xref: /titanic_52/usr/src/uts/sun4/vm/vm_dep.h (revision d561bb99043ed4f82fe51b395850644c122a3867)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 1995, 2010, Oracle and/or its affiliates. All rights reserved.
23  */
24 
25 /*
26  * UNIX machine dependent virtual memory support.
27  */
28 
29 #ifndef	_VM_DEP_H
30 #define	_VM_DEP_H
31 
32 #ifdef	__cplusplus
33 extern "C" {
34 #endif
35 
36 #include <vm/hat_sfmmu.h>
37 #include <sys/archsystm.h>
38 #include <sys/memnode.h>
39 
40 #define	GETTICK()	gettick()
41 
42 /* tick value that should be used for random values */
43 extern u_longlong_t randtick(void);
44 
45 /*
46  * Per page size free lists. Allocated dynamically.
47  */
48 #define	MAX_MEM_TYPES	2	/* 0 = reloc, 1 = noreloc */
49 #define	MTYPE_RELOC	0
50 #define	MTYPE_NORELOC	1
51 
52 #define	PP_2_MTYPE(pp)	(PP_ISNORELOC(pp) ? MTYPE_NORELOC : MTYPE_RELOC)
53 
54 #define	MTYPE_INIT(mtype, vp, vaddr, flags, pgsz)			\
55 	mtype = (flags & PG_NORELOC) ? MTYPE_NORELOC : MTYPE_RELOC;
56 
57 /* mtype init for page_get_replacement_page */
58 #define	MTYPE_PGR_INIT(mtype, flags, pp, mnode, pgcnt)			\
59 	mtype = (flags & PG_NORELOC) ? MTYPE_NORELOC : MTYPE_RELOC;
60 
61 #define	MNODETYPE_2_PFN(mnode, mtype, pfnlo, pfnhi)			\
62 	pfnlo = mem_node_config[mnode].physbase;			\
63 	pfnhi = mem_node_config[mnode].physmax;
64 
65 /*
66  * candidate counters in vm_pagelist.c are indexed by color and range
67  */
68 #define	MAX_MNODE_MRANGES		MAX_MEM_TYPES
69 #define	MNODE_RANGE_CNT(mnode)		MAX_MNODE_MRANGES
70 #define	MNODE_MAX_MRANGE(mnode)		(MAX_MEM_TYPES - 1)
71 #define	MTYPE_2_MRANGE(mnode, mtype)	(mtype)
72 
73 /*
74  * Internal PG_ flags.
75  */
76 #define	PGI_RELOCONLY	0x10000	/* acts in the opposite sense to PG_NORELOC */
77 #define	PGI_NOCAGE	0x20000	/* indicates Cage is disabled */
78 #define	PGI_PGCPHIPRI	0x40000	/* page_get_contig_page priority allocation */
79 #define	PGI_PGCPSZC0	0x80000	/* relocate base pagesize page */
80 
81 /*
82  * PGI mtype flags - should not overlap PGI flags
83  */
84 #define	PGI_MT_RANGE	0x1000000	/* mtype range */
85 #define	PGI_MT_NEXT	0x2000000	/* get next mtype */
86 
87 extern page_t ***page_freelists[MMU_PAGE_SIZES][MAX_MEM_TYPES];
88 extern page_t ***page_cachelists[MAX_MEM_TYPES];
89 
90 #define	PAGE_FREELISTS(mnode, szc, color, mtype) \
91 	(*(page_freelists[szc][mtype][mnode] + (color)))
92 
93 #define	PAGE_CACHELISTS(mnode, color, mtype) \
94 	(*(page_cachelists[mtype][mnode] + (color)))
95 
96 /*
97  * There are 'page_colors' colors/bins.  Spread them out under a
98  * couple of locks.  There are mutexes for both the page freelist
99  * and the page cachelist.  We want enough locks to make contention
100  * reasonable, but not too many -- otherwise page_freelist_lock() gets
101  * so expensive that it becomes the bottleneck!
102  */
103 #define	NPC_MUTEX	16
104 
105 extern kmutex_t	*fpc_mutex[NPC_MUTEX];
106 extern kmutex_t	*cpc_mutex[NPC_MUTEX];
107 
108 /*
109  * Iterator provides the info needed to convert RA to PA.
110  * MEM_NODE_ITERATOR_INIT() should be called before
111  * PAGE_NEXT_PFN_FOR_COLOR() if pfn was not obtained via a previous
112  * PAGE_NEXT_PFN_FOR_COLOR() call. Iterator caches color 2 hash
113  * translations requiring initializer call if color or ceq_mask changes,
114  * even if pfn doesn't. MEM_NODE_ITERATOR_INIT() must also be called before
115  * PFN_2_COLOR() that uses a valid iterator argument.
116  *
117  * plat_mem_node_iterator_init() starts from last mblock in continuation
118  * case which may be invalid because memory DR.  To detect this situation
119  * mi_genid is checked against mpo_genid which is incremented after a
120  * memory DR operation.  See also plat_slice_add()/plat_slice_del().
121  */
122 #ifdef	sun4v
123 
124 typedef struct mem_node_iterator {
125 	uint_t mi_mnode;		/* mnode in which to iterate */
126 	int mi_init;			/* set to 1 when first init */
127 	int mi_genid;			/* set/checked against mpo_genid */
128 	int mi_last_mblock;		/* last mblock visited */
129 	uint_t mi_hash_ceq_mask;	/* cached copy of ceq_mask */
130 	uint_t mi_hash_color;		/* cached copy of color */
131 	uint_t mi_mnode_mask;		/* number of mask bits */
132 	uint_t mi_mnode_pfn_shift;	/* mnode position in pfn */
133 	pfn_t mi_mblock_base;		/* first valid pfn in current mblock */
134 	pfn_t mi_mblock_end;		/* last valid pfn in current mblock */
135 	pfn_t mi_ra_to_pa;		/* ra adjustment for current mblock */
136 	pfn_t mi_mnode_pfn_mask;	/* mask to obtain mnode id bits */
137 } mem_node_iterator_t;
138 
139 #define	MEM_NODE_ITERATOR_DECL(it) \
140 	mem_node_iterator_t it
141 #define	MEM_NODE_ITERATOR_INIT(pfn, mnode, szc, it) \
142 	(pfn) = plat_mem_node_iterator_init((pfn), (mnode), (szc), (it), 1)
143 
144 extern pfn_t plat_mem_node_iterator_init(pfn_t, int, uchar_t,
145     mem_node_iterator_t *, int);
146 extern pfn_t plat_rapfn_to_papfn(pfn_t);
147 extern int interleaved_mnodes;
148 
149 #else	/* sun4v */
150 
151 #define	MEM_NODE_ITERATOR_DECL(it) \
152 	void *it = NULL
153 #define	MEM_NODE_ITERATOR_INIT(pfn, mnode, szc, it)
154 
155 #endif	/* sun4v */
156 
157 /*
158  * Return the mnode limits so that hpc_counters length and base
159  * index can be determined. When interleaved_mnodes is set, we
160  * create an array only for the first mnode that exists. All other
161  * mnodes will share the array in this case.
162  * If interleaved_mnodes is not set, simply return the limits for
163  * the given mnode.
164  */
165 #define	HPM_COUNTERS_LIMITS(mnode, physbase, physmax, first)		\
166 	if (!interleaved_mnodes) {					\
167 		(physbase) = mem_node_config[(mnode)].physbase;		\
168 		(physmax) = mem_node_config[(mnode)].physmax;		\
169 		(first) = (mnode);					\
170 	} else if ((first) < 0) {					\
171 		mem_node_max_range(&(physbase), &(physmax));		\
172 		(first) = (mnode);					\
173 	}
174 
175 #define	PAGE_CTRS_WRITE_LOCK(mnode)					\
176 	if (!interleaved_mnodes) {					\
177 		rw_enter(&page_ctrs_rwlock[(mnode)], RW_WRITER);	\
178 		page_freelist_lock(mnode);				\
179 	} else {							\
180 		/* changing shared hpm_counters */			\
181 		int _i;							\
182 		for (_i = 0; _i < max_mem_nodes; _i++) {		\
183 			rw_enter(&page_ctrs_rwlock[_i], RW_WRITER);	\
184 			page_freelist_lock(_i);				\
185 		}							\
186 	}
187 
188 #define	PAGE_CTRS_WRITE_UNLOCK(mnode)					\
189 	if (!interleaved_mnodes) {					\
190 		page_freelist_unlock(mnode);				\
191 		rw_exit(&page_ctrs_rwlock[(mnode)]);			\
192 	} else {							\
193 		int _i;							\
194 		for (_i = 0; _i < max_mem_nodes; _i++) {		\
195 			page_freelist_unlock(_i);			\
196 			rw_exit(&page_ctrs_rwlock[_i]);			\
197 		}							\
198 	}
199 
200 /*
201  * cpu specific color conversion functions
202  */
203 extern uint_t page_get_nsz_color_mask_cpu(uchar_t, uint_t);
204 #pragma weak page_get_nsz_color_mask_cpu
205 
206 extern uint_t page_get_nsz_color_cpu(uchar_t, uint_t);
207 #pragma weak page_get_nsz_color_cpu
208 
209 extern uint_t page_get_color_shift_cpu(uchar_t, uchar_t);
210 #pragma weak page_get_color_shift_cpu
211 
212 extern uint_t page_convert_color_cpu(uint_t, uchar_t, uchar_t);
213 #pragma weak page_convert_color_cpu
214 
215 extern pfn_t page_next_pfn_for_color_cpu(pfn_t,
216     uchar_t, uint_t, uint_t, uint_t, void *);
217 #pragma weak page_next_pfn_for_color_cpu
218 
219 extern uint_t  page_pfn_2_color_cpu(pfn_t, uchar_t, void *);
220 #pragma weak page_pfn_2_color_cpu
221 
222 #define	PAGE_GET_COLOR_SHIFT(szc, nszc)				\
223 	((&page_get_color_shift_cpu != NULL) ?			\
224 	    page_get_color_shift_cpu(szc, nszc) :		\
225 	    (hw_page_array[(nszc)].hp_shift -			\
226 		hw_page_array[(szc)].hp_shift))
227 
228 #define	PAGE_CONVERT_COLOR(ncolor, szc, nszc)			\
229 	((&page_convert_color_cpu != NULL) ?			\
230 	    page_convert_color_cpu(ncolor, szc, nszc) :		\
231 	    ((ncolor) << PAGE_GET_COLOR_SHIFT((szc), (nszc))))
232 
233 #define	PFN_2_COLOR(pfn, szc, it)				\
234 	((&page_pfn_2_color_cpu != NULL) ?			\
235 	    page_pfn_2_color_cpu(pfn, szc, it) :		\
236 	    ((pfn & (hw_page_array[0].hp_colors - 1)) >>	\
237 		(hw_page_array[szc].hp_shift -			\
238 		    hw_page_array[0].hp_shift)))
239 
240 #define	PNUM_SIZE(szc)							\
241 	(hw_page_array[(szc)].hp_pgcnt)
242 #define	PNUM_SHIFT(szc)							\
243 	(hw_page_array[(szc)].hp_shift - hw_page_array[0].hp_shift)
244 #define	PAGE_GET_SHIFT(szc)						\
245 	(hw_page_array[(szc)].hp_shift)
246 #define	PAGE_GET_PAGECOLORS(szc)					\
247 	(hw_page_array[(szc)].hp_colors)
248 
249 /*
250  * This macro calculates the next sequential pfn with the specified
251  * color using color equivalency mask
252  */
253 #define	PAGE_NEXT_PFN_FOR_COLOR(pfn, szc, color, ceq_mask, color_mask, it)   \
254 	{                                                                    \
255 		ASSERT(((color) & ~(ceq_mask)) == 0);                        \
256 		if (&page_next_pfn_for_color_cpu == NULL) {                  \
257 			uint_t	pfn_shift = PAGE_BSZS_SHIFT(szc);            \
258 			pfn_t	spfn = pfn >> pfn_shift;                     \
259 			pfn_t	stride = (ceq_mask) + 1;                     \
260 			ASSERT((((ceq_mask) + 1) & (ceq_mask)) == 0);        \
261 			if (((spfn ^ (color)) & (ceq_mask)) == 0) {          \
262 				pfn += stride << pfn_shift;                  \
263 			} else {                                             \
264 				pfn = (spfn & ~(pfn_t)(ceq_mask)) | (color); \
265 				pfn = (pfn > spfn ? pfn : pfn + stride) <<   \
266 				    pfn_shift;                               \
267 			}                                                    \
268 		} else {                                                     \
269 		    pfn = page_next_pfn_for_color_cpu(pfn, szc, color,	     \
270 			ceq_mask, color_mask, it);			     \
271 		}                                                            \
272 	}
273 
274 /* get the color equivalency mask for the next szc */
275 #define	PAGE_GET_NSZ_MASK(szc, mask)                                         \
276 	((&page_get_nsz_color_mask_cpu == NULL) ?                            \
277 	    ((mask) >> (PAGE_GET_SHIFT((szc) + 1) - PAGE_GET_SHIFT(szc))) :  \
278 	    page_get_nsz_color_mask_cpu(szc, mask))
279 
280 /* get the color of the next szc */
281 #define	PAGE_GET_NSZ_COLOR(szc, color)                                       \
282 	((&page_get_nsz_color_cpu == NULL) ?                                 \
283 	    ((color) >> (PAGE_GET_SHIFT((szc) + 1) - PAGE_GET_SHIFT(szc))) : \
284 	    page_get_nsz_color_cpu(szc, color))
285 
286 /* Find the bin for the given page if it was of size szc */
287 #define	PP_2_BIN_SZC(pp, szc)	(PFN_2_COLOR(pp->p_pagenum, szc, (void *)(-1)))
288 
289 #define	PP_2_BIN(pp)		(PP_2_BIN_SZC(pp, pp->p_szc))
290 
291 #define	PP_2_MEM_NODE(pp)	(PFN_2_MEM_NODE(pp->p_pagenum))
292 
293 #define	PC_BIN_MUTEX(mnode, bin, flags) ((flags & PG_FREE_LIST) ?	\
294 	&fpc_mutex[(bin) & (NPC_MUTEX - 1)][mnode] :			\
295 	&cpc_mutex[(bin) & (NPC_MUTEX - 1)][mnode])
296 
297 #define	FPC_MUTEX(mnode, i)	(&fpc_mutex[i][mnode])
298 #define	CPC_MUTEX(mnode, i)	(&cpc_mutex[i][mnode])
299 
300 #define	PFN_BASE(pfnum, szc)	(pfnum & ~((1 << PAGE_BSZS_SHIFT(szc)) - 1))
301 
302 /*
303  * this structure is used for walking free page lists
304  * controls when to split large pages into smaller pages,
305  * and when to coalesce smaller pages into larger pages
306  */
307 typedef struct page_list_walker {
308 	uint_t	plw_colors;		/* num of colors for szc */
309 	uint_t  plw_color_mask;		/* colors-1 */
310 	uint_t	plw_bin_step;		/* next bin: 1 or 2 */
311 	uint_t  plw_count;		/* loop count */
312 	uint_t	plw_bin0;		/* starting bin */
313 	uint_t  plw_bin_marker;		/* bin after initial jump */
314 	uint_t  plw_bin_split_prev;	/* last bin we tried to split */
315 	uint_t  plw_do_split;		/* set if OK to split */
316 	uint_t  plw_split_next;		/* next bin to split */
317 	uint_t	plw_ceq_dif;		/* number of different color groups */
318 					/* to check */
319 	uint_t	plw_ceq_mask[MMU_PAGE_SIZES + 1]; /* color equiv mask */
320 	uint_t	plw_bins[MMU_PAGE_SIZES + 1];	/* num of bins */
321 } page_list_walker_t;
322 
323 void	page_list_walk_init(uchar_t szc, uint_t flags, uint_t bin,
324     int can_split, int use_ceq, page_list_walker_t *plw);
325 
326 typedef	char	hpmctr_t;
327 
328 #ifdef DEBUG
329 #define	CHK_LPG(pp, szc)	chk_lpg(pp, szc)
330 extern void	chk_lpg(page_t *, uchar_t);
331 #else
332 #define	CHK_LPG(pp, szc)
333 #endif
334 
335 /*
336  * page list count per mnode and type.
337  */
338 typedef	struct {
339 	pgcnt_t	plc_mt_pgmax;		/* max page cnt */
340 	pgcnt_t plc_mt_clpgcnt;		/* cache list cnt */
341 	pgcnt_t plc_mt_flpgcnt;		/* free list cnt - small pages */
342 	pgcnt_t plc_mt_lgpgcnt;		/* free list cnt - large pages */
343 #ifdef DEBUG
344 	struct {
345 		pgcnt_t plc_mts_pgcnt;	/* per page size count */
346 		int	plc_mts_colors;
347 		pgcnt_t	*plc_mtsc_pgcnt; /* per color bin count */
348 	} plc_mts[MMU_PAGE_SIZES];
349 #endif
350 } plcnt_t[MAX_MEM_NODES][MAX_MEM_TYPES];
351 
352 #ifdef DEBUG
353 
354 #define	PLCNT_SZ(ctrs_sz) {						\
355 	int	szc;							\
356 	for (szc = 0; szc < mmu_page_sizes; szc++) {			\
357 		int	colors = page_get_pagecolors(szc);		\
358 		ctrs_sz += (max_mem_nodes * MAX_MEM_TYPES *		\
359 		    colors * sizeof (pgcnt_t));				\
360 	}								\
361 }
362 
363 #define	PLCNT_INIT(base) {						\
364 	int	mn, mt, szc, colors;					\
365 	for (szc = 0; szc < mmu_page_sizes; szc++) {			\
366 		colors = page_get_pagecolors(szc);			\
367 		for (mn = 0; mn < max_mem_nodes; mn++) {		\
368 			for (mt = 0; mt < MAX_MEM_TYPES; mt++) {	\
369 				plcnt[mn][mt].plc_mts[szc].		\
370 				    plc_mts_colors = colors;		\
371 				plcnt[mn][mt].plc_mts[szc].		\
372 				    plc_mtsc_pgcnt = (pgcnt_t *)base;	\
373 				base += (colors * sizeof (pgcnt_t));	\
374 			}						\
375 		}							\
376 	}								\
377 }
378 
379 #define	PLCNT_DO(pp, mn, mtype, szc, cnt, flags) {			\
380 	int	bin = PP_2_BIN(pp);					\
381 	if (flags & PG_CACHE_LIST)					\
382 		atomic_add_long(&plcnt[mn][mtype].plc_mt_clpgcnt, cnt);	\
383 	else if (szc)							\
384 		atomic_add_long(&plcnt[mn][mtype].plc_mt_lgpgcnt, cnt);	\
385 	else								\
386 		atomic_add_long(&plcnt[mn][mtype].plc_mt_flpgcnt, cnt);	\
387 	atomic_add_long(&plcnt[mn][mtype].plc_mts[szc].plc_mts_pgcnt,	\
388 	    cnt);							\
389 	atomic_add_long(&plcnt[mn][mtype].plc_mts[szc].			\
390 	    plc_mtsc_pgcnt[bin], cnt);					\
391 }
392 
393 #else
394 
395 #define	PLCNT_SZ(ctrs_sz)
396 
397 #define	PLCNT_INIT(base)
398 
399 /* PG_FREE_LIST may not be explicitly set in flags for large pages */
400 
401 #define	PLCNT_DO(pp, mn, mtype, szc, cnt, flags) {			\
402 	if (flags & PG_CACHE_LIST)					\
403 		atomic_add_long(&plcnt[mn][mtype].plc_mt_clpgcnt, cnt);	\
404 	else if (szc)							\
405 		atomic_add_long(&plcnt[mn][mtype].plc_mt_lgpgcnt, cnt);	\
406 	else								\
407 		atomic_add_long(&plcnt[mn][mtype].plc_mt_flpgcnt, cnt);	\
408 }
409 
410 #endif
411 
412 #define	PLCNT_INCR(pp, mn, mtype, szc, flags) {				\
413 	long	cnt = (1 << PAGE_BSZS_SHIFT(szc));			\
414 	PLCNT_DO(pp, mn, mtype, szc, cnt, flags);			\
415 }
416 
417 #define	PLCNT_DECR(pp, mn, mtype, szc, flags) {				\
418 	long	cnt = ((-1) << PAGE_BSZS_SHIFT(szc));			\
419 	PLCNT_DO(pp, mn, mtype, szc, cnt, flags);			\
420 }
421 
422 /*
423  * macros to update page list max counts - done when pages transferred
424  * from RELOC to NORELOC mtype (kcage_init or kcage_assimilate_page).
425  */
426 
427 #define	PLCNT_XFER_NORELOC(pp) {					\
428 	long	cnt = (1 << PAGE_BSZS_SHIFT((pp)->p_szc));		\
429 	int	mn = PP_2_MEM_NODE(pp);					\
430 	atomic_add_long(&plcnt[mn][MTYPE_NORELOC].plc_mt_pgmax, cnt);	\
431 	atomic_add_long(&plcnt[mn][MTYPE_RELOC].plc_mt_pgmax, -cnt);	\
432 }
433 
434 /*
435  * macro to modify the page list max counts when memory is added to
436  * the page lists during startup (add_physmem) or during a DR operation
437  * when memory is added (kphysm_add_memory_dynamic) or deleted
438  * (kphysm_del_cleanup).
439  */
440 #define	PLCNT_MODIFY_MAX(pfn, cnt) {					       \
441 	spgcnt_t _cnt = (spgcnt_t)(cnt);				       \
442 	pgcnt_t _acnt = ABS(_cnt);					       \
443 	int _mn;							       \
444 	pgcnt_t _np;							       \
445 	if (&plat_mem_node_intersect_range != NULL) {			       \
446 		for (_mn = 0; _mn < max_mem_nodes; _mn++) {		       \
447 			plat_mem_node_intersect_range((pfn), _acnt, _mn, &_np);\
448 			if (_np == 0)					       \
449 				continue;				       \
450 			atomic_add_long(&plcnt[_mn][MTYPE_RELOC].plc_mt_pgmax, \
451 			    (_cnt < 0) ? -_np : _np);			       \
452 		}							       \
453 	} else {							       \
454 		pfn_t _pfn = (pfn);					       \
455 		pfn_t _endpfn = _pfn + _acnt;				       \
456 		while (_pfn < _endpfn) {				       \
457 			_mn = PFN_2_MEM_NODE(_pfn);			       \
458 			_np = MIN(_endpfn, mem_node_config[_mn].physmax + 1) - \
459 			    _pfn;					       \
460 			_pfn += _np;					       \
461 			atomic_add_long(&plcnt[_mn][MTYPE_RELOC].plc_mt_pgmax, \
462 			    (_cnt < 0) ? -_np : _np);			       \
463 		}							       \
464 	}								       \
465 }
466 
467 /*
468  * macro to call page_ctrs_adjust() when memory is added
469  * during a DR operation.
470  */
471 #define	PAGE_CTRS_ADJUST(pfn, cnt, rv) {				       \
472 	spgcnt_t _cnt = (spgcnt_t)(cnt);				       \
473 	int _mn;							       \
474 	pgcnt_t _np;							       \
475 	if (&plat_mem_node_intersect_range != NULL) {			       \
476 		for (_mn = 0; _mn < max_mem_nodes; _mn++) {		       \
477 			plat_mem_node_intersect_range((pfn), _cnt, _mn, &_np); \
478 			if (_np == 0)					       \
479 				continue;				       \
480 			if ((rv = page_ctrs_adjust(_mn)) != 0)		       \
481 				break;					       \
482 		}							       \
483 	} else {							       \
484 		pfn_t _pfn = (pfn);					       \
485 		pfn_t _endpfn = _pfn + _cnt;				       \
486 		while (_pfn < _endpfn) {				       \
487 			_mn = PFN_2_MEM_NODE(_pfn);			       \
488 			_np = MIN(_endpfn, mem_node_config[_mn].physmax + 1) - \
489 			    _pfn;					       \
490 			_pfn += _np;					       \
491 			if ((rv = page_ctrs_adjust(_mn)) != 0)		       \
492 				break;					       \
493 		}							       \
494 	}								       \
495 }
496 
497 extern plcnt_t	plcnt;
498 
499 #define	MNODE_PGCNT(mn)							\
500 	(plcnt[mn][MTYPE_RELOC].plc_mt_clpgcnt +			\
501 	    plcnt[mn][MTYPE_NORELOC].plc_mt_clpgcnt +			\
502 	    plcnt[mn][MTYPE_RELOC].plc_mt_flpgcnt +			\
503 	    plcnt[mn][MTYPE_NORELOC].plc_mt_flpgcnt +			\
504 	    plcnt[mn][MTYPE_RELOC].plc_mt_lgpgcnt +			\
505 	    plcnt[mn][MTYPE_NORELOC].plc_mt_lgpgcnt)
506 
507 #define	MNODETYPE_PGCNT(mn, mtype)					\
508 	(plcnt[mn][mtype].plc_mt_clpgcnt +				\
509 	    plcnt[mn][mtype].plc_mt_flpgcnt +				\
510 	    plcnt[mn][mtype].plc_mt_lgpgcnt)
511 
512 /*
513  * macros to loop through the mtype range - MTYPE_START returns -1 in
514  * mtype if no pages in mnode/mtype and possibly NEXT mtype.
515  */
516 #define	MTYPE_START(mnode, mtype, flags) {				\
517 	if (plcnt[mnode][mtype].plc_mt_pgmax == 0) {			\
518 		ASSERT(mtype == MTYPE_RELOC ||				\
519 		    MNODETYPE_PGCNT(mnode, mtype) == 0 ||		\
520 		    plcnt[mnode][mtype].plc_mt_pgmax != 0);		\
521 		MTYPE_NEXT(mnode, mtype, flags);			\
522 	}								\
523 }
524 
525 /*
526  * if allocation from the RELOC pool failed and there is sufficient cage
527  * memory, attempt to allocate from the NORELOC pool.
528  */
529 #define	MTYPE_NEXT(mnode, mtype, flags) { 				\
530 	if (!(flags & (PG_NORELOC | PGI_NOCAGE | PGI_RELOCONLY)) &&	\
531 	    (kcage_freemem >= kcage_lotsfree)) {			\
532 		if (plcnt[mnode][MTYPE_NORELOC].plc_mt_pgmax == 0) {	\
533 			ASSERT(MNODETYPE_PGCNT(mnode, MTYPE_NORELOC) == 0 || \
534 			    plcnt[mnode][MTYPE_NORELOC].plc_mt_pgmax != 0);  \
535 			mtype = -1;					\
536 		} else {						\
537 			mtype = MTYPE_NORELOC;				\
538 			flags |= PG_NORELOC;				\
539 		}							\
540 	} else {							\
541 		mtype = -1;						\
542 	}								\
543 }
544 
545 /*
546  * get the ecache setsize for the current cpu.
547  */
548 #define	CPUSETSIZE()	(cpunodes[CPU->cpu_id].ecache_setsize)
549 
550 extern struct cpu	cpu0;
551 #define	CPU0		&cpu0
552 
553 #define	PAGE_BSZS_SHIFT(szc)	TTE_BSZS_SHIFT(szc)
554 /*
555  * For sfmmu each larger page is 8 times the size of the previous
556  * size page.
557  */
558 #define	FULL_REGION_CNT(rg_szc)	(8)
559 
560 /*
561  * The counter base must be per page_counter element to prevent
562  * races when re-indexing, and the base page size element should
563  * be aligned on a boundary of the given region size.
564  *
565  * We also round up the number of pages spanned by the counters
566  * for a given region to PC_BASE_ALIGN in certain situations to simplify
567  * the coding for some non-performance critical routines.
568  */
569 #define	PC_BASE_ALIGN		((pfn_t)1 << PAGE_BSZS_SHIFT(mmu_page_sizes-1))
570 #define	PC_BASE_ALIGN_MASK	(PC_BASE_ALIGN - 1)
571 
572 extern int ecache_alignsize;
573 #define	L2CACHE_ALIGN		ecache_alignsize
574 #define	L2CACHE_ALIGN_MAX	512
575 
576 extern int update_proc_pgcolorbase_after_fork;
577 extern int consistent_coloring;
578 extern uint_t vac_colors_mask;
579 extern int vac_size;
580 extern int vac_shift;
581 
582 /*
583  * Kernel mem segment in 64-bit space
584  */
585 extern caddr_t kmem64_base, kmem64_end, kmem64_aligned_end;
586 extern int kmem64_alignsize, kmem64_szc;
587 extern uint64_t kmem64_pabase;
588 extern int max_bootlp_tteszc;
589 
590 /*
591  * Maximum and default values for user heap, stack, private and shared
592  * anonymous memory, and user text and initialized data.
593  *
594  * Initial values are defined in architecture specific mach_vm_dep.c file.
595  * Used by map_pgsz*() routines.
596  */
597 extern size_t max_uheap_lpsize;
598 extern size_t default_uheap_lpsize;
599 extern size_t max_ustack_lpsize;
600 extern size_t default_ustack_lpsize;
601 extern size_t max_privmap_lpsize;
602 extern size_t max_uidata_lpsize;
603 extern size_t max_utext_lpsize;
604 extern size_t max_shm_lpsize;
605 
606 /*
607  * For adjusting the default lpsize, for DTLB-limited page sizes.
608  */
609 extern void adjust_data_maxlpsize(size_t ismpagesize);
610 
611 /*
612  * Sanity control. Don't use large pages regardless of user
613  * settings if there's less than priv or shm_lpg_min_physmem memory installed.
614  * The units for this variable are 8K pages.
615  */
616 extern pgcnt_t privm_lpg_min_physmem;
617 extern pgcnt_t shm_lpg_min_physmem;
618 
619 /*
620  * AS_2_BIN macro controls the page coloring policy.
621  * 0 (default) uses various vaddr bits
622  * 1 virtual=paddr
623  * 2 bin hopping
624  */
625 #define	AS_2_BIN(as, seg, vp, addr, bin, szc)				\
626 switch (consistent_coloring) {						\
627 	default:                                                        \
628 		cmn_err(CE_WARN,					\
629 			"AS_2_BIN: bad consistent coloring value");	\
630 		/* assume default algorithm -> continue */		\
631 	case 0: {                                                       \
632 		uint32_t ndx, new;					\
633 		int slew = 0;						\
634 		pfn_t pfn;                                              \
635                                                                         \
636 		if (vp != NULL && IS_SWAPVP(vp) &&			\
637 		    seg->s_ops == &segvn_ops)				\
638 			slew = as_color_bin(as);			\
639                                                                         \
640 		pfn = ((uintptr_t)addr >> MMU_PAGESHIFT) +		\
641 			(((uintptr_t)addr >> page_coloring_shift) <<	\
642 			(vac_shift - MMU_PAGESHIFT));			\
643 		if ((szc) == 0 || &page_pfn_2_color_cpu == NULL) {	\
644 			pfn += slew;					\
645 			bin = PFN_2_COLOR(pfn, szc, NULL);		\
646 		} else {						\
647 			bin = PFN_2_COLOR(pfn, szc, NULL);		\
648 			bin += slew >> (vac_shift - MMU_PAGESHIFT);	\
649 			bin &= hw_page_array[(szc)].hp_colors - 1;	\
650 		}							\
651 		break;                                                  \
652 	}                                                               \
653 	case 1:                                                         \
654 		bin = PFN_2_COLOR(((uintptr_t)addr >> MMU_PAGESHIFT),	\
655 		    szc, NULL);						\
656 		break;                                                  \
657 	case 2: {                                                       \
658 		int cnt = as_color_bin(as);				\
659 		uint_t color_mask = page_get_pagecolors(0) - 1;		\
660                                                                         \
661 		/* make sure physical color aligns with vac color */	\
662 		while ((cnt & vac_colors_mask) !=			\
663 		    addr_to_vcolor(addr)) {				\
664 			cnt++;						\
665 		}                                                       \
666 		bin = cnt = cnt & color_mask;			        \
667 		bin >>= PAGE_GET_COLOR_SHIFT(0, szc);                   \
668 		/* update per as page coloring fields */		\
669 		cnt = (cnt + 1) & color_mask;			        \
670 		if (cnt == (as_color_start(as) & color_mask)) {	        \
671 			cnt = as_color_start(as) = as_color_start(as) + \
672 				PGCLR_LOOPFACTOR;			\
673 		}                                                       \
674 		as_color_bin(as) = cnt & color_mask;		        \
675 		break;                                                  \
676 	}								\
677 }									\
678 	ASSERT(bin < page_get_pagecolors(szc));
679 
680 /*
681  * cpu private vm data - accessed thru CPU->cpu_vm_data
682  *	vc_pnum_memseg: tracks last memseg visited in page_numtopp_nolock()
683  *	vc_pnext_memseg: tracks last memseg visited in page_nextn()
684  *	vc_kmptr: unaligned kmem pointer for this vm_cpu_data_t
685  *	vc_kmsize: orignal kmem size for this vm_cpu_data_t
686  */
687 
688 typedef struct {
689 	struct memseg	*vc_pnum_memseg;
690 	struct memseg	*vc_pnext_memseg;
691 	void		*vc_kmptr;
692 	size_t		vc_kmsize;
693 } vm_cpu_data_t;
694 
695 /* allocation size to ensure vm_cpu_data_t resides in its own cache line */
696 #define	VM_CPU_DATA_PADSIZE						\
697 	(P2ROUNDUP(sizeof (vm_cpu_data_t), L2CACHE_ALIGN_MAX))
698 
699 /*
700  * Function to get an ecache color bin: F(as, cnt, vcolor).
701  * the goal of this function is to:
702  * - to spread a processes' physical pages across the entire ecache to
703  *	maximize its use.
704  * - to minimize vac flushes caused when we reuse a physical page on a
705  *	different vac color than it was previously used.
706  * - to prevent all processes to use the same exact colors and trash each
707  *	other.
708  *
709  * cnt is a bin ptr kept on a per as basis.  As we page_create we increment
710  * the ptr so we spread out the physical pages to cover the entire ecache.
711  * The virtual color is made a subset of the physical color in order to
712  * in minimize virtual cache flushing.
713  * We add in the as to spread out different as.	 This happens when we
714  * initialize the start count value.
715  * sizeof(struct as) is 60 so we shift by 3 to get into the bit range
716  * that will tend to change.  For example, on spitfire based machines
717  * (vcshft == 1) contigous as are spread bu ~6 bins.
718  * vcshft provides for proper virtual color alignment.
719  * In theory cnt should be updated using cas only but if we are off by one
720  * or 2 it is no big deal.
721  * We also keep a start value which is used to randomize on what bin we
722  * start counting when it is time to start another loop. This avoids
723  * contigous allocations of ecache size to point to the same bin.
724  * Why 3? Seems work ok. Better than 7 or anything larger.
725  */
726 #define	PGCLR_LOOPFACTOR 3
727 
728 /*
729  * When a bin is empty, and we can't satisfy a color request correctly,
730  * we scan.  If we assume that the programs have reasonable spatial
731  * behavior, then it will not be a good idea to use the adjacent color.
732  * Using the adjacent color would result in virtually adjacent addresses
733  * mapping into the same spot in the cache.  So, if we stumble across
734  * an empty bin, skip a bunch before looking.  After the first skip,
735  * then just look one bin at a time so we don't miss our cache on
736  * every look. Be sure to check every bin.  Page_create() will panic
737  * if we miss a page.
738  *
739  * This also explains the `<=' in the for loops in both page_get_freelist()
740  * and page_get_cachelist().  Since we checked the target bin, skipped
741  * a bunch, then continued one a time, we wind up checking the target bin
742  * twice to make sure we get all of them bins.
743  */
744 #define	BIN_STEP	20
745 
746 #ifdef VM_STATS
747 struct vmm_vmstats_str {
748 	ulong_t pgf_alloc[MMU_PAGE_SIZES];	/* page_get_freelist */
749 	ulong_t pgf_allocok[MMU_PAGE_SIZES];
750 	ulong_t pgf_allocokrem[MMU_PAGE_SIZES];
751 	ulong_t pgf_allocfailed[MMU_PAGE_SIZES];
752 	ulong_t pgf_allocdeferred;
753 	ulong_t	pgf_allocretry[MMU_PAGE_SIZES];
754 	ulong_t pgc_alloc;			/* page_get_cachelist */
755 	ulong_t pgc_allocok;
756 	ulong_t pgc_allocokrem;
757 	ulong_t	pgc_allocokdeferred;
758 	ulong_t pgc_allocfailed;
759 	ulong_t	pgcp_alloc[MMU_PAGE_SIZES];	/* page_get_contig_pages */
760 	ulong_t	pgcp_allocfailed[MMU_PAGE_SIZES];
761 	ulong_t	pgcp_allocempty[MMU_PAGE_SIZES];
762 	ulong_t	pgcp_allocok[MMU_PAGE_SIZES];
763 	ulong_t	ptcp[MMU_PAGE_SIZES];		/* page_trylock_contig_pages */
764 	ulong_t	ptcpfreethresh[MMU_PAGE_SIZES];
765 	ulong_t	ptcpfailexcl[MMU_PAGE_SIZES];
766 	ulong_t	ptcpfailszc[MMU_PAGE_SIZES];
767 	ulong_t	ptcpfailcage[MMU_PAGE_SIZES];
768 	ulong_t	ptcpok[MMU_PAGE_SIZES];
769 	ulong_t	pgmf_alloc[MMU_PAGE_SIZES];	/* page_get_mnode_freelist */
770 	ulong_t	pgmf_allocfailed[MMU_PAGE_SIZES];
771 	ulong_t	pgmf_allocempty[MMU_PAGE_SIZES];
772 	ulong_t	pgmf_allocok[MMU_PAGE_SIZES];
773 	ulong_t	pgmc_alloc;			/* page_get_mnode_cachelist */
774 	ulong_t	pgmc_allocfailed;
775 	ulong_t	pgmc_allocempty;
776 	ulong_t	pgmc_allocok;
777 	ulong_t	pladd_free[MMU_PAGE_SIZES];	/* page_list_add/sub */
778 	ulong_t	plsub_free[MMU_PAGE_SIZES];
779 	ulong_t	pladd_cache;
780 	ulong_t	plsub_cache;
781 	ulong_t	plsubpages_szcbig;
782 	ulong_t	plsubpages_szc0;
783 	ulong_t	pfs_req[MMU_PAGE_SIZES];	/* page_freelist_split */
784 	ulong_t	pfs_demote[MMU_PAGE_SIZES];
785 	ulong_t	pfc_coalok[MMU_PAGE_SIZES][MAX_MNODE_MRANGES];
786 	ulong_t ppr_reloc[MMU_PAGE_SIZES];	/* page_relocate */
787 	ulong_t ppr_relocok[MMU_PAGE_SIZES];
788 	ulong_t ppr_relocnoroot[MMU_PAGE_SIZES];
789 	ulong_t ppr_reloc_replnoroot[MMU_PAGE_SIZES];
790 	ulong_t ppr_relocnolock[MMU_PAGE_SIZES];
791 	ulong_t ppr_relocnomem[MMU_PAGE_SIZES];
792 	ulong_t ppr_krelocfail[MMU_PAGE_SIZES];
793 	ulong_t ppr_copyfail;
794 	/* page coalesce counter */
795 	ulong_t	page_ctrs_coalesce[MMU_PAGE_SIZES][MAX_MNODE_MRANGES];
796 	/* candidates useful */
797 	ulong_t	page_ctrs_cands_skip[MMU_PAGE_SIZES][MAX_MNODE_MRANGES];
798 	/* ctrs changed after locking */
799 	ulong_t	page_ctrs_changed[MMU_PAGE_SIZES][MAX_MNODE_MRANGES];
800 	/* page_freelist_coalesce failed */
801 	ulong_t	page_ctrs_failed[MMU_PAGE_SIZES][MAX_MNODE_MRANGES];
802 	ulong_t	page_ctrs_coalesce_all;	/* page coalesce all counter */
803 	ulong_t	page_ctrs_cands_skip_all; /* candidates useful for all func */
804 };
805 extern struct vmm_vmstats_str vmm_vmstats;
806 #endif	/* VM_STATS */
807 
808 /*
809  * Used to hold off page relocations into the cage until OBP has completed
810  * its boot-time handoff of its resources to the kernel.
811  */
812 extern int page_relocate_ready;
813 
814 /*
815  * cpu/mmu-dependent vm variables may be reset at bootup.
816  */
817 extern uint_t mmu_page_sizes;
818 extern uint_t max_mmu_page_sizes;
819 extern uint_t mmu_hashcnt;
820 extern uint_t max_mmu_hashcnt;
821 extern size_t mmu_ism_pagesize;
822 extern int mmu_exported_pagesize_mask;
823 extern uint_t mmu_exported_page_sizes;
824 extern uint_t szc_2_userszc[];
825 extern uint_t userszc_2_szc[];
826 
827 #define	mmu_legacy_page_sizes	mmu_exported_page_sizes
828 #define	USERSZC_2_SZC(userszc)	(userszc_2_szc[userszc])
829 #define	SZC_2_USERSZC(szc)	(szc_2_userszc[szc])
830 
831 /*
832  * Platform specific page routines
833  */
834 extern void mach_page_add(page_t **, page_t *);
835 extern void mach_page_sub(page_t **, page_t *);
836 extern uint_t page_get_pagecolors(uint_t);
837 extern void ppcopy_kernel__relocatable(page_t *, page_t *);
838 #define	ppcopy_kernel(p1, p2)	ppcopy_kernel__relocatable(p1, p2)
839 
840 /*
841  * platform specific large pages for kernel heap support
842  */
843 extern size_t get_segkmem_lpsize(size_t lpsize);
844 extern size_t mmu_get_kernel_lpsize(size_t lpsize);
845 extern void mmu_init_kernel_pgsz(struct hat *hat);
846 extern void mmu_init_kcontext();
847 extern uint64_t kcontextreg;
848 
849 /*
850  * Nucleus data page allocator routines
851  */
852 extern void ndata_alloc_init(struct memlist *, uintptr_t, uintptr_t);
853 extern void *ndata_alloc(struct memlist *, size_t, size_t);
854 extern void *ndata_extra_base(struct memlist *, size_t, caddr_t);
855 extern size_t ndata_maxsize(struct memlist *);
856 extern size_t ndata_spare(struct memlist *, size_t, size_t);
857 
858 #ifdef	__cplusplus
859 }
860 #endif
861 
862 #endif	/* _VM_DEP_H */
863