_TRAP;
2067 	aflt->flt_panic = 1;
2068 	/*
2069 	 * HW does not set mod/sid in case of urgent error.
2070 	 * So we have to set it here.
2071 	 */
2072 	opl_flt.flt_eid_mod = OPL_ERRID_CPU;
2073 	opl_flt.flt_eid_sid = aflt->flt_inst;
2074 
2075 	if (cpu_queue_events(&opl_flt, pr_reason, p_ugesr) == 0) {
2076 		opl_flt.flt_type = OPL_CPU_INV_UGESR;
2077 		aflt->flt_payload = FM_EREPORT_PAYLOAD_URGENT;
2078 		cpu_errorq_dispatch(FM_EREPORT_CPU_INV_URG,
2079 			(void *)&opl_flt, sizeof (opl_async_flt_t),
2080 			ue_queue, aflt->flt_panic);
2081 	}
2082 
2083 	fm_panic("Urgent Error");
2084 }
2085 
2086 /*
2087  * Initialization error counters resetting.
2088  */
2089 /* ARGSUSED */
2090 static void
2091 opl_ras_online(void *arg, cpu_t *cp, cyc_handler_t *hdlr, cyc_time_t *when)
2092 {
2093 	hdlr->cyh_func = (cyc_func_t)ras_cntr_reset;
2094 	hdlr->cyh_level = CY_LOW_LEVEL;
2095 	hdlr->cyh_arg = (void *)(uintptr_t)cp->cpu_id;
2096 
2097 	when->cyt_when = cp->cpu_id * (((hrtime_t)NANOSEC * 10)/ NCPU);
2098 	when->cyt_interval = (hrtime_t)NANOSEC * opl_async_check_interval;
2099 }
2100 
2101 void
2102 cpu_mp_init(void)
2103 {
2104 	cyc_omni_handler_t hdlr;
2105 
2106 	hdlr.cyo_online = opl_ras_online;
2107 	hdlr.cyo_offline = NULL;
2108 	hdlr.cyo_arg = NULL;
2109 	mutex_enter(&cpu_lock);
2110 	(void) cyclic_add_omni(&hdlr);
2111 	mutex_exit(&cpu_lock);
2112 }
2113 
2114 /*ARGSUSED*/
2115 void
2116 mmu_init_kernel_pgsz(struct hat *hat)
2117 {
2118 }
2119 
2120 size_t
2121 mmu_get_kernel_lpsize(size_t lpsize)
2122 {
2123 	uint_t tte;
2124 
2125 	if (lpsize == 0) {
2126 		/* no setting for segkmem_lpsize in /etc/system: use default */
2127 		return (MMU_PAGESIZE4M);
2128 	}
2129 
2130 	for (tte = TTE8K; tte <= TTE4M; tte++) {
2131 		if (lpsize == TTEBYTES(tte))
2132 			return (lpsize);
2133 	}
2134 
2135 	return (TTEBYTES(TTE8K));
2136 }
2137 
2138 /*
2139  * The following are functions that are unused in
2140  * OPL cpu module. They are defined here to resolve
2141  * dependencies in the "unix" module.
2142  * Unused functions that should never be called in
2143  * OPL are coded with ASSERT(0).
2144  */
2145 
2146 void
2147 cpu_disable_errors(void)
2148 {}
2149 
2150 void
2151 cpu_enable_errors(void)
2152 { ASSERT(0); }
2153 
2154 /*ARGSUSED*/
2155 void
2156 cpu_ce_scrub_mem_err(struct async_flt *ecc, boolean_t t)
2157 { ASSERT(0); }
2158 
2159 /*ARGSUSED*/
2160 void
2161 cpu_faulted_enter(struct cpu *cp)
2162 {}
2163 
2164 /*ARGSUSED*/
2165 void
2166 cpu_faulted_exit(struct cpu *cp)
2167 {}
2168 
2169 /*ARGSUSED*/
2170 void
2171 cpu_check_allcpus(struct async_flt *aflt)
2172 {}
2173 
2174 /*ARGSUSED*/
2175 void
2176 cpu_ce_log_err(struct async_flt *aflt, errorq_elem_t *t)
2177 { ASSERT(0); }
2178 
2179 /*ARGSUSED*/
2180 void
2181 cpu_check_ce(int flag, uint64_t pa, caddr_t va, uint_t psz)
2182 { ASSERT(0); }
2183 
2184 /*ARGSUSED*/
2185 void
2186 cpu_ce_count_unum(struct async_flt *ecc, int len, char *unum)
2187 { ASSERT(0); }
2188 
2189 /*ARGSUSED*/
2190 void
2191 cpu_busy_ecache_scrub(struct cpu *cp)
2192 {}
2193 
2194 /*ARGSUSED*/
2195 void
2196 cpu_idle_ecache_scrub(struct cpu *cp)
2197 {}
2198 
2199 /* ARGSUSED */
2200 void
2201 cpu_change_speed(uint64_t divisor, uint64_t arg2)
2202 { ASSERT(0); }
2203 
2204 void
2205 cpu_init_cache_scrub(void)
2206 {}
2207 
2208 /* ARGSUSED */
2209 int
2210 cpu_get_mem_sid(char *unum, char *buf, int buflen, int *lenp)
2211 {
2212 	return (ENOTSUP);
2213 }
2214 
2215 /* ARGSUSED */
2216 int
2217 cpu_get_mem_addr(char *unum, char *sid, uint64_t offset, uint64_t *addrp)
2218 {
2219 	return (ENOTSUP);
2220 }
2221 
2222 /* ARGSUSED */
2223 int
2224 cpu_get_mem_offset(uint64_t flt_addr, uint64_t *offp)
2225 {
2226 	return (ENOTSUP);
2227 }
2228 
2229 /*ARGSUSED*/
2230 void
2231 itlb_rd_entry(uint_t entry, tte_t *tte, uint64_t *va_tag)
2232 { ASSERT(0); }
2233 
2234 /*ARGSUSED*/
2235 void
2236 dtlb_rd_entry(uint_t entry, tte_t *tte, uint64_t *va_tag)
2237 { ASSERT(0); }
2238