1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved. 23 */ 24 25 /* 26 * UNIX machine dependent virtual memory support. 27 */ 28 29 #include <sys/vm.h> 30 #include <sys/exec.h> 31 32 #include <sys/exechdr.h> 33 #include <vm/seg_kmem.h> 34 #include <sys/atomic.h> 35 #include <sys/archsystm.h> 36 #include <sys/machsystm.h> 37 #include <sys/kdi.h> 38 #include <sys/cpu_module.h> 39 40 #include <vm/hat_sfmmu.h> 41 42 #include <sys/memnode.h> 43 44 #include <sys/mem_config.h> 45 #include <sys/mem_cage.h> 46 #include <vm/vm_dep.h> 47 #include <vm/page.h> 48 #include <sys/platform_module.h> 49 50 /* 51 * These variables are set by module specific config routines. 52 * They are only set by modules which will use physical cache page coloring. 53 */ 54 int do_pg_coloring = 0; 55 56 /* 57 * These variables can be conveniently patched at kernel load time to 58 * prevent do_pg_coloring from being enabled by 59 * module specific config routines. 60 */ 61 62 int use_page_coloring = 1; 63 64 /* 65 * initialized by page_coloring_init() 66 */ 67 extern uint_t page_colors; 68 extern uint_t page_colors_mask; 69 extern uint_t page_coloring_shift; 70 int cpu_page_colors; 71 uint_t vac_colors = 0; 72 uint_t vac_colors_mask = 0; 73 74 /* cpu specific coloring initialization */ 75 extern void page_coloring_init_cpu(); 76 #pragma weak page_coloring_init_cpu 77 78 /* 79 * get the ecache setsize for the current cpu. 80 */ 81 #define CPUSETSIZE() (cpunodes[CPU->cpu_id].ecache_setsize) 82 83 plcnt_t plcnt; /* page list count */ 84 85 /* 86 * This variable is set by the cpu module to contain the lowest 87 * address not affected by the SF_ERRATA_57 workaround. It should 88 * remain 0 if the workaround is not needed. 89 */ 90 #if defined(SF_ERRATA_57) 91 caddr_t errata57_limit; 92 #endif 93 94 static void page_flt_init(page_freelist_type_t *); 95 96 extern void page_relocate_hash(page_t *, page_t *); 97 98 /* 99 * these must be defined in platform specific areas 100 */ 101 extern void map_addr_proc(caddr_t *, size_t, offset_t, int, caddr_t, 102 struct proc *, uint_t); 103 extern page_t *page_get_freelist(struct vnode *, u_offset_t, struct seg *, 104 caddr_t, size_t, uint_t, struct lgrp *); 105 /* 106 * Convert page frame number to an OBMEM page frame number 107 * (i.e. put in the type bits -- zero for this implementation) 108 */ 109 pfn_t 110 impl_obmem_pfnum(pfn_t pf) 111 { 112 return (pf); 113 } 114 115 /* 116 * Use physmax to determine the highest physical page of DRAM memory 117 * It is assumed that any physical addresses above physmax is in IO space. 118 * We don't bother checking the low end because we assume that memory space 119 * begins at physical page frame 0. 120 * 121 * Return 1 if the page frame is onboard DRAM memory, else 0. 122 * Returns 0 for nvram so it won't be cached. 123 */ 124 int 125 pf_is_memory(pfn_t pf) 126 { 127 /* We must be IO space */ 128 if (pf > physmax) 129 return (0); 130 131 /* We must be memory space */ 132 return (1); 133 } 134 135 /* 136 * Handle a pagefault. 137 */ 138 faultcode_t 139 pagefault(caddr_t addr, enum fault_type type, enum seg_rw rw, int iskernel) 140 { 141 struct as *as; 142 struct proc *p; 143 faultcode_t res; 144 caddr_t base; 145 size_t len; 146 int err; 147 148 if (INVALID_VADDR(addr)) 149 return (FC_NOMAP); 150 151 if (iskernel) { 152 as = &kas; 153 } else { 154 p = curproc; 155 as = p->p_as; 156 #if defined(SF_ERRATA_57) 157 /* 158 * Prevent infinite loops due to a segment driver 159 * setting the execute permissions and the sfmmu hat 160 * silently ignoring them. 161 */ 162 if (rw == S_EXEC && AS_TYPE_64BIT(as) && 163 addr < errata57_limit) { 164 res = FC_NOMAP; 165 goto out; 166 } 167 #endif 168 } 169 170 /* 171 * Dispatch pagefault. 172 */ 173 res = as_fault(as->a_hat, as, addr, 1, type, rw); 174 175 /* 176 * If this isn't a potential unmapped hole in the user's 177 * UNIX data or stack segments, just return status info. 178 */ 179 if (!(res == FC_NOMAP && iskernel == 0)) 180 goto out; 181 182 /* 183 * Check to see if we happened to faulted on a currently unmapped 184 * part of the UNIX data or stack segments. If so, create a zfod 185 * mapping there and then try calling the fault routine again. 186 */ 187 base = p->p_brkbase; 188 len = p->p_brksize; 189 190 if (addr < base || addr >= base + len) { /* data seg? */ 191 base = (caddr_t)(p->p_usrstack - p->p_stksize); 192 len = p->p_stksize; 193 if (addr < base || addr >= p->p_usrstack) { /* stack seg? */ 194 /* not in either UNIX data or stack segments */ 195 res = FC_NOMAP; 196 goto out; 197 } 198 } 199 200 /* the rest of this function implements a 3.X 4.X 5.X compatibility */ 201 /* This code is probably not needed anymore */ 202 203 /* expand the gap to the page boundaries on each side */ 204 len = (((uintptr_t)base + len + PAGEOFFSET) & PAGEMASK) - 205 ((uintptr_t)base & PAGEMASK); 206 base = (caddr_t)((uintptr_t)base & PAGEMASK); 207 208 as_rangelock(as); 209 as_purge(as); 210 if (as_gap(as, PAGESIZE, &base, &len, AH_CONTAIN, addr) == 0) { 211 err = as_map(as, base, len, segvn_create, zfod_argsp); 212 as_rangeunlock(as); 213 if (err) { 214 res = FC_MAKE_ERR(err); 215 goto out; 216 } 217 } else { 218 /* 219 * This page is already mapped by another thread after we 220 * returned from as_fault() above. We just fallthrough 221 * as_fault() below. 222 */ 223 as_rangeunlock(as); 224 } 225 226 res = as_fault(as->a_hat, as, addr, 1, F_INVAL, rw); 227 228 out: 229 230 return (res); 231 } 232 233 /* 234 * This is the routine which defines the address limit implied 235 * by the flag '_MAP_LOW32'. USERLIMIT32 matches the highest 236 * mappable address in a 32-bit process on this platform (though 237 * perhaps we should make it be UINT32_MAX here?) 238 */ 239 void 240 map_addr(caddr_t *addrp, size_t len, offset_t off, int vacalign, uint_t flags) 241 { 242 struct proc *p = curproc; 243 caddr_t userlimit = flags & _MAP_LOW32 ? 244 (caddr_t)USERLIMIT32 : p->p_as->a_userlimit; 245 map_addr_proc(addrp, len, off, vacalign, userlimit, p, flags); 246 } 247 248 /* 249 * Some V9 CPUs have holes in the middle of the 64-bit virtual address range. 250 */ 251 caddr_t hole_start, hole_end; 252 253 /* 254 * kpm mapping window 255 */ 256 caddr_t kpm_vbase; 257 size_t kpm_size; 258 uchar_t kpm_size_shift; 259 260 int valid_va_range_aligned_wraparound; 261 /* 262 * Determine whether [*basep, *basep + *lenp) contains a mappable range of 263 * addresses at least "minlen" long, where the base of the range is at "off" 264 * phase from an "align" boundary and there is space for a "redzone"-sized 265 * redzone on either side of the range. On success, 1 is returned and *basep 266 * and *lenp are adjusted to describe the acceptable range (including 267 * the redzone). On failure, 0 is returned. 268 */ 269 int 270 valid_va_range_aligned(caddr_t *basep, size_t *lenp, size_t minlen, int dir, 271 size_t align, size_t redzone, size_t off) 272 { 273 caddr_t hi, lo; 274 size_t tot_len; 275 276 ASSERT(align == 0 ? off == 0 : off < align); 277 ASSERT(ISP2(align)); 278 ASSERT(align == 0 || align >= PAGESIZE); 279 280 lo = *basep; 281 hi = lo + *lenp; 282 tot_len = minlen + 2 * redzone; /* need at least this much space */ 283 284 /* If hi rolled over the top try cutting back. */ 285 if (hi < lo) { 286 *lenp = 0UL - (uintptr_t)lo - 1UL; 287 /* Trying to see if this really happens, and then if so, why */ 288 valid_va_range_aligned_wraparound++; 289 hi = lo + *lenp; 290 } 291 if (*lenp < tot_len) { 292 return (0); 293 } 294 295 /* 296 * Deal with a possible hole in the address range between 297 * hole_start and hole_end that should never be mapped by the MMU. 298 */ 299 300 if (lo < hole_start) { 301 if (hi > hole_start) 302 if (hi < hole_end) 303 hi = hole_start; 304 else 305 /* lo < hole_start && hi >= hole_end */ 306 if (dir == AH_LO) { 307 /* 308 * prefer lowest range 309 */ 310 if (hole_start - lo >= tot_len) 311 hi = hole_start; 312 else if (hi - hole_end >= tot_len) 313 lo = hole_end; 314 else 315 return (0); 316 } else { 317 /* 318 * prefer highest range 319 */ 320 if (hi - hole_end >= tot_len) 321 lo = hole_end; 322 else if (hole_start - lo >= tot_len) 323 hi = hole_start; 324 else 325 return (0); 326 } 327 } else { 328 /* lo >= hole_start */ 329 if (hi < hole_end) 330 return (0); 331 if (lo < hole_end) 332 lo = hole_end; 333 } 334 335 /* Check if remaining length is too small */ 336 if (hi - lo < tot_len) { 337 return (0); 338 } 339 if (align > 1) { 340 caddr_t tlo = lo + redzone; 341 caddr_t thi = hi - redzone; 342 tlo = (caddr_t)P2PHASEUP((uintptr_t)tlo, align, off); 343 if (tlo < lo + redzone) { 344 return (0); 345 } 346 if (thi < tlo || thi - tlo < minlen) { 347 return (0); 348 } 349 } 350 *basep = lo; 351 *lenp = hi - lo; 352 return (1); 353 } 354 355 /* 356 * Determine whether [*basep, *basep + *lenp) contains a mappable range of 357 * addresses at least "minlen" long. On success, 1 is returned and *basep 358 * and *lenp are adjusted to describe the acceptable range. On failure, 0 359 * is returned. 360 */ 361 int 362 valid_va_range(caddr_t *basep, size_t *lenp, size_t minlen, int dir) 363 { 364 return (valid_va_range_aligned(basep, lenp, minlen, dir, 0, 0, 0)); 365 } 366 367 /* 368 * Determine whether [addr, addr+len] with protections `prot' are valid 369 * for a user address space. 370 */ 371 /*ARGSUSED*/ 372 int 373 valid_usr_range(caddr_t addr, size_t len, uint_t prot, struct as *as, 374 caddr_t userlimit) 375 { 376 caddr_t eaddr = addr + len; 377 378 if (eaddr <= addr || addr >= userlimit || eaddr > userlimit) 379 return (RANGE_BADADDR); 380 381 /* 382 * Determine if the address range falls within an illegal 383 * range of the MMU. 384 */ 385 if (eaddr > hole_start && addr < hole_end) 386 return (RANGE_BADADDR); 387 388 #if defined(SF_ERRATA_57) 389 /* 390 * Make sure USERLIMIT isn't raised too high 391 */ 392 ASSERT64(addr <= (caddr_t)0xffffffff80000000ul || 393 errata57_limit == 0); 394 395 if (AS_TYPE_64BIT(as) && 396 (addr < errata57_limit) && 397 (prot & PROT_EXEC)) 398 return (RANGE_BADPROT); 399 #endif /* SF_ERRATA57 */ 400 return (RANGE_OKAY); 401 } 402 403 /* 404 * Routine used to check to see if an a.out can be executed 405 * by the current machine/architecture. 406 */ 407 int 408 chkaout(struct exdata *exp) 409 { 410 if (exp->ux_mach == M_SPARC) 411 return (0); 412 else 413 return (ENOEXEC); 414 } 415 416 /* 417 * The following functions return information about an a.out 418 * which is used when a program is executed. 419 */ 420 421 /* 422 * Return the load memory address for the data segment. 423 */ 424 caddr_t 425 getdmem(struct exec *exp) 426 { 427 /* 428 * XXX - Sparc Reference Hack approaching 429 * Remember that we are loading 430 * 8k executables into a 4k machine 431 * DATA_ALIGN == 2 * PAGESIZE 432 */ 433 if (exp->a_text) 434 return ((caddr_t)(roundup(USRTEXT + exp->a_text, DATA_ALIGN))); 435 else 436 return ((caddr_t)USRTEXT); 437 } 438 439 /* 440 * Return the starting disk address for the data segment. 441 */ 442 ulong_t 443 getdfile(struct exec *exp) 444 { 445 if (exp->a_magic == ZMAGIC) 446 return (exp->a_text); 447 else 448 return (sizeof (struct exec) + exp->a_text); 449 } 450 451 /* 452 * Return the load memory address for the text segment. 453 */ 454 455 /*ARGSUSED*/ 456 caddr_t 457 gettmem(struct exec *exp) 458 { 459 return ((caddr_t)USRTEXT); 460 } 461 462 /* 463 * Return the file byte offset for the text segment. 464 */ 465 uint_t 466 gettfile(struct exec *exp) 467 { 468 if (exp->a_magic == ZMAGIC) 469 return (0); 470 else 471 return (sizeof (struct exec)); 472 } 473 474 void 475 getexinfo( 476 struct exdata *edp_in, 477 struct exdata *edp_out, 478 int *pagetext, 479 int *pagedata) 480 { 481 *edp_out = *edp_in; /* structure copy */ 482 483 if ((edp_in->ux_mag == ZMAGIC) && 484 ((edp_in->vp->v_flag & VNOMAP) == 0)) { 485 *pagetext = 1; 486 *pagedata = 1; 487 } else { 488 *pagetext = 0; 489 *pagedata = 0; 490 } 491 } 492 493 /* 494 * Return non 0 value if the address may cause a VAC alias with KPM mappings. 495 * KPM selects an address such that it's equal offset modulo shm_alignment and 496 * assumes it can't be in VAC conflict with any larger than PAGESIZE mapping. 497 */ 498 int 499 map_addr_vacalign_check(caddr_t addr, u_offset_t off) 500 { 501 if (vac) { 502 return (((uintptr_t)addr ^ off) & shm_alignment - 1); 503 } else { 504 return (0); 505 } 506 } 507 508 /* 509 * Sanity control. Don't use large pages regardless of user 510 * settings if there's less than priv or shm_lpg_min_physmem memory installed. 511 * The units for this variable is 8K pages. 512 */ 513 pgcnt_t shm_lpg_min_physmem = 131072; /* 1GB */ 514 pgcnt_t privm_lpg_min_physmem = 131072; /* 1GB */ 515 516 static size_t 517 map_pgszheap(struct proc *p, caddr_t addr, size_t len) 518 { 519 size_t pgsz = MMU_PAGESIZE; 520 int szc; 521 522 /* 523 * If len is zero, retrieve from proc and don't demote the page size. 524 * Use atleast the default pagesize. 525 */ 526 if (len == 0) { 527 len = p->p_brkbase + p->p_brksize - p->p_bssbase; 528 } 529 len = MAX(len, default_uheap_lpsize); 530 531 for (szc = mmu_page_sizes - 1; szc >= 0; szc--) { 532 pgsz = hw_page_array[szc].hp_size; 533 if ((disable_auto_data_large_pages & (1 << szc)) || 534 pgsz > max_uheap_lpsize) 535 continue; 536 if (len >= pgsz) { 537 break; 538 } 539 } 540 541 /* 542 * If addr == 0 we were called by memcntl() when the 543 * size code is 0. Don't set pgsz less than current size. 544 */ 545 if (addr == 0 && (pgsz < hw_page_array[p->p_brkpageszc].hp_size)) { 546 pgsz = hw_page_array[p->p_brkpageszc].hp_size; 547 } 548 549 return (pgsz); 550 } 551 552 static size_t 553 map_pgszstk(struct proc *p, caddr_t addr, size_t len) 554 { 555 size_t pgsz = MMU_PAGESIZE; 556 int szc; 557 558 /* 559 * If len is zero, retrieve from proc and don't demote the page size. 560 * Use atleast the default pagesize. 561 */ 562 if (len == 0) { 563 len = p->p_stksize; 564 } 565 len = MAX(len, default_ustack_lpsize); 566 567 for (szc = mmu_page_sizes - 1; szc >= 0; szc--) { 568 pgsz = hw_page_array[szc].hp_size; 569 if ((disable_auto_data_large_pages & (1 << szc)) || 570 pgsz > max_ustack_lpsize) 571 continue; 572 if (len >= pgsz) { 573 break; 574 } 575 } 576 577 /* 578 * If addr == 0 we were called by memcntl() or exec_args() when the 579 * size code is 0. Don't set pgsz less than current size. 580 */ 581 if (addr == 0 && (pgsz < hw_page_array[p->p_stkpageszc].hp_size)) { 582 pgsz = hw_page_array[p->p_stkpageszc].hp_size; 583 } 584 585 return (pgsz); 586 } 587 588 static size_t 589 map_pgszism(caddr_t addr, size_t len) 590 { 591 uint_t szc; 592 size_t pgsz; 593 594 for (szc = mmu_page_sizes - 1; szc >= TTE4M; szc--) { 595 if (disable_ism_large_pages & (1 << szc)) 596 continue; 597 598 pgsz = hw_page_array[szc].hp_size; 599 if ((len >= pgsz) && IS_P2ALIGNED(addr, pgsz)) 600 return (pgsz); 601 } 602 603 return (DEFAULT_ISM_PAGESIZE); 604 } 605 606 /* 607 * Suggest a page size to be used to map a segment of type maptype and length 608 * len. Returns a page size (not a size code). 609 */ 610 /* ARGSUSED */ 611 size_t 612 map_pgsz(int maptype, struct proc *p, caddr_t addr, size_t len, int memcntl) 613 { 614 size_t pgsz = MMU_PAGESIZE; 615 616 ASSERT(maptype != MAPPGSZ_VA); 617 618 if (maptype != MAPPGSZ_ISM && physmem < privm_lpg_min_physmem) { 619 return (MMU_PAGESIZE); 620 } 621 622 switch (maptype) { 623 case MAPPGSZ_ISM: 624 pgsz = map_pgszism(addr, len); 625 break; 626 627 case MAPPGSZ_STK: 628 if (max_ustack_lpsize > MMU_PAGESIZE) { 629 pgsz = map_pgszstk(p, addr, len); 630 } 631 break; 632 633 case MAPPGSZ_HEAP: 634 if (max_uheap_lpsize > MMU_PAGESIZE) { 635 pgsz = map_pgszheap(p, addr, len); 636 } 637 break; 638 } 639 return (pgsz); 640 } 641 642 643 /* assumes TTE8K...TTE4M == szc */ 644 645 static uint_t 646 map_szcvec(caddr_t addr, size_t size, uintptr_t off, int disable_lpgs, 647 size_t max_lpsize, size_t min_physmem) 648 { 649 caddr_t eaddr = addr + size; 650 uint_t szcvec = 0; 651 caddr_t raddr; 652 caddr_t readdr; 653 size_t pgsz; 654 int i; 655 656 if (physmem < min_physmem || max_lpsize <= MMU_PAGESIZE) { 657 return (0); 658 } 659 for (i = mmu_page_sizes - 1; i > 0; i--) { 660 if (disable_lpgs & (1 << i)) { 661 continue; 662 } 663 pgsz = page_get_pagesize(i); 664 if (pgsz > max_lpsize) { 665 continue; 666 } 667 raddr = (caddr_t)P2ROUNDUP((uintptr_t)addr, pgsz); 668 readdr = (caddr_t)P2ALIGN((uintptr_t)eaddr, pgsz); 669 if (raddr < addr || raddr >= readdr) { 670 continue; 671 } 672 if (P2PHASE((uintptr_t)addr ^ off, pgsz)) { 673 continue; 674 } 675 szcvec |= (1 << i); 676 /* 677 * And or in the remaining enabled page sizes. 678 */ 679 szcvec |= P2PHASE(~disable_lpgs, (1 << i)); 680 szcvec &= ~1; /* no need to return 8K pagesize */ 681 break; 682 } 683 return (szcvec); 684 } 685 686 /* 687 * Return a bit vector of large page size codes that 688 * can be used to map [addr, addr + len) region. 689 */ 690 /* ARGSUSED */ 691 uint_t 692 map_pgszcvec(caddr_t addr, size_t size, uintptr_t off, int flags, int type, 693 int memcntl) 694 { 695 if (flags & MAP_TEXT) { 696 return (map_szcvec(addr, size, off, 697 disable_auto_text_large_pages, 698 max_utext_lpsize, shm_lpg_min_physmem)); 699 700 } else if (flags & MAP_INITDATA) { 701 return (map_szcvec(addr, size, off, 702 disable_auto_data_large_pages, 703 max_uidata_lpsize, privm_lpg_min_physmem)); 704 705 } else if (type == MAPPGSZC_SHM) { 706 return (map_szcvec(addr, size, off, 707 disable_auto_data_large_pages, 708 max_shm_lpsize, shm_lpg_min_physmem)); 709 710 } else if (type == MAPPGSZC_HEAP) { 711 return (map_szcvec(addr, size, off, 712 disable_auto_data_large_pages, 713 max_uheap_lpsize, privm_lpg_min_physmem)); 714 715 } else if (type == MAPPGSZC_STACK) { 716 return (map_szcvec(addr, size, off, 717 disable_auto_data_large_pages, 718 max_ustack_lpsize, privm_lpg_min_physmem)); 719 720 } else { 721 return (map_szcvec(addr, size, off, 722 disable_auto_data_large_pages, 723 max_privmap_lpsize, privm_lpg_min_physmem)); 724 } 725 } 726 727 /* 728 * For now there is only a single size cache list. 729 * Allocated dynamically. 730 */ 731 page_t ***page_cachelists[MAX_MEM_TYPES]; 732 733 kmutex_t *fpc_mutex[NPC_MUTEX]; 734 kmutex_t *cpc_mutex[NPC_MUTEX]; 735 736 /* 737 * Calculate space needed for page freelists and counters 738 */ 739 size_t 740 calc_free_pagelist_sz(void) 741 { 742 int szc; 743 size_t alloc_sz, cache_sz, free_sz; 744 745 /* 746 * one cachelist per color, node, and type 747 */ 748 cache_sz = (page_get_pagecolors(0) * sizeof (page_t *)) + 749 sizeof (page_t **); 750 cache_sz *= max_mem_nodes * MAX_MEM_TYPES; 751 752 /* 753 * one freelist per size, color, node, and type 754 */ 755 free_sz = sizeof (page_t **); 756 for (szc = 0; szc < mmu_page_sizes; szc++) 757 free_sz += sizeof (page_t *) * page_get_pagecolors(szc); 758 free_sz *= max_mem_nodes * MAX_MEM_TYPES; 759 760 alloc_sz = cache_sz + free_sz + page_ctrs_sz(); 761 return (alloc_sz); 762 } 763 764 caddr_t 765 alloc_page_freelists(caddr_t alloc_base) 766 { 767 int mnode, mtype; 768 int szc, clrs; 769 770 /* 771 * We only support small pages in the cachelist. 772 */ 773 for (mtype = 0; mtype < MAX_MEM_TYPES; mtype++) { 774 page_cachelists[mtype] = (page_t ***)alloc_base; 775 alloc_base += (max_mem_nodes * sizeof (page_t **)); 776 for (mnode = 0; mnode < max_mem_nodes; mnode++) { 777 page_cachelists[mtype][mnode] = (page_t **)alloc_base; 778 alloc_base += 779 (page_get_pagecolors(0) * sizeof (page_t *)); 780 } 781 } 782 783 /* 784 * Allocate freelists bins for all 785 * supported page sizes. 786 */ 787 for (szc = 0; szc < mmu_page_sizes; szc++) { 788 clrs = page_get_pagecolors(szc); 789 for (mtype = 0; mtype < MAX_MEM_TYPES; mtype++) { 790 ufltp->pflt_freelists[szc][mtype] = 791 (page_t ***)alloc_base; 792 alloc_base += (max_mem_nodes * sizeof (page_t **)); 793 for (mnode = 0; mnode < max_mem_nodes; mnode++) { 794 ufltp->pflt_freelists[szc][mtype][mnode] = 795 (page_t **)alloc_base; 796 alloc_base += (clrs * (sizeof (page_t *))); 797 } 798 } 799 } 800 801 alloc_base = page_ctrs_alloc(alloc_base); 802 803 page_flt_init(ufltp); 804 return (alloc_base); 805 } 806 807 /* 808 * Allocate page_freelists locks for a memnode from the nucleus data 809 * area. This is the first time that mmu_page_sizes is used during 810 * bootup, so check mmu_page_sizes initialization. 811 */ 812 int 813 ndata_alloc_page_mutexs(struct memlist *ndata) 814 { 815 size_t alloc_sz; 816 caddr_t alloc_base; 817 int i; 818 void page_coloring_init(); 819 820 page_coloring_init(); 821 if (&mmu_init_mmu_page_sizes) { 822 if (!mmu_init_mmu_page_sizes(0)) { 823 cmn_err(CE_PANIC, "mmu_page_sizes %d not initialized", 824 mmu_page_sizes); 825 } 826 } 827 ASSERT(mmu_page_sizes >= DEFAULT_MMU_PAGE_SIZES); 828 829 /* fpc_mutex and cpc_mutex */ 830 alloc_sz = 2 * NPC_MUTEX * max_mem_nodes * sizeof (kmutex_t); 831 832 alloc_base = ndata_alloc(ndata, alloc_sz, ecache_alignsize); 833 if (alloc_base == NULL) 834 return (-1); 835 836 ASSERT(((uintptr_t)alloc_base & (ecache_alignsize - 1)) == 0); 837 838 for (i = 0; i < NPC_MUTEX; i++) { 839 fpc_mutex[i] = (kmutex_t *)alloc_base; 840 alloc_base += (sizeof (kmutex_t) * max_mem_nodes); 841 cpc_mutex[i] = (kmutex_t *)alloc_base; 842 alloc_base += (sizeof (kmutex_t) * max_mem_nodes); 843 } 844 return (0); 845 } 846 847 /* 848 * To select our starting bin, we stride through the bins with a stride 849 * of 337. Why 337? It's prime, it's largeish, and it performs well both 850 * in simulation and practice for different workloads on varying cache sizes. 851 */ 852 uint32_t color_start_current = 0; 853 uint32_t color_start_stride = 337; 854 int color_start_random = 0; 855 856 /* ARGSUSED */ 857 uint_t 858 get_color_start(struct as *as) 859 { 860 uint32_t old, new; 861 862 if (consistent_coloring == 2 || color_start_random) { 863 return ((uint_t)(((gettick()) << (vac_shift - MMU_PAGESHIFT)) & 864 (hw_page_array[0].hp_colors - 1))); 865 } 866 867 do { 868 old = color_start_current; 869 new = old + (color_start_stride << (vac_shift - MMU_PAGESHIFT)); 870 } while (cas32(&color_start_current, old, new) != old); 871 872 return ((uint_t)(new)); 873 } 874 875 /* 876 * Called once at startup from kphysm_init() -- before memialloc() 877 * is invoked to do the 1st page_free()/page_freelist_add(). 878 * 879 * initializes page_colors and page_colors_mask based on ecache_setsize. 880 * 881 * Also initializes the counter locks. 882 */ 883 void 884 page_coloring_init() 885 { 886 int a, i; 887 uint_t colors; 888 889 if (do_pg_coloring == 0) { 890 page_colors = 1; 891 for (i = 0; i < mmu_page_sizes; i++) { 892 colorequivszc[i] = 0; 893 hw_page_array[i].hp_colors = 1; 894 } 895 return; 896 } 897 898 /* 899 * Calculate page_colors from ecache_setsize. ecache_setsize contains 900 * the max ecache setsize of all cpus configured in the system or, for 901 * cheetah+ systems, the max possible ecache setsize for all possible 902 * cheetah+ cpus. 903 */ 904 page_colors = ecache_setsize / MMU_PAGESIZE; 905 page_colors_mask = page_colors - 1; 906 907 vac_colors = vac_size / MMU_PAGESIZE; 908 vac_colors_mask = vac_colors -1; 909 910 page_coloring_shift = 0; 911 a = ecache_setsize; 912 while (a >>= 1) { 913 page_coloring_shift++; 914 } 915 916 /* initialize number of colors per page size */ 917 for (i = 0; i < mmu_page_sizes; i++) { 918 hw_page_array[i].hp_colors = (page_colors_mask >> 919 (hw_page_array[i].hp_shift - hw_page_array[0].hp_shift)) 920 + 1; 921 colorequivszc[i] = 0; 922 } 923 924 /* 925 * initialize cpu_page_colors if ecache setsizes are homogenous. 926 * cpu_page_colors set to -1 during DR operation or during startup 927 * if setsizes are heterogenous. 928 * 929 * The value of cpu_page_colors determines if additional color bins 930 * need to be checked for a particular color in the page_get routines. 931 */ 932 if (cpu_setsize > 0 && cpu_page_colors == 0 && 933 cpu_setsize < ecache_setsize) { 934 cpu_page_colors = cpu_setsize / MMU_PAGESIZE; 935 a = lowbit(page_colors) - lowbit(cpu_page_colors); 936 ASSERT(a > 0); 937 ASSERT(a < 16); 938 939 for (i = 0; i < mmu_page_sizes; i++) { 940 if ((colors = hw_page_array[i].hp_colors) <= 1) { 941 continue; 942 } 943 while ((colors >> a) == 0) 944 a--; 945 ASSERT(a >= 0); 946 947 /* higher 4 bits encodes color equiv mask */ 948 colorequivszc[i] = (a << 4); 949 } 950 } 951 952 /* do cpu specific color initialization */ 953 if (&page_coloring_init_cpu) { 954 page_coloring_init_cpu(); 955 } 956 } 957 958 int 959 bp_color(struct buf *bp) 960 { 961 int color = -1; 962 963 if (vac) { 964 if ((bp->b_flags & B_PAGEIO) != 0) { 965 color = sfmmu_get_ppvcolor(bp->b_pages); 966 } else if (bp->b_un.b_addr != NULL) { 967 color = sfmmu_get_addrvcolor(bp->b_un.b_addr); 968 } 969 } 970 return (color < 0 ? 0 : ptob(color)); 971 } 972 973 /* 974 * Function for flushing D-cache when performing module relocations 975 * to an alternate mapping. Stubbed out on all platforms except sun4u, 976 * at least for now. 977 */ 978 void 979 dcache_flushall() 980 { 981 sfmmu_cache_flushall(); 982 } 983 984 static int 985 kdi_range_overlap(uintptr_t va1, size_t sz1, uintptr_t va2, size_t sz2) 986 { 987 if (va1 < va2 && va1 + sz1 <= va2) 988 return (0); 989 990 if (va2 < va1 && va2 + sz2 <= va1) 991 return (0); 992 993 return (1); 994 } 995 996 /* 997 * Return the number of bytes, relative to the beginning of a given range, that 998 * are non-toxic (can be read from and written to with relative impunity). 999 */ 1000 size_t 1001 kdi_range_is_nontoxic(uintptr_t va, size_t sz, int write) 1002 { 1003 /* OBP reads are harmless, but we don't want people writing there */ 1004 if (write && kdi_range_overlap(va, sz, OFW_START_ADDR, OFW_END_ADDR - 1005 OFW_START_ADDR + 1)) 1006 return (va < OFW_START_ADDR ? OFW_START_ADDR - va : 0); 1007 1008 if (kdi_range_overlap(va, sz, PIOMAPBASE, PIOMAPSIZE)) 1009 return (va < PIOMAPBASE ? PIOMAPBASE - va : 0); 1010 1011 return (sz); /* no overlap */ 1012 } 1013 1014 /* 1015 * Minimum physmem required for enabling large pages for kernel heap 1016 * Currently we do not enable lp for kmem on systems with less 1017 * than 1GB of memory. This value can be changed via /etc/system 1018 */ 1019 size_t segkmem_lpminphysmem = 0x40000000; /* 1GB */ 1020 1021 /* 1022 * this function chooses large page size for kernel heap 1023 */ 1024 size_t 1025 get_segkmem_lpsize(size_t lpsize) 1026 { 1027 size_t memtotal = physmem * PAGESIZE; 1028 size_t mmusz; 1029 uint_t szc; 1030 1031 if (memtotal < segkmem_lpminphysmem) 1032 return (PAGESIZE); 1033 1034 if (plat_lpkmem_is_supported != NULL && 1035 plat_lpkmem_is_supported() == 0) 1036 return (PAGESIZE); 1037 1038 mmusz = mmu_get_kernel_lpsize(lpsize); 1039 szc = page_szc(mmusz); 1040 1041 while (szc) { 1042 if (!(disable_large_pages & (1 << szc))) 1043 return (page_get_pagesize(szc)); 1044 szc--; 1045 } 1046 return (PAGESIZE); 1047 } 1048 /* 1049 * Initializes the user page freelist type structures. 1050 */ 1051 static void 1052 page_flt_init(page_freelist_type_t *ufp) 1053 { 1054 ufp->pflt_type = PFLT_USER; 1055 ufp->pflt_get_free = &page_get_uflt; 1056 ufp->pflt_walk_init = page_list_walk_init; 1057 ufp->pflt_walk_next = page_list_walk_next_bin; 1058 ufp->pflt_num_policies = 2; 1059 ufp->pflt_policy[0] = page_get_mnode_freelist; 1060 ufp->pflt_policy[1] = page_get_contig_pages; 1061 } 1062