xref: /titanic_52/usr/src/uts/sun4/vm/sfmmu.c (revision 65d61b8c5bb0da98e137e8d74245d8f53d690237)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 #include <sys/types.h>
29 #include <vm/hat.h>
30 #include <vm/hat_sfmmu.h>
31 #include <vm/page.h>
32 #include <sys/pte.h>
33 #include <sys/systm.h>
34 #include <sys/mman.h>
35 #include <sys/sysmacros.h>
36 #include <sys/machparam.h>
37 #include <sys/vtrace.h>
38 #include <sys/kmem.h>
39 #include <sys/mmu.h>
40 #include <sys/cmn_err.h>
41 #include <sys/cpu.h>
42 #include <sys/cpuvar.h>
43 #include <sys/debug.h>
44 #include <sys/lgrp.h>
45 #include <sys/archsystm.h>
46 #include <sys/machsystm.h>
47 #include <sys/vmsystm.h>
48 #include <sys/bitmap.h>
49 #include <vm/as.h>
50 #include <vm/seg.h>
51 #include <vm/seg_kmem.h>
52 #include <vm/seg_kp.h>
53 #include <vm/seg_kpm.h>
54 #include <vm/rm.h>
55 #include <vm/vm_dep.h>
56 #include <sys/t_lock.h>
57 #include <sys/vm_machparam.h>
58 #include <sys/promif.h>
59 #include <sys/prom_isa.h>
60 #include <sys/prom_plat.h>
61 #include <sys/prom_debug.h>
62 #include <sys/privregs.h>
63 #include <sys/bootconf.h>
64 #include <sys/memlist.h>
65 #include <sys/memlist_plat.h>
66 #include <sys/cpu_module.h>
67 #include <sys/reboot.h>
68 #include <sys/kdi.h>
69 
70 /*
71  * Static routines
72  */
73 static void	sfmmu_map_prom_mappings(struct translation *, size_t);
74 static struct translation *read_prom_mappings(size_t *);
75 static void	sfmmu_reloc_trap_handler(void *, void *, size_t);
76 
77 /*
78  * External routines
79  */
80 extern void sfmmu_remap_kernel(void);
81 extern void sfmmu_patch_utsb(void);
82 
83 /*
84  * Global Data:
85  */
86 extern caddr_t	textva, datava;
87 extern tte_t	ktext_tte, kdata_tte;	/* ttes for kernel text and data */
88 extern int	enable_bigktsb;
89 
90 uint64_t memsegspa = (uintptr_t)MSEG_NULLPTR_PA; /* memsegs physical linkage */
91 uint64_t memseg_phash[N_MEM_SLOTS];	/* use physical memseg addresses */
92 
93 int	sfmmu_kern_mapped = 0;
94 
95 /*
96  * DMMU primary context register for the kernel context. Machine specific code
97  * inserts correct page size codes when necessary
98  */
99 uint64_t kcontextreg = KCONTEXT;
100 
101 #ifdef DEBUG
102 static int ndata_middle_hole_detected = 0;
103 #endif
104 
105 /* Extern Global Data */
106 
107 extern int page_relocate_ready;
108 
109 /*
110  * Controls the logic which enables the use of the
111  * QUAD_LDD_PHYS ASI for TSB accesses.
112  */
113 extern int	ktsb_phys;
114 
115 /*
116  * Global Routines called from within:
117  *	usr/src/uts/sun4u
118  *	usr/src/uts/sfmmu
119  *	usr/src/uts/sun
120  */
121 
122 pfn_t
123 va_to_pfn(void *vaddr)
124 {
125 	u_longlong_t physaddr;
126 	int mode, valid;
127 
128 	if (tba_taken_over)
129 		return (hat_getpfnum(kas.a_hat, (caddr_t)vaddr));
130 
131 #if !defined(C_OBP)
132 	if ((caddr_t)vaddr >= kmem64_base && (caddr_t)vaddr < kmem64_end) {
133 		if (kmem64_pabase == (uint64_t)-1)
134 			prom_panic("va_to_pfn: kmem64_pabase not init");
135 		physaddr = kmem64_pabase + ((caddr_t)vaddr - kmem64_base);
136 		return ((pfn_t)physaddr >> MMU_PAGESHIFT);
137 	}
138 #endif	/* !C_OBP */
139 
140 	if ((prom_translate_virt(vaddr, &valid, &physaddr, &mode) != -1) &&
141 	    (valid == -1)) {
142 		return ((pfn_t)(physaddr >> MMU_PAGESHIFT));
143 	}
144 	return (PFN_INVALID);
145 }
146 
147 uint64_t
148 va_to_pa(void *vaddr)
149 {
150 	pfn_t pfn;
151 
152 	if ((pfn = va_to_pfn(vaddr)) == PFN_INVALID)
153 		return ((uint64_t)-1);
154 	return (((uint64_t)pfn << MMU_PAGESHIFT) |
155 		((uint64_t)vaddr & MMU_PAGEOFFSET));
156 }
157 
158 void
159 hat_kern_setup(void)
160 {
161 	struct translation *trans_root;
162 	size_t ntrans_root;
163 	extern void startup_fixup_physavail(void);
164 
165 	/*
166 	 * These are the steps we take to take over the mmu from the prom.
167 	 *
168 	 * (1)	Read the prom's mappings through the translation property.
169 	 * (2)	Remap the kernel text and kernel data with 2 locked 4MB ttes.
170 	 *	Create the the hmeblks for these 2 ttes at this time.
171 	 * (3)	Create hat structures for all other prom mappings.  Since the
172 	 *	kernel text and data hme_blks have already been created we
173 	 *	skip the equivalent prom's mappings.
174 	 * (4)	Initialize the tsb and its corresponding hardware regs.
175 	 * (5)	Take over the trap table (currently in startup).
176 	 * (6)	Up to this point it is possible the prom required some of its
177 	 *	locked tte's.  Now that we own the trap table we remove them.
178 	 */
179 
180 	ktsb_pbase = va_to_pa(ktsb_base);
181 	ktsb4m_pbase = va_to_pa(ktsb4m_base);
182 	PRM_DEBUG(ktsb_pbase);
183 	PRM_DEBUG(ktsb4m_pbase);
184 
185 	sfmmu_patch_ktsb();
186 	sfmmu_patch_utsb();
187 	sfmmu_patch_mmu_asi(ktsb_phys);
188 
189 	sfmmu_init_tsbs();
190 
191 	if (kpm_enable) {
192 		sfmmu_kpm_patch_tlbm();
193 		if (kpm_smallpages == 0) {
194 			sfmmu_kpm_patch_tsbm();
195 		}
196 	}
197 
198 	/*
199 	 * The 8K-indexed kernel TSB space is used to hold
200 	 * translations below...
201 	 */
202 	trans_root = read_prom_mappings(&ntrans_root);
203 	sfmmu_remap_kernel();
204 	startup_fixup_physavail();
205 	mmu_init_kernel_pgsz(kas.a_hat);
206 	sfmmu_map_prom_mappings(trans_root, ntrans_root);
207 
208 	/*
209 	 * We invalidate 8K kernel TSB because we used it in
210 	 * sfmmu_map_prom_mappings()
211 	 */
212 	sfmmu_inv_tsb(ktsb_base, ktsb_sz);
213 	sfmmu_inv_tsb(ktsb4m_base, ktsb4m_sz);
214 
215 	sfmmu_init_ktsbinfo();
216 
217 
218 	sfmmu_kern_mapped = 1;
219 
220 	/*
221 	 * hments have been created for mapped pages, and thus we're ready
222 	 * for kmdb to start using its own trap table.  It walks the hments
223 	 * to resolve TLB misses, and can't be used until they're ready.
224 	 */
225 	if (boothowto & RB_DEBUG)
226 		kdi_dvec_vmready();
227 }
228 
229 /*
230  * Macro used below to convert the prom's 32-bit high and low fields into
231  * a value appropriate for the 64-bit kernel.
232  */
233 
234 #define	COMBINE(hi, lo) (((uint64_t)(uint32_t)(hi) << 32) | (uint32_t)(lo))
235 
236 /*
237  * Track larges pages used.
238  * Provides observability for this feature on non-debug kernels.
239  */
240 ulong_t map_prom_lpcount[MMU_PAGE_SIZES];
241 
242 /*
243  * This function traverses the prom mapping list and creates equivalent
244  * mappings in the sfmmu mapping hash.
245  */
246 static void
247 sfmmu_map_prom_mappings(struct translation *trans_root, size_t ntrans_root)
248 {
249 	struct translation *promt;
250 	tte_t	tte, oldtte, *ttep;
251 	pfn_t	pfn, oldpfn, basepfn;
252 	caddr_t vaddr;
253 	size_t	size, offset;
254 	unsigned long i;
255 	uint_t	attr;
256 	page_t *pp;
257 	extern struct memlist *virt_avail;
258 
259 	ttep = &tte;
260 	for (i = 0, promt = trans_root; i < ntrans_root; i++, promt++) {
261 		ASSERT(promt->tte_hi != 0);
262 		ASSERT32(promt->virt_hi == 0 && promt->size_hi == 0);
263 
264 		vaddr = (caddr_t)COMBINE(promt->virt_hi, promt->virt_lo);
265 
266 		/*
267 		 * hack until we get rid of map-for-unix
268 		 */
269 		if (vaddr < (caddr_t)KERNELBASE)
270 			continue;
271 
272 		ttep->tte_inthi = promt->tte_hi;
273 		ttep->tte_intlo = promt->tte_lo;
274 		attr = PROC_DATA | HAT_NOSYNC;
275 #if defined(TTE_IS_GLOBAL)
276 		if (TTE_IS_GLOBAL(ttep)) {
277 			/*
278 			 * The prom better not use global translations
279 			 * because a user process might use the same
280 			 * virtual addresses
281 			 */
282 			cmn_err(CE_PANIC, "map_prom: global translation");
283 			TTE_SET_LOFLAGS(ttep, TTE_GLB_INT, 0);
284 		}
285 #endif
286 		if (TTE_IS_LOCKED(ttep)) {
287 			/* clear the lock bits */
288 			TTE_CLR_LOCKED(ttep);
289 		}
290 		attr |= (TTE_IS_VCACHEABLE(ttep)) ? 0 : SFMMU_UNCACHEVTTE;
291 		attr |= (TTE_IS_PCACHEABLE(ttep)) ? 0 : SFMMU_UNCACHEPTTE;
292 		attr |= (TTE_IS_SIDEFFECT(ttep)) ? SFMMU_SIDEFFECT : 0;
293 		attr |= (TTE_IS_IE(ttep)) ? HAT_STRUCTURE_LE : 0;
294 
295 		size = COMBINE(promt->size_hi, promt->size_lo);
296 		offset = 0;
297 		basepfn = TTE_TO_PFN((caddr_t)COMBINE(promt->virt_hi,
298 		    promt->virt_lo), ttep);
299 		while (size) {
300 			vaddr = (caddr_t)(COMBINE(promt->virt_hi,
301 			    promt->virt_lo) + offset);
302 
303 			/*
304 			 * make sure address is not in virt-avail list
305 			 */
306 			if (address_in_memlist(virt_avail, (uint64_t)vaddr,
307 			    size)) {
308 				cmn_err(CE_PANIC, "map_prom: inconsistent "
309 				    "translation/avail lists");
310 			}
311 
312 			pfn = basepfn + mmu_btop(offset);
313 			if (pf_is_memory(pfn)) {
314 				if (attr & SFMMU_UNCACHEPTTE) {
315 					cmn_err(CE_PANIC, "map_prom: "
316 					    "uncached prom memory page");
317 				}
318 			} else {
319 				if (!(attr & SFMMU_SIDEFFECT)) {
320 					cmn_err(CE_PANIC, "map_prom: prom "
321 					    "i/o page without side-effect");
322 				}
323 			}
324 
325 			/*
326 			 * skip kmem64 area
327 			 */
328 			if (vaddr >= kmem64_base &&
329 			    vaddr < kmem64_aligned_end) {
330 #if !defined(C_OBP)
331 				cmn_err(CE_PANIC,
332 				    "unexpected kmem64 prom mapping\n");
333 #else	/* !C_OBP */
334 				size_t mapsz;
335 
336 				if (ptob(pfn) !=
337 				    kmem64_pabase + (vaddr - kmem64_base)) {
338 					cmn_err(CE_PANIC,
339 					    "unexpected kmem64 prom mapping\n");
340 				}
341 
342 				mapsz = kmem64_aligned_end - vaddr;
343 				if (mapsz >= size) {
344 					break;
345 				}
346 				size -= mapsz;
347 				offset += mapsz;
348 				continue;
349 #endif	/* !C_OBP */
350 			}
351 
352 			oldpfn = sfmmu_vatopfn(vaddr, KHATID, &oldtte);
353 			ASSERT(oldpfn != PFN_SUSPENDED);
354 			ASSERT(page_relocate_ready == 0);
355 
356 			if (oldpfn != PFN_INVALID) {
357 				/*
358 				 * mapping already exists.
359 				 * Verify they are equal
360 				 */
361 				if (pfn != oldpfn) {
362 					cmn_err(CE_PANIC, "map_prom: mapping "
363 					    "conflict (va=0x%p pfn=%p, "
364 					    "oldpfn=%p)",
365 					    (void *)vaddr, (void *)pfn,
366 					    (void *)oldpfn);
367 				}
368 				size -= MMU_PAGESIZE;
369 				offset += MMU_PAGESIZE;
370 				continue;
371 			}
372 
373 			pp = page_numtopp_nolock(pfn);
374 			if ((pp != NULL) && PP_ISFREE((page_t *)pp)) {
375 				cmn_err(CE_PANIC, "map_prom: "
376 				    "prom-mapped page (va 0x%p, pfn 0x%p) "
377 				    "on free list", (void *)vaddr, (void *)pfn);
378 			}
379 
380 			sfmmu_memtte(ttep, pfn, attr, TTE8K);
381 			sfmmu_tteload(kas.a_hat, ttep, vaddr, pp,
382 			    HAT_LOAD_LOCK | SFMMU_NO_TSBLOAD);
383 			size -= MMU_PAGESIZE;
384 			offset += MMU_PAGESIZE;
385 		}
386 	}
387 
388 	/*
389 	 * We claimed kmem64 from prom, so now we need to load tte.
390 	 */
391 	if (kmem64_base != NULL) {
392 		pgcnt_t pages;
393 		size_t psize;
394 		int pszc;
395 
396 		pszc = kmem64_szc;
397 #ifdef sun4u
398 		if (pszc > TTE8K) {
399 			pszc = segkmem_lpszc;
400 		}
401 #endif	/* sun4u */
402 		psize = TTEBYTES(pszc);
403 		pages = btop(psize);
404 		basepfn = kmem64_pabase >> MMU_PAGESHIFT;
405 		vaddr = kmem64_base;
406 		while (vaddr < kmem64_end) {
407 			sfmmu_memtte(ttep, basepfn,
408 			    PROC_DATA | HAT_NOSYNC, pszc);
409 			sfmmu_tteload(kas.a_hat, ttep, vaddr, NULL,
410 			    HAT_LOAD_LOCK | SFMMU_NO_TSBLOAD);
411 			vaddr += psize;
412 			basepfn += pages;
413 		}
414 		map_prom_lpcount[pszc] =
415 		    ((caddr_t)P2ROUNDUP((uintptr_t)kmem64_end, psize) -
416 			kmem64_base) >> TTE_PAGE_SHIFT(pszc);
417 	}
418 }
419 
420 #undef COMBINE	/* local to previous routine */
421 
422 /*
423  * This routine reads in the "translations" property in to a buffer and
424  * returns a pointer to this buffer and the number of translations.
425  */
426 static struct translation *
427 read_prom_mappings(size_t *ntransrootp)
428 {
429 	char *prop = "translations";
430 	size_t translen;
431 	pnode_t node;
432 	struct translation *transroot;
433 
434 	/*
435 	 * the "translations" property is associated with the mmu node
436 	 */
437 	node = (pnode_t)prom_getphandle(prom_mmu_ihandle());
438 
439 	/*
440 	 * We use the TSB space to read in the prom mappings.  This space
441 	 * is currently not being used because we haven't taken over the
442 	 * trap table yet.  It should be big enough to hold the mappings.
443 	 */
444 	if ((translen = prom_getproplen(node, prop)) == -1)
445 		cmn_err(CE_PANIC, "no translations property");
446 	*ntransrootp = translen / sizeof (*transroot);
447 	translen = roundup(translen, MMU_PAGESIZE);
448 	PRM_DEBUG(translen);
449 	if (translen > TSB_BYTES(ktsb_szcode))
450 		cmn_err(CE_PANIC, "not enough space for translations");
451 
452 	transroot = (struct translation *)ktsb_base;
453 	ASSERT(transroot);
454 	if (prom_getprop(node, prop, (caddr_t)transroot) == -1) {
455 		cmn_err(CE_PANIC, "translations getprop failed");
456 	}
457 	return (transroot);
458 }
459 
460 /*
461  * Init routine of the nucleus data memory allocator.
462  *
463  * The nucleus data memory allocator is organized in ecache_alignsize'd
464  * memory chunks. Memory allocated by ndata_alloc() will never be freed.
465  *
466  * The ndata argument is used as header of the ndata freelist.
467  * Other freelist nodes are placed in the nucleus memory itself
468  * at the beginning of a free memory chunk. Therefore a freelist
469  * node (struct memlist) must fit into the smallest allocatable
470  * memory chunk (ecache_alignsize bytes).
471  *
472  * The memory interval [base, end] passed to ndata_alloc_init() must be
473  * bzero'd to allow the allocator to return bzero'd memory easily.
474  */
475 void
476 ndata_alloc_init(struct memlist *ndata, uintptr_t base, uintptr_t end)
477 {
478 	ASSERT(sizeof (struct memlist) <= ecache_alignsize);
479 
480 	base = roundup(base, ecache_alignsize);
481 	end = end - end % ecache_alignsize;
482 
483 	ASSERT(base < end);
484 
485 	ndata->address = base;
486 	ndata->size = end - base;
487 	ndata->next = NULL;
488 	ndata->prev = NULL;
489 }
490 
491 /*
492  * Deliver the size of the largest free memory chunk.
493  */
494 size_t
495 ndata_maxsize(struct memlist *ndata)
496 {
497 	size_t chunksize = ndata->size;
498 
499 	while ((ndata = ndata->next) != NULL) {
500 		if (chunksize < ndata->size)
501 			chunksize = ndata->size;
502 	}
503 
504 	return (chunksize);
505 }
506 
507 /*
508  * This is a special function to figure out if the memory chunk needed
509  * for the page structs can fit in the nucleus or not. If it fits the
510  * function calculates and returns the possible remaining ndata size
511  * in the last element if the size needed for page structs would be
512  * allocated from the nucleus.
513  */
514 size_t
515 ndata_spare(struct memlist *ndata, size_t wanted, size_t alignment)
516 {
517 	struct memlist *frlist;
518 	uintptr_t base;
519 	uintptr_t end;
520 
521 	for (frlist = ndata; frlist != NULL; frlist = frlist->next) {
522 		base = roundup(frlist->address, alignment);
523 		end = roundup(base + wanted, ecache_alignsize);
524 
525 		if (end <= frlist->address + frlist->size) {
526 			if (frlist->next == NULL)
527 				return (frlist->address + frlist->size - end);
528 
529 			while (frlist->next != NULL)
530 				frlist = frlist->next;
531 
532 			return (frlist->size);
533 		}
534 	}
535 
536 	return (0);
537 }
538 
539 /*
540  * Allocate the last properly aligned memory chunk.
541  * This function is called when no more large nucleus memory chunks
542  * will be allocated.  The remaining free nucleus memory at the end
543  * of the nucleus can be added to the phys_avail list.
544  */
545 void *
546 ndata_extra_base(struct memlist *ndata, size_t alignment, caddr_t endaddr)
547 {
548 	uintptr_t base;
549 	size_t wasteage = 0;
550 #ifdef	DEBUG
551 	static int called = 0;
552 
553 	if (called++ > 0)
554 		cmn_err(CE_PANIC, "ndata_extra_base() called more than once");
555 #endif /* DEBUG */
556 
557 	/*
558 	 * The alignment needs to be a multiple of ecache_alignsize.
559 	 */
560 	ASSERT((alignment % ecache_alignsize) ==  0);
561 
562 	while (ndata->next != NULL) {
563 		wasteage += ndata->size;
564 		ndata = ndata->next;
565 	}
566 
567 	base = roundup(ndata->address, alignment);
568 
569 	if (base >= ndata->address + ndata->size)
570 		return (NULL);
571 
572 	if ((caddr_t)(ndata->address + ndata->size) != endaddr) {
573 #ifdef DEBUG
574 		ndata_middle_hole_detected = 1;	/* see if we hit this again */
575 #endif
576 		return (NULL);
577 	}
578 
579 	if (base == ndata->address) {
580 		if (ndata->prev != NULL)
581 			ndata->prev->next = NULL;
582 		else
583 			ndata->size = 0;
584 
585 		bzero((void *)base, sizeof (struct memlist));
586 
587 	} else {
588 		ndata->size = base - ndata->address;
589 		wasteage += ndata->size;
590 	}
591 	PRM_DEBUG(wasteage);
592 
593 	return ((void *)base);
594 }
595 
596 /*
597  * Select the best matching buffer, avoid memory fragmentation.
598  */
599 static struct memlist *
600 ndata_select_chunk(struct memlist *ndata, size_t wanted, size_t alignment)
601 {
602 	struct memlist *fnd_below = NULL;
603 	struct memlist *fnd_above = NULL;
604 	struct memlist *fnd_unused = NULL;
605 	struct memlist *frlist;
606 	uintptr_t base;
607 	uintptr_t end;
608 	size_t below;
609 	size_t above;
610 	size_t unused;
611 	size_t best_below = ULONG_MAX;
612 	size_t best_above = ULONG_MAX;
613 	size_t best_unused = ULONG_MAX;
614 
615 	ASSERT(ndata != NULL);
616 
617 	/*
618 	 * Look for the best matching buffer, avoid memory fragmentation.
619 	 * The following strategy is used, try to find
620 	 *   1. an exact fitting buffer
621 	 *   2. avoid wasting any space below the buffer, take first
622 	 *	fitting buffer
623 	 *   3. avoid wasting any space above the buffer, take first
624 	 *	fitting buffer
625 	 *   4. avoid wasting space, take first fitting buffer
626 	 *   5. take the last buffer in chain
627 	 */
628 	for (frlist = ndata; frlist != NULL; frlist = frlist->next) {
629 		base = roundup(frlist->address, alignment);
630 		end = roundup(base + wanted, ecache_alignsize);
631 
632 		if (end > frlist->address + frlist->size)
633 			continue;
634 
635 		below = (base - frlist->address) / ecache_alignsize;
636 		above = (frlist->address + frlist->size - end) /
637 		    ecache_alignsize;
638 		unused = below + above;
639 
640 		if (unused == 0)
641 			return (frlist);
642 
643 		if (frlist->next == NULL)
644 			break;
645 
646 		if (below < best_below) {
647 			best_below = below;
648 			fnd_below = frlist;
649 		}
650 
651 		if (above < best_above) {
652 			best_above = above;
653 			fnd_above = frlist;
654 		}
655 
656 		if (unused < best_unused) {
657 			best_unused = unused;
658 			fnd_unused = frlist;
659 		}
660 	}
661 
662 	if (best_below == 0)
663 		return (fnd_below);
664 	if (best_above == 0)
665 		return (fnd_above);
666 	if (best_unused < ULONG_MAX)
667 		return (fnd_unused);
668 
669 	return (frlist);
670 }
671 
672 /*
673  * Nucleus data memory allocator.
674  * The granularity of the allocator is ecache_alignsize.
675  * See also comment for ndata_alloc_init().
676  */
677 void *
678 ndata_alloc(struct memlist *ndata, size_t wanted, size_t alignment)
679 {
680 	struct memlist *found;
681 	struct memlist *fnd_above;
682 	uintptr_t base;
683 	uintptr_t end;
684 	size_t below;
685 	size_t above;
686 
687 	/*
688 	 * Look for the best matching buffer, avoid memory fragmentation.
689 	 */
690 	if ((found = ndata_select_chunk(ndata, wanted, alignment)) == NULL)
691 		return (NULL);
692 
693 	/*
694 	 * Allocate the nucleus data buffer.
695 	 */
696 	base = roundup(found->address, alignment);
697 	end = roundup(base + wanted, ecache_alignsize);
698 	ASSERT(end <= found->address + found->size);
699 
700 	below = base - found->address;
701 	above = found->address + found->size - end;
702 	ASSERT(above == 0 || (above % ecache_alignsize) == 0);
703 
704 	if (below >= ecache_alignsize) {
705 		/*
706 		 * There is free memory below the allocated memory chunk.
707 		 */
708 		found->size = below - below % ecache_alignsize;
709 
710 		if (above) {
711 			fnd_above = (struct memlist *)end;
712 			fnd_above->address = end;
713 			fnd_above->size = above;
714 
715 			if ((fnd_above->next = found->next) != NULL)
716 				found->next->prev = fnd_above;
717 			fnd_above->prev = found;
718 			found->next = fnd_above;
719 		}
720 
721 		return ((void *)base);
722 	}
723 
724 	if (found->prev == NULL) {
725 		/*
726 		 * The first chunk (ndata) is selected.
727 		 */
728 		ASSERT(found == ndata);
729 		if (above) {
730 			found->address = end;
731 			found->size = above;
732 		} else if (found->next != NULL) {
733 			found->address = found->next->address;
734 			found->size = found->next->size;
735 			if ((found->next = found->next->next) != NULL)
736 				found->next->prev = found;
737 
738 			bzero((void *)found->address, sizeof (struct memlist));
739 		} else {
740 			found->address = end;
741 			found->size = 0;
742 		}
743 
744 		return ((void *)base);
745 	}
746 
747 	/*
748 	 * Not the first chunk.
749 	 */
750 	if (above) {
751 		fnd_above = (struct memlist *)end;
752 		fnd_above->address = end;
753 		fnd_above->size = above;
754 
755 		if ((fnd_above->next = found->next) != NULL)
756 			fnd_above->next->prev = fnd_above;
757 		fnd_above->prev = found->prev;
758 		found->prev->next = fnd_above;
759 
760 	} else {
761 		if ((found->prev->next = found->next) != NULL)
762 			found->next->prev = found->prev;
763 	}
764 
765 	bzero((void *)found->address, sizeof (struct memlist));
766 
767 	return ((void *)base);
768 }
769 
770 /*
771  * Size the kernel TSBs based upon the amount of physical
772  * memory in the system.
773  */
774 static void
775 calc_tsb_sizes(pgcnt_t npages)
776 {
777 	PRM_DEBUG(npages);
778 
779 	if (npages <= TSB_FREEMEM_MIN) {
780 		ktsb_szcode = TSB_128K_SZCODE;
781 		enable_bigktsb = 0;
782 	} else if (npages <= TSB_FREEMEM_LARGE / 2) {
783 		ktsb_szcode = TSB_256K_SZCODE;
784 		enable_bigktsb = 0;
785 	} else if (npages <= TSB_FREEMEM_LARGE) {
786 		ktsb_szcode = TSB_512K_SZCODE;
787 		enable_bigktsb = 0;
788 	} else if (npages <= TSB_FREEMEM_LARGE * 2 ||
789 	    enable_bigktsb == 0) {
790 		ktsb_szcode = TSB_1M_SZCODE;
791 		enable_bigktsb = 0;
792 	} else {
793 		ktsb_szcode = highbit(npages - 1);
794 		ktsb_szcode -= TSB_START_SIZE;
795 		ktsb_szcode = MAX(ktsb_szcode, MIN_BIGKTSB_SZCODE);
796 		ktsb_szcode = MIN(ktsb_szcode, MAX_BIGKTSB_SZCODE);
797 	}
798 
799 	/*
800 	 * We choose the TSB to hold kernel 4M mappings to have twice
801 	 * the reach as the primary kernel TSB since this TSB will
802 	 * potentially (currently) be shared by both mappings to all of
803 	 * physical memory plus user TSBs. If this TSB has to be in nucleus
804 	 * (only for Spitfire and Cheetah) limit its size to 64K.
805 	 */
806 	ktsb4m_szcode = highbit((2 * npages) / TTEPAGES(TTE4M) - 1);
807 	ktsb4m_szcode -= TSB_START_SIZE;
808 	ktsb4m_szcode = MAX(ktsb4m_szcode, TSB_MIN_SZCODE);
809 	ktsb4m_szcode = MIN(ktsb4m_szcode, TSB_SOFTSZ_MASK);
810 	if ((enable_bigktsb == 0 || ktsb_phys == 0) && ktsb4m_szcode >
811 	    TSB_64K_SZCODE) {
812 		ktsb4m_szcode = TSB_64K_SZCODE;
813 		max_bootlp_tteszc = TTE8K;
814 	}
815 
816 	ktsb_sz = TSB_BYTES(ktsb_szcode);	/* kernel 8K tsb size */
817 	ktsb4m_sz = TSB_BYTES(ktsb4m_szcode);	/* kernel 4M tsb size */
818 }
819 
820 /*
821  * Allocate kernel TSBs from nucleus data memory.
822  * The function return 0 on success and -1 on failure.
823  */
824 int
825 ndata_alloc_tsbs(struct memlist *ndata, pgcnt_t npages)
826 {
827 	/*
828 	 * Set ktsb_phys to 1 if the processor supports ASI_QUAD_LDD_PHYS.
829 	 */
830 	sfmmu_setup_4lp();
831 
832 	/*
833 	 * Size the kernel TSBs based upon the amount of physical
834 	 * memory in the system.
835 	 */
836 	calc_tsb_sizes(npages);
837 
838 	/*
839 	 * Allocate the 8K kernel TSB if it belongs inside the nucleus.
840 	 */
841 	if (enable_bigktsb == 0) {
842 		if ((ktsb_base = ndata_alloc(ndata, ktsb_sz, ktsb_sz)) == NULL)
843 			return (-1);
844 		ASSERT(!((uintptr_t)ktsb_base & (ktsb_sz - 1)));
845 
846 		PRM_DEBUG(ktsb_base);
847 		PRM_DEBUG(ktsb_sz);
848 		PRM_DEBUG(ktsb_szcode);
849 	}
850 
851 	/*
852 	 * Next, allocate 4M kernel TSB from the nucleus since it's small.
853 	 */
854 	if (ktsb4m_szcode <= TSB_64K_SZCODE) {
855 
856 		ktsb4m_base = ndata_alloc(ndata, ktsb4m_sz, ktsb4m_sz);
857 		if (ktsb4m_base == NULL)
858 			return (-1);
859 		ASSERT(!((uintptr_t)ktsb4m_base & (ktsb4m_sz - 1)));
860 
861 		PRM_DEBUG(ktsb4m_base);
862 		PRM_DEBUG(ktsb4m_sz);
863 		PRM_DEBUG(ktsb4m_szcode);
864 	}
865 
866 	return (0);
867 }
868 
869 /*
870  * Allocate hat structs from the nucleus data memory.
871  */
872 int
873 ndata_alloc_hat(struct memlist *ndata, pgcnt_t npages, pgcnt_t kpm_npages)
874 {
875 	size_t	mml_alloc_sz;
876 	size_t	cb_alloc_sz;
877 	int	max_nucuhme_buckets = MAX_NUCUHME_BUCKETS;
878 	int	max_nuckhme_buckets = MAX_NUCKHME_BUCKETS;
879 	ulong_t hme_buckets;
880 
881 	if (enable_bigktsb) {
882 		ASSERT((max_nucuhme_buckets + max_nuckhme_buckets) *
883 		    sizeof (struct hmehash_bucket) <=
884 			TSB_BYTES(TSB_1M_SZCODE));
885 
886 		max_nucuhme_buckets *= 2;
887 		max_nuckhme_buckets *= 2;
888 	}
889 
890 	/*
891 	 * The number of buckets in the hme hash tables
892 	 * is a power of 2 such that the average hash chain length is
893 	 * HMENT_HASHAVELEN.  The number of buckets for the user hash is
894 	 * a function of physical memory and a predefined overmapping factor.
895 	 * The number of buckets for the kernel hash is a function of
896 	 * physical memory only.
897 	 */
898 	hme_buckets = (npages * HMEHASH_FACTOR) /
899 		(HMENT_HASHAVELEN * (HMEBLK_SPAN(TTE8K) >> MMU_PAGESHIFT));
900 
901 	uhmehash_num = (int)MIN(hme_buckets, MAX_UHME_BUCKETS);
902 
903 	if (uhmehash_num > USER_BUCKETS_THRESHOLD) {
904 		/*
905 		 * if uhmehash_num is not power of 2 round it down to the
906 		 *  next power of 2.
907 		 */
908 		uint_t align = 1 << (highbit(uhmehash_num - 1) - 1);
909 		uhmehash_num = P2ALIGN(uhmehash_num, align);
910 	} else
911 		uhmehash_num = 1 << highbit(uhmehash_num - 1);
912 
913 	hme_buckets = npages / (HMEBLK_SPAN(TTE8K) >> MMU_PAGESHIFT);
914 	khmehash_num = (int)MIN(hme_buckets, MAX_KHME_BUCKETS);
915 	khmehash_num = 1 << highbit(khmehash_num - 1);
916 	khmehash_num = MAX(khmehash_num, MIN_KHME_BUCKETS);
917 
918 	if ((khmehash_num > max_nuckhme_buckets) ||
919 		(uhmehash_num > max_nucuhme_buckets)) {
920 		khme_hash = NULL;
921 		uhme_hash = NULL;
922 	} else {
923 		size_t hmehash_sz = (uhmehash_num + khmehash_num) *
924 		    sizeof (struct hmehash_bucket);
925 
926 		if ((khme_hash = ndata_alloc(ndata, hmehash_sz,
927 		    ecache_alignsize)) != NULL)
928 			uhme_hash = &khme_hash[khmehash_num];
929 		else
930 			uhme_hash = NULL;
931 
932 		PRM_DEBUG(hmehash_sz);
933 	}
934 
935 	PRM_DEBUG(khme_hash);
936 	PRM_DEBUG(khmehash_num);
937 	PRM_DEBUG(uhme_hash);
938 	PRM_DEBUG(uhmehash_num);
939 
940 	/*
941 	 * For the page mapping list mutex array we allocate one mutex
942 	 * for every 128 pages (1 MB) with a minimum of 64 entries and
943 	 * a maximum of 8K entries. For the initial computation npages
944 	 * is rounded up (ie. 1 << highbit(npages * 1.5 / 128))
945 	 *
946 	 * mml_shift is roughly log2(mml_table_sz) + 3 for MLIST_HASH
947 	 *
948 	 * It is not required that this be allocated from the nucleus,
949 	 * but it is desirable.  So we first allocate from the nucleus
950 	 * everything that must be there.  Having done so, if mml_table
951 	 * will fit within what remains of the nucleus then it will be
952 	 * allocated here.  If not, set mml_table to NULL, which will cause
953 	 * startup_memlist() to BOP_ALLOC() space for it after our return...
954 	 */
955 	mml_table_sz = 1 << highbit((npages * 3) / 256);
956 	if (mml_table_sz < 64)
957 		mml_table_sz = 64;
958 	else if (mml_table_sz > 8192)
959 		mml_table_sz = 8192;
960 	mml_shift = highbit(mml_table_sz) + 3;
961 
962 	PRM_DEBUG(mml_table_sz);
963 	PRM_DEBUG(mml_shift);
964 
965 	mml_alloc_sz = mml_table_sz * sizeof (kmutex_t);
966 
967 	mml_table = ndata_alloc(ndata, mml_alloc_sz, ecache_alignsize);
968 
969 	PRM_DEBUG(mml_table);
970 
971 	cb_alloc_sz = sfmmu_max_cb_id * sizeof (struct sfmmu_callback);
972 	PRM_DEBUG(cb_alloc_sz);
973 	sfmmu_cb_table = ndata_alloc(ndata, cb_alloc_sz, ecache_alignsize);
974 	PRM_DEBUG(sfmmu_cb_table);
975 
976 	/*
977 	 * For the kpm_page mutex array we allocate one mutex every 16
978 	 * kpm pages (64MB). In smallpage mode we allocate one mutex
979 	 * every 8K pages. The minimum is set to 64 entries and the
980 	 * maximum to 8K entries.
981 	 *
982 	 * It is not required that this be allocated from the nucleus,
983 	 * but it is desirable.  So we first allocate from the nucleus
984 	 * everything that must be there.  Having done so, if kpmp_table
985 	 * or kpmp_stable will fit within what remains of the nucleus
986 	 * then it will be allocated here.  If not, startup_memlist()
987 	 * will use BOP_ALLOC() space for it after our return...
988 	 */
989 	if (kpm_enable) {
990 		size_t	kpmp_alloc_sz;
991 
992 		if (kpm_smallpages == 0) {
993 			kpmp_shift = highbit(sizeof (kpm_page_t)) - 1;
994 			kpmp_table_sz = 1 << highbit(kpm_npages / 16);
995 			kpmp_table_sz = (kpmp_table_sz < 64) ? 64 :
996 			    ((kpmp_table_sz > 8192) ? 8192 : kpmp_table_sz);
997 			kpmp_alloc_sz = kpmp_table_sz * sizeof (kpm_hlk_t);
998 
999 			kpmp_table = ndata_alloc(ndata, kpmp_alloc_sz,
1000 			    ecache_alignsize);
1001 
1002 			PRM_DEBUG(kpmp_table);
1003 			PRM_DEBUG(kpmp_table_sz);
1004 
1005 			kpmp_stable_sz = 0;
1006 			kpmp_stable = NULL;
1007 		} else {
1008 			ASSERT(kpm_pgsz == PAGESIZE);
1009 			kpmp_shift = highbit(sizeof (kpm_shlk_t)) + 1;
1010 			kpmp_stable_sz = 1 << highbit(kpm_npages / 8192);
1011 			kpmp_stable_sz = (kpmp_stable_sz < 64) ? 64 :
1012 			    ((kpmp_stable_sz > 8192) ? 8192 : kpmp_stable_sz);
1013 			kpmp_alloc_sz = kpmp_stable_sz * sizeof (kpm_shlk_t);
1014 
1015 			kpmp_stable = ndata_alloc(ndata, kpmp_alloc_sz,
1016 			    ecache_alignsize);
1017 
1018 			PRM_DEBUG(kpmp_stable);
1019 			PRM_DEBUG(kpmp_stable_sz);
1020 
1021 			kpmp_table_sz = 0;
1022 			kpmp_table = NULL;
1023 		}
1024 		PRM_DEBUG(kpmp_shift);
1025 	}
1026 
1027 	return (0);
1028 }
1029 
1030 /*
1031  * Allocate virtual addresses at base with given alignment.
1032  * Note that there is no physical memory behind the address yet.
1033  */
1034 caddr_t
1035 alloc_hme_buckets(caddr_t base, int alignsize)
1036 {
1037 	size_t hmehash_sz = (uhmehash_num + khmehash_num) *
1038 	    sizeof (struct hmehash_bucket);
1039 
1040 	ASSERT(khme_hash == NULL);
1041 	ASSERT(uhme_hash == NULL);
1042 
1043 	base = (caddr_t)roundup((uintptr_t)base, alignsize);
1044 	hmehash_sz = roundup(hmehash_sz, alignsize);
1045 
1046 	khme_hash = (struct hmehash_bucket *)base;
1047 	uhme_hash = (struct hmehash_bucket *)((caddr_t)khme_hash +
1048 	    khmehash_num * sizeof (struct hmehash_bucket));
1049 	base += hmehash_sz;
1050 	return (base);
1051 }
1052 
1053 /*
1054  * This function bop allocs kernel TSBs.
1055  */
1056 caddr_t
1057 sfmmu_ktsb_alloc(caddr_t tsbbase)
1058 {
1059 	caddr_t vaddr;
1060 
1061 	if (enable_bigktsb) {
1062 		ktsb_base = (caddr_t)roundup((uintptr_t)tsbbase, ktsb_sz);
1063 		vaddr = (caddr_t)BOP_ALLOC(bootops, ktsb_base, ktsb_sz,
1064 		    ktsb_sz);
1065 		if (vaddr != ktsb_base)
1066 			cmn_err(CE_PANIC, "sfmmu_ktsb_alloc: can't alloc"
1067 			    " 8K bigktsb");
1068 		ktsb_base = vaddr;
1069 		tsbbase = ktsb_base + ktsb_sz;
1070 		PRM_DEBUG(ktsb_base);
1071 		PRM_DEBUG(tsbbase);
1072 	}
1073 
1074 	if (ktsb4m_szcode > TSB_64K_SZCODE) {
1075 		ASSERT(ktsb_phys && enable_bigktsb);
1076 		ktsb4m_base = (caddr_t)roundup((uintptr_t)tsbbase, ktsb4m_sz);
1077 		vaddr = (caddr_t)BOP_ALLOC(bootops, ktsb4m_base, ktsb4m_sz,
1078 		    ktsb4m_sz);
1079 		if (vaddr != ktsb4m_base)
1080 			cmn_err(CE_PANIC, "sfmmu_ktsb_alloc: can't alloc"
1081 			    " 4M bigktsb");
1082 		ktsb4m_base = vaddr;
1083 		tsbbase = ktsb4m_base + ktsb4m_sz;
1084 		PRM_DEBUG(ktsb4m_base);
1085 		PRM_DEBUG(tsbbase);
1086 	}
1087 	return (tsbbase);
1088 }
1089 
1090 /*
1091  * Moves code assembled outside of the trap table into the trap
1092  * table taking care to relocate relative branches to code outside
1093  * of the trap handler.
1094  */
1095 static void
1096 sfmmu_reloc_trap_handler(void *tablep, void *start, size_t count)
1097 {
1098 	size_t i;
1099 	uint32_t *src;
1100 	uint32_t *dst;
1101 	uint32_t inst;
1102 	int op, op2;
1103 	int32_t offset;
1104 	int disp;
1105 
1106 	src = start;
1107 	dst = tablep;
1108 	offset = src - dst;
1109 	for (src = start, i = 0; i < count; i++, src++, dst++) {
1110 		inst = *dst = *src;
1111 		op = (inst >> 30) & 0x2;
1112 		if (op == 1) {
1113 			/* call */
1114 			disp = ((int32_t)inst << 2) >> 2; /* sign-extend */
1115 			if (disp + i >= 0 && disp + i < count)
1116 				continue;
1117 			disp += offset;
1118 			inst = 0x40000000u | (disp & 0x3fffffffu);
1119 			*dst = inst;
1120 		} else if (op == 0) {
1121 			/* branch or sethi */
1122 			op2 = (inst >> 22) & 0x7;
1123 
1124 			switch (op2) {
1125 			case 0x3: /* BPr */
1126 				disp = (((inst >> 20) & 0x3) << 14) |
1127 				    (inst & 0x3fff);
1128 				disp = (disp << 16) >> 16; /* sign-extend */
1129 				if (disp + i >= 0 && disp + i < count)
1130 					continue;
1131 				disp += offset;
1132 				if (((disp << 16) >> 16) != disp)
1133 					cmn_err(CE_PANIC, "bad reloc");
1134 				inst &= ~0x303fff;
1135 				inst |= (disp & 0x3fff);
1136 				inst |= (disp & 0xc000) << 6;
1137 				break;
1138 
1139 			case 0x2: /* Bicc */
1140 				disp = ((int32_t)inst << 10) >> 10;
1141 				if (disp + i >= 0 && disp + i < count)
1142 					continue;
1143 				disp += offset;
1144 				if (((disp << 10) >> 10) != disp)
1145 					cmn_err(CE_PANIC, "bad reloc");
1146 				inst &= ~0x3fffff;
1147 				inst |= (disp & 0x3fffff);
1148 				break;
1149 
1150 			case 0x1: /* Bpcc */
1151 				disp = ((int32_t)inst << 13) >> 13;
1152 				if (disp + i >= 0 && disp + i < count)
1153 					continue;
1154 				disp += offset;
1155 				if (((disp << 13) >> 13) != disp)
1156 					cmn_err(CE_PANIC, "bad reloc");
1157 				inst &= ~0x7ffff;
1158 				inst |= (disp & 0x7ffffu);
1159 				break;
1160 			}
1161 			*dst = inst;
1162 		}
1163 	}
1164 	flush_instr_mem(tablep, count * sizeof (uint32_t));
1165 }
1166 
1167 /*
1168  * Routine to allocate a large page to use in the TSB caches.
1169  */
1170 /*ARGSUSED*/
1171 static page_t *
1172 sfmmu_tsb_page_create(void *addr, size_t size, int vmflag, void *arg)
1173 {
1174 	int pgflags;
1175 
1176 	pgflags = PG_EXCL;
1177 	if ((vmflag & VM_NOSLEEP) == 0)
1178 		pgflags |= PG_WAIT;
1179 	if (vmflag & VM_PANIC)
1180 		pgflags |= PG_PANIC;
1181 	if (vmflag & VM_PUSHPAGE)
1182 		pgflags |= PG_PUSHPAGE;
1183 
1184 	return (page_create_va_large(&kvp, (u_offset_t)(uintptr_t)addr, size,
1185 	    pgflags, &kvseg, addr, arg));
1186 }
1187 
1188 /*
1189  * Allocate a large page to back the virtual address range
1190  * [addr, addr + size).  If addr is NULL, allocate the virtual address
1191  * space as well.
1192  */
1193 static void *
1194 sfmmu_tsb_xalloc(vmem_t *vmp, void *inaddr, size_t size, int vmflag,
1195     uint_t attr, page_t *(*page_create_func)(void *, size_t, int, void *),
1196     void *pcarg)
1197 {
1198 	page_t *ppl;
1199 	page_t *rootpp;
1200 	caddr_t addr = inaddr;
1201 	pgcnt_t npages = btopr(size);
1202 	page_t **ppa;
1203 	int i = 0;
1204 
1205 	/*
1206 	 * Assuming that only TSBs will call this with size > PAGESIZE
1207 	 * There is no reason why this couldn't be expanded to 8k pages as
1208 	 * well, or other page sizes in the future .... but for now, we
1209 	 * only support fixed sized page requests.
1210 	 */
1211 	if ((inaddr == NULL) && ((addr = vmem_xalloc(vmp, size, size, 0, 0,
1212 	    NULL, NULL, vmflag)) == NULL))
1213 		return (NULL);
1214 
1215 	/* If we ever don't want TSB slab-sized pages, this will panic */
1216 	ASSERT(((uintptr_t)addr & (tsb_slab_size - 1)) == 0);
1217 
1218 	if (page_resv(npages, vmflag & VM_KMFLAGS) == 0) {
1219 		if (inaddr == NULL)
1220 			vmem_xfree(vmp, addr, size);
1221 		return (NULL);
1222 	}
1223 
1224 	ppl = page_create_func(addr, size, vmflag, pcarg);
1225 	if (ppl == NULL) {
1226 		if (inaddr == NULL)
1227 			vmem_xfree(vmp, addr, size);
1228 		page_unresv(npages);
1229 		return (NULL);
1230 	}
1231 
1232 	rootpp = ppl;
1233 	ppa = kmem_zalloc(npages * sizeof (page_t *), KM_SLEEP);
1234 	while (ppl != NULL) {
1235 		page_t *pp = ppl;
1236 		ppa[i++] = pp;
1237 		page_sub(&ppl, pp);
1238 		ASSERT(page_iolock_assert(pp));
1239 		page_io_unlock(pp);
1240 	}
1241 
1242 	/*
1243 	 * Load the locked entry.  It's OK to preload the entry into
1244 	 * the TSB since we now support large mappings in the kernel TSB.
1245 	 */
1246 	hat_memload_array(kas.a_hat, (caddr_t)rootpp->p_offset, size,
1247 	    ppa, (PROT_ALL & ~PROT_USER) | HAT_NOSYNC | attr, HAT_LOAD_LOCK);
1248 
1249 	for (--i; i >= 0; --i) {
1250 		(void) page_pp_lock(ppa[i], 0, 1);
1251 		page_unlock(ppa[i]);
1252 	}
1253 
1254 	kmem_free(ppa, npages * sizeof (page_t *));
1255 	return (addr);
1256 }
1257 
1258 /* Called to import new spans into the TSB vmem arenas */
1259 void *
1260 sfmmu_tsb_segkmem_alloc(vmem_t *vmp, size_t size, int vmflag)
1261 {
1262 	lgrp_id_t lgrpid = LGRP_NONE;
1263 
1264 	if (tsb_lgrp_affinity) {
1265 		/*
1266 		 * Search for the vmp->lgrpid mapping by brute force;
1267 		 * some day vmp will have an lgrp, until then we have
1268 		 * to do this the hard way.
1269 		 */
1270 		for (lgrpid = 0; lgrpid < NLGRPS_MAX &&
1271 		    vmp != kmem_tsb_default_arena[lgrpid]; lgrpid++);
1272 		if (lgrpid == NLGRPS_MAX)
1273 			lgrpid = LGRP_NONE;
1274 	}
1275 
1276 	return (sfmmu_tsb_xalloc(vmp, NULL, size, vmflag, 0,
1277 	    sfmmu_tsb_page_create, lgrpid != LGRP_NONE? &lgrpid : NULL));
1278 }
1279 
1280 /* Called to free spans from the TSB vmem arenas */
1281 void
1282 sfmmu_tsb_segkmem_free(vmem_t *vmp, void *inaddr, size_t size)
1283 {
1284 	page_t *pp;
1285 	caddr_t addr = inaddr;
1286 	caddr_t eaddr;
1287 	pgcnt_t npages = btopr(size);
1288 	pgcnt_t pgs_left = npages;
1289 	page_t *rootpp = NULL;
1290 
1291 	ASSERT(((uintptr_t)addr & (tsb_slab_size - 1)) == 0);
1292 
1293 	hat_unload(kas.a_hat, addr, size, HAT_UNLOAD_UNLOCK);
1294 
1295 	for (eaddr = addr + size; addr < eaddr; addr += PAGESIZE) {
1296 		pp = page_lookup(&kvp, (u_offset_t)(uintptr_t)addr, SE_EXCL);
1297 		if (pp == NULL)
1298 			panic("sfmmu_tsb_segkmem_free: page not found");
1299 
1300 		ASSERT(PAGE_EXCL(pp));
1301 		page_pp_unlock(pp, 0, 1);
1302 
1303 		if (rootpp == NULL)
1304 			rootpp = pp;
1305 		if (--pgs_left == 0) {
1306 			/*
1307 			 * similar logic to segspt_free_pages, but we know we
1308 			 * have one large page.
1309 			 */
1310 			page_destroy_pages(rootpp);
1311 		}
1312 	}
1313 	page_unresv(npages);
1314 
1315 	if (vmp != NULL)
1316 		vmem_xfree(vmp, inaddr, size);
1317 }
1318